WO2015194297A1 - 発光デバイス、波長変換部材及び波長変換部材の製造方法 - Google Patents

発光デバイス、波長変換部材及び波長変換部材の製造方法 Download PDF

Info

Publication number
WO2015194297A1
WO2015194297A1 PCT/JP2015/064307 JP2015064307W WO2015194297A1 WO 2015194297 A1 WO2015194297 A1 WO 2015194297A1 JP 2015064307 W JP2015064307 W JP 2015064307W WO 2015194297 A1 WO2015194297 A1 WO 2015194297A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion unit
light
substrate
light emitting
Prior art date
Application number
PCT/JP2015/064307
Other languages
English (en)
French (fr)
Inventor
角見 昌昭
浅野 秀樹
隆史 西宮
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2015194297A1 publication Critical patent/WO2015194297A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a light emitting device, a wavelength conversion member, and a method for manufacturing the wavelength conversion member.
  • Patent Literature 1 discloses a light emitting device including a wavelength conversion member formed by mixing and dispersing two types of quantum dots having different emission wavelengths.
  • a light emitting device using a mixture of two types of quantum dots emits light including light emission of one quantum dot and light emission of another quantum dot.
  • the color tone of the emitted light of such a light emitting device changes depending on the blending ratio of quantum dots, the light emission efficiency of each quantum dot, and the like. For this reason, in a light emitting device using a plurality of types of quantum dots, there may be variations in color tone of emitted light among individual light emitting devices, which cannot occur in a light emitting device using only one type of quantum dots. Problem arises.
  • the main object of the present invention is to provide a light-emitting device using a plurality of types of quantum dots and having a configuration capable of reducing variations in color tone of emitted light between individual light-emitting devices.
  • a light emitting device includes a first wavelength conversion unit including a first substrate, a first wavelength conversion unit provided on the first substrate and including quantum dots, a second substrate, A second wavelength conversion unit including a quantum dot provided on the second substrate and having a different emission wavelength from the quantum dot included in the first wavelength conversion unit, and the first wavelength conversion unit, A second wavelength conversion unit disposed so as to face the second wavelength conversion unit, and a light source that emits excitation light of the quantum dots to each of the first and second wavelength conversion units, Prepare.
  • the first wavelength conversion unit and the second wavelength conversion unit are provided on different substrates. For this reason, the first and second wavelength conversion units are assembled after confirming in advance the emission wavelength and emission intensity from the first wavelength conversion unit and the emission wavelength and emission intensity from the second wavelength conversion unit. Can do. Therefore, variation in the color tone of the light emitted from the light emitting devices among the individual light emitting devices can be reduced.
  • the light-emitting device may further include a side wall portion that connects the first substrate and the second substrate and constitutes a cell together with the first and second substrates.
  • the 1st and 2nd wavelength conversion part may be distribute
  • the wavelength conversion member according to the present invention includes a first wavelength conversion unit provided on the first substrate and the first wavelength conversion unit including the quantum dots provided on the first substrate, A second substrate, and a second wavelength conversion unit that is provided on the second substrate and includes quantum dots that have different emission wavelengths from the quantum dots included in the first wavelength conversion unit; A second wavelength conversion unit disposed so that the first wavelength conversion unit and the second wavelength conversion unit face each other.
  • the first wavelength conversion unit and the second wavelength conversion unit are provided on different substrates. For this reason, the first and second wavelength conversion units are assembled after confirming in advance the emission wavelength and emission intensity from the first wavelength conversion unit and the emission wavelength and emission intensity from the second wavelength conversion unit. Can do. Therefore, variation in the color tone of the light emitted from the light emitting devices among the individual light emitting devices can be reduced.
  • the manufacturing method of the light-emitting device which concerns on this invention is a manufacturing method of a light-emitting device provided with the wavelength conversion member and the light source which radiate
  • a second wavelength conversion unit having a second wavelength conversion unit including a quantum dot having a different emission wavelength from the quantum dots included in the first wavelength conversion unit, and the first and second The wavelength conversion unit is disposed so that the first wavelength conversion unit and the second wavelength conversion unit face each other, and a manufacturing step of manufacturing a wavelength conversion member is provided.
  • a plurality of at least one of the first and second wavelength conversion units are prepared, and the light emission intensity of each wavelength conversion unit is measured and measured.
  • a step of determining a first wavelength conversion unit and a second wavelength conversion unit to be combined in the manufacturing process from among the plurality of first and second wavelength conversion units based on the emission intensity may be further provided.
  • the 1st and 2nd wavelength conversion unit from which the emitted light of a desired wavelength is obtained can be selected. Accordingly, it is possible to suppress variations in color tone of light emitted from the light emitting devices among the individual light emitting devices.
  • the method for manufacturing a light emitting device according to the present invention may further include a step of aging at least one wavelength conversion unit prior to the manufacturing step. In this case, it is possible to suppress variations in the color tone of the emitted light of the light emitting devices among the individual light emitting devices due to changes in the light emission wavelength and light emission intensity of the wavelength conversion unit accompanying aging.
  • a plurality of at least one of the first and second wavelength conversion units are prepared, and aging is performed on at least one of the plurality of wavelength conversion units; , After the aging step, the step of measuring the emission intensity of each wavelength conversion unit, and the first and second combined in the production step from the plurality of first and second wavelength conversion units based on the measured emission intensity And a step of determining a second wavelength conversion unit.
  • the step of measuring the emission intensity of each wavelength conversion unit, and the first and second combined in the production step from the plurality of first and second wavelength conversion units based on the measured emission intensity And a step of determining a second wavelength conversion unit.
  • a light emitting device that uses a plurality of types of quantum dots and has a configuration that can reduce variations in color tone of light emitted from the light emitting devices among individual light emitting devices.
  • FIG. 1 is a schematic cross-sectional view of the light emitting device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the light emitting device according to the second embodiment.
  • FIG. 3 is a schematic cross-sectional view of a light emitting device according to a third embodiment.
  • FIG. 1 is a schematic cross-sectional view of a light emitting device 1 according to the first embodiment.
  • the light emitting device 1 includes a wavelength conversion member 10 and a light source 11.
  • the wavelength conversion member 10 is a member that emits light having a wavelength different from that of the excitation light when the excitation light is incident.
