WO2015188537A1 - 信号传输的方法和用户设备 - Google Patents

信号传输的方法和用户设备 Download PDF

Info

Publication number
WO2015188537A1
WO2015188537A1 PCT/CN2014/088206 CN2014088206W WO2015188537A1 WO 2015188537 A1 WO2015188537 A1 WO 2015188537A1 CN 2014088206 W CN2014088206 W CN 2014088206W WO 2015188537 A1 WO2015188537 A1 WO 2015188537A1
Authority
WO
WIPO (PCT)
Prior art keywords
mod
resource
frequency
time
physical resource
Prior art date
Application number
PCT/CN2014/088206
Other languages
English (en)
French (fr)
Inventor
王键
李晓翠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480002441.3A priority Critical patent/CN104704888B/zh
Priority to EP14870666.6A priority patent/EP2986070B1/en
Priority to ES14870666.6T priority patent/ES2670643T3/es
Priority to JP2016526438A priority patent/JP6093994B2/ja
Priority to KR1020157019265A priority patent/KR20160018449A/ko
Priority to US14/750,768 priority patent/US9680620B2/en
Publication of WO2015188537A1 publication Critical patent/WO2015188537A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of communications, and more particularly to a method and user equipment for signal transmission.
  • the device-to-device proximity service (English full name: Device to Device Proximity Service, English abbreviation: D2D ProSe) has become a long-term evolution (English name: Long Term Evolution, User Equipment, English abbreviation: UE). English abbreviation: LTE) system hot topic.
  • Data signals and control signals are involved in D2D ProSe, wherein the control signals are used to indicate frequency resources occupied by data signals, and the data signals are used to carry data.
  • the embodiment of the invention provides a signal transmission method and user equipment, which can reduce the energy consumption of the receiving end.
  • a method for signal transmission comprising: receiving, by a user equipment, an indication signal, the indication signal being used to indicate one or more control signals, such as a scheduling allocation signal (English full name: Scheduling Assignment, English abbreviation: SA a resource number of the occupied physical resource, where the resource number includes time information and frequency information of the physical resource; the user equipment configures the one or more control signals to a corresponding physical according to the resource number The user equipment sends the one or more control signals.
  • a scheduling allocation signal English full name: Scheduling Assignment, English abbreviation: SA a resource number of the occupied physical resource, where the resource number includes time information and frequency information of the physical resource.
  • the resource number is determined by grouping physical resources occupied by a control signal, where the time resource information is a time serial number, and the frequency information is Frequency sequence number, the same resource number in different physical resource groups corresponds to the same time sequence number and the same frequency sequence number, or the same resource number corresponding to different physical resource groups.
  • each physical resource group when the same resource number in the different physical resource groups corresponds to the same time sequence number and the same frequency sequence number, each physical resource group includes M.
  • Time resources each time resource includes N frequency resources, the time number of the physical resource whose resource number is x is mod(x, M), and the frequency serial number is floor(x/M), where mod() is The remainder function, floor() is a round-down function, x is zero or a positive integer, and M, N are positive integers.
  • each physical resource group when the same resource number in the different physical resource groups corresponds to the same time sequence number and different frequency sequence numbers, each physical resource group includes M.
  • Time resources each time resource includes N frequency resources
  • the time number of the physical resource whose resource number is x is mod(x, M)
  • the frequency serial number is mod[floor(x/M)+P*Q f , N], where mod() is the remainder function, floor() is the round-down function
  • P is the physical resource group number, the value is zero or a positive integer
  • Q f is the frequency jump step, and x is zero.
  • a positive integer, M, N, Q f is a positive integer.
  • each physical resource group includes M.
  • Time resources each time resource includes N frequency resources
  • the time sequence of the physical resource whose resource number is x is mod ⁇ mod(x,M)-mod[[floor(x/M)+1]*Q t *P, M-1], M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod( x,M)-[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/M), M-1]+1]*Q t *P,M ⁇
  • the frequency number is floor(x/M), where mod() is the remainder function, floor() is the round-down function, and P is the physical resource.
  • Group number which is zero or a positive integer
  • each physical resource group includes M.
  • Time resources each time resource includes N frequency resources
  • the time sequence of the physical resource whose resource number is x is mod ⁇ mod(x,M)-mod[[floor(x/M)+1]*Q t *P, M-1], M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod( x,M)-[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/M), M-1]+1]*Q t *P,M ⁇
  • the frequency number is mod[floor(x/M)+P*Q f ,N], where mod() is the remainder function and floor() is Rounding down the function, P is the physical resource group number
  • the M and/or N is a positive integer greater than or equal to 2.
  • the time information is a time resource number
  • the frequency information is a frequency resource number
  • the same frequency resource number corresponds to the same or different in different time resource numbers. Frequency number.
  • the physical resource number is x
  • the frequency sequence number of the resource is mod(x, N), where mod() is a remainder function, x is zero or a positive integer, and N is a positive integer, indicating the number of frequency resource numbers corresponding to each time sequence number.
  • the physical resource number is x
  • the frequency sequence number of the resource is mod(x+P t *Q f , N), where mod() is the remainder function, P t is the time sequence number, the value is zero or a positive integer, and N is the corresponding number of each time sequence.
  • the number of frequency resource numbers, Q f is the frequency hopping step size, x is zero or a positive integer, and N, Q f are positive integers.
  • the N is a positive integer greater than or equal to 2.
  • the Q f is determined by a cell identifier.
  • the Q f mod (ID_cell, N), where the ID_cell is a cell identifier.
  • the cell identifier is a physical cell identifier.
  • the Q t is determined by a cell identifier.
  • the Q t mod (ID_cell, M ), wherein a cell identifier ID_cell.
  • the cell identifier is a physical cell identifier.
  • the Q f and Q t are determined by a cell identifier.
  • the cell identifier is a physical cell identifier.
  • the user equipment grouping the physical resources occupied by the control signal includes: a physical occupation of the user equipment according to the resource number and one or more control signals
  • the corresponding relationship between the resources is used to group the physical resources occupied by the control signal, and the corresponding relationship between the resource number and the physical resources occupied by the one or more control signals is preset, and is provided by the receiving end or provided by a third party.
  • the user equipment sends the resource number to the receiving end and the physical resource occupied by the one or more control signals Correspondence relationship.
  • the user equipment receiving the indication signal includes The user equipment receives an indication signal sent by the base station.
  • a second aspect provides a user equipment, including: a receiving unit, configured to receive an indication signal, where the indication signal is used to indicate one or more control signals, such as a scheduling allocation signal (English full name: Scheduling Assignment, English abbreviation: a SA), a resource number of the occupied physical resource, the resource number including time information and frequency information of the physical resource, and a configuration unit, configured to configure the one or more control signals according to the resource number to correspond to And a sending unit, configured to send the one or more control signals.
  • a scheduling allocation signal English full name: Scheduling Assignment, English abbreviation: a SA
  • a resource number of the occupied physical resource the resource number including time information and frequency information of the physical resource
  • a configuration unit configured to configure the one or more control signals according to the resource number to correspond to
  • a sending unit configured to send the one or more control signals.
  • the resource number is determined by grouping physical resources occupied by the control signal, where the time resource information is a time serial number, and the frequency information is a frequency serial number.
  • the same resource numbers in different physical resource groups correspond to the same time
  • the serial number and the same frequency serial number, or the same resource number in different physical resource groups correspond to the same time serial number and different frequency serial numbers
  • the same resource numbers in different physical resource groups correspond to different time serial numbers and the same frequency serial numbers.
  • the same resource numbers in different physical resource groups correspond to different time numbers and different frequency numbers.
  • each physical resource group Including M time resources each time resource includes N frequency resources, and the time number of the physical resource whose resource number is x is mod(x, M), and the frequency serial number is floor(x/M), where mod() For the remainder function, floor() is a round-down function, x is zero or a positive integer, and M, N are positive integers.
  • each physical resource group Including M time resources each time resource includes N frequency resources, the time number of the physical resource whose resource number is x is mod(x, M), and the frequency serial number is mod[floor(x/M)+P*Q f , N], where mod() is the remainder function, floor() is the round-down function, P is the physical resource group number, the value is zero or a positive integer, Q f is the frequency jump step, x Zero or positive integer, M, N, Q f are positive integers.
  • each physical resource group is configured when the same resource number in different physical resource groups corresponds to different time sequence numbers and the same frequency sequence number.
  • each time resource includes N frequency resources
  • the time sequence of the physical resource whose resource number is x is mod ⁇ mod(x,M)-mod[[floor(x/M)+1]* Q t *P, M-1], M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ Mod(x,M)-[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/M ), M-1]+1]*Q t *P,M ⁇
  • the frequency number is floor(x/M), where mod() is the remainder function, floor() is the round-down function, and P is The physical resource group number, which is zero or
  • each physical resource group includes M.
  • Time resources each time resource includes N frequency resources
  • the time sequence of the physical resource whose resource number is x is mod ⁇ mod(x,M)-mod[[floor(x/M)+1]*Q t *P, M-1], M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod( x,M)-[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/M), M-1]+1]*Q t *P,M ⁇
  • the frequency number is mod[floor(x/M)+P*Q f ,N], where mod() is the remainder function and floor() is Rounding down the function, P is the physical resource group number
  • the M and/or N is a positive integer greater than or equal to two.
  • the time information is a time resource number
  • the frequency information is a frequency resource number
  • the same frequency resource number corresponds to the same or different frequency in different time resource numbers.
  • the physical resource resource whose frequency resource number is x The frequency sequence number is mod(x, N), where mod() is a remainder function, x is a zero or a positive integer, and N is a positive integer, indicating the number of frequency resource numbers corresponding to each time sequence number.
  • the physical resource whose frequency resource number is x The frequency sequence number is mod(x+P t *Q f , N), where mod() is a remainder function, P t represents a time sequence, and the value is zero or a positive integer, and N represents a frequency resource corresponding to each time sequence number.
  • Number of numbers, Q f is the frequency jump step, x is zero or a positive integer, and N, Q f are positive integers.
  • the N is a positive integer greater than or equal to 2.
  • the Q f is determined by a cell identifier.
  • the Q f mod (ID_cell, N ), wherein a cell identifier ID_cell.
  • the cell identifier is a physical cell identifier.
  • Binding fourth possible implementation of the second aspect in the fourteenth possible implementation manner, the cell identity is determined by Q t.
  • the Q t mod (ID_cell, M ), wherein a cell identifier ID_cell.
  • the cell identifier is a physical cell identifier.
  • the Q f and Q t are determined by a cell identifier.
  • the cell identifier is a physical cell identifier.
  • the user equipment includes: a grouping unit, configured to occupy a control signal according to a correspondence between a resource number and a physical resource occupied by one or more control signals
  • the physical resources are grouped, and the correspondence between the resource number and the physical resources occupied by one or more control signals is preset, and is provided by the receiving end or provided by a third party.
  • the first sending unit is specifically configured to send, to the receiving end, the resource number and the physical occupation of the one or more control signals.
  • the correspondence of resources is specifically configured to send, to the receiving end, the resource number and the physical occupation of the one or more control signals.
  • the receiving unit is specifically configured to: Receiving an indication signal sent by the base station.
  • the embodiment of the present invention may receive an indication signal by using a user equipment, where the indication signal is used to indicate a resource number of a physical resource occupied by one or more control signals, where the resource number includes time information of the physical resource. And frequency information; the user equipment configures the one or more control signals to corresponding physical resources according to the resource number; the user equipment sends the one or more control signals.
  • the physical resources carrying the control signals can be accurately indicated, the processing time and power consumption of the receiving end are saved, and the network performance is improved.
