WO2015190320A1 - 撮像装置、及び、撮像方法 - Google Patents

撮像装置、及び、撮像方法 Download PDF

Info

Publication number
WO2015190320A1
WO2015190320A1 PCT/JP2015/065536 JP2015065536W WO2015190320A1 WO 2015190320 A1 WO2015190320 A1 WO 2015190320A1 JP 2015065536 W JP2015065536 W JP 2015065536W WO 2015190320 A1 WO2015190320 A1 WO 2015190320A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
unit
imaging
exposure correction
data
Prior art date
Application number
PCT/JP2015/065536
Other languages
English (en)
French (fr)
Inventor
梨花 三ヶ田
勝巳 加藤
大輔 小柳
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/312,092 priority Critical patent/US10075649B2/en
Publication of WO2015190320A1 publication Critical patent/WO2015190320A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures

Definitions

  • the present technology relates to an imaging apparatus and an imaging method, and more particularly, to an imaging apparatus and an imaging method capable of performing exposure correction desired by a user on a high dynamic range composite image.
  • a high dynamic range synthesis mode (hereinafter referred to as “HDR mode”) is known as a mode for effectively imaging a subject having a wide dynamic range. Further, most of this type of imaging apparatus has an exposure correction function that changes the exposure set by automatic exposure control.
  • Patent Document 1 discloses a technique for changing the dynamic range of a composite image obtained by combining high-sensitivity image data and low-sensitivity image data.
  • an exposure correction value specified by the user when performing exposure correction on an image captured at the time of imaging in the HDR mode (hereinafter referred to as “high dynamic range composite image”).
  • high dynamic range composite image an exposure correction value specified by the user when performing exposure correction on an image captured at the time of imaging in the HDR mode
  • the present technology has been made in view of such a situation, and enables a user to perform exposure correction desired by a high dynamic range composite image.
  • An imaging device includes an imaging unit that captures an image of a subject and generates imaging data, an exposure correction amount setting unit that sets an exposure correction amount for correcting an exposure amount of the imaging unit, Based on the exposure correction amount set by the exposure correction amount setting unit, an image is captured by the imaging unit with an exposure control unit that controls exposure of the imaging unit and a plurality of different exposure amounts set by the exposure control unit.
  • a signal combining unit that combines the plurality of imaging data to generate combined data
  • a gradation conversion unit that converts the gradation of the combined data generated by the signal combining unit, and the exposure correction amount setting unit
  • a gradation control unit that controls gradation conversion by the gradation conversion unit based on the exposure correction amount set by the image capturing apparatus.
  • the gradation control unit predicts composite data before exposure correction using the exposure correction amount set by the exposure correction amount setting unit and luminance information of the composite data, and according to a result of the prediction
  • the gradation conversion by the gradation converting unit can be controlled according to the generated modulation curve.
  • the gradation control unit can use the minimum value, the average value, and the maximum value in the luminance information as the luminance information of the composite data.
  • the gradation control unit can make the exposure correction amount for predicting the composite data before exposure correction different from the exposure correction amount for correcting the exposure amount of the imaging unit.
  • the imaging method according to one aspect of the present technology is an imaging method corresponding to the imaging device according to one aspect of the present technology described above.
  • the subject is imaged, imaging data is generated, an exposure correction amount for correcting the exposure amount of the imaging unit is set, and the set exposure Based on the correction amount, the exposure of the imaging unit is controlled, and a plurality of pieces of imaging data captured by the imaging unit with a plurality of different exposure amounts are combined to generate combined data, and the set exposure correction amount Based on the above, gradation conversion of the generated composite data is controlled, and the gradation of the generated composite data is converted.
  • exposure correction desired by the user can be performed on the high dynamic range composite image.
  • FIG. 1 is a diagram for explaining the outline of exposure correction.
  • the horizontal axis represents the luminance of each pixel in a certain image, and means that the luminance is higher from the left side to the right side in the figure.
  • the vertical axis represents the number of pixels for each luminance, and means that the number of pixels increases from the lower side to the upper side in the figure. That is, the histogram of FIG. 1 represents the brightness distribution (luminance distribution) in a certain image.
  • the range of the dynamic range determined by automatic exposure control is set according to the exposure correction value (for example, 1 / 3EV, -4 / 3EV, etc.) set by the user. , And move to the overexposed or underexposed side. That is, when it is desired to overexpose, plus correction is performed, and when it is desired to underexpose, minus correction is performed.
  • the exposure correction value for example, 1 / 3EV, -4 / 3EV, etc.
  • the exposure correction value set by the user is used in exposure control after the exposure control unit (exposure control unit 113 (described later) (FIG. 5)) is converted into a unit capable of controlling the exposure amount. That is, the relationship between the exposure amount before and after exposure correction and the exposure correction amount can be expressed as follows.
  • Exposure compensation amount Exposure amount after exposure compensation-Exposure amount before exposure compensation
  • a high dynamic range composite image having a wide dynamic range is generated by synthesizing a plurality of imaging data having different exposure amounts.
  • multiple exposure data obtained by imaging in HDR mode are subjected to exposure compensation that includes the exposure compensation amount in the range of the dynamic range determined by automatic exposure control.
  • tone compression is performed on the synthesized data obtained by synthesizing a plurality of image data by automatic tone conversion control. That is, in the automatic exposure control, by adding the exposure correction amount, the high dynamic range composite image is subjected to exposure correction, and thereafter, gradation compression is performed by automatic gradation conversion control. For example, in HDR mode imaging, long-exposure imaging data and short-exposure imaging data can be obtained. By combining these imaging data, composite data is generated, and the gradation is controlled by automatic gradation conversion control. By adjusting the compression, the data range is always adjusted to be constant.
  • FIG. 2 is a diagram for explaining automatic gradation conversion control.
  • the horizontal axis (X axis) represents input data composed of 14-bit gradations before gradation conversion
  • the vertical axis (Y axis) represents output composed of 10-bit gradations after gradation conversion.
  • (Tone) is an example of gradation compression.
  • the minimum value (Ymin (A)), average value (Yave (A)), and maximum value in the histogram A representing luminance information obtained by detecting synthesized data before gradation conversion Using the three points (Ymax (A)), a modulation curve A that matches the output range is generated. Then, by converting the histogram A according to the modulation curve A, a gradation-compressed histogram A ′ is obtained.
  • the minimum value (Ymin (B)), the average value (Yave (B)), and the maximum value (Ymax) in the histogram B representing luminance information obtained by detecting the synthesized data before gradation conversion.
  • a modulation curve B that matches the output range is generated. Then, by converting the histogram B according to the modulation curve B, a gradation-compressed histogram B ′ is obtained.
  • the range of the histogram A and the histogram B for the combined data before gradation conversion is different, but the range of the histogram A ′ and the histogram B ′ for the combined data after gradation conversion is the same. I'm doing it.
  • By performing such gradation conversion control it is possible to use the entire output data range without excessive compression of the gradation and regardless of the input data range.
  • the modulation curve is generated by using three points of the minimum value, the average value, and the maximum value of the luminance information. However, the number of points is not fixed, and an arbitrary point is selected. And a modulation curve can be generated. The same applies to the modulation curves in other figures described later.
  • FIG. 3 is a diagram for explaining automatic gradation conversion control when exposure correction is performed.
  • the horizontal axis (X axis) represents input data before gradation conversion
  • the vertical axis (Y axis) represents output data after gradation conversion.
  • FIG. 3 as input data for the X-axis, a histogram C when overexposure is set, a histogram D when exposure correction is off, and a histogram E when underexposure is set for composite data before gradation conversion are shown. ing. Further, as output data of the Y axis, a histogram C ′ when overexposure is set, a histogram D ′ when exposure correction is off, and a histogram E ′ when underexposure is set for the composite data after gradation conversion are illustrated. ing.
  • the minimum value (Ymin (C)) and the average value in the histogram C representing the luminance information obtained by detecting the combined data before gradation conversion are detected.
  • a modulation curve C is generated using three points (Yave (C)) and the maximum value (Ymax (C)). Then, by converting the histogram C when overexposure is set according to the modulation curve C, a gradation-compressed histogram C ′ is obtained.
  • the histogram C, the histogram D, and the histogram E for the composite data before gradation conversion are different, the histogram C ′ and the histogram D for the composite data after gradation conversion are different.
  • the ranges match. That is, this means that even when the user sets an exposure correction value, the high dynamic range composite image becomes an image that has not been subjected to exposure correction.
  • the exposure correction function is reflected in the high dynamic range composite image by using luminance information with the exposure correction amount added (hereinafter referred to as “predicted luminance information”). .
  • predicted luminance information a predicted value of an image (composite data) before exposure correction
  • FIG. 4 is a diagram for explaining gradation conversion control using predicted luminance information.
  • the horizontal axis (X axis) represents input data before gradation conversion