  • the wavelength conversion member 10 includes a plurality of wavelength conversion units. Specifically, the wavelength conversion member 10 includes a first wavelength conversion unit 21 and a second wavelength conversion unit 22.
  • the first wavelength conversion unit 21 and the second wavelength conversion unit 22 are opposed to each other at an interval.
  • the first wavelength conversion unit 21 has a first substrate 21a.
  • substrate 21a can be comprised with a glass plate, a ceramic board, a resin board etc., for example.
  • substrate 21a is comprised by the board which consists of inorganic materials, such as a glass plate or a ceramic board.
  • the first substrate 21a is hardly deteriorated with respect to the light emitted from the light source 11 or the external atmosphere, and the transparency is lowered. It can be suppressed, and the conversion efficiency can be maintained over a long period of time.
  • a layered first wavelength conversion unit 21b is arranged on the first substrate 21a. Specifically, the first wavelength conversion unit 21b is disposed on the surface of the first substrate 21a on the second wavelength conversion unit 22 side. The first wavelength conversion unit 21b is disposed on substantially the entire surface excluding the peripheral portion of the first substrate 21a. The peripheral edge portion of the first substrate 21a is exposed from the first wavelength conversion portion 21b.
  • the first wavelength conversion unit 21b includes at least one kind of quantum dot.
  • the quantum dots are dispersed in a dispersion medium such as a resin.
  • the first wavelength conversion unit 21b may further include a filler such as a light scattering agent in addition to the quantum dots and the dispersion medium.
  • the light scattering agent include highly reflective inorganic compound particles such as alumina particles, titania particles, silica particles, and highly reflective white resin particles.
  • variation in the emitted light intensity in the wavelength conversion member 10 can be made small by making the 1st wavelength conversion part 21b contain a light-scattering agent.
  • the second wavelength conversion unit 22 is disposed above the first wavelength conversion unit 21b of the first wavelength conversion unit 21.
  • the second wavelength conversion unit 22 has a second substrate 22a.
  • the second substrate 22a is opposed to the first substrate 21a.
  • the second substrate 22a can be constituted by, for example, a glass plate, a ceramic plate, a resin plate, or the like.
  • substrate 22a is comprised by the board which consists of inorganic materials, such as a glass plate or a ceramic board.
  • substrate 22a into a board which consists of inorganic materials, such as a glass plate or a ceramic board, it is hard to deteriorate with respect to the light radiate
  • the second wavelength conversion unit 22b is disposed on the second substrate 22a. Specifically, the second wavelength conversion unit 22b is disposed on the surface of the second substrate 22a on the first wavelength conversion unit 21 side. Therefore, the first substrate 21a and the second substrate 22a are opposed to each other via the first and second wavelength conversion units 21b and 22b.
  • the second wavelength conversion unit 22b is disposed on substantially the entire surface excluding the peripheral portion of the second substrate 22a. The peripheral edge of the second substrate 22a is exposed from the second wavelength converter 22b.
  • the first wavelength conversion unit 21b and the second wavelength conversion unit 22b are provided with an interval therebetween, but the present invention is not limited to this configuration.
  • the first wavelength conversion unit 21b and the second wavelength conversion unit 22b may be provided in close contact with each other. By closely providing the first wavelength conversion unit 21b and the second wavelength conversion unit 22b, reflection at the interface between the first wavelength conversion unit 21b and the second wavelength conversion unit 22b can be suppressed. The light extraction efficiency can be improved.
  • the second wavelength conversion unit 22b includes at least one kind of quantum dot.
  • the 2nd wavelength conversion part 22b contains the quantum dot from which the light emission wavelength differs from the quantum dot contained in the 1st wavelength conversion part 21b.
  • the light emission wavelength is different between the quantum dots included in the second wavelength conversion unit 22b and the quantum dots included in the first wavelength conversion unit 21b. That is, the first wavelength conversion unit 21b includes quantum dots that have different emission wavelengths from any of the quantum dots included in the second wavelength conversion unit 22b.
  • quantum dots emit light having a wavelength different from that of excitation light when excitation light is incident.
  • the wavelength of the light emitted from the quantum dot depends on the particle diameter of the quantum dot. That is, the wavelength of the light obtained by changing the particle diameter of the quantum dots can be adjusted. For this reason, the particle diameter of a quantum dot is made into the particle diameter according to the wavelength of the light to obtain.
  • the particle size of the quantum dots is usually about 2 nm to 10 nm.
  • quantum dots that emits blue visible light (fluorescence with a wavelength of 440 nm to 480 nm) when irradiated with excitation light of ultraviolet to near ultraviolet with a wavelength of 300 nm to 440 nm
  • the particle diameter is about 2.0 nm to 3.0 nm.
  • quantum dots that emit green visible light (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 nm to 440 nm or blue excitation light having a wavelength of 440 nm to 480 nm include particle diameters.
  • CdSe / ZnS microcrystals having a thickness of about 3.0 nm to 3.3 nm.
  • Specific examples of quantum dots that emit yellow visible light (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 nm to 440 nm or blue excitation light having a wavelength of 440 nm to 480 nm include particle diameters.
  • CdSe / ZnS microcrystals having a thickness of about 3.3 nm to 4.5 nm.
  • quantum dots that emit red visible light (fluorescence with a wavelength of 600 nm to 700 nm) when irradiated with ultraviolet to near ultraviolet excitation light with a wavelength of 300 nm to 440 nm or blue excitation light with a wavelength of 440 nm to 480 nm include particle diameters.
  • CdSe / ZnS microcrystals having a thickness of about 4.5 nm to 10 nm.
  • the first substrate 21 a and the second substrate 22 a are connected by the side wall portion 23.
  • the side wall part 23 connects the peripheral part of the first substrate 21a and the peripheral part of the second substrate 22a.
  • a cell 24 is constituted by the side wall portion 23 and the first and second substrates 21a and 22a.
  • the first wavelength conversion unit 21 b and the second wavelength conversion unit 22 b are arranged in the cell 24. Specifically, the first and second wavelength conversion units 21 b and 22 b are sealed in the internal space 24 a of the cell 24. For this reason, contact with the 1st and 2nd wavelength conversion parts 21b and 22b, oxygen, and moisture can be controlled. Therefore, deterioration of the first and second wavelength conversion units 21b and 22b can be suppressed.
  • the side wall part 23 can be configured by coating the surface of glass, ceramics, metal, glass or ceramics with a metal layer or the like, for example.
  • the side wall 23 and each of the first and second substrates 21a and 22b may be bonded by welding, anodic bonding, bonding using an inorganic bonding material such as solder, or the like.
  • the light emitting device 1 includes a light source 11.
  • the light source 11 is arranged on one side in the opposing direction of the first and second wavelength conversion units 21b and 22b with respect to the first wavelength conversion unit 21b and the second wavelength conversion unit 22b. Specifically, the light source 11 is disposed outside the cell 24, more specifically, on the outer surface side of the first wavelength conversion unit 21 of the cell 24. The light source 11 is arranged so that light emitted from the light source 11 passes through the first wavelength conversion unit 21 and then enters the second wavelength conversion unit 22.
