WO2015190840A1 - 태양전지 모듈의 후면 반사용 다층코팅 기판 및 그 제조방법 - Google Patents

태양전지 모듈의 후면 반사용 다층코팅 기판 및 그 제조방법 Download PDF

Info

Publication number
WO2015190840A1
WO2015190840A1 PCT/KR2015/005874 KR2015005874W WO2015190840A1 WO 2015190840 A1 WO2015190840 A1 WO 2015190840A1 KR 2015005874 W KR2015005874 W KR 2015005874W WO 2015190840 A1 WO2015190840 A1 WO 2015190840A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
layer
substrate
metal layer
multilayer coating
Prior art date
Application number
PCT/KR2015/005874
Other languages
English (en)
French (fr)
Inventor
배경환
김정주
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Publication of WO2015190840A1 publication Critical patent/WO2015190840A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a multi-layer coating substrate for the back reflection of the solar cell module and a method of manufacturing the same, and more particularly, to have a multilayer coating structure laminated on a transparent substrate, a solar cell module (especially glass to glass type solar cell When used as a base material for reflecting back of the module, it has excellent mechanical strength to prevent damage to the reflective layer due to scratches and external impacts, and its excellent durability ensures excellent solar reflectance even in harsh environments such as high temperature desert areas. As a result, the lifetime of the solar cell module can be guaranteed, and at the same time, the insulation function can be solved, so that the output of the module can be reduced due to the leakage current of the solar cell module, and the power generation output of the solar cell can be improved.
  • the present invention relates to a multilayer coated substrate and a method of manufacturing the same.
  • the general solar cell module is formed by combining the front glass and the bonding film, the solar cell, the bonding film, and the polymer resin series backsheet in the order of the incident sunlight.
  • the strength of the module is weakened, and in particular, it is vulnerable to heat in a high temperature area, and a yellowing phenomenon occurs.
  • the back sheet wear and deformation of the module are caused by sand storms.
  • a glass-to-glass type module using glass as a back substrate instead of a back sheet has been introduced.
  • the protective layer formed on the mirror layer or the reflective layer is 380 to 1100 nm, which is a wavelength band in which solar cells can generate power.
  • the power generation power of the solar cell is reduced due to the decrease in reflectance at the coating surface.
  • the present invention is to solve the problems of the prior art as described above, when used as a substrate for reflecting the back of the solar cell module (especially Glass to Glass type solar cell module), the mechanical strength is excellent due to scratches or external impact The damage of the reflective layer can be prevented, and the durability is excellent, so that the solar reflectivity can be excellently maintained even in harsh environments such as high temperature desert areas.
  • Technical problem to solve the problem that the output of the module is lowered due to the increase of the leakage current of the battery module, and to provide a multilayer coating substrate and a method of manufacturing the same that can improve the power output of the solar cell.
  • the present invention to solve the above technical problem, a transparent substrate; And a multilayer coating stacked on the transparent substrate, the multilayer coating including a reflective metal layer and one or more layers containing silicon-containing oxides or silicon-containing nitrides.
  • a transparent substrate (2) a reflective metal layer formed on the transparent substrate; And (3) an insulating protective layer formed on the reflective metal layer and containing silicon-containing oxide or silicon-containing nitride, wherein the light reflectance in the wavelength range of 380 to 1100 nm is 60% or more, and is 1100 to 2500 nm.
  • a multilayer coated substrate having a light reflectance of 90% or more in the wavelength band.
  • a first aspect of the invention includes the steps of sequentially forming a reflective metal layer and an insulating protective layer on a transparent substrate, wherein the insulating protective layer contains silicon-containing oxides or silicon-containing nitrides, and is manufactured Also provided is a method for producing a multilayer coated substrate, wherein the light reflectance in the 380-1100 nm wavelength band of the multilayered coated substrate is 60% or more, and the light reflectance in the 1100-2500 nm wavelength band is 90% or more.
  • a transparent substrate (2) a dielectric film layer, (3) a first reflective auxiliary metal layer, (4) a reflective metal layer, (5) a second reflective auxiliary metal layer, and (6) a low refractive index laminated on the transparent substrate in order.
  • a multilayer coating comprising a dielectric film layer and (7) a high refractive dielectric film layer having a refractive index of 1.9 to 2.6, wherein at least one of the dielectric film layers contains a silicon-containing oxide or a silicon-containing nitride.
  • a dielectric film layer, a first reflective auxiliary metal layer, a reflective metal layer, a second reflective auxiliary metal layer, a low refractive index dielectric film layer having a refractive index of 1.3 to 1.6, and a high refractive dielectric film layer having a refractive index of 1.9 to 2.6 are sequentially formed on a transparent substrate. And forming a silicon-containing oxide or a silicon-containing nitride, wherein the at least one of the dielectric film layers contains silicon.
  • the present invention also provides a solar cell module comprising the multilayer coating substrate of the present invention as a substrate for back reflection.
  • the multilayer coating substrate of the present invention When used as a substrate for reflecting the rear surface of a solar cell module, mechanical strength and durability, particularly scratch resistance and high heat resistance, can ensure the life of the solar cell module even in a harsh environment such as a high temperature desert area. At the same time, it can increase the output of the solar cell module by preventing leakage current that decreases the output of the solar cell module, and improve the output of the solar cell module by re-injecting more light incident from the windshield into the solar cell. You can. Therefore, the solar cell module provided with the multilayer coating substrate of this invention is especially suitable for a high temperature desert area
  • FIG. 1 is a schematic diagram of a configuration of a solar cell module according to a first aspect of the present invention.
  • FIG. 2 is a schematic diagram of a configuration of a solar cell module according to a second aspect of the present invention.
  • FIG. 3 is a graph illustrating reflectance comparison between multilayered substrates prepared in Example 2-1 and Comparative Example 2-1 of the present invention.
  • the transparent substrate may be used without limitation as long as the transparent coating, such as a glass substrate or a transparent plastic substrate, may be formed on the surface of the multilayer coating according to the present invention. Substrates are used.
  • a glass substrate for example, conventional glass such as soda-lime glass, low-iron patterned glass for solar cells, low-iron float glass, and the like can be used without limitation. It is also possible to use tempered or partially tempered glass as needed.
  • transparent plastic substrate for example, polycarbonate, polymethylmethacrylate, polyethylene terephthalate, polybutylene terephthalate, polyimide, bakelite Substrates made of polymeric materials selected from bakelite and combinations thereof can be used.
  • the thickness of the transparent substrate is not particularly limited, and may be freely selected within a range of, for example, 1 mm to 8 mm, more preferably 2 mm to 4 mm, depending on the purpose of use.
  • the metal included in the reflective metal layer is a metal commonly used in the reflective layer of the solar cell module, for example, aluminum (Aluminum, Al), silver (Ag), platinum (Pt), and the like. , Titanium (Ti), or a combination thereof.
  • the reflective metal layer may be a metal layer including aluminum (Al), silver (Ag), or a combination thereof, and an aluminum (Al) layer is most preferred.
  • the reflective metal layer preferably has a light reflectance of 85% or more (eg 90-99%), more preferably 93% or more (eg 93-99%, more specifically 93-98%) in the wavelength range of 1100-2500 nm. Indicates. When the light reflectance in the wavelength range of 1100 to 2500 nm of the reflective metal layer is less than 85%, the lifespan preventing effect and the efficiency improving effect of the solar cell module may be insufficient.
  • the thickness of the reflective metal layer is not particularly limited, and may be appropriately selected in consideration of the efficiency of the coating process within a range in which a desired reflective effect may be obtained.
  • the lower limit of the thickness of the reflective metal layer may be, for example, 20 nm or 30 nm, and the upper limit may be, for example, 200 nm, 150 nm, or 100 nm, but is not limited thereto. If the thickness of the reflective metal layer is too thin than the above, the effect of preventing the degradation of life and the efficiency of the solar cell module may be insufficient. On the contrary, if the thickness is too thick, the coating process may have low efficiency and low economic efficiency.
  • the insulating protective layer formed on the reflective metal layer contains silicon-containing oxide or silicon-containing nitride.
  • the silicon-containing oxide or silicon-containing nitride may be preferably selected from silicon nitride (Si 3 N 4 ), silicon oxide (SiO 2 ), silicon-aluminum mixed nitride, silicon-aluminum mixed oxide and combinations thereof And, more preferably, silicon nitride (Si 3 N 4 ), silicon oxide (SiO 2 ), silicon-aluminum mixed nitride, and combinations thereof.
  • silicon oxide SiO 2
  • silicon-containing nitrides such as silicon nitride (Si 3 N 4 ), silicon-aluminum mixed nitrides (eg
  • the ratio of silicon to aluminum is such that Si / Al is greater than 1 in atomic percent ratio, i.e., the silicon atom content in the silicon-aluminum mixed oxides or nitrides is aluminum Preference is given to more than the atomic content.
  • the thickness of the insulating protective layer is not particularly limited, and may be appropriately selected in consideration of the efficiency of the coating process and the like within a range in which desired mechanical strength and durability improvement effect can be obtained.
  • the lower limit of the thickness of the insulating protective layer may be, for example, 20 nm or 30 nm, and the upper limit may be, for example, 150 nm or 120 nm, but is not limited thereto. If the thickness of the insulating protective layer is too thin than the above, there may be a problem in durability and insulation, and if the thickness is too thick, there may be a problem in that the manufacturing cost increases.
  • the coating film may be weakened or absorbed without reflecting or transmitting light, which may cause a temperature increase of the module.
