WO2015194110A1 - 自動ブレーキ装置 - Google Patents

自動ブレーキ装置 Download PDF

Info

Publication number
WO2015194110A1
WO2015194110A1 PCT/JP2015/002795 JP2015002795W WO2015194110A1 WO 2015194110 A1 WO2015194110 A1 WO 2015194110A1 JP 2015002795 W JP2015002795 W JP 2015002795W WO 2015194110 A1 WO2015194110 A1 WO 2015194110A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
vehicle
brake device
brake
Prior art date
Application number
PCT/JP2015/002795
Other languages
English (en)
French (fr)
Inventor
多加志 後藤
昂 尾▲崎▼
洋仁 安松
山下 哲弘
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US15/311,736 priority Critical patent/US10081341B2/en
Priority to CN201580030727.7A priority patent/CN106660528B/zh
Priority to DE112015002859.5T priority patent/DE112015002859T5/de
Publication of WO2015194110A1 publication Critical patent/WO2015194110A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/404Control of the pump unit
    • B60T8/4059Control of the pump unit involving the rate of delivery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3255Systems in which the braking action is dependent on brake pedal data
    • B60T8/3275Systems with a braking assistant function, i.e. automatic full braking initiation in dependence of brake pedal velocity

Definitions

  • the present invention relates to an automatic brake device for a vehicle, and more particularly, to an automatic brake device for operating a brake of the vehicle when there is a possibility that a running vehicle may come into contact with an obstacle ahead.
  • an obstacle in front of the vehicle is monitored with an on-vehicle radar or a camera, and the brake of the vehicle is activated when there is a possibility that the running vehicle may come into contact with the obstacle in front.
  • An automatic brake device has been developed.
  • the driver may misunderstand that the automatic brake device has malfunctioned.
  • the brake operation timing is delayed, there is a risk of contact with an obstacle.
  • emergency braking by an automatic brake device is desired to further improve the braking performance of the automatic brake in order to start the brake operation at an appropriate timing after detecting an obstacle or the like.
  • an object of the present invention is to provide an automatic brake device capable of improving the braking performance during emergency braking.
  • An automatic brake device is an automatic brake device that activates a brake of a traveling vehicle when there is a risk of contact with a front obstacle, and is connected to a power line.
  • a first power storage means a liquid feeding means that is driven by power supplied from the power line and applies brake fluid pressure to the brake, and receives power from the engine of the vehicle to receive power from the first power storage means.
  • a power generation means for generating a voltage higher than the storage voltage, a second power storage means for storing the electric power generated by the power generation means, and a storage voltage of the second power storage means is converted into a desired value to the power line.
  • a voltage conversion means for supplying the output voltage of the voltage conversion means to a target voltage higher than normal before operating the brake when the vehicle may come into contact with an obstacle ahead.
  • Set, or, if unable to set the output voltage of the voltage converting means to said target voltage is to connect the power generation voltage of the generator means to drive the power generation means to said power supply line.
  • the power generation means can be driven to increase the power supply voltage of the automatic brake device to increase the brake fluid pressure.
  • the second power storage unit may be charged by driving the power generation unit.
  • the automatic brake device may further include switch means for switching presence / absence of connection between the power generation means and the second power storage means, and when the power generation voltage of the power generation means is connected to the power line, the switch You may make it switch a means to an OFF state.
  • the vehicle can be urgently braked with high braking performance at a timing when automatic braking is required, regardless of the state of charge of the power storage means. Thereby, it can avoid that the vehicle in driving
  • FIG. 1 is a hydraulic circuit diagram of an automatic brake device according to an embodiment of the present invention.
  • FIG. 2 is an electric system diagram of the automatic brake device according to the embodiment of the present invention.
  • FIG. 3 is a flowchart of the voltage increase control by the automatic brake device according to the embodiment of the present invention.
  • FIG. 4 is a timing chart when boosting the power supply voltage of the automatic brake device using a capacitor.
  • FIG. 5 is a timing chart when the power supply voltage of the automatic brake device is boosted using an alternator.
  • FIG. 1 is a hydraulic circuit diagram of an automatic brake device according to an embodiment of the present invention.
  • the automatic brake device according to the present embodiment constitutes a DSC (Dynamic Stability Control) system.
  • DSC Dynamic Stability Control
  • the brake booster 2 increases the depression pressure of the brake pedal 1 using an intake negative pressure, compressed air, hydraulic pressure, etc. of an engine (not shown). Thereby, the pedal effort required when the driver steps on the brake pedal 1 is reduced.
  • the master cylinder 3 generates a brake fluid pressure corresponding to the stepping pressure increased by the brake booster 2.
  • the brake fluid pressure generated in the master cylinder 3 is supplied to the fluid pressure unit 6 through the two fluid pressure supply lines 4 and 5.
  • the brake fluid pressure is distributed by the hydraulic unit 6 to the front, rear, left and right four wheels of the vehicle, the right front wheel brake device 7FR, the left front wheel brake device 7FL, the right rear wheel brake device 7RR, and the left rear wheel brake device. 7RL respectively.
  • the hydraulic unit 6 includes a motor 6a and a hydraulic pump 6b.
  • the hydraulic pump 6b is driven by the motor 6a and holds the brake hydraulic pressure in the hydraulic pressure supply lines 4 and 5 at a desired pressure.