  • FIG. 1 is a schematic flow chart of a method of signal transmission according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the result of grouping physical resources carrying a control signal in a signal transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing another result of grouping physical resources carrying a control signal in a signal transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing still another result of grouping physical resources of a bearer control signal in a signal transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing still another result of grouping physical resources of a bearer control signal in a signal transmission method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the result of indicating a physical resource carrying a control signal in a signal transmission method according to another embodiment of the present invention.
  • FIG. 7 is another schematic diagram of a result of indicating a physical resource carrying a control signal in a signal transmission method according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a user equipment according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the user equipment (English name: User Equipment, English abbreviation: UE) includes but is not limited to a mobile station (English full name: Mobile Station, English abbreviation: MS), a mobile terminal (Mobile Terminal), Mobile phone, mobile device, portable device, etc.
  • the user equipment can be connected to one or more core networks via a radio access network (English name: Radio Access Network, English abbreviation: RAN).
  • a radio access network English name: Radio Access Network, English abbreviation: RAN.
  • Communication for example, the user device may be a mobile phone (or "cellular" phone), a computer with wireless communication capabilities, etc., and the user device may also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the base station may be a base station in GSM or CDMA (English full name: Base Transceiver Station, English abbreviation: BTS), or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE ( The full name of the English: the evolved Node B, the abbreviation: eNB or e-NodeB), or the cluster head of a user cluster in the D2D communication, which is not limited in the embodiment of the present invention.
  • FIG. 1 is a schematic flow chart of a method of signal transmission according to an embodiment of the present invention. As shown in Figure 1, the method includes:
  • the user equipment receives an indication signal, where the indication signal is used to indicate one or more control signals, such as a scheduling allocation signal (English full name: Scheduling Assignment, English abbreviation: SA), a resource number of the occupied physical resource, and the resource The number includes time information and frequency information of the physical resource.
  • a scheduling allocation signal English full name: Scheduling Assignment, English abbreviation: SA
  • a resource number of the occupied physical resource and the resource The number includes time information and frequency information of the physical resource.
  • the user equipment may receive the indication signal sent by the base station, which is not limited by the embodiment of the present invention.
  • the user equipment may receive the indication signal according to the feedback of the receiving end, or may receive the indication signal according to the pre-configuration.
  • the user equipment configures the one or more control signals to a corresponding physical resource according to the resource number.
  • the resource number may indicate one or more physical resource units, for example, 2, 3, 5, or 10 physical resource units, and each physical resource unit is uniquely determined by a time sequence number and a frequency sequence number.
  • the embodiments of the present invention are not limited thereto.
  • the user equipment may adopt various methods to configure the control signal to a corresponding physical resource, which is not limited by the embodiment of the present invention.
  • the user equipment sends the one or more control signals.
  • the user equipment may send the one or more control signals in various manners, which is not limited by the embodiment of the present invention.
  • the receiving end can receive the control signal without performing blind detection, thereby saving processing time and energy consumption of the receiving end.
  • a method of signal transmission in accordance with an embodiment of the present invention is described in detail above with respect to FIG. 1 from the perspective of a user equipment.
  • FIG. 1 is only intended to assist those skilled in the art to understand the embodiments of the present invention, and is not intended to limit the embodiments of the present invention to the specific numerical values or specific examples illustrated.
  • a person skilled in the art will be able to make various modifications and changes in the embodiments according to the example of FIG. 1. The modifications or variations are also within the scope of the embodiments of the present invention.
  • FIG. 2 to FIG. 5 are schematic diagrams showing the results of grouping physical resources of a bearer control signal in a signal transmission method according to an embodiment of the present invention. .
  • the resource number is determined by grouping physical resources occupied by the control signal, the time resource information is a time serial number, and the frequency information is a frequency serial number, and the same is in different physical resource groups.
  • the resource numbers correspond to the same time sequence number and the same frequency sequence number, or the same resource numbers in different physical resource groups correspond to the same time sequence number and different frequency sequence numbers, or the same resource numbers in different physical resource groups correspond to different time numbers and The same frequency sequence number, or the same resource number in different physical resource groups, corresponds to different time numbers and different frequency numbers.
  • the resource number is determined by the base station, the user equipment, or the third party, and the physical resources occupied by the control signal are grouped, which is not limited by the embodiment of the present invention.
  • M time resources such as radio frames, subframes, and time slots
  • each time resource includes N frequency resources, for example, physical resource blocks (English full name: Physical Resource Block, English abbreviation) :PRB), subcarrier, etc.
  • M, N are positive integers, which are not limited in the embodiment of the present invention.
  • the same resource numbers determined according to the preset grouping method in each physical resource group may have the same time sequence number and the same frequency sequence number, or the same time sequence. No. and different frequency serial numbers, or different time serial numbers and the same frequency serial number, or different time serial numbers and different frequency serial numbers, etc., the grouping methods satisfying the four cases all fall into the embodiment of the present invention. Within the scope of protection.
  • each physical resource group when the same resource number in the different physical resource groups corresponds to the same time sequence number and the same frequency sequence number, each physical resource group includes M time resources, and each time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, the M*N resource numbers are included, and the time serial number of the physical resource whose resource number is x is mod(x, M), and the frequency serial number is floor(x/ M), where mod() is the remainder function, floor() is the round-down function, x is zero or a positive integer, and M, N are positive integers.
  • M is 5, the time sequence is 0, ..., 4; N is 12, the frequency sequence is 0, ..., 11, and these time and frequency resources are from left to right,
  • the indication signal may indicate that the physical resource with the resource number x is used to carry the control signal, and the receiving end may detect on the physical resource whose time serial number is mod(x, M) and the frequency serial number is floor(x/M). Obtaining the control signal.
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex actions such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to the same physical resource in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 2, corresponding physical groups in different physical resource groups.
  • the resources are always the same, the frequency spacing is always the same.
  • the two resource numbers, such as resource numbers 1 and 5 in Figure 2 are always the same in different physical resource groups, so that the same resource is used.
  • the number is sent, the physical resources used in different physical resource groups are always the same, so the interference generated to the system is always the same in different physical resource groups, and the randomization of interference cannot be achieved.
  • each physical resource group includes M time resources, and each The time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, M*N resource numbers, and the time serial number of the physical resource whose resource number is x is mod(x, M).
  • the frequency number is mod[floor(x/M)+P*Q f ,N], where mod() is the remainder function, floor() is the round-down function, and P is the physical resource group number.
  • the value is zero or a positive integer
  • Q f is the frequency hopping step size
  • x is zero or a positive integer
  • M, N, Q f are positive integers.
  • the physical resource group number P is 0, ..., 2, M is 5, the time serial number is 0, ..., 4; N is 12, the frequency serial number is 0, ..., 11, Q f is 4, these time and frequency resources are numbered, the time number of each physical resource whose resource number is x is mod(x, M), and the frequency serial number is mod[floor(x/M)+P* Q f , N], that is, after the grouping, the indication signal may indicate that the physical resource with the resource number x is used to carry the control signal, and the receiving end may be in the time sequence mod(x, M), and the frequency sequence number is mod[floor(x) The control signal is detected and acquired on the physical resource of /M)+P*Q f ,N].
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex actions such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to different physical resources in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 3, correspond to different physical resource groups.
  • the frequency numbers of the physical resources are different. In this way, when data is transmitted using the same resource number, the frequency numbers of the physical resources used in different physical resource groups are different, so that the interference to the frequency domain generated by the system is different in physical. Different in the resource group, randomization of frequency domain interference can be achieved.
  • each physical resource group includes M time resources, and each The time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, the M*N resource numbers are included, and the time sequence of the physical resource whose resource number is x is mod ⁇ mod(x).
  • the physical resource group number P is 0, ..., 2, M is 5, the time serial number is 0, ..., 4; N is 12, the frequency serial number is 0, ..., 11, Q t is 1, these time and frequency resources are numbered, and the time number of each physical resource whose resource number is x is mod ⁇ mod(x,M)-mod[[floor(x/M)+1] *Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)-[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/ M), M-1]+1]*Q t *P, M ⁇ , the frequency sequence is floor(x/M), that is, after the grouping, the indication signal may indicate that the physical resource with the resource number x is used to carry the control signal.
  • the receiving end can be in the time sequence mod ⁇ mod(x,M)-mod[[floor(x/M)+1]*Q t *P, M-1], M ⁇ , mod ⁇ mod(x,M )+mod[[floor(x/M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)-[mod[floor(x/M),M-1 ]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ , frequency number
  • the data signal is detected and acquired on the physical resource of floor (x/M).
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex actions such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to different physical resources in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 4, correspond to different physical resource groups.
  • the time numbers of the physical resources are different. In this way, when data is sent using the same resource number, the time numbers of the physical resources used in different physical resource groups are different, so that the time domain interference generated by the system is in different physical states. Different in the resource group, randomization of time domain interference can be achieved.
  • FIG. 3 overcomes the problem of frequency domain interference, but there is also a problem that time domain interference cannot be randomized.
  • the embodiment of FIG. 4 overcomes the problem of time domain interference, but frequency domain interference cannot be randomized. The problem of aging still affects system performance.
  • each physical resource group includes M times. a resource, each time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, includes M*N resource numbers, and the time serial number of the physical resource whose resource number is x is mod ⁇ Mod(x,M)-mod[[floor(x/M)+1]*Q t *P,M-1],M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M )+1]*Q t *P,M-1],M ⁇ ,mod ⁇ mod(x,M)-[mod[floor(x/M),M-1]+1]*Q t *P, M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ , the frequency number is mod[floor(x/M)+ P*Q f ,
  • the physical resource group number P is 0, ..., 2, M is 5, the time serial number is 0, ..., 4; N is 12, the frequency serial number is 0, ..., 11, Q t is 1, Q f is 4, these time and frequency resources are numbered, and the time serial number of each physical resource with resource number x is mod ⁇ mod(x,M)-mod[[floor(x/ M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M)+1]*Q t *P,M-1] , M ⁇ , mod ⁇ mod(x,M)-[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod [floor(x/M),M-1]+1]*Q t *P,M ⁇ , the frequency number is mod[floor(x/M)+P*Q f ,N], that is, after the grouping, the indication signal
  • the physical resource with the resource is mod[floor(x
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex actions such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to different physical resources in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 5, correspond to different physical resource groups.
  • the time serial number and the frequency serial number of the physical resource are different, so that when the data is sent by using the same resource number, the time serial number and the frequency serial number of the physical resource used in different physical resource groups are different, thereby generating the system.
  • Interference in the time domain and interference in the frequency domain are also different in different physical resource groups, and randomization of time domain interference and frequency domain interference can be achieved.
  • the M and/or N may be a positive integer greater than or equal to 2.
  • grouping multiple time resources and/or multiple frequency resources can better reflect the technical advantage of the technical problem that the scheduling allocation signal cannot accurately indicate the physical resources carrying the control signal.
  • the time information is a time resource number
  • the frequency information is a frequency resource number.
  • the same frequency resource number corresponds to the same or different frequency serial number.
  • the time resource number may include one or more time serial numbers, which are not limited by the embodiment of the present invention.
  • the frequency number of the physical resource whose frequency resource number is x is mod(x, N), where , mod() is a remainder function, x is a zero or a positive integer, and N is a positive integer, indicating the number of frequency resource numbers corresponding to each time sequence number.
  • FIG. 6 is a schematic diagram showing the result of indicating a physical resource carrying a control signal in a signal transmission method according to another embodiment of the present invention.
  • the time sequence is 0, ..., 11, N is 12, the frequency number is 0, ..., 11, and the frequency number of the physical resource whose frequency resource number is x is mod(x, N).
  • the indication signal may indicate that the physical resource with the frequency sequence number mod(x, N) is used to carry the control signal, and the receiving end may be in the specified time sequence, and the frequency sequence number is mod(x, N).
  • the control signal is detected and acquired on the physical resource.