  • a nitride containing a refractive index outside the 1.9 ⁇ 2.4 at 550nm wavelength may have the same problem as the silicon-containing oxide.
  • the lower limit of the sum of the thicknesses of the reflective metal layer and the insulating protective layer in the multilayer coating substrate may be, for example, 40 nm or 80 nm, and the upper limit is, for example, 340 nm or 120 nm. Can be. If the sum of the thickness of the reflective metal layer and the insulating protective layer is less than 40 nm, the strength of the coating layer may be weakened, and the insulation resistance of the module may be lowered. If the thickness exceeds 340 nm, the manufacturing cost may be excessively increased.
  • the light reflectance is 60% or more, and preferably 70% or more. Independently, the light reflectance in the wavelength range of 380 to 1100 nm may be 95% or less, more specifically 90% or less. When the light reflectance is less than 60% in the wavelength range of 380 ⁇ 1100nm, the efficiency improvement effect of the solar cell module may be insufficient.
  • the light reflectance in the wavelength range of 1100 ⁇ 2500nm of the multilayer coating substrate according to the first aspect of the present invention is 90% or more, preferably 92% or more or 93% or more.
  • the light reflectance in the wavelength band of 1100 to 2500 nm may be 98% or less, more specifically 97% or less.
  • the lifespan preventing effect of the solar cell module may be very insufficient.
  • a first aspect of the invention includes the steps of sequentially forming a reflective metal layer and an insulating protective layer on a transparent substrate, wherein the insulating protective layer contains silicon-containing oxides or nitrides, the multilayer coating produced
  • the substrate has a light reflectance in the 380 to 1100 nm wavelength band of 60% or more and a light reflectance in the 1100 to 2500 nm wavelength band of 90% or more.
  • the dielectric film layer 2 included in the multilayer coated substrate according to the second aspect of the present invention preferably contains silicon-containing nitride.
  • the lower limit of the thickness of the dielectric layer 2 may be, for example, 10 nm, 15 nm, or 20 nm, and the upper limit may be, for example, 60 nm, 50 nm, or 40 nm, but is not limited thereto. If the thickness of the dielectric film layer 2 is thinner than 10 nm, the durability of the reflective metal layer may be lowered by the alkali component diffused from the substrate glass. On the contrary, when the thickness of the dielectric film layer 2 is larger than 60 nm, the difference in surface stress with the substrate glass becomes large. Not only the adhesion between the glass and the thin film is weak, but also the adhesion with the thin films laminated on the dielectric layer 2 may be weakened.
  • the first and second reflective auxiliary metal layers 3 and 5 included in the multilayer coated substrate according to the second aspect of the present invention are each independently, preferably a nickel (Ni) layer, a chromium (Cr) layer, or nickel It may be a chromium mixed metal (Ni-Cr) layer, and more preferably a nickel-chromium mixed metal (Ni-Cr) layer.
  • the thicknesses of the first and second reflective auxiliary metal layers 3 and 5 may be 0.5 to 5 nm each independently, but are not limited thereto. If the thickness of each of the reflective auxiliary metal layers 3 and 5 is smaller than 0.5 nm, the heat resistance and the anti-oxidation performance of the reflective metal layer may be weakened. On the contrary, when the thickness of the reflective auxiliary metal layers 3 and 5 is less than 5 nm, there may be a problem of decreasing the reflectance of the reflective metal layer. have.
  • the low refractive dielectric film layer 6 included in the multilayer coated substrate according to the second aspect of the present invention has a refractive index of 1.3 to 1.6 at a wavelength of 550 nm, and preferably contains silicon-containing oxide.
  • SiaAlbOc silicon-aluminum mixed oxide
  • the durability of the coating layer may be weakened or absorbed without reflecting or transmitting light, which may cause a temperature increase of the module.
  • the lower limit of the thickness of the low refractive dielectric layer 6 may be, for example, 30 nm, 40 nm, or 50 nm, and the upper limit may be, for example, 150 nm, 140 nm, or 120 nm, but is not limited thereto.
  • the thickness of the low refractive dielectric layer 6 is thinner than 30 nm, there may be a problem that the reflectance is lowered.
  • the thickness of the low refractive index dielectric layer 6 is greater than 150 nm, the productivity and the defect of the thin film may increase.
  • the high refractive dielectric film layer 7 included in the multilayer coating substrate according to the second aspect of the present invention has a refractive index of 1.9 to 2.6 at a wavelength of 550 nm, and preferably contains silicon-containing nitride.
  • the refractive index of 1.9-2.6 may cause the coating layer to be weakened or absorbed without reflecting or transmitting light like silicon-containing oxides, which may cause the module temperature to rise. have.
  • the lower limit of the thickness of the high refractive dielectric film layer 7 may be, for example, 30 nm or 40 nm, and the upper limit may be, for example, 150 nm or 120 nm, but is not limited thereto.
  • the thickness of the high refractive index dielectric layer 7 is thinner than 30 nm, the reflectance and heat resistance may be reduced, and conversely, even when thicker than 150 nm, the reflectance may be reduced.
  • the 380-1100 nm wavelength light reflectance at the coating surface may be preferably 85% or more, more preferably 88% or more, even more preferably 89% or more.
  • the 1100 to 2500 nm wavelength light reflectance of the multilayer coated substrate according to the second aspect of the present invention on the surface of the transparent substrate is preferably 85% or more, more preferably 88% or more, even more preferably 89% It may be abnormal.
  • a dielectric film layer, a first reflective auxiliary metal layer, a reflective metal layer, a second reflective auxiliary metal layer, a low refractive index dielectric film layer having a refractive index of 1.3 to 1.6, and a high refractive dielectric film layer having a refractive index of 1.9 to 2.6 are sequentially formed on a transparent substrate. And forming a silicon-containing oxide or a silicon-containing nitride, wherein the at least one of the dielectric film layers contains silicon.
  • the method of sequentially forming each layer on the transparent substrate there is no particular limitation on the method of sequentially forming each layer on the transparent substrate, and physical vapor deposition (PVD) including vacuum deposition, in particular sputtering, Methods such as low pressure, atmospheric pressure, chemical vapor deposition (CVD) including plasma and the like can be suitably used.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • all layers can be vacuum deposited continuously by a magnetron sputtering method. This approach is particularly suitable for products of large substrates. Sputtering of the target material (s) can be carried out in the presence of oxygen to deposit the oxide layer, and in the presence of nitrogen to deposit the nitride layer.
  • a solar cell module comprising the multilayer coating substrate of the present invention as a substrate for back reflection.
  • Example 1-1 forms only the reflective metal layer.
  • the formation of each coating layer was performed using a magnetron sputtering facility.
  • the light reflectance in the wavelength range of 380 to 2500 nm was measured by a spectral transmittance meter (Model Lambda 950, Perkin Elmer), and for each wavelength band of 380 to 1100 nm and 1100 to 2500 nm.
  • the average value multiplied by the weighting function corresponding to AM1.5 according to the ISO9050 standard is shown in Table 1-2 below.
  • -Pencil hardness weight of 750g weight, hardness of 6B ⁇ 3B ⁇ 1B ⁇ HB ⁇ 1H ⁇ 2H ⁇ 3H
  • Comparative Example 1-1 exhibited the weakest scratch resistance as a result of the pencil hardness test, the reflectance was also significantly reduced in the Damp Heat and salt spray test results.
  • Examples 1-1 to 1-3 according to the present invention showed a markedly improved hardness in pencil hardness, and improved anti-reflective performance in the Damp Heat and salt spray test results.
  • the insulation resistance of Examples 1-1 to 1-3 was higher than that of the Comparative Example, and the Examples 1-1 to 1-3 of the Comparative Example were superior to the output value of the module.
  • Comparative Example 2-1 On the 2.8 mm thick soda-lime glass, a two-layer coating (using a 60 nm thick Si 3 N 4 layer as the protective layer of the reflective metal) was formed sequentially as Comparative Example 2-1. As examples, multilayer coatings of the structures shown in Tables 2-2 and 2-3 were sequentially formed. The formation of each coating layer was performed using a magnetron sputtering facility.
  • Si 3 N 4 layer refractive index 2.1 at 550 nm wavelength
  • SiO 2 layer refractive index 1.46 at 550 nm wavelength
  • High refractive dielectric layer refractive index 2.1 at 550 nm
  • Example 2-1 and Comparative Example 2-1 the light reflectance at the surface of the coating in the wavelength range of 380 ⁇ 2500nm was measured by a spectrophotometer (Model Lambda 950, Perkin Elmer Co.) FIG. Shown in In addition, the reflectance at the coating surface of the coated glass of Examples 2-1 to 2-5 and Comparative Example 2-1, corresponding to AM1.5 in accordance with the ISO9050 standard in the wavelength band of 380-1100 nm and 1100-2500 nm, respectively The average value obtained by multiplying the weighting function is shown in Table 2-4.
  • the coating substrate of the embodiments showed a higher reflectance than the comparative example 2-1 in the power generation wavelength band of the solar cell 380 ⁇ 1100nm, the coating substrate of the embodiments is a comparative example It can be seen that it provides much better generation efficiency improvement effect than 2-1.
  • the embodiment is compared to Comparative Example 2-1 for 1100 ⁇ 2500nm wavelength on the coating surface Even if it exhibits a low reflectance compared with the above, there is no significant difference between the Examples and Comparative Example 2-1 in the module temperature reduction performance.
  • Reflectance on the glass surface was measured by applying the same conditions as in Test Example 2-1, and for each wavelength band of 380-1100 nm and 1100-2500 nm, the weighting function corresponding to AM1.5 according to ISO9050 standard. The average value obtained by multiplying the result is shown in Table 2-5.
  • the back surface facing the ground especially the back side of the glass surface, must reflect the radiant heat from the ground, so reflectance in the wavelength range of 1100 to 2500 nm is very important.
  • the substrates of the embodiments exhibited high reflectance at a wavelength of 1100 to 2500 nm despite the coating of the dielectric layer and the reflective auxiliary metal layer under the reflective metal layer.
  • the output of the Example 2-1 GTG module among the glass-to-glass modules (GTG) was general.
  • An additional output of 5Watt was obtained, which was about 2% higher than that of the GTG module, and the output was 3Watt higher than that of the GTG module.