  • the light source 11 emits light including excitation light of quantum dots to each of the first and second wavelength conversion units 21b and 22b.
  • the light source 11 may include light of other wavelengths in addition to the light of the excitation wavelength of the quantum dots included in the first and second wavelength conversion units 21b and 22b.
  • the light source 11 can be composed of, for example, an LED (Light Emitting Diode) element, an LD (Laser Diode) element, or the like.
  • the light including the light having the excitation wavelength of the quantum dots included in the first and second wavelength conversion units 21b and 22b from the light source 11 is transmitted to the first and second wavelength conversion units 21b and 22b. Emitted. Therefore, the first and second wavelength conversion units 21b and 22b absorb the excitation light and emit light having a wavelength longer than the excitation wavelength.
  • the light emitting device 1 may emit mixed light of light emission of the quantum dots included in the first wavelength conversion unit 21b and light emission of the quantum dots included in the second wavelength conversion unit 22b, Light emitted from the quantum dots included in the wavelength converter 21b, light emitted from the quantum dots included in the second wavelength converter 22b, and emitted from the light source 11 and transmitted through the first and second wavelength converters 21b and 22b. Mixed light with light may be emitted.
  • the manufacturing method of the light emitting device 1 is not particularly limited.
  • the light emitting device 1 can be manufactured, for example, in the following manner.
  • the first wavelength conversion unit 21 is prepared. Specifically, the first wavelength conversion unit 21b is formed on the first substrate 21a.
  • the 1st wavelength conversion part 21b can be formed by apply
  • a second wavelength conversion unit 22 is prepared. Specifically, the second wavelength conversion unit 22b is formed on the second substrate 22a.
  • the second wavelength conversion unit 22b can be formed, for example, by applying a paste containing quantum dots and drying.
  • the wavelength conversion member 10 is manufactured by arranging the first wavelength conversion unit 21 and the second wavelength conversion unit 22 so that the first substrate 21a and the second substrate 22a face each other ( Production process).
  • a light emitting device including a plurality of types of quantum dots it is necessary to adjust the blending ratio of the plurality of types of quantum dots in consideration of the rate of change in luminous efficiency due to aging.
  • the rate of change in light emission efficiency due to aging may differ. Therefore, it is difficult to control the color tone of light emitted from a light emitting device including a plurality of types of quantum dots with high accuracy.
  • the first wavelength conversion unit 21b is provided on the first substrate 21a, while the second wavelength conversion unit 22b is provided on the second substrate 22a.
  • the first wavelength conversion unit 21b and the second wavelength conversion unit 22b are provided separately. For this reason, the color tone and intensity
  • the color tone and intensity of the light emitted from the second wavelength conversion unit 22b can be estimated and adjusted in advance. Therefore, before assembling the first wavelength conversion unit 21 and the second wavelength conversion unit 22 to manufacture the wavelength conversion member 10, it is possible to predict the color tone of the light emitted from the manufactured wavelength conversion member 10. it can. As a result, it is possible to reduce variations in the color tone of the light emitted from the light emitting devices among the individual light emitting devices.
  • the first and second wavelength conversion units 21 and 22 Prior to the manufacturing process, at least one of the first and second wavelength conversion units 21 and 22 is prepared, and each wavelength is prepared from the viewpoint of further reducing variation in color tone of light emitted from the light emitting devices among individual light emitting devices.
  • the first wavelength conversion unit to be combined in the manufacturing process from the plurality of first and second wavelength conversion units 21 and 22 based on the measured light emission intensity.
  • 21 and the second wavelength conversion unit 22 are preferably determined. By doing so, for example, it is possible to select the first and second wavelength conversion units 21 and 22 from which outgoing light having a wavelength close to that of desired outgoing light can be obtained. As a result, variation in color tone of light emitted from the light emitting devices among individual light emitting devices can be further reduced.
  • the manufacturing process Prior to the manufacturing process, it is preferable to perform aging of at least one of the wavelength conversion units 21 and 22. By performing aging in advance, it is possible to suppress a change in color tone of light emitted from the wavelength conversion units 21 and 22 in the wavelength conversion member 10 with time. Therefore, the variation in the color tone of the light emitted from the light emitting devices among the individual light emitting devices can be further reduced.
  • aging means that the wavelength conversion unit is irradiated with light including an excitation wavelength over a predetermined period.
  • At least one of the wavelength conversion units 21 and 22 is prepared prior to the manufacturing process, and an aging process is performed on at least one of the wavelength conversion units 21 and 22. After performing, it is preferable to measure the light emission intensity of each wavelength conversion unit 21, 22. By doing so, it is possible to determine a combination of the first wavelength conversion unit 21 and the second wavelength conversion unit 22 so that the emission wavelength belongs to a desired emission wavelength region.
  • FIG. 2 is a schematic cross-sectional view of a light emitting device 1a according to the second embodiment.
  • the arrangement of the light sources is not particularly limited. If the light source 11 is arranged on one side in the facing direction of the first and second wavelength conversion units 21b and 22b with respect to the first wavelength conversion unit 21b and the second wavelength conversion unit 22b, respectively. Good. As shown in FIG. 2, for example, in the light emitting device 1 a according to the second embodiment, the light source 11 is arranged between the first substrate 21 a and the first wavelength conversion unit 21 b in the cell 24. Yes.
  • the first and second wavelength conversion units convert the emission intensity of the emitted light from the first wavelength conversion unit 21b and the emission intensity of the emission light from the second wavelength conversion unit 22b. It is possible to inspect before assembling 21 and 22 in advance. Accordingly, it is possible to suppress variations in color tone of light emitted from the light emitting devices among the individual light emitting devices.
  • FIG. 3 is a schematic cross-sectional view of a light emitting device 1b according to the third embodiment.
  • the first wavelength conversion unit 21b and the second wavelength conversion unit 22b are in close contact with each other. Even in this case, as in the first and second embodiments, it is possible to suppress variations in the color tone of the emitted light of the light emitting devices among the individual light emitting devices.
  • the number of interfaces existing between the first wavelength conversion unit 21b and the second wavelength conversion unit 22b can be reduced. Therefore, generation of unwanted reflected light can be suppressed. As a result, the light extraction efficiency from the wavelength conversion member 10 can be improved.
  • Wavelength conversion member 1
  • First wavelength conversion unit 2
  • Second wavelength conversion unit 21a First substrate 21b
  • Second wavelength conversion Part 23 side wall part 24 cell

