WO2015192318A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2015192318A1
WO2015192318A1 PCT/CN2014/080095 CN2014080095W WO2015192318A1 WO 2015192318 A1 WO2015192318 A1 WO 2015192318A1 CN 2014080095 W CN2014080095 W CN 2014080095W WO 2015192318 A1 WO2015192318 A1 WO 2015192318A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication path
transmitter
srs
secondary communication
identifier
Prior art date
Application number
PCT/CN2014/080095
Other languages
English (en)
French (fr)
Inventor
钱忠清
何佳
程静静
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480078908.2A priority Critical patent/CN106465414A/zh
Priority to BR112016029450A priority patent/BR112016029450A2/pt
Priority to EP14895407.6A priority patent/EP3148280A4/en
Priority to PCT/CN2014/080095 priority patent/WO2015192318A1/zh
Priority to JP2016573974A priority patent/JP2017527150A/ja
Priority to KR1020177001199A priority patent/KR20170018440A/ko
Publication of WO2015192318A1 publication Critical patent/WO2015192318A1/zh
Priority to US15/381,273 priority patent/US20170099694A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method and apparatus. Background technique
  • the current wireless access mode is limited to the traditional cellular band access, and its communication frequency band is below 2.6 GHz, between the base station (English name: Base Station, BS for short) and the mobile station (English name: Mobile Station, MS for short).
  • Communication between the BS and the BS and between the MS and the MS is performed by means of broadcasting.
  • the communication in the broadcast mode has the characteristics of wide beam and wide coverage. The same sector can be regarded as one beam.
  • the MS in the beam divides the bandwidth by occupying different frequencies. The more MSs in the beam, the more occupied by each MS. The smaller the bandwidth, the smaller the capacity, which severely limits the size of the user's traffic data.
  • an embodiment of the present invention provides a communication method and device, which can effectively improve the transmission capacity of the system.
  • a communications apparatus including:
  • a first determining module configured to: when receiving the first SRS of the interception reference signal, determine a primary communication path with the target transmitter according to the first SRS, where the target transmitter is to send the first SRS Transmitter
  • a second determining module configured to acquire an identifier of a transmitter that communicates with the primary communication path determined by the first determining module, and determine a secondary communication path of the transmitter indicated by each identifier; And communicating with the transmitter according to the primary communication path determined by the first determining module and the secondary communication path determined by the second determining module.
  • the first determining module includes: a direction determining unit, configured to: if receiving the first SRS, determine an optimal direction of the wave according to a preset decision rule, where Said first SRS is transmitted by the target transmitter through the wide beam full frequency band;
  • a beam narrowing unit configured to narrow a wide beam used by the target transmitter along a direction of optimal wave direction determined by the direction determining unit, and determine a communication path where the narrowed beam is located as a primary communication path .
  • the second determining module includes: a first path acquiring unit, configured to acquire an identifier of a transmitter that uses the primary communication path to communicate, and according to the a second SRS sent by the target transmitter corresponding to the target identifier in the identifier, determining a secondary communication path of the target transmitter, where the target identifier is an identifier of the target transmitter, and a second path acquiring unit, configured to: A secondary communication path of the transmitter indicated by the other identifiers in the identification is determined.
  • the first path acquiring unit includes: a second SRS, and the target direction is calculated according to the second SRS Channel quality, and determining whether the channel quality is higher than a channel quality corresponding to the last determined secondary communication path;
  • an update subunit configured to: if the judgment subunit determines that the channel quality is higher than a channel quality corresponding to the previously determined secondary communication path, update the communication path corresponding to the target direction For the secondary communication path.
  • the update subunit is specifically configured to:
  • the judgment subunit determines that the channel quality is higher than the channel quality corresponding to the previously determined secondary communication path, it is determined whether the communication path corresponding to the target direction is the primary communication path; And determining, by the primary communication path, whether the channel quality of the communication path corresponding to the target direction is higher than a preset communication service quality QoS threshold, and when the QoS threshold is higher than the QoS threshold, the target direction is corresponding.
  • the communication path is updated to the secondary communication path.
  • the communications module includes: a first transmitting unit, where the identifier of the transmitter for communicating by using the primary communication path is at least two, and each The transmitter indicated by the identifier has a secondary communication path, and then controls the primary communication path to transmit each of the transmitter uplink subframes indicated by the identifier, and the uplink subframe of each transmitter Transmission by frequency division multiplexing;
  • a second transmission unit configured to control the secondary communication path to transmit a corresponding transmitter downlink subframe, where the downlink subframes of each transmitter are transmitted in a space division multiplexing manner, where each The downlink subframe of the transmitter monopolizes the full-band bandwidth resource, and the format of the uplink subframe and the downlink subframe of each transmitter is different.
  • the communications module includes: a third transmitting unit, where the identifier of the transmitter for communicating by using the primary communication path is at least two, and each The transmitter indicated by the identifier has a secondary communication path, and then controls the primary communication path to transmit each of the transmitter downlink subframes indicated by the identifier, and the downlink sub-carriers of the transmitters The frame is transmitted in a frequency division multiplexing manner;
  • a fourth transmission unit configured to control, by using the secondary communication path, a corresponding transmitter uplink subframe, where uplink subframes of each transmitter are transmitted in a space division multiplexing manner, where each The uplink subframe of the transmitter monopolizes the full-band bandwidth resource, and the format of the uplink subframe and the downlink subframe of each transmitter is different.
  • the communications module includes: a fifth transmission unit, configured to: if the identifier of the transmitter that communicates with the primary communication path is one, and the transmitter indicated by the identifier has a corresponding secondary communication path, then control the primary communication path An uplink subframe for transmitting the transmitter, controlling to use the secondary communication path for transmitting a downlink subframe of the transmitter; or
  • a sixth transmission unit configured to control a downlink subframe used by the primary communication path to transmit the transmitter, and control to use the secondary communication path to transmit an uplink subframe of the transmitter;
  • the uplink subframe and the downlink subframe of the transmitter are transmitted in a space division multiplexing manner, and the format of the uplink subframe and the downlink subframe is different, and the transmitter occupies the entire Band bandwidth resources.
  • the communications module includes: a seventh transmitting unit, where the identifier of the transmitter for communicating by using the primary communication path is at least two, existing If the number of secondary communication paths is greater than zero, and the number of secondary communication paths that exist is less than the number of identifiers, then controlling the primary communication path to transmit each of the transmitter uplink subframes indicated by the identifier, An uplink subframe of each transmitter is transmitted in a frequency division multiplex manner, the transmitters including at least one first transmitter having no secondary communication path and a second transmitter having a secondary communication path;
  • An eighth transmission unit configured to control, by using the primary communication path, a downlink subframe for transmitting each first transmitter, where downlink subframes of the first transmitters are transmitted in a frequency division multiplexing manner
  • the uplink and downlink subframes of the first transmitter are transmitted in a time division multiplexing manner
  • the communication module includes: a tenth transmission unit, where the identifier of the transmitter for communicating by using the primary communication path is at least two If the number of secondary communication paths that exist is greater than zero, and the number of secondary communication paths that exist is less than the number of identifiers, then control the primary communication path to transmit the downlinks of the transmitters indicated by the identifiers.
  • a frame the downlink subframe of each transmitter is transmitted in a frequency division multiplexing manner, where each The launcher includes at least one first transmitter that does not have a secondary communication path and a second transmitter that has a secondary communication path;
  • An eleventh transmission unit configured to control, by using the primary communication path, an uplink subframe for transmitting each of the first transmitters, where the uplink subframes of the first transmitters are frequency division multiplexed Transmitting, the uplink and downlink subframes of the first transmitter are transmitted in a time division multiplex manner;
  • a twelfth transmission unit configured to control, by using the secondary communication path, an uplink subframe for transmitting the second transmitter, where an uplink subframe of the second transmitter is spatially multiplexed Mode transmission, combined with the fifth possible implementation manner of the first aspect, or the sixth possible implementation manner of the first aspect, or the seventh possible implementation manner of the first aspect, or the eighth aspect of the first aspect
  • the method further includes:
  • Inserting a module configured to insert a third SRS into the uplink and downlink subframes according to a preset insertion interval
  • the inserting module is specifically configured to:
  • an embodiment of the present invention provides a communication method, including:
  • determining a primary communication path with the target transmitter according to the first SRS includes:
  • the first SRS is received, determining an optimal direction of the wave according to a preset decision rule, where the first SRS is transmitted by the target transmitter through the wide beam full frequency band;
  • the wide beam used by the target transmitter is narrowed along the direction of the incoming wave, and the communication path where the narrowed beam is located is determined as the primary communication path.
  • the obtaining, by the identifier of the transmitter that communicates with the primary communication path, and determining the secondary communication path of the transmitter indicated by each identifier including:
  • the target identifier is an identifier of the target transmitter
  • a secondary communication path of the transmitter indicated by the other identifiers in the identification is determined.
  • the second SRS sent by the target transmitter, determining the secondary communication path of the target transmitter includes: calculating channel quality in the target direction according to the second SRS;
  • the method further includes:
  • the updating the communication path corresponding to the target direction to the secondary communication path includes: Determining whether the communication path corresponding to the target direction is the primary communication path;
  • the communication path corresponding to the target direction is updated to a secondary communication path.
  • the communicating with the transmitter according to the primary communication path and the secondary communication path includes:
  • the identifier of the transmitter that communicates with the primary communication path is at least two, and each of the identified transmitters has a secondary communication path, then controlling the primary communication path to transmit the identifier Instructed each uplink subframe of the transmitter, the uplink subframe of each transmitter is transmitted in a frequency division multiplexing manner;
  • the secondary communication path is used to transmit a corresponding transmitter downlink subframe
  • the downlink subframes of each transmitter are transmitted in a space division multiplex manner, and downlink fingers of the respective transmitters
  • the frame is unique.
  • the communicating with the transmitter according to the primary communication path and the secondary communication path includes:
  • the identifier of the transmitter that communicates with the primary communication path is at least two, and each of the identified transmitters has a secondary communication path, then controlling the primary communication path to transmit the identifier
  • Each of the transmitter downlink subframes is indicated, and the downlink subframes of the transmitters are transmitted in a frequency division multiplexing manner;
  • the frame is exclusive.
  • the communicating with the transmitter according to the primary communication path and the secondary communication path includes: If the identifier of the transmitter communicating with the primary communication path is one, and the transmitter indicated by the identifier has a corresponding secondary communication path, the uplink subframe and the downlink of the transmitter The subframe is transmitted in a space division multiplexing manner, and the format of the uplink subframe and the downlink subframe is different, and the transmitter occupies a full-band bandwidth resource.
  • the communicating with the transmitter according to the primary communication path and the secondary communication path includes:
  • a communication path is configured to transmit each of the transmitter uplink subframes indicated by the identifier, the uplink subframes of the transmitters are transmitted in a frequency division multiplexing manner, and each of the transmitters includes at least one non-existent a first transmitter of the secondary communication path and a second transmitter having a secondary communication path;
  • the downlink subframe of the second transmitter is transmitted in a space division multiplex manner, and the second The uplink subframe of the transmitter is different from the format of the downlink subframe.
  • the communicating with the transmitter according to the primary communication path and the secondary communication path includes:
  • a communication path is configured to transmit each of the transmitter downlink subframes indicated by the identifier, the downlink subframes of the transmitters are transmitted in a frequency division multiplexing manner, and each of the transmitters includes at least one non-existent a first transmitter of the secondary communication path and a second transmitter having a secondary communication path;
  • Inserting a third SRS into the uplink and downlink subframes according to a preset insertion interval; and inserting the third SRS into the uplink and downlink subframes includes:
  • the third SRS is wrapped in a special subframe for insertion into the downlink subframe or a handover of the downlink subframe and the uplink subframe.
  • an embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a program, and when the program is executed, includes some or all of the steps of performing the communication method of the second aspect.
  • the embodiment of the present invention further provides a communication device, including the communication device of the first aspect.
  • the embodiment of the present invention determines a primary communication path for communication between the current transmitter and the target transmitter according to the SRS signal received by the receiver, and determines the number of times for each transmitter that communicates with the primary communication path.
  • the communication path is communicated with each transmitter based on the primary communication path and the secondary communication path, thereby effectively improving the system transmission capacity.
  • FIG. 1 is a schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another communication device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of interaction of a communication method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for determining a secondary communication path according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of another method for determining a secondary communication path according to an embodiment of the present invention
  • a schematic diagram of one of the communication scenarios
  • FIG. 7 is a schematic diagram of resource allocation in the scenario of FIG. 6;
  • FIG. 8 is a schematic diagram of a corresponding frame format in the scenario of FIG. 6;
  • FIG. 9 is a schematic diagram of another communication scenario according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of resource allocation in the scenario of FIG. 9;
  • FIG. 11 is a schematic diagram of a corresponding frame format in the scenario of FIG. 9;
  • FIG. 12 is a schematic diagram of still another communication scenario according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of one of resource allocations in the scenario of FIG. 12;
  • FIG. 14 is a schematic diagram of one of the frame formats in the scenario of FIG. 12;
  • FIG. 15 is a schematic diagram of another resource allocation in the scenario of FIG. 12;
  • FIG. 16 is a schematic diagram of another frame format in the scenario of FIG. 12;
  • FIG. 17 is a schematic diagram of still another communication scenario according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of resource allocation in the scenario of FIG. 17;
  • FIG. 19 is a schematic diagram of a corresponding frame format in the scenario of FIG. 17;
  • FIG. 20 is a schematic diagram of still another communication scenario according to an embodiment of the present invention.
  • 21 is a schematic diagram of one of resource allocations in the scenario of FIG. 20;
  • FIG. 22 is a schematic diagram of one of the frame formats in the scenario of FIG. 20;
  • FIG. 23 is a schematic diagram of another resource allocation in the scenario of FIG. 20;
  • Figure 24 is a schematic illustration of another frame format in the scene of Figure 20;
  • FIG. 25 is a schematic structural diagram of a communication device according to an embodiment of the present invention. detailed description
  • the receiver in the embodiment of the present invention may refer to a base station (English name: Base Station, BS for short) or a mobile station (English name: Mobile Station, MS for short), and the transmitter may also be an MS or a BS.
  • the communication in the example includes, but is not limited to, communication between the BS and the BS, the BS and the MS, and the MS and the MS.
  • the MS includes a user equipment (English name: User Equipment, abbreviated as UE).
  • FIG. 1 is a schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • the apparatus according to the embodiment of the present invention may be specifically applied to a communication device that can serve as a receiver, such as a base station.
  • the apparatus may include The first determining module 10, the second determining module 20, and the communication module 30.
  • the first determining module 10 is configured to: when receiving the first listening reference signal SRS, determine a primary communication path with the target transmitter according to the first SRS, where the target transmitter is a sending station The transmitter of the first SRS.
  • the transmitter such as the UE
  • the process of the wide beam access is the same as that of the conventional wireless cellular communication access process, and details are not described herein.
  • the first determining module 10 may receive a listening reference signal (English name: Sounding Reference Signal, SRS for short) in a wide band of the target transmitter, such as a newly accessed UE, that is, the first
  • SRS Sounding Reference Signal
  • the primary communication path may refer to a communication path used in accordance with conventional wireless cellular communication access, that is, a communication path with optimal channel quality.
  • the main communication path is a direct view (English name: Line of Sight, referred to as: LoS) channel, and the quality of the LoS channel is lower than that of the non-direct view when the LoS channel does not exist or in some extremely special cases.
  • the primary communication path is the NLoS channel.
  • the method of the embodiment of the present invention may be implemented based on a millimeter wave frequency band as a communication frequency band.
  • the millimeter wave refers to the high frequency band of 30 GHz to 300 GHz.
  • the second determining module 20 is configured to acquire an identifier of a transmitter that communicates with the primary communication path determined by the first determining module 10, and determine a secondary communication path of the transmitter indicated by each identifier.
  • the identifier corresponding to the UE included in the primary communication path beam between the UE and the current BS may be acquired by the second determining module 20, that is, the identifier is obtained.
  • the BS corresponding to the target UE can control the splitting of the wide beam into a narrow beam, and the user is divided into blocks, and then searched in the respective regions.
  • the secondary communication path corresponding to the UE to improve user and system capacity.
  • the secondary communication path may be an NLoS channel under normal circumstances.
  • the communication module 30 is configured to communicate with the transmitter according to the primary communication path determined by the first determining module 10 and the secondary communication path determined by the second determining module 20.
  • the communication module 30 can communicate with the UE in the main communication path beam according to the determined primary communication path and secondary communication path of the UE in the primary communication path beam.
  • Embodiments of the present invention determine a primary communication path for communication between a current transmitter and a target transmitter based on an SRS signal received by a receiver, and determine by each transmitter for communicating with the primary communication path
  • the secondary communication path thereby communicating with each transmitter based on the primary communication path and the secondary communication path, effectively improves the system transmission capacity.
  • FIG. 2 is a schematic structural diagram of another communication apparatus according to an embodiment of the present invention.
  • the apparatus according to the embodiment of the present invention includes a first determining module 10, a second determining module 20, and a communication module 30 of the foregoing communications apparatus, and further
  • the first determining module 10 may specifically include Includes:
  • the direction determining unit 101 is configured to determine, according to a preset decision rule, an outgoing wave optimal direction if the first SRS is received.
  • the first SRS is sent by the target transmitter, such as the newly accessed UE, through the wide beam full frequency band.
  • the optimal direction of the wave may be determined from the direction in which the SRS signal is currently received according to a preset decision rule. And feeding back the relevant location information of the incoming wave optimal direction to the newly accessed UE.
  • the preset determination rule may be formed according to a certain algorithm and a criterion. For example, the direction determining unit 101 may obtain a signal-to-interference plus noise ratio corresponding to the respective directions according to the SRS signals in each direction (English full name: Signal to Interference plus Noise Ratio (SINR) value, and select the direction corresponding to the maximum SINR value as the optimal direction of the incoming wave.
  • SINR Signal to Interference plus Noise Ratio
  • the beam narrowing unit 102 is configured to narrow the wide beam used by the target transmitter along the direction of the optimal wave direction determined by the direction determining unit 101, and determine the communication path where the narrowed beam is located Communication path.
  • the direction determining unit 101 may narrow the wide beam used by the UE along the direction of the optimal wave direction, for example, by adjusting a precoding precoding module and a beamforming beamforming module.
  • An associated beam steering module controls the narrowing of the beam along the optimal direction of the incoming wave.