Abstract

본 발명은 태양전지 모듈의 후면 반사용 다층코팅 기판 및 그 제조방법에 관한 것으로, 보다 상세하게는, 투명 기판 상에 적층된 다층 코팅 구조를 가지며, 태양전지 모듈(특히 Glass to Glass 타입의 태양전지 모듈)의 후면 반사용 기재로 사용시, 기계적 강도가 우수하여 긁힘이나 외부 충격에 의한 반사층의 손상을 방지할 수 있고, 내구성이 탁월하여 고온사막지역 등의 가혹한 환경에서도 태양광 반사율을 우수하게 유지할 수 있기 때문에 태양전지 모듈의 수명을 보장할 수 있고, 동시에 절연 기능을 발휘하기 때문에 태양전지 모듈의 누설전류 증가로 인하여 모듈의 출력이 저하되는 문제점을 해결할 수 있으며, 태양전지 셀의 발전출력을 향상시킬 수 있는 다층코팅 기판 및 그 제조방법에 관한 것이다.

Description

태양전지 모듈의 후면 반사용 다층코팅 기판 및 그 제조방법
본 발명은 태양전지 모듈의 후면 반사용 다층코팅 기판 및 그 제조방법에 관한 것으로, 보다 상세하게는, 투명 기판 상에 적층된 다층 코팅 구조를 가지며, 태양전지 모듈(특히 Glass to Glass 타입의 태양전지 모듈)의 후면 반사용 기재로 사용시, 기계적 강도가 우수하여 긁힘이나 외부 충격에 의한 반사층의 손상을 방지할 수 있고, 내구성이 탁월하여 고온사막지역 등의 가혹한 환경에서도 태양광 반사율을 우수하게 유지할 수 있기 때문에 태양전지 모듈의 수명을 보장할 수 있고, 동시에 절연 기능을 발휘하기 때문에 태양전지 모듈의 누설전류 증가로 인하여 모듈의 출력이 저하되는 문제점을 해결할 수 있으며, 태양전지 셀의 발전출력을 향상시킬 수 있는 다층코팅 기판 및 그 제조방법에 관한 것이다.
일반적인 태양전지 모듈은 태양광이 입사하는 순서대로 전면유리와 접합필름, 태양전지, 접합필름, 및 고분자 수지계열 백시트(Backsheet)를 합쳐서 방수 처리한 형태로 이루어진다.
그런데 후면기재로서 백시트를 사용하면 모듈의 강도가 약해지고, 특히 고온지역에서는 열에 취약하여 황변 현상이 발생하며, 사막지역 등에서는 모래폭풍에 의한 백시트의 마모와 모듈의 변형이 야기되는 등, 고온사막지역과 같은 가혹한 환경에 설치되는 태양전지 모듈에 있어서 특히 심각한 문제점이 있다. 따라서, 최근에는 백시트 대신 유리를 후면기재로 사용하는 Glass to Glass 타입의 모듈이 도입되고 있다.
그러나 이러한 Glass to Glass 타입의 태양전지 모듈에서는, 전면유리에서 태양전지로 직접 입사되는 태양광만 발전에 기여하고 태양전지 각 셀의 사이와 태양전지가 없는 모듈의 가장자리 부분에 입사되는 태양광은 사라지게 되므로, 광 손실율이 높아져 에너지의 낭비가 심하고 실제로 생산되는 전기량이 적어 발전효율이 저하되는 문제점이 있다. 또한 지면으로부터 반사되는 복사열에 의해 태양전지 모듈의 온도가 상승하여 모듈의 출력이 저하되고 수명이 단축되는 문제점도 존재한다.
최근에는 유리 등의 후면기재에 미러(mirror)층 혹은 반사층을 증착 또는 형성하여 모듈 내부에 적용하는 구조가 제안된 바 있다(예컨대, 대한민국공개특허 제10-2012-0025733호 및 대한민국등록특허 제10-1077579호). 그러나, 이들 특허문헌들에 소개된 코팅 후면기재들은 기계적 강도 및 내구성이 여전히 부족하여, 고온사막지역 등의 가혹한 환경에 설치될 태양전지 모듈에 사용하기에는 적합하지 않고, 사용시에는 태양전지 모듈의 수명을 단축시킬 수 있는 문제점이 있다.
또한, 미러(mirror)층 혹은 반사층은 외부 충격에 약하고 내구성이 떨어지기 때문에 보호층이 추가로 요구되는데, 미러층 혹은 반사층 위에 형성된 보호층에 의해 태양전지가 발전할 수 있는 파장대역인 380~1100nm에서 코팅 면에서의 반사율이 감소되어 태양전지의 발전출력이 감소되는 문제점이 존재한다.
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하고자 한 것으로, 태양전지 모듈(특히 Glass to Glass 타입의 태양전지 모듈)의 후면 반사용 기재로 사용시, 기계적 강도가 우수하여 긁힘이나 외부 충격에 의한 반사층의 손상을 방지할 수 있고, 내구성이 탁월하여 고온사막지역 등의 가혹한 환경에서도 태양광 반사율을 우수하게 유지할 수 있기 때문에 태양전지 모듈의 수명을 보장할 수 있고, 동시에 절연 기능을 발휘하기 때문에 태양전지 모듈의 누설전류 증가로 인하여 모듈의 출력이 저하되는 문제점을 해결할 수 있으며, 태양전지 셀의 발전출력을 향상시킬 수 있는 다층코팅 기판 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.
상기한 기술적 과제를 해결하고자 본 발명은, 투명 기판; 및 상기 투명 기판 상에 적층되며, 반사 금속층 및 규소-함유 산화물 또는 규소-함유 질화물을 함유하는 하나 이상의 층을 포함하는 다층코팅;을 포함하는 다층코팅 기판을 제공한다.
본 발명의 구체적인 제1 측면에 따르면, (1) 투명 기판; (2) 상기 투명 기판 상에 형성된 반사 금속층; 및 (3) 상기 반사 금속층 상에 형성되며, 규소-함유 산화물 또는 규소-함유 질화물을 함유하는 절연성 보호층;을 포함하며, 380~1100nm 파장대역에서의 광 반사율이 60% 이상이고, 1100~2500nm 파장대역에서의 광 반사율이 90% 이상인, 다층코팅 기판이 제공된다.
본 발명의 제1 측면은, 투명 기판 상에 반사 금속층 및 절연성 보호층을 순차적으로 형성하는 단계를 포함하고, 여기에서, 상기 절연성 보호층이 규소-함유 산화물 또는 규소-함유 질화물을 함유하며, 제조된 다층코팅 기판의 380~1100nm 파장대역에서의 광 반사율이 60% 이상이고, 1100~2500nm 파장대역에서의 광 반사율이 90% 이상인, 다층코팅 기판의 제조방법을 또한 제공한다.
본 발명의 구체적인 제2 측면에 따르면, (1) 투명 기판; 및 상기 투명 기판 상에 순서대로 적층된 (2) 유전막층, (3) 제1반사보조금속층, (4) 반사 금속층, (5) 제2반사보조금속층, (6) 굴절율 1.3~1.6의 저굴절 유전막층 및 (7) 굴절율 1.9~2.6의 고굴절 유전막층을 포함하는 다층코팅;을 포함하며, 여기서 상기 유전막층들 중 적어도 하나가 규소-함유 산화물 또는 규소-함유 질화물을 함유하는, 다층코팅 기판이 제공된다.
본 발명의 제2 측면은, 투명 기판 상에 유전막층, 제1반사보조금속층, 반사 금속층, 제2반사보조금속층, 굴절율 1.3~1.6의 저굴절 유전막층 및 굴절율 1.9~2.6의 고굴절 유전막층을 순차적으로 형성하는 단계를 포함하고, 여기서 상기 유전막층들 중 적어도 하나가 규소-함유 산화물 또는 규소-함유 질화물을 함유하는, 다층코팅 기판의 제조방법을 또한 제공한다.
본 발명은 또한, 후면 반사용 기재로서 본 발명의 다층코팅 기판을 구비한 것을 특징으로 하는 태양전지 모듈을 제공한다.