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Filters (AREA)

Abstract

 数種類の量子ドットを用いた発光デバイスであって、個々の発光デバイス間における発光デバイスの出射光の色調のばらつきを小さくし得る構成を有する発光デバイスを提供する。 第1の波長変換ユニット21は、第1の基板21aと、第1の波長変換部21bとを有する。第1の波長変換部21bは、量子ドットを含む。第2の波長変換ユニット22は、第2の基板22aと、第2の波長変換部22bとを有し、第1の波長変換部21bと第2の波長変換部22bとが対向するように配されている。第2の波長変換部22bは、第1の波長変換部21bに含まれる量子ドットとは発光波長が異なる量子ドットを含む。光源11は、第1及び第2の波長変換部21b、22bのそれぞれに対して量子ドットの励起光を出射するように構成されている。

Description

発光デバイス、波長変換部材及び波長変換部材の製造方法
 本発明は、発光デバイス、波長変換部材及び波長変換部材の製造方法に関する。
 近年、発光ダイオードを用いた発光デバイスの進歩が目覚しく、液晶のバックライト、大型ディスプレイ等に採用されている。特に、短波長光の発光素子の半導体材料の発展により、短波長の光を得られるようになってきたため、これを用いて蛍光体を励起してより多様な波長の光を得ることができるようになった。
 従来より、量子ドットを用いた発光デバイスが知られている。例えば、特許文献1には、発光波長が相互に異なる2種の量子ドットが混合して分散してなる波長変換部材を備えた発光デバイスが開示されている。
特開2011-202148号公報
 特許文献1に記載のように、2種の量子ドットを混合して用いた発光デバイスからは、一の量子ドットの発光と、他の量子ドットの発光とを含む光が出射される。このような発光デバイスの出射光の色調は、量子ドットの配合割合や、各量子ドットの発光効率等により変化する。このため、複数種類の量子ドットを用いた発光デバイスにおいては、個々の発光デバイス間における出射光の色調のばらつきが生じ得るという、1種の量子ドットのみを用いた発光デバイスにおいては生じ得ない特有の問題が生じる。
 本発明の主な目的は、複数種類の量子ドットを用いた発光デバイスであって、個々の発光デバイス間における出射光の色調のばらつきを小さくし得る構成を有する発光デバイスを提供することにある。
 本発明に係る発光デバイスは、第1の基板と、第1の基板の上に設けられ、量子ドットを含む第1の波長変換部とを有する第1の波長変換ユニットと、第2の基板と、第2の基板の上に設けられ、第1の波長変換部に含まれる量子ドットとは発光波長が異なる量子ドットを含む第2の波長変換部とを有し、第1の波長変換部と第2の波長変換部とが対向するように配された第2の波長変換ユニットと、第1及び第2の波長変換部のそれぞれに対して前記量子ドットの励起光を出射する光源と、を備える。
 本発明に係る発光デバイスでは、第1の波長変換部と第2の波長変換部とが異なる基板の上に設けられている。このため、第1の波長変換部からの発光波長及び発光強度と、第2の波長変換部からの発光波長及び発光強度を予め確かめた上で、第1及び第2の波長変換ユニットを組み立てることができる。従って、個々の発光デバイス間における発光デバイスの出射光の色調のばらつきを小さくし得る。
 本発明に係る発光デバイスは、第1の基板と第2の基板とを接続しており、第1及び第2の基板と共にセルを構成している側壁部をさらに備えていてもよい。第1及び第2の波長変換部は、セル内に配されていてもよい。この構成によれば、第1及び第2の波長変換部と、水分や酸素とが接触することを抑制することができる。よって、第1及び第2の波長変換部の水分や酸素に伴う劣化を抑制することができる。
 また、本発明に係る波長変換部材は、第1の基板と、第1の基板の上に設けられており、量子ドットを含む第1の波長変換部とを有する第1の波長変換ユニットと、第2の基板と、第2の基板の上に設けられており、第1の波長変換部に含まれる量子ドットとは発光波長が異なる量子ドットを含む第2の波長変換部とを有し、第1の波長変換部と第2の波長変換部とが対向するように配された第2の波長変換ユニットと、を備える。
 本発明に係る波長変換部材では、第1の波長変換部と第2の波長変換部とが異なる基板の上に設けられている。このため、第1の波長変換部からの発光波長及び発光強度と、第2の波長変換部からの発光波長及び発光強度を予め確かめた上で、第1及び第2の波長変換ユニットを組み立てることができる。従って、個々の発光デバイス間における発光デバイスの出射光の色調のばらつきを小さくし得る。
 また、本発明に係る発光デバイスの製造方法は、波長変換部材と、波長変換部材に対して光を出射する光源とを備える発光デバイスの製造方法であって、第1の基板と、第1の基板の上に設けられており、量子ドットを含む第1の波長変換部とを有する第1の波長変換ユニットを用意する工程と、第2の基板と、第2の基板の上に設けられており、第1の波長変換部に含まれる量子ドットとは発光波長が異なる量子ドットを含む第2の波長変換部とを有する第2の波長変換ユニットを用意する工程と、第1及び第2の波長変換ユニットを第1の波長変換部と第2の波長変換部とが対向するように配して、波長変換部材を作製する作製工程と、を備える。
 本発明に係る発光デバイスの製造方法では、作製工程に先立って、第1及び第2の波長変換ユニットの少なくとも一方を複数用意し、各波長変換ユニットの発光強度を測定する工程と、測定された発光強度に基づいて、複数の第1及び第2の波長変換ユニットのなかから、作製工程において組み合わせる第1及び第2の波長変換ユニットを決定する工程とをさらに備えていてもよい。この場合、所望する波長の出射光が得られる第1及び第2の波長変換ユニットを選択することができる。従って、個々の発光デバイス間における発光デバイスの出射光の色調のばらつきを抑制し得る。
 本発明に係る発光デバイスの製造方法では、作製工程に先立って、少なくともひとつの波長変換ユニットのエージングを行う工程をさらに備えていてもよい。この場合、エージングに伴う波長変換部の発光波長や発光強度の変化に起因する個々の発光デバイス間における発光デバイスの出射光の色調のばらつきを抑制することができる。
 本発明に係る発光デバイスの製造方法では、作製工程に先立って、第1及び第2の波長変換ユニットの少なくとも一方を複数用意し、複数の波長変換ユニットの少なくともひとつに対してエージングを行う工程と、エージング工程の後に、各波長変換ユニットの発光強度を測定する工程と、測定された発光強度に基づいて、複数の第1及び第2の波長変換ユニットの中から、作製工程において組み合わせる第1及び第2の波長変換ユニットを決定する工程とをさらに備えていてもよい。この場合、エージングに伴う波長変換部の発光波長や発光強度の変化に起因する個々の発光デバイス間における発光デバイスの出射光の色調のばらつきをより効果的に抑制することができる。
 本発明によれば、複数種類の量子ドットを用いた発光デバイスであって、個々の発光デバイス間における発光デバイスの出射光の色調のばらつきを小さくし得る構成を有する発光デバイスを提供することができる。
図1は、第1の実施形態に係る発光デバイスの模式的断面図である。 図2は、第2の実施形態に係る発光デバイスの模式的断面図である。 図3は、第3の実施形態に係る発光デバイスの模式的断面図である。
 以下、本発明を実施した好ましい形態について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (第1の実施形態)