  • the hydraulic pressure supply line 4 branches from the hydraulic pressure unit 6 to the front wheel and the rear wheel, and is connected to the caliper piston of the brake device 7FR for the right front wheel and the wheel cylinder of the brake device 7RL for the left rear wheel, respectively.
  • the hydraulic pressure supply line 5 branches from the hydraulic pressure unit 6 to the front wheel and the rear wheel, and is connected to the caliper piston of the brake device 7FL for the left front wheel and the wheel cylinder of the brake device 7RR for the right rear wheel, respectively.
  • the brake hydraulic pressure pipe constitutes a so-called cross type two-line pipe.
  • the hydraulic pressure supply line 4 drives the caliper piston of the brake device 7FR for the right front wheel via the pressure increasing solenoid valve 4a for increasing the brake hydraulic pressure in the line and the pressure reducing solenoid valve 4b for decreasing the pressure, and the pressure increasing solenoid valve.
  • the wheel cylinder of the brake device 7RL for the left rear wheel is driven via a pressure reducing solenoid valve 4d that reduces the pressure to 4c.
  • the hydraulic pressure supply line 5 drives the caliper piston of the brake device 7FL for the left front wheel via a pressure increasing solenoid valve 5a for increasing the brake hydraulic pressure in the line and a pressure reducing solenoid valve 5b for decreasing the pressure, and a pressure increasing solenoid valve.
  • the wheel cylinder of the brake device 7RR for the right rear wheel is driven through the pressure reducing solenoid valve 5d that reduces the pressure to 5c.
  • the pressure-increasing solenoid valves 4a, 4c, 5a, and 5c and the pressure-reducing solenoid valves 4b, 4d, 5b, and 5d are two-port two-position normally open solenoid valves. These are switched between the open state and the closed state in response to a signal from the DSC controller 9, and are supplied from the master cylinder 3 to the caliper pistons and wheel cylinders of the brake devices 7FR, 7FL, 7RR, 7RL. Adjust brake fluid pressure.
  • a reservoir 8 is provided in the hydraulic pressure supply lines 4 and 5.
  • the reservoir 8 temporarily stores brake fluid from the caliper piston in order to smoothly reduce the pressure when the brake fluid pressure is reduced.
  • the brake fluid pressure generated in the master cylinder 3 in response to the driver's depressing operation of the brake pedal 1 is the pressure increasing solenoid valves 4a, 4c, 5a in the open state.
  • the brake force is applied to each wheel by being supplied to the caliper piston and the wheel cylinder via 5c.
  • the pressure increasing solenoid valves 4a, 4c, 5a, 5c and the pressure reducing solenoid valves 4b, 4d, 5b, 5d are opened / closed independently, whereby the brake device 7FR, The caliper piston pressure of 7FL and the wheel cylinder pressure of brake devices 7RR and 7RL are increased or decreased to control the braking force applied to each wheel.
  • the DSC controller 9 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an interface circuit, and the like. As detection signals from various sensors, wheel speed, shift range, brake fluid pressure, engine Based on the number of revolutions, etc., control signals are output to the pressure-increasing solenoid valves 4a, 4c, 5a and 5c and the pressure-reducing solenoid valves 4b, 4d, 5b and 5d to control ABS (Anti-lock Brake System) and vehicle Execute side slip suppression control.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • FIG. 2 is an electric system diagram of the automatic brake device according to the embodiment of the present invention.
  • the automatic brake device according to the present embodiment constitutes an AEB (AutonomousmerEmergency Braking) system and a deceleration energy regeneration system.
  • AEB AutonomousmerEmergency Braking
  • the alternator 10 generates power by receiving rotational power from the axle when the vehicle is moving forward without stepping on the accelerator, such as when going downhill or when the vehicle is decelerating.
  • the alternator 10 can also generate power by receiving power from the engine of the vehicle.
  • the capacitor 11 stores the electric power generated by the alternator 10.
  • the alternator 10 and the capacitor 11 are connected via a cutoff relay 12. When the cutoff relay 12 is on, the alternator 10 and the capacitor 11 are connected, and the generated power of the alternator 10 is stored in the capacitor 11.
  • the DC / DC converter 13 converts the stored voltage of the capacitor 11 into a desired value and supplies it to the power line 14.
  • a PCM (Powertrain Control Module) 15 is an electronic module that controls the powertrain of the vehicle.
  • the PCM 15 has a function of instructing the output voltage to the DC / DC converter 13.
  • the battery 16 is a power source that supplies power to various electrical components of the vehicle, is connected to the power line 14, and charges and discharges the power line 14.
  • the storage voltage of the battery 16 is approximately 12V, and the various electrical components of the vehicle and the motor 6a in the hydraulic unit 6 operate by receiving the DC voltage from the power line 14.
  • a BP relay 17 is provided between the power line 14 and the alternator 10. Normally, the BP relay 17 is in an off state, and the generated voltage of the alternator 10 is not directly supplied to the power line 14. However, by turning on the BP relay 17, the alternator 10 is directly connected to the power line 14. Ten power generation voltages can be directly supplied to the power line 14.
  • the vehicle is equipped with a radar and a camera 18 that detect obstacles ahead of the vehicle and measure the distance to the obstacles.
  • the pedestrian AEB control unit 19 determines whether there is a possibility that the traveling vehicle may come into contact with or collide with the obstacle based on the sensing information acquired from the radar or the camera 18 or the current traveling speed of the vehicle. If it is determined that there is a risk of contact / collision, the DSC controller 9 is requested to operate the brake. When the DSC controller 9 receives a brake request, the DSC controller 9 drives the motor 6a to increase the brake fluid pressure. Thereby, a vehicle can be stopped by emergency braking and contact / collision with an obstacle can be avoided.