본 발명의 다층코팅 기판을 태양전지 모듈의 후면 반사용 기재로서 사용하면, 기계적 강도 및 내구성, 특히 내스크래치성이 확보되고 내열성이 높아 고온사막지역 등의 가혹한 환경에서도 태양전지 모듈의 수명을 보장할 수 있고, 동시에 태양전지 모듈의 출력을 저하시키는 누설전류를 막아 태양전지 모듈의 출력을 증가시킬 수 있으며, 전면유리로부터 입사된 빛을 태양전지 셀에 보다 많이 재입사시켜서 태양전지 모듈의 출력을 향상시킬 수 있다. 따라서, 본 발명의 다층코팅 기판을 구비한 태양전지 모듈은 고온사막지역 등에 특히 적합하다.
도 1은 본 발명의 제1 측면에 따른 태양전지 모듈의 구성에 대한 개략도이다.
도 2는 본 발명의 제2 측면에 따른 태양전지 모듈의 구성에 대한 개략도이다.
도 3은 본 발명의 실시예 2-1과 비교예 2-1에서 각각 제조된 다층코팅 기판의 반사율 비교 그래프이다.
이하에서 본 발명을 상세히 설명한다.
본 발명의 다층코팅 기판에 있어서, 투명 기판으로는 유리 기판 또는 투명 플라스틱 기판과 같이 투명한 재질로서 그 표면 상에 본 발명에 따른 다층코팅이 형성될 수 있는 것이면 제한 없이 사용가능하며, 바람직하게는 유리 기판이 사용된다.
유리 기판의 경우 예컨대, 소다라임 유리와 같은 통상의 유리와 태양전지용 저철분 무늬유리(low-iron patterned glass), 저철분 판유리(low-iron float glass) 등을 제한 없이 사용할 수 있다. 또한, 필요에 따라 강화 또는 부분강화된 유리를 사용할 수도 있다.
투명 플라스틱 기판의 경우, 예를 들면, 폴리카보네이트(polycarbonate), 폴리메틸메타아크릴레이트(polymethylmethacrylate), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate), 폴리부틸렌 테레프탈레이트(polybutylene terephthalate), 폴리이미드(polyimide), 베이클라이트(bakelite) 및 이들의 조합으로부터 선택되는 폴리머 재료로 이루어진 기판을 사용할 수 있다.
본 발명에 있어서, 투명 기판의 두께에는 특별한 제한이 없으며, 사용목적에 따라 예컨대, 1mm~8mm, 보다 바람직하게는 2mm~4mm의 두께의 범위 내에서 자유롭게 선택될 수 있다.
본 발명의 다층코팅 기판에 있어서, 반사 금속층에 포함되는 금속으로는 태양전지 모듈의 반사층에 통상 사용 가능한 금속, 예컨대, 알루미늄(aluminum, Al), 은(silver, Ag), 백금(platinum, Pt), 티타늄(titanium, Ti) 또는 이들의 조합을 들 수 있다. 바람직하게는, 상기 반사 금속층은 알루미늄(Al), 은(Ag) 또는 이들의 조합을 포함하는 금속층일 수 있으며, 알루미늄(Al) 층이 가장 바람직하다.
상기 반사 금속층은 1100~2500nm 파장대역에서 바람직하게는 85% 이상(예컨대 90~99%), 보다 바람직하게는 93% 이상(예컨대 93~99%, 보다 구체적으로는 93~98%)의 광 반사율을 나타낸다. 반사 금속층의 1100~2500nm 파장대역에서의 광 반사율이 85%에 못 미치면, 태양전지 모듈의 수명 저하 방지 효과 및 효율 향상 효과가 불충분할 수 있다.
상기 반사 금속층의 두께에는 특별한 제한이 없으며, 원하는 반사효과를 얻을 수 있는 범위 내에서 코팅 공정의 효율성 등을 고려하여 적절히 선택될 수 있다. 반사 금속층의 두께의 하한은, 예컨대, 20nm 또는 30nm일 수 있고, 그 상한은, 예컨대, 200nm, 150nm 또는 100nm일 수 있으나, 이에 한정되는 것은 아니다. 반사 금속층의 두께가 상기보다 지나치게 얇으면 태양전지 모듈의 수명 저하 방지 효과 및 효율 향상 효과가 불충분할 수 있고, 반대로 지나치게 두꺼우면 코팅 공정의 효율이 낮아지고 경제성이 떨어질 수 있다.
본 발명의 제1 측면에 따른 다층코팅 기판에 있어서, 반사 금속층 상에 형성되는 절연성 보호층은 규소-함유 산화물 또는 규소-함유 질화물을 함유한다. 상기 규소-함유 산화물 또는 규소-함유 질화물은, 바람직하게는 질화규소(Si3N4), 산화규소(SiO2), 규소-알루미늄 혼합 질화물, 규소-알루미늄 혼합 산화물 및 이들의 조합으로부터 선택될 수 있으며, 보다 바람직하게는 질화규소(Si3N4), 산화규소(SiO2), 규소-알루미늄 혼합 질화물 및 이들의 조합으로부터 선택될 수 있다. 또한, 상기 규소-함유 산화물은 산화규소(SiO2), 규소-알루미늄 혼합 산화물(예컨대, SiaAlbOc, 여기서 a=0.9~0.99, b=0.01~0.1, c=1~2) 및 이들의 조합으로부터 선택될 수 있고, 상기 규소-함유 질화물은 질화규소(Si3N4), 규소-알루미늄 혼합 질화물(예컨대, SixAlyNz, 여기서 x=2~3, y=0.05~0.5(보다 구체적으로는, 0.05~0.1 또는 0.1~0.5), z=3~4) 및 이들의 조합으로부터 선택될 수 있다.
규소-알루미늄 혼합 산화물 또는 질화물의 경우, 규소와 알루미늄의 비(Si/Al)는 원자% 비율로 Si/Al이 1을 초과하는 것, 즉, 규소-알루미늄 혼합 산화물 또는 질화물 내의 규소 원자 함량이 알루미늄 원자 함량보다 많은 것이 바람직하다.
상기 절연성 보호층의 두께에는 특별한 제한이 없으며, 원하는 기계적 강도 및 내구성 향상 효과를 얻을 수 있는 범위 내에서 코팅 공정의 효율성 등을 고려하여 적절히 선택될 수 있다. 절연성 보호층의 두께의 하한은, 예컨대, 20nm 또는 30nm일 수 있고, 그 상한은, 예컨대, 150nm 또는 120nm일 수 있으나, 이에 한정되는 것은 아니다. 절연성 보호층의 두께가 상기보다 지나치게 얇으면 내구성과 절연성에 문제가 있을 수 있고, 반대로 지나치게 두꺼우면 제조비용이 증가하는 문제가 있을 수 있다.
상기 규소-함유 산화물이 550nm파장에서 1.4~1.6을 벗어나는 굴절률을 가지면 코팅막의 내구성이 약해지거나 빛을 반사 혹은 투과하지 못하고 흡수할 수 있으며 이로 인해 모듈의 온도가 상승하는 요인이 될 수 있고, 규소-함유 질화물의 경우 550nm파장에서 1.9~2.4를 벗어나는 굴절률을 가지면 규소-함유 산화물과 같이 마찬가지의 문제점이 있을 수 있다.
본 발명의 제1 측면의 바람직한 구체예에 따르면, 다층코팅 기판에 있어서 상기 반사 금속층과 절연성 보호층의 두께 합의 하한은, 예컨대, 40nm 또는 80nm일 수 있고, 그 상한은, 예컨대, 340nm 또는 120nm일 수 있다. 반사 금속층과 절연성 보호층의 두께 합이 40nm 미만이면 코팅층의 강도가 약해지고 모듈의 절연저항이 낮아질 수 있고, 340nm을 초과하면 제조비용이 지나치게 증가하는 문제가 있을 수 있다.
본 발명의 제1 측면에 따른 다층코팅 기판의 380~1100nm 파장대역에서 광 반사율은 60% 이상이며, 바람직하게는 70% 이상일 수 있다. 또한, 독립적으로, 380~1100nm 파장대역에서 광 반사율은 95% 이하, 보다 구체적으로는 90% 이하일 수 있다. 380~1100nm 파장대역에서 광 반사율이 60% 미만이면 태양전지 모듈의 효율 향상 효과가 불충분할 수 있다.
한편, 본 발명의 제1 측면에 따른 다층코팅 기판의 1100~2500nm 파장대역에서 광 반사율은 90% 이상이며, 바람직하게는 92% 이상 또는 93% 이상일 수 있다. 또한, 독립적으로, 1100~2500nm 파장대역에서 광 반사율은 98% 이하, 보다 구체적으로는 97% 이하일 수 있다. 1100~2500nm 파장대역에서 광 반사율이 90% 미만이면 태양전지 모듈의 수명 저하 방지 효과가 매우 불충분할 수 있다.