 図1は、第1の実施形態に係る発光デバイス1の模式的断面図である。
 図1に示すように、発光デバイス1は、波長変換部材10と、光源11とを備えている。波長変換部材10は、励起光が入射したときに、励起光とは波長が異なる波長の光を出射する部材である。
 波長変換部材10は、複数の波長変換ユニットを備えている。具体的には、波長変換部材10は、第1の波長変換ユニット21と、第2の波長変換ユニット22とを備えている。
 第1の波長変換ユニット21と第2の波長変換ユニット22とは、互いに間隔をおいて対向している。第1の波長変換ユニット21は、第1の基板21aを有する。第1の基板21aは、例えば、ガラス板、セラミック板、樹脂板等により構成することができる。なかでも、第1の基板21aは、ガラス板又はセラミック板等の無機材料からなる板により構成されていることが好ましい。このように、第1の基板21aをガラス板又はセラミック板等の無機材料からなる板とすることで、光源11からの出射される光や外部の雰囲気に対して劣化しにくく、透明性が低下することを抑えることができ、長期間に亘って変換効率を維持することができる。
 第1の基板21aの上には、層状の第1の波長変換部21bが配されている。具体的には、第1の基板21aの第2の波長変換ユニット22側の表面の上に第1の波長変換部21bが配されている。第1の波長変換部21bは、第1の基板21aの周縁部を除いた実質的に全体の上に配されている。第1の基板21aの周縁部は、第1の波長変換部21bから露出している。
 第1の波長変換部21bには、少なくとも1種の量子ドットが含まれている。第1の波長変換部21bにおいて、量子ドットは、樹脂等の分散媒中に分散している。第1の波長変換部21bは、量子ドット及び分散媒に加え、光散乱剤等のフィラーをさらに含んでいてもよい。光散乱剤の具体例としては、例えば、アルミナ粒子、チタニア粒子、シリカ粒子などの高反射無機化合物粒子及び高反射白色樹脂粒子等が挙げられる。このように、第1の波長変換部21bに光散乱剤を含有させることで、波長変換部材10における発光強度の面内ばらつきを小さくすることができる。
 第1の波長変換ユニット21の第1の波長変換部21bの上方には、第2の波長変換ユニット22が配されている。第2の波長変換ユニット22は、第2の基板22aを有する。第2の基板22aは、第1の基板21aと対向している。第2の基板22aは、例えば、ガラス板、セラミック板、樹脂板等により構成することができる。なかでも、第2の基板22aは、ガラス板又はセラミック板等の無機材料からなる板により構成されていることが好ましい。このように、第2の基板22aをガラス板又はセラミック板等の無機材料からなる板とすることで、光源11からの出射される光や外部の雰囲気に対して劣化しにくく、透明性が低下することを抑えることができ、長期間に亘って光の取り出し効率を維持することができる。
 第2の基板22aの上には、第2の波長変換部22bが配されている。具体的には、第2の基板22aの第1の波長変換ユニット21側の表面の上に第2の波長変換部22bが配されている。従って、第1の基板21aと第2の基板22aとは、第1及び第2の波長変換部21b、22bを介して対向している。第2の波長変換部22bは、第2の基板22aの周縁部を除いた実質的に全体の上に配されている。第2の基板22aの周縁部は、第2の波長変換部22bから露出している。
 本実施形態では、第1の波長変換部21bと第2の波長変換部22bとは、相互に間隔をおいて設けられているが、本発明は、この構成に限定されない。第1の波長変換部21bと第2の波長変換部22bとは、密着して設けられていてもよい。第1の波長変換部21bと第2の波長変換部22bとを密着して設けることで、第1の波長変換部21bと第2の波長変換部22bとの界面での反射を抑えることができ、光の取り出し効率を向上させることができる。
 第2の波長変換部22bには、少なくとも1種の量子ドットが含まれている。第2の波長変換部22bは、第1の波長変換部21bに含まれる量子ドットとは発光波長が異なる量子ドットを含んでいる。第2の波長変換部22bに含まれる量子ドットと、第1の波長変換部21bに含まれる量子ドットとでは、発光波長が相互に異なる。すなわち、第1の波長変換部21bには、第2の波長変換部22bに含まれるいずれの量子ドットとも発光波長が異なる量子ドットが含まれている。
 なお、「量子ドット」とは、励起光が入射したときに、励起光とは異なる波長の光を出射する。量子ドットから出射される光の波長は、量子ドットの粒子径に依存する。すなわち、量子ドットの粒子径を変化させることにより得られる光の波長を調整することができる。このため、量子ドットの粒子径は、得ようとする光の波長に応じた粒子径とされている。量子ドットの粒子径は、通常、2nm~10nm程度である。
 例えば、波長300nm~440nmの紫外~近紫外の励起光を照射すると青色の可視光(波長440nm~480nmの蛍光)を発する量子ドットの具体例としては、粒子径が2.0nm~3.0nm程度のCdSe/ZnSの微結晶などが挙げられる。波長300nm~440nmの紫外~近紫外の励起光や波長440nm~480nmの青色の励起光を照射すると緑色の可視光(波長が500nm~540nmの蛍光)を発する量子ドットの具体例としては、粒子径が3.0nm~3.3nm程度のCdSe/ZnSの微結晶などが挙げられる。波長300nm~440nmの紫外~近紫外の励起光や波長440nm~480nmの青色の励起光を照射すると黄色の可視光(波長が540nm~595nmの蛍光)を発する量子ドットの具体例としては、粒子径が3.3nm~4.5nm程度のCdSe/ZnSの微結晶などが挙げられる。波長300nm~440nmの紫外~近紫外の励起光や波長440nm~480nmの青色の励起光を照射すると赤色の可視光(波長が600nm~700nmの蛍光)を発する量子ドットの具体例としては、粒子径が4.5nm~10nm程度のCdSe/ZnSの微結晶などが挙げられる。
 発光デバイス1では、第1の基板21aと第2の基板22aとは、側壁部23により接続されている。側壁部23は、第1の基板21aの周縁部と、第2の基板22aの周縁部とを接続している。これら側壁部23並びに第1及び第2の基板21a、22aによってセル24が構成されている。第1の波長変換部21bと第2の波長変換部22bとは、セル24内に配されている。具体的には、セル24の内部空間24a内に第1及び第2の波長変換部21b、22bが封止されている。このため、第1及び第2の波長変換部21b、22bと、酸素や水分との接触を抑制することができる。従って、第1及び第2の波長変換部21b、22bの劣化を抑制することができる。
 側壁部23は、例えば、ガラス、セラミックス、金属、ガラスやセラミックスの表面を金属層等でコーティングすることにより構成することができる。
 なお、側壁部23と、第1及び第2の基板21a、22bのそれぞれとは、溶接、陽極接合、半田等の無機接合材を用いた接合等により接合されていてもよい。
 発光デバイス1は、光源11を備えている。光源11は、第1の波長変換部21bと第2の波長変換部22bとに対して、第1及び第2の波長変換部21b、22bの対向方向における一方側に配されている。具体的には、光源11は、セル24の外側、より具体的には、セル24の第1の波長変換ユニット21の外表面側に配されている。光源11は、光源11から出射した光が第1の波長変換ユニット21を透過し、その後、第2の波長変換ユニット22に入射するように配されている。
 光源11は、第1及び第2の波長変換部21b、22bのそれぞれに対して量子ドットの励起光を含む光を出射する。光源11は、第1及び第2の波長変換部21b、22bに含まれる量子ドットの励起波長の光に加え、他の波長の光を含んでいてもよい。