  • the vertical axis (Y axis) represents output data after gradation conversion.
  • FIG. 4 as the X-axis input data, a histogram C at the time of overexposure setting, a histogram D at the time of exposure correction off, and a histogram E at the time of underexposure setting are shown for the composite data before gradation conversion. ing. Further, as output data of the Y axis, a histogram C ′′ when overexposure is set, a histogram D ′′ when exposure correction is off, and a histogram E ′′ when underexposure is set for the composite data after gradation conversion. Is shown.
  • the following formulas (1) to (3) are used by using luminance information obtained by detecting the combined data before gradation conversion and the exposure correction amount used in the exposure control. By calculating, the luminance information of the prediction taking the exposure correction amount into consideration is obtained.
  • Equation (1) Ymin ′ is the minimum value of luminance information predicted from Ymin. Further, it is assumed that the relationship Ymin ′ ⁇ MINLIMIT (physical luminance minimum value) is satisfied. delta [dB] is an exposure correction amount used in exposure control.
  • Yave ′ is an average value of luminance information predicted from Yave.
  • delta [dB] is an exposure correction amount.
  • Ymax ′ is the maximum value of luminance information predicted from Ymax. Further, it is assumed that the relationship of Ymax ′ ⁇ MAXLIMIT (physical luminance maximum value) is satisfied. delta [dB] is an exposure correction amount.
  • Ymin ′, Yave ′, and Ymax ′ as prediction luminance information obtained by calculating the above-described equations (1) to (3) always satisfy the relationship of Ymin ′ ⁇ Yave ′ ⁇ Ymax ′. Furthermore, the interval between these values is assumed to be moderately open. In addition, here, it has been described that three points of minimum value (Ymin), average value (Yave), and maximum value (Ymax) of luminance information are used, but the number of points is not fixed and is arbitrary. Points can be used.
  • the modulation curve X (FIG. 4) is used as the input data.
  • Synthetic data for example, 14-bit gradation
  • synthesized data for example, 10-bit gradation
  • the minimum value (Ymin (C)) and average value in the histogram C representing luminance information obtained by detecting synthesized data before gradation conversion are detected.
  • equations (1) to (3) are calculated.
  • the minimum value (Ymin ′ (C)), the average value (Yave ′ (C)), and the maximum value (Ymax ′ (C)) are obtained as the luminance information of the prediction. Is used to generate a modulation curve X.
  • a gradation-compressed histogram C ′′ is obtained.
  • the gradation C ′′ that has been tone-compressed in this manner reflects the effect of exposure correction.
  • the minimum value (Ymin (E)) and average value (Yave (Yave (E)) in the histogram E representing the luminance information obtained by detecting the combined data before gradation conversion are detected.
  • E)) and the maximum value (Ymax (E)) and the exposure correction amount (delta) used in exposure control are used to calculate Equations (1) to (3).
  • the minimum value (Ymin '(E)), the average value (Yave' (E)), and the maximum value (Ymax '(E)) are obtained as the luminance information for prediction. Is used to generate the modulation curve X.
  • the luminance information (minimum value (Ymin (D)), average value (Yave (D)), and maximum value (Ymax (D))) in the histogram D is modulated. Since the curve X is generated, by converting the histogram D when the exposure correction is off according to the modulation curve X, a tone-compressed histogram D ′′ is obtained.
  • the exposure correction amount is added to the composite data to be subjected to automatic gradation conversion control, and luminance information (for example, obtained by detecting this composite data) , Ymin, Yave, Ymax), when the optimum modulation curve is generated, as shown in FIG. 3, the luminance information (for example, Ymin, Yave, Ymax) itself is compared with the original luminance information. Because of underexposure or overexposure, it was not possible to realize exposure correction for the composite data. In other words, if the exposure correction amount is not added to the luminance information used in the gradation conversion, exposure correction for the combined data can be realized.
  • luminance information used in gradation conversion luminance information (for example, Ymin, Yave, Ymax) obtained by detecting synthesized data is used in exposure control.
  • An optimal modulation curve is generated using predicted luminance information (for example, Ymin ′, Yave ′, Ymax ′) obtained from the exposure correction amount (delta), and the composite data is subjected to gradation conversion using this modulation curve. In this way, composite data reflecting the effect of exposure correction is obtained.
  • FIG. 5 is a diagram illustrating a configuration of an embodiment of an imaging apparatus to which the present technology is applied.
  • the imaging device 100 performs an imaging process according to an operation of the user 200 and records image data of a captured image of the subject.
  • the imaging apparatus 100 can perform imaging in the HDR mode, and can generate a high dynamic range composite image.
  • the imaging apparatus 100 includes an exposure correction value setting unit 111, an imaging unit 112, an exposure control unit 113, a signal synthesis unit 114, a synthesis control unit 115, a gradation conversion unit 116, a gradation control unit 117, and a signal processing unit. 118, an image processing unit 119, and a recording medium 120.
  • the exposure correction value setting unit 111 sets an exposure correction value (for example, 1 / 3EV, -4 / 3EV, etc.) according to the operation of the user 200.
  • the exposure correction value setting unit 111 converts the exposure correction value into a unit in which the exposure control unit 113 can control the exposure correction. This is supplied to the exposure control unit 113 and the gradation control unit 117.
  • the exposure correction value setting unit 111 is an exposure correction amount setting unit that sets an exposure correction amount corresponding to the exposure correction value.
  • the imaging unit 112 includes, for example, an imaging element such as a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, and converts an optical image incident through a lens (not shown) from a voltage value by photoelectric conversion for each pixel. Are converted into electrical signals and stored, and supplied to the signal synthesis unit 114 as imaging data.
  • CMOS Complementary Metal-Oxide Semiconductor
  • the imaging unit 112 adjusts the exposure according to the control from the exposure control unit 113.
  • the exposure control unit 113 is a block for realizing the above-described automatic exposure control.
  • the exposure control unit 113 performs exposure correction by controlling the exposure of the imaging unit 112 based on the exposure correction amount from the exposure correction value setting unit 111.
  • the imaging unit 112 uses a plurality of different exposure amounts set by the exposure control unit 113, for example, a plurality of imagings such as long-time exposure imaging data and short-time exposure imaging data. Data is generated and supplied to the signal synthesis unit 114.
  • the signal synthesis unit 114 When the HDR mode is set in accordance with the control from the synthesis control unit 115, the signal synthesis unit 114 synthesizes a plurality of imaging data from the imaging unit 112 to generate synthesized data, and the tone conversion unit 116 To supply. Note that when the normal imaging mode is set, the signal synthesis unit 114 supplies the imaging data supplied from the imaging unit 112 to the gradation conversion unit 116 as it is.
  • the composition control unit 115 controls the composition processing of a plurality of image data by the signal composition unit 114 so that the composition ratio corresponds to the exposure control by the exposure control unit 113, for example. Accordingly, for example, imaging data such as long-exposure imaging data and short-exposure imaging data is synthesized, and synthesized data obtained as a result is supplied to the gradation conversion unit 116.
  • the gradation conversion unit 116 When the normal imaging mode is set, the gradation conversion unit 116 performs gradation conversion on the imaging data from the signal synthesis unit 114 in accordance with the control from the gradation control unit 117, and the resulting gradation compression is performed. The imaging data is supplied to the signal processing unit 118. Further, when the HDR mode is set, the gradation conversion unit 116 performs gradation conversion on the synthesized data from the signal synthesis unit 114 in accordance with the control from the gradation control unit 117, and the gradation obtained as a result The compressed combined data is supplied to the signal processing unit 118.
  • the gradation control unit 117 is a block for realizing the automatic gradation conversion control described above.
  • the gradation control unit 117 uses the predicted luminance information in the gradation conversion unit 116 based on the exposure correction amount from the exposure correction value setting unit 111. Control is performed so that the key conversion (FIG. 4) is performed.
  • the signal processing unit 118 performs camera signal processing on the imaging data or the synthesized data from the gradation converting unit 116, and supplies the imaging data or synthesized data obtained as a result to the image processing unit 119.
  • the image processing unit 119 performs image processing such as compression encoding into a file of JPEG (Joint Photographic Experts Group) format on the captured data or synthesized data from the signal processing unit 118, and the resulting image data Are recorded on the recording medium 120.
  • JPEG Joint Photographic Experts Group
  • This imaging process is executed, for example, when the user 200 performs an imaging operation such as pressing a shutter button.
  • an exposure correction value for example, 1 / 3EV, -4 / 3EV, etc.
  • step S111 it is determined whether the HDR mode is set as the imaging mode of the imaging apparatus 100. If it is determined in step S111 that the HDR mode is set, the process proceeds to step S112.
  • step S112 the exposure control unit 113 performs exposure correction based on the exposure correction amount from the exposure correction value setting unit 111, and controls the exposure of the imaging unit 112. Thereby, the imaging unit 112 adjusts the exposure according to the control from the exposure control unit 113 in step S112.
  • step S113 the imaging unit 112 acquires (generates) a plurality of imaging data such as long-time exposure imaging data and short-time exposure imaging data, for example, with a plurality of different exposure amounts set by the exposure control unit 113. And supplied to the signal synthesis unit 114.
  • step S ⁇ b> 114 the signal synthesis unit 114 synthesizes a plurality of imaging data from the imaging unit 112 according to control from the synthesis control unit 115, generates synthesized data, and supplies the synthesized data to the gradation conversion unit 116.