본 발명의 제1 측면은, 투명 기판 상에 반사 금속층 및 절연성 보호층을 순차적으로 형성하는 단계를 포함하고, 여기에서, 상기 절연성 보호층이 규소-함유 산화물 또는 질화물을 함유하며, 제조된 다층코팅 기판의 380~1100nm 파장대역에서의 광 반사율이 60% 이상이고, 1100~2500nm 파장대역에서의 광 반사율이 90% 이상인, 다층코팅 기판의 제조방법을 또한 제공한다.
본 발명의 제2 측면에 따른 다층코팅 기판에 포함되는 유전막층(2)은, 바람직하게는 규소-함유 질화물을 함유한다. 상기 규소-함유 질화물은, 구체적으로는 질화규소(Si3N4), 규소-알루미늄 혼합 질화물(예컨대, SixAlyNz, 여기서 x=2~3, y=0.05~0.5(보다 구체적으로는, 0.05~0.1 또는 0.1~0.5), z=3~4) 및 이들의 조합으로부터 선택될 수 있다.
상기 유전막층(2)의 두께의 하한은, 예컨대 10nm, 15nm 또는 20nm일 수 있고, 그 상한은, 예컨대 60nm, 50nm 또는 40nm일 수 있으나, 이에 한정되는 것은 아니다. 유전막층(2)의 두께가 10nm보다 얇으면 기판유리로부터 확산된 알칼리 성분에 의해 반사 금속층의 내구성이 저하될 수 있고, 반대로 60nm보다 두꺼우면 기판유리와의 표면응력(surface stress) 차이가 커져서 기판유리와 박막필름의 접착력이 약해질 뿐만 아니라 유전막층(2) 상에 적층되는 박막필름들과의 접착력 또한 약해질 우려가 있다.
본 발명의 제2 측면에 따른 다층코팅 기판에 포함되는 제1 및 제2반사보조금속층(3, 5)은, 각각 독립적으로, 바람직하게는 니켈(Ni)층, 크롬(Cr)층, 또는 니켈-크롬 혼합금속(Ni-Cr)층일 수 있으며, 보다 바람직하게는 니켈-크롬 혼합금속(Ni-Cr)층일 수 있다.
상기 제1 및 제2반사보조금속층(3, 5)의 두께는, 각각 독립적으로 0.5~5nm일 수 있으나, 이에 한정되는 것은 아니다. 반사보조금속층(3, 5) 각각의 두께가 0.5nm보다 얇으면 반사 금속층의 내열성과 산화방지 성능이 약해질 우려가 있을 수 있고, 반대로 5nm보다 두꺼우면 반사 금속층의 반사율을 저하시키는 문제가 있을 수 있다.
본 발명의 제2 측면에 따른 다층코팅 기판에 포함되는 저굴절 유전막층(6)은 550nm 파장에서 1.3~1.6의 굴절율을 가지며, 바람직하게는 규소-함유 산화물을 함유한다. 구체적으로, 상기 규소-함유 산화물은 산화규소(SiO2), 규소-알루미늄 혼합 산화물(예컨대, SiaAlbOc, 여기서 a=0.9~0.99, b=0.01~0.1, c=1~2) 및 이들의 조합으로부터 선택될 수 있다. 상기 규소-함유 산화물은 1.3~1.6을 벗어나는 굴절률을 가지면 코팅막의 내구성이 약해지거나 빛을 반사 혹은 투과하지 못하고 흡수할 수 있으며 이로 인해 모듈의 온도가 상승하는 요인이 될 수 있다.
상기 저굴절 유전막층(6)의 두께의 하한은, 예컨대 30nm, 40nm 또는 50nm일 수 있고, 그 상한은, 예컨대 150nm, 140nm 또는 120nm일 수 있으나, 이에 한정되는 것은 아니다. 저굴절 유전막층(6)의 두께가 30nm보다 얇으면 반사율이 낮아지는 문제가 있을 수 있고, 반대로 150nm보다 두꺼우면 생산성의 저하와 박막필름의 결함이 증가할 수 있다.
본 발명의 제2 측면에 따른 다층코팅 기판에 포함되는 고굴절 유전막층(7)은 550nm 파장에서 1.9~2.6의 굴절율을 가지며, 바람직하게는 규소-함유 질화물을 함유한다. 구체적으로, 상기 규소-함유 질화물은 질화규소(Si3N4), 규소-알루미늄 혼합 질화물(예컨대, SixAlyNz, 여기서 x=2~3, y=0.05~0.5(보다 구체적으로는, 0.05~0.1 또는 0.1~0.5), z=3~4) 및 이들의 조합으로부터 선택될 수 있다. 규소-함유 질화물의 경우 1.9~2.6을 벗어나는 굴절률을 가지면 규소-함유 산화물과 같이 마찬가지로 코팅막의 내구성이 약해지거나 빛을 반사 혹은 투과하지 못하고 흡수할 수 있으며 이로 인해 모듈의 온도가 상승하는 요인이 될 수 있다.
상기 고굴절 유전막층(7)의 두께의 하한은, 예컨대 30nm 또는 40nm일 수 있고, 그 상한은, 예컨대 150nm 또는 120nm일 수 있으나, 이에 한정되는 것은 아니다. 고굴절 유전막층(7)의 두께가 30nm보다 얇으면 반사율과 내열성이 감소할 수 있고, 반대로 150nm보다 두꺼운 경우에도 반사율이 감소할 수 있다.
본 발명의 제2 측면에 따른 다층코팅 기판의, 코팅 면에서의 380~1100nm 파장대역 광 반사율은 바람직하게는 85% 이상, 더 바람직하게는 88% 이상, 보다 더 바람직하게는 89% 이상일 수 있다.
한편, 본 발명의 제2 측면에 따른 다층코팅 기판의, 투명 기판 면에서의 1100~2500nm 파장대역 광 반사율은 바람직하게는 85% 이상, 더 바람직하게는 88% 이상, 보다 더 바람직하게는 89% 이상일 수 있다.
본 발명의 제2 측면은, 투명 기판 상에 유전막층, 제1반사보조금속층, 반사 금속층, 제2반사보조금속층, 굴절율 1.3~1.6의 저굴절 유전막층 및 굴절율 1.9~2.6의 고굴절 유전막층을 순차적으로 형성하는 단계를 포함하고, 여기서 상기 유전막층들 중 적어도 하나가 규소-함유 산화물 또는 규소-함유 질화물을 함유하는, 다층코팅 기판의 제조방법을 또한 제공한다.
본 발명의 다층코팅 기판을 제조함에 있어서, 투명 기판 상에 각 층을 순차적으로 형성하는 방법에는 특별한 제한이 없으며, 진공증착, 특히 스퍼터링(sputtering)을 포함한 물리적 기상 증착(Physical vapor deposition, PVD), 저압(low pressure), 상압(atmospheric pressure), 플라즈마(plasma)를 포함하는 화학적 기상 증착(Chemical vapor deposition, CVD) 등의 방법을 적절히 사용할 수 있다. 본 발명의 바람직한 일 구체예에 따르면, 마그네트론 스퍼터링 방식에 의해 연속적으로 모든 층을 진공증착할 수 있다. 이 방식은 특히 대형 기판의 제품에 대해 적합하다. 해당 타겟 물질(들)의 스퍼터링을, 산소의 존재 하에 수행함으로써 그 산화물 층을 증착할 수 있고, 질소의 존재 하에 수행함으로써 그 질화물 층을 증착할 수 있다.
본 발명에 따르면, 후면 반사용 기재로서 본 발명의 다층코팅 기판을 구비한 것을 특징으로 하는 태양전지 모듈이 또한 제공된다.
이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 이들 실시예는 본 발명의 예시적으로 설명하기 위한 목적일 뿐, 그에 의하여 본 발명의 보호범위가 제한되는 것은 결코 아니다.
[실시예]
실시예 1-1 내지 1-6 및 비교예 1-1
2.8mm 두께의 소다라임 판유리 위에 하기 표 1-1에 나타낸 구성의 2층코팅을 순차적으로 형성하였다(비교예 1-1은 반사 금속층만 형성). 각 코팅층의 형성은 마그네트론 스퍼터링 설비를 사용하여 수행되었다.