  • the embodiment of the present invention can indicate the frequency sequence number and the time sequence number of the physical resource carrying the control signal by using the indication signal, so that the receiving end can detect and acquire the control signal on the corresponding physical resource, and does not need to perform complicated operations such as blind detection. , thereby saving processing time and power consumption at the receiving end.
  • the frequency number of the physical resource whose frequency resource number is x is mod(x+P t *Q f , N), where mod() is a remainder function, P t represents a time sequence, and the value is zero or a positive integer, and N represents the number of frequency resource numbers corresponding to each time sequence, that is, the number of frequency numbers.
  • Q f is the frequency hopping step size, x is zero or a positive integer, and N, Q f are positive integers.
  • FIG. 7 is a schematic diagram showing a result of indicating a physical resource carrying a control signal in a signal transmission method according to another embodiment of the present invention.
  • P t is the time 0, ..., 11, N 12
  • frequency number is 0, ..., 11
  • Q f is 1, frequency resource number of the physical resource x frequency
  • the sequence number is mod(x+P t *Q f , N)
  • the indication signal may indicate that the physical resource that uses the time sequence P t and the frequency sequence is mod(x+P t *Q f , N) carries the control signal
  • the receiving end may detect and acquire the data signal on a physical resource whose time sequence P t and frequency number is mod(x+P t *Q f , N).
  • the embodiment of the present invention can indicate the frequency sequence number and the time sequence number of the physical resource carrying the control signal by using the indication signal, so that the receiving end can detect and acquire the control signal on the corresponding physical resource, and does not need to perform complicated operations such as blind detection. , thereby saving processing time and power consumption at the receiving end.
  • the same frequency resource number corresponds to different frequency numbers in different time numbers, that is, two frequency resource numbers, such as frequency resource numbers 1 and 5 in FIG. 7, are in different time series.
  • the corresponding frequency numbers are not the same, so that randomization of frequency domain interference can be achieved.
  • the frequency and/or time hopping step size is determined by the cell identifier, and interference randomization between cells can be implemented, which is advantageous for the receiving end to suppress or eliminate interference between the inter-cell interferences.
  • the cell identifier may be a physical cell identifier (English full name: Physical Cell Identifier; English abbreviation: PCI).
  • the frequency and/or time hopping step size is determined by the physical cell identifier, and interference randomization between cells can be implemented, which is advantageous for the receiving end to suppress or eliminate interference between the inter-cell interferences.
  • the result is obtained from a third party or a receiving end, that is, the receiving end or the third party groups the physical resources occupied by the control signal.
  • the determining, by the user equipment, the physical resources occupied by the control signal by the user equipment the determining, by the user equipment, the one or more control signals according to the resource number Correspondence of occupied physical resources to the physical occupied by the control signal
  • the resources are grouped, and then the resource number is determined according to the result of the grouping, and the correspondence between the resource number and the physical resources occupied by the one or more control signals is preset, fed back by the receiving end or provided by a third party.
  • the method includes: the user equipment sends a correspondence between a resource number and a physical resource occupied by one or more control signals to a receiving end.
  • the receiving, by the user equipment, the indication signal includes: the user equipment receiving an indication signal sent by the base station.
  • FIG. 8 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment 800 shown in FIG. 8 includes a receiving unit 810, a configuration unit 820, and a transmitting unit 830.
  • the receiving unit 810 is configured to receive an indication signal, where the indication signal is used to indicate one or more control signals, such as a scheduling allocation signal (English full name: Scheduling Assignment, English abbreviation: SA), and a resource number of the occupied physical resource.
  • the resource number includes time information and frequency information of the physical resource;
  • the configuration unit 820 is configured to configure the one or more control signals to be corresponding to the physical resource according to the resource number;
  • the sending unit 830 is configured to: Sending the one or more control signals.
  • the receiving end can receive the control signal without performing blind detection, thereby saving the processing time and power consumption of the receiving end.
  • FIG. 8 corresponds to the signal transmission method of FIG. 1. Therefore, the user equipment of the embodiment of the present invention may be specifically described in conjunction with FIG. 2 to FIG. 7.
  • FIG. 2 to FIG. 5 are diagrams of a signal transmission method according to an embodiment of the present invention.
  • FIG. 6 and FIG. 7 are schematic diagrams showing results of indicating physical resources of a bearer control signal in a signal transmission method according to another embodiment of the present invention.
  • the resource number is determined by grouping physical resources occupied by the control signal, the time resource information is a time serial number, and the frequency information is a frequency serial number, and the same is in different physical resource groups.
  • the resource numbers correspond to the same time sequence number and the same frequency sequence number, or the same resource numbers in different physical resource groups correspond to the same time sequence number and different frequency sequence numbers, or the same resource numbers in different physical resource groups correspond to different time numbers and The same frequency sequence number, or the same resource number in different physical resource groups, corresponds to different time numbers and different frequency numbers.
  • the resource number is occupied by a base station, a user equipment, or a third party.
  • the physical resources are determined after being grouped, and the embodiment of the present invention does not limit this.
  • M time resources such as radio frames, subframes, and time slots
  • each time resource includes N frequency resources, for example, physical resource blocks (English full name: Physical Resource Block, English abbreviation) :PRB), subcarrier, etc.
  • M, N are positive integers, which are not limited in the embodiment of the present invention.
  • the same resource number determined according to the preset grouping method in each physical resource group may include the same time serial number and the same frequency serial number, or the same time serial number and different frequency serial number, or different time serial numbers.
  • the grouping methods satisfying the four cases all fall within the protection scope of the embodiment of the present invention.
  • each physical resource group when the same resource number in the different physical resource groups corresponds to the same time sequence number and the same frequency sequence number, each physical resource group includes M time resources, and each time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, the M*N resource numbers are included, and the time serial number of the physical resource whose resource number is x is mod(x, M), and the frequency serial number is floor(x/ M), where mod() is the remainder function, floor() is the round-down function, x is zero or a positive integer, and M, N are positive integers.
  • M is 5, the time sequence is 0, ..., 4; N is 12, the frequency sequence is 0, ..., 11, and these time and frequency resources are from left to right,
  • the indication signal may indicate that the physical resource with the resource number x is used to carry the control signal, and the receiving end may detect on the physical resource whose time serial number is mod(x, M) and the frequency serial number is floor(x/M). Obtaining the control signal.
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex operations such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to the same physical resource in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 2, corresponding physical groups in different physical resource groups.
  • the resources are always the same, the frequency spacing is always the same.
  • the two resource numbers, such as resource numbers 1 and 5 in Figure 2 are always the same in different physical resource groups, so that the same resource is used. Number used in different physical resource groups when sending data
  • the physical resources are always the same, so the interference generated to the system is always the same within different physical resource groups, and the randomization of interference cannot be achieved.
  • each physical resource group includes M time resources, and each The time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, M*N resource numbers, and the time serial number of the physical resource whose resource number is x is mod(x, M).
  • the frequency number is mod[floor(x/M)+P*Q f ,N], where mod() is the remainder function, floor() is the round-down function, and P is the physical resource group number.
  • the value is zero or a positive integer
  • Q f is the frequency hopping step size
  • x is zero or a positive integer
  • M, N, Q f are positive integers.
  • the physical resource group number P is 0, ..., 2, M is 5, the time serial number is 0, ..., 4; N is 12, the frequency serial number is 0, ..., 11, Q f is 4, these time and frequency resources are numbered, the time number of each physical resource whose resource number is x is mod(x, M), and the frequency serial number is mod[floor(x/M)+P* Q f , N], that is, after the grouping, the indication signal may indicate that the physical resource with the resource number x is used to carry the control signal, and the receiving end may be in the time sequence mod(x, M), and the frequency sequence number is mod[floor(x) The control signal is detected and acquired on the physical resource of /M)+P*Q f ,N].
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex operations such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to different physical resources in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 3, correspond to different physical resource groups.
  • the frequency numbers of the physical resources are different. In this way, when data is transmitted using the same resource number, the frequency numbers of the physical resources used in different physical resource groups are different, so that the interference to the frequency domain generated by the system is different in physical. Different in the resource group, randomization of frequency domain interference can be achieved.
  • each physical resource group includes M time resources, and each The time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, the M*N resource numbers are included, and the time sequence of the physical resource whose resource number is x is mod ⁇ mod(x).
  • the physical resource group number P is 0, ..., 2, M is 5, the time serial number is 0, ..., 4; N is 12, the frequency serial number is 0, ..., 11, Q t is 1, these time and frequency resources are numbered, and the time number of each physical resource whose resource number is x is mod ⁇ mod(x,M)-mod[[floor(x/M)+1] *Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)-[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/ M), M-1]+1]*Q t *P, M ⁇ , the frequency sequence is floor(x/M), that is, after the grouping, the indication signal may indicate that the physical resource with the resource number x is used to carry the control signal.
  • the receiving end can be in the time sequence mod ⁇ mod(x,M)-mod[[floor(x/M)+1]*Q t *P, M-1], M ⁇ , mod ⁇ mod(x,M )+mod[[floor(x/M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)-[mod[floor(x/M),M-1 ]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ , frequency number
  • the control signal is detected and acquired on the physical resource of floor (x/M).
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex actions such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to different physical resources in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 4, correspond to different physical resource groups.
  • the time numbers of the physical resources are different. In this way, when data is sent using the same resource number, the time numbers of the physical resources used in different physical resource groups are different, so that the time domain interference generated by the system is in different physical states. Different in the resource group, randomization of time domain interference can be achieved.
  • the embodiment of Figure 3 overcomes the problem of frequency domain interference, but there is also time domain interference that cannot be randomized. The problem exists.
  • the embodiment of FIG. 4 overcomes the problem of time domain interference, but there is also a problem that frequency domain interference cannot be randomized, and still affects system performance.
  • each physical resource group includes M times. a resource, each time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, includes M*N resource numbers, and the time serial number of the physical resource whose resource number is x is mod ⁇ Mod(x,M)-mod[[floor(x/M)+1]*Q t *P,M-1],M ⁇ ,mod ⁇ mod(x,M)+mod[[floor(x/M )+1]*Q t *P,M-1],M ⁇ ,mod ⁇ mod(x,M)-[mod[floor(x/M),M-1]+1]*Q t *P, M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ , the frequency number is mod[floor(x/M)+ P*Q f ,
  • the physical resource group number P is 0, ..., 2, M is 5, the time serial number is 0, ..., 4; N is 12, the frequency serial number is 0, ..., 11, Q t is 1, Q f is 4, these time and frequency resources are numbered, and the time serial number of each physical resource with resource number x is mod ⁇ mod(x,M)-mod[[floor(x/ M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M)+1]*Q t *P,M-1] , M ⁇ , mod ⁇ mod(x,M)-[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod [floor(x/M),M-1]+1]*Q t *P,M ⁇ , the frequency number is mod[floor(x/M)+P*Q f ,N], that is, after the grouping, the indication signal
  • the physical resource with the resource is mod[floor(x
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex actions such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to different physical resources in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 5, correspond to different physical resource groups.
  • the time serial number and the frequency serial number of the physical resource are different, so that when the data is sent by using the same resource number, the time serial number and the frequency serial number of the physical resource used in different physical resource groups are different, thereby generating the system.
  • Interference in the time domain and interference in the frequency domain are also different in different physical resource groups, and randomization of time domain interference and frequency domain interference can be achieved.
  • the M and/or N may be a positive integer greater than or equal to 2.
  • grouping multiple time resources and/or multiple frequency resources can better reflect the technical advantage of the technical problem that the scheduling allocation signal cannot accurately indicate the physical resources carrying the control signal.
  • the time information is a time resource number
  • the frequency information is a frequency resource number.
  • the same frequency resource number corresponds to the same or different frequency serial number.
