WO2015188547A1 - Procédé de fabrication de moyeu de roue en alliage al-mg - Google Patents

Procédé de fabrication de moyeu de roue en alliage al-mg Download PDF

Info

Publication number
WO2015188547A1
WO2015188547A1 PCT/CN2014/088480 CN2014088480W WO2015188547A1 WO 2015188547 A1 WO2015188547 A1 WO 2015188547A1 CN 2014088480 W CN2014088480 W CN 2014088480W WO 2015188547 A1 WO2015188547 A1 WO 2015188547A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
hot
blank
manufacturing
forging
Prior art date
Application number
PCT/CN2014/088480
Other languages
English (en)
Chinese (zh)
Inventor
朱其柱
王新春
丁荣辉
李书通
濮近发
茅海波
林枭雄
Original Assignee
浙江巨科实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江巨科实业股份有限公司 filed Critical 浙江巨科实业股份有限公司
Publication of WO2015188547A1 publication Critical patent/WO2015188547A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass

Definitions

  • the present invention relates to a method of manufacturing a hub, and more particularly to a method of manufacturing an Al-Mg alloy hub.
  • the existing forged aluminum alloy wheel hubs are usually made of Al-Mg-Si alloy cast rods, and the billets are preheated in the inter-turn length, which requires upsetting and multiple forging, and the hub needs to pass through the long chamber after forming.
  • the solid solution and the effect of strengthening the aluminum alloy have the disadvantages of long production cycle and high energy consumption.
  • the technical problem to be solved by the present invention is to provide a method for manufacturing an Al-Mg alloy wheel hub, which can solve the problems of complicated technology, low production efficiency and high energy consumption in the prior art, thereby reducing energy consumption and improving production efficiency. the goal of. Problem solution
  • the technical solution of the manufacturing method of the Al-Mg alloy wheel hub of the present invention comprises the following steps:
  • the first step preparing materials
  • the raw material Al-Mg alloy hot-rolled sheet is formed into a disk-shaped blank
  • the Al-Mg alloy hot-rolled sheet is formed by hot-rolling an Al-Mg alloy ingot; the hot rolling treatment method is: the rolling temperature is 440 ° C to 500 ° C, the finishing temperature It is from 300 ° C to 350 ° C.
  • the Al-Mg alloy is a 5-series aluminum alloy 5052, 5754, 5182, 5083, 5A03, 5A04, 5A05, 5A06.
  • the Al-Mg alloy hot rolled sheet has a thickness of 50 mm to 150 mm.
  • the wafer-shaped blank is heated to 350 ° C ⁇ 500 ° C for pre-heat treatment
  • the preheated turns are determined according to the thickness of the disk-shaped blank, and are lmin/mm to 3 min/mm.
  • the preheated wafer-shaped blank is placed in a forging die and hot forged into a disk-shaped blank by a forging press;
  • the final forging temperature of the hot forging is lower than 350 °C.
  • the number of forgings is 1 to 2 times.
  • the disc-shaped blank is strongly spun by a powerful spinning machine to form a rim portion, and a hollow rotating body hub blank is obtained;
  • the disk-shaped blank is first cooled, and then subjected to strong spinning at 250 ° C or lower.
  • the cooling is by strong wind cooling, spray cooling or quench water cooling.
  • the invention can directly spin the disc-shaped blank directly after the hot forging to obtain the hollow rotating body hub blank; after the hot forging is completed, the disc-shaped blank can be rapidly cooled, and then at 250 ° C.
  • the following is a strong spinning.
  • the hollow rotating body hub blank after spinning is kept at a temperature of 100 ° C to 250 ° C for 0.5 to 4 hours to achieve low temperature stabilization treatment;
  • the hub blank after the stabilization treatment is machined and surface-treated to obtain an aluminum alloy wheel finished product.
  • the invention adopts a relatively thin aluminum alloy hot-rolled thick plate with a fibrous deformation structure as a raw material, and compared with the existing forged aluminum alloy wheel manufacturing process using the as-cast bar-shaped blank, not only the required preheating of the blank is required. The daytime is short, and the subsequent upsetting process is omitted, so that the present invention can not only significantly reduce the energy consumption, but also can simplify the process and improve the production efficiency.
