WO2015193258A1 - Procédé de fonctionnement d'un système d'essai et appareil d'essai correspondant - Google Patents

Procédé de fonctionnement d'un système d'essai et appareil d'essai correspondant Download PDF

Info

Publication number
WO2015193258A1
WO2015193258A1 PCT/EP2015/063375 EP2015063375W WO2015193258A1 WO 2015193258 A1 WO2015193258 A1 WO 2015193258A1 EP 2015063375 W EP2015063375 W EP 2015063375W WO 2015193258 A1 WO2015193258 A1 WO 2015193258A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
arrangement
arrangements
simulation unit
real
Prior art date
Application number
PCT/EP2015/063375
Other languages
German (de)
English (en)
Inventor
Jakob Andert
Rene Savelsberg
Original Assignee
Fev Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fev Gmbh filed Critical Fev Gmbh
Priority to DE112015002912.5T priority Critical patent/DE112015002912A5/de
Publication of WO2015193258A1 publication Critical patent/WO2015193258A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/025Test-benches with rotational drive means and loading means; Load or drive simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/025Test-benches with rotational drive means and loading means; Load or drive simulation
    • G01M13/026Test-benches of the mechanical closed-loop type, i.e. having a gear system constituting a closed-loop in combination with the object under test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus

Definitions

  • the invention relates to a method for operating a test arrangement for testing of test specimens, such as vehicle components, in particular internal combustion engines, electrical machines, transmissions, batteries, powertrain systems or subsystems thereof, wherein at least two specimens are coupled together via a transmission arrangement.
  • test specimens such as vehicle components, in particular internal combustion engines, electrical machines, transmissions, batteries, powertrain systems or subsystems thereof, wherein at least two specimens are coupled together via a transmission arrangement.
  • the invention also relates to a corresponding test arrangement.
  • the requirements for the development of vehicles and their components are increasing steadily, in particular with shorter development times and lower development costs.
  • the complexity of test bench trials is increasing due to the use of an ever-increasing number of sensors and actuators. High demands are therefore placed on the development of the vehicle and the development of its subsystems in terms of the flexibility of the test procedures and the test setup.
  • test bed arrangements each comprising a test stand and a test object
  • two specimens may be arranged on a common test stand, wherein the two specimens are coupled together.
  • Physical quantities may be energy or media in general.
  • energy can be transmitted in the form of speed and torque.
  • media such as gases or liquids can be transmitted.
  • a concrete embodiment is a test arrangement with a test stand arrangement for engines and a test stand arrangement for transmissions, wherein the test stand assembly for the engine is connected via a connecting shaft with the test rig arrangement for the transmission.
  • the transmission arrangement in the form of the connecting shaft transmits energy in the form of speed and torque as a physical quantity.
  • test rig arrangement for an engine and a test stand arrangement for an exhaust aftertreatment device, such as a NOx catalyst or a diesel particulate filter, wherein the two test arrangements are connected to each other via an exhaust pipe.
  • the exhaust pipe in this case represents the transmission arrangement and the physical variable which is exchanged between the two test rig arrangements, the exhaust gases.
  • the invention proposes a method for operating a test arrangement in which at least two test bed arrangements, each with a test stand and a test object via a simulation unit for the transmission of physical quantities coupled together are, wherein the behavior of a real transmission arrangement between the two test rig arrangements is simulated by a simulation model of the simulation unit.
  • the basic idea of the invention is not to spatially and physically connect the two test rig arrangements, so that the physical variable which arises on one of the two test rig arrangements is fed directly to the other test rig arrangement, but to separate the two test rig arrangements from each other and via a simulation unit to couple with each other.
  • the simulation unit receives the physical quantities as input variables of the one test stator arrangement, simulates the behavior of the transmission arrangement and imprints the thus simulated physical variables as output variables of the other test rig arrangement.
  • the simulation unit has real interfaces with which the simulation unit is spatially and physically connected on the one hand to the one test rig arrangement and on the other hand to the other test rig arrangement for exchanging physical variables.
  • the simulation unit acts bidirectionally, that is to say that the physical input variables of one test stand arrangement are recorded by the simulation unit and output variables of the other test stand arrangement are impressed and vice versa.