[표 1-1]
Figure PCTKR2015005874-appb-I000001
Si3N4, Si2 . 76Al0 . 24N4, Si2 . 91Al0 . 09N4 층: 550nm 파장에서의 굴절율 2.1
SiO2, Si0 . 92Al0 . 08O2 층: 550nm 파장에서의 굴절율 1.46
시험예 1-1: 반사율 평가
상기 제조된 각 2층코팅 유리에 대하여, 380~2500nm 파장대역에서의 광 반사율을 분광투과율 측정기(모델명 Lambda 950, Perkin Elmer社)로 측정하였고, 380~1100nm 및 1100~2500nm 각각의 파장대역에 대하여, ISO9050 규격에 따라 AM1.5에 해당하는 중가계수(Weighting function)를 곱한 평균값을 하기 표 1-2에 나타내었다.
[표 1-2]
Figure PCTKR2015005874-appb-I000002
시험예 1-2: 성능평가
상기 제조된 실시예 1-1 내지 1-3 및 비교예 1-1의 2층코팅 유리에 대하여, 다음의 조건을 적용하여 성능을 평가하였다.
- 연필경도: 추의 하중 750g, 경도의 정도는 6B<3B<1B<HB<1H<2H<3H의 순서
- Damp Heat: 온도 85℃, 습도 85%, 1000시간 유지 후 1100~2500nm 파장대역 광 반사율 측정
- 염수분무: 5% NaCl 용액, 35℃, 21일간 유지 후 1100~2500nm 파장대역 광 반사율 측정
- 절연저항: 모듈의 절반 가량을 수조에 담근 후 Wet Leakage 측정, 단위 MΩ
- 출력: Solar Simulator에서 온도25℃, 빛에너지량 1000W/㎡의 조건으로 측정, 단위 watt
상기 조건들로 시험한 성능 평가 결과는 하기 표 1-3에 나타내었다.
[표 1-3]
Figure PCTKR2015005874-appb-I000003
상기 표 1-3에 나타낸 결과로부터 알 수 있듯이, 비교예 1-1은 연필경도 시험결과 가장 약한 내스크래치성을 나타내었고, Damp Heat 및 염수분무 시험결과에서도 반사율이 현저히 떨어졌다. 이에 비하여 본 발명에 따른 실시예 1-1 내지1-3은, 연필경도에서 현저히 개선된 경도를 나타내었고, Damp Heat 및 염수분무 시험결과에서도 반사율의 저하 방지 성능이 개선되었다. 또한 절연저항은 비교예 대비 실시예 1-1 내지1-3이 높게 나타났고, 모듈의 출력값에서도 비교예 대비 실시예 1-1 내지1-3이 우수하게 나타났다.
실시예 2-1 내지 2-5 및 비교예 2-1
2.8mm 두께의 소다라임 판유리 위에, 비교예 2-1로서 하기 표 2-1에 나타낸 구성의 2층코팅(60nm 두께의 Si3N4층을 반사 금속의 보호층으로 이용)을 순차적으로 형성하였고, 각 실시예로서 하기 표 2-2 및 2-3에 나타낸 구성의 다층코팅을 순차적으로 형성하였다. 각 코팅층의 형성은 마그네트론 스퍼터링 설비를 사용하여 수행되었다.
[표 2-1] 비교예 2-1
Figure PCTKR2015005874-appb-I000004
[표 2-2] 실시예 2-1
Figure PCTKR2015005874-appb-I000005
Si3N4 층: 550nm 파장에서의 굴절율 2.1
SiO2 층: 550nm 파장에서의 굴절율 1.46
[표 2-3] 실시예 2-2 내지 2-5
Figure PCTKR2015005874-appb-I000006
고굴절 유전막층: 550nm 파장에서의 굴절율 2.1
저굴절 유전막층: 550nm 파장에서의 굴절율 1.46
시험예 2-1: 코팅 면에서의 반사율 평가
상기 제조된 실시예 2-1 및 비교예 2-1의 코팅 유리에 대하여, 380~2500nm 파장대역에서 코팅 면에서의 광 반사율을 분광투과율 측정기(모델명 Lambda 950, Perkin Elmer社)로 측정하여 도 3에 나타내었다. 또한, 실시예 2-1 내지 2-5 및 비교예 2-1의 코팅 유리의 코팅 면에서의 반사율로서, 380~1100nm 및 1100~2500nm 각각의 파장대역에서 ISO9050 규격에 따라 AM1.5에 해당하는 중가계수(Weighting function)를 곱한 평균값을 구하여 하기 표 2-4에 나타내었다.
[표 2-4] 코팅 면에서의 반사율
Figure PCTKR2015005874-appb-I000007
코팅 면에서 반사된 빛은 태양전지 셀에 재입사되어 발전효율 향상에 기여한다. 표 2-4 및 도 3에서 알 수 있듯이, 태양전지의 발전 파장대역인 380~1100nm에서 실시예들의 코팅기판이 비교예 2-1 보다 높은 반사율을 나타내었는바, 실시예들의 코팅기판이 비교예 2-1 보다 월등히 우수한 발전효율 향상 효과를 제공함을 알 수 있다. 한편, 코팅 면에서 반사된 1100~2500nm 파장대역의 빛은 태양전지 모듈의 온도상승에 주는 영향이 지열에 비해 현격히 작기 때문에, 실시예들이 코팅 면에서 1100~2500nm 파장에 대하여 비교예 2-1에 비하여 낮은 반사율을 나타내었다고 하더라도, 모듈온도 저감 성능에 있어서 실시예들과 비교예 2-1 간에 큰 차이는 없다.
시험예 2-2: 유리 면에서의 반사율 평가
시험예 2-1과 동일한 조건을 적용하여 유리 면에서의 반사율을 측정하였으며, 380~1100nm 및 1100~2500nm 각각의 파장대역에 대하여, ISO9050 규격에 따라 AM1.5에 해당하는 중가계수(Weighting function)를 곱한 평균값을 구하여 하기 표 2-5에 나타내었다.
[표 2-5] 유리 면에서의 반사율
Figure PCTKR2015005874-appb-I000008
지면을 향하게 되는 후면 기재, 특히 유리 면의 뒷면은 지면으로부터의 복사열을 반사시켜야 하므로 1100~2500nm 파장대역에서의 반사율이 매우 중요하다. 표 2-5에서 알 수 있듯이, 실시예들의 기판은 반사 금속층 하부에 유전막층과 반사보조금속층이 코팅되었음에도 불구하고 1100~2500nm 파장에 대하여 높은 반사율을 나타내어, 후면 반사 성능 또한 우수하였다.
시험예 2-3: 사막용 태양광 모듈 적용 평가
반사율 성능이 우수한 실시예 2-1의 다층 코팅유리를 사용하여 결정질 실리콘 태양광 모듈을 제작하고 평가한 결과, GTG(Glass-to-Glass) 모듈들 중에서 실시예 2-1 GTG 모듈의 출력이 일반 GTG 모듈 대비 약 2% 높은 5Watt의 추가 출력을 얻었으며, 비교예 2-1 GTG 모듈 대비해서는 출력이 3Watt 높은 결과를 얻었다. 이것은 필름면에서의 광변환영역(380~1100nm) 반사율이 높으므로 태양광모듈의 출력 또한 높게 나타난 것임을 의미한다.
Figure PCTKR2015005874-appb-I000009
[부호의 설명]
도 1에 있어서,
1: 반사 금속층
2: 절연성 보호층
3: 접합필름
4: 태양전지 셀
5: 접합필름
6: 전면 유리
7: 후면 투명 기판
A: 후면 다층코팅
도 2에 있어서,
1-1: 유리면
1: 후면 투명 기판
2: 유전막층
3: 제1반사보조금속층
4: 반사 금속층
5: 제2반사보조금속층
6: 저굴절 유전막층
7: 고굴절 유전막층
7-1: 코팅면
8: 접합필름
9: 태양전지 셀
10: 접합필름
11: 전면 유리
A: 후면 다층코팅