  • the present invention adopts an Al-Mg non-heat treatable reinforced aluminum alloy, and the aluminum alloy is work hardened by controlling the final forging temperature and the spinning temperature, thereby obtaining a high-strength aluminum alloy wheel hub. Compared with the existing Al-Mg-Si alloy, the high temperature solid solution and heat treatment between the long turns are eliminated, the process steps are greatly simplified, and the energy consumption can be reduced, the production efficiency can be improved, and the product has Better mechanical properties.
  • FIGS. 1a and 1b are schematic views of a wafer-shaped blank prepared by the method for manufacturing the Al-Mg alloy hub of the present invention.
  • diagram la is a cross-sectional view of Figure lb;
  • FIGS. 3a and 3b are hollow hollow body hub blanks prepared by the present invention. Schematic; wherein Figure 4a is a cross-sectional view of Figure 4b;
  • FIG. 4 is a schematic view of a wafer blank before forging by a forging press
  • FIG. 5 is a schematic view of forging a disk-shaped blank into a disk-shaped blank by using a forging press
  • FIG. 6 is a schematic view of a forged aluminum alloy wheel blank before being spun by a powerful spinning machine
  • FIG. 7 is a schematic view of a forged aluminum alloy wheel blank being spun into a hollow rotating body hub blank using a powerful spinning machine.
  • the method for manufacturing the Al-Mg alloy hub of the present invention comprises the following steps:
  • the first step preparing the material
  • the Al-Mg alloy hot-rolled sheet is formed by hot-rolling an Al-Mg alloy ingot; the hot rolling treatment method is
  • the rolling temperature is 440 ° C ⁇ 500 ° C, and the finishing temperature is 300 ° C ⁇ 350 ° C.
  • the Al-Mg alloy is preferably a 5-series aluminum alloy such as 5052, 5754, 5182, 5083, 5A03, 5A04, 5A05, 5A06.
  • the Al-Mg alloy hot rolled sheet has a thickness of 50 mm to 150 mm.
  • the disc-shaped billet is heated to 350 ° C ⁇ 500 ° C for pre-heat treatment;
  • the preheated crucible is determined to be lmin/mm to 3 min/mm depending on the thickness of the disk-shaped blank.
  • the purpose of preheating is to improve the plasticity of the aluminum alloy and reduce the deformation resistance of the aluminum alloy during the forging process, thereby facilitating the plastic deformation of the aluminum alloy.
  • the third step hot forging
  • the preheated wafer-shaped blank is placed in a forging die and hot forged into a disk-shaped blank as shown in FIG. 2a and FIG. 2b by a forging press;
  • the number of forgings is 1 to 2 times.
  • the invention adopts a hot-rolled plate as a raw material, and does not need to undergo multiple pre-forging treatments (equivalent to upsetting) before forging forming, and the forging forming boring also reduces the number of forgings correspondingly, thereby greatly simplifying the production process and improving Production efficiency.
  • the disc-shaped blank is rapidly cooled, and then subjected to strong spinning under 250 ° C to form a rim portion to obtain a hollow rotating body hub blank;
  • the cooling method may be strong wind Cool, spray or quench water.
  • the plastic deformation of the material causes the mechanical recovery of the aluminum alloy to undergo a dynamic recovery and dynamic recrystallization process.
  • the aluminum alloy still maintains a relatively high temperature, so static occurs. Recovery and static recrystallization, the aluminum alloy continues to soften.
  • the aluminum alloy is repeatedly nucleated, finitely grown, and has fine crystal grains during hot deformation.
  • the dynamically recrystallized grains are equiaxed grain structures, the grains are fine, the size is not uniform, the grain boundaries are sawtooth, and the equiaxed equiaxed grains are sub-grains separated by entangled dislocations. Due to the high dislocation density and dislocation entanglement due to work hardening, this structure has higher strength and hardness than static recrystallized structure.
  • the present invention can achieve high strength by controlling a lower final forging temperature or rapidly cooling a hot forging blank, thereby suppressing static recrystallization and causing the aluminum alloy to produce a mixed deformation structure that is incompletely recrystallized.
  • the present invention can produce work hardening of the rim portion by controlling a lower spinning temperature, thereby improving the strength of the aluminum alloy, thereby obtaining higher mechanical properties of the rim portion.
  • the hollow rotating body hub blank after spinning is kept at a temperature of 100 ° C to 250 ° C for 0.5 to 4 hours to achieve low temperature stabilization treatment;