  • test rig arrangements In principle, it is conceivable here that the behavior of at least one of the test rig arrangements is simulated by a simulation model, that is, it is not actually available. Thus, two simulated test rig arrangements can be coupled together or a real test rig arrangement with a simulated test rig arrangement.
  • the physical parameters of the test rig arrangements are not determined in advance and only reproduced, as would be the case in a higher-level simulation, but arise during the test run continuously and in real time from the current interactions between the test rig arrangements.
  • the physical transmission arrangement such as the rotating shaft, an electrical connection, a media exchange, are replaced by corresponding sources or real interfaces (dynamometer, voltage source or conditioning device). These real interfaces form as exact as possible physical couplings including all interactions.
  • one of the two test rig assemblies may include an engine test bench and the other of the two test bed assemblies include a transmission test bench.
  • the simulation unit preferably comprises two dynamometers as real interfaces, which are each mechanically connected to one of the two test rig arrangements.
  • a first of the two dynamometers is in this case connected to a crankshaft of an engine (specimen) of the engine dynamometer and a second of the dynamometer is connected to the main shaft of a transmission (specimen) of the transmission test.
  • the dynamometer on the engine absorbs the physical variables, rotational speed and torque of the engine, and on the other hand can also impress torques, which result in a real connection of the transmission in the direction of the engine, onto the engine.
  • the dynamometer which is connected to the gearbox. Both test rig arrangements thus undergo exactly the same conditions in real time and simultaneously, as in a real connection arrangement between the two test rig arrangements.
  • a respective dynamometer may be coupled to the respective shafts of the test object (engine or transmission) in order to simulate a connecting shaft between the engine and the transmission.
  • the simulation unit simulates input quantities and output variables with identical rotational speeds and torques in order to reproduce the same behavior as possible with a real connecting shaft.
  • the speed and moment equilibrium are also brought about automatically by the test arrangement according to the invention.
  • the engine does not generate a uniform rotational speed but oscillates on its output shaft, these vibrations are recorded in real time by the simulation unit as input variables, the simulation using them Input variables is continued.
  • the transmission for example, based on a simulated wheel-road coupling, in turn, have feedback on the connecting shaft, for example, non-uniform speeds.
  • These quantities are reported back to the engine as physical quantities for its output shaft and thus again represent input variables for the engine, to which it in turn reacts.
  • the interaction of the feedback in both directions results in a total system, which not only has respective predetermined input and output variables, but simulated by feedback steady states of the overall system.
  • the connecting shaft as a transmission arrangement between the engine and transmission is therefore simulated as rigid, with both candidates would thus be connected as if they were really coupled together.
  • This simulation technique with feedback calls for a high degree of accuracy and attention to detail in simulation and, for real components, also a correspondingly highly developed and accurate drive and measurement technology. All components must reproduce all details, including vibrations and variations, in the same way, in real time, and work as accurately and in detail as the coupling requires.
  • the auxiliary devices necessary for the coupling of the components that is to say the real interfaces of the simulation unit, must not influence the system or at least only very slightly, that is to say that the physical influencing variables of the auxiliary equipment (real interfaces) must be compensated in the simulation model.
  • the additional mass moments of inertia of the real interfaces that is to say the dynamometer, must therefore be compensated.
  • Another example results from the simulation of a high-voltage connection as a transmission arrangement between a test arrangement for a high-voltage battery and a test rig arrangement for an electric motor. If the electric motor requests power from the high-voltage battery to accelerate the vehicle, the voltage of the battery would break due to internal resistance, which likewise reduces the voltage at the electric motor. On the other hand, one can not accurately predict how high the voltage dip of the high-voltage battery will be during acceleration, since this depends on many component parameters and can only be determined by tests. The required current for a given acceleration depends again from the battery voltage. This interaction would take until an equilibrium state of voltage and current is reached. It can be seen directly that bidirectional coupling is necessary in order to correctly test the voltage for acceleration in the system network. The inventive coupling of the two test rig arrangements can be used to determine the voltage dip during the test procedure.