 光源11は、例えば、LED(Light Emitting Diode)素子、LD(Laser Diode)素子等により構成することができる。
 発光デバイス1においては、光源11から第1及び第2の波長変換部21b、22bに含まれる量子ドットの励起波長の光を含む光が第1及び第2の波長変換部21b、22bに対して出射される。このため、第1及び第2の波長変換部21b,22bにおいて、励起光が吸収され、励起波長よりも長い波長の光が出射される。
 発光デバイス1は、第1の波長変換部21bに含まれる量子ドットの発光と、第2の波長変換部22bに含まれる量子ドットの発光との混合光を出射してもよいし、第1の波長変換部21bに含まれる量子ドットの発光と、第2の波長変換部22bに含まれる量子ドットの発光と、光源11から出射され、第1及び第2の波長変換部21b、22bを透過した光との混合光が出射されてもよい。
 発光デバイス1の製造方法は、特に限定されない。発光デバイス1は、例えば、以下の要領で製造することができる。
 まず、第1の波長変換ユニット21を用意する。具体的には、第1の基板21aの上に、第1の波長変換部21bを形成する。第1の波長変換部21bは、例えば、量子ドットを含むペーストを塗布し、乾燥させることにより形成することができる。
 また、第2の波長変換ユニット22を用意する。具体的には、第2の基板22aの上に、第2の波長変換部22bを形成する。第2の波長変換部22bは、例えば、量子ドットを含むペーストを塗布し、乾燥させることにより形成することができる。
 次に、第1の波長変換ユニット21と第2の波長変換ユニット22とを、第1の基板21aと第2の基板22aとが対向するように配して、波長変換部材10を作製する(作製工程)。
 ところで、例えば、複数種類の量子ドットを用いた発光デバイスを作製する場合は、ひとつの波長変換部に全ての量子ドットを含ませることが考えられる。形成する波長変換部の数を少なくした方が波長変換部材の製造が容易となるためである。
 しかしながら、本発明者らが鋭意研究した結果、ひとつの波長変換部材に全ての種類の量子ドットを含ませた場合は、個々の発光デバイス間における発光デバイスからの出射光の色調のばらつきが大きくなるという問題が生じ得ることが見出された。この原因としては、定かではないが、以下の理由が考えられる。複数種類の量子ドットを含む発光デバイスでは、各種ドットの発光効率が出射光の色調を大きく左右する。量子ドットは、エージングを行うことにより発光効率が変化する。エージングを行うことにより変化する発光効率の割合は、量子ドットの種類によって異なる。従って、複数種類の量子ドットを含む発光デバイスでは、エージングによる発光効率の変化割合をも考慮して複数種類の量子ドットの配合割合等を調整する必要がある。しかしながら、同種の量子ドットであっても、エージングによる発光効率の変化割合が異なる場合がある。従って、複数種類の量子ドットを含む発光デバイスから出射される光の色調を高精度に制御することは困難である。
 発光デバイス1では、第1の波長変換部21bが第1の基板21aの上に設けられている一方、第2の波長変換部22bが第2の基板22aの上に設けられている。第1の波長変換部21bと、第2の波長変換部22bとが別体に設けられている。このため、第1の波長変換部21bから出射される光の色調及び強度を予め測定することができる。また、第2の波長変換部22bから出射される光の色調及び強度を予め推測し、調整することができる。従って、第1の波長変換ユニット21と第2の波長変換ユニット22とを組み立てて波長変換部材10を製造する前に、製造される波長変換部材10から出射される光の色調を予測することができる。その結果、個々の発光デバイス間における発光デバイスの出射光の色調のばらつきを小さくすることができる。
 個々の発光デバイス間における発光デバイスの出射光の色調のばらつきをより小さくする観点から、作製工程に先立って、第1及び第2の波長変換ユニット21,22の少なくとも一方を複数用意し、各波長変換ユニット21,22の発光強度を測定した後に、測定された発光強度に基づいて、複数の第1及び第2の波長変換ユニット21,22の中から、作製工程において組み合わせる第1の波長変換ユニット21と第2の波長変換ユニット22とを決定することが好ましい。そうすることによって、例えば、所望する色調の出射光に近い波長の出射光が得られる第1及び第2の波長変換ユニット21,22を選択することができる。その結果、個々の発光デバイス間における発光デバイスの出射光の色調のばらつきをより小さくすることができる。
 作製工程に先立って、少なくともひとつの波長変換ユニット21,22のエージングを行うことが好ましい。予めエージングを行うことによって、波長変換部材10における波長変換ユニット21,22の発光の色調の経時変化を抑制することができる。従って、個々の発光デバイス間における発光デバイスの出射光の色調のばらつきをさらに小さくすることができる。
 なお、「エージング」とは、波長変換ユニットに対して励起波長を含む光を所定の期間にわたって照射することを意味する。
 出射光の色調の製造ばらつきをさらに小さくする観点からは、作製工程に先立って波長変換ユニット21,22の少なくとも一方を複数用意し、それらの波長変換ユニット21,22の少なくともひとつに対してエージング処理を行った後に、各波長変換ユニット21,22の発光強度を測定しておくことが好ましい。そうすることによって、発光波長が所望の発光波長域に属するような第1の波長変換ユニット21と第2の波長変換ユニット22との組み合わせを決定することができる。
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 (第2の実施形態)
 図2は、第2の実施形態に係る発光デバイス1aの模式的断面図である。
 第1の実施形態では、セル24の外側に光源11が配されている例について説明した。ただし、本発明において、光源の配置は、特に限定されない。光源11は、第1の波長変換部21bと第2の波長変換部22bとのそれぞれに対して、第1及び第2の波長変換部21b、22bの対向方向における一方側に配されていればよい。図2に示すように、例えば、第2の実施形態に係る発光デバイス1aでは、光源11は、セル24内において、第1の基板21aと第1の波長変換部21bとの間に配されている。このような場合であっても、第1の波長変換部21bからの出射光の発光強度と、第2の波長変換部22bからの出射光の発光強度とを第1及び第2の波長変換ユニット21,22の組み立て前に予め検査することができる。従って、個々の発光デバイス間における発光デバイスの出射光の色調のばらつきを抑制することができる。
 (第3の実施形態)
 図3は、第3の実施形態に係る発光デバイス1bの模式的断面図である。
 発光デバイス1bでは、第1の波長変換部21bと第2の波長変換部22bとが密着している。この場合であっても、第1及び第2の実施形態と同様に、個々の発光デバイス間における発光デバイスの出射光の色調のばらつきを抑制することができる。
 また、第1の波長変換部21bと第2の波長変換部22bとの間に存在する界面の数を低減することができる。従って、不所望な反射光の発生を抑制できる。その結果、波長変換部材10からの光の取り出し効率を向上することができる。
1,1a,1b 発光デバイス
10 波長変換部材
11 光源
21 第1の波長変換ユニット
22 第2の波長変換ユニット
21a 第1の基板
21b 第1の波長変換部
22a 第2の基板
22b 第2の波長変換部
23 側壁部
24 セル