  • the pedestrian AEB control unit 19 issues a warning notifying the DSC controller 9 of the danger of a collision with an obstacle prior to the brake operation request.
  • the DSC controller 9 requests the PCM 15 to increase the voltage.
  • the PCM 15 sets the output voltage to a target voltage (for example, 15 V) higher than the normal time for the DC / DC converter 13, and the high voltage is supplied from the DC / DC converter 13 14.
  • a target voltage for example, 15 V
  • FIG. 3 is a flowchart of the voltage increase control by the automatic brake device according to the embodiment of the present invention.
  • FIG. 4 is a timing chart when the power supply voltage of the automatic brake device is boosted using the capacitor 11.
  • FIG. 5 is a timing chart when the power supply voltage of the automatic brake device is boosted using the alternator 10.
  • the pedestrian AEB control unit 19 determines whether there is a possibility that the traveling vehicle may come into contact with or collide with an obstacle ahead based on the sensing information acquired from the radar or the camera 18 or the current traveling speed of the vehicle. If it is determined that there is a possibility of contact / collision (YES in S1), an alarm is issued to notify the danger of collision with an obstacle (S2). For example, as shown in FIGS. 4 and 5, the pedestrian AEB warning is turned on.
  • the PCM 15 monitors the storage voltage of the capacitor 11, and if a warning is issued from the pedestrian AEB control unit 19 to inform the danger of a collision, whether the storage voltage of the capacitor 11 is a predetermined value (for example, 15 V) or more. It is determined whether or not (S3). If the storage voltage of the capacitor 11 is equal to or higher than the predetermined value (YES in S3), the timing of requesting the rising voltage is adjusted as necessary (S4), and the output voltage is normally set to the DC / DC converter 13. A target voltage (for example, 15V) higher than the hour is set (S5). The DC / DC converter 13 starts outputting a high voltage in accordance with an instruction from the PCM 15, and the voltage of the power supply line 14 is boosted to the target voltage (S6).
  • a predetermined value for example, 15 V
  • the pedestrian AEB control unit 19 continues to determine the possibility that the traveling vehicle will contact / collision with the obstacle, and steps S5 to S7 are repeated while there is a possibility of collision (NO in S7).
  • a brake operation request is output from the pedestrian AEB control unit 19 while repeating steps S5 to S7, the motor 6a is driven by the boosted power supply voltage, so that the vehicle can be emergency braked with high braking performance. it can.
  • a work request for a pedestrian AEB brake is output during a period when the voltage of the power supply line 14 is increased, and the vehicle is urgently braked.
  • step S7 when the pedestrian AEB control unit 19 determines that there is no possibility that the traveling vehicle is in contact with or collides with an obstacle (YES in S7), the PCM 15 outputs to the DC / DC converter 13. An instruction to return the voltage to a normal value (for example, 12 V) is issued (S8). As a result, the power supply line 14 returns to a normal voltage (for example, 12 V).
  • a normal value for example, 12 V
  • the PCM 15 stops the DC / DC converter 13, turns off the interruption relay 12 and turns on the BP relay 17, and directly connects the generated voltage of the alternator 10 to the power line 14 (S9). Then, the PCM 15 instructs the alternator 10 to generate power at a target voltage (for example, 15 V) higher than normal (S10).
  • the alternator 10 starts power generation at a high voltage in accordance with an instruction from the PCM 15, and the voltage of the power line 14 is boosted to the target voltage (S11).
  • the pedestrian AEB control unit 19 continues to determine the possibility that the traveling vehicle will contact / collision with the obstacle, and steps S10 to S12 are repeated while there is a possibility of collision (NO in S12).
  • a brake operation request is output from the pedestrian AEB control unit 19 while repeating steps S10 to S12, the motor 6a is driven by the boosted power supply voltage, so that the vehicle can be urgently braked with high braking performance. it can.
  • a work request for a pedestrian AEB brake is output during a period in which the voltage of the power supply line 14 is increased, and the vehicle is urgently braked.
  • step S12 when the pedestrian AEB control unit 19 determines that there is no longer a possibility that the traveling vehicle is in contact with or collides with an obstacle (YES in S12), the PCM 15 controls the BP relay 17 to turn on the DC / The DC converter 13 is operated (S13). As a result, the power supply line 14 returns to a normal voltage (for example, 12 V).
  • step S13 the alternator 10 may be stopped or continued to be driven. When the alternator 10 is continuously driven, the cutoff relay 12 is turned on, and the generated voltage of the alternator 10 is accumulated in the capacitor 11.
  • the capacitor 11 when the traveling vehicle is likely to come into contact with an obstacle ahead, the capacitor 11 is used when the storage voltage of the capacitor 11 is sufficient, and the capacitor 11 When the stored voltage is insufficient, the alternator 10 can be driven to increase the power supply voltage of the automatic brake device to increase the brake fluid pressure. As a result, the vehicle can be urgently braked with high braking performance at a timing when automatic braking is required regardless of the charged state of the capacitor 11, and contact / collision with an obstacle can be avoided.
  • the output voltage of the DC / DC converter 13 is the target voltage when there is no possibility that the vehicle will contact / collision with an obstacle so that the power supply voltage of the automatic brake device can always be boosted using the capacitor 11.
  • the alternator 10 may be driven to charge the capacitor 11.
  • Hydraulic unit Liquid feeding means
  • Alternator power generation means
  • Capacitor second power storage means
  • Disconnect relay switch means
  • DC / DC converter voltage conversion means
  • battery first power storage means