  • step S115 the gradation control unit 117 performs gradation conversion (FIG. 4) using the predicted luminance information in the gradation conversion unit 116 based on the exposure correction amount from the exposure correction value setting unit 111. Control as follows.
  • step S116 the gradation converting unit 116 performs gradation conversion on the combined data (combined data before gradation conversion) from the signal combining unit 114 according to the control from the gradation control unit 117 in step S115, and gradation compression.
  • the combined data (combined data after gradation conversion) is supplied to the signal processing unit 118.
  • step S117 the signal processing unit 118 performs camera signal processing on the combined data from the gradation converting unit 116, and supplies the resultant combined data to the image processing unit 119.
  • step S118 the image processing unit 119 performs image processing such as compression encoding into a JPEG format file on the synthesized data from the signal processing unit 118, and records the resulting image data file. Recording on the medium 120.
  • the image capturing apparatus 100 records an image data file corresponding to the high dynamic range composite image.
  • step S111 If it is determined in step S111 that the HDR mode is not set, that is, the normal imaging mode is set, the process proceeds to step S119.
  • step S119 normal imaging processing is performed, and an image data file corresponding to a normal captured image is recorded on the recording medium 120.
  • FIG. 7 is a diagram illustrating an example of a high dynamic range composite image subjected to exposure correction.
  • the present technology is applied in addition to the high dynamic range composite image (the lower three images in the figure after application) when the gradation conversion control (FIG. 4) is applied.
  • High dynamic range composite image (upper three images before application) in the case of performing gradation conversion control (FIG. 3) that has not been performed on the high dynamic range composite image before and after application of the present technology The effect of exposure compensation is clearly shown.
  • the lower three applied images in FIG. 7 are subjected to tone conversion by the modulation curve generated using the predicted luminance information by the tone conversion control in FIG.
  • the image When set (+ 1EV), the image is brighter than the proper exposure, and when underexposed (-1EV), the image is darker than the proper exposure. That is, the effect of exposure correction is reflected on the image after application.
  • exposure correction is realized by exposure control and gradation conversion control, it is possible to obtain a high dynamic range composite image with higher image quality than exposure control only by gradation conversion. .
  • exposure correction can be performed by performing tone conversion on the combined image, but when overexposure correction is performed, noise in low-luminance areas is noticeable and underexposure correction is performed.
  • high-quality images cannot be obtained, such as poor color reproduction in the high-brightness part, which is close to saturation, but by realizing exposure correction through exposure control and tone conversion control, The problem can be solved.
  • the exposure control unit 113 and the gradation control unit 117 as exposure correction means for performing exposure correction are realized in software by a microprocessor and a correction program executed by the microprocessor. Therefore, it is not necessary to newly add a special hardware circuit and can be realized at a relatively low cost. Further, it is possible to cope with the existing imaging apparatus 100 by updating the correction program.
  • FIG. 8 is a diagram for explaining gradation conversion control using a predicted value obtained by multiplying the exposure correction amount by a coefficient.
  • the horizontal axis (X axis) represents input data before gradation conversion
  • the vertical axis (Y axis) represents output data after gradation conversion.
  • a histogram C at the time of overexposure setting a histogram D at the time of exposure correction off, and a histogram E at the time of underexposure setting are shown for the combined data before gradation conversion. ing.
  • a histogram C ′ ′′ at the time of overexposure setting a histogram D ′ ′′ at the time of exposure correction off, and a histogram E at the time of underexposure setting for the composite data after gradation conversion.
  • '' 'Is shown as the X-axis input data.
  • Ymin ′′ is the minimum value of luminance information predicted from Ymin. It is assumed that the relationship of Ymin ′′ ⁇ MINLIMIT (minimum physical brightness value) is satisfied.
  • k1 means an application rate with respect to the exposure correction amount (delta [dB]), and the degree of exposure correction can be adjusted.
  • Yave ′′ is an average value of luminance information predicted from Yave.
  • k2 means an application rate with respect to the exposure correction amount (delta [dB]), and the degree of exposure correction can be adjusted.
  • Ymax '' is the maximum value of luminance information predicted from Ymax. It is assumed that the relationship of Ymax ′′ ⁇ MAXLIMIT (physical luminance maximum value) is satisfied.
  • k3 means an application rate with respect to the exposure correction amount (delta [dB]), and the degree of exposure correction can be adjusted.
  • Ymin ′′, Yave ′′, and Ymax ′′ obtained by calculating Equations (4) to (6) described above always satisfy the relationship of Ymin ′′ ⁇ Yave ′′ ⁇ Ymax ′′. And their spacing is moderately open.
  • the exposure correction amount is slightly By providing this difference, more natural exposure compensation is possible.
  • the above-described method of multiplying the exposure correction amount by a coefficient is an example of a method for making a difference in the exposure correction amount, and other methods may be adopted.
  • Luminance information is converted to log
  • a conversion value obtained by converting the luminance information (for example, Ymin, Yave, Ymax) into a log when calculating the predicted luminance information with the exposure correction amount calculated by Equations (1) to (3) (for example, by using the MIN value, the AVE value, and the MAX value), the calculations of Expressions (1) to (3) can be performed only by addition and subtraction, so that the calculation amount can be reduced.
  • FIG. 9 is a diagram for explaining gradation conversion control when the predicted value is applied on the output data side.
  • the horizontal axis (X axis) represents input data before gradation conversion
  • the vertical axis (Y axis) represents output data after gradation conversion.
  • a histogram F of the combined data before gradation conversion is shown as X-axis input data.
  • the modulation curve Z is generated by using three points in the histogram F: the minimum value (Ymin (F)), the average value (Yave (F)), and the maximum value (Ymax (F)). Then, by converting the histogram F according to the modulation curve Z, a gradation-compressed histogram F ′ is obtained.
  • the imaging unit 112 In the imaging apparatus 100 of FIG. 5 described above, the imaging unit 112, the exposure control unit 113, the signal synthesis unit 114, the synthesis control unit 115, the tone conversion unit 116, the tone control unit 117, and the signal processing unit 118 are configured with CMOS. It can be configured as a semiconductor device such as an image sensor. However, the configuration of the semiconductor device is an example, and some components may be provided outside, for example, the signal processing unit 118 may be removed from the configuration.
  • FIG. 10 shows a configuration example of the solid-state imaging device.
  • the solid-state imaging device 300 has a stacked structure including a first chip (upper chip) 311 and a second chip (lower chip) 312.
  • the first chip 311 is configured as a CMOS image sensor chip, and includes, for example, the imaging unit 112 among the components of the semiconductor device described above.
  • the CMOS image sensor for example, a backside illumination type CMOS image sensor can be used.
  • the second chip 312 is configured as a logic chip including the control circuit and the image processing circuit of the first chip 311.
  • the exposure control unit 113 and the signal synthesis unit 114. A synthesis control unit 115, a tone conversion unit 116, a tone control unit 117, and a signal processing unit 118.
  • the present technology can take the following configurations.
  • An imaging unit that images a subject and generates imaging data
  • An exposure correction amount setting unit for setting an exposure correction amount for correcting the exposure amount of the imaging unit
  • An exposure control unit that controls the exposure of the imaging unit based on the exposure correction amount set by the exposure correction amount setting unit
  • a signal synthesizer that synthesizes a plurality of imaging data captured by the imaging unit with a plurality of different exposure amounts set by the exposure control unit, and generates combined data
  • a gradation converting unit that converts the gradation of the combined data generated by the signal combining unit
  • An image pickup apparatus comprising: a gradation control unit that controls gradation conversion by the gradation conversion unit based on the exposure correction amount set by the exposure correction amount setting unit.
  • the gradation control unit predicts composite data before exposure correction using the exposure correction amount set by the exposure correction amount setting unit and luminance information of the composite data, and according to a result of the prediction
  • the imaging device according to (1) wherein gradation conversion by the gradation conversion unit is controlled according to a generated modulation curve.
  • (3) The imaging apparatus according to (2), wherein the gradation control unit uses a minimum value, an average value, and a maximum value in the luminance information as luminance information of the combined data.
  • the gradation control unit causes the exposure correction amount for predicting the composite data before exposure correction to be different from the exposure correction amount for correcting the exposure amount of the imaging unit (2) or (3) The imaging device described.
  • the imaging device is Image the subject, generate imaging data, Set the exposure compensation amount to compensate the exposure amount of the imaging unit, Control the exposure of the imaging unit based on the set exposure correction amount, Combining a plurality of imaging data captured by the imaging unit with a plurality of different exposure amounts to generate composite data, Control gradation conversion of the generated composite data based on the set exposure correction amount, An imaging method including a step of converting a gradation of the generated composite data.
  • imaging device 111 exposure correction value setting unit, 112 imaging unit, 113 exposure control unit, 114 signal synthesis unit, 115 synthesis control unit, 116 gradation conversion unit, 117 gradation control unit, 118 signal processing unit, 119 image processing Part, 120 recording media, 300 solid-state imaging device, 311 first chip, 312 second chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)
  • Details Of Cameras Including Film Mechanisms (AREA)