Claims (7)

  1.  第1の基板と、前記第1の基板の上に設けられ、量子ドットを含む第1の波長変換部とを有する第1の波長変換ユニットと、
     第2の基板と、前記第2の基板の上に設けられ、前記第1の波長変換部に含まれる量子ドットとは発光波長が異なる量子ドットを含む第2の波長変換部とを有し、前記第1の波長変換部と前記第2の波長変換部とが対向するように配された第2の波長変換ユニットと、
     前記第1及び第2の波長変換部のそれぞれに対して前記量子ドットの励起光を出射する光源と、
     を備える、発光デバイス。
  2.  前記第1の基板と前記第2の基板とを接続しており、前記第1及び第2の基板と共にセルを構成している側壁部をさらに備え、
     前記第1及び第2の波長変換部は、前記セル内に配されている、請求項1に記載の発光デバイス。
  3.  第1の基板と、前記第1の基板の上に設けられており、量子ドットを含む第1の波長変換部とを有する第1の波長変換ユニットと、
     第2の基板と、前記第2の基板の上に設けられており、前記第1の波長変換部に含まれる量子ドットとは発光波長が異なる量子ドットを含む第2の波長変換部とを有し、前記第1の波長変換部と前記第2の波長変換部とが対向するように配された第2の波長変換ユニットと、
     を備える、波長変換部材。
  4.  波長変換部材と、前記波長変換部材に対して光を出射する光源とを備える発光デバイスの製造方法であって、
     第1の基板と、前記第1の基板の上に設けられており、量子ドットを含む第1の波長変換部とを有する第1の波長変換ユニットを用意する工程と、
     第2の基板と、前記第2の基板の上に設けられており、前記第1の波長変換部に含まれる量子ドットとは発光波長が異なる量子ドットを含む第2の波長変換部とを有する第2の波長変換ユニットを用意する工程と、
     前記第1及び第2の波長変換ユニットを前記第1の波長変換部と前記第2の波長変換部とが対向するように配して、前記波長変換部材を作製する作製工程と、
     を備える、発光デバイスの製造方法。
  5.  前記作製工程に先立って、前記第1及び第2の波長変換ユニットの少なくとも一方を複数用意し、
     前記各波長変換ユニットの発光強度を測定する工程と、
     前記測定された発光強度に基づいて、前記複数の第1及び第2の波長変換ユニットのなかから、前記作製工程において組み合わせる前記第1及び第2の波長変換ユニットを決定する工程と、
     をさらに備える、請求項4に記載の発光デバイスの製造方法。
  6.  前記作製工程に先立って、少なくともひとつの前記波長変換ユニットのエージングを行う工程をさらに備える、請求項4又は5に記載の発光デバイスの製造方法。
  7.  前記作製工程に先立って、前記第1及び第2の波長変換ユニットの少なくとも一方を複数用意し、前記複数の波長変換ユニットの少なくともひとつに対してエージングを行う工程と、
     前記エージング工程の後に、前記各波長変換ユニットの発光強度を測定する工程と、 前記測定された発光強度に基づいて、前記複数の第1及び第2の波長変換ユニットのなかから、前記作製工程において組み合わせる前記第1及び第2の波長変換ユニットを決定する工程と、 をさらに備える、請求項4に記載の発光デバイスの製造方法。
PCT/JP2015/064307 2014-06-18 2015-05-19 発光デバイス、波長変換部材及び波長変換部材の製造方法 WO2015194297A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-125840 2014-06-18
JP2014125840A JP2016004954A (ja) 2014-06-18 2014-06-18 発光デバイス、波長変換部材及び波長変換部材の製造方法