  • the time resource number may include one or more time serial numbers, which are not limited by the embodiment of the present invention.
  • the frequency number of the physical resource whose frequency resource number is x is mod(x, N), where , mod() is a remainder function, x is a zero or a positive integer, and N is a positive integer, indicating the number of frequency resource numbers corresponding to each time sequence number.
  • FIG. 6 is a schematic diagram showing the result of indicating a physical resource carrying a control signal in a signal transmission method according to another embodiment of the present invention.
  • the time sequence is 0, ..., 11, N is 12, the frequency number is 0, ..., 11, and the frequency number of the physical resource whose frequency resource number is x is mod(x, N).
  • the indication signal may indicate that the physical resource with the frequency sequence number mod(x, N) is used to carry the control signal, and the receiving end may be in the specified time sequence, and the frequency sequence number is mod(x, N).
  • the control signal is detected and acquired on the physical resource.
  • the embodiment of the present invention can indicate the frequency sequence number and the time sequence number of the physical resource carrying the control signal by using the indication signal, so that the receiving end can detect and acquire the corresponding physical resource.
  • the control signal does not have to perform complicated operations such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the frequency number of the physical resource whose frequency resource number is x is mod(x+P t *Q f , N), where mod() is a remainder function, P t represents a time sequence, and the value is zero or a positive integer, and N represents the number of frequency resource numbers corresponding to each time sequence, that is, the number of frequency numbers.
  • Q f is the frequency hopping step size, x is zero or a positive integer, and N, Q f are positive integers.
  • the sequence number is mod(x+P t *Q f , N), that is, the indication signal may indicate that the physical resource with the time sequence number P t and the frequency sequence number mod(x+P t *Q f , N) is used to carry the control signal.
  • the receiving end may detect and acquire the control signal on a physical resource whose time sequence is P t and whose frequency number is mod (x+P t *Q f , N).
  • the embodiment of the present invention can indicate the frequency sequence number and the time sequence number of the physical resource carrying the control signal by using the indication signal, so that the receiving end can detect and acquire the control signal on the corresponding physical resource, and does not need to perform complicated operations such as blind detection. , thereby saving processing time and power consumption at the receiving end.
  • the same frequency resource number corresponds to different frequency numbers in different time numbers, that is, two frequency resource numbers, such as frequency resource numbers 1 and 5 in FIG. 7, are in different time series.
  • the corresponding frequency numbers are not the same, so that randomization of frequency domain interference can be achieved.
  • the frequency and/or time hopping step size is determined by the cell identifier, and interference randomization between cells can be implemented, which is advantageous for the receiving end to suppress or eliminate interference between the inter-cell interferences.
  • the cell identifier may be a physical cell identifier (English full name: Physical Cell Identifier; English abbreviation: PCI).
  • the frequency and/or time hopping step size is determined by the physical cell identifier, and interference randomization between cells can be implemented, which is advantageous for the receiving end to suppress or eliminate interference between the inter-cell interferences.
  • the determining, by the user equipment, the physical resources occupied by the control signal by the user equipment, the determining, by the user equipment, determining, according to the result of the grouping The resource number is obtained from a third party or a receiving end, that is, the receiving end or the third party groups the physical resources occupied by the control signal.
  • the user equipment includes: a grouping unit, configured to group, according to a correspondence between a resource number and a physical resource occupied by one or more control signals, physical resources occupied by the control signal, and then according to The grouping result determines a resource number, and the correspondence between the resource number and the physical resource occupied by one or more control signals is preset, and is provided by the receiving end or provided by a third party.
  • the first sending unit is specifically configured to send, to the receiving end, a correspondence between a resource number and a physical resource occupied by one or more control signals.
  • the receiving unit is specifically configured to receive an indication signal sent by the base station.
  • FIG. 9 is a schematic block diagram of a user equipment according to still another embodiment of the present invention.
  • the user equipment 900 shown in FIG. 9 includes a receiver 910, a processor 920, and a transmitter 930. among them,
  • the receiver 910 is configured to receive an indication signal, where the indication signal is used to indicate one or more control signals, such as a scheduling allocation signal (English full name: Scheduling Assignment, English abbreviation: SA), a resource number of a occupied physical resource, The resource number includes time information and frequency information of the physical resource;
  • a scheduling allocation signal English full name: Scheduling Assignment, English abbreviation: SA
  • the processor 920 is configured to configure the one or more control signals to correspond to physical resources according to resource numbers;
  • the transmitter 930 is further configured to send the one or more control signals.
  • the receiving end can receive the control signal without performing blind detection, thereby saving the processing time and power consumption of the receiving end.
  • the user device 900 can also include a memory, which can include read only memory and random access memory, and provides instructions and data to the processor 920.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • Processor 920 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 920 or an instruction in a form of software.
  • the processor 920 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or a field programmable gate array (Field Programmable Gate Array). FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc.
  • RAM random access memory
  • ROM read-only memory
  • programmable read only memory or an electrically erasable programmable memory
  • register etc.
  • the storage medium is located in the memory, and the processor 920 reads the information in the memory and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • FIG. 9 corresponds to the signal transmission method of FIG. 1. Therefore, the user equipment of the embodiment of the present invention may be specifically described with reference to FIG. 2 to FIG. 7.
  • FIG. 2 to FIG. 5 are diagrams of a signal transmission method according to an embodiment of the present invention.
  • FIG. 6 to FIG. 7 are diagrams showing the result of indicating the physical resources of the bearer control signal in the signal transmission method according to another embodiment of the present invention.
  • the resource number is determined by grouping physical resources occupied by the control signal, the time resource information is a time serial number, and the frequency information is a frequency serial number, and the same is in different physical resource groups.
  • the resource numbers correspond to the same time sequence number and the same frequency sequence number, or the same resource numbers in different physical resource groups correspond to the same time sequence number and different frequency sequence numbers, or the same resource numbers in different physical resource groups correspond to different time numbers and The same frequency sequence number, or the same resource number in different physical resource groups, corresponds to different time numbers and different frequency numbers.
  • the resource number is determined by the base station, the user equipment, or the third party, and the physical resources occupied by the control signal are grouped, which is not limited by the embodiment of the present invention.
  • M time resources such as radio frames, subframes, and time slots
  • each time resource includes N frequency resources, for example, physical resource blocks (English full name: Physical Resource Block, English abbreviation) :PRB), subcarrier, etc.
  • M, N are positive integers, which are not limited in the embodiment of the present invention.
  • the same resource number determined according to the preset grouping method in each physical resource group may include the same time serial number and the same frequency serial number, or the same time serial number and different frequency serial number, or different time serial numbers. And the same frequency number, or different time In the four cases, such as the serial number and the different frequency serial number, the grouping method that satisfies these four cases falls within the protection scope of the embodiment of the present invention.
  • each physical resource group when the same resource number in the different physical resource groups corresponds to the same time sequence number and the same frequency sequence number, each physical resource group includes M time resources, and each time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, the M*N resource numbers are included, and the time serial number of the physical resource whose resource number is x is mod(x, M), and the frequency serial number is floor(x/ M), where mod() is the remainder function, floor() is the round-down function, x is zero or a positive integer, and M, N are positive integers.
  • M is 5, the time sequence is 0, ..., 4; N is 12, the frequency sequence is 0, ..., 11, and these time and frequency resources are from left to right,
  • the indication signal may indicate that the physical resource with the resource number x is used to carry the control signal, and the receiving end may detect on the physical resource whose time serial number is mod(x, M) and the frequency serial number is floor(x/M). Obtaining the control signal.
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex operations such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to the same physical resource in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 2, corresponding physical groups in different physical resource groups.
  • the resources are always the same, the frequency spacing is always the same.
  • the two resource numbers, such as resource numbers 1 and 5 in Figure 2 are always the same in different physical resource groups, so that the same resource is used.
  • the number is sent, the physical resources used in different physical resource groups are always the same, so the interference generated to the system is always the same in different physical resource groups, and the randomization of interference cannot be achieved.
  • each physical resource group includes M time resources, and each The time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, M*N resource numbers, and the time serial number of the physical resource whose resource number is x is mod(x, M).
  • the frequency number is mod[floor(x/M)+P*Q f ,N], where mod() is the remainder function, floor() is the round-down function, and P is the physical resource group number.
  • the value is zero or a positive integer
  • Q f is the frequency hopping step size
  • x is zero or a positive integer
  • M, N, Q f are positive integers.
  • the physical resource group number P is 0, ..., 2, M is 5, the time serial number is 0, ..., 4; N is 12, the frequency serial number is 0, ..., 11, Q f is 4, these time and frequency resources are numbered, the time number of each physical resource whose resource number is x is mod(x, M), and the frequency serial number is mod[floor(x/M)+P* Q f , N], that is, after the grouping, the indication signal may indicate that the physical resource with the resource number x is used to carry the control signal, and the receiving end may be in the time sequence mod(x, M), and the frequency sequence number is mod[floor(x) The control signal is detected and acquired on the physical resource of /M)+P*Q f ,N].
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex operations such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to different physical resources in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 3, correspond to different physical resource groups.
  • the frequency numbers of the physical resources are different. In this way, when data is transmitted using the same resource number, the frequency numbers of the physical resources used in different physical resource groups are different, so that the interference to the frequency domain generated by the system is different in physical. Different in the resource group, randomization of frequency domain interference can be achieved.
  • each physical resource group includes M time resources, and each The time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, the M*N resource numbers are included, and the time sequence of the physical resource whose resource number is x is mod ⁇ mod(x).
  • the physical resource group number P is 0, ..., 2, M is 5, the time serial number is 0, ..., 4; N is 12, the frequency serial number is 0, ..., 11, Q t is 1, these time and frequency resources are numbered, and the time number of each physical resource whose resource number is x is mod ⁇ mod(x,M)-mod[[floor(x/M)+1] *Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)-[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/ M), M-1]+1]*Q t *P, M ⁇ , the frequency sequence is floor(x/M), that is, after the grouping, the indication signal may indicate that the physical resource with the resource number x is used to carry the control signal.
  • the receiving end can be in the time sequence mod ⁇ mod(x,M)-mod[[floor(x/M)+1]*Q t *P, M-1], M ⁇ , mod ⁇ mod(x,M )+mod[[floor(x/M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)-[mod[floor(x/M),M-1 ]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ , frequency number
  • the control signal is detected and acquired on the physical resource of floor (x/M).
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex actions such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to different physical resources in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 4, correspond to different physical resource groups.
  • the time numbers of the physical resources are different. In this way, when data is sent using the same resource number, the time numbers of the physical resources used in different physical resource groups are different, so that the time domain interference generated by the system is in different physical states. Different in the resource group, randomization of time domain interference can be achieved.
  • FIG. 3 overcomes the problem of frequency domain interference, but there is also a problem that time domain interference cannot be randomized.
  • the embodiment of FIG. 4 overcomes the problem of time domain interference, but frequency domain interference cannot be randomized. The problem of aging still affects system performance.
  • each physical resource group includes M times. a resource, each time resource includes N frequency resources.