Abstract

 本技術は、ハイダイナミックレンジ合成画像に対して、ユーザが所望する露出補正を行うことができるようにする撮像装置、及び、撮像方法に関する。 被写体を撮像して、撮像データを生成する撮像部と、撮像部の露出量を補正するための露出補正量を設定する露出補正量設定部と、設定された露出補正量に基づいて、撮像部の露出を制御する露出制御部と、異なる複数の露出量で撮像部により撮像される複数の撮像データを合成して、合成データを生成する信号合成部と、生成された合成データの階調を変換する階調変換部と、設定された露出補正量に基づいて、階調変換部による階調変換を制御する階調制御部とを備える撮像装置が提供される。本技術は、例えばデジタルスチルカメラ等の露出補正機能を備える撮像装置に適用することができる。

Description

撮像装置、及び、撮像方法
 本技術は、撮像装置、及び、撮像方法に関し、特に、ハイダイナミックレンジ合成画像に対して、ユーザが所望する露出補正を行うことができるようにした撮像装置、及び、撮像方法に関する。
 デジタルスチルカメラ等の撮像装置において、ダイナミックレンジの広い被写体を効果的に撮像するモードとして、ハイダイナミックレンジ合成モード(以下、「HDRモード」という。)が知られている。また、この種の撮像装置では、自動露出制御で設定された露出を変化させる露出補正機能を備えるものがほとんどである。
 特許文献1には、高感度画像データと低感度画像データを合成して得られる合成画像において、当該合成画像のダイナミックレンジの広狭を変化させる技術が開示されている。
特開2004-222183号公報
 ところで、HDRモードを設定可能な撮像装置においては、HDRモードでの撮像時に撮像された画像(以下、「ハイダイナミックレンジ合成画像」という。)に対する露出補正を行うに際して、ユーザが指定した露出補正値に適切に露出を変動させたいという要求がある。
 本技術はこのような状況に鑑みてなされたものであり、ハイダイナミックレンジ合成画像に対して、ユーザが所望する露出補正を行うことができるようにするものである。
 本技術の一側面の撮像装置は、被写体を撮像して、撮像データを生成する撮像部と、前記撮像部の露出量を補正するための露出補正量を設定する露出補正量設定部と、前記露出補正量設定部により設定された前記露出補正量に基づいて、前記撮像部の露出を制御する露出制御部と、前記露出制御部により設定される異なる複数の露出量で、前記撮像部により撮像される複数の撮像データを合成して、合成データを生成する信号合成部と、前記信号合成部により生成された前記合成データの階調を変換する階調変換部と、前記露出補正量設定部により設定された前記露出補正量に基づいて、前記階調変換部による階調変換を制御する階調制御部とを備える撮像装置である。
 前記階調制御部は、前記露出補正量設定部により設定された前記露出補正量と、前記合成データの輝度情報を用い、露出補正前の合成データを予測して、その予測の結果に応じて生成される変調カーブに従い、前記階調変換部による階調変換を制御することができる。
 前記階調制御部は、前記合成データの輝度情報として、その輝度情報における最小値、平均値、及び、最大値を用いることができる。
 前記階調制御部は、露出補正前の合成データを予測するための露出補正量が、前記撮像部の露出量を補正するための露出補正量と異なるようにすることができる。
 本技術の一側面の撮像方法は、上述した本技術の一側面の撮像装置に対応する撮像方法である。
 本技術の一側面の撮像装置、及び、撮像方法においては、被写体を撮像して、撮像データが生成され、撮像部の露出量を補正するための露出補正量が設定され、設定された前記露出補正量に基づいて、前記撮像部の露出が制御され、異なる複数の露出量で前記撮像部により撮像される複数の撮像データを合成して、合成データが生成され、設定された前記露出補正量に基づいて、生成された前記合成データの階調変換が制御され、生成された前記合成データの階調が変換される。
 本技術の一側面によれば、ハイダイナミックレンジ合成画像に対して、ユーザが所望する露出補正を行うことができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
露出補正の概要を説明する図である。 自動階調変換制御を説明する図である。 露出補正が行われた場合における自動階調変換制御を説明する図である。 予測値を用いた階調変換制御を説明する図である。 本技術を適用した撮像装置の一実施の形態の構成を示すブロック図である。 撮像処理の流れを説明するフローチャートである。 露出補正が施されたハイダイナミックレンジ合成画像の例を示す図である。 露出補正量に係数を乗算して得られる予測値を用いた階調変換制御を説明する図である。 予測値を出力データ側で適用した場合の階調変換制御を説明する図である。 半導体装置の構成例を示す図である。
 以下、図面を参照しながら本技術の実施の形態について説明する。なお、説明は以下の順序で行うものとする。
1.本技術を適用した階調変換制御
2.撮像装置の構成
3.撮像処理の流れ
4.変形例
<1.本技術を適用した階調変換制御>
(露出補正の概要)
 図1は、露出補正の概要を説明する図である。図1において、横軸は、ある画像における各画素の輝度を表し、図中の左側から右側に向かうほど、輝度が高いことを意味する。また、縦軸は輝度ごとの画素数を表し、図中の下側から上側に向かうほど、画素数が多いことを意味する。すなわち、図1のヒストグラムは、ある画像における明るさの分布(輝度分布)を表している。
 図1に示すように、露出補正を行う場合には、自動露出制御により定まるダイナミックレンジの範囲を、ユーザにより設定された露出補正値(例えば、1/3EV,-4/3EV等)に応じて、露出オーバー側、あるいは露出アンダー側に移動させることになる。すなわち、露出オーバーにしたい場合にはプラス補正が施され、露出アンダーにしたい場合にはマイナス補正が施されることになる。
 なお、ユーザにより設定された露出補正値は、露出制御部(後述する露出制御部113(図5))が露出量を制御可能な単位に変換されてから、露出制御で用いられる。つまり、露出補正前後の露出量と、露出補正量との関係は、以下のように表すことができる。
 露出補正量=露出補正後露出量-露出補正前露出量
 ここで、HDRモードでの撮像では、露出量の異なる複数の撮像データを合成することで、幅広いダイナミックレンジを有するハイダイナミックレンジ合成画像が生成される。また、露出補正を行う場合、HDRモードでの撮像で得られる複数枚の露出量の異なる撮像データには、自動露出制御により定まるダイナミックレンジの範囲に露出補正量が加味された露出補正が施される。
(階調変換の概要)
 また、複数の撮像データを合成することで得られる合成データには、自動階調変換制御により階調圧縮が施される。すなわち、自動露出制御において、露出補正量が加味されることで、ハイダイナミックレンジ合成画像は、露出補正され、その後、自動階調変換制御により階調圧縮されることになる。例えば、HDRモードでの撮像では、長時間露出の撮像データと、短時間露出の撮像データが得られるので、それらの撮像データを合成することで合成データが生成され、自動階調変換制御により階調圧縮をすることで、常にデータレンジが一定になるように調整される。
 図2は、自動階調変換制御を説明する図である。図2において、横軸(X軸)は、階調変換前の14ビットの階調からなる入力データを表し、縦軸(Y軸)は、階調変換後の10ビットの階調からなる出力データを表している。すなわち、図2においては、変調カーブを用いることで、入力データとしての階調変換前の合成データ(14ビットの階調)が、出力データとしての階調変換後の合成データ(10ビットの階調)に階調圧縮される例を示している。
 具体的には、階調変換前の合成データを検波することで得られる輝度情報を表しているヒストグラムAにおける、最小値(Ymin(A))、平均値(Yave(A))、及び、最大値(Ymax(A))の3点を用い、出力レンジに合わせた変調カーブAを生成する。そして、ヒストグラムAを、変調カーブAに従って変換することで、階調圧縮されたヒストグラムA'が得られる。
 また、階調変換前の合成データを検波することで得られる輝度情報を表しているヒストグラムBにおける、最小値(Ymin(B))、平均値(Yave(B))、及び、最大値(Ymax(B))の3点を用い、出力レンジに合わせた変調カーブBを生成する。そして、ヒストグラムBを、変調カーブBに従って変換することで、階調圧縮されたヒストグラムB'が得られる。
 すなわち、階調変換前の合成データについての、ヒストグラムAとヒストグラムBは、そのレンジが異なっているが、階調変換後の合成データについての、ヒストグラムA'とヒストグラムB'では、そのレンジが一致している。このような階調変換制御を行うことで、階調を圧縮し過ぎることなく、また、入力データのレンジに依らず、出力データのレンジを余すところなく使用できるようにしている。
 なお、図2において、変調カーブを生成する際に、輝度情報の最小値、平均値、及び、最大値の3点を用いるとして説明したが、その点数は定まったものではなく、任意の点を用い、変調カーブを生成することができる。このことは、後述する他の図における変調カーブでも同様とされる。
 図3は、露出補正が行われた場合における自動階調変換制御を説明する図である。図3において、横軸(X軸)は階調変換前の入力データを表し、縦軸(Y軸)は階調変換後の出力データを表している。