  • the stability of the Al-Mg alloy can be ensured by the low-temperature stabilization treatment.
  • the hub blank after the stabilization treatment is machined and surface-treated to obtain an aluminum alloy wheel finished product;
  • the machining and surface treatment methods are: edge removal, grinding, polishing and painting.
  • the 5A06 alloy hot-rolled sheet is punched into a disk-shaped blank having a size of ⁇ D350 ⁇ 65 mm;
  • the final forging temperature is 320 °C; the disc-shaped blank is directly spun on the powerful spinning machine into a hollow rotating body hub blank; then the hollow rotating body hub blank is kept in a continuous annealing furnace at 150 ° C for 2 h; The blank is machined and subsequently surface treated to obtain automotive aluminum alloy wheel products.
  • the 5A06 alloy hot-rolled sheet is punched into a disk-shaped blank having a size of ⁇ D350x65 mm;
  • the disc-shaped billet After hot forging, the disc-shaped billet is rapidly cooled to below 250 ° C by strong wind;
  • the forged aluminum alloy wheel blank after strong wind cooling is placed on a strong spinning machine, and is spun into a hollow rotating body hub blank; then the hollow rotating body hub blank is placed in an annealing furnace and heated to 150 ° C for 2 h. ; At last The hub blank is machined and subsequently surface treated to obtain automotive aluminum alloy wheel products.
  • the 5A06 alloy hot-rolled sheet is punched into a disk-shaped blank having a size of ⁇ D350 ⁇ 65 mm;
  • the disc-shaped blank is placed in water and rapidly cooled;
  • the water-cooled forged aluminum alloy wheel blank is heated to 200 ° C, placed on a powerful spinning machine, and spun into a hollow rotating body hub blank; then the hollow rotating body hub blank is placed in an annealing furnace and heated to 150 °C, heat preservation for 2h; Finally, the hub blank is machined and subsequently surface treated to obtain automotive aluminum alloy wheel products.
  • the aluminum alloy hubs obtained in the first embodiment, the second embodiment, and the third embodiment are selected to perform corresponding mechanical performance tests, and respectively, sampling is performed on different parts of the hub, and the rim and the spoke portion are subjected to a round bar tensile degree sample.
  • D6x30 the rim part is made of sheet tensile specimen, the width ⁇ 0 is selected, the thickness is the original thickness of the rim, and the tensile test is carried out according to the GB/T228-2002 test standard.
  • Table 1 is the embodiment 1, the embodiment 2, the embodiment 3
  • the test results of the aluminum alloy wheel obtained by the preparation method are as shown in Table 1.
  • the aluminum alloy wheel hub produced by the present invention is mainly applied to the automobile field.
  • the wheel hub of the present invention is not limited to the wheel hub of the automobile field, and can be used as a hub of the related art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un moyeu de roue en alliage Al-Mg, comprenant les étapes suivantes : étape 1 : le fait de donner à une feuille laminée à chaud d'alliage Al-Mg de charge d'alimentation la forme d'ébauches en forme de tôle ronde; étape 2 : les ébauches en forme de tôle ronde sont chauffées à 350 °C-500 °C pour préchauffage; étape 3 : les ébauches en forme de tôle ronde préchauffées sont placées dans une matrice de forgeage et forgées à chaud, à l'aide d'une presse de forgeage, en ébauches discoïdes; étape 4 : une machine de fluotournage est utilisée pour fluotourner les ébauches discoïdes afin de former des parties jantes de roue, et d'obtenir des ébauches de moyeu de roue à corps rotatif creux; à la fin du forgeage à chaud de l'étape 3, les ébauches discoïdes sont refroidies, puis fluotournées à 250 °C ou moins. Étape 5 : stabilisation; étape 6 : usinage et traitement de surface. La charge d'alimentation utilisée pour les moyeux de roue en alliage d'aluminium est modifiée, la température de préchauffage d'ébauches est basse et des procédés, tels que le refoulement et le vieillissement par solution, ne sont pas nécessaires, et les étapes du procédé sont considérablement simplifiées; ainsi les objectifs de réduction de la consommation d'énergie et d'amélioration de l'efficacité de production sont réalisés, et le produit présente de bonnes propriétés mécaniques.
PCT/CN2014/088480 2014-06-13 2014-10-13 Procédé de fabrication de moyeu de roue en alliage al-mg WO2015188547A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410263442.5 2014-06-13
CN201410263442.5A CN103990947A (zh) 2014-06-13 2014-06-13 Al-Mg合金轮毂的制造方法