  • the physical resource group includes M*N physical resources, that is, includes M*N resource numbers, and the time serial number of the physical resource whose resource number is x is mod ⁇ Mod(x,M)-mod[[floor(x/M)+1]*Q t *P,M-1],M ⁇ ,mod ⁇ mod(x,M)+mod[[floor(x/M )+1]*Q t *P,M-1],M ⁇ , mod ⁇ mod(x,M)-[mod[floor(x/M),M-1]+1]*Q t *P, M ⁇ or mod ⁇ mod(x,M)+[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ , the frequency number is mod[floor(x/M)+ P*Q f ,
  • the physical resource group number P is 0, ..., 2, M is 5, the time serial number is 0, ..., 4; N is 12, the frequency serial number is 0, ..., 11, Q t is 1, Q f is 4, these time and frequency resources are numbered, and the time serial number of each physical resource with resource number x is mod ⁇ mod(x,M)-mod[[floor(x/ M)+1]*Q t *P,M-1], M ⁇ , mod ⁇ mod(x,M)+mod[[floor(x/M)+1]*Q t *P,M-1] , M ⁇ , mod ⁇ mod(x,M)-[mod[floor(x/M),M-1]+1]*Q t *P,M ⁇ or mod ⁇ mod(x,M)+[mod [floor(x/M),M-1]+1]*Q t *P,M ⁇ , the frequency number is mod[floor(x/M)+P*Q f ,N], that is, after the grouping, the indication signal
  • the physical resource with the resource is mod[floor(x
  • the embodiment of the present invention can group physical resources including multiple time resources and multiple frequency resources, so that the indication signal can accurately indicate the resource number of the physical resource carrying the control signal, so that the receiving end can be in the corresponding physical resource.
  • the detection and acquisition of the control signal eliminates the need for complex actions such as blind detection, thereby saving processing time and power consumption at the receiving end.
  • the same resource number corresponds to different physical resources in different physical resource groups, that is, two resource numbers, such as resource numbers 1 and 21 in FIG. 5, correspond to different physical resource groups.
  • the time serial number and the frequency serial number of the physical resource are different, so that when the data is sent by using the same resource number, the time serial number and the frequency serial number of the physical resource used in different physical resource groups are different, thereby generating the system.
  • Interference in the time domain and interference in the frequency domain are also different in different physical resource groups, and randomization of time domain interference and frequency domain interference can be achieved.
  • the M and/or N may be a positive integer greater than or equal to 2.
  • grouping multiple time resources and/or multiple frequency resources can better reflect the technical advantage of the technical problem that the scheduling allocation signal cannot accurately indicate the physical resources carrying the control signal.
  • the time information is a time resource number
  • the frequency information is a frequency resource number.
  • the same frequency resource number corresponds to the same or different frequency serial number.
  • the time resource number may include one or more time serial numbers, which are not limited by the embodiment of the present invention.
  • the frequency number of the physical resource whose frequency resource number is x is mod(x, N), where , mod() is a remainder function, x is a zero or a positive integer, and N is a positive integer, indicating the number of frequency resource numbers corresponding to each time sequence number.
  • FIG. 6 is a schematic diagram showing the result of indicating a physical resource carrying a control signal in a signal transmission method according to another embodiment of the present invention.
  • the time sequence is 0, ..., 11, N is 12, the frequency number is 0, ..., 11, and the frequency number of the physical resource whose frequency resource number is x is mod(x, N).
  • the indication signal may indicate that the physical resource with the frequency sequence number mod(x, N) is used to carry the control signal, and the receiving end may be in the specified time sequence, and the frequency sequence number is mod(x, N).
  • the control signal is detected and acquired on the physical resource.
  • the embodiment of the present invention can indicate the frequency sequence number and the time sequence number of the physical resource carrying the control signal by using the indication signal, so that the receiving end can detect and acquire the control signal on the corresponding physical resource, and does not need to perform complicated operations such as blind detection. , thereby saving processing time and power consumption at the receiving end.
  • the frequency number of the physical resource whose frequency resource number is x is mod(x+P t *Q f , N), where mod() is a remainder function, P t represents a time sequence, and the value is zero or a positive integer, and N represents the number of frequency resource numbers corresponding to each time sequence, that is, the number of frequency numbers.
  • Q f is the frequency hopping step size, x is zero or a positive integer, and N, Q f are positive integers.
  • the time sequence number P t is 0, ..., 11, N is 12, the frequency number is 0, ..., 11, Q f is 1, and the frequency of the physical resource whose frequency resource number is x
  • the sequence number is mod(x+P t *Q f , N), that is, the indication signal may indicate that the physical resource with the time sequence number P t and the frequency sequence number mod(x+P t *Q f , N) is used to carry the control signal.
  • the receiving end may detect and acquire the control signal on a physical resource whose time sequence is P t and whose frequency number is mod (x+P t *Q f , N).
  • the embodiment of the present invention can indicate the frequency sequence number and the time sequence number of the physical resource carrying the control signal by using the indication signal, so that the receiving end can detect and acquire the control signal on the corresponding physical resource, and does not need to perform complicated operations such as blind detection. , thereby saving processing time and power consumption at the receiving end.
  • the same frequency resource number corresponds to different frequency numbers in different time numbers, that is, two frequency resource numbers, such as frequency resource numbers 1 and 5 in FIG. 7, are in different time series.
  • the corresponding frequency numbers are not the same, so that randomization of frequency domain interference can be achieved.
  • the frequency and/or time hopping step size is determined by the cell identifier, and interference randomization between cells can be implemented, which is advantageous for the receiving end to suppress or eliminate interference between the inter-cell interferences.
  • the cell identifier may be a physical cell identifier (English full name: Physical Cell Identifier; English abbreviation: PCI).
  • the frequency and/or time hopping step size is determined by the physical cell identifier, and interference randomization between cells can be implemented, which is advantageous for the receiving end to suppress or eliminate interference between the inter-cell interferences.
  • the resource number is determined by the user equipment grouping the physical resources occupied by the control signal, and the user equipment determines the resource number according to the grouping result, where the grouping result is
  • the physical resources occupied by the control signals are obtained by the receiving end or the third party obtained from the third party or the receiving end.
  • the processor 920 is specifically configured to group the physical resources occupied by the control signal according to the correspondence between the resource number and the physical resources occupied by the one or more control signals, and then according to the grouping result.
  • the resource number is determined, and the correspondence between the resource number and the physical resource occupied by one or more control signals is preset, and is provided by the receiving end or provided by a third party.