 図3においては、X軸の入力データとして、階調変換前の合成データについての、露出オーバー設定時のヒストグラムCと、露出補正オフ時のヒストグラムDと、露出アンダー設定時のヒストグラムEが図示されている。また、Y軸の出力データとして、階調変換後の合成データについての、露出オーバー設定時のヒストグラムC'と、露出補正オフ時のヒストグラムD'と、露出アンダー設定時のヒストグラムE'が図示されている。
 具体的には、図3の露出オーバー設定時においては、階調変換前の合成データを検波することで得られる輝度情報を表しているヒストグラムCにおける、最小値(Ymin(C))、平均値(Yave(C))、及び、最大値(Ymax(C))の3点を用いて、変調カーブCを生成する。そして、露出オーバー設定時のヒストグラムCを、変調カーブCに従って変換することで、階調圧縮されたヒストグラムC'が得られる。
 また、図3の露出アンダー設定時においては、階調変換前の合成データを検波することで得られる輝度情報を表しているヒストグラムEにおける、最小値(Ymin(E))、平均値(Yave(E))、及び、最大値(Ymax(E))の3点を用いて、変調カーブEを生成する。そして、露出アンダー設定時のヒストグラムEを、変調カーブEに従って変換することで、階調圧縮されたヒストグラムE'が得られる。
 なお、図3の露出補正オフ時においては、ヒストグラムDにおける輝度情報(最小値(Ymin(D))、平均値(Yave(D))、及び、最大値(Ymax(D)))から、変調カーブDが生成されるので、露出補正オフ時のヒストグラムDを、変調カーブDに従って変換することで、階調圧縮されたヒストグラムD'が得られることになる。
 ここで、階調変換前の合成データについての、ヒストグラムCと、ヒストグラムDと、ヒストグラムEは、そのレンジが異なっているが、階調変換後の合成データについての、ヒストグラムC'と、ヒストグラムD'と、ヒストグラムE'では、そのレンジが一致している。すなわち、これは、ユーザが露出補正値を設定した場合でも、ハイダイナミックレンジ合成画像が、露出補正されていない画像となることを意味している。
 その理由であるが、変調カーブを生成するに際して、合成データから輝度情報を検波するため、輝度情報の最小値(Ymin)、平均値(Yave)、及び、最大値(Ymax)は、露出補正量が加味されたものとなっている。そして、この合成データから変調カーブを生成し、生成された変調カーブに従って出力データのレンジに合わせこむと、ヒストグラムC,D,Eのどれもが、出力データのレンジ内の同じ値に変換されるため、ヒストグラムC',D',E'は、同一のレンジとなる。その結果、ユーザが露出補正値を設定していても、ハイダイナミックレンジ合成画像に対して露出補正がほとんど反映されることはない。
 このように、通常の露出補正は、露出量を変化させることで補正を行うものであって、自動階調変換制御の役割は、入力データのダイナミックレンジを、出力データのビットレンジに合わせて出力するためのものであるため、露出補正を行った後に自動階調変換制御を行うと、露出補正がほとんど反映されないことになる。そこで、本技術では、露出補正量を加味した輝度情報(以下、「予測の輝度情報」という。)を用いることで、ハイダイナミックレンジ合成画像に対しても露出補正機能が反映されるようにする。以下、露出補正前の画像(合成データ)の予測値としての予測の輝度情報を用いた階調変換制御について説明する。
(予測値を用いた階調変換制御)
 図4は、予測の輝度情報を用いた階調変換制御を説明する図である。図4において、横軸(X軸)は階調変換前の入力データを表し、縦軸(Y軸)は階調変換後の出力データを表している。
 図4においては、X軸の入力データとして、階調変換前の合成データについての、露出オーバー設定時のヒストグラムCと、露出補正オフ時のヒストグラムDと、露出アンダー設定時のヒストグラムEが図示されている。また、Y軸の出力データとして、階調変換後の合成データについての、露出オーバー設定時のヒストグラムC''と、露出補正オフ時のヒストグラムD''と、露出アンダー設定時のヒストグラムE''が図示されている。
 図4の階調変換制御では、階調変換前の合成データを検波することで得られる輝度情報と、露出制御で用いられる露出補正量と用い、下記の式(1)乃至式(3)を演算することで、露出補正量を加味した予測の輝度情報を求める。
Figure JPOXMLDOC01-appb-M000001
 ただし、式(1)において、Ymin'は、Yminから予測される輝度情報の最小値である。また、Ymin'≧MINLIMIT(物理的な輝度最小値)の関係を満たすものとする。delta[dB]は、露出制御で用いられる露出補正量である。
Figure JPOXMLDOC01-appb-M000002
 ただし、式(2)において、Yave'は、Yaveから予測される輝度情報の平均値である。delta[dB]は、露出補正量である。
Figure JPOXMLDOC01-appb-M000003
 ただし、式(3)において、Ymax'は、Ymaxから予測される輝度情報の最大値である。また、Ymax'≦MAXLIMIT(物理的な輝度最大値)の関係を満たすものとする。delta[dB]は、露出補正量である。
 なお、上述した式(1)乃至式(3)を演算することで求められる予測の輝度情報としての、Ymin',Yave',Ymax'は、Ymin'≦Yave'≦Ymax'の関係を常に満たしており、さらに、それらの値の間隔は適度に開いているものとする。また、ここでは、輝度情報の最小値(Ymin)、平均値(Yave)、及び、最大値(Ymax)の3点を用いるとして説明しているが、その点数は定まったものではなく、任意の点を用いることができる。
 そして、このようにして求められた予測の輝度情報(Ymin',Yave',Ymax')を用いて変調カーブX(図4)を生成することで、この変調カーブXによって、入力データとしての階調変換前の合成データ(例えば14ビットの階調)が、出力データとしての階調変換後の合成データ(例えば10ビットの階調)に階調変換され、階調圧縮される。
 具体的には、図4の露出オーバー設定時においては、階調変換前の合成データを検波することで得られる輝度情報を表しているヒストグラムCにおける、最小値(Ymin(C))、平均値(Yave(C))、及び、最大値(Ymax(C))の3点と、露出制御で用いられる露出補正量(delta)を用い、式(1)乃至式(3)を演算する。これにより、予測の輝度情報として、最小値(Ymin'(C))、平均値(Yave'(C))、及び、最大値(Ymax'(C))が求められ、これらの予測の輝度情報を用いることで、変調カーブXが生成される。
 そして、露出オーバー設定時のヒストグラムCを、変調カーブXに従って変換することで、階調圧縮されたヒストグラムC''が得られる。このようにして階調圧縮されたヒストグラムC''は、図4に示すように、露出補正の効果が反映されたものとなる。
 また、図4の露出アンダー設定時においては、階調変換前の合成データを検波することで得られる輝度情報を表しているヒストグラムEにおける、最小値(Ymin(E))、平均値(Yave(E))、及び、最大値(Ymax(E))の3点と、露出制御で用いられる露出補正量(delta)を用い、式(1)乃至式(3)を演算する。これにより、予測の輝度情報として、最小値(Ymin'(E))、平均値(Yave'(E))、及び、最大値(Ymax'(E))が求められ、これらの予測の輝度情報を用いて変調カーブXが生成される。
 そして、露出アンダー設定時のヒストグラムEを、変調カーブXに従って変換することで、階調圧縮されたヒストグラムE''が得られる。このようにして階調圧縮されたヒストグラムE''は、図4に示すように、露出補正の効果が反映されたものとなる。
 なお、図4の露出補正オフ時においては、ヒストグラムDにおける輝度情報(最小値(Ymin(D))、平均値(Yave(D))、及び、最大値(Ymax(D)))から、変調カーブXが生成されるので、露出補正オフ時のヒストグラムDを、変調カーブXに従って変換することで、階調圧縮されたヒストグラムD''が得られることになる。
 以上のように、露出補正を行った場合には、自動階調変換制御の対象となる合成データには、露出補正量が加味されており、この合成データを検波して得られる輝度情報(例えば、Ymin,Yave,Ymax)を用いて最適な変調カーブが生成されると、図3に示したように、この輝度情報(例えば、Ymin,Yave,Ymax)自体が、本来の輝度情報に対して、露出アンダー又は露出オーバーとなっていることが原因で、合成データに対する露出補正を実現することができなかった。換言すれば、階調変換で用いられる輝度情報に、露出補正量が加味されていなければ、合成データに対する露出補正を実現することができる。
 そこで、図4に示したように、本技術では、階調変換で用いられる輝度情報として、合成データを検波して得られる輝度情報(例えば、Ymin,Yave,Ymax)と、露出制御で用いられる露出補正量(delta)から求められる予測の輝度情報(例えば、Ymin',Yave',Ymax')を用いて最適な変調カーブを生成し、この変調カーブによって、合成データを階調変換することで、露出補正の効果が反映された合成データが得られるようにしている。
<2.撮像装置の構成>
 次に、図4の予測の輝度情報を用いた階調変換制御を行うことが可能な、本技術を適用した撮像装置について説明する。図5は、本技術を適用した撮像装置の一実施の形態の構成を示す図である。