  • the UE that sends the SRS signal that is, the target UE, after receiving the information about the optimal direction of the incoming wave fed back by the BS, may also control the adjustment of the precoding precoding module, the beamforming beamforming module, and the like, so as to The incoming wave optimal direction narrows the beam to obtain a primary communication path between the current BS and the target UE.
  • the second determining module 20 may include:
  • the first path obtaining unit 201 is configured to acquire an identifier of a transmitter that performs communication by using the primary communication path, and determine the target transmission according to a second SRS sent by a target transmitter corresponding to the target identifier in the identifier.
  • a secondary communication path of the machine the target identifier is an identifier of the target transmitter, and a second path obtaining unit 202 is configured to determine a transmitter indicated by another identifier in the identifier Secondary communication path.
  • the second SRS is an SRS that is sent by the transmitter in a narrow band full frequency band.
  • the first path acquiring unit 201 may acquire the secondary communication path of the target UE, and the second path acquiring unit 202 extracts the shared primary communication path.
  • the secondary communication path corresponding to the other UEs thereby determining all secondary UEs that communicate with the primary communication path, that is, secondary communication paths corresponding to all UEs within the primary communication path beam.
  • the other UEs that share the primary communication path are the UEs that are already in the primary communication path, and the secondary communication path between the existing UE and the current BS can be recorded and saved.
  • the second path acquiring unit 202 Determining the secondary communication path of the existing UE only needs to extract the secondary communication path in which the record is saved.
  • the first path obtaining unit 201 may include: a second SRS sent by the segment, calculating a channel quality in the target direction according to the second SRS, and determining whether the channel quality is higher than The channel quality corresponding to the last determined secondary communication path.
  • the determining sub-unit 2011 receives the SRS that is sent by the target UE in the narrow-band full-band, that is, the second SRS, the channel quality in the current time direction can be calculated according to the SRS, and the channel quality in the current time direction is calculated. Then, the channel quality in the current time direction is compared with the channel quality calculated at the previous time to detect whether the channel quality calculated at the previous time is higher.
  • the update subunit 2012 is configured to: if the judgment subunit 2011 determines that the channel quality is higher than the channel quality corresponding to the last determined secondary communication path, update the communication path corresponding to the target direction to a secondary Communication path.
  • the update subunit 2012 can be specifically used for:
  • the judgment subunit 2011 determines that the channel quality is higher than the channel quality corresponding to the previously determined secondary communication path, it is determined whether the communication path corresponding to the target direction is the primary communication path; If the primary communication path is not, detecting whether the channel quality of the communication path corresponding to the target direction is higher than a preset communication service quality QoS threshold, and higher than the QoS When the value is wide, the communication path corresponding to the target direction is updated to the secondary communication path.
  • the determining sub-unit 2011 detects that the target direction, that is, the channel quality in the current time direction is higher than the channel quality calculated at the previous time, it indicates that the communication path corresponding to the current time direction can be updated to be between the current BS and the target UE. Secondary communication path.
  • the communication path corresponding to the current time direction before updating the communication path corresponding to the current time direction to the secondary communication path between the current BS and the target UE, if it is detected that the channel quality in the current time direction is higher than the channel quality calculated at the previous time, It is further possible to detect whether the communication path corresponding to the current time direction is the primary communication path between the current BS and the target UE. If it is not the primary communication path, the communication path corresponding to the target direction is updated to the secondary communication path.
  • the communication path corresponding to the current time direction may also detect whether the channel quality of the communication path corresponding to the time direction is higher than a preset service quality.
  • a preset service quality Full name: Quality of Service, referred to as: QoS). If it is detected that the channel quality of the communication path corresponding to the time direction is higher than the QoS threshold, the communication path corresponding to the current time direction may be updated to the secondary communication path.
  • the QoS threshold may be set according to specific channel quality requirements, which is not limited in the embodiment of the present invention.
  • the target UE changes the beam direction according to a preset time interval, and points the changed beam to a corresponding direction as a target direction, and sends the SRS to the target direction in a narrow beam full frequency band.
  • the determining subunit 2011 receives the SRS sent by the target UE in the target direction, calculates and determines the channel quality in the direction, until the first path acquiring unit 201 completes the detection of the SRS sent by the target UE in each direction, and determines
  • the secondary communication path is taken as a secondary communication path between the current BS and the target UE.
  • the secondary communication path corresponding to the target UE may be determined by comparing the calculated channel quality in each direction after the BS receives the SRS sent by the UE in the narrow beam full frequency band in each direction. Selecting, from the respective channel qualities, a communication path corresponding to the direction of the channel quality in the direction of the main communication path and the channel quality is optimal (the preset QoS threshold is satisfied) as the secondary communication path corresponding to the target UE. .
  • the communication module 30 may include: a first transmission unit 301, configured to: if the identifier of the transmitter that uses the primary communication path to communicate is at least two, and each of the identified transmitters has a secondary communication path, then control the primary The communication path is configured to transmit each of the transmitter uplink subframes indicated by the identifier, and the uplink subframes of the transmitters are transmitted in a frequency division multiplexing manner;
  • a second transmission unit 302 configured to control, by using the secondary communication path, to transmit a corresponding transmitter downlink subframe, where the downlink subframes of the transmitters are transmitted in a space division multiplexing manner, where The downlink subframes of the respective transmitters monopolize the full-band bandwidth resources, and the uplink subframes and the downlink subframes of the respective transmitters have different formats.
  • the communication module 30 may further include:
  • a third transmission unit 303 configured to: if the identifier of the transmitter that uses the primary communication path to communicate is at least two, and each of the identified transmitters has a secondary communication path, then control the primary The communication path is configured to transmit each of the transmitter downlink subframes indicated by the identifier, and the downlink subframes of the transmitters are transmitted in a frequency division multiplexing manner;
  • a fourth transmission unit 304 configured to control, by using the secondary communication path, to transmit a corresponding transmitter uplink subframe, where an uplink subframe of each transmitter is transmitted in a space division multiplexing manner, where The uplink subframe of each transmitter monopolizes the full-band bandwidth resource, and the format of the uplink subframe and the downlink subframe of each transmitter is different.
  • the communication module 30 may be an uplink sub-link.
  • the frame and the downlink subframe select the communication path of the transmission, and each UE link subframe transmitted through the corresponding secondary communication path is divided into empty partitions.
  • the communication module 30 may include:
  • a fifth transmission unit 305 configured to: if the identifier of the transmitter that uses the primary communication path to communicate is one, and the transmitter indicated by the identifier has a corresponding secondary communication path, control the primary communication a path for transmitting an uplink subframe of the transmitter, controlling to use the secondary communication path for transmitting a downlink subframe of the transmitter; or
  • a sixth transmission unit 306 configured to control the primary communication path for transmitting the transmitter a downlink subframe, configured to use the secondary communication path to transmit an uplink subframe of the transmitter; wherein an uplink subframe and a downlink subframe of the transmitter are spatially separated In a manner of transmission, the format of the uplink subframe and the downlink subframe is different, and the transmitter occupies a full-band bandwidth resource.
  • the communication module 30 may be an uplink subframe corresponding to the UE and The communication path of the downlink subframe is selected, for example, the primary communication path determined by the first determining module 10 is used to transmit the uplink subframe corresponding to the UE, and the secondary determined by the second determining module 20 The communication path is used to transmit a downlink subframe corresponding to the UE, and the uplink and downlink subframes are divided by an empty partition.
  • the communication module 30 may include:
  • a seventh transmission unit 307 configured to: if the identifier of the transmitter that uses the primary communication path to communicate is at least two, the number of existing secondary communication paths is greater than zero, and the number of secondary communication paths that exist is less than the identifier And controlling, by the primary communication path, the transmitter uplink subframes indicated by the identifier, where the uplink subframes of the transmitters are transmitted in a frequency division multiplexing manner, where Each transmitter includes at least one first transmitter that does not have a secondary communication path and a second transmitter that has a secondary communication path;
  • the eighth transmission unit 308 is configured to control, by using the primary communication path, a downlink subframe for transmitting each of the first transmitters, where the downlink subframes of the first transmitters are in a frequency division multiplexing manner. Transmitting, the uplink and downlink subframes of the first transmitter are transmitted in a time division multiplex manner;
  • a ninth transmission unit 309 configured to control, by using the secondary communication path, a downlink subframe for transmitting the second transmitter, where a downlink subframe of the second transmitter is spatially multiplexed
  • the communication module 30 may further include:
  • the tenth transmission unit 310 is configured to: if the identifier of the transmitter for communicating by using the primary communication path is at least two, the number of secondary communication paths that exist is greater than zero, and the number of secondary communication paths that exist is smaller than the identifier. Number, then controlling the primary communication path to transmit each of the transmissions indicated by the identification a downlink subframe, the downlink subframes of the transmitters are transmitted in a frequency division multiplexing manner, the transmitters including at least one first transmitter having no secondary communication path and a secondary a second transmitter of the communication path;
  • An eleventh transmission unit 311, configured to control, by using the primary communication path, an uplink subframe for transmitting each first transmitter, where uplink subframes of each first transmitter are frequency division multiplexed Mode transmission, the uplink and downlink subframes of the first transmitter are transmitted in a time division multiplexing manner;
  • a twelfth transmission unit 312 configured to control, by using the secondary communication path, an uplink subframe for transmitting the second transmitter, where an uplink subframe of the second transmitter is spatially multiplexed
  • the mode of the second determining module 20 determines that at least two UEs that communicate with the primary communication path are obtained, and the number of UEs of the existing secondary communication path is greater than zero but less than the total number of UEs, and the communication module is available.
  • 30 selects a communication path for transmission for each of the uplink subframe and the downlink subframe corresponding to each UE.
  • Each UE link subframe transmitted through the corresponding secondary communication path is divided into empty partitions, and each UE link subframe transmitted through the primary communication path is divided into time divisions.
  • the device may further include:
  • the inserting module 40 is configured to insert the third SRS into the uplink and downlink link subframe according to a preset insertion interval
  • the inserting module is specifically configured to:
  • the third SRS is obtained based on the current BS (ie, the receiver) according to the SRS information fed back by the corresponding UE.
  • the BS and the primary communication path may be performed according to a frame format determined by the secondary communication path corresponding to the UE in the primary communication path beam, that is, a communication path of the uplink and downlink subframes is determined. Communication between UEs within the beam.
  • Embodiments of the present invention may determine and transmit SRS according to the received SRS in the current BS. After the primary communication path between the UEs, the secondary communication path with the UE is further determined, and the secondary communication paths of other UEs existing in the primary communication path beam are extracted, and based on the primary communication The communication scenario determined by the path and the secondary communication path communicates with each UE in the primary communication path beam, which can effectively improve the throughput and transmission efficiency of the system data transmission.
  • FIG. 3 it is an interaction diagram of a communication method according to an embodiment of the present invention.
  • the embodiment of the present invention uses a communication between a BS (ie, a receiver) and a UE (ie, a transmitter) as an example for description.
  • the method includes:
  • S301 The target UE sends the SRS in a wide band full band.
  • the BS determines a primary communication path according to the SRS.
  • the UE can access according to the wide beam to ensure normal communication, and the process of the wide beam access is the same as the traditional wireless cellular communication access process.
  • the current BS may trigger the determination of the primary communication path between the current BS and the UE when receiving the SRS sent by the target UE, such as the newly accessed UE, in the wide band full band.
  • the embodiment of the present invention may determine the optimal direction of the wave by using the received SRS, thereby determining the primary communication path.
  • the SRS is sent by the target UE, such as the newly accessed UE, through the wide beam full frequency band.
  • the optimal direction of the wave may be determined from the direction in which the SRS signal is currently received according to a preset decision rule, and the new path is determined.
  • the incoming UE feeds back the relevant location information of the incoming wave optimal direction.
  • the preset judgment rule may be formed according to a certain algorithm and a criterion. For example, the BS may obtain the SINR value corresponding to each direction according to the SRS signal in each direction, and select a direction corresponding to the maximum SINR value thereof. The most extreme direction of the wave.
  • the BS and the UE may narrow the wide beam used by the UE along the optimal direction of the incoming wave, for example, by adjusting a precoding precoding module, a beamforming beamforming module, and the like. And controlling to narrow the beam along the optimal direction of the incoming wave, and determining a communication path where the narrowed beam is located as a primary communication path between the current BS and the target UE.
  • the target UE schedules another sub-array to transmit the SRS in a narrow band full frequency band.
  • the BS determines, according to the SRS, a secondary communication path available to the target UE.
  • the identifier of the UE that communicates with the primary communication path between the UE and the current BS that is, the identifier corresponding to each UE included in the primary communication path beam, may be determined.
  • Each of the primary communication paths of the UE indicated by the identity that is, a communication path with the best channel quality except the primary communication path.
  • the BS corresponding to the target UE can control the splitting of the wide beam into a narrow beam, and the user is divided into blocks, and then searched in the respective areas.
  • the secondary communication path corresponding to the UE to improve user and system capacity.
  • the secondary communication path may be an NLoS channel under normal circumstances.
  • the UE included in the primary communication path beam may be divided into a newly accessed UE, that is, a target UE that transmits an SRS, and a UE that already exists in the primary communication path beam and determines the secondary communication path.
  • the secondary communication path corresponding to the target UE may be determined by detecting an SRS that is sent by the target UE in a narrow beam full frequency band.
  • S305 Determine a secondary communication path corresponding to other UEs in the primary communication path beam.
  • the secondary communication path corresponding to other UEs sharing the primary communication path may also be extracted, thereby determining to use the primary communication path.
  • All UEs that communicate are the secondary communication paths corresponding to all UEs within the primary communication path beam.
  • the other UEs sharing the primary communication path are the existing UEs in the primary communication path beam, and the secondary communication path between the existing UE and the current BS can be recorded and saved. Further, the existing UE is determined.
  • the secondary communication path only needs to extract the secondary communication path in which the record is saved.
  • S306 Communicate with each UE according to the primary communication path and the secondary communication path corresponding to each UE.
  • the frame format of the uplink and downlink subframes corresponding to the UE in the primary communication path beam may be determined according to the determined secondary communication path corresponding to the UE in the primary communication path beam, that is, Communication between UEs within a communication path beam.
  • Embodiments of the present invention implement a primary communication path that can communicate between a current BS and a target UE that transmits the SRS according to an SRS signal, and determine a secondary communication path by using each UE that communicates with the primary communication path. Therefore, communication with each UE based on the primary communication path and the secondary communication path can effectively improve the throughput and transmission efficiency of system data transmission.
  • FIG. 4 it is a schematic flowchart of a method for determining a secondary communication path according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be specifically applied to a communication device that can be used as a receiver, such as a BS or an MS.
  • the method includes: a signal SRS.
  • S402 Calculate, according to the SRS, a channel quality in the target direction.
  • the channel quality in the current time direction is calculated according to the SRS.
  • S403 Determine whether the channel quality is higher than a channel quality corresponding to the last determined secondary communication path.
  • the current BS After calculating the channel quality in the current time direction, the current BS compares the channel quality in the current time direction with the channel quality calculated at the previous time, and detects whether the channel quality calculated at the previous time is higher.
  • S404 If it is higher, update the communication path corresponding to the target direction to a secondary communication path. If the target direction, that is, the channel quality in the current time direction is higher than the channel quality calculated at the previous time, it indicates that the communication path corresponding to the current time direction can be updated to the secondary communication path between the current BS and the target UE.
  • the communication path corresponding to the current time direction before updating the communication path corresponding to the current time direction to the secondary communication path between the current BS and the target UE, if it is detected that the channel quality in the current time direction is higher than the channel quality calculated at the previous time, It is further possible to detect whether the communication path corresponding to the current time direction is the primary communication path between the current BS and the target UE. If it is not the primary communication path, the communication path corresponding to the target direction is updated to the secondary communication path. Further, if it is detected that the communication path corresponding to the current time direction is not the primary communication path between the current BS and the target UE, it is also possible to detect whether the channel quality of the communication path corresponding to the time direction is higher than a preset QoS threshold.
  • the communication path corresponding to the current time direction may be updated to the secondary communication path.
  • the QoS threshold may be set according to specific channel quality requirements, which is not limited in the embodiment of the present invention.
  • S405 Receive an SRS that is sent by the target transmitter in a narrow beam full frequency band in a direction corresponding to changing a beam direction, and use an SRS sent in the direction as an SRS sent by the target transmitter in a target direction. At the time of detection, the secondary communication path of the target transmitter is determined.
  • the target UE changes the beam direction according to a preset time interval, and points the changed beam to the corresponding direction as the target direction, and sends the SRS to the target direction in the narrow beam full frequency band. If the current BS receives the SRS sent by the target UE in the target direction, repeating S402 to S405 until the current BS completes the detection of the SRS sent by the target UE in the narrow beam full frequency band in each direction, and determines the secondary communication. The path acts as a secondary communication path between the current BS and the target UE.
  • the embodiment of the present invention may determine whether to update the secondary communication path corresponding to the target UE by comparing the channel quality in the current time direction with the channel quality in the previous time direction after the current BS receives the SRS sent by the target UE. And after the current BS completes the detection of the SRS sent by the target UE in the narrow beam full frequency band in each direction according to the preset time interval, the determined secondary communication path is used as the current communication path between the current BS and the target UE. Secondary communication path.
  • FIG. 5 it is a schematic flowchart of another method for determining a secondary communication path according to an embodiment of the present invention. Specifically, the method includes: a signal SRS.
  • S502 Calculate channel quality in each direction according to the SRS.
  • the target UE transmits the SRS in all directions in a narrow band full frequency band
  • the current BS receives the SRS sent by the target UE, and calculates a channel of the corresponding communication path in each direction according to the received SRS.
  • the sending the SRS in all directions may be implemented by changing the beam direction according to a preset time interval and transmitting the SRS in a narrow beam full frequency band in a corresponding direction after the change beam is directed.
  • S503 Determine a secondary communication path of the target transmitter according to the calculated channel quality in the respective directions.
  • the channel quality corresponding to the direction in which the channel quality is optimal may be selected from the respective channel qualities, and the communication path corresponding to the direction with the best channel quality is used as the target UE. Secondary communication path.
  • the channel quality corresponding to the communication path may be detected. If the value is higher than the preset QoS threshold, if the value is higher than the QoS threshold, the communication path may be determined as the secondary communication path corresponding to the target UE.
  • the channel quality in each direction is compared and calculated, and the main communication is directly selected from the respective channel qualities.
  • the communication path corresponding to the direction in which the channel quality is optimal is used as the secondary communication path corresponding to the target UE.