  • the transmitter 930 is specifically configured to send to the receiving end.
  • the receiver 910 is specifically configured to receive an indication signal sent by the base station.
  • the user equipment shown in FIG. 9 can implement the various processes performed by the user equipment in the method embodiment of FIG. 1.
  • the user equipment 900 reference may be made to the process involving the user equipment in the method embodiment of FIG. To avoid repetition, it will not be detailed here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例提供一种信号传输的方法和用户设备,该方法包括:用户设备接收指示信号,所述指示信号用于指示一个或多个控制信号占用的物理资源的资源编号,所述资源编号包括所述物理资源的时间信息和频率信息;所述用户设备根据所述资源编号将所述一个或多个控制信号配置到相对应的物理资源上;所述用户设备发送所述一个或多个控制信号。本发明的实施例能够节省接收端的能耗。

Description

信号传输的方法和用户设备
本申请要求于2014年06月09日提交中国专利局、申请号为PCT/CN2014/079495、发明名称为“数据传输的方法和用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,并且更具体地,涉及一种信号传输的方法和用户设备。
背景技术
用户设备(英文全称:User Equipment,英文缩写:UE)之间的设备到设备临近服务(英文全称:Device to Device Proximity Service,英文缩写:D2D ProSe)已经成为长期演进(英文全称:Long Term Evolution,英文缩写:LTE)系统的热点课题。
在D2D ProSe中涉及数据信号和控制信号,其中,控制信号用于指示数据信号占用的频率资源,数据信号用于承载数据。
但是在现有的LTE通信系统中,由于接收端不能确定控制信号占用的时间资源,需要对所有可能的时间资源进行盲检测才能获得控制信号,从而导致接收端获取控制信号需要消耗更多的时间和电能。
发明内容
本发明实施例提供一种信号传输的方法和用户设备,能够减少接收端的能耗。
第一方面,提供了一种信号传输的方法,包括:用户设备接收指示信号,所述指示信号用于指示一个或多个控制信号,例如调度分配信号(英文全称:Scheduling Assignment,英文缩写:SA),占用的物理资源的资源编号,所述资源编号包括所述物理资源的时间信息和频率信息;所述用户设备根据所述资源编号将所述一个或多个控制信号配置到相对应的物理资源上;所述用户设备发送所述一个或多个控制信号。
结合第一方面,在第一方面的第一种实现方式中,所述资源编号是通过对控制信号占用的物理资源进行分组后确定的,所述时间资源信息为时间序号,所述频率信息为频率序号,不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号,或不同物理资源组内相同的资源编号对应相 同的时间序号和不同的频率序号,或不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号,或不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号。
结合第一方面的第一种可能的实现方式,在第二种实现方式中,在不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,x为零或正整数,M,N为正整数。
结合第一方面的第一种可能的实现方式,在第三种实现方式中,在不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qf为频率跳变步长,x为零或正整数,M,N,Qf为正整数。
结合第一方面的第一种可能的实现方式,在第四种实现方式中,在不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,x为零或正整数,M,N,Qt为正整数。
结合第一方面的第一种可能的实现方式,在第五种实现方式中,在不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为 mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,Qf为频率跳变步长,x为零或正整数,M,N,Qt,Qf为正整数。
结合第一方面的第二种至第五种可能的实现方式中的任一种,在第六种实现方式中,所述M和/或N为大于等于2的正整数。
结合第一方面,在第七种可能的实现方式中,所述时间信息为时间资源编号,所述频率信息为频率资源编号,在不同的时间资源编号内,相同的频率资源编号对应相同或不同的频率序号。
结合第一方面的第七种可能的实现方式,在第八种可能的实现方式中,在不同的时间资源编号内,相同的频率资源编号对应相同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x,N),其中,mod()为求余函数,x为零或正整数,N为正整数,表示每个时间序号对应的频率资源编号数量。
结合第一方面的第七种可能的实现方式,在第九种可能的实现方式中,在不同的时间资源编号内,相同的频率资源编号对应不同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x+Pt*Qf,N),其中,mod()为求余函数,Pt表示时间序号,取值为零或正整数,N表示每个时间序号对应的频率资源编号数量,Qf为频率跳变步长,x为零或正整数,N,Qf为正整数。
结合第一方面的第八或九种可能的实现方式,在第十种可能的实现方式中,所述N为大于等于2的正整数。
结合第一方面的第三或九种可能的实现方式,在第十一种可能的实现方式中,所述Qf由小区标识确定。
结合第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述Qf=mod(ID_cell,N),其中ID_cell为小区标识。
结合第一方面的第十二种可能的实现方式,在第十三种可能的实现方式中,所述小区标识为物理小区标识。
结合第一方面的第四种可能的实现方式,在第十四种可能的实现方式中,所述Qt由小区标识确定。
结合第一方面的第十四种可能的实现方式,在第十五种可能的实现方式中,所述Qt=mod(ID_cell,M),其中ID_cell为小区标识。
结合第一方面的第十五种可能的实现方式,在第十六种可能的实现方式中,所述小区标识为物理小区标识。
结合第一方面的第五种可能的实现方式,在第十七种可能的实现方式中,所述Qf和Qt由小区标识确定。
结合第一方面的第十七种可能的实现方式,在第十八种可能的实现方式中,所述Qf=mod(ID_cell,N),所述Qt=mod(ID_cell,M),其中ID_cell为小区标识。
结合第一方面的第十八种可能的实现方式,在第十九种可能的实现方式中,所述小区标识为物理小区标识。
结合第一方面,在第一方面的第二十种实现方式中,所述用户设备对控制信号占用的物理资源进行分组包括:所述用户设备根据资源编号与一个或多个控制信号占用的物理资源的对应关系对控制信号占用的物理资源进行分组,所述资源编号与一个或多个控制信号占用的物理资源的对应关系是预设的,接收端反馈的或第三方提供的。
结合第一方面的第二十种实现方式,在第一方面的第二十一种实现方式中,包括:所述用户设备向接收端发送资源编号与一个或多个控制信号占用的物理资源的对应关系。
结合第一方法或第一方面的第二种至第二十一种可能的实现方式中的任一种,在第一方面的第二十二种实现方式中,所述用户设备接收指示信号包括:所述用户设备接收基站发送的指示信号。
第二方面,提供了一种用户设备,包括:接收单元,用于接收指示信号,所述指示信号用于指示一个或多个控制信号,例如调度分配信号(英文全称:Scheduling Assignment,英文缩写:SA),占用的物理资源的资源编号,所述资源编号包括所述物理资源的时间信息和频率信息;配置单元,用于根据所述资源编号将所述一个或多个控制信号配置到相对应的物理资源上;发送单元,用于发送所述一个或多个控制信号。
结合第二方面,在第一种可能的实现方式中,所述资源编号是通过对控制信号占用的物理资源进行分组后确定的,所述时间资源信息为时间序号,所述频率信息为频率序号,不同物理资源组内相同的资源编号对应相同的时 间序号和相同的频率序号,或不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号,或不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号,或不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,在不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,x为零或正整数,M,N为正整数。
结合第二方面的第一种可能的实现方式,在第三种可能的实现方式中,在不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qf为频率跳变步长,x为零或正整数,M,N,Qf为正整数。
结合第二方面的第一种可能的实现方式,在第四种可能的实现方式中,在不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,x为零或正整数,M,N,Qt为正整数。
结合第二方面的第一种可能的实现方式,在第五种实现方式中,在不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资 源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,Qf为频率跳变步长,x为零或正整数,M,N,Qt,Qf为正整数。
结合第二方面的第二种至第五种可能的实现方式中的任一种,在第六种实现方式中,所述M和/或N为大于等于2的正整数。
结合第二方面,在第七种实现方式中,所述时间信息为时间资源编号,所述频率信息为频率资源编号,在不同的时间资源编号内,相同的频率资源编号对应相同或不同的频率序号。
结合第二方面的第七种可能的实现方式,在第八种实现方式中,在不同的时间资源编号内,相同的频率资源编号对应相同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x,N),其中,mod()为求余函数,x为零或正整数,N为正整数,表示每个时间序号对应的频率资源编号数量。
结合第二方面的第七种可能的实现方式,在第九种实现方式中,在不同的时间资源编号内,相同的频率资源编号对应不同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x+Pt*Qf,N),其中,mod()为求余函数,Pt表示时间序号,取值为零或正整数,N表示每个时间序号对应的频率资源编号数量,Qf为频率跳变步长,x为零或正整数,N,Qf为正整数。
结合第二方面的第八或九种可能的实现方式,在第十种可能的实现方式中,所述N为大于等于2的正整数。
结合第二方面的第三或九种可能的实现方式,在第十一种可能的实现方式中,所述Qf由小区标识确定。
结合第二方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述Qf=mod(ID_cell,N),其中ID_cell为小区标识。
结合第二方面的第十二种可能的实现方式,在第十三种可能的实现方式中,所述小区标识为物理小区标识。
结合第二方面的第四种可能的实现方式,在第十四种可能的实现方式 中,所述Qt由小区标识确定。
结合第二方面的第十四种可能的实现方式,在第十五种可能的实现方式中,所述Qt=mod(ID_cell,M),其中ID_cell为小区标识。
结合第二方面的第十五种可能的实现方式,在第十六种可能的实现方式中,所述小区标识为物理小区标识。
结合第二方面的第五种可能的实现方式,在第十七种可能的实现方式中,所述Qf和Qt由小区标识确定。
结合第二方面的第十七种可能的实现方式,在第十八种可能的实现方式中,所述Qf=mod(ID_cell,N),所述Qt=mod(ID_cell,M),其中ID_cell为小区标识。
结合第二方面的第十八种可能的实现方式,在第十九种可能的实现方式中,所述小区标识为物理小区标识。
结合第二方面,在第二方面的第二十种实现方式中,所述用户设备包括:分组单元,用于根据资源编号与一个或多个控制信号占用的物理资源的对应关系对控制信号占用的物理资源进行分组,所述资源编号与一个或多个控制信号占用的物理资源的对应关系是预设的,接收端反馈的或第三方提供的。
结合第二方面的第二十种实现方式,在第二方面的第二十一种实现方式中,第一发送单元具体用于,向接收端发送资源编号与一个或多个控制信号占用的物理资源的对应关系。
结合第二方面或第二方面的第一种至第二十一种可能的实现方式中的任一种,在第二方面的第二十二种实现方式中,所述接收单元具体用于,接收基站发送的指示信号。
基于上述技术方案,本发明实施例可以通过用户设备接收指示信号,所述指示信号用于指示一个或多个控制信号占用的物理资源的资源编号,所述资源编号包括所述物理资源的时间信息和频率信息;所述用户设备根据所述资源编号将所述一个或多个控制信号配置到相对应的物理资源上;所述用户设备发送所述一个或多个控制信号。从而能够准确地指示承载控制信号的物理资源,节省了接收端的处理时间和电能消耗,提高了网络性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本 发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的信号传输的方法示意性流程图。
图2是根据本发明实施例的信号传输方法中对承载控制信号的物理资源进行分组的结果示意图。
图3是根据本发明实施例的信号传输方法中对承载控制信号的物理资源进行分组的另一结果示意图。
图4是根据本发明实施例的信号传输方法中对承载控制信号的物理资源进行分组的再一结果示意图。
图5是根据本发明实施例的信号传输方法中对承载控制信号的物理资源进行分组的再一结果示意图。
图6是根据本发明另一实施例的信号传输方法中指示承载控制信号的物理资源的结果示意图。
图7是根据本发明另一实施例的信号传输方法中指示承载控制信号的物理资源的另一结果示意图。
图8是根据本发明实施例的用户设备示意性框图。
图9是根据本发明另一实施例的用户设备示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
应理解,在本发明实施例中,用户设备(英文全称:User Equipment,英文简称:UE)包括但不限于移动台(英文全称:Mobile Station,英文简称:MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(英文全称:Radio Access Network,英文简称:RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
还应理解,在本发明实施例的用户设备和第二用户设备只是为了表述方便,不作任何限制。
本发明实施例中,基站可以是GSM或CDMA中的基站(英文全称:Base Transceiver Station,英文缩写:BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(英文全称:evolved Node B,英文缩写:eNB或e-NodeB),也可以是D2D通信中一个用户簇的簇头(Cluster Head),本发明实施例并不限定。
图1是根据本发明实施例的信号传输的方法示意性流程图。如图1所示,该方法包括:
110,用户设备接收指示信号,所述指示信号用于指示一个或多个控制信号,例如调度分配信号(英文全称:Scheduling Assignment,英文缩写:SA),占用的物理资源的资源编号,所述资源编号包括所述物理资源的时间信息和频率信息。
具体地,用户设备可以接收基站发送的指示信号,本发明实施例并不对此做限定,例如,用户设备也可以根据接收端的反馈来接收指示信号,也可以根据预先配置来接收指示信号。
120,所述用户设备根据所述资源编号将所述一个或多个控制信号配置到相对应的物理资源上。
具体地,所述资源编号可以指示一个或多个物理资源单元,例如为2个、3个、5个或10个物理资源单元,每个物理资源单元均由时间序号和频率序号来唯一确定,本发明实施例并不对此做限定。
应理解,用户设备可以采取多种方法将所述控制信号配置到相对应的物理资源上,本发明实施例并不对此做限定。
130,所述用户设备发送所述一个或多个控制信号。
应理解,用户设备可以采取多种方法发送所述一个或多个控制信号,本发明实施例并不对此做限定。
由于本发明的实施例能够准确地指示承载控制信号的物理资源,因而接收端可以不必进行盲检测就能接收控制信号,节省了接收端的处理时间和能量消耗。
上文中结合图1从用户设备角度详细描述了根据本发明实施例的信号传输的方法。
下面结合具体例子,更加详细地描述本发明实施例。应注意,图1的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图1例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
下面结合图2到图5,具体描述本发明实施例的信号传输的方法,图2到图5是根据本发明实施例的信号传输方法中几种对承载控制信号的物理资源进行分组的结果示意图。