 図5の撮像装置100は、例えばデジタルスチルカメラやスマートフォン、携帯電話機などの撮像機能を備える電子機器である。撮像装置100は、ユーザ200の操作に応じて、撮像処理を行い、被写体の撮像画像の画像データを記録する。また、撮像装置100は、通常の撮像処理を行う通常撮像モードのほか、HDRモードでの撮像が可能であって、ハイダイナミックレンジ合成画像を生成することができる。
 図5において、撮像装置100は、露出補正値設定部111、撮像部112、露出制御部113、信号合成部114、合成制御部115、階調変換部116、階調制御部117、信号処理部118、画像処理部119、及び、記録メディア120から構成される。
 露出補正値設定部111は、ユーザ200の操作に応じて露出補正値(例えば、1/3EV,-4/3EV等)を設定する。露出補正値設定部111は、露出補正値が設定された場合には、その露出補正値を、露出制御部113が露出補正を制御可能な単位に変換し、それにより得られる露出補正量を、露出制御部113及び階調制御部117に供給する。換言すれば、露出補正値設定部111は、露出補正値に対応する露出補正量を設定する露出補正量設定部であるとも言える。
 撮像部112は、例えば、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の撮像素子などから構成され、レンズ(不図示)を通過して入射する光学像を、画素ごとに光電変換により電圧値からなる電気信号に変換して蓄積し、これを撮像データとして信号合成部114に供給する。
 また、撮像部112は、露出制御部113からの制御に従い、露出を調整する。露出制御部113は、上述した自動露出制御を実現するためのブロックである。露出制御部113は、露出補正値設定部111からの露出補正量に基づいて、撮像部112の露出を制御して、露出補正を行う。撮像部112は、HDRモードが設定されている場合には、露出制御部113により設定される異なる複数の露出量で、例えば長時間露出の撮像データや短時間露出の撮像データ等の複数の撮像データを生成し、信号合成部114に供給する。
 信号合成部114は、合成制御部115からの制御に従い、HDRモードが設定されている場合に、撮像部112からの複数の撮像データを合成して、合成データを生成し、階調変換部116に供給する。なお、信号合成部114は、通常撮像モードが設定されている場合には、撮像部112から供給される撮像データをそのまま、階調変換部116に供給する。
 合成制御部115は、例えば、露出制御部113による露出制御に応じた合成比率となるように、信号合成部114による複数の撮像データの合成処理を制御する。これにより、例えば、長時間露出の撮像データや短時間露出の撮像データ等の撮像データが合成され、その結果得られる合成データが、階調変換部116に供給される。
 階調変換部116は、通常撮像モードが設定されている場合、階調制御部117からの制御に従い、信号合成部114からの撮像データを階調変換し、その結果得られる階調圧縮された撮像データを、信号処理部118に供給する。また、階調変換部116は、HDRモードが設定されている場合には、階調制御部117からの制御に従い、信号合成部114からの合成データを階調変換し、その結果得られる階調圧縮された合成データを、信号処理部118に供給する。
 階調制御部117は、上述した自動階調変換制御を実現するためのブロックである。また、階調制御部117は、HDRモードが設定されている場合には、露出補正値設定部111からの露出補正量に基づいて、階調変換部116において、予測の輝度情報を用いた階調変換(図4)が行われるように制御を行う。
 信号処理部118は、階調変換部116からの撮像データ又は合成データに対して、カメラ信号処理を施し、その結果得られる撮像データ又は合成データを、画像処理部119に供給する。画像処理部119は、信号処理部118からの撮像データ又は合成データに対して、例えばJPEG(Joint Photographic Experts Group)形式のファイルに圧縮符号化するなどの画像処理を施し、その結果得られる画像データのファイルを、記録メディア120に記録する。
<3.撮像処理の流れ>
 次に、図6のフローチャートを参照して、図5の撮像装置100により実行される撮像処理の流れについて説明する。この撮像処理は、例えば、ユーザ200によりシャッタボタンの押下等の撮像操作が行われた場合に実行される。また、撮像装置100では、ユーザ200の操作により、露出補正値(例えば、1/3EV,-4/3EV等)があらかじめ設定されているものとする。
 ステップS111においては、撮像装置100の撮像モードとして、HDRモードが設定されているかどうかが判定される。ステップS111において、HDRモードが設定されていると判定された場合、処理は、ステップS112に進められる。
 ステップS112において、露出制御部113は、露出補正値設定部111からの露出補正量に基づいて、露出補正を行い、撮像部112の露出を制御する。これにより、撮像部112は、ステップS112における露出制御部113からの制御に従い、露出を調整する。
 ステップS113において、撮像部112は、露出制御部113により設定される異なる複数の露出量で、例えば、長時間露出の撮像データや短時間露出の撮像データ等の複数の撮像データを取得(生成)し、信号合成部114に供給する。
 ステップS114において、信号合成部114は、合成制御部115からの制御に従い、撮像部112からの複数の撮像データを合成して、合成データを生成し、階調変換部116に供給する。
 ステップS115において、階調制御部117は、露出補正値設定部111からの露出補正量に基づいて、階調変換部116において、予測の輝度情報を用いた階調変換(図4)が行われるように制御を行う。
 ステップS116において、階調変換部116は、ステップS115における階調制御部117からの制御に従い、信号合成部114からの合成データ(階調変換前の合成データ)を階調変換し、階調圧縮された合成データ(階調変換後の合成データ)を、信号処理部118に供給する。
 ステップS117において、信号処理部118は、階調変換部116からの合成データに対して、カメラ信号処理を施し、その結果得られる合成データを、画像処理部119に供給する。
 ステップS118において、画像処理部119は、信号処理部118からの合成データに対して、例えばJPEG形式のファイルに圧縮符号化するなどの画像処理を施し、その結果得られる画像データのファイルを、記録メディア120に記録する。これにより、撮像装置100では、ハイダイナミックレンジ合成画像に対応する画像データのファイルが記録されることになる。
 なお、ステップS111において、HDRモードが設定されていない、すなわち、通常撮像モードが設定されていると判定された場合、処理は、ステップS119に進められる。ステップS119においては、通常の撮像処理が行われ、通常の撮像画像に対応する画像データのファイルが、記録メディア120に記録される。
 以上、撮像処理の流れについて説明した。この撮像処理においては、HDRモードが設定されている場合に、露出制御部113による露出補正量を用いた露出補正(S112)と、階調制御部117による露出補正量を用いた階調変換制御(S115)によって、露出補正が実現される。その結果、ハイダイナミックレンジ合成画像に対して、ユーザが所望する露出補正を行うことができる。
(露出補正が施されたハイダイナミックレンジ合成画像の例)
 図7は、露出補正が施されたハイダイナミックレンジ合成画像の例を示す図である。
 図7においては、本技術を適用した階調変換制御(図4)を行った場合のハイダイナミックレンジ合成画像(図中の下側の3枚の適用後画像)のほかに、本技術を適用していない階調変換制御(図3)を行った場合のハイダイナミックレンジ合成画像(図中の上側3枚の適用前画像)を示すことで、本技術の適用前後におけるハイダイナミックレンジ合成画像に対する露出補正の効果を明示している。
 図7の上側3枚の適用前画像には、図3の階調変換制御が行われているため、適正露出のほか、露出オーバー設定時(+1EV)と、露出アンダー設定時(-1EV)においても出力データのレンジ内の同じ値に変換されることになり、それらのヒストグラムは、同一のレンジとなる。その結果、ユーザが露出補正値を設定していても、適用前画像に対して露出補正の効果がほとんど反映されることはなく、3枚の適用前画像は、同じような明るさの画像となる。
 一方、図7の下側3枚の適用後画像には、図4の階調変換制御によって、予測の輝度情報を用いて生成された変調カーブにより階調変換が行われているため、露出オーバー設定時(+1EV)においては、適正露出よりも明るい画像となり、露出アンダー設定時(-1EV)においては、適正露出よりも暗い画像となる。つまり、適用後画像に対しては露出補正の効果が反映されていることになる。
 このように、本技術を適用した階調変換制御(図4)を行うことで、ハイダイナミックレンジ合成画像に対して、ユーザが所望する露出補正を行うことができる。
 また、本技術では、露出制御と階調変換制御によって、露出補正を実現しているため、階調変換のみでの露出制御と比べて、より高画質なハイダイナミックレンジ合成画像を得ることができる。つまり、合成後の画像に対して階調変換を行うことで露出補正を行うことはできるが、露出オーバー補正を行った場合には低輝度部のノイズが目立ち、露出アンダー補正を行った場合には高輝度部で飽和に近い部分の色再現が良くないなど、高画質な画像が得られないという問題点があるが、露出制御と階調変換制御によって、露出補正を実現することで、その問題点を解決することができる。