  • communicating with the transmitter according to the primary communication path and the secondary communication path may include the following five communication scenarios.
  • Scenario 1 If the identifiers of the transmitters that communicate with the primary communication path are at least two, and each of the transmitters indicated by the identifier does not have a secondary communication path, the pair is configured according to a preset configuration ratio. The number of uplink and downlink subframes corresponding to the transmitter is configured, and the uplink and downlink subframes of the transmitter are transmitted in a time division multiplexing manner;
  • the frame format of the uplink and downlink subframes is the same, the uplink and downlink subframes include information corresponding to the transmitter, and the transmitter allocates full-band bandwidth resources in a frequency division multiplexing manner. .
  • FIG. 6 is a schematic diagram of one of the communication scenarios in the embodiment of the present invention.
  • multiple transmitters may be used to communicate with the primary communication path, that is, beams corresponding to the primary communication path.
  • Multiple transmitters are included, and the specific example in FIG. 6 is that the corresponding communication path has a beam.
  • Three UEs ie, three transmitters are UE1, UE2, and UE3, respectively, and each UE has no secondary communication path.
  • FIG. 7 is a schematic diagram of resource allocation in the scenario of FIG. 6. Specifically, the UE1, the UE2, and the UE3 are divided into frequency partitions, and the uplink and downlink are time-division partitioned.
  • the frame formats of the uplink and downlink corresponding to each UE are the same, as shown in FIG. 8, which is a schematic diagram of a corresponding frame format in the scenario of FIG. 6.
  • the number of the uplink and downlink subframes can be configured according to a preset configuration ratio (configured according to 4:4 in FIG. 8), and the configuration ratio can be adjusted according to the throughput of the uplink and downlink services.
  • the SRS may be inserted into the uplink and downlink subframes according to a preset insertion interval. For example, one SRS signal may be inserted in every two subframes, which is represented by a hatched block in FIG. 8.
  • the inserted SRS may be The current BS is obtained based on the SRS information fed back by the UE in the main communication path beam.
  • the SRS signal needs to be wrapped in the special subframe S for insertion; when SRS is inserted between uplink subframes, only SRS is placed at the end. After the data block of one subframe (or the SRS can also be wrapped in the special subframe S for insertion).
  • each of the uplink subframe U and the downlink subframe D may sequentially include related information of UE1, UE2, and UE3 according to the frequency allocation, and respectively correspond to Ul, U2, U3, and D1, D2, and D3. Further, the insertion interval of the SRS signal can be adjusted according to the requirements of the moving speed.
  • each UE does not have a corresponding secondary communication path
  • the beam is compared with the conventional wireless cellular communication system in the form of broadcast.
  • a traditional cellular communication system in the form of a broadcast there may be hundreds or thousands of UEs in each beam, and the bandwidth of each UE is less than one. As a result, UE and system capacity has increased.
  • Scenario 2 If the identifier of the transmitter that communicates with the primary communication path is one, and the transmitter indicated by the identifier does not have a secondary communication path, the transmission is performed according to a preset configuration ratio. The number of uplink and downlink subframes corresponding to the machine is configured, and the uplink and downlink subframes of the transmitter are transmitted in a time division multiplexing manner;
  • the frame format of the uplink and downlink subframes is the same, the uplink and downlink subframes include information about the transmitter, and the transmitter occupies a full-band bandwidth resource.
  • FIG. 9 is a schematic diagram of another communication scenario according to an embodiment of the present invention.
  • only one transmitter that uses the primary communication path to communicate in the scenario that is, the primary
  • the UE corresponding to the communication path contains only one UE, that is, UE1, and the UE does not have a secondary communication path.
  • This scenario 2 can be regarded as a special case of the scenario 1.
  • FIG. 10 it is a schematic diagram of resource allocation in the scenario of FIG. 9.
  • UE1 owns the full frequency band, and the uplink and downlink time division partitions.
  • the frame format of the uplink and downlink corresponding to the UE1 is the same, as shown in FIG. 11, which is a schematic diagram of a corresponding frame format in the scenario of FIG.
  • Each of the uplink U1 and the downlink subframe D1 includes only the information of the UE1, and the number of the uplink and downlink subframes may be configured according to a preset configuration ratio, for example, 4:4, and the configuration ratio may be according to uplink and downlink services.
  • Throughput is adjusted.
  • the insertion mode of the SRS signal in the scenario is the same as the insertion mode of the SRS signal in the foregoing scenario, and details are not described herein again. Further, the insertion interval of the SRS signal can be adjusted according to the requirements of the moving speed.
  • the UE does not have a corresponding secondary communication path, there is only one UE in the beam, and the UE exclusively enjoys the bandwidth resource.
  • the bandwidth resource For example, a 300MHz wide spectrum, the UE will occupy 300MHz bandwidth, and each of the uplink and downlink can support 300MHz bandwidth.
  • UE and system capacity have increased significantly.
  • Scenario 3 If there are at least two identifiers of the transmitters communicating with the primary communication path, and each of the transmitters indicated by the identifier has a secondary communication path.
  • the primary communication path may be controlled to transmit each of the transmitter downlink subframes of the identifier indication, and the downlink subframes of the transmitters are frequency division multiplexed. Way of transmission;
  • FIG. 12 is a schematic diagram of still another communication scenario according to an embodiment of the present invention.
  • the primary communication path there are multiple transmitters in the scenario for communicating by using the primary communication path, that is, the primary A plurality of transmitters are included in the beam corresponding to the communication path.
  • the secondary communication paths are available to the two UEs. .
  • FIG. 13 it is a schematic diagram of one of the resource allocations in the scenario of FIG. 12 .
  • the uplink of the UE1 and the UE2 in the primary communication path beam is divided into empty partitions, and the downlink of the two UEs is performed.
  • the link is divided by frequency.
  • the controllable primary communication path is only used for transmission of the downlink subframe, and is not used for transmitting the uplink subframe; accordingly, the secondary communication path is only used for uplink transmission, and is not used for transmission.
  • Downlink subframe The frame formats of the uplink and downlink of each UE are different, and are independent, as shown in FIG. 14, which is a schematic diagram of one of the frame formats in the scenario of FIG.
  • the frame format in this scenario does not have the matching problem of the number of uplink and downlink subframes.
  • each of the uplink subframes U only includes information of UE1 or UE2, which respectively corresponds to U1 or U2; and each downlink subframe D may sequentially include information of the two UEs, that is, D1 and D2.
  • the insertion mode of the SRS signal in this scenario is the same as the insertion mode of the SRS signal in the above scenario, and will not be described here. Further, the insertion interval of the SRS signal can be adjusted according to the requirements of the moving speed.
  • each UE has an available secondary communication path. All UEs share downlink spectrum resources, and each UE exclusively enjoys uplink bandwidth resources. For example, a 300MHz wide frequency, there are two UEs in the beam, each UE's downlink occupies 150MHz bandwidth, each UE's uplink occupies 300MHz bandwidth, and UE capacity and system throughput are greatly improved. .
  • the primary communication path may be further used to transmit each of the transmitter uplink subframes of the identifier indication, and the uplink subframe of each transmitter is frequency-replicated Used to transmit;
  • each of the transmissions Controlling the secondary communication path for transmitting a corresponding transmitter downlink subframe, each of the transmissions
  • the downlink subframes of the mobile station are transmitted in a space division multiplexing manner, and the downlink subframes of the respective transmitters are identical.
  • FIG. 15 it is another schematic diagram of resource allocation in the scenario of FIG. 12 , where the downlink of the UE1 and UE2 in the primary communication path beam is divided by the empty partition, and the uplink of the two UEs is used. Frequency partitioning.
  • the control main communication path is only used for transmission of the uplink subframe
  • the secondary communication path is only used for downlink transmission
  • the frame formats of the uplink and downlink of each UE are different, and are independent, as shown in the figure.
  • 16 is a schematic diagram of another frame format in the scene of FIG.
  • Each of the downlink subframes D only includes information of UE1 or UE2, and corresponds to D1 or D2, and each of the uplink subframes U may sequentially include information of the two UEs, that is, U1 and U2.
  • each UE has an available secondary communication path. All UEs share uplink spectrum resources, and each UE exclusively enjoys downlink bandwidth resources. For example, a 300MHz wide frequency, there are two UEs in the beam, each UE's uplink occupies 150MHz bandwidth, each UE's downlink occupies 300MHz bandwidth, UE capacity and system throughput are greatly improved. .
  • Scenario 4 If the identifier of the transmitter communicating with the primary communication path is one, and the transmitter indicated by the identifier has a corresponding secondary communication path, the uplink subframe of the transmitter is The downlink subframe is transmitted in a space division multiplexing manner, the format of the uplink subframe and the downlink subframe is different, and the transmitter occupies a full-band bandwidth resource.
  • FIG. 17 is a schematic diagram of still another communication scenario according to an embodiment of the present invention.
  • the primary communication path corresponds to
  • FIG. 18 it is a schematic diagram of resource allocation in the scenario of FIG. 17.
  • the UE in the primary communication path beam can occupy the full frequency band by itself, and the uplink and downlink links use the empty partition.
  • the control main communication path is only used for transmission of the downlink subframe, and the secondary communication path is only used for uplink transmission, and vice versa.
  • the frame formats of the uplink and downlink subframes are different, and are independent of each other.
  • FIG. 19 it is a schematic diagram of a corresponding frame format in the scene of FIG. There is no matching problem between the number of uplink and downlink subframes in the frame format.
  • only information of the UE is included in each of the uplink subframe U1 and the downlink subframe D1.
  • the insertion mode of the SRS signal in this scenario is the same as the insertion mode of the SRS signal in the above scenario, and details are not described herein again. Further, the insertion interval of the SRS signal can be adjusted according to the requirements of the moving speed.
  • the UE In the above scenario 4, there is only one UE in one beam, and there is an available secondary communication path, and the UE exclusively enjoys the bandwidth resource. For example, a 300MHz wide spectrum, the UE will occupy 300MHz bandwidth, and the uplink and downlink can support 300MHz bandwidth, and the UE capacity is significantly improved.
  • Scenario 5 The identifier of the transmitter that communicates with the primary communication path is at least two, the number of secondary communication paths that exist is greater than zero, and the number of secondary communication paths that exist is less than the number of identifiers.
  • FIG. 20 is a schematic diagram of still another communication scenario according to an embodiment of the present invention.
  • the primary communication path corresponds to A plurality of transmitters are included in the beam.
  • the specific example in FIG. 20 is that there are two UEs in the beam corresponding to the primary communication path, that is, UE1 and UE2, and only UE1 has available secondary communication paths.
  • the primary communication path may be controlled to transmit each transmitter downlink subframe, and the downlink subframes of each transmitter are transmitted in a frequency division multiplexing manner.
  • Each transmitter includes a first transmitter that does not have a secondary communication path, UE2, and a second transmitter that has a secondary communication path, UE1;
  • the uplink and downlink subframes are transmitted in a time division multiplex manner;
  • the uplink subframe of the second transmitter is transmitted in a space division multiplex manner, and the second The uplink subframe of the transmitter is different from the format of the downlink subframe.
  • FIG. 21 it is a schematic diagram of one of the resource allocations in the scenario of FIG. 20, specifically, the downlink frequency division of UE1 and UE2 in the primary communication path beam, and the uplink and downlink of UE2
  • the uplink and downlink of UE1 are divided into empty partitions.
  • the control main communication path is only used for transmission of the downlink subframe
  • the secondary communication path is only used for uplink subframe transmission.
  • the uplink and downlink frame formats of UE1 are different, and are independent.
  • the uplink and downlink frame formats of UE2 are the same.
  • FIG. 22 it is a schematic diagram of one of the frame formats in the scenario of FIG.
  • the bandwidth belonging to UE1 can only be idle.
  • the number of uplink and downlink subframes can be configured according to a preset configuration ratio, for example, 4:4. Further, the ratio adjustment can be performed according to the uplink and downlink traffic throughput.
  • the uplink subframe U1 of UE1 may use a secondary communication path and transmit in a space division multiplexing manner, and thus the uplink subframe U1 of UE1 has an independent frame format.
  • each uplink subframe U1 transmitted through the secondary communication path includes only information of UE1; and each downlink subframe D transmitted through the primary communication path sequentially includes information of UE1 and UE2, that is, corresponding to D1 and D2; the frequency band belonging to UE1 in each uplink subframe U is idle, represented by X in FIG. 22, and the information belonging to UE2 in the frequency band of UE2 corresponds to U2.
  • the insertion mode of the SRS signal is the same as the insertion mode of the SRS signal in the above scenario, and the insertion interval of the SRS signal can be adjusted according to the requirements of the moving speed.
  • the uplink data of the UE2 may be transmitted in the bandwidth of the UE1 in the uplink subframe in the primary communication path by using a certain technology.
  • the primary communication path may also be controlled to transmit each transmitter uplink subframe, and the uplink subframes of the transmitters are transmitted in a frequency division multiplexing manner.
  • Each of the transmitters includes a first transmitter that does not have a secondary communication path, UE2, and a second transmitter that has a secondary communication path, UE1;
  • the downlink subframe of the second transmitter is transmitted in a space division multiplex manner, and the second The uplink subframe of the transmitter is different from the format of the downlink subframe.
  • FIG. 23 is another schematic diagram of resource allocation in the scenario shown in FIG. 20.
  • the uplink and downlink of UE1 are divided into empty partitions.
  • the control main communication path is only used for transmission of an uplink subframe, and the secondary communication path is only used for downlink subframe transmission.
  • the uplink and downlink frame formats of UE1 are different and are independent.
  • the uplink and downlink frame formats of UE2 are the same.
  • Figure 24 it is a schematic diagram of another frame format in the scenario of Figure 20. Since UE1 and UE2 share the frame format of the uplink and uplink beams, when UE2 transmits downlink data by time division multiplexing, the bandwidth belonging to UE1 can only be idle.
  • the number of uplink and downlink subframes can be configured according to a preset configuration ratio such as 4:4. Further, the ratio can be adjusted according to the uplink and downlink traffic throughput.
  • the downlink subframe U1 of UE1 can be transmitted in a space division multiplex manner using the secondary communication path, and thus the downlink subframe D1 of UE1 has an independent frame format.
  • each downlink subframe D1 transmitted through the secondary communication path includes only information of UE1; and each uplink subframe U transmitted through the primary communication path sequentially includes information of UE1 and UE2, that is, corresponding to U1 and U2.
  • the frequency band belonging to UE1 in each downlink subframe D is idle, that is, X in FIG. 24; the frequency band belonging to UE2, which includes the information of UE2, corresponds to D2.
  • the downlink data of the UE2 may be transmitted in the bandwidth of the UE1 in the downlink subframe in the main communication path by using a certain technology.
  • UEs in one beam there are multiple UEs in one beam, but not every UE has an available secondary communication path. All UEs share uplink spectrum resources, and UEs with sub-optimal paths enjoy exclusive downlink bandwidth resources. For example, a 300 MHz wide frequency band has UE1 and UE2 in the beam, and only UE1 has a corresponding secondary communication path, and each UE's uplink occupies 150 MHz bandwidth, and UE2's downlink occupies 150 MHz bandwidth. The downlink of UE1 occupies 300MHz bandwidth, and the UE capacity and system throughput are greatly improved.
  • Determining a frame format according to a specific communication scenario that is, determining, for each UE, for transmitting uplink and downlink After the communication path of the subframe (including the primary communication path and the corresponding secondary communication path), it is ready
  • Embodiments of the present invention may further determine a secondary communication path with the UE after the current BS determines a primary communication path for communication with the UE that transmits the SRS according to the received SRS, and extract the primary communication path.
  • the secondary communication path of other UEs existing in the communication path beam, and communicating with each UE in the main communication path beam based on the communication scenario determined by the primary communication path and the secondary communication path, can effectively improve system data transmission Throughput and transmission efficiency.
  • the communication device in the embodiment of the present invention includes: a receiver 300, a transmitter 400, a memory 200, and a processor 100, where the memory 200 can It is a high speed RAM memory or a non-volatile memory such as at least one disk memory. A corresponding application or the like is stored in the memory 200 as a computer storage medium.
  • the receiver 300, the transmitter 400, the memory 200, and the processor 100 may be connected via a bus or may be connected by other means. In the present embodiment, a bus connection will be described.
  • the communication device in the embodiment of the present invention may include the foregoing communication device, and specifically may correspond to a device that can be used as a receiver, such as a BS or an MS.
  • the processor 100 performs the following steps:
  • the processor 100 determines, when the first SRS is received, determining a primary communication path with the target transmitter according to the first SRS, and performing the following steps:
  • the optimal direction of the wave is determined according to a preset decision rule, where the first SRS is sent by the target transmitter through the wide beam full frequency band;
  • Narrowing the wide beam used by the target transmitter along the optimal direction of the incoming wave will narrow
  • the communication path where the latter beam is located is determined as the primary communication path.
  • the processor 100 performs the obtaining, by using the identifier of the transmitter that communicates with the primary communication path, and determines a secondary communication path of the transmitter indicated by each identifier, and specifically performs the following steps:
  • the target identifier is an identifier of the target transmitter
  • a secondary communication path of the transmitter indicated by the other identifiers in the identification is determined.
  • the processor 100 performs the acquiring, by using the identifier of the transmitter that communicates with the primary communication path, and according to the second identifier sent by the target transmitter corresponding to the target identifier in the identifier.
  • SRS determining a secondary communication path of the target transmitter, specifically performing the following steps: a second SRS;
  • the processor 100 is configured to update the communication path corresponding to the target direction to a secondary communication path, and specifically perform the following steps:
  • the communication path corresponding to the target direction is updated to a secondary communication path.
  • the target transmitter changes the beam direction according to a preset time interval, and points the changed beam to a corresponding direction as a target direction, and sends the SRS to the target direction in a narrow beam full frequency band.
  • the receiver receives the SRS sent by the target UE in the target direction, calculates and determines the channel quality in the direction, and completes the detection of the SRS sent by the target UE in each direction, and then determines the time.
  • the level communication path serves as a secondary communication path between the current BS and the target UE.
  • the processor 100 performs the following steps according to the primary communication path and the secondary communication path to perform communication with the transmitter:
  • the identifier of the transmitter that communicates with the primary communication path is at least two, and each of the identified transmitters has a secondary communication path, then controlling the primary communication path to transmit the identifier Instructed each uplink subframe of the transmitter, the uplink subframe of each transmitter is transmitted in a frequency division multiplexing manner;
  • the secondary communication path is used to transmit a corresponding transmitter downlink subframe
  • the downlink subframes of each transmitter are transmitted in a space division multiplex manner, and downlink fingers of the respective transmitters
  • the frame is unique.