根据本发明的实施例,所述资源编号是通过对控制信号占用的物理资源进行分组后确定的,所述时间资源信息为时间序号,所述频率信息为频率序号,不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号,或不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号,或不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号,或不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号。
具体地,所述资源编号是由基站、用户设备或第三方对控制信号占用的物理资源进行分组后确定的,本发明实施例并不对此做限定。
具体地,可以将M个时间资源,例如无线帧、子帧、时隙等分为一组,每个时间资源又包括N个频率资源,例如物理资源块(英文全称:Physical Resource Block,英文缩写:PRB)、子载波等,M,N为正整数,本发明实施例并不对此做限定。
应理解,分组之后,各个物理资源组内,根据预设分组方法确定的相同的资源编号可以具有相同的时间序号和相同频率序号,或者,相同的时间序 号和不同的频率序号,或者,不同的时间序号和相同的频率序号,或者不同的时间序号和不同的频率序号等四种情况,满足这四种情况的分组方法均落入本发明实施例的保护范围内。
根据本发明的实施例,在不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,x为零或正整数,M,N为正整数。
具体地,如图2,M为5,时间序号为0,...,4;N为12,频率序号为0,...,11,将这些时间和频率资源按照从左到右,自上而下的顺序进行编号,则得到M×N共60个资源编号,每个资源编号为x的物理资源的时间序号为mod(x,M),频率序号为floor(x/M),即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod(x,M),频率序号为floor(x/M)的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
在上述实施例中,相同的资源编号在不同的物理资源组内对应相同的物理资源,即,两个资源编号例如图2中的资源编号1和21,在不同的物理资源组内对应的物理资源总是相同,频率间距总是相同,同理,两个资源编号例如图2中的资源编号1和5,在不同的物理资源组内时间间距总是相同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源总是相同,从而对系统产生的干扰在不同的物理资源组内也总是相同,不能够实现干扰的随机化。
为克服图2中存在的问题,提出了另一实施例,在不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N],其中,mod() 为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qf为频率跳变步长,x为零或正整数,M,N,Qf为正整数。
具体地,如图3,物理资源组序号P为0,...,2,M为5,时间序号为0,...,,4;N为12,频率序号为0,...,11,Qf为4,将这些时间和频率资源进行编号,每个资源编号为x的物理资源的时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N],即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N]的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
并且,在上述实施例中,相同的资源编号在不同的物理资源组内对应不同的物理资源,即,两个资源编号例如图3中的资源编号1和21,在不同的物理资源组内对应的物理资源的频率序号不同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源的频率序号不同,从而对系统产生的频率域的干扰在不同的物理资源组内也不同,能够实现频率域干扰的随机化。
为克服图2中存在的问题,提出了另一实施例,在不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,x为零或正整数,M,N,Qt为正整数。
具体地,如图4,物理资源组序号P为0,...,2,M为5,时间序号为 0,...,,4;N为12,频率序号为0,...,11,Qt为1,将这些时间和频率资源进行编号,每个资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M),即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M)的物理资源上检测并获取到所述数据信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
并且,在上述实施例中,相同的资源编号在不同的物理资源组内对应不同的物理资源,即,两个资源编号例如图4中的资源编号1和21,在不同的物理资源组内对应的物理资源的时间序号不同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源的时间序号不同,从而对系统产生的时间域的干扰在不同的物理资源组内也不同,能够实现时间域干扰的随机化。
图3的实施例克服了频率域干扰的问题,但还有时间域干扰无法随机化的问题存在,同理,图4的实施例克服了时间域干扰的问题,但还有频率域干扰无法随机化的问题存在,仍然影响系统性能。
为了更好地克服图2中存在的问题,提出了另一实施例,在不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、 mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,Qf为频率跳变步长,x为零或正整数,M,N,Qt,Qf为正整数。
具体地,如图5,物理资源组序号P为0,...,2,M为5,时间序号为0,...,,4;N为12,频率序号为0,...,11,Qt为1,Qf为4,将这些时间和频率资源进行编号,每个资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N],即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N]的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
并且,在上述实施例中,相同的资源编号在不同的物理资源组内对应不同的物理资源,即,两个资源编号例如图5中的资源编号1和21,在不同的物理资源组内对应的物理资源的时间序号和频率序号均不同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源的时间序号和频率序号均不同,从而对系统产生的时间域的干扰和频率域的干扰在不同的物理资源组内也不同,能够实现时间域干扰和频率域干扰的随机化。
相应的,作为另一实施例,所述M和/或N可以为大于等于2的正整数。
应理解,对于多个时间资源和/或多个频率资源进行分组更能体现本发明实施例解决调度分配信号不能准确地指示承载控制信号的物理资源的技术问题的技术优势。
根据本发明的实施例,所述时间信息为时间资源编号,所述频率信息为频率资源编号,在不同的时间资源编号内,相同的频率资源编号对应相同或不同的频率序号。
具体地,所述时间资源编号可以包括一个或多个时间序号,本发明实施例并不对此做限定。
应理解,根据预设方法确定的,在不同的时间资源编号内,也可以是不同的时间序号内,相同的频率资源编号可以对应相同或不同的频率序号,满足这两种情况的方法均落入本发明实施例的保护范围内。
可替代地,作为另一实施例,在不同的时间资源编号内,相同的频率资源编号对应相同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x,N),其中,mod()为求余函数,x为零或正整数,N为正整数,表示每个时间序号对应的频率资源编号数量。
图6是根据本发明另一实施例的信号传输方法中指示承载控制信号的物理资源的结果示意图。具体地,如图6,时间序号为0,...,11,N为12,频率序号为0,...,11,频率资源编号为x的物理资源的频率序号为mod(x,N),即指示信号可以指示使用任意指定时间序号,频率序号为mod(x,N)的物理资源来承载控制信号,则接收端可以在所述指定时间序号,频率序号为mod(x,N)的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过指示信号指示承载控制信号的物理资源的频率序号和时间序号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
可替代地,作为另一实施例,在不同的时间资源编号内,相同的频率资源编号对应不同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x+Pt*Qf,N),其中,mod()为求余函数,Pt表示时间序号,取值为零或正整数,N表示每个时间序号对应的频率资源编号数量,即,也就是频率序号的数量,Qf为频率跳变步长,x为零或正整数,N,Qf为正整数。
图7是根据本发明另一实施例的信号传输方法中指示承载控制信号的物理资源的结果示意图。具体地,如图7,时间序号Pt为0,...,11,N为12,频率序号为0,...,11,Qf为1,频率资源编号为x的物理资源的频率序号为mod(x+Pt*Qf,N),即指示信号可以指示使用时间序号Pt,频率序号为mod(x+Pt*Qf,N)的物理资源来承载控制信号,则接收端可以在时间序号Pt,频率序号为mod(x+Pt*Qf,N)的物理资源上检测并获取到所述数据信号。
因此,本发明实施例可以通过指示信号指示承载控制信号的物理资源的频率序号和时间序号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
并且,在上述实施例中,在不同的时间序号内,相同的频率资源编号对应不同的频率序号,即,两个频率资源编号例如图7中的频率资源编号1和5,在不同的时间序号内对应的频率序号不相同,这样一来,能够实现频率域干扰的随机化。
相应的,作为另一实施例,所述Qf和/或Qt可以由小区标识确定,例如所述Qf=mod(ID_cell,N)和/或所述Qt=mod(ID_cell,M),其中ID_cell为小区标识。
应理解,通过小区标识来确定频率和/或时间跳变步长,可以实现小区间的干扰随机化,有利于接收端对小区间干扰进行干扰抑制或消除。
可替代地,作为另一实施例,所述小区标识可以为物理小区标识(英文全称:Physical Cell Identifier;英文简称:PCI)。
应理解,在LTE通信系统中通过物理小区标识来确定频率和/或时间跳变步长,可以实现小区间的干扰随机化,有利于接收端对小区间干扰进行干扰抑制或消除。
可替代地,作为另一实施例,所述所述资源编号是由所述用户设备对控制信号占用的物理资源进行分组后确定的包括:所述用户设备根据分组结果确定资源编号,所述分组结果是从第三方或接收端获取的,即接收端或第三方对控制信号占用的物理资源进行分组。
可替代地,作为另一实施例,所述所述资源编号是由所述用户设备对控制信号占用的物理资源进行分组后确定的包括:所述用户设备根据资源编号与一个或多个控制信号占用的物理资源的对应关系对控制信号占用的物理 资源进行分组,然后根据分组结果确定资源编号,所述资源编号与一个或多个控制信号占用的物理资源的对应关系是预设的,接收端反馈的或第三方提供的。
可替代地,作为另一实施例,本方法包括:所述用户设备向接收端发送资源编号与一个或多个控制信号占用的物理资源的对应关系。
可选的,所述用户设备接收指示信号包括:所述用户设备接收基站发送的指示信号。
图8是根据本发明实施例的用户设备示意性框图。如图8所示的用户设备800包括:接收单元810、配置单元820和发送单元830。
具体地,接收单元810用于接收指示信号,所述指示信号用于指示一个或多个控制信号,例如调度分配信号(英文全称:Scheduling Assignment,英文缩写:SA),占用的物理资源的资源编号,所述资源编号包括所述物理资源的时间信息和频率信息;配置单元820用于根据所述资源编号将所述一个或多个控制信号配置到相对应的物理资源上;发送单元830用于发送所述一个或多个控制信号。
由于本发明的实施例提供的用户设备能够根据准确地指示承载控制信号的物理资源,因而接收端可以不必进行盲检测就能接收控制信号,节省了接收端的处理时间和电能消耗。
由于图8的用户设备与图1的信号传输方法对应,因此可以结合图2到图7,具体描述本发明实施例的用户设备,图2到图5是根据本发明实施例的信号传输方法中几种对承载控制信号的物理资源进行分组的结果示意图,图6和图7是根据本发明另一实施例的信号传输方法中指示承载控制信号的物理资源的结果示意图。
根据本发明的实施例,所述资源编号是通过对控制信号占用的物理资源进行分组后确定的,所述时间资源信息为时间序号,所述频率信息为频率序号,不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号,或不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号,或不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号,或不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号。
具体地,所述资源编号是由基站、用户设备或第三方对控制信号占用的 物理资源进行分组后确定的,本发明实施例并不对此做限定。
具体地,可以将M个时间资源,例如无线帧、子帧、时隙等分为一组,每个时间资源又包括N个频率资源,例如物理资源块(英文全称:Physical Resource Block,英文缩写:PRB)、子载波等,M,N为正整数,本发明实施例并不对此做限定。
应理解,分组之后,各个物理资源组内,根据预设分组方法确定的相同的资源编号可以包括相同的时间序号和相同频率序号,或者相同的时间序号和不同的频率序号,或者不同的时间序号和相同的频率序号,或者不同的时间序号和不同的频率序号等四种情况,满足这四种情况的分组方法均落入本发明实施例的保护范围内。
根据本发明的实施例,在不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,x为零或正整数,M,N为正整数。
具体地,如图2,M为5,时间序号为0,...,4;N为12,频率序号为0,...,11,将这些时间和频率资源按照从左到右,自上而下的顺序进行编号,则得到M×N共60个资源编号,每个资源编号为x的物理资源的时间序号为mod(x,M),频率序号为floor(x/M),即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod(x,M),频率序号为floor(x/M)的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗,。
在上述实施例中,相同的资源编号在不同的物理资源组内对应相同的物理资源,即,两个资源编号例如图2中的资源编号1和21,在不同的物理资源组内对应的物理资源总是相同,频率间距总是相同,同理,两个资源编号例如图2中的资源编号1和5,在不同的物理资源组内时间间距总是相同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的 物理资源总是相同,从而对系统产生的干扰在不同的物理资源组内也总是相同,不能够实现干扰的随机化。
为克服图2中存在的问题,提出了另一实施例,在不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qf为频率跳变步长,x为零或正整数,M,N,Qf为正整数。
具体地,如图3,物理资源组序号P为0,...,2,M为5,时间序号为0,...,,4;N为12,频率序号为0,...,11,Qf为4,将这些时间和频率资源进行编号,每个资源编号为x的物理资源的时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N],即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N]的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗,。
并且,在上述实施例中,相同的资源编号在不同的物理资源组内对应不同的物理资源,即,两个资源编号例如图3中的资源编号1和21,在不同的物理资源组内对应的物理资源的频率序号不同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源的频率序号不同,从而对系统产生的频率域的干扰在不同的物理资源组内也不同,能够实现频率域干扰的随机化。
为克服图2中存在的问题,提出了另一实施例,在不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、 mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,x为零或正整数,M,N,Qt为正整数。
具体地,如图4,物理资源组序号P为0,...,2,M为5,时间序号为0,...,,4;N为12,频率序号为0,...,11,Qt为1,将这些时间和频率资源进行编号,每个资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M),即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M)的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
并且,在上述实施例中,相同的资源编号在不同的物理资源组内对应不同的物理资源,即,两个资源编号例如图4中的资源编号1和21,在不同的物理资源组内对应的物理资源的时间序号不同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源的时间序号不同,从而对系统产生的时间域的干扰在不同的物理资源组内也不同,能够实现时间域干扰的随机化。
图3的实施例克服了频率域干扰的问题,但还有时间域干扰无法随机化 的问题存在,同理,图4的实施例克服了时间域干扰的问题,但还有频率域干扰无法随机化的问题存在,仍然影响系统性能。