Claims (17)

  1. 투명 기판; 및
    상기 투명 기판 상에 적층되며, 반사 금속층 및 규소-함유 산화물 또는 규소-함유 질화물을 함유하는 하나 이상의 층을 포함하는 다층코팅;을 포함하는,
    다층코팅 기판.
  2. 제1항에 있어서, (1) 투명 기판; (2) 상기 투명 기판 상에 형성된 반사 금속층; 및 (3) 상기 반사 금속층 상에 형성되며, 규소-함유 산화물 또는 규소-함유 질화물을 함유하는 절연성 보호층;을 포함하며, 380~1100nm 파장대역에서의 광 반사율이 60% 이상이고, 1100~2500nm 파장대역에서의 광 반사율이 90% 이상인, 다층코팅 기판.
  3. 제2항에 있어서, 상기 규소-함유 산화물은 산화규소(SiO2), 규소-알루미늄 혼합 산화물(SiaAlbOc, 여기서 a=0.9~0.99, b=0.01~0.1, c=1~2) 및 이들의 조합으로부터 선택되고, 상기 규소-함유 질화물은 질화규소(Si3N4), 규소-알루미늄 혼합 질화물(SixAlyNz, 여기서 x=2~3, y=0.05~0.1, z=3~4) 및 이들의 조합으로부터 선택되는 것을 특징으로 하는 다층코팅 기판.
  4. 제2항에 있어서, 상기 규소-함유 질화물은 질화규소(Si3N4), 규소-알루미늄 혼합 질화물(SixAlyNz, 여기서 x=2~3, y=0.1~0.5, z=3~4) 및 이들의 조합으로부터 선택되는 것을 특징으로 하는 다층코팅 기판.
  5. 제2항에 있어서, 상기 절연성 보호층이 550nm 파장에서 1.4~2.4의 굴절율을 나타내는 것을 특징으로 하는 다층코팅 기판.
  6. 제2항에 있어서, 상기 반사 금속층과 절연성 보호층의 두께 합이 40~340nm인 것을 특징으로 하는 다층코팅 기판.
  7. 투명 기판 상에 반사 금속층 및 절연성 보호층을 순차적으로 형성하는 단계를 포함하고, 여기에서, 상기 절연성 보호층이 규소-함유 산화물 또는 규소-함유 질화물을 함유하며, 제조된 다층코팅 기판의 380~1100nm 파장대역에서의 광 반사율이 60% 이상이고, 1100~2500nm 파장대역에서의 광 반사율이 90% 이상인, 다층코팅 기판의 제조방법.
  8. 제1항에 있어서, (1) 투명 기판; 및 상기 투명 기판 상에 순서대로 적층된 (2) 유전막층, (3) 제1반사보조금속층, (4) 반사 금속층, (5) 제2반사보조금속층, (6) 굴절율 1.3~1.6의 저굴절 유전막층 및 (7) 굴절율 1.9~2.6의 고굴절 유전막층을 포함하는 다층코팅;을 포함하며, 여기서 상기 유전막층들 중 적어도 하나가 규소-함유 산화물 또는 규소-함유 질화물을 함유하는, 다층코팅 기판.
  9. 제8항에 있어서, 상기 유전막층(2)이 규소-함유 질화물을 함유하는 것을 특징으로 하는 다층코팅 기판.
  10. 제8항에 있어서, 상기 제1 및 제2반사보조금속층(3, 5)이, 각각 독립적으로, 니켈(Ni)층, 크롬(Cr)층, 또는 니켈-크롬 혼합금속(Ni-Cr)층인 것을 특징으로 하는 다층코팅 기판.
  11. 제8항에 있어서, 상기 저굴절 유전막층(6)이 규소-함유 산화물을 함유하는 것을 특징으로 하는 다층코팅 기판.
  12. 제8항에 있어서, 상기 고굴절 유전막층(7)이 규소-함유 질화물을 함유하는 것을 특징으로 하는 다층코팅 기판.
  13. 제8항에 있어서, 380~1100nm 파장대역에서의 광 반사율이 85% 이상이고, 1100~2500nm 파장대역에서의 광 반사율이 85% 이상인 것을 특징으로 하는 다층코팅 기판.
  14. 투명 기판 상에 유전막층, 제1반사보조금속층, 반사 금속층, 제2반사보조금속층, 굴절율 1.3~1.6의 저굴절 유전막층 및 굴절율 1.9~2.6의 고굴절 유전막층을 순차적으로 형성하는 단계를 포함하며, 여기서 상기 유전막층들 중 적어도 하나가 규소-함유 산화물 또는 규소-함유 질화물을 함유하는, 다층코팅 기판의 제조방법.
  15. 제1항 내지 제6항 및 제8항 내지 제13항 중 어느 한 항에 있어서, 상기 투명 기판이 유리 기판, 또는 폴리카보네이트, 폴리메틸메타아크릴레이트, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리이미드, 베이클라이트 및 이들의 조합으로부터 선택되는 폴리머 재료로 이루어진 투명 플라스틱 기판인 것을 특징으로 하는 다층코팅 기판.
  16. 제1항 내지 제6항 및 제8항 내지 제13항 중 어느 한 항에 있어서, 상기 반사 금속층이 알루미늄(aluminum, Al), 은(silver, Ag), 백금(platinum, Pt), 티타늄(titanium, Ti) 또는 이들의 조합을 포함하는 금속층인 것을 특징으로 하는 다층코팅 기판.
  17. 후면 반사용 기재로서 제1항 내지 제6항, 제8항 내지 제13항, 제15항 및 제16항 중 어느 한 항의 다층코팅 기판을 구비한 것을 특징으로 하는 태양전지 모듈.
PCT/KR2015/005874 2014-06-12 2015-06-11 태양전지 모듈의 후면 반사용 다층코팅 기판 및 그 제조방법 WO2015190840A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140071627 2014-06-12
KR10-2014-0071627 2014-06-12
KR20140071788 2014-06-13
KR10-2014-0071788 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015190840A1 true WO2015190840A1 (ko) 2015-12-17