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Eletrric Generators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 自動ブレーキ装置は、電源線(14)に接続されたバッテリ(16)と、電源線から電力の供給を受けて駆動されてブレーキにブレーキ液圧を付与する液圧ユニット(6)と、車両のエンジンから動力を受けてバッテリの蓄電電圧よりも高い電圧を発電するオルタネータ(10)と、オルタネータによって発電された電力を蓄えるキャパシタ(11)と、キャパシタの蓄電電圧を所望値に変換して電源線へ供給するDC/DCコンバータ(13)と、を備え、車両が前方の障害物と接触するおそれがあるとき、ブレーキを作動させるのに先だって、DC/DCコンバータの出力電圧を通常時よりも高い目標電圧に設定する、または、DC/DCコンバータの出力電圧を目標電圧に設定できない場合にはオルタネータを駆動させてオルタネータの発電電圧を電源線に接続する。

Description

自動ブレーキ装置
 本発明は、車両の自動ブレーキ装置に関し、特に、走行中の車両が前方の障害物と接触するおそれがあるとき、該車両のブレーキを作動させる自動ブレーキ装置に関する。
 脇見運転や居眠り運転などで運転者が前方の障害物の確認を怠った場合、車両が障害物と接触/衝突するおそれがある。そのような危険な状況を回避するために、車載レーダやカメラなどで車両前方の障害物を監視し、走行中の車両が前方の障害物と接触するおそれがあるとき、該車両のブレーキを作動させる自動ブレーキ装置が開発されている。
 上記のような自動ブレーキ装置において、例えば、障害物などの検出後に不必要に早いタイミングでブレーキ作動を開始すると、運転者は自動ブレーキ装置が誤動作したと誤認してしまうおそれがある。一方で、ブレーキ作動タイミングが遅れると障害物と接触する危険がある。
 よって、自動ブレーキ装置による緊急制動は、障害物などを検出後に適切なタイミングでブレーキ作動を開始するために、より自動ブレーキの制動性能を向上させることが望まれる。
 従来、昇圧回路でバッテリの電力を昇圧して昇圧電力を充電回路で充電し、必要に応じて充電回路の充電電力を電動機に供給することで、緊急回避時や緊急制動時のように必要とする電動機出力が急激に増加する場合でも高応答性を確保している(例えば、特許文献1を参照)。
特開2005-261180号公報
 例えば、特許文献1に開示された技術では、充電回路に十分な電力が充電されていなければ電動機に高電圧を供給することができないおそれがある。かかる問題に鑑み、本発明は、緊急制動時の制動性能を向上させることが可能な自動ブレーキ装置を提供することを目的とする。
 本発明の一局面に従った自動ブレーキ装置は、走行中の車両が前方の障害物と接触するおそれがあるとき、該車両のブレーキを作動させる自動ブレーキ装置であって、電源線に接続された第1の蓄電手段と、前記電源線から電力の供給を受けて駆動されて前記ブレーキにブレーキ液圧を付与する液送手段と、前記車両のエンジンから動力を受けて前記第1の蓄電手段の蓄電電圧よりも高い電圧を発電する発電手段と、前記発電手段によって発電された電力を蓄える第2の蓄電手段と、前記第2の蓄電手段の蓄電電圧を所望値に変換して前記電源線へ供給する電圧変換手段と、を備え、前記車両が前方の障害物と接触するおそれがあるとき、前記ブレーキを作動させるのに先だって、前記電圧変換手段の出力電圧を通常時よりも高い目標電圧に設定する、または、前記電圧変換手段の出力電圧を前記目標電圧に設定できない場合には前記発電手段を駆動させて前記発電手段の発電電圧を前記電源線に接続するものである。
 これによると、走行中の車両が前方の障害物に接触しそうな場合において、第2の蓄電手段の蓄電電圧が十分な場合には第2の蓄電手段を使用して、また、第2の蓄電手段の蓄電電圧が不十分な場合には発電手段を駆動して、自動ブレーキ装置の電源電圧を昇圧してブレーキ液圧を高めることができる。
 上記自動ブレーキ装置において、前記車両が障害物と接触するおそれがないときにおいて、前記電圧変換手段の出力電圧が前記目標電圧に設定できない程度に前記第2の蓄電手段の蓄電電圧が低いとき、前記発電手段を駆動させて前記第2の蓄電手段を充電してもよい。
 これによると、常に第2の蓄電手段を使用して自動ブレーキ装置の電源電圧を昇圧することができ、電源線の電圧をより迅速に目標電圧に昇圧することができる。
 上記自動ブレーキ装置は、前記発電手段と前記第2の蓄電手段との接続の有無を切り替えるスイッチ手段をさらに備えていてもよく、前記発電手段の発電電圧を前記電源線に接続するとき、前記スイッチ手段をオフ状態に切り替えるようにしてもよい。
 これによると、発電手段の発電電圧をすべて電源線に供給することができ、電源線の電圧をより迅速に目標電圧に昇圧することができる。
 本発明によると、蓄電手段の充電状態に依らず、自動ブレーキが必要なタイミングで高い制動性で車両を緊急制動することができる。これにより、走行中の車両が前方の障害物と接触/衝突することを回避することができる。
図1は、本発明の一実施形態に係る自動ブレーキ装置の油圧回路図である。 図2は、本発明の一実施形態に係る自動ブレーキ装置の電気系統図である。 図3は、本発明の一実施形態に係る自動ブレーキ装置による昇電圧制御のフローチャートである。 図4は、キャパシタを用いて自動ブレーキ装置の電源電圧を昇圧する場合のタイミングチャートである。 図5は、オルタネータを用いて自動ブレーキ装置の電源電圧を昇圧する場合のタイミングチャートである。
 以下、図面を参照しながら本発明を実施するための形態について説明する。本発明は、以下の実施形態に限定されるものではない。
 はじめに、本発明の一実施形態に係る自動ブレーキ装置の油圧回路について説明する。図1は、本発明の一実施形態に係る自動ブレーキ装置の油圧回路図である。本実施形態に係る自動ブレーキ装置は、DSC(Dynamic Stability Control)システムを構成している。
 運転者がブレーキペダル1を踏み込むと、ブレーキブースタ2は、図示しないエンジンの吸気負圧、圧縮空気、油圧などを利用してブレーキペダル1の踏圧力を増大させる。これにより、運転者がブレーキペダル1を踏み込む際に必要な踏力が軽減される。マスターシリンダ3は、ブレーキブースタ2で増大された踏圧力に応じたブレーキ液圧を発生させる。マスターシリンダ3で発生したブレーキ液圧は、2本の液圧供給ライン4、5により液圧ユニット6に供給される。ブレーキ液圧は、液圧ユニット6によって車両の前後左右の4車輪に分配されて、右前輪のブレーキ装置7FR、左前輪のブレーキ装置7FL、右後輪のブレーキ装置7RR、左後輪のブレーキ装置7RLにそれぞれ供給される。