 さらに、撮像装置100(図5)において、露出補正を行う露出補正手段としての露出制御部113や階調制御部117は、マイクロプロセッサとそのマイクロプロセッサが実行する補正用プログラムによりソフトウェア的に実現されるため、特別なハードウェア回路を新たに追加する必要がなく、比較的安価に実現することができる。また、既存の撮像装置100に対しても、補正用プログラムを更新することで、対応することが可能となる。
<4.変形例>
(露出補正量に係数を乗算)
 図8は、露出補正量に係数を乗算して得られる予測値を用いた階調変換制御を説明する図である。図8において、横軸(X軸)は階調変換前の入力データを表し、縦軸(Y軸)は階調変換後の出力データを表している。
 図8においては、X軸の入力データとして、階調変換前の合成データについての、露出オーバー設定時のヒストグラムCと、露出補正オフ時のヒストグラムDと、露出アンダー設定時のヒストグラムEが図示されている。また、Y軸の出力データとして、階調変換後の合成データについての、露出オーバー設定時のヒストグラムC'''と、露出補正オフ時のヒストグラムD'''と、露出アンダー設定時のヒストグラムE'''が図示されている。
 図8の階調変換制御では、階調変換前の合成データを検波することで得られる輝度情報と、露出制御で用いられる露出補正量に加えて、露出補正量に乗算するための係数を用い、下記の式(4)乃至式(6)を演算することで、露出補正量を加味した予測の輝度情報を求める。
Figure JPOXMLDOC01-appb-M000004
 ただし、式(4)において、Ymin''は、Yminから予測される輝度情報の最小値である。また、Ymin''≧MINLIMIT(物理的な輝度最小値)の関係を満たすものとする。k1は、露出補正量(delta[dB])に対する適用率を意味し、露出補正の効き具合を調整することができる。
Figure JPOXMLDOC01-appb-M000005
 ただし、式(5)において、Yave''は、Yaveから予測される輝度情報の平均値である。k2は、露出補正量(delta[dB])に対する適用率を意味し、露出補正の効き具合を調整することができる。
Figure JPOXMLDOC01-appb-M000006
 ただし、式(6)において、Ymax''は、Ymaxから予測される輝度情報の最大値である。また、Ymax''≦MAXLIMIT(物理的な輝度最大値)の関係を満たすものとする。k3は、露出補正量(delta[dB])に対する適用率を意味し、露出補正の効き具合を調整することができる。
 なお、上述した式(4)乃至式(6)を演算することで求められるYmin'',Yave'',Ymax''は、Ymin''≦Yave''≦Ymax''の関係を常に満たしており、それらの間隔は適度に開いているものとする。
 そして、図4の階調変換制御と同様に、式(4)乃至式(6)を演算することで求められる予測の輝度情報を用いて変調カーブY(図8)を生成することで、この変調カーブYによって、入力データとしての階調変換前の合成データ(例えば14ビットの階調)が、出力データとしての階調変換後の合成データ(例えば10ビットの階調)に階調変換され、階調圧縮される。
 以上のように、Ymin'',Yave'',Ymax''を演算する際に用いられる露出補正量(delta)に対し、それぞれ異なる係数k1,k2,k3を適用して、露出補正量に若干の違いを持たせることで、より自然な露出補正が可能となる。なお、上述した露出補正量に係数を乗算する方法は、露出補正量に違いを持たせるための方法の一例であって、他の方法を採用するようにしてもよい。
(輝度情報をlog換算)
 露出補正量を加味した予測の輝度情報を、式(1)乃至式(3)を演算して求める際に、輝度情報(例えば、Ymin,Yave,Ymax)をlog換算して得られる換算値(例えば、MIN値,AVE値,MAX値)を用いることで、式(1)乃至式(3)の演算を加減算のみで行うことができるため、演算量を減らすことができる。
(予測値を出力データ側で適用)
 上述した図4の階調変換制御では、予測値としての予測の輝度情報を、入力データ側(X軸)で適用する場合を説明したが、予測値としての予測の輝度情報は、入力データ側(X軸)で適用するのではなく、出力データ側(Y軸)で適用するようにしてもよい。
 図9は、予測値を出力データ側で適用した場合の階調変換制御を説明する図である。図9において、横軸(X軸)は階調変換前の入力データの表し、縦軸(Y軸)は階調変換後の出力データを表している。
 図9においては、X軸の入力データとして、階調変換前の合成データについてのヒストグラムFが図示されている。ここで、ヒストグラムFにおける、最小値(Ymin(F))、平均値(Yave(F))、及び、最大値(Ymax(F))の3点を用いて、変調カーブZを生成する。そして、ヒストグラムFを、変調カーブZに従って変換することで、階調圧縮されたヒストグラムF'が得られる。
 そして、階調変換されたヒストグラムF'に、予測値としての予測の輝度情報を適用することで、ヒストグラムF''が得られる。このように、予測値としての予測の輝度情報を、出力データ側(Y軸)で適用して、階調変換後の合成データについてのヒストグラムF'を、ヒストグラムF''に可変することで、露出補正の効果が反映された合成データが得られることになる。
(半導体装置の構成例)
 上述した図5の撮像装置100において、撮像部112、露出制御部113、信号合成部114、合成制御部115、階調変換部116、階調制御部117、及び、信号処理部118は、CMOSイメージセンサ等の半導体装置として構成されるようにすることができる。ただし、この半導体装置の構成は一例であって、例えば、信号処理部118を構成から外すなど、一部の構成要素が外部に設けられるようにしてもよい。
 図10は、固体撮像装置の構成例を示している。図10において、固体撮像装置300は、第1のチップ(上チップ)311と、第2のチップ(下チップ)312からなる積層構造を有する。このような上下2チップの積層構造において、第1のチップ311は、CMOSイメージセンサチップとして構成され、上述した半導体装置の構成要素のうち、例えば、撮像部112を含んでいる。なお、CMOSイメージセンサとしては、例えば、裏面照射型のCMOSイメージセンサを用いることができる。
 また、第2のチップ312は、第1のチップ311の制御回路及び画像処理回路を含むロジックチップとして構成され、上述した半導体装置の構成要素のうち、例えば、露出制御部113、信号合成部114、合成制御部115、階調変換部116、階調制御部117、及び、信号処理部118を含んでいる。
(画素単位での露出制御)
 上述した説明では、フレーム単位での露出制御について説明したが、画素単位で露出制御を行ってもよい。このような画素単位での露出制御については、例えば、特許第4661922号(特開2010-62785号公報)において既に提案されている。特許第4661922号には、連続的に長時間露光を行う画素と、断続的に短時間露光を繰り返しその都度出力する画素とが市松状に配置されている固体撮像素子が開示されている。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本技術は、以下のような構成をとることができる。
(1)
 被写体を撮像して、撮像データを生成する撮像部と、
 前記撮像部の露出量を補正するための露出補正量を設定する露出補正量設定部と、
 前記露出補正量設定部により設定された前記露出補正量に基づいて、前記撮像部の露出を制御する露出制御部と、
 前記露出制御部により設定される異なる複数の露出量で、前記撮像部により撮像される複数の撮像データを合成して、合成データを生成する信号合成部と、
 前記信号合成部により生成された前記合成データの階調を変換する階調変換部と、
 前記露出補正量設定部により設定された前記露出補正量に基づいて、前記階調変換部による階調変換を制御する階調制御部と
 を備える撮像装置。
(2)
 前記階調制御部は、前記露出補正量設定部により設定された前記露出補正量と、前記合成データの輝度情報を用い、露出補正前の合成データを予測して、その予測の結果に応じて生成される変調カーブに従い、前記階調変換部による階調変換を制御する
 (1)に記載の撮像装置。
(3)
 前記階調制御部は、前記合成データの輝度情報として、その輝度情報における最小値、平均値、及び、最大値を用いる
 (2)に記載の撮像装置。
(4)
 前記階調制御部は、露出補正前の合成データを予測するための露出補正量が、前記撮像部の露出量を補正するための露出補正量と異なるようにする
 (2)又は(3)に記載の撮像装置。
(5)
 撮像装置の撮像方法において、
 前記撮像装置が、
 被写体を撮像して、撮像データを生成し、
 撮像部の露出量を補正するための露出補正量を設定し、
 設定された前記露出補正量に基づいて、前記撮像部の露出を制御し、
 異なる複数の露出量で前記撮像部により撮像される複数の撮像データを合成して、合成データを生成し、
 設定された前記露出補正量に基づいて、生成された前記合成データの階調変換を制御し、
 生成された前記合成データの階調を変換する
 ステップを含む撮像方法。
 100 撮像装置, 111 露出補正値設定部, 112 撮像部, 113 露出制御部, 114 信号合成部, 115 合成制御部, 116 階調変換部, 117 階調制御部, 118 信号処理部, 119 画像処理部, 120 記録メディア, 300 固体撮像装置, 311 第1のチップ, 312 第2のチップ