  • test arrangement in the field of exhaust aftertreatment.
  • a test stand arrangement would be provided for an internal combustion engine and a test rig arrangement for the exhaust gas aftertreatment devices, which are connected to one another via a transmission arrangement, namely the simulated exhaust gas line.
  • the degree of conversion of a NOx catalyst or filter efficiency of a soot filter of predetermined design can be simulated situation- and time-dependent.
  • the pressure conditions are to be completely simulated or actually recorded, with the internal combustion engine reacting to them.
  • test arrangement would not be the individual components presented with their behavior, but the entire system in which the exhaust gas line between the internal combustion engine and exhaust aftertreatment devices such as a real existing line is included and flows, pressures, temperatures, etc., from the test bed arrangement for the exhaust aftertreatment devices be transferred back to the test rig assembly for the internal combustion engine.
  • FIG. 2 shows a simulation unit of the test arrangement according to FIG. 1 and FIG. 3 shows a control circuit with compensation of the physical influences of a real interface of the simulation unit.
  • FIG. 1 shows a simulation system for testing vehicle components.
  • the Si mulation system comprises a test arrangement 18, which is coupled to a main simulation unit 14 with each other.
  • the test arrangement 18 has a first test rig arrangement 1 and a second test rig arrangement 2.
  • the two test rig arrangements 1, 2 are coupled via a simulation unit 3.
  • the first test rig arrangement 1 comprises an engine test bench 4 as the first test bench and a motor 5 as the first test object.
  • the second test rig arrangement 2 comprises a transmission test bench 6 as a second test bench and a transmission 7 as a second test object.
  • the engine 5 has a crankshaft 8, which is coupled via the simulation unit 3 to an input shaft 9 of the transmission 7.
  • the simulation unit 3 has a control unit 10 which controls a first dynamometer 11 as a first real interface and a second dynamometer as a second real interface.
  • the control unit 10 simulated using a simulation model a real connecting shaft and controls the dynamometers 1 1, 12 such that the forces acting on the crankshaft 8 and the input shaft 9 speeds and torques behave as if the crankshaft 8 with the input shaft 9 with a real connection shaft rigidly mechanically connected.
  • the control unit 10 may have a computer for this purpose.
  • the second test rig assembly 2 further comprises a third dynamometer 13 which is drive-connected to an output shaft 19 of the transmission 7.
  • the third dynamometer 13 is coupled to the main simulation unit 14, which simulates inter alia a wheel-road coupling of a vehicle.
  • the main simulation unit 14 is also connected to the first test rig assembly 1 and simulates a driver to impart a drive cycle to the engine 5.
  • a closed circuit is ensured to check the vehicle components, here engine 5 and transmission 7.
  • Figure 2 shows the compensation of the physical quantities of the real interfaces 1 1, 12, here the two dynamometers 1 1, 12.
  • the simulation unit 3 has for this purpose first a simulation model 15, which receives the rotational speeds of the two dynamometers 1 1, 12 and under application of the simulation model 15 corresponding control pulses for the torque of the two dynamometers 1 1, 12 calculated. In this case, however, it is necessary for the system-inherent inertia of the dynamometers 11, 12 to be taken into account.
  • Simulation models in the form of a compensation model 16 for the first dynamometer 1 1 and a compensation model 17 for the second dynamometer 12th
  • the control circuit for the compensation is shown in FIG.
  • the torques of the engine (TEngine) and the gearbox (TGearox) are fed to the control loop as a reference variable.
  • the simulation model 15 as a controller outputs the controlled variable in the form of the shaft rotation number.
  • the torque due to inertia is taken into account (Tinertiacomp).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Engines (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner un système d'essai (18) selon lequel deux systèmes de banc d'essai (1, 2) comportant chacun un banc d'essai (4, 6) et un objet à tester (5, 7) sont interconnectés par l'intermédiaire d'une unité de simulation (3) pour transmettre des grandeurs physiques, le comportement d'un système de transmission réel étant simulé par un modèle de simulation (15) de l'unité de simulation (3).
PCT/EP2015/063375 2014-06-20 2015-06-15 Procédé de fonctionnement d'un système d'essai et appareil d'essai correspondant WO2015193258A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015002912.5T DE112015002912A5 (de) 2014-06-20 2015-06-15 Verfahren zum Betreiben einer Prüfanordnung sowie Prüfanordnung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014108680.5A DE102014108680A1 (de) 2014-06-20 2014-06-20 Verfahren zum Betreiben einer Prüfanordnung sowie Prüfanordnung
DE102014108680.5 2014-06-20