 液圧ユニット6は、モータ6aと、液圧ポンプ6bとを備えている。液圧ポンプ6bは、モータ6aにより駆動され、液圧供給ライン4、5内のブレーキ液圧を所望の圧力に保持する。
 液圧供給ライン4は、液圧ユニット6から前輪と後輪に分岐して、それぞれ、右前輪のブレーキ装置7FRのキャリパピストンと左後輪のブレーキ装置7RLのホイールシリンダとに接続される。一方、液圧供給ライン5は、液圧ユニット6から前輪と後輪に分岐して、それぞれ、左前輪のブレーキ装置7FLのキャリパピストンと右後輪のブレーキ装置7RRのホイールシリンダとに接続される。このように、ブレーキ液圧配管はいわゆるクロスタイプの2系統配管を構成している。
 液圧供給ライン4は、当該ライン内のブレーキ液圧を増圧する増圧ソレノイドバルブ4aと減圧する減圧ソレノイドバルブ4bを介して右前輪のブレーキ装置7FRのキャリパピストンを駆動するとともに、増圧ソレノイドバルブ4cと減圧する減圧ソレノイドバルブ4dを介して左後輪のブレーキ装置7RLのホイールシリンダを駆動する。
 液圧供給ライン5は、当該ライン内のブレーキ液圧を増圧する増圧ソレノイドバルブ5aと減圧する減圧ソレノイドバルブ5bを介して左前輪のブレーキ装置7FLのキャリパピストンを駆動するとともに、増圧ソレノイドバルブ5cと減圧する減圧ソレノイドバルブ5dを介して右後輪のブレーキ装置7RRのホイールシリンダを駆動する。
 増圧ソレノイドバルブ4a、4c、5a、5c、および減圧ソレノイドバルブ4b、4d、5b、5dは、2ポート2位置の常開型の電磁弁である。これらは、DSCコントローラ9から信号を受けて開状態と閉状態との間で切り替えられて、各ブレーキ装置7FR、7FL、7RR、7RLのキャリパピストンやホイールシリンダに対してマスターシリンダ3から供給されるブレーキ液圧を調整する。
 液圧供給ライン4、5にはリザーバ8が設けられる。リザーバ8は、ブレーキ液圧の減圧時に減圧をスムーズに行うためにキャリパピストンからのブレーキ液を一時的に貯える。
 DSCコントローラ9から制御信号が出力されない間は、運転者によるブレーキペダル1の踏み込み操作に応じてマスターシリンダ3で発生したブレーキ液圧が、開状態になっている増圧ソレノイドバルブ4a、4c、5a、5cを介してキャリパピストンやホイールシリンダに供給されて各車輪に制動力が付与される。また、DSCコントローラ9から制御信号の入力を受けて増圧ソレノイドバルブ4a、4c、5a、5c、および減圧ソレノイドバルブ4b、4d、5b、5dがそれぞれ独立に開閉作動されることでブレーキ装置7FR、7FLのキャリパピストン圧とブレーキ装置7RR、7RLのホイールシリンダ圧が増減されて、各車輪に付与される制動力がそれぞれ制御される。
 DSCコントローラ9は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、インターフェース回路などからなり、各種センサからの検出信号として車輪速度、シフトレンジ、ブレーキ液圧、エンジン回転数などに基づいて、増圧ソレノイドバルブ4a、4c、5a、5c、および減圧ソレノイドバルブ4b、4d、5b、5dに制御信号を出力して、ABS(Anti-lock Brake System)制御や車両の横滑り抑制の制御を実行する。
 次に、本発明の一実施形態に係る自動ブレーキ装置の電気系統について説明する。図2は、本発明の一実施形態に係る自動ブレーキ装置の電気系統図である。本実施形態に係る自動ブレーキ装置は、AEB(Autonomous Emergency Braking)システム、および減速エネルギ回生システムを構成している。
 オルタネータ10は、下り坂や車両の減速時など、アクセルを踏まずに前進しているときに車軸からの回転動力を受けて発電する。また、オルタネータ10は、車両のエンジンから動力を受けて発電することもできる。キャパシタ11は、オルタネータ10が発電した電力を蓄える。オルタネータ10とキャパシタ11とは遮断リレー12を介して接続されており、遮断リレー12がオンのとき、オルタネータ10とキャパシタ11とが接続されて、オルタネータ10の発電電力がキャパシタ11に蓄電される。
 DC/DCコンバータ13は、キャパシタ11の蓄電電圧を所望値に変換して電源線14へ供給する。PCM(Powertrain Control Module)15は、車両のパワートレインを制御する電子モジュールである。PCM15は、DC/DCコンバータ13に対して出力電圧を指示する機能を有する。バッテリ16は、車両の各種電装品に電力を供給する電源であり、電源線14に接続され、電源線14に対して充放電を行う。バッテリ16の蓄電電圧はおよそ12Vであり、車両の各種電装品および液圧ユニット6におけるモータ6aは、電源線14から当該直流電圧の供給を受けて動作する。
 電源線14とオルタネータ10との間にはBPリレー17が設けられている。通常時においてBPリレー17はオフ状態であり、オルタネータ10の発電電圧は電源線14に直接的に供給されないが、BPリレー17をオンにすることにより、オルタネータ10を電源線14に直結してオルタネータ10の発電電圧を電源線14へ直接供給することができる。
 車両にはレーダやカメラ18が搭載されており、これらにより車両前方の障害物の検知および障害物までの距離を測定する。歩行者AEB制御ユニット19は、レーダやカメラ18から取得したセンシング情報や、車両の現在の走行速度などから、走行中の車両が障害物に接触/衝突するおそれがあるか否かを判定し、接触/衝突するおそれがあると判断した場合、DSCコントローラ9に対してブレーキの作動を要求する。DSCコントローラ9は、ブレーキ要求を受けるとモータ6aを駆動してブレーキ液圧を上昇させる。これにより、車両を緊急制動により停止させて障害物との接触/衝突を回避することができる。
 より詳細には、歩行者AEB制御ユニット19は、ブレーキの作動要求に先だって、DSCコントローラ9に対して、障害物との衝突の危険性を知らせる警報を発する。DSCコントローラ9は、衝突危険の警報を受けると、PCM15に対して昇電圧を要求する。PCM15は、昇電圧の要求を受けると、DC/DCコンバータ13に対して、出力電圧を通常時よりも高い目標電圧(例えば、15V)に設定し、DC/DCコンバータ13から高電圧が電源線14へ供給される。これにより、DSCコントローラ9がブレーキ要求を受けたとき、モータ6aは通常よりも高めの電圧で駆動され、緊急制動時の制動性が向上する。