Claims (5)

  1.  被写体を撮像して、撮像データを生成する撮像部と、
     前記撮像部の露出量を補正するための露出補正量を設定する露出補正量設定部と、
     前記露出補正量設定部により設定された前記露出補正量に基づいて、前記撮像部の露出を制御する露出制御部と、
     前記露出制御部により設定される異なる複数の露出量で、前記撮像部により撮像される複数の撮像データを合成して、合成データを生成する信号合成部と、
     前記信号合成部により生成された前記合成データの階調を変換する階調変換部と、
     前記露出補正量設定部により設定された前記露出補正量に基づいて、前記階調変換部による階調変換を制御する階調制御部と
     を備える撮像装置。
  2.  前記階調制御部は、前記露出補正量設定部により設定された前記露出補正量と、前記合成データの輝度情報を用い、露出補正前の合成データを予測して、その予測の結果に応じて生成される変調カーブに従い、前記階調変換部による階調変換を制御する
     請求項1に記載の撮像装置。
  3.  前記階調制御部は、前記合成データの輝度情報として、その輝度情報における最小値、平均値、及び、最大値を用いる
     請求項2に記載の撮像装置。
  4.  前記階調制御部は、露出補正前の合成データを予測するための露出補正量が、前記撮像部の露出量を補正するための露出補正量と異なるようにする
     請求項2に記載の撮像装置。
  5.  撮像装置の撮像方法において、
     前記撮像装置が、
     被写体を撮像して、撮像データを生成し、
     撮像部の露出量を補正するための露出補正量を設定し、
     設定された前記露出補正量に基づいて、前記撮像部の露出を制御し、
     異なる複数の露出量で前記撮像部により撮像される複数の撮像データを合成して、合成データを生成し、
     設定された前記露出補正量に基づいて、生成された前記合成データの階調変換を制御し、
     生成された前記合成データの階調を変換する
     ステップを含む撮像方法。
PCT/JP2015/065536 2014-06-11 2015-05-29 撮像装置、及び、撮像方法 WO2015190320A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/312,092 US10075649B2 (en) 2014-06-11 2015-05-29 Image capturing apparatus and image capturing method for exposure compensation in high dynamic range synthesized images

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014121012A JP2016001809A (ja) 2014-06-11 2014-06-11 撮像装置、及び、撮像方法
JP2014-121012 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015190320A1 true WO2015190320A1 (ja) 2015-12-17

Family

ID=54833421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065536 WO2015190320A1 (ja) 2014-06-11 2015-05-29 撮像装置、及び、撮像方法

Country Status (3)

Country Link
US (1) US10075649B2 (ja)
JP (1) JP2016001809A (ja)
WO (1) WO2015190320A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313605B2 (en) * 2016-06-15 2019-06-04 Canon Kabushiki Kaisha Image processing apparatus and control method thereof for generating high dynamic range image data
KR20190017303A (ko) 2017-08-10 2019-02-20 엘지전자 주식회사 이동 단말기
US10602075B2 (en) * 2017-09-12 2020-03-24 Adobe Inc. Automatically determining a set of exposure values for a high dynamic range image capture device
US10497104B2 (en) 2017-10-24 2019-12-03 Adobe Inc. Empirical exposure normalization
CN110276714B (zh) * 2018-03-16 2023-06-06 虹软科技股份有限公司 快速扫描式全景图图像合成方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269144A (ja) * 2004-03-18 2005-09-29 Olympus Corp 画像処理装置、画像処理システム、及び画像処理方法
JP2011119944A (ja) * 2009-12-02 2011-06-16 Canon Inc 撮像装置およびその制御方法
JP2014027460A (ja) * 2012-07-26 2014-02-06 Canon Inc 撮像装置、カメラシステム、撮像装置の制御方法、プログラム、記憶媒体
JP2014045274A (ja) * 2012-08-24 2014-03-13 Nikon Corp デジタルカメラおよびコンピュータプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880771B2 (en) 2004-03-16 2011-02-01 Olympus Corporation Imaging apparatus, image processing apparatus, image processing system and image processing method
US8103119B2 (en) * 2005-06-20 2012-01-24 Nikon Corporation Image processing device, image processing method, image processing program product, and image-capturing device
JP5409577B2 (ja) * 2010-10-05 2014-02-05 株式会社ソニー・コンピュータエンタテインメント パノラマ画像生成装置およびパノラマ画像生成方法
US9681026B2 (en) * 2013-04-15 2017-06-13 Htc Corporation System and method for lens shading compensation
JP6322058B2 (ja) * 2014-06-10 2018-05-09 オリンパス株式会社 画像取得装置
KR20160138685A (ko) * 2015-05-26 2016-12-06 에스케이하이닉스 주식회사 저 복잡도의 하이 다이나믹 레인지 이미지 생성 장치 및 그 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269144A (ja) * 2004-03-18 2005-09-29 Olympus Corp 画像処理装置、画像処理システム、及び画像処理方法
JP2011119944A (ja) * 2009-12-02 2011-06-16 Canon Inc 撮像装置およびその制御方法
JP2014027460A (ja) * 2012-07-26 2014-02-06 Canon Inc 撮像装置、カメラシステム、撮像装置の制御方法、プログラム、記憶媒体
JP2014045274A (ja) * 2012-08-24 2014-03-13 Nikon Corp デジタルカメラおよびコンピュータプログラム

Also Published As

Publication number Publication date
US10075649B2 (en) 2018-09-11
JP2016001809A (ja) 2016-01-07
US20170094145A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
US10412296B2 (en) Camera using preview image to select exposure
KR100990904B1 (ko) 다수 영상의 생성 및 합성을 통한 영상 보정 장치 및 그 방법
JP5083046B2 (ja) 撮像装置及び撮像方法
KR101099401B1 (ko) 화상 처리 장치 및 컴퓨터가 판독 가능한 기록 매체
WO2015190320A1 (ja) 撮像装置、及び、撮像方法
JP2012109900A (ja) 撮影装置、撮影方法、およびプログラム
JP2012235377A (ja) 画像処理装置、画像処理方法及びプログラム
JP2015201842A (ja) 画像処理装置、その制御方法、および制御プログラム
JP2017212532A (ja) 画像処理装置
JP6831493B2 (ja) 撮像装置、撮像方法、およびプログラム
JP2018182376A (ja) 画像処理装置
JP6376934B2 (ja) 画像処理装置、撮像装置、画像処理方法及びプログラム
JP2009200743A (ja) 画像処理装置および画像処理方法および画像処理プログラムおよび撮像装置
JP2015139082A (ja) 画像処理装置、画像処理方法、プログラム、および電子機器
JP5609788B2 (ja) 画像処理装置及び画像処理方法
JP2002288650A (ja) 画像処理装置及びデジタルカメラ、画像処理方法、記録媒体
JP2010183460A (ja) 撮像装置およびその制御方法
JP5609787B2 (ja) 画像処理装置及び画像処理方法
JP5621335B2 (ja) 画像処理装置及び画像処理方法、並びに画像撮像装置
KR101750986B1 (ko) 영상 처리 장치, 방법, 및 컴퓨터 판독가능 저장매체
JP2015080157A (ja) 画像処理装置、画像処理方法及びプログラム
JP4752434B2 (ja) 色補正処理プログラムおよび電子カメラ
JP2009081526A (ja) 撮像装置
JP2010183461A (ja) 撮像装置およびその制御方法
JP2020036162A (ja) 画像処理装置、撮像装置、画像処理方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807006

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15312092

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15807006

Country of ref document: EP

Kind code of ref document: A1