Publications (1)

Publication Number Publication Date
WO2015188547A1 true WO2015188547A1 (fr) 2015-12-17

Family

ID=51305419

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/088475 WO2015188544A1 (fr) 2014-06-13 2014-10-13 Procédé de fabrication de moyeu de roue en alliage al-mg
PCT/CN2014/088480 WO2015188547A1 (fr) 2014-06-13 2014-10-13 Procédé de fabrication de moyeu de roue en alliage al-mg

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088475 WO2015188544A1 (fr) 2014-06-13 2014-10-13 Procédé de fabrication de moyeu de roue en alliage al-mg

Country Status (2)

Country Link
CN (1) CN103990947A (fr)
WO (2) WO2015188544A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990947A (zh) * 2014-06-13 2014-08-20 浙江巨科实业有限公司 Al-Mg合金轮毂的制造方法
CN104164598A (zh) * 2014-08-27 2014-11-26 浙江巨科实业有限公司 铝轮毂用Al-Mg铝合金材料及制备铝轮毂用圆片的方法
CN104630574A (zh) * 2015-02-02 2015-05-20 安徽省斯特嘉汽车零部件有限公司 一种碳化硼增强6061铝合金轮毂的制备方法
CN104674082A (zh) * 2015-02-02 2015-06-03 安徽省斯特嘉汽车零部件有限公司 一种氮化硅增强铝合金轮毂的制备方法
CN105269258A (zh) * 2015-11-04 2016-01-27 浙江巨科实业股份有限公司 锻造铝合金轮毂的制造方法
CN111660067B (zh) * 2020-06-03 2022-07-12 宁波自由者汽车部件有限公司 轮毂加工方法
CN112795823B (zh) * 2021-02-04 2022-06-24 山东融发戍海智能装备有限公司 一种铝合金汽车轮毂的锻造工艺
CN114951520B (zh) * 2022-05-05 2023-12-22 武汉理工大学 一种高强铝合金的高效低耗锻造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446962A (en) * 1992-11-04 1995-09-05 Norris Industries, Inc. Process of manufacturing one-piece forged wheels
DE10311875A1 (de) * 2003-03-17 2004-11-18 Wf-Maschinenbau Und Blechformtechnik Gmbh & Co Kg Zylinderförmiges Formteil
CN101653901A (zh) * 2009-09-15 2010-02-24 丁松伟 轻质铝合金轮辋的锻旋制造方法
CN102814621A (zh) * 2011-06-07 2012-12-12 韦光东 汽车轮毂等温锻造及旋压成形工艺
CN102950240A (zh) * 2011-08-22 2013-03-06 金刚 一种铝合金汽车轮毂锻旋成形方法
CN103481029A (zh) * 2013-09-16 2014-01-01 浙江巨科铝业有限公司 一种锻旋铝合金轮毂的制备方法
CN103817495A (zh) * 2014-03-05 2014-05-28 浙江巨科实业有限公司 铝合金轮毂的制造方法
CN103990947A (zh) * 2014-06-13 2014-08-20 浙江巨科实业有限公司 Al-Mg合金轮毂的制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318281A (zh) * 2007-06-06 2008-12-10 李书通 冷挤压加工铝合金汽车车轮的方法
JP5640399B2 (ja) * 2010-03-03 2014-12-17 日本軽金属株式会社 陽極酸化皮膜を備えたアルミニウム合金板およびその製造方法
CN101935786B (zh) * 2010-08-16 2012-06-13 浙江巨科铝业有限公司 5052铝合金的稳定化处理方法
CN102634701B (zh) * 2012-03-13 2014-01-01 浙江永杰铝业有限公司 一种船用高镁铝合金板材生产方法
CN103386583A (zh) * 2012-05-07 2013-11-13 湖南晟通科技集团有限公司 一种制造铝轮辋的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446962A (en) * 1992-11-04 1995-09-05 Norris Industries, Inc. Process of manufacturing one-piece forged wheels
DE10311875A1 (de) * 2003-03-17 2004-11-18 Wf-Maschinenbau Und Blechformtechnik Gmbh & Co Kg Zylinderförmiges Formteil
CN101653901A (zh) * 2009-09-15 2010-02-24 丁松伟 轻质铝合金轮辋的锻旋制造方法
CN102814621A (zh) * 2011-06-07 2012-12-12 韦光东 汽车轮毂等温锻造及旋压成形工艺
CN102950240A (zh) * 2011-08-22 2013-03-06 金刚 一种铝合金汽车轮毂锻旋成形方法
CN103481029A (zh) * 2013-09-16 2014-01-01 浙江巨科铝业有限公司 一种锻旋铝合金轮毂的制备方法
CN103817495A (zh) * 2014-03-05 2014-05-28 浙江巨科实业有限公司 铝合金轮毂的制造方法
CN103990947A (zh) * 2014-06-13 2014-08-20 浙江巨科实业有限公司 Al-Mg合金轮毂的制造方法