 次に、本発明の一実施形態に係る自動ブレーキ装置による昇電圧制御について説明する。図3は、本発明の一実施形態に係る自動ブレーキ装置による昇電圧制御のフローチャートである。図4は、キャパシタ11を用いて自動ブレーキ装置の電源電圧を昇圧する場合のタイミングチャートである。図5は、オルタネータ10を用いて自動ブレーキ装置の電源電圧を昇圧する場合のタイミングチャートである。
 歩行者AEB制御ユニット19は、レーダやカメラ18から取得したセンシング情報や、車両の現在の走行速度などから、走行中の車両が前方の障害物と接触/衝突するおそれがあるか否かを判定し(S1)、接触/衝突するおそれがあると判断した場合(S1でYES)、障害物との衝突の危険性を知らせる警報を発する(S2)。例えば、図4および図5に示したように、歩行者AEB警報がオンになる。
 PCM15は、キャパシタ11の蓄電電圧をモニターしており、歩行者AEB制御ユニット19から衝突の危険性を知らせる警報が発せられると、キャパシタ11の蓄電電圧が所定値(例えば、15V)以上であるか否かを判定する(S3)。そして、キャパシタ11の蓄電電圧が所定値以上であれば(S3でYES)、必要に応じて昇電圧要求のタイミング調整を行って(S4)、DC/DCコンバータ13に対して、出力電圧を通常時よりも高い目標電圧(例えば、15V)に設定する(S5)。DC/DCコンバータ13は、PCM15の指示に従って高電圧の出力を開始し、電源線14の電圧が目標電圧に昇圧される(S6)。
 図4では、歩行者AEB警報がオンになってから即時に昇電圧要求が発生し、電源線14の電圧が昇圧される。このように、キャパシタ11の蓄電電圧が十分であれば、キャパシタ11を用いることで、電源線14の電圧を目標電圧にまで迅速に昇圧することができる。
 歩行者AEB制御ユニット19は、走行中の車両が障害物と接触/衝突する可能性を判断し続け、衝突の可能性がある間(S7でNO)、ステップS5からS7が繰り返される。ステップS5からS7を繰り返す間に歩行者AEB制御ユニット19からブレーキの作動要求が出力されると、モータ6aが昇圧された電源電圧で駆動されるため、高い制動性で車両を緊急制動することができる。図4では、電源線14の電圧が昇圧されている期間に歩行者AEBブレーキの作業要求が出力され、車両が緊急制動される。
 ステップS7において、歩行者AEB制御ユニット19が、走行中の車両が障害物と接触/衝突する可能性がなくなったと判断すると(S7でYES)、PCM15は、DC/DCコンバータ13に対して、出力電圧を通常値(例えば、12V)に戻す指示を出す(S8)。これにより、電源線14は通常時の電圧(例えば、12V)に復帰する。
 一方、ステップS3でキャパシタ11の蓄電電圧が所定値に達していなければ(S3でNO)、キャパシタ11の蓄電電圧で電源線14の電圧を目標電圧に昇圧することができない。このため、PCM15は、DC/DCコンバータ13を停止させて、遮断リレー12をオフ制御およびBPリレー17をオン制御して、オルタネータ10の発電電圧を電源線14に直結させる(S9)。そして、PCM15は、オルタネータ10に通常時よりも高い目標電圧(例えば、15V)で発電することを指示する(S10)。オルタネータ10は、PCM15の指示に従って高電圧での発電を開始し、電源線14の電圧が目標電圧に昇圧される(S11)。
 図5では、歩行者AEB警報がオンになってから若干の時間が経過してから昇電圧要求が発生し、電源線14の電圧が昇圧される。このように、キャパシタ11の蓄電電圧が不十分であってもオルタネータ10を駆動して電源線14の電圧を昇圧することができる。ただし、キャパシタ11を用いる場合と比較して、オルタネータ10を用いる場合は電源線14の電圧を目標電圧にまで昇圧するのに時間を要する。
 歩行者AEB制御ユニット19は、走行中の車両が障害物と接触/衝突する可能性を判断し続け、衝突の可能性がある間(S12でNO)、ステップS10からS12が繰り返される。ステップS10からS12を繰り返す間に歩行者AEB制御ユニット19からブレーキの作動要求が出力されると、モータ6aが昇圧された電源電圧で駆動されるため、高い制動性で車両を緊急制動することができる。図5では、電源線14の電圧が昇圧されている期間に歩行者AEBブレーキの作業要求が出力され、車両が緊急制動される。
 ステップS12において、歩行者AEB制御ユニット19が、走行中の車両が障害物と接触/衝突する可能性がなくなったと判断すると(S12でYES)、PCM15は、BPリレー17をオン制御してDC/DCコンバータ13を動作させる(S13)。これにより、電源線14は通常時の電圧(例えば、12V)に復帰する。なお、ステップS13において、オルタネータ10を停止させても駆動し続けてもいずれでもよい。オルタネータ10を駆動し続ける場合には、遮断リレー12をオン制御して、キャパシタ11にオルタネータ10の発電電圧が蓄積される。
 以上のように、本実施形態によると、走行中の車両が前方の障害物に接触しそうな場合において、キャパシタ11の蓄電電圧が十分な場合にはキャパシタ11を使用して、また、キャパシタ11の蓄電電圧が不十分な場合にはオルタネータ10を駆動して、自動ブレーキ装置の電源電圧を昇圧してブレーキ液圧を高めることができる。これにより、キャパシタ11の充電状態に依らず、自動ブレーキが必要なタイミングで高い制動性で車両を緊急制動することができ、障害物との接触/衝突を回避することができる。
 なお、常にキャパシタ11を使用して自動ブレーキ装置の電源電圧を昇圧することができるように、車両が障害物と接触/衝突するおそれがないときにおいて、DC/DCコンバータ13の出力電圧が目標電圧に設定できない程度にキャパシタ11の蓄電電圧が低いとき、オルタネータ10を駆動させてキャパシタ11を充電させるようにしてもよい。
 以上の実施形態は、本発明の実現手段としての一例であり、本発明は、その趣旨を逸脱しない範囲で下記の実施の形態を修正または変形したものに適用可能である。
 6  液圧ユニット(液送手段)
 10 オルタネータ(発電手段)
 11 キャパシタ(第2の蓄電手段)
 12 遮断リレー(スイッチ手段)
 13 DC/DCコンバータ(電圧変換手段)
 16 バッテリ(第1の蓄電手段)