  • the processor 100 performs the following steps to perform communication with the transmitter according to the primary communication path and the secondary communication path, and specifically: performing the following steps:
  • the identifier of the transmitter that communicates with the primary communication path is at least two, and each of the identified transmitters has a secondary communication path, then controlling the primary communication path to transmit the identifier
  • Each of the transmitter downlink subframes is indicated, and the downlink subframes of the transmitters are transmitted in a frequency division multiplexing manner;
  • the frame is exclusive.
  • the processor 100 performs the following steps according to the primary communication path and the secondary communication path to perform communication with the transmitter:
  • the processor 100 performs the following steps according to the primary communication path and the secondary communication path to perform communication with the transmitter:
  • a communication path is configured to transmit each of the transmitter uplink subframes indicated by the identifier, the uplink subframes of the transmitters are transmitted in a frequency division multiplexing manner, and each of the transmitters includes at least one non-existent a first transmitter of the secondary communication path and a second transmitter having a secondary communication path;
  • the downlink subframe of the second transmitter is transmitted in a space division multiplex manner, and the second The uplink subframe of the transmitter is different from the format of the downlink subframe.
  • the processor 100 performs the following steps to perform communication with the transmitter according to the primary communication path and the secondary communication path, and specifically: performing the following steps:
  • a communication path is configured to transmit each of the transmitter downlink subframes indicated by the identifier, the downlink subframes of the transmitters are transmitted in a frequency division multiplexing manner, and each of the transmitters includes at least one non-existent a first transmitter of the secondary communication path and a second transmitter having a secondary communication path;
  • the primary communication path is used to transmit an uplink subframe of each first transmitter, and uplink subframes of the first transmitters are transmitted in a frequency division multiplex manner, the first transmitter
  • the uplink and downlink subframes are transmitted in a time division multiplex manner;
  • the uplink subframe of the second transmitter is transmitted in a space division multiplex manner, and the second The uplink subframe of the transmitter is different from the format of the downlink subframe.
  • the processor 100 further performs the following steps: Inserting a third SRS into the uplink and downlink subframes according to a preset insertion interval; and inserting the third SRS into the uplink and downlink subframes includes:
  • the third SRS is wrapped in a special subframe for insertion into the downlink subframe or a handover of the downlink subframe and the uplink subframe.
  • Embodiments of the present invention determine a primary communication path for communication between a current transmitter and a target transmitter based on an SRS signal received by a receiver, and determine by each transmitter for communicating with the primary communication path
  • the secondary communication path thereby communicating with each transmitter based on the primary communication path and the secondary communication path, effectively improves the system transmission capacity.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (English full name: Read-Only Memory, referred to as: ROM) or a random storage memory (English full name: Random Access Memory, abbreviation: RAM), etc. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种通信方法及相关装置,其中,所述方法包括:当接收到第一侦听参考信号SRS时,根据所述第一SRS确定与目标发射机之间的主通信路径,所述目标发射机为发送所述第一SRS的发射机;获取采用所述主通信路径进行通信的发射机的标识,并确定每一个标识所指示的发射机的次级通信路径;根据所述主通信路径及所述次级通信路径与所述发射机通信。采用本发明,可基于确定出的主通信路径及次级通信路径建立接收机与发射机之间的通信,有效提升了系统传输容量。

Description

一种通信方法及装置 技术领域
本发明涉及通信技术领域, 尤其涉及一种通信方法及装置。 背景技术
目前的无线接入方式只限于传统蜂窝频段接入, 其通信频段在 2.6GHz以 下, 基站(英文全称: Base Station, 简称: BS )与移动台 (英文全称: Mobile Station, 简称: MS )之间、 BS与 BS之间以及 MS与 MS之间都是釆用广播 的方式进行通信。 该广播方式的通信具有波束宽、 覆盖范围广的特点, 同一个 扇区即可视为一个波束, 波束内的 MS通过占用不同频率分用带宽, 波束内的 MS越多, 每个 MS占用的带宽也就越小, 其容量也就越小, 严重限制了用户 传输业务数据容量的大小。
随着网络技术的发展,人类社会必将迎来数字化社会的下一波浪潮, 比如 5G无线网络需要满足更大更快的容量增长需求,也就要求更多的新频谱分配。 随着对高频技术研究的广泛开展,已证实在某些信道的高频通信损耗在可接受 的通信范围内, 由此, 在 6GHz-300GHz高频段所拥有的大带宽使得数据容量 增长成为可能。 由于高频具有波束窄、 能量集中的特点, 使得经过一次反射、 一次衍射或者经过某些物体的穿透之后的能量损耗较小,信号质量仍然可以满 足要求。 高频无线已经成为未来无线通信发展的必然趋势。
现有技术中, BS与 MS之间、 BS与 BS之间以及 MS与 MS之间仅搜索 和利用了的质量最优的信道, 只有一条波束, 虽然实现了高频通信, 却仍然限 制了系统传输容量。 发明内容
本发明实施例提供一种通信方法及装置, 可较为有效地提升系统传输容 量。 第一方面, 本发明实施例提供了一种通信装置, 包括:
第一确定模块, 用于当接收到侦听参考信号第一 SRS 时, 根据所述第一 SRS 确定与目标发射机之间的主通信路径, 所述目标发射机为发送所述第一 SRS的发射机;
第二确定模块,用于获取釆用所述第一确定模块确定出的主通信路径进行 通信的发射机的标识, 并确定每一个标识所指示的发射机的次级通信路径; 通信模块,用于根据所述第一确定模块确定出的主通信路径及所述第二确 定模块确定出的次级通信路径, 与所述发射机通信。
结合第一方面, 在第一种可能的实现方式中, 所述第一确定模块包括: 方向确定单元,用于若接收到第一 SRS,根据预设的判决规则确定出来波 最优方向, 所述第一 SRS是由目标发射机通过宽波束全频段发送的;
波束收窄单元,用于沿着所述方向确定单元确定的来波最优方向对所述目 标发射机使用的宽波束进行收窄,将收窄后的波束所在的通信路径确定为主通 信路径。
结合第一方面, 在第二种可能的实现方式中, 所述第二确定模块包括: 第一路径获取单元,用于获取釆用所述主通信路径进行通信的发射机的标 识, 并根据所述标识中目标标识对应的目标发射机所发送的第二 SRS,确定所 述目标发射机的次级通信路径, 所述目标标识为所述目标发射机的标识; 第二路径获取单元,用于确定所述标识中其他标识所指示的发射机的次级 通信路径。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中, 所 述第一路径获取单元包括: 的第二 SRS, 根据所述第二 SRS计算得出所述目标方向上的信道质量, 并判 断所述信道质量是否高于上一次确定的次级通信路径对应的信道质量;
更新子单元,用于若所述判断子单元判断结果为所述信道质量高于上一次 确定的次级通信路径对应的信道质量,则将所述目标方向对应的通信路径更新 为次级通信路径。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中, 所 述更新子单元具体用于:
若所述判断子单元判断结果为所述信道质量高于上一次确定的次级通信 路径对应的信道质量,判断所述目标方向对应的通信路径是否为所述主通信路 径; 若判断结果是不为所述主通信路径, 则检测所述目标方向对应的通信路径 的信道质量是否高于预设的通信服务质量 QoS阔值, 并在高于所述 QoS阔值 时, 将所述目标方向对应的通信路径更新为次级通信路径。
结合第一方面, 在第五种可能的实现方式中, 所述通信模块包括: 第一传输单元,用于若釆用所述主通信路径进行通信的发射机的标识为至 少两个,且每一个标识所指示的发射机均存在次级通信路径, 则控制将所述主 通信路径用于传输所述标识指示的各发射机上行链路子帧,所述各发射机的上 行链路子帧以频分复用的方式传输;
第二传输单元,用于控制将所述次级通信路径用于传输对应发射机下行链 路子帧, 所述各发射机的下行链路子帧以空分复用的方式传输, 所述各个发射 机的下行链路子帧独占全频段带宽资源,且所述各发射机的上行链路子帧与下 行链路子帧的格式不同。
结合第一方面, 在第六种可能的实现方式中, 所述通信模块包括: 第三传输单元,用于若釆用所述主通信路径进行通信的发射机的标识为至 少两个,且每一个标识所指示的发射机均存在次级通信路径, 则控制将所述主 通信路径用于传输所述标识所指示的各发射机下行链路子帧,所述各发射机的 下行链路子帧以频分复用的方式传输;
第四传输单元,用于控制将所述次级通信路径用于传输对应发射机上行链 路子帧, 所述各发射机的上行链路子帧以空分复用的方式传输, 所述各发射机 的上行链路子帧独占全频段带宽资源,且所述各发射机的上行链路子帧与下行 链路子帧的格式不同。
结合第一方面, 在第七种可能的实现方式中, 所述通信模块包括: 第五传输单元,用于若釆用所述主通信路径进行通信的发射机的标识为一 个,且所述标识所指示的发射机存在对应的次级通信路径, 则控制将所述主通 信路径用于传输所述发射机的上行链路子帧,控制将所述次级通信路径用于传 输所述发射机的下行链路子帧; 或
第六传输单元,用于控制将所述主通信路径用于传输所述发射机的下行链 路子帧, 控制将所述次级通信路径用于传输所述发射机的上行链路子帧; 其中, 所述发射机的上行链路子帧与下行链路子帧以空分复用的方式传 输, 所述上行链路子帧与下行链路子帧的格式不同, 所述发射机占用全频段带 宽资源。
结合第一方面, 在第八种可能的实现方式中, 所述通信模块包括: 第七传输单元,用于若釆用所述主通信路径进行通信的发射机的标识为至 少两个,存在的次级通信路径数目大于零,且存在的次级通信路径数目小于所 述标识数目,则控制将所述主通信路径用于传输所述标识所指示的各发射机上 行链路子帧, 所述各发射机的上行链路子帧以频分复用的方式传输, 所述各发 射机包括至少一个不存在次级通信路径的第一发射机以及存在次级通信路径 的第二发射机;
第八传输单元,用于控制将所述主通信路径用于传输各第一发射机的下行 链路子帧, 所述各第一发射机的下行链路子帧以频分复用的方式传输, 所述第 一发射机的上下行链路子帧以时分复用的方式传输;
第九传输单元,用于控制将所述次级通信路径用于传输所述第二发射机的 下行链路子帧, 所述第二发射机的下行链路子帧以空分复用的方式传输,且所 结合第一方面, 在第九种可能的实现方式中, 所述通信模块包括: 第十传输单元,用于若釆用所述主通信路径进行通信的发射机的标识为至 少两个,存在的次级通信路径数目大于零,且存在的次级通信路径数目小于所 述标识数目,则控制将所述主通信路径用于传输所述标识所指示的各发射机下 行链路子帧, 所述各发射机的下行链路子帧以频分复用的方式传输, 所述各发 射机包括至少一个不存在次级通信路径的第一发射机以及存在次级通信路径 的第二发射机;
第十一传输单元,用于控制将所述主通信路径用于传输各第一发射机的上 行链路子帧, 所述各第一发射机的上行链路子帧以频分复用的方式传输, 所述 第一发射机的上下行链路子帧以时分复用的方式传输;
第十二传输单元,用于控制将所述次级通信路径用于传输所述第二发射机 的上行链路子帧, 所述第二发射机的上行链路子帧以空分复用的方式传输,且 结合第一方面的第五种可能的实现方式,或者第一方面的第六种可能的实 现方式, 或者第一方面的第七种可能的实现方式, 或者第一方面的第八种可能 的实现方式, 或者第一方面的第九种可能的实现方式,在第十种可能的实现方 式中, 还包括:
插入模块, 用于按照预设的插入间隔将第三 SRS插入至所述上下行链路 子帧中;
其中, 所述插入模块具体用于:
将第三 SRS直接插入至上行链路子帧或将所述第三 SRS包裹在特殊子帧 以插入至所述上行链路子帧中; 并将所述第三 SRS 包裹在特殊子帧以插入至 第二方面, 本发明实施例还提供了一种通信方法, 包括:
当接收到侦听参考信号第一 SRS时, 根据所述第一 SRS确定与目标发射 机之间的主通信路径, 所述目标发射机为发送所述第一 SRS的发射机;
获取釆用所述主通信路径进行通信的发射机的标识,并确定每一个标识所 指示的发射机的次级通信路径;
根据所述主通信路径及所述次级通信路径与所述发射机通信。
结合第二方面, 在第一种可能的实现方式中, 所述当接收到第一 SRS时, 根据所述第一 SRS确定与目标发射机之间的主通信路径, 包括:
若接收到第一 SRS,根据预设的判决规则确定出来波最优方向, 所述第一 SRS是由目标发射机通过宽波束全频段发送的;
沿着所述来波最优方向对所述目标发射机使用的宽波束进行收窄,将收窄 后的波束所在的通信路径确定为主通信路径。
结合第二方面,在第二种可能的实现方式中, 所述获取釆用所述主通信路 径进行通信的发射机的标识,并确定每一个标识所指示的发射机的次级通信路 径, 包括:
获取釆用所述主通信路径进行通信的发射机的标识,并根据所述标识中目 标标识对应的目标发射机所发送的第二 SRS,确定所述目标发射机的次级通信 路径, 所述目标标识为所述目标发射机的标识;
确定所述标识中其他标识所指示的发射机的次级通信路径。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中, 所 述获取釆用所述主通信路径进行通信的发射机的标识,并根据所述标识中目标 标识对应的目标发射机所发送的第二 SRS,确定所述目标发射机的次级通信路 径, 包括: 根据所述第二 SRS计算得出所述目标方向上的信道质量;
判断所述信道质量是否高于上一次确定的次级通信路径对应的信道质量; 若高于, 则将所述目标方向对应的通信路径更新为次级通信路径。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,还 包括:
接收所述目标发射机在更改波束指向后对应的方向上以窄波束全频段发 送的第二 SRS, 并将所述方向上发送的第二 SRS作为所述目标发射机在目标 方向发送的第二 SRS, 重复执行所述根据所述第二 SRS计算得出所述目标方
SRS的检测。
结合第二方面的第三种可能的实现方式,在第五种可能的实现方式中, 所 述将所述目标方向对应的通信路径更新为次级通信路径, 包括: 判断所述目标方向对应的通信路径是否为所述主通信路径;
若判断结果是不为所述主通信路径,检测所述目标方向对应的通信路径的 信道质量是否高于预设的通信服务质量 QoS阔值;
若高于所述 QoS 阔值, 则将所述目标方向对应的通信路径更新为次级通 信路径。