Publications (1)

Publication Number Publication Date
WO2015193258A1 true WO2015193258A1 (fr) 2015-12-23

Family

ID=53433191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/063375 WO2015193258A1 (fr) 2014-06-20 2015-06-15 Procédé de fonctionnement d'un système d'essai et appareil d'essai correspondant

Country Status (2)

Country Link
DE (2) DE102014108680A1 (fr)
WO (1) WO2015193258A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU189719U1 (ru) * 2019-02-13 2019-05-31 Федеральное Государственное Бюджетное Образовательное Учереждение Высшего Образования "Самарский Государственный Университет Путей Сообщения" (Самгупс) Стенд для испытания высокооборотных электрических машин

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338373A2 (fr) * 1988-04-16 1989-10-25 Asea Brown Boveri Aktiengesellschaft Banc d'essais de la courroie de transmission d'une automobile
EP0369747A2 (fr) * 1988-11-14 1990-05-23 Kabushiki Kaisha Meidensha Système de simulation de la commande de la caractéristique d'un moteur
EP0430294A2 (fr) * 1989-11-30 1991-06-05 Kabushiki Kaisha Meidensha Système de simulation du moteur d'un véhicule automobile utilisant un moteur à grande inertie actionné électriquement
US20020091471A1 (en) * 2001-01-11 2002-07-11 Kabushiki Kaisha Meidensha Testing system and method for automotive component using dynamometer
AT9536U2 (de) * 2007-05-29 2007-11-15 Avl List Gmbh Vorrichtung und verfahren zum simulieren einer prüfstandsumgebung
DE102007016420A1 (de) * 2007-04-05 2008-10-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Prüfstand und Verfahren zum Überprüfen eines Antriebsstrangs
AT508032A4 (de) * 2009-10-15 2010-10-15 Seibt Kristl & Co Gmbh Verfahren sowie prüfstand zum prüfen eines antriebsstrangs eines fahrzeugs
WO2011022746A1 (fr) * 2009-08-28 2011-03-03 Technische Universität Wien Procédé et dispositif de régulation d'un agencement de banc d'essai