Family

ID=54833847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005874 WO2015190840A1 (ko) 2014-06-12 2015-06-11 태양전지 모듈의 후면 반사용 다층코팅 기판 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2015190840A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109205A (zh) * 2019-06-14 2019-08-09 湖北亿钧耀能新材股份公司 一种太阳能镜及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100313875A1 (en) * 2007-10-18 2010-12-16 Kennedy Cheryl E High temperature solar selective coatings
US20110249326A1 (en) * 2008-10-20 2011-10-13 Abengoa Solar New Technologies, S.A. Selective solar absorbent coating and manufacturing method
US20110315189A1 (en) * 2009-03-03 2011-12-29 Arkema France Acrylic photovoltaic module backsheet
US20120048375A1 (en) * 2010-08-11 2012-03-01 Tsun-Min Hsu Film used for solar cell module and module thereof
US20130334511A1 (en) * 2012-06-13 2013-12-19 Plasmasi, Inc. Method for deposition of high-performance coatings and encapsulated electronic devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100313875A1 (en) * 2007-10-18 2010-12-16 Kennedy Cheryl E High temperature solar selective coatings
US20110249326A1 (en) * 2008-10-20 2011-10-13 Abengoa Solar New Technologies, S.A. Selective solar absorbent coating and manufacturing method
US20110315189A1 (en) * 2009-03-03 2011-12-29 Arkema France Acrylic photovoltaic module backsheet
US20120048375A1 (en) * 2010-08-11 2012-03-01 Tsun-Min Hsu Film used for solar cell module and module thereof
US20130334511A1 (en) * 2012-06-13 2013-12-19 Plasmasi, Inc. Method for deposition of high-performance coatings and encapsulated electronic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109205A (zh) * 2019-06-14 2019-08-09 湖北亿钧耀能新材股份公司 一种太阳能镜及其制作方法

Similar Documents

Publication Publication Date Title
US11097513B2 (en) Laminated glass pane and use thereof
CN102421720B (zh) 提供有包括高折射指数层的具有热性质的叠层的基材
US8867320B2 (en) Timepiece cover glass and timepiece
KR100572965B1 (ko) 열 복사를 반사하는 적층물을 구비한 투명 기판과 이를 제조하는 방법
US20100282301A1 (en) Glass substrate coated with layers having improved resistivity
US20130008500A1 (en) Physical tempered glass, solar cover plate, solar backsheet and solar panel
JP2011513101A (ja) 反射防止コーティングを有する透明基材
WO2015030549A1 (ko) 저방사 코팅 및 이를 포함하는 창호용 건축 자재
WO2018048034A1 (ko) 창호용 기능성 건축 자재
BRPI0620013A2 (pt) utilização de um substrato transparente, notadamente vìtreo e modulo solar compreendendo uma pluralidade de células solares
WO2015088267A1 (ko) 저방사 코팅막, 이의 제조방법 및 이를 포함하는 창호용 기능성 건축 자재
WO2015088269A1 (ko) 저방사 코팅막, 이의 제조방법 및 이를 포함하는 창호용 기능성 건축 자재
KR101194257B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
WO2011037365A2 (en) Low emissivity glass comprising dielectric layer and method for producing the same
WO2019112320A1 (ko) 창호용 기능성 건축 자재
WO2016017999A1 (ko) 저방사 코팅, 및 저방사 코팅을 포함하는 창호용 기능성 건축 자재
WO2014104530A1 (ko) 저방사 투명 적층체 및 이를 포함하는 건축 자재
WO2015190840A1 (ko) 태양전지 모듈의 후면 반사용 다층코팅 기판 및 그 제조방법
WO2019050193A1 (ko) 창호용 기능성 건축 자재
US20070212530A1 (en) Restrictive and Preferential Routing in a Distributed Mobile Switching Center Environment with Media Gateway Clusters
KR101456220B1 (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
WO2019225874A1 (ko) 적외선 반사필름 및 이의 제조방법
EP2806464B1 (en) Colored solar cells and panels containing the same
WO2017047983A1 (ko) 창호용 기능성 건축 자재
KR101688408B1 (ko) 태양전지 모듈의 후면 반사용으로 유용한 고반사성 및 고내구성 다층코팅 기판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806677

Country of ref document: EP

Kind code of ref document: A1