Claims (3)

  1.  走行中の車両が前方の障害物と接触するおそれがあるとき、該車両のブレーキを作動させる自動ブレーキ装置であって、
     電源線に接続された第1の蓄電手段と、
     前記電源線から電力の供給を受けて駆動されて前記ブレーキにブレーキ液圧を付与する液送手段と、
     前記車両のエンジンから動力を受けて前記第1の蓄電手段の蓄電電圧よりも高い電圧を発電する発電手段と、
     前記発電手段によって発電された電力を蓄える第2の蓄電手段と、
     前記第2の蓄電手段の蓄電電圧を所望値に変換して前記電源線へ供給する電圧変換手段と、を備え、
     前記車両が前方の障害物と接触するおそれがあるとき、前記ブレーキを作動させるのに先だって、前記電圧変換手段の出力電圧を通常時よりも高い目標電圧に設定する、または、前記電圧変換手段の出力電圧を前記目標電圧に設定できない場合には前記発電手段を駆動させて前記発電手段の発電電圧を前記電源線に接続する
    ことを特徴とする自動ブレーキ装置。
  2.  前記車両が障害物と接触するおそれがないときにおいて、前記電圧変換手段の出力電圧が前記目標電圧に設定できない程度に前記第2の蓄電手段の蓄電電圧が低いとき、前記発電手段を駆動させて前記第2の蓄電手段を充電する
    ことを特徴とする請求項1に記載の自動ブレーキ装置。
  3.  前記発電手段と前記第2の蓄電手段との接続の有無を切り替えるスイッチ手段を備え、
     前記発電手段の発電電圧を前記電源線に接続するとき、前記スイッチ手段をオフ状態に切り替える
    ことを特徴とする請求項1または請求項2に記載の自動ブレーキ装置。
PCT/JP2015/002795 2014-06-17 2015-06-02 自動ブレーキ装置 WO2015194110A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/311,736 US10081341B2 (en) 2014-06-17 2015-06-02 Automatic brake device
CN201580030727.7A CN106660528B (zh) 2014-06-17 2015-06-02 自动制动器装置
DE112015002859.5T DE112015002859T5 (de) 2014-06-17 2015-06-02 Automatische Bremsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-124514 2014-06-17
JP2014124514A JP6102834B2 (ja) 2014-06-17 2014-06-17 自動ブレーキ装置

Publications (1)

Publication Number Publication Date
WO2015194110A1 true WO2015194110A1 (ja) 2015-12-23

Family

ID=54935122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002795 WO2015194110A1 (ja) 2014-06-17 2015-06-02 自動ブレーキ装置

Country Status (5)

Country Link
US (1) US10081341B2 (ja)
JP (1) JP6102834B2 (ja)
CN (1) CN106660528B (ja)
DE (1) DE112015002859T5 (ja)
WO (1) WO2015194110A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10723228B2 (en) 2016-06-07 2020-07-28 Toyota Jidosha Kabushiki Kaisha Power source system
CN113895478A (zh) * 2021-11-09 2022-01-07 中车南京浦镇车辆有限公司 轨道车辆的障碍物检测自保持电路