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338373A2 (fr) * 1988-04-16 1989-10-25 Asea Brown Boveri Aktiengesellschaft Banc d'essais de la courroie de transmission d'une automobile
EP0369747A2 (fr) * 1988-11-14 1990-05-23 Kabushiki Kaisha Meidensha Système de simulation de la commande de la caractéristique d'un moteur
EP0430294A2 (fr) * 1989-11-30 1991-06-05 Kabushiki Kaisha Meidensha Système de simulation du moteur d'un véhicule automobile utilisant un moteur à grande inertie actionné électriquement
US20020091471A1 (en) * 2001-01-11 2002-07-11 Kabushiki Kaisha Meidensha Testing system and method for automotive component using dynamometer
DE102007016420A1 (de) * 2007-04-05 2008-10-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Prüfstand und Verfahren zum Überprüfen eines Antriebsstrangs
AT9536U2 (de) * 2007-05-29 2007-11-15 Avl List Gmbh Vorrichtung und verfahren zum simulieren einer prüfstandsumgebung
WO2011022746A1 (fr) * 2009-08-28 2011-03-03 Technische Universität Wien Procédé et dispositif de régulation d'un agencement de banc d'essai
AT508032A4 (de) * 2009-10-15 2010-10-15 Seibt Kristl & Co Gmbh Verfahren sowie prüfstand zum prüfen eines antriebsstrangs eines fahrzeugs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU189719U1 (ru) * 2019-02-13 2019-05-31 Федеральное Государственное Бюджетное Образовательное Учереждение Высшего Образования "Самарский Государственный Университет Путей Сообщения" (Самгупс) Стенд для испытания высокооборотных электрических машин

Also Published As

Publication number Publication date
DE102014108680A1 (de) 2015-12-24
DE112015002912A5 (de) 2017-03-09

Similar Documents

Publication Publication Date Title
EP2264421B1 (fr) Agencement de banc d'essai
DE4328537C2 (de) Getriebeprüfstand und Verfahren zum Prüfen eines Getriebes
DE10200695B4 (de) Testsystem und-verfahren für ein Kraftfahrzeugbauteil unter Verwendung eines Dynamometers
DE3623264C1 (de) Pruefeinrichtung fuer Antriebseinheiten
EP2264422B1 (fr) Agencement de banc d'essai
DE112014002661B4 (de) Verfahren zur Reduzierung von Schwingungen in einem Prüfstand
DE102007016420B4 (de) Prüfstand und Verfahren zum Überprüfen eines Antriebsstrangs
AT508909B1 (de) Verfahren und einrichtung zur regelung einer prüfstandsanordnung
AT514725B1 (de) Verfahren und eine Vorrichtung zur Ermittlung des Vortriebsmoments
DE102017105469A1 (de) Hardware-in-the-loop System und Verfahren zur Bedatung einer Steuerung eines Verbrennungsmotors
DE102012007576A1 (de) Anordnung für einen Teststand zum Prüfen des Fahrverhaltens von Fahrzeugen
DE102016125538A1 (de) Verfahren zum Verifizieren von Aktuator-Steuerungsdaten
DE3416496A1 (de) Verfahren und schaltungsanordnung zum simulieren von pruefstandstraegheitsmomenten
EP0274052A1 (fr) Dispositif pour engendrer des vibrations déterminées de rotation dans un engrenage mécanique
DE102018207140A1 (de) Verfahren zur Dämpfung von Torsionsschwingungen in einem Antriebsstrang und Antriebsstrang
DE102014204154A1 (de) Prüfstand zum Prüfen eines Motoranbauteils
WO2007051650A1 (fr) Procédé et dispositif de simulation d’une structure réelle
EP3059569A2 (fr) Procede de simulation partiellement physique en temps reel
WO2015193258A1 (fr) Procédé de fonctionnement d'un système d'essai et appareil d'essai correspondant
AT522354B1 (de) Verfahren zum Betreiben eines Prüfstands
EP3607294B1 (fr) Procede de commande, notamment de reglage, d'un banc d'essai du groupe motopropulseur avec une vraie boite de vitesse
DE102006045785A1 (de) Verfahren zur Selbstdiagnose von Versuchsanordnungen sowie Versuchsanordnung, insbesondere Prüfstand
DE3428755C2 (fr)
DE102012000836A1 (de) Getriebeprüfstandeinrichtung für Getriebe, insbesondere für Windkraftanlagen, mit einem im Antriebsstrang integrierten Generator
EP1333268A2 (fr) Méthode et dispositif pour tester une portion motrice d'un véhicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15729815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015002912

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112015002912

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15729815

Country of ref document: EP

Kind code of ref document: A1