结合第二方面,在第六种可能的实现方式中, 所述根据所述主通信路径及 所述次级通信路径与所述发射机通信, 包括:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,且每一个标 识所指示的发射机均存在次级通信路径,则控制将所述主通信路径用于传输所 述标识指示的各发射机上行链路子帧,所述各发射机的上行链路子帧以频分复 用的方式传输;
控制将所述次级通信路径用于传输对应发射机下行链路子帧,所述各发射 机的下行链路子帧以空分复用的方式传输,所述各个发射机的下行链路子帧独 同。
结合第二方面,在第七种可能的实现方式中, 所述根据所述主通信路径及 所述次级通信路径与所述发射机通信, 包括:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,且每一个标 识所指示的发射机均存在次级通信路径,则控制将所述主通信路径用于传输所 述标识所指示的各发射机下行链路子帧,所述各发射机的下行链路子帧以频分 复用的方式传输;
控制将所述次级通信路径用于传输对应发射机上行链路子帧,所述各发射 机的上行链路子帧以空分复用的方式传输,所述各发射机的上行链路子帧独占 同。
结合第二方面,在第八种可能的实现方式中, 所述根据所述主通信路径及 所述次级通信路径与所述发射机通信, 包括: 若釆用所述主通信路径进行通信的发射机的标识为一个,且所述标识所指 示的发射机存在对应的次级通信路径,则所述发射机的上行链路子帧与下行链 路子帧以空分复用的方式传输, 所述上行链路子帧与下行链路子帧的格式不 同, 所述发射机占用全频段带宽资源。
结合第二方面,在第九种可能的实现方式中, 所述根据所述主通信路径及 所述次级通信路径与所述发射机通信, 包括:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,存在的次级 通信路径数目大于零,且存在的次级通信路径数目小于所述标识数目, 则控制 将所述主通信路径用于传输所述标识所指示的各发射机上行链路子帧,所述各 发射机的上行链路子帧以频分复用的方式传输,所述各发射机包括至少一个不 存在次级通信路径的第一发射机以及存在次级通信路径的第二发射机;
控制将所述主通信路径用于传输各第一发射机的下行链路子帧,所述各第 一发射机的下行链路子帧以频分复用的方式传输,所述第一发射机的上下行链 路子帧以时分复用的方式传输;
控制将所述次级通信路径用于传输所述第二发射机的下行链路子帧,所述 第二发射机的下行链路子帧以空分复用的方式传输,且所述第二发射机的上行 链路子帧与下行链路子帧的格式不同。
结合第二方面,在第十种可能的实现方式中, 所述根据所述主通信路径及 所述次级通信路径与所述发射机通信, 包括:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,存在的次级 通信路径数目大于零,且存在的次级通信路径数目小于所述标识数目, 则控制 将所述主通信路径用于传输所述标识所指示的各发射机下行链路子帧,所述各 发射机的下行链路子帧以频分复用的方式传输,所述各发射机包括至少一个不 存在次级通信路径的第一发射机以及存在次级通信路径的第二发射机;
控制将所述主通信路径用于传输各第一发射机的上行链路子帧,所述各第 一发射机的上行链路子帧以频分复用的方式传输,所述第一发射机的上下行链 路子帧以时分复用的方式传输; 控制将所述次级通信路径用于传输所述第二发射机的上行链路子帧,所述 第二发射机的上行链路子帧以空分复用的方式传输,且所述第二发射机的上行 链路子帧与下行链路子帧的格式不同。
结合第二方面的第六种可能的实现方式,或者第二方面的第七种可能的实 现方式, 或者第二方面的第八种可能的实现方式, 或者第二方面的第九种可能 的实现方式, 或者第二方面的第十种可能的实现方式,在第十一种可能的实现 方式中, 还包括:
按照预设的插入间隔将第三 SRS插入至所述上下行链路子帧中; 所述将第三 SRS插入至所述上下行链路子帧中包括:
将第三 SRS直接插入至上行链路子帧或将所述第三 SRS包裹在特殊子帧 以插入至所述上行链路子帧中;
将所述第三 SRS 包裹在特殊子帧以插入至所述下行链路子帧或所述下行 链路子帧与所述上行链路子帧的切换处。
第三方面, 本发明实施例还提供了一种计算机存储介质, 所述计算机存储 介质存储有程序,该程序执行时包括执行上述第二方面的通信方法的部分或全 部的步骤。
第四方面, 本发明实施例还提供了一种通信设备, 包括上述第一方面的通 信装置。
实施本发明实施例, 具有如下有益效果:
本发明实施例在可根据接收机接收到的 SRS信号确定出当前发射机与目 标发射机之间进行通信的主通信路径,并通过为釆用该主通信路径进行通信的 每一个发射机确定次级通信路径,从而基于该主通信路径及次级通信路径与各 发射机进行通信, 有效提升了系统传输容量。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例的一种通信装置的结构示意图;
图 2是本发明实施例的另一种通信装置的结构示意图;
图 3是本发明实施例的一种通信方法的交互示意图;
图 4是本发明实施例的一种确定次级通信路径的方法的流程示意图; 图 5是本发明实施例的另一种确定次级通信路径的方法的流程示意图; 图 6是本发明实施例的其中一种通信场景的示意图;
图 7是图 6的场景中的资源分配示意图;
图 8是图 6的场景中对应的帧格式的示意图;
图 9是本发明实施例的另一种通信场景的示意图;
图 10是图 9的场景中的资源分配示意图;
图 11是图 9的场景中对应的帧格式的示意图;
图 12是本发明实施例的又一种通信场景的示意图;
图 13是图 12的场景中的其中一种资源分配示意图;
图 14是图 12的场景中的其中一种帧格式的示意图;
图 15是图 12的场景中的另一种资源分配示意图;
图 16是图 12的场景中的另一种帧格式的示意图;
图 17是本发明实施例的再一种通信场景的示意图;
图 18是图 17的场景中的资源分配示意图;
图 19是图 17的场景中对应的帧格式的示意图;
图 20是本发明实施例的再一种通信场景的示意图;
图 21是图 20的场景中的其中一种资源分配示意图;
图 22是图 20的场景中的其中一种帧格式的示意图;
图 23是图 20的场景中的另一种资源分配示意图;
图 24是图 20的场景中的另一种帧格式的示意图;
图 25是本发明实施例的一种通信设备的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例中的接收机可以是指基站(英文全称: Base Station, 简称: BS )或者移动台 (英文全称: Mobile Station, 简称: MS ), 发射机也可以是 MS或者 BS, 本发明实施例中的通信包括但不限于 BS与 BS, BS与 MS, MS 与 MS之间的通信, 所述 MS包括用户设备(英文全称: User Equipment, 简 称: UE )。
请参见图 1, 是本发明实施例的一种通信装置的结构示意图, 本发明实施 例的所述装置可具体应用于基站等可作为接收机的通信设备中, 具体的, 所述 装置可包括第一确定模块 10、 第二确定模块 20以及通信模块 30。 其中, 所述第一确定模块 10, 用于当接收到第一侦听参考信号 SRS时, 根据所 述第一 SRS确定与目标发射机之间的主通信路径, 所述目标发射机为发送所 述第一 SRS的发射机。
具体实施例中, 发射机如 UE可按照宽波束接入, 以保证正常通信, 该宽 波束接入的过程与传统无线蜂窝通信接入过程相同, 在此不再赘述。 具体的, 第一确定模块 10可在接收到目标发射机比如新接入的 UE以宽波束全频段发 出的侦听参考信号 (英文全称: Sounding Reference Signal, 简称: SRS ), 即 所述第一 SRS时, 触发确定当前接收机即 BS与该 UE之间的主通信路径。
所述主通信路径可以是指按照传统无线蜂窝通信接入时使用的通信路径, 即信道质量最优的通信路径。 一般而言, 所述主通信路径为直视(英文全称: Line of Sight, 简称: LoS )信道, 在 LoS信道不存在, 或者某些极其特殊情况 下 LoS信道的质量低于非直视(英文全称: non-Line of Sight, 简称: NLoS ) 信道时, 主通信路径为 NLoS信道。 可选地,本发明实施例的所述方法可基于毫米波频段作为通信频段加以实 现。 毫米波是指 30GHz至 300GHz的高频频段, 利用毫米波进行通信, 有较 强的方向指向性以及更为集中的窄波束, 能够获取更高的天线增益。 同时由于 该毫米波波束能量集中的特点,使得对一次反射径或者一次衍射径下的能量损 耗较小, 因此能够用于通信。
所述第二确定模块 20, 用于获取釆用所述第一确定模块 10确定出的主通 信路径进行通信的发射机的标识,并确定每一个标识所指示的发射机的次级通 信路径。
当第一确定模块 10确定目标 UE对应的主通信路径后, 可通过第二确定 模块 20获取该 UE与当前 BS之间的主通信路径波束内所包含的 UE对应的标 识, 即获取釆用该主通信路径进行通信的 UE的标识, 从而为各 UE确定出次 级通信路径, 即除主通信路径外信道质量最优的通信路径。
具体实施例中, 在目标 UE按照传统无线蜂窝通信接入之后, 与该目标 UE对应的 BS即当前接收机可控制将宽波束分裂为窄波束, 将用户分块, 进 而在各自区域内搜索与该 UE对应的次级通信路径, 以提升用户和系统容量。 具体的, 所述次级通信路径在通常情况下可为 NLoS信道。
所述通信模块 30, 用于根据所述第一确定模块 10确定出的主通信路径及 所述第二确定模块 20确定出的次级通信路径, 与所述发射机通信。
具体实施例中,通信模块 30可根据确定得到的该主通信路径波束内的 UE 对应的主通信路径及次级通信路径与该主通信路径波束内 UE的进行通信。
实施本发明实施例在可根据接收机接收到的 SRS信号确定出当前发射机 与目标发射机之间进行通信的主通信路径,并通过为釆用该主通信路径进行通 信的每一个发射机确定次级通信路径,从而基于该主通信路径及次级通信路径 与各发射机进行通信, 有效提升了系统传输容量。
请参见图 2, 是本发明实施例的另一种通信装置的结构示意图, 本发明实 施例的所述装置包括上述通信装置的第一确定模块 10、 第二确定模块 20以及 通信模块 30, 进一步的, 在本发明实施例中, 所述第一确定模块 10可具体包 括:
方向确定单元 101, 用于若接收到第一 SRS, 根据预设的判决规则确定出 来波最优方向。
其中,该第一 SRS是由目标发射机如新接入的 UE通过宽波束全频段发送 的。
若方向确定单元 101接收到该目标 UE以宽波束全频段发送的 SRS信号, 即该第一 SRS, 则可根据预设的判决规则从当前接收到 SRS信号的方向中确 定出来波最优方向,并向该新接入的 UE反馈所述来波最优方向的相关位置信 息。该预设的判断规则可以是根据一定的算法和准则形成的, 比如方向确定单 元 101可根据各个方向的 SRS信号, 获取得到与该各个方向对应的信号与干 扰加噪声比 (英文全称: Signal to Interference plus Noise Ratio, 简称: SINR ) 值, 并选择其中的最大 SINR值对应的方向作为来波最优方向。
波束收窄单元 102, 用于沿着所述方向确定单元 101确定的来波最优方向 对所述目标发射机使用的宽波束进行收窄,将收窄后的波束所在的通信路径确 定为主通信路径。
方向确定单元 101在确定来波最优方向之后,波束收窄单元 102可沿着该 来波最优方向对该 UE使用的宽波束进行收窄,比如通过调整预编码 precoding 模块、 波束成形 beamforming模块等相关波束控制模块, 控制沿着该来波最优 方向收窄波束。 进一步的, 该发出 SRS信号的 UE即目标 UE在接收到 BS反 馈的来波最优方向相关信息后, 也可控制调整预编码 precoding模块、 波束成 形 beamforming模块等相关波束配置模块, 以使沿着该来波最优方向收窄波 束, 得到当前 BS与该目标 UE之间的主通信路径。
进一步的, 在本发明实施例中, 所述第二确定模块 20可包括:
第一路径获取单元 201, 用于获取釆用所述主通信路径进行通信的发射机 的标识, 并根据所述标识中目标标识对应的目标发射机所发送的第二 SRS,确 定所述目标发射机的次级通信路径, 所述目标标识为所述目标发射机的标识; 第二路径获取单元 202, 用于确定所述标识中其他标识所指示的发射机的 次级通信路径。
其中, 该第二 SRS为发射机以窄波束全频段发送的 SRS。
在确定得到当前 BS与该目标 UE之间的主通信路径之后, 可通过第一路 径获取单元 201获取该目标 UE的次级通信路径,并通过第二路径获取单元 202 提取共享该主通信路径的其他 UE对应的次级通信路径,从而确定出釆用该主 通信路径进行通信的所有 UE即该主通信路径波束内的所有 UE对应的次级通 信路径。 其中, 共享该主通信路径的其他 UE为该主通信路径波束内已存在的 UE, 该已存在的 UE与当前 BS之间的次级通信路径可记录保存, 进一步的, 第二路径获取单元 202确定该已存在的 UE的次级通信路径仅需将记录保存的 次级通信路径提取出来即可。
进一步可选地, 所述第一路径获取单元 201可包括: 段发送的第二 SRS,根据所述第二 SRS计算得出所述目标方向上的信道质量, 并判断所述信道质量是否高于上一次确定的次级通信路径对应的信道质量。
若判断子单元 2011接收到目标 UE以窄波束全频段发送的 SRS, 即该第 二 SRS, 则可根据该 SRS计算该当前时刻方向上的信道质量, 并在计算得到 当前时刻方向上的信道质量之后,将该当前时刻方向上的信道质量与上一时刻 计算得到的信道质量进行对比, 检测是否高于该上一时刻计算得到的信道质 量。
更新子单元 2012, 用于若所述判断子单元 2011判断结果为所述信道质量 高于上一次确定的次级通信路径对应的信道质量,则将所述目标方向对应的通 信路径更新为次级通信路径。
其中, 该更新子单元 2012可具体用于:
若所述判断子单元 2011判断结果为所述信道质量高于上一次确定的次级 通信路径对应的信道质量,判断所述目标方向对应的通信路径是否为所述主通 信路径; 若判断结果是不为所述主通信路径, 则检测所述目标方向对应的通信 路径的信道质量是否高于预设的通信服务质量 QoS阔值, 并在高于所述 QoS 阔值时, 将所述目标方向对应的通信路径更新为次级通信路径。
若判断子单元 2011检测到目标方向即当前时刻方向上的信道质量高于该 上一时刻计算得到的信道质量,则表示可将当前时刻方向对应的通信路径更新 为当前 BS与目标 UE之间的次级通信路径。
进一步的, 在将当前时刻方向对应的通信路径更新为当前 BS与目标 UE 之间的次级通信路径之前,若检测到当前时刻方向上的信道质量高于该上一时 刻计算得到的信道质量,还可进一步检测当前时刻方向对应的通信路径是否为 当前 BS与目标 UE之间的主通信路径。 若不为所述主通信路径, 将该目标方 向对应的通信路径更新为次级通信路径。
进一步的, 若检测到当前时刻方向对应的通信路径不为当前 BS 与目标 UE之间的主通信路径, 还可检测该时刻方向对应的通信路径的信道质量是否 高于预设的服务质量(英文全称: Quality of Service, 简称: QoS )阔值。 若检 测到该时刻方向对应的通信路径的信道质量高于该 QoS 阔值, 则可将所述当 前时刻方向对应的通信路径更新为次级通信路径。 该 QoS 阔值可以根据具体 的信道质量要求进行设置, 本发明实施例不作限制。
具体的, 目标 UE按照预设的时间间隔更改波束指向, 将该更改波束指向 后对应的方向作为目标方向, 向该目标方向上以窄波束全频段发送 SRS。判断 子单元 2011接收目标 UE在该目标方向上发送的 SRS, 计算并确定该方向上 的信道质量,直至第一路径获取单元 201完成对该目标 UE在各个方向上发出 的 SRS的检测,将确定出次级通信路径作为当前 BS与该目标 UE之间的次级 通信路径。
进一步可选地, 确定目标 UE对应的次级通信路径还可以是通过在 BS接 收到该 UE朝各个方向上以窄波束全频段发送的 SRS之后,通过比较计算得到 的各个方向上的信道质量,从该各个信道质量中直接选择出除主通信路径所在 方向的信道质量外、 信道质量最优(满足预设的 QoS 阔值) 的方向所对应的 通信路径作为该目标 UE对应的次级通信路径。
作为一种可选的实施方式,在本发明实施例中, 所述通信模块 30可包括: 第一传输单元 301, 用于若釆用所述主通信路径进行通信的发射机的标识 为至少两个,且每一个标识所指示的发射机均存在次级通信路径, 则控制将所 述主通信路径用于传输所述标识指示的各发射机上行链路子帧,所述各发射机 的上行链路子帧以频分复用的方式传输;
第二传输单元 302, 用于控制将所述次级通信路径用于传输对应发射机下 行链路子帧, 所述各发射机的下行链路子帧以空分复用的方式传输, 所述各个 发射机的下行链路子帧独占全频段带宽资源,且所述各发射机的上行链路子帧 与下行链路子帧的格式不同。
可选地, 所述通信模块 30还可包括:
第三传输单元 303, 用于若釆用所述主通信路径进行通信的发射机的标识 为至少两个,且每一个标识所指示的发射机均存在次级通信路径, 则控制将所 述主通信路径用于传输所述标识所指示的各发射机下行链路子帧,所述各发射 机的下行链路子帧以频分复用的方式传输;
第四传输单元 304, 用于控制将所述次级通信路径用于传输对应发射机上 行链路子帧, 所述各发射机的上行链路子帧以空分复用的方式传输, 所述各发 射机的上行链路子帧独占全频段带宽资源,且所述各发射机的上行链路子帧与 下行链路子帧的格式不同。
当第二确定模块 20确定得到釆用所述主通信路径进行通信的发射机如 UE为至少两个, 且每一个 UE均存在次级通信路径时, 可通过通信模块 30分 别为上行链路子帧及下行链路子帧选择传输的通信路径,且通过相应的次级通 信路径传输的各 UE链路子帧以空分区分。
作为一种可选的实施方式, 所述通信模块 30可包括:
第五传输单元 305, 用于若釆用所述主通信路径进行通信的发射机的标识 为一个,且所述标识所指示的发射机存在对应的次级通信路径, 则控制将所述 主通信路径用于传输所述发射机的上行链路子帧,控制将所述次级通信路径用 于传输所述发射机的下行链路子帧; 或
第六传输单元 306, 用于控制将所述主通信路径用于传输所述发射机的下 行链路子帧, 控制将所述次级通信路径用于传输所述发射机的上行链路子帧; 其中, 所述发射机的上行链路子帧与下行链路子帧以空分复用的方式传 输, 所述上行链路子帧与下行链路子帧的格式不同, 所述发射机占用全频段带 宽资源。
当第二确定模块 20确定得到釆用所述主通信路径进行通信的 UE仅有一 个, 且该 UE存在次级通信路径时, 可通过通信模块 30分别为该 UE对应的 上行链路子帧及下行链路子帧选择传输的通信路径, 比如可将第一确定模块 10确定出的主通信路径用于传输该 UE对应的上行链路子帧,将该第二确定模 块 20确定出的次级通信路径用于传输该 UE对应的下行链路子帧, 且该上下 行链路子帧以空分区分。
作为一种可选的实施方式, 所述通信模块 30可包括:
第七传输单元 307, 用于若釆用所述主通信路径进行通信的发射机的标识 为至少两个,存在的次级通信路径数目大于零,且存在的次级通信路径数目小 于所述标识数目,则控制将所述主通信路径用于传输所述标识所指示的各发射 机上行链路子帧, 所述各发射机的上行链路子帧以频分复用的方式传输, 所述 各发射机包括至少一个不存在次级通信路径的第一发射机以及存在次级通信 路径的第二发射机;
第八传输单元 308, 用于控制将所述主通信路径用于传输各第一发射机的 下行链路子帧, 所述各第一发射机的下行链路子帧以频分复用的方式传输, 所 述第一发射机的上下行链路子帧以时分复用的方式传输;
第九传输单元 309, 用于控制将所述次级通信路径用于传输所述第二发射 机的下行链路子帧, 所述第二发射机的下行链路子帧以空分复用的方式传输, 可选地, 所述通信模块 30还可包括:
第十传输单元 310, 用于若釆用所述主通信路径进行通信的发射机的标识 为至少两个,存在的次级通信路径数目大于零,且存在的次级通信路径数目小 于所述标识数目,则控制将所述主通信路径用于传输所述标识所指示的各发射 机下行链路子帧, 所述各发射机的下行链路子帧以频分复用的方式传输, 所述 各发射机包括至少一个不存在次级通信路径的第一发射机以及存在次级通信 路径的第二发射机;
第十一传输单元 311, 用于控制将所述主通信路径用于传输各第一发射机 的上行链路子帧, 所述各第一发射机的上行链路子帧以频分复用的方式传输, 所述第一发射机的上下行链路子帧以时分复用的方式传输;