Also Published As

Publication number Publication date
CN103990947A (zh) 2014-08-20
WO2015188544A1 (fr) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2015188544A1 (fr) Procédé de fabrication de moyeu de roue en alliage al-mg
WO2015188550A1 (fr) Procédé de fabrication d'un moyeu en alliage al-mg-si
WO2015188546A1 (fr) Procédé permettant de fabriquer un moyeu de roue en alliage d'aluminium
CN106868436B (zh) 一种快径锻联合生产高温合金gh4169细晶棒材制造方法
WO2015131522A1 (fr) Procédé de fabrication de moyeu en alliage d'aluminium
CN103481029B (zh) 一种锻旋铝合金轮毂的制备方法
WO2015188545A1 (fr) Procédé permettant de fabriquer un moyeu de roue en alliage d'aluminium
CN103045974B (zh) 提高变形铝合金强度并保持其塑性的热加工方法
CN106734205B (zh) 一种短流程轧制制备超塑性镁合金的方法
CN104439909B (zh) 一种铝合金轮毂锻造方法
WO2015188548A1 (fr) Procédé de fabrication de moyeu commercial en alliage d'aluminium à haute teneur en magnésium
CN111085546A (zh) 一种超大宽幅合金板材的制备方法
CN107955893A (zh) 一种铝合金转向节的锻造成型方法
CN104388859A (zh) 一种同时提高铜铝合金强度和塑性的方法
WO2015188549A1 (fr) Procédé de fabrication d'un moyeu en alliage al-mg-si
CN103990946A (zh) H型铝合金轮毂的制造方法
WO2021219056A1 (fr) Rotor en acier inoxydable de haute résistance et procédé de préparation pour celui-ci
CN111438317A (zh) 一种具有高强高韧近β型钛合金锻件锻造成形的制备方法
CN110918845A (zh) 一种提高钛合金棒材成材率的锻造方法
CN105316546A (zh) 旋压轮毂用Al-Mg-Si系铝合金材料及制备旋压轮毂的方法
JP2018502993A (ja) アルミニウムボトルの高速生産に適したアルミニウム合金及びその製造方法
CN110804690A (zh) 一种提高42CrMo锻件超声波检测合格率的制作工艺
CN109136628A (zh) 一种6xxx铝合金的热轧工艺
CN110434264B (zh) 一种晶须增强铝基复合材料的约束多向模锻方法
JPH03236452A (ja) マグネシウム合金鍛造ホイールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894325

Country of ref document: EP

Kind code of ref document: A1