Publications (1)

Publication Number Publication Date
WO2015194297A1 true WO2015194297A1 (ja) 2015-12-23

Family

ID=54935291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064307 WO2015194297A1 (ja) 2014-06-18 2015-05-19 発光デバイス、波長変換部材及び波長変換部材の製造方法

Country Status (3)

Country Link
JP (1) JP2016004954A (ja)
TW (1) TW201601351A (ja)
WO (1) WO2015194297A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6415765B1 (ja) * 2017-11-06 2018-10-31 ルーメンス カンパニー リミテッド Ledパッケージ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071005A (ja) * 2007-09-13 2009-04-02 Sony Corp 波長変換部材及びその製造方法、並びに、波長変換部材を用いた発光デバイス
JP2009206459A (ja) * 2008-02-29 2009-09-10 Sharp Corp 色変換部材およびそれを用いた発光装置
WO2010123059A1 (ja) * 2009-04-22 2010-10-28 シーシーエス株式会社 Led発光デバイスの製造方法
WO2012132232A1 (ja) * 2011-03-31 2012-10-04 パナソニック株式会社 半導体発光装置
JP2013508895A (ja) * 2009-10-17 2013-03-07 キユーデイー・ビジヨン・インコーポレーテツド 光学部品、これを含む製品およびこれを作製する方法
WO2013055764A1 (en) * 2011-10-13 2013-04-18 Intematix Corporation Wavelength conversion component with improved protective characteristics for remote wavelength conversion
WO2015025950A1 (ja) * 2013-08-23 2015-02-26 富士フイルム株式会社 光変換部材、ならびにこれを含むバックライトユニットおよび液晶表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071005A (ja) * 2007-09-13 2009-04-02 Sony Corp 波長変換部材及びその製造方法、並びに、波長変換部材を用いた発光デバイス
JP2009206459A (ja) * 2008-02-29 2009-09-10 Sharp Corp 色変換部材およびそれを用いた発光装置
WO2010123059A1 (ja) * 2009-04-22 2010-10-28 シーシーエス株式会社 Led発光デバイスの製造方法
JP2013508895A (ja) * 2009-10-17 2013-03-07 キユーデイー・ビジヨン・インコーポレーテツド 光学部品、これを含む製品およびこれを作製する方法
WO2012132232A1 (ja) * 2011-03-31 2012-10-04 パナソニック株式会社 半導体発光装置
WO2013055764A1 (en) * 2011-10-13 2013-04-18 Intematix Corporation Wavelength conversion component with improved protective characteristics for remote wavelength conversion
WO2015025950A1 (ja) * 2013-08-23 2015-02-26 富士フイルム株式会社 光変換部材、ならびにこれを含むバックライトユニットおよび液晶表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6415765B1 (ja) * 2017-11-06 2018-10-31 ルーメンス カンパニー リミテッド Ledパッケージ
JP2019087715A (ja) * 2017-11-06 2019-06-06 ルーメンス カンパニー リミテッド Ledパッケージ
US10586897B2 (en) 2017-11-06 2020-03-10 Lumens Co., Ltd. LED package

Also Published As

Publication number Publication date
TW201601351A (zh) 2016-01-01
JP2016004954A (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
TWI604239B (zh) 顏色轉換基板、其製造方法及包含其之顯示裝置
JP6740762B2 (ja) 発光装置およびその製造方法
US9859479B2 (en) Light-emitting device including quantum dots
JP4739805B2 (ja) 光学特性制御ledデバイス及びその製造方法
CN104075190A (zh) 一种基于量子点导光板的背光模组
JP5724684B2 (ja) 発光デバイス用セル及び発光デバイス
TW201705543A (zh) 具改善的色彩一致性之光源組件
JP2010087465A (ja) 発光ダイオード装置及びその製作方法
WO2018120602A1 (zh) 背光模块及其应用的显示设备与导光板的制造方法
TW201535797A (zh) 發光裝置
WO2015174127A1 (ja) 発光デバイス及びその製造方法
WO2018120849A1 (zh) 背光模块的制造方法
KR20160036489A (ko) 발광 장치
JP6282438B2 (ja) 半導体発光装置
WO2015190242A1 (ja) 発光デバイス
TW201322503A (zh) 發光裝置
JP2008205170A (ja) 発光半導体デバイス
WO2015194297A1 (ja) 発光デバイス、波長変換部材及び波長変換部材の製造方法
CN207438293U (zh) 一种基于量子点导光板的背光模组
CN113888991B (zh) 一种发光面板、显示面板、背光模组和显示装置
JP2005276883A (ja) 白色led光源
JP6025144B2 (ja) 発光デバイス
JP2012169371A (ja) 発光ダイオードの製造方法
WO2015194296A1 (ja) 発光デバイス
JP2013227362A (ja) 蛍光体シート及び蛍光体シートを備えた半導体発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809473

Country of ref document: EP

Kind code of ref document: A1