第十二传输单元 312, 用于控制将所述次级通信路径用于传输所述第二发 射机的上行链路子帧, 所述第二发射机的上行链路子帧以空分复用的方式传 当第二确定模块 20确定得到釆用所述主通信路径进行通信的 UE的为至 少两个, 存在的次级通信路径的 UE数目大于零但小于总 UE数目, 则可通过 通信模块 30分别为各 UE对应的上行链路子帧及下行链路子帧选择传输的通 信路径。 其中, 通过相应的次级通信路径传输的各 UE链路子帧以空分区分, 通过主通信路径传输的各 UE链路子帧以时分区分。
进一步的, 在本发明实施例中, 所述装置还可以包括:
插入模块 40, 用于按照预设的插入间隔将第三 SRS插入至所述上下行链 路子帧中;
其中, 所述插入模块具体用于:
将第三 SRS直接插入至上行链路子帧或将所述第三 SRS包裹在特殊子帧 以插入至所述上行链路子帧中; 并将所述第三 SRS 包裹在特殊子帧以插入至 其中, 该第三 SRS基于当前 BS (即接收机 )根据相应 UE所反馈的 SRS 信息得到。
具体实施例中,可根据该主通信路径波束内的 UE对应的次级通信路径决 策出的帧格式, 即确定出传输上、 下行链路子帧的通信路径, 来进行 BS与该 主通信路径波束内的 UE之间的通信。
实施本发明实施例可在当前 BS根据接收到的 SRS确定出与发送 SRS的 UE之间进行通信的主通信路径之后, 进一步确定出与该 UE之间的次级通信 路径, 并提取出该主通信路径波束内已存在的其他 UE的次级通信路径, 并基 于该主通信路径及次级通信路径所确定的通信场景与该主通信路径波束内的 各 UE进行通信, 可有效提升系统数据传输的吞吐量及传输效率。
请参见图 3, 是本发明实施例的一种通信方法的交互示意图, 本发明实施 例以 BS (即接收机) 与 UE (即发射机)之间的通信为例进行说明。 具体的, 所述方法包括:
S301: 目标 UE以宽波束全频段发送 SRS。
S302: BS根据 SRS确定出主通信路径。
具体实施例中, UE可按照宽波束接入, 以保证正常通信, 该宽波束接入 的过程与传统无线蜂窝通信接入过程相同。 具体的, 当前 BS可在接收到目标 UE比如新接入的 UE以宽波束全频段发出的 SRS时, 触发确定当前 BS与该 UE之间的主通信路径。
作为一种可选的实施方式, 本发明实施例在确定 BS与目标 UE之间的主 通信路径时, 可通过接收到的 SRS确定出来波最优方向, 从而确定出该主通 信路径。其中,该 SRS是由目标 UE如新接入的 UE通过宽波束全频段发送的。
具体的, 若当前 BS接收到该目标 UE以宽波束全频段发送的 SRS信号, 则可根据预设的判决规则从当前接收到 SRS信号的方向中确定出来波最优方 向, 并向该新接入的 UE反馈所述来波最优方向的相关位置信息。 该预设的判 断规则可以是根据一定的算法和准则形成的, 比如 BS可根据各个方向的 SRS 信号, 获取得到与该各个方向对应的 SINR值, 并选择其中的最大 SINR值对 应的方向作为来波最 ύ方向。
在确定来波最优方向之后, 该 BS及 UE可沿着该来波最优方向对该 UE 使用的宽波束进行收窄, 比如通过调整预编码 precoding模块、 波束成形 beamforming模块等相关波束控制模块, 控制沿着该来波最优方向收窄波束, 并将收窄后的波束所在的通信路径确定为当前 BS与该目标 UE之间的主通信 路径。 S303: 目标 UE调度另一子阵, 以窄波束全频段发送 SRS。
S304: BS根据 SRS确定出目标 UE可用的次级通信路径。
当确定目标 UE的主通信路径后, 可通过获取釆用该 UE与当前 BS之间 的主通信路径进行通信的 UE的标识, 即该主通信路径波束内所包含的各 UE 对应的标识, 确定该每一个标识所指示的 UE的次级通信路径, 即除主通信路 径外信道质量最优的通信路径。
具体实施例中, 在目标 UE按照传统无线蜂窝通信接入之后, 与该目标 UE对应的 BS即当前发射机可控制将宽波束分裂为窄波束, 将用户分块, 进 而在各自区域内搜索与该 UE对应的次级通信路径, 以提升用户和系统容量。 具体的, 所述次级通信路径在通常情况下可为 NLoS信道。
具体的, 该主通信路径波束内包含的 UE可分为新接入的 UE即发送 SRS 的目标 UE, 以及该主通信路径波束内原来已经存在并确定过次级通信路径的 UE。 其中, 可选地, 该目标 UE对应的次级通信路径可通过检测该目标 UE以 窄波束全频段发送的 SRS进行确定。
S305: 确定该主通信路径波束内其他 UE对应的次级通信路径。
进一步可选地,在确定得到当前 BS与该目标 UE之间的主通信路径之后, 还可提取共享该主通信路径的其他 UE所对应的次级通信路径,从而确定出釆 用该主通信路径进行通信的所有 UE即该主通信路径波束内的所有 UE对应的 次级通信路径。 其中, 共享该主通信路径的其他 UE为该主通信路径波束内原 已存在的 UE, 该已存在的 UE与当前 BS之间的次级通信路径可记录保存, 进一步的,确定该已存在的 UE的次级通信路径仅需将记录保存的次级通信路 径提取出来即可。
S306: 根据该主通信路径以及各 UE对应的次级通信路径, 与各 UE进行 通信。
具体实施例中,可根据确定得到的该主通信路径波束内的 UE对应的次级 通信路径来确定该主通信路径波束内 UE对应的上下行链路子帧的帧格式, 即 通信路径波束内的 UE之间的通信。
实施本发明实施例在可根据 SRS信号确定出当前 BS与发送该 SRS的目 标 UE之间进行通信的主通信路径, 并通过为釆用该主通信路径进行通信的每 一个 UE确定次级通信路径, 从而基于该主通信路径及次级通信路径与各 UE 进行通信, 可有效提升系统数据传输的吞吐量及传输效率。
请参见图 4, 是本发明实施例的一种确定次级通信路径的方法的流程示意 图, 本发明实施例的所述方法可具体应用于 BS、 MS等可作为接收机的通信 设备中, 具体的, 所述方法包括: 信号 SRS。
S402: 根据所述 SRS计算得出所述目标方向上的信道质量。
若当前 BS接收到发送 SRS的 UE即目标 UE (目标发射机) 以窄波束全 频段发送的 SRS, 则根据该 SRS计算该当前时刻方向上的信道质量。
S403:判断所述信道质量是否高于上一次确定的次级通信路径对应的信道 质量。
当前 BS在计算得到当前时刻方向上的信道质量之后, 将该当前时刻方向 上的信道质量与上一时刻计算得到的信道质量进行对比,并检测是否高于该上 一时刻计算得到的信道质量。
S404: 若高于, 则将所述目标方向对应的通信路径更新为次级通信路径。 若目标方向即当前时刻方向上的信道质量高于该上一时刻计算得到的信 道质量, 则表示可将当前时刻方向对应的通信路径更新为当前 BS与目标 UE 之间的次级通信路径。
进一步的, 在将当前时刻方向对应的通信路径更新为当前 BS与目标 UE 之间的次级通信路径之前,若检测到当前时刻方向上的信道质量高于该上一时 刻计算得到的信道质量,还可进一步检测当前时刻方向对应的通信路径是否为 当前 BS与目标 UE之间的主通信路径。 若不为所述主通信路径, 将该目标方 向对应的通信路径更新为次级通信路径。 进一步的, 若检测到当前时刻方向对应的通信路径不为当前 BS 与目标 UE之间的主通信路径, 还可检测该时刻方向对应的通信路径的信道质量是否 高于预设的 QoS 阔值。 若检测到该时刻方向对应的通信路径的信道质量高于 该 QoS阔值, 则可将所述当前时刻方向对应的通信路径更新为次级通信路径。 该 QoS阔值可以根据具体的信道质量要求进行设置, 本发明实施例不作限制。
S405:接收所述目标发射机在更改波束指向后对应的方向上以窄波束全频 段发送的 SRS, 并将所述方向上发送的 SRS作为所述目标发射机在目标方向 发送的 SRS。 的检测时, 确定出所述目标发射机的次级通信路径。
目标 UE按照预设的时间间隔更改波束指向,将该更改波束指向后对应的 方向作为目标方向, 向该目标方向上以窄波束全频段发送 SRS。 若当前 BS接 收目标 UE在该目标方向上发送的 SRS, 重复 S402至 S405, 直至当前 BS完 成对该目标 UE在各个方向上以窄波束全频段发出的 SRS的检测,并将确定出 次级通信路径作为当前 BS与该目标 UE之间的次级通信路径。
实施本发明实施例可在当前 BS接收到目标 UE发送的 SRS之后,通过比 较当前时刻方向上的信道质量与上一时刻方向上的信道质量,来确定是否更新 该目标 UE对应的次级通信路径, 并在当前 BS完成对该目标 UE按照预设的 时间间隔在各个方向上以窄波束全频段发出的 SRS的检测后, 将确定出的次 级通信路径作为当前 BS与该目标 UE之间的次级通信路径。
请参见图 5, 是本发明实施例的另一种确定次级通信路径的方法的流程示 意图, 具体的, 所述方法包括: 信号 SRS。
S502: 根据所述 SRS计算所述各个方向上的信道质量。
目标 UE以窄波束全频段朝各个方向发送 SRS, 当前 BS接收该目标 UE 发送的 SRS, 并根据该接收到的 SRS计算各个方向上对应的通信路径的信道 质量。 具体的, 所述朝各个方向发送 SRS可以是通过按照预设的时间间隔更 改波束指向、 并向该更改波束指向后对应的方向以窄波束全频段发送 SRS来 实现的。
S503:根据计算得到的所述各个方向上的信道质量确定出所述目标发射机 的次级通信路径。
当前 BS计算得到各个方向上对应通信路径的信道质量之后, 可从该各个 信道质量中选择出除主通信路径所在方向的信道质量外,信道质量最优的方向 所对应的通信路径作为目标 UE对应的次级通信路径。
进一步的,在将该除主通信路径所在方向的信道质量外,信道质量最优的 方向所对应的通信路径确定为目标 UE对应的次级通信路径之前,还可检测该 通信路径对应的信道质量是否高于预设的 QoS阔值, 若高于该 QoS阔值, 则 可将该通信路径确定为所述目标 UE对应的次级通信路径。
实施本发明实施例可在 BS接收到 UE朝各个方向上以窄波束全频段发送 的 SRS之后, 通过比较计算得出的各个方向上的信道质量, 从该各个信道质 量中直接选择出除主通信路径所在方向的信道质量外,信道质量最优的方向所 对应的通信路径作为目标 UE对应的次级通信路径。
进一步的,根据该主通信路径及次级通信路径与发射机进行通信可包括以 下五种通信场景。
场景一: 若釆用所述主通信路径进行通信的发射机的标识为至少两个,且 每一个标识所指示的发射机均不存在次级通信路径,则按照预设的配置比例对 所述发射机对应的上下行链路子帧的数目进行配置,所述发射机的上下行链路 子帧以时分复用的方式传输;
其中, 所述上下行链路子帧的帧格式相同, 所述上下行链路子帧中包含了 所述发射机对应的信息, 所述发射机以频分复用的方式分配全频段带宽资源。
具体的, 请参见图 6, 是本发明实施例的其中一种通信场景的示意图, 该 场景中釆用所述主通信路径进行通信的发射机可以有多个,即该主通信路径对 应的波束内包含多个发射机,图 6中具体举例为该主通信路径对应的波束内有 三个 UE (即三个发射机), 分别为 UE1、 UE2以及 UE3, 且每一个 UE均不 存在次级通信路径。
进一步的, 如图 7所示, 是图 6的场景中的资源分配示意图, 具体的, 该 UE1、 UE2以及 UE3之间用频分区分, 上下行链路用时分区分。
进一步的, 各 UE对应的上下行链路的帧格式相同, 如图 8所示, 是图 6 的场景中对应的帧格式的示意图。 其中, 该上下行链路子帧数目可按照预设的 配置比例进行配置 (图 8中按照 4:4进行配置), 且该配置比例可根据上下行 业务的吞吐量进行调整。 具体的, 可按照预设的插入间隔将 SRS插入至所述 上下行链路子帧中, 比如可在每两个子帧插入一个 SRS信号, 图 8中用阴影 块表示, 该插入的 SRS 可以是当前 BS基于该主通信路径波束内 UE反馈的 SRS信息得到。在下行子帧之间、下行和上行子帧之间插入 SRS时,需将 SRS 信号包裹在特殊子帧 S中来进行插入; 在上行子帧之间插入 SRS时, 只需将 SRS放在最后一个子帧的数据块之后 (或者也可将 SRS包裹在特殊子帧 S中 来进行插入)。 如图 8所示, 每个上行子帧 U和下行子帧 D中根据频率分配可 顺次包含 UE1、 UE2 以及 UE3 的相关信息, 分别对应为 Ul、 U2、 U3 以及 Dl、 D2、 D3。 进一步的, 该 SRS信号的插入间隔可根据移动速度的要求进行 调整。
上述场景一中, 尽管一根波束内有多个 UE (场景一为三个 UE ), 且各 UE没有对应的次级通信路径, 但相对于釆用广播形式的传统无线蜂窝通信系 统, 其波束有一定的收窄, 即每根波束所覆盖的 UE个数相对较少。 因此, 每 个 UE在频分复用频段时能够分得更宽的带宽。 例如一个 300MHz宽的频谱, 则该三个 UE可均分带宽, 每个 UE 占 100MHz带宽, 上行和下行各可支持 100MHz的带宽。 若是广播形式的传统蜂窝通信系统, 每个波束内可能有成百 上千个 UE, 则每个 UE的带宽仅有不到 1ΜΗζ。 因此, UE和系统容量有所提 升。
场景二: 若釆用所述主通信路径进行通信的发射机的标识为一个,且所述 标识所指示的发射机不存在次级通信路径,则按照预设的配置比例对所述发射 机对应的上下行链路子帧的数目进行配置,所述发射机的上下行链路子帧以时 分复用的方式传输;
其中, 所述上下行链路子帧的帧格式相同, 所述上下行链路子帧中包含了 所述发射机的信息, 所述发射机占用全频段带宽资源。
具体的, 请参见图 9, 是本发明实施例的另一种通信场景的示意图, 如图 9所示, 该场景中釆用所述主通信路径进行通信的发射机仅有一个, 即该主通 信路径对应的波束内仅包含一个 UE, 即 UE1,且该 UE不存在次级通信路径, 该场景二可以看作场景一的特例。
进一步的, 如图 10所示, 是图 9的场景中的资源分配示意图, 该主通信 路径波束内 UE1独自占有全频段, 上下行链路用时分区分。
进一步的, 该 UE1对应的上下行链路的帧格式相同, 如图 11所示, 是图 9的场景中对应的帧格式的示意图。 其中, 每个上行 U1和下行子帧 D1中只 包含该 UE1的信息,该上下行链路子帧数目可按照预设的配置比例如 4:4进行 配置, 该配置比例可根据上下行业务的吞吐量进行调整。 具体的, 本场景中 SRS信号的插入方式同上述场景 SRS信号的插入方式, 在此不再赘述。 进一 步的, 该 SRS信号的插入间隔可根据移动速度的要求进行调整。
上述的场景二中, 尽管该 UE没有对应的次级通信路径, 但该波束内只有 一个 UE,该 UE独享带宽资源。例如一个 300MHz宽的频谱,该 UE就占 300MHz 带宽, 上行和下行各可支持 300MHz的带宽。 UE和系统容量显著提升。
场景三: 若釆用所述主通信路径进行通信的发射机的标识为至少两个,且 每一个标识所指示的发射机均存在次级通信路径。
作为一种可选的实施方式,可控制将所述主通信路径用于传输所述标识指 示的各发射机下行链路子帧,所述各发射机的下行链路子帧以频分复用的方式 传输;
控制将所述次级通信路径用于传输对应发射机上行链路子帧,所述各发射 机的上行链路子帧以空分复用的方式传输,所述各个发射机的上行链路子帧独 同。
具体的, 请参见图 12, 是本发明实施例的又一种通信场景的示意图, 如 图 12所示, 该场景中釆用所述主通信路径进行通信的发射机有多个, 即该主 通信路径对应的波束内包含多个发射机, 图 12中具体举例为该主通信路径对 应的波束内有两个 UE, 分别为 UE1及 UE2, 且该两个 UE均存在可用的次级 通信路径。
进一步的, 如图 13所示, 是图 12的场景中的其中一种资源分配示意图, 具体的, 该主通信路径波束内的 UE1 及 UE2 的上行链路用空分区分, 两个 UE的下行链路用频分区分。
具体的, 可控制主通信路径仅用于下行链路子帧的传输, 而不用于传输上 行链路子帧; 相应地, 该次级通信路径则仅用于上行链路传输, 而不用于传输 下行链路子帧。 其中, 每个 UE的上下行链路的帧格式不相同, 各自独立, 如 图 14所示,是图 12的场景中的其中一种帧格式的示意图。该场景中的帧格式 不存在上下行子帧个数的配比问题。 具体的, 每个上行子帧 U中只包含 UE1 或 UE2的信息, 分别对应为 U1或 U2; 每个下行子帧 D中则可顺次包含该两 个 UE的信息, 即 D1和 D2。 本场景中 SRS信号的插入方式同上述场景 SRS 信号的插入方式, 在此不再赘述。 进一步的, 该 SRS信号的插入间隔可根据 移动速度的要求进行调整。
上述的场景三中, 一根波束内有多个 UE, 且每个 UE都存在可用次级通 信路径, 所有 UE共享下行链路的频谱资源, 每个 UE独享上行带宽资源。 例 如一个 300MHz 宽的频语, 该波束内有两个 UE, 每个 UE 的下行链路占用 150MHz带宽, 每个 UE的上行链路占用 300MHz的带宽, UE容量和系统吞 吐量都有较大提升。
作为一种可选的实施方式,还可控制将所述主通信路径用于传输所述标识 指示的各发射机上行链路子帧,所述各发射机的上行链路子帧以频分复用的方 式传输;
控制将所述次级通信路径用于传输对应发射机下行链路子帧,所述各发射 机的下行链路子帧以空分复用的方式传输,所述各发射机的下行链路子帧独占 同。
具体的, 如图 15所示, 是图 12的场景中的另一种资源分配示意图, 该主 通信路径波束内的 UE1及 UE2的下行链路用空分区分, 两个 UE的上行链路 用频分区分。
具体的, 可控制主通信路径仅用于上行链路子帧的传输, 次级通信路径仅 用于下行链路传输, 每个 UE的上下行链路的帧格式不相同, 各自独立, 如图 16所示, 是图 12的场景中的另一种帧格式的示意图。 其中, 每个下行子帧 D 中只包含 UE1或 UE2的信息,分别对应为 D1或 D2;每个上行子帧 U中则可 顺次包含该两个 UE的信息, 即 U 1和 U2。
上述的场景三中, 一根波束内有多个 UE, 且每个 UE都存在可用次级通 信路径, 所有 UE共享上行链路的频谱资源, 每个 UE独享下行带宽资源。 例 如一个 300MHz 宽的频语, 该波束内有两个 UE, 每个 UE 的上行链路占用 150MHz带宽, 每个 UE的下行链路占用 300MHz的带宽, UE容量和系统吞 吐量都有较大提升。
场景四: 若釆用所述主通信路径进行通信的发射机的标识为一个,且所述 标识所指示的发射机存在对应的次级通信路径,则所述发射机的上行链路子帧 与下行链路子帧以空分复用的方式传输,所述上行链路子帧与下行链路子帧的 格式不同, 所述发射机占用全频段带宽资源。
具体的, 请参见图 17, 是本发明实施例的再一种通信场景的示意图, 如 图 17所示, 该场景中共享所述主通信路径的发射机仅有一个, 即该主通信路 径对应的波束内仅包含一个 UE, 即 UE1,且该 UE存在可用的次级通信路径。
进一步的, 如图 18所示, 是图 17的场景中的资源分配示意图, 具体的, 该主通信路径波束内的该 UE可独自占有全频段, 上下行链路用空分区分。
具体的, 可控制主通信路径仅用于下行链路子帧的传输, 次级通信路径仅 用于上行链路传输,反之亦可。该上下行链路子帧的帧格式不相同,各自独立, 如图 19所示,是图 17的场景中对应的帧格式的示意图。 帧格式中不存在上下 行子帧数目的配比问题。 具体的, 每个上行子帧 U1和下行子帧 D1中仅包含 该 UE的信息。 本场景中 SRS信号的插入方式同上述场景所述 SRS信号的插 入方式, 在此不再赘述。 进一步的, 该 SRS信号的插入间隔可根据移动速度 的要求进行调整。
上述的场景四中,一根波束内只有一个 UE,且存在可用的次级通信路径, 该 UE独享带宽资源。例如一个 300MHz宽的频谱,该 UE就占 300MHz带宽, 上行和下行各可支持 300MHz的带宽, UE容量显著提升。
场景五: 釆用所述主通信路径进行通信的发射机的标识为至少两个,存在 的次级通信路径数目大于零, 且存在的次级通信路径数目小于所述标识数目。
具体的, 请参见图 20, 是本发明实施例的再一种通信场景的示意图, 如 图 20所示, 该场景中共享所述主通信路径的发射机有多个, 即该主通信路径 对应的波束内包含多个发射机, 图 20中具体举例为该主通信路径对应的波束 内有两个 UE, 即 UE1与 UE2, 其中, 仅有 UE1存在可用的次级通信路径。
作为一种可选的实施方式,可控制将所述主通信路径用于传输各发射机下 行链路子帧, 所述各发射机的下行链路子帧以频分复用的方式传输, 所述各发 射机包括不存在次级通信路径的第一发射机即 UE2 以及存在次级通信路径的 第二发射机即 UE1;