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343660B2 (en) * 2016-06-16 2019-07-09 GM Global Technology Operations LLC Vehicle brake control system including eBoost regulated voltage control
JP6527561B2 (ja) * 2017-08-10 2019-06-05 株式会社Subaru 車両用制御装置
JP2019043227A (ja) * 2017-08-30 2019-03-22 株式会社シマノ ブレーキ装置および電動ブレーキシステム
JP6598035B2 (ja) * 2017-10-31 2019-10-30 マツダ株式会社 車両用制動装置
US20210114574A1 (en) * 2018-03-27 2021-04-22 Hitachi Automotive Systems, Ltd. Brake device, electric brake device, and motor control device
DE102018213196A1 (de) * 2018-08-07 2020-02-13 Continental Teves Ag & Co. Ohg Kraftfahrzeugbremsanlage und Kraftfahrzeug mit einer solchen Kraftfahrzeugbremsanlage
US20210362719A1 (en) * 2020-05-19 2021-11-25 Waymo Llc Arbitrating friction and regenerative braking for autonomous vehicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261180A (ja) * 2004-02-09 2005-09-22 Nsk Ltd 車載用電動機の制御装置
JP2013244800A (ja) * 2012-05-24 2013-12-09 Advics Co Ltd 車両用ブレーキ装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661459A (en) * 1970-09-10 1972-05-09 Mitsubishi Electric Corp System for preventing collision of vehicles
JPS5131422A (en) * 1974-07-24 1976-03-17 Toyota Motor Co Ltd Sharyono kinkyuseidokeikokusochi
JPS5174334A (en) * 1974-12-24 1976-06-28 Nissan Motor Sharyoyo shogaibutsukenchisochi
US4363999A (en) * 1980-07-14 1982-12-14 Preikschat F K Electric propulsion and braking system for automotive vehicles
US4673937A (en) * 1985-07-24 1987-06-16 Davis John W Automotive collision avoidance and/or air bag deployment radar
US6421600B1 (en) * 1994-05-05 2002-07-16 H. R. Ross Industries, Inc. Roadway-powered electric vehicle system having automatic guidance and demand-based dispatch features
WO2000014550A1 (fr) * 1998-09-04 2000-03-16 Jiekui Li Transducteur pour etat de deceleration d'urgence, circuit de commande pour signal d'etat de deceleration d'urgence et temoin de freinage d'urgence
US20020117340A1 (en) * 2001-01-31 2002-08-29 Roger Stettner Laser radar based collision avoidance system for stationary or moving vehicles, automobiles, boats and aircraft
JP4972377B2 (ja) * 2006-10-23 2012-07-11 日立オートモティブシステムズ株式会社 電動ブレーキ制御装置、及び電動ブレーキ装置
WO2010113574A1 (ja) * 2009-03-31 2010-10-07 日立オートモティブシステムズ株式会社 ブレーキ制御装置
JP5520629B2 (ja) * 2010-02-12 2014-06-11 富士重工業株式会社 車両用電源装置
US8599307B2 (en) * 2011-07-25 2013-12-03 Aptina Imaging Corporation Method and apparatus for rapid verification of imaging systems
US9614465B2 (en) * 2011-07-26 2017-04-04 Moog Inc. Electric motor clamping system
JP5378488B2 (ja) 2011-11-18 2013-12-25 富士重工業株式会社 充電システムおよび電動車両
JP6172451B2 (ja) * 2013-08-12 2017-08-02 マツダ株式会社 車両用制動装置
EP2876016B1 (en) * 2013-11-20 2020-09-02 Nxp B.V. Function monitor
US9442184B2 (en) * 2014-02-21 2016-09-13 Nxp B.V. Functional safety monitor pin
US20170024868A1 (en) * 2015-07-22 2017-01-26 Semiconductor Components Industries, Llc High dynamic range imaging pixels with logarithmic response
CN108603758A (zh) * 2015-11-30 2018-09-28 卢米诺技术公司 具有分布式激光器和多个传感器头的激光雷达系统和激光雷达系统的脉冲激光器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261180A (ja) * 2004-02-09 2005-09-22 Nsk Ltd 車載用電動機の制御装置
JP2013244800A (ja) * 2012-05-24 2013-12-09 Advics Co Ltd 車両用ブレーキ装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10723228B2 (en) 2016-06-07 2020-07-28 Toyota Jidosha Kabushiki Kaisha Power source system
EP3254883B1 (en) * 2016-06-07 2021-06-23 Toyota Jidosha Kabushiki Kaisha Power source system
US11312239B2 (en) 2016-06-07 2022-04-26 Toyota Jidosha Kabushiki Kaisha Power source system
US11752875B2 (en) 2016-06-07 2023-09-12 Toyota Jidosha Kabushiki Kaisha Power source system
US11752874B2 (en) 2016-06-07 2023-09-12 Toyota Jidosha Kabushiki Kaisha Power source system
CN113895478A (zh) * 2021-11-09 2022-01-07 中车南京浦镇车辆有限公司 轨道车辆的障碍物检测自保持电路

Also Published As

Publication number Publication date
US20170080907A1 (en) 2017-03-23
DE112015002859T5 (de) 2017-03-09
CN106660528B (zh) 2019-05-14
CN106660528A (zh) 2017-05-10
US10081341B2 (en) 2018-09-25
JP6102834B2 (ja) 2017-03-29
JP2016002876A (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6102834B2 (ja) 自動ブレーキ装置
US10259438B2 (en) Brake control device
JP5514805B2 (ja) ブレーキ制御装置
US10597015B2 (en) Braking system and vehicle
JP6332181B2 (ja) 車両の制御装置
US20160272176A1 (en) Vehicle control apparatus and vehicle control system
US8764127B2 (en) Method for carrying out an emergency braking procedure in a vehicle
US20110254361A1 (en) Brake system for motor vehicles
JP2020147185A (ja) 液圧ブレーキシステム
US9969369B2 (en) Vehicle brake system
KR20210060621A (ko) 전동 브레이크 장치
CN113613965A (zh) 用于利用机动车的电驱动装置的电机和机动车的行车制动设备的制动力矩来使机动车在紧急制动时减速的方法以及机动车
JP2017171215A (ja) ブレーキシステム
JP2006520177A (ja) 自動車のブレーキシステムを制御する方法
JP2015110361A (ja) 車両のブレーキ装置
KR20150050555A (ko) 차량용 브레이크 제어 장치 및 하나 이상의 차량용 전기 구동 모터의 작동 방법
JP5920022B2 (ja) 車両用ブレーキ装置
JP2005343249A (ja) 駐車補助制御装置、駐車補助制御システムおよび駐車補助プログラム
JP6183613B2 (ja) 自動ブレーキ制御装置
JP6598034B2 (ja) 車両用制動装置
JP6879468B2 (ja) 電力供給制御装置
JP6579401B2 (ja) 車両用制動装置
US20230034103A1 (en) Vehicle brake system
WO2021229790A1 (ja) 車両制御方法及び車両制御装置
US20240166178A1 (en) Control apparatus for brake apparatus, method for controlling brake apparatus, and brake apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810106

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15311736

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002859

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810106

Country of ref document: EP

Kind code of ref document: A1