控制将所述主通信路径用于传输所述第一发射机的上行链路子帧,所述第 一发射机的上行链路子帧以频分复用的方式传输,所述第一发射机的上下行链 路子帧以时分复用的方式传输;
控制将所述次级通信路径用于传输所述第二发射机的上行链路子帧,所述 第二发射机的上行链路子帧以空分复用的方式传输,且所述第二发射机的上行 链路子帧与下行链路子帧的格式不同。
具体的, 如图 21所示, 是图 20的场景中的其中一种资源分配示意图, 具 体的, 该主通信路径波束内的 UE1和 UE2的下行链路用频分区分, UE2的上 下行链路用时分区分, UE1的上下行链路用空分区分。 具体的, 可控制主通信路径仅用于下行链路子帧的传输, 次级通信路径仅 用于上行链路子帧传输。 UE1 的上下行链路帧格式不相同, 各自独立, UE2 的上下行链路帧格式相同,如图 22所示,是图 20的场景中的其中一种帧格式 的示意图。 由于 UE1 和 UE2共用下行链路和下行波束的帧格式, 因此, 在 UE2通过时分复用传输上行数据时, 属于 UE1的带宽只能空闲。 上下行子帧 数目可按预设的配置比例如 4:4进行配置, 进一步的, 可根据上下行业务吞吐 量进行配比调整。 UE1的上行链路子帧 U1可使用次级通信路径并以空分复用 的方式进行传输, 因此 UE1的上行链路子帧 U1具有独立的帧格式。 具体的, 通过次级通信路径传输的每个上行子帧 U1中只包含 UE1的信息;通过主通信 路径传输的每个下行子帧 D中则顺次包含了 UE1及 UE2的信息, 即对应为 D1和 D2; 每个上行子帧 U中属于 UE1的频段空闲, 图 22中以 X表示, 属 于 UE2的频段包含 UE2的信息即对应为 U2。 本场景中 SRS信号的插入方式 同上述场景所述 SRS信号的插入方式, 在此不再赘述, 该 SRS信号的插入间 隔可根据移动速度的要求进行调整。且进一步的,还可通过一定的技术控制在 主通信路径中的上行子帧中 UE1的带宽内发送 UE2的上行数据。
上述的场景五中, 一根波束内有多个 UE, 但并不是每个 UE都存在可用 次级通信路径, 所有 UE共享下行链路的频谱资源, 拥有次优径的 UE独享上 行带宽资源。 例如一个 300MHz宽的频语, 该波束内有 UE1及 UE2, 且仅有 UE1有对应的次级通信路径, 则每个 UE的下行链路占用 150MHz带宽, UE2 的上行链路占用 150MHz的带宽, 而 UE1的上行链路占用 300MHz带宽, UE 容量和系统吞吐量都有较大提升。
作为一种可选的实施方式,还可控制将所述主通信路径用于传输各发射机 上行链路子帧, 所述各发射机的上行链路子帧以频分复用的方式传输, 所述各 发射机包括不存在次级通信路径的第一发射机即 UE2以及存在次级通信路径 的第二发射机即 UE1;
控制将所述主通信路径用于传输所述第一发射机的下行链路子帧,所述第 一发射机的下行链路子帧以频分复用的方式传输,所述第一发射机的上下行链 路子帧以时分复用的方式传输;
控制将所述次级通信路径用于传输所述第二发射机的下行链路子帧,所述 第二发射机的下行链路子帧以空分复用的方式传输,且所述第二发射机的上行 链路子帧与下行链路子帧的格式不同。
具体的, 请参见图 23, 是图 20所示场景的另一种资源分配示意图, 该主 通信路径波束内的 UE1和 UE2的上行链路用频分区分, UE2的上下行链路用 时分区分, UE1的上下行链路用空分区分。
具体的, 可控制主通信路径仅用于上行链路子帧的传输, 次级通信路径仅 用于下行链路子帧传输。 UE1 的上下行链路帧格式不相同, 各自独立, UE2 的上下行链路帧格式相同,如图 24所示,是图 20的场景中的另一种帧格式的 示意图。 由于 UE1和 UE2共用上行链路和上行波束的帧格式, 因此, 在 UE2 通过时分复用传输下行数据时, 属于 UE1 的带宽只能空闲。 上下行子帧数目 可按预设的配置比例如 4:4进行配置, 进一步的, 还可根据上下行业务吞吐量 进行配比调整。 UE1的下行链路子帧 U1可使用次级通信路径并以空分复用的 方式进行传输, 因此 UE1的下行链路子帧 D1具有独立的帧格式。 具体的, 通 过次级通信路径传输的每个下行子帧 D1中只包含 UE1的信息;通过主通信路 径传输的每个上行子帧 U中则顺次包含了 UE1及 UE2的信息, 即对应为 U1 和 U2。 每个下行子帧 D中属于 UE1的频段空闲, 即图 24中的 X; 属于 UE2 的频段包含 UE2的信息即对应为 D2。 进一步的, 还可通过一定的技术控制在 主通信路径中的下行子帧中 UE1的带宽内发送 UE2的下行数据。
上述的场景中, 一根波束内有多个 UE, 但并不是每个 UE都存在可用次 级通信路径, 所有 UE共享上行链路的频谱资源, 拥有次优径的 UE独享下行 带宽资源。例如一个 300MHz宽的频语,该波束内有 UE1及 UE2,且仅有 UE1 有对应的次级通信路径, 则每个 UE的上行链路占用 150MHz带宽, UE2的下 行链路占用 150MHz的带宽, 而 UE1的下行链路占用 300MHz带宽, UE容量 和系统吞吐量都有较大提升。
根据具体的通信场景确定帧格式, 即为各 UE确定出用于传输上下行链路 子帧的通信路径 (包括主通信路径及相应的次级通信路径)之后, 即可准备
BS与 UE之间的通信。
实施本发明实施例可在当前 BS根据接收到的 SRS确定出与发送 SRS的 UE之间进行通信的主通信路径之后, 进一步确定出与该 UE之间的次级通信 路径, 并提取出该主通信路径波束内已存在的其他 UE的次级通信路径, 并基 于该主通信路径及次级通信路径所确定的通信场景与该主通信路径波束内的 各 UE进行通信, 可有效提升系统数据传输的吞吐量及传输效率。
请参见图 25, 是本发明实施例的一种通信设备的结构示意图, 本发明实 施例的所述通信设备包括:接收器 300、发射器 400、存储器 200和处理器 100, 所述存储器 200 可以是高速 RAM 存储器, 也可以是非不稳定的存储器 ( non-volatile memory ), 例如至少一个磁盘存储器。 作为一种计算机存储介质 的存储器 200中存储相应的应用程序等。 所述接收器 300、 发射器 400、 存储 器 200以及处理器 100之间可以通过总线进行数据连接,也可以通过其他方式 数据连接。 本实施例中以总线连接进行说明。 具体的, 本发明实施例的所述通 信设备可包括上述的通信装置, 具体可对应于 BS、 MS 等可作为接收机的设 备。
其中, 所述处理器 100执行如下步骤:
当接收到侦听参考信号第一 SRS时, 根据所述第一 SRS确定与目标发射 机之间的主通信路径, 所述目标发射机为发送所述第一 SRS的发射机;
获取釆用所述主通信路径进行通信的发射机的标识,并确定每一个标识所 指示的发射机的次级通信路径;
根据所述主通信路径及所述次级通信路径与所述发射机通信。
可选地, 所述处理器 100在执行所述当接收到第一 SRS时, 根据所述第 一 SRS确定与目标发射机之间的主通信路径, 具体执行如下步骤:
若接收到第一 SRS,根据预设的判决规则确定出来波最优方向, 所述第一 SRS是由目标发射机通过宽波束全频段发送的;
沿着所述来波最优方向对所述目标发射机使用的宽波束进行收窄,将收窄 后的波束所在的通信路径确定为主通信路径。
可选地,所述处理器 100在执行所述获取釆用所述主通信路径进行通信的 发射机的标识, 并确定每一个标识所指示的发射机的次级通信路径, 具体执行 如下步骤:
获取釆用所述主通信路径进行通信的发射机的标识,并根据所述标识中目 标标识对应的目标发射机所发送的第二 SRS,确定所述目标发射机的次级通信 路径, 所述目标标识为所述目标发射机的标识;
确定所述标识中其他标识所指示的发射机的次级通信路径。
可选地,所述处理器 100在执行所述获取釆用所述主通信路径进行通信的 发射机的标识, 并根据所述标识中目标标识对应的目标发射机所发送的第二
SRS, 确定所述目标发射机的次级通信路径, 具体执行如下步骤: 的第二 SRS;
根据所述第二 SRS计算得出所述目标方向上的信道质量;
判断所述信道质量是否高于上一次确定的次级通信路径对应的信道质量; 若高于, 则将所述目标方向对应的通信路径更新为次级通信路径。
进一步可选地,所述处理器 100在执行所述将所述目标方向对应的通信路 径更新为次级通信路径, 具体执行如下步骤:
判断所述目标方向对应的通信路径是否为所述主通信路径;
若判断结果是不为所述主通信路径,检测所述目标方向对应的通信路径的 信道质量是否高于预设的通信服务质量 QoS阔值;
若高于所述 QoS 阔值, 则将所述目标方向对应的通信路径更新为次级通 信路径。
具体的, 目标发射机按照预设的时间间隔更改波束指向,将该更改波束指 向后对应的方向作为目标方向, 向该目标方向上以窄波束全频段发送 SRS。接 收机接收目标 UE在该目标方向上发送的 SRS,计算并确定该方向上的信道质 量,直至完成对该目标 UE在各个方向上发出的 SRS的检测,则可将确定出次 级通信路径作为当前 BS与该目标 UE之间的次级通信路径。
作为一种可选的实施方式,所述处理器 100在执行所述根据所述主通信路 径及所述次级通信路径与所述发射机通信, 具体执行如下步骤:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,且每一个标 识所指示的发射机均存在次级通信路径,则控制将所述主通信路径用于传输所 述标识指示的各发射机上行链路子帧,所述各发射机的上行链路子帧以频分复 用的方式传输;
控制将所述次级通信路径用于传输对应发射机下行链路子帧,所述各发射 机的下行链路子帧以空分复用的方式传输,所述各个发射机的下行链路子帧独 同。
可选地,所述处理器 100在执行所述根据所述主通信路径及所述次级通信 路径与所述发射机通信, 具体执行如下步骤:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,且每一个标 识所指示的发射机均存在次级通信路径,则控制将所述主通信路径用于传输所 述标识所指示的各发射机下行链路子帧,所述各发射机的下行链路子帧以频分 复用的方式传输;
控制将所述次级通信路径用于传输对应发射机上行链路子帧,所述各发射 机的上行链路子帧以空分复用的方式传输,所述各发射机的上行链路子帧独占 同。
作为一种可选的实施方式,所述处理器 100在执行所述根据所述主通信路 径及所述次级通信路径与所述发射机通信, 具体执行如下步骤:
若釆用所述主通信路径进行通信的发射机的标识为一个,且所述标识所指 示的发射机存在对应的次级通信路径,则所述发射机的上行链路子帧与下行链 路子帧以空分复用的方式传输, 所述上行链路子帧与下行链路子帧的格式不 同, 所述发射机占用全频段带宽资源。 作为一种可选的实施方式,所述处理器 100在执行所述根据所述主通信路 径及所述次级通信路径与所述发射机通信, 具体执行如下步骤:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,存在的次级 通信路径数目大于零,且存在的次级通信路径数目小于所述标识数目, 则控制 将所述主通信路径用于传输所述标识所指示的各发射机上行链路子帧,所述各 发射机的上行链路子帧以频分复用的方式传输,所述各发射机包括至少一个不 存在次级通信路径的第一发射机以及存在次级通信路径的第二发射机;
控制将所述主通信路径用于传输各第一发射机的下行链路子帧,所述各第 一发射机的下行链路子帧以频分复用的方式传输,所述第一发射机的上下行链 路子帧以时分复用的方式传输;
控制将所述次级通信路径用于传输所述第二发射机的下行链路子帧,所述 第二发射机的下行链路子帧以空分复用的方式传输,且所述第二发射机的上行 链路子帧与下行链路子帧的格式不同。
可选地,所述处理器 100在执行所述根据所述主通信路径及所述次级通信 路径与所述发射机通信, 具体执行如下步骤:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,存在的次级 通信路径数目大于零,且存在的次级通信路径数目小于所述标识数目, 则控制 将所述主通信路径用于传输所述标识所指示的各发射机下行链路子帧,所述各 发射机的下行链路子帧以频分复用的方式传输,所述各发射机包括至少一个不 存在次级通信路径的第一发射机以及存在次级通信路径的第二发射机;
控制将所述主通信路径用于传输各第一发射机的上行链路子帧,所述各第 一发射机的上行链路子帧以频分复用的方式传输,所述第一发射机的上下行链 路子帧以时分复用的方式传输;
控制将所述次级通信路径用于传输所述第二发射机的上行链路子帧,所述 第二发射机的上行链路子帧以空分复用的方式传输,且所述第二发射机的上行 链路子帧与下行链路子帧的格式不同。
进一步可选地, 所述处理器 100还执行以下步骤: 按照预设的插入间隔将第三 SRS插入至所述上下行链路子帧中; 所述将第三 SRS插入至所述上下行链路子帧中包括:
将第三 SRS直接插入至上行链路子帧或将所述第三 SRS包裹在特殊子帧 以插入至所述上行链路子帧中;
将所述第三 SRS 包裹在特殊子帧以插入至所述下行链路子帧或所述下行 链路子帧与所述上行链路子帧的切换处。
实施本发明实施例在可根据接收机接收到的 SRS信号确定出当前发射机 与目标发射机之间进行通信的主通信路径,并通过为釆用该主通信路径进行通 信的每一个发射机确定次级通信路径,从而基于该主通信路径及次级通信路径 与各发射机进行通信, 有效提升了系统传输容量。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(英文全称: Read-Only Memory,简称: ROM )或随机存储记忆体(英文全称: Random Access Memory, 简称: RAM )等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种通信装置, 其特征在于, 包括:
第一确定模块, 用于当接收到第一侦听参考信号 SRS 时, 根据所述第一 SRS 确定与目标发射机之间的主通信路径, 所述目标发射机为发送所述第一 SRS的发射机;
第二确定模块,用于获取釆用所述第一确定模块确定出的主通信路径进行 通信的发射机的标识, 并确定每一个标识所指示的发射机的次级通信路径; 通信模块,用于根据所述第一确定模块确定出的主通信路径及所述第二确 定模块确定出的次级通信路径, 与所述发射机通信。
2、 如权利要求 1所述的装置, 其特征在于, 所述第一确定模块包括: 方向确定单元,用于若接收到第一 SRS,根据预设的判决规则确定出来波 最优方向, 所述第一 SRS是由目标发射机通过宽波束全频段发送的;
波束收窄单元,用于沿着所述方向确定单元确定的来波最优方向对所述目 标发射机使用的宽波束进行收窄,将收窄后的波束所在的通信路径确定为主通 信路径。
3、 如权利要求 1所述的装置, 其特征在于, 所述第二确定模块包括: 第一路径获取单元,用于获取釆用所述主通信路径进行通信的发射机的标 识, 并根据所述标识中目标标识对应的目标发射机所发送的第二 SRS,确定所 述目标发射机的次级通信路径, 所述目标标识为所述目标发射机的标识;
第二路径获取单元,用于确定所述标识中其他标识所指示的发射机的次级 通信路径。
4、 如权利要求 3所述的装置, 其特征在于, 所述第一路径获取单元包括: 的第二 SRS, 根据所述第二 SRS计算得出所述目标方向上的信道质量, 并判 断所述信道质量是否高于上一次确定的次级通信路径对应的信道质量;
更新子单元,用于若所述判断子单元判断结果为所述信道质量高于上一次 确定的次级通信路径对应的信道质量,则将所述目标方向对应的通信路径更新 为次级通信路径。
5、 如权利要求 4所述的装置, 其特征在于, 所述更新子单元具体用于: 若所述判断子单元判断结果为所述信道质量高于上一次确定的次级通信 路径对应的信道质量,判断所述目标方向对应的通信路径是否为所述主通信路 径; 若判断结果是不为所述主通信路径, 则检测所述目标方向对应的通信路径 的信道质量是否高于预设的通信服务质量 QoS阔值, 并在高于所述 QoS阔值 时, 将所述目标方向对应的通信路径更新为次级通信路径。
6、 如权利要求 1所述的装置, 其特征在于, 所述通信模块包括: 第一传输单元,用于若釆用所述主通信路径进行通信的发射机的标识为至 少两个,且每一个标识所指示的发射机均存在次级通信路径, 则控制将所述主 通信路径用于传输所述标识指示的各发射机上行链路子帧,所述各发射机的上 行链路子帧以频分复用的方式传输;
第二传输单元,用于控制将所述次级通信路径用于传输对应发射机下行链 路子帧, 所述各发射机的下行链路子帧以空分复用的方式传输, 所述各个发射 机的下行链路子帧独占全频段带宽资源,且所述各发射机的上行链路子帧与下 行链路子帧的格式不同。
7、 如权利要求 1所述的装置, 其特征在于, 所述通信模块包括: 第三传输单元,用于若釆用所述主通信路径进行通信的发射机的标识为至 少两个,且每一个标识所指示的发射机均存在次级通信路径, 则控制将所述主 通信路径用于传输所述标识所指示的各发射机下行链路子帧,所述各发射机的 下行链路子帧以频分复用的方式传输;
第四传输单元,用于控制将所述次级通信路径用于传输对应发射机上行链 路子帧, 所述各发射机的上行链路子帧以空分复用的方式传输, 所述各发射机 的上行链路子帧独占全频段带宽资源,且所述各发射机的上行链路子帧与下行 链路子帧的格式不同。
8、 如权利要求 1所述的装置, 其特征在于, 所述通信模块包括: 第五传输单元,用于若釆用所述主通信路径进行通信的发射机的标识为一 个,且所述标识所指示的发射机存在对应的次级通信路径, 则控制将所述主通 信路径用于传输所述发射机的上行链路子帧,控制将所述次级通信路径用于传 输所述发射机的下行链路子帧; 或
第六传输单元,用于控制将所述主通信路径用于传输所述发射机的下行链 路子帧, 控制将所述次级通信路径用于传输所述发射机的上行链路子帧; 其中, 所述发射机的上行链路子帧与下行链路子帧以空分复用的方式传 输, 所述上行链路子帧与下行链路子帧的格式不同, 所述发射机占用全频段带 宽资源。
9、 如权利要求 1所述的装置, 其特征在于, 所述通信模块包括: 第七传输单元,用于若釆用所述主通信路径进行通信的发射机的标识为至 少两个,存在的次级通信路径数目大于零,且存在的次级通信路径数目小于所 述标识数目,则控制将所述主通信路径用于传输所述标识所指示的各发射机上 行链路子帧, 所述各发射机的上行链路子帧以频分复用的方式传输, 所述各发 射机包括至少一个不存在次级通信路径的第一发射机以及存在次级通信路径 的第二发射机;
第八传输单元,用于控制将所述主通信路径用于传输各第一发射机的下行 链路子帧, 所述各第一发射机的下行链路子帧以频分复用的方式传输, 所述第 一发射机的上下行链路子帧以时分复用的方式传输; 第九传输单元,用于控制将所述次级通信路径用于传输所述第二发射机的 下行链路子帧, 所述第二发射机的下行链路子帧以空分复用的方式传输,且所
10、 如权利要求 1所述的装置, 其特征在于, 所述通信模块包括: 第十传输单元,用于若釆用所述主通信路径进行通信的发射机的标识为至 少两个,存在的次级通信路径数目大于零,且存在的次级通信路径数目小于所 述标识数目,则控制将所述主通信路径用于传输所述标识所指示的各发射机下 行链路子帧, 所述各发射机的下行链路子帧以频分复用的方式传输, 所述各发 射机包括至少一个不存在次级通信路径的第一发射机以及存在次级通信路径 的第二发射机;
第十一传输单元,用于控制将所述主通信路径用于传输各第一发射机的上 行链路子帧, 所述各第一发射机的上行链路子帧以频分复用的方式传输, 所述 第一发射机的上下行链路子帧以时分复用的方式传输;
第十二传输单元,用于控制将所述次级通信路径用于传输所述第二发射机 的上行链路子帧, 所述第二发射机的上行链路子帧以空分复用的方式传输,且
11、 如权利要求 6-10任一项所述的装置, 其特征在于, 还包括: 插入模块, 用于按照预设的插入间隔将第三 SRS插入至所述上下行链路 子帧中;
其中, 所述插入模块具体用于:
将第三 SRS直接插入至上行链路子帧或将所述第三 SRS包裹在特殊子帧 以插入至所述上行链路子帧中; 并将所述第三 SRS 包裹在特殊子帧以插入至 换处。
12、 一种通信方法, 其特征在于, 包括: 当接收到侦听参考信号第一 SRS时, 根据所述第一 SRS确定与目标发射 机之间的主通信路径, 所述目标发射机为发送所述第一 SRS的发射机;
获取釆用所述主通信路径进行通信的发射机的标识,并确定每一个标识所 指示的发射机的次级通信路径;
根据所述主通信路径及所述次级通信路径与所述发射机通信。
13、如权利要求 12所述的方法,其特征在于, 所述当接收到第一 SRS时, 根据所述第一 SRS确定与目标发射机之间的主通信路径, 包括:
若接收到第一 SRS,根据预设的判决规则确定出来波最优方向, 所述第一 SRS是由目标发射机通过宽波束全频段发送的;
沿着所述来波最优方向对所述目标发射机使用的宽波束进行收窄,将收窄 后的波束所在的通信路径确定为主通信路径。
14、 如权利要求 12所述的方法, 其特征在于, 所述获取釆用所述主通信 路径进行通信的发射机的标识,并确定每一个标识所指示的发射机的次级通信 路径, 包括:
获取釆用所述主通信路径进行通信的发射机的标识,并根据所述标识中目 标标识对应的目标发射机所发送的第二 SRS,确定所述目标发射机的次级通信 路径, 所述目标标识为所述目标发射机的标识;
确定所述标识中其他标识所指示的发射机的次级通信路径。
15、 如权利要求 14所述的方法, 其特征在于, 所述获取釆用所述主通信 路径进行通信的发射机的标识,并根据所述标识中目标标识对应的目标发射机 所发送的第二 SRS, 确定所述目标发射机的次级通信路径, 包括: 根据所述第二 SRS计算得出所述目标方向上的信道质量;
判断所述信道质量是否高于上一次确定的次级通信路径对应的信道质量; 若高于, 则将所述目标方向对应的通信路径更新为次级通信路径。
16、 如权利要求 15所述的方法, 其特征在于, 还包括:
接收所述目标发射机在更改波束指向后对应的方向上以窄波束全频段发 送的第二 SRS, 并将所述方向上发送的第二 SRS作为所述目标发射机在目标 方向发送的第二 SRS, 重复执行所述根据所述第二 SRS计算得出所述目标方
SRS的检测。
17、 如权利要求 15所述的方法, 其特征在于, 所述将所述目标方向对应 的通信路径更新为次级通信路径, 包括:
判断所述目标方向对应的通信路径是否为所述主通信路径;
若判断结果是不为所述主通信路径,检测所述目标方向对应的通信路径的 信道质量是否高于预设的通信服务质量 QoS阔值;
若高于所述 QoS 阔值, 则将所述目标方向对应的通信路径更新为次级通 信路径。
18、 如权利要求 12所述的方法, 其特征在于, 所述根据所述主通信路径 及所述次级通信路径与所述发射机通信, 包括:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,且每一个标 识所指示的发射机均存在次级通信路径,则控制将所述主通信路径用于传输所 述标识指示的各发射机上行链路子帧,所述各发射机的上行链路子帧以频分复 用的方式传输;
控制将所述次级通信路径用于传输对应发射机下行链路子帧,所述各发射 机的下行链路子帧以空分复用的方式传输,所述各个发射机的下行链路子帧独 同。
19、 如权利要求 12所述的方法, 其特征在于, 所述根据所述主通信路径 及所述次级通信路径与所述发射机通信包括:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,且每一个标 识所指示的发射机均存在次级通信路径,则控制将所述主通信路径用于传输所 述标识所指示的各发射机下行链路子帧,所述各发射机的下行链路子帧以频分 复用的方式传输;
控制将所述次级通信路径用于传输对应发射机上行链路子帧,所述各发射 机的上行链路子帧以空分复用的方式传输,所述各发射机的上行链路子帧独占 同。
20、 如权利要求 12所述的方法, 其特征在于, 所述根据所述主通信路径 及所述次级通信路径与所述发射机通信, 包括:
若釆用所述主通信路径进行通信的发射机的标识为一个,且所述标识所指 示的发射机存在对应的次级通信路径,则所述发射机的上行链路子帧与下行链 路子帧以空分复用的方式传输, 所述上行链路子帧与下行链路子帧的格式不 同, 所述发射机占用全频段带宽资源。
21、 如权利要求 12所述的方法, 其特征在于, 所述根据所述主通信路径 及所述次级通信路径与所述发射机通信, 包括:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,存在的次级 通信路径数目大于零,且存在的次级通信路径数目小于所述标识数目, 则控制 将所述主通信路径用于传输所述标识所指示的各发射机上行链路子帧,所述各 发射机的上行链路子帧以频分复用的方式传输,所述各发射机包括至少一个不 存在次级通信路径的第一发射机以及存在次级通信路径的第二发射机;
控制将所述主通信路径用于传输各第一发射机的下行链路子帧,所述各第 一发射机的下行链路子帧以频分复用的方式传输,所述第一发射机的上下行链 路子帧以时分复用的方式传输;
控制将所述次级通信路径用于传输所述第二发射机的下行链路子帧,所述 第二发射机的下行链路子帧以空分复用的方式传输,且所述第二发射机的上行 链路子帧与下行链路子帧的格式不同。
22、 如权利要求 12所述的方法, 其特征在于, 所述根据所述主通信路径 及所述次级通信路径与所述发射机通信, 包括:
若釆用所述主通信路径进行通信的发射机的标识为至少两个,存在的次级 通信路径数目大于零,且存在的次级通信路径数目小于所述标识数目, 则控制 将所述主通信路径用于传输所述标识所指示的各发射机下行链路子帧,所述各 发射机的下行链路子帧以频分复用的方式传输,所述各发射机包括至少一个不 存在次级通信路径的第一发射机以及存在次级通信路径的第二发射机;
控制将所述主通信路径用于传输各第一发射机的上行链路子帧,所述各第 一发射机的上行链路子帧以频分复用的方式传输,所述第一发射机的上下行链 路子帧以时分复用的方式传输;
控制将所述次级通信路径用于传输所述第二发射机的上行链路子帧,所述 第二发射机的上行链路子帧以空分复用的方式传输,且所述第二发射机的上行 链路子帧与下行链路子帧的格式不同。
23、 如权利要求 18-22任一项所述的方法, 其特征在于, 还包括: 按照预设的插入间隔将第三 SRS插入至所述上下行链路子帧中; 所述将第三 SRS插入至所述上下行链路子帧中, 包括:
将第三 SRS直接插入至上行链路子帧或将所述第三 SRS包裹在特殊子帧 以插入至所述上行链路子帧中;
将所述第三 SRS 包裹在特殊子帧以插入至所述下行链路子帧或所述下行 链路子帧与所述上行链路子帧的切换处。
24、 一种计算机存储介质, 其特征在于,
所述计算机存储介质存储有程序,该程序执行时包括如权利要求 12-23任 一项所述的方法步骤。
25、 一种通信设备, 其特征在于, 包括如权利要求 1-11任一项所述的装
PCT/CN2014/080095 2014-06-17 2014-06-17 一种通信方法及装置 WO2015192318A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480078908.2A CN106465414A (zh) 2014-06-17 2014-06-17 一种通信方法及装置
BR112016029450A BR112016029450A2 (pt) 2014-06-17 2014-06-17 método e dispositivo de comunicação
EP14895407.6A EP3148280A4 (en) 2014-06-17 2014-06-17 Communication method and device
PCT/CN2014/080095 WO2015192318A1 (zh) 2014-06-17 2014-06-17 一种通信方法及装置
JP2016573974A JP2017527150A (ja) 2014-06-17 2014-06-17 通信方法および通信装置
KR1020177001199A KR20170018440A (ko) 2014-06-17 2014-06-17 통신 방법 및 통신 장치
US15/381,273 US20170099694A1 (en) 2014-06-17 2016-12-16 Communication Method and Communications Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/080095 WO2015192318A1 (zh) 2014-06-17 2014-06-17 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/381,273 Continuation US20170099694A1 (en) 2014-06-17 2016-12-16 Communication Method and Communications Apparatus

Publications (1)

Publication Number Publication Date
WO2015192318A1 true WO2015192318A1 (zh) 2015-12-23

Family

ID=54934673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080095 WO2015192318A1 (zh) 2014-06-17 2014-06-17 一种通信方法及装置

Country Status (7)

Country Link
US (1) US20170099694A1 (zh)
EP (1) EP3148280A4 (zh)
JP (1) JP2017527150A (zh)
KR (1) KR20170018440A (zh)
CN (1) CN106465414A (zh)
BR (1) BR112016029450A2 (zh)
WO (1) WO2015192318A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9980271B2 (en) * 2015-03-14 2018-05-22 Qualcomm Incorporated Interference aware reciprocal channel sounding reference signal
WO2017120356A1 (en) * 2016-01-08 2017-07-13 Commscope Technologies Llc System and method for carrier aggregation using beamforming
US11477771B2 (en) * 2016-04-05 2022-10-18 Qualcomm Incorporated Indicating start and stop symbols of PDSCH and PUSCH through PDCCH
CN112770338B (zh) * 2019-10-21 2022-11-04 华为技术有限公司 通信方法和通信装置
KR102432021B1 (ko) * 2021-09-07 2022-08-16 스카이루먼 주식회사 중계드론과 임무드론 간의 보안 통신 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252615A (ja) * 1998-03-02 1999-09-17 Hitachi Ltd 通信接続切替方法及び通信接続切替装置
US20110275382A1 (en) * 2010-05-06 2011-11-10 Sami-Jukka Hakola Measurements and Fast Power Adjustments in D2D Communications
WO2012062669A1 (en) * 2010-11-08 2012-05-18 Research In Motion Limited Allocating wireless resources
CN103460780A (zh) * 2011-03-31 2013-12-18 瑞萨移动公司 用于促进设备到设备通信的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100891789B1 (ko) * 2006-01-04 2009-04-07 삼성전자주식회사 무선 통신 시스템에서 신호 송수신 장치 및 방법
US9806789B2 (en) * 2010-04-06 2017-10-31 Samsung Electronics Co., Ltd. Apparatus and method for spatial division duplex (SDD) for millimeter wave communication system
US9131457B2 (en) * 2010-08-12 2015-09-08 Samsung Electronics Co., Ltd. Apparatus and method for transmission of uplink sounding reference signals in a wireless network
US9585083B2 (en) * 2011-06-17 2017-02-28 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system
EP2727257B1 (en) * 2011-07-01 2015-10-28 Telefonaktiebolaget L M Ericsson (PUBL) Beamforming with phase compensation
CN103703708B (zh) * 2011-07-22 2016-11-09 Lg电子株式会社 用于在无线通信系统中设定子帧的方法
US9351288B2 (en) * 2012-06-05 2016-05-24 Samsung Electronics Co., Ltd. Uplink channel sounding and channel state information estimation in mobile communication systems with multiple antennas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252615A (ja) * 1998-03-02 1999-09-17 Hitachi Ltd 通信接続切替方法及び通信接続切替装置
US20110275382A1 (en) * 2010-05-06 2011-11-10 Sami-Jukka Hakola Measurements and Fast Power Adjustments in D2D Communications
WO2012062669A1 (en) * 2010-11-08 2012-05-18 Research In Motion Limited Allocating wireless resources
CN103460780A (zh) * 2011-03-31 2013-12-18 瑞萨移动公司 用于促进设备到设备通信的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3148280A4 *

Also Published As

Publication number Publication date
EP3148280A4 (en) 2017-08-30
BR112016029450A2 (pt) 2017-08-22
US20170099694A1 (en) 2017-04-06
CN106465414A (zh) 2017-02-22
KR20170018440A (ko) 2017-02-17
EP3148280A1 (en) 2017-03-29
JP2017527150A (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
US11129112B2 (en) Method and apparatus for power control and multiplexing for device to device communication in wireless cellular communication system
US11431456B2 (en) Method and apparatus for implementing reference signal transmissions in a wireless communication system
US11917639B2 (en) Scheduling across slot boundaries
US20220132460A1 (en) Communication system, base station, and host device
US8379542B2 (en) Method and apparatus for sharing cell-ID between sites and determining cell-ID for site in cooperative communication
US10349399B2 (en) User device and base station
USRE49823E1 (en) Apparatus and method for transmitting and receiving signal in a mobile communication system
US9166751B2 (en) Method and apparatus for transmitting and receiving control information in a wireless communication system
CN112425255A (zh) 电子装置、无线通信方法和计算机可读介质
KR20210108391A (ko) 반지속적 또는 비주기적 타이밍 거동을 갖는 기준 신호 뮤팅 패턴들의 포지셔닝
WO2019161793A1 (zh) 非竞争随机接入的方法和装置
US20210143957A1 (en) Method for transmitting information element, communication node, system and storage medium
WO2009143710A1 (zh) 一种波束赋型传输的方法、系统及装置
WO2015192318A1 (zh) 一种通信方法及装置
KR20160009918A (ko) 무선통신 시스템의 상향링크 동기화 장치 및 방법
US20190253845A1 (en) Apparatuses, methods and computer programs for grouping users in a non-orthogonal multiple access (noma) network
CN110121913A (zh) 波束选择方法、装置及系统
KR20160075995A (ko) 물리 채널 전송 방법 및 장치
US10383038B2 (en) Apparatus and methods for providing and receiving system information in a wireless communications network
EP2850898B1 (en) Base station and method for uplink capacity improvement in wireless communication networks
WO2022238308A1 (en) Spatial domain simultaneous operation in soft resources in iab
KR20230058594A (ko) 무선 통신 시스템에서 디스커버리 자원 할당 방법 및 장치
TW202410728A (zh) 用於跨時槽邊界排程的方法及使用者設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014895407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014895407

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016029450

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177001199

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016029450

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161215