为了更好地克服图2中存在的问题,提出了另一实施例,在不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,Qf为频率跳变步长,x为零或正整数,M,N,Qt,Qf为正整数。
具体地,如图5,物理资源组序号P为0,...,2,M为5,时间序号为0,...,,4;N为12,频率序号为0,...,11,Qt为1,Qf为4,将这些时间和频率资源进行编号,每个资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N],即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N]的物理资源上检测并获取到所述数据信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
并且,在上述实施例中,相同的资源编号在不同的物理资源组内对应不同的物理资源,即,两个资源编号例如图5中的资源编号1和21,在不同的物理资源组内对应的物理资源的时间序号和频率序号均不同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源的时间序号和频率序号均不同,从而对系统产生的时间域的干扰和频率域的干扰在不同的物理资源组内也不同,能够实现时间域干扰和频率域干扰的随机化。
相应的,作为另一实施例,所述M和/或N可以为大于等于2的正整数。
应理解,对于多个时间资源和/或多个频率资源进行分组更能体现本发明实施例解决调度分配信号不能准确地指示承载控制信号的物理资源的技术问题的技术优势。
根据本发明的实施例,所述时间信息为时间资源编号,所述频率信息为频率资源编号,在不同的时间资源编号内,相同的频率资源编号对应相同或不同的频率序号。
具体地,所述时间资源编号可以包括一个或多个时间序号,本发明实施例并不对此做限定。
应理解,根据预设方法确定的,在不同的时间资源编号内,也可以是不同的时间序号内,相同的频率资源编号可以对应相同或不同的频率序号,满足这两种情况的方法均落入本发明实施例的保护范围内。
可替代地,作为另一实施例,在不同的时间资源编号内,相同的频率资源编号对应相同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x,N),其中,mod()为求余函数,x为零或正整数,N为正整数,表示每个时间序号对应的频率资源编号数量。
图6是根据本发明另一实施例的信号传输方法中指示承载控制信号的物理资源的结果示意图。具体地,如图6,时间序号为0,...,11,N为12,频率序号为0,...,11,频率资源编号为x的物理资源的频率序号为mod(x,N),即指示信号可以指示使用任意指定时间序号,频率序号为mod(x,N)的物理资源来承载控制信号,则接收端可以在所述指定时间序号,频率序号为mod(x,N)的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过指示信号指示承载控制信号的物理资源的频率序号和时间序号,从而接收端可以在相对应的物理资源上检测并获取所 述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
可替代地,作为另一实施例,在不同的时间资源编号内,相同的频率资源编号对应不同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x+Pt*Qf,N),其中,mod()为求余函数,Pt表示时间序号,取值为零或正整数,N表示每个时间序号对应的频率资源编号数量,即,也就是频率序号的数量,Qf为频率跳变步长,x为零或正整数,N,Qf为正整数。
具体地,如图7,时间序号Pt为0,...,11,N为12,频率序号为0,...,11,Qf为1,频率资源编号为x的物理资源的频率序号为mod(x+Pt*Qf,N),即指示信号可以指示使用时间序号为Pt,频率序号为mod(x+Pt*Qf,N)的物理资源来承载控制信号,则接收端可以在时间序号为Pt,频率序号为mod(x+Pt*Qf,N)的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过指示信号指示承载控制信号的物理资源的频率序号和时间序号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
并且,在上述实施例中,在不同的时间序号内,相同的频率资源编号对应不同的频率序号,即,两个频率资源编号例如图7中的频率资源编号1和5,在不同的时间序号内对应的频率序号不相同,这样一来,能够实现频率域干扰的随机化。
相应的,作为另一实施例,所述Qf和/或Qt由小区标识确定,例如所述Qf=mod(ID_cell,N)和/或所述Qt=mod(ID_cell,M),其中ID_cell为小区标识。
应理解,通过小区标识来确定频率和/或时间跳变步长,可以实现小区间的干扰随机化,有利于接收端对小区间干扰进行干扰抑制或消除。
可替代地,作为另一实施例,所述小区标识可以为物理小区标识(英文全称:Physical Cell Identifier;英文简称:PCI)。
应理解,在LTE通信系统中通过物理小区标识来确定频率和/或时间跳变步长,可以实现小区间的干扰随机化,有利于接收端对小区间干扰进行干扰抑制或消除。
可替代地,作为另一实施例,所述资源编号是由所述用户设备对控制信号占用的物理资源进行分组后确定的包括:所述用户设备根据分组结果确定 资源编号,所述分组结果是从第三方或接收端获取的,即接收端或第三方对控制信号占用的物理资源进行分组。
可替代地,作为另一实施例,所述用户设备包括:分组单元,用于根据资源编号与一个或多个控制信号占用的物理资源的对应关系对控制信号占用的物理资源进行分组,然后根据分组结果确定资源编号,所述资源编号与一个或多个控制信号占用的物理资源的对应关系是预设的,接收端反馈的或第三方提供的。
可替代地,作为另一实施例,所述第一发送单元具体用于,向接收端发送资源编号与一个或多个控制信号占用的物理资源的对应关系。
可选的,所述接收单元具体用于,接收基站发送的指示信号。
图9是根据本发明再一实施例的用户设备示意性框图。图9所示的用户设备900包括,接收器910、处理器920和发送器930。其中,
所述接收器910用于接收指示信号,所述指示信号用于指示一个或多个控制信号,例如调度分配信号(英文全称:Scheduling Assignment,英文缩写:SA),占用的物理资源的资源编号,所述资源编号包括所述物理资源的时间信息和频率信息;
所述处理器920用于根据资源编号将所述一个或多个控制信号配置到相对应的物理资源上;
所述发送器930还用于发送所述一个或多个控制信号。
由于本发明的实施例提供的用户设备能够根据准确地指示承载控制信号的物理资源,因而接收端可以不必进行盲检测就能接收控制信号,节省了接收端的处理时间和电能消耗。
所述用户设备900也可以包括存储器,该存储器可以包括只读存储器和随机存取存储器,并向处理器920提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
上述本发明实施例揭示的方法可以应用于处理器920中,或者由处理器920实现。处理器920可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器920中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器920可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array, FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器920读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
由于图9的用户设备与图1的信号传输方法对应,因此可以结合图2到图7,具体描述本发明实施例的用户设备,图2到图5是根据本发明实施例的信号传输方法中几种对承载控制信号的物理资源进行分组的结果示意图,图6到图7是根据本发明另一实施例的信号传输方法中指示承载控制信号的物理资源的结果示意图。
根据本发明的实施例,所述资源编号是通过对控制信号占用的物理资源进行分组后确定的,所述时间资源信息为时间序号,所述频率信息为频率序号,不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号,或不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号,或不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号,或不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号。
具体地,所述资源编号是由基站、用户设备或第三方对控制信号占用的物理资源进行分组后确定的,本发明实施例并不对此做限定。
具体地,可以将M个时间资源,例如无线帧、子帧、时隙等分为一组,每个时间资源又包括N个频率资源,例如物理资源块(英文全称:Physical Resource Block,英文缩写:PRB)、子载波等,M,N为正整数,本发明实施例并不对此做限定。
应理解,分组之后,各个物理资源组内,根据预设分组方法确定的相同的资源编号可以包括相同的时间序号和相同频率序号,或者相同的时间序号和不同的频率序号,或者不同的时间序号和相同的频率序号,或者不同的时 间序号和不同的频率序号等四种情况,满足这四种情况的分组方法均落入本发明实施例的保护范围内。
根据本发明的实施例,在不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,x为零或正整数,M,N为正整数。
具体地,如图2,M为5,时间序号为0,...,4;N为12,频率序号为0,...,11,将这些时间和频率资源按照从左到右,自上而下的顺序进行编号,则得到M×N共60个资源编号,每个资源编号为x的物理资源的时间序号为mod(x,M),频率序号为floor(x/M),即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod(x,M),频率序号为floor(x/M)的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗,。
在上述实施例中,相同的资源编号在不同的物理资源组内对应相同的物理资源,即,两个资源编号例如图2中的资源编号1和21,在不同的物理资源组内对应的物理资源总是相同,频率间距总是相同,同理,两个资源编号例如图2中的资源编号1和5,在不同的物理资源组内时间间距总是相同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源总是相同,从而对系统产生的干扰在不同的物理资源组内也总是相同,不能够实现干扰的随机化。
为克服图2中存在的问题,提出了另一实施例,在不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或 正整数,Qf为频率跳变步长,x为零或正整数,M,N,Qf为正整数。
具体地,如图3,物理资源组序号P为0,...,2,M为5,时间序号为0,...,,4;N为12,频率序号为0,...,11,Qf为4,将这些时间和频率资源进行编号,每个资源编号为x的物理资源的时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N],即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N]的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗,。
并且,在上述实施例中,相同的资源编号在不同的物理资源组内对应不同的物理资源,即,两个资源编号例如图3中的资源编号1和21,在不同的物理资源组内对应的物理资源的频率序号不同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源的频率序号不同,从而对系统产生的频率域的干扰在不同的物理资源组内也不同,能够实现频率域干扰的随机化。
为克服图2中存在的问题,提出了另一实施例,在不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,x为零或正整数,M,N,Qt为正整数。
具体地,如图4,物理资源组序号P为0,...,2,M为5,时间序号为0,...,,4;N为12,频率序号为0,...,11,Qt为1,将这些时间和频率资 源进行编号,每个资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M),即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M)的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
并且,在上述实施例中,相同的资源编号在不同的物理资源组内对应不同的物理资源,即,两个资源编号例如图4中的资源编号1和21,在不同的物理资源组内对应的物理资源的时间序号不同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源的时间序号不同,从而对系统产生的时间域的干扰在不同的物理资源组内也不同,能够实现时间域干扰的随机化。
图3的实施例克服了频率域干扰的问题,但还有时间域干扰无法随机化的问题存在,同理,图4的实施例克服了时间域干扰的问题,但还有频率域干扰无法随机化的问题存在,仍然影响系统性能。
为了更好地克服图2中存在的问题,提出了另一实施例,在不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,此时所述物理资源组包括M*N个物理资源,即包括M*N个资源编号,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、 mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,Qf为频率跳变步长,x为零或正整数,M,N,Qt,Qf为正整数。
具体地,如图5,物理资源组序号P为0,...,2,M为5,时间序号为0,...,,4;N为12,频率序号为0,...,11,Qt为1,Qf为4,将这些时间和频率资源进行编号,每个资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N],即分组后,指示信号可以指示使用资源编号为x的物理资源来承载控制信号,则接收端可以在时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N]的物理资源上检测并获取到所述数据信号。
因此,本发明实施例可以通过将包括多个时间资源和多个频率资源的物理资源分组,使得指示信号可以准确指示承载控制信号的物理资源的资源编号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
并且,在上述实施例中,相同的资源编号在不同的物理资源组内对应不同的物理资源,即,两个资源编号例如图5中的资源编号1和21,在不同的物理资源组内对应的物理资源的时间序号和频率序号均不同,这样一来,使用同一个资源编号发送数据时,在不同的物理资源组内使用的物理资源的时间序号和频率序号均不同,从而对系统产生的时间域的干扰和频率域的干扰在不同的物理资源组内也不同,能够实现时间域干扰和频率域干扰的随机化。
相应的,作为另一实施例,所述M和/或N可以为大于等于2的正整数。
应理解,对于多个时间资源和/或多个频率资源进行分组更能体现本发明实施例解决调度分配信号不能准确地指示承载控制信号的物理资源的技术问题的技术优势。
根据本发明的实施例,所述时间信息为时间资源编号,所述频率信息为频率资源编号,在不同的时间资源编号内,相同的频率资源编号对应相同或不同的频率序号。
具体地,所述时间资源编号可以包括一个或多个时间序号,本发明实施例并不对此做限定。
应理解,根据预设方法确定的,在不同的时间资源编号内,也可以是不同的时间序号内,相同的频率资源编号可以对应相同或不同的频率序号,满足这两种情况的方法均落入本发明实施例的保护范围内。
可替代地,作为另一实施例,在不同的时间资源编号内,相同的频率资源编号对应相同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x,N),其中,mod()为求余函数,x为零或正整数,N为正整数,表示每个时间序号对应的频率资源编号数量。
图6是根据本发明另一实施例的信号传输方法中指示承载控制信号的物理资源的结果示意图。具体地,如图6,时间序号为0,...,11,N为12,频率序号为0,...,11,频率资源编号为x的物理资源的频率序号为mod(x,N),即指示信号可以指示使用任意指定时间序号,频率序号为mod(x,N)的物理资源来承载控制信号,则接收端可以在所述指定时间序号,频率序号为mod(x,N)的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过指示信号指示承载控制信号的物理资源的频率序号和时间序号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
可替代地,作为另一实施例,在不同的时间资源编号内,相同的频率资源编号对应不同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x+Pt*Qf,N),其中,mod()为求余函数,Pt表示时间序号,取值为零或正整数,N表示每个时间序号对应的频率资源编号数量,即,也就是频率序号的数量,Qf为频率跳变步长,x为零或正整数,N,Qf为正整数。
具体地,如图7,时间序号Pt为0,...,11,N为12,频率序号为0,..., 11,Qf为1,频率资源编号为x的物理资源的频率序号为mod(x+Pt*Qf,N),即指示信号可以指示使用时间序号为Pt,频率序号为mod(x+Pt*Qf,N)的物理资源来承载控制信号,则接收端可以在时间序号为Pt,频率序号为mod(x+Pt*Qf,N)的物理资源上检测并获取到所述控制信号。
因此,本发明实施例可以通过指示信号指示承载控制信号的物理资源的频率序号和时间序号,从而接收端可以在相对应的物理资源上检测并获取所述控制信号,不必进行盲检测等复杂动作,从而节省了接收端的处理时间和电能消耗。
并且,在上述实施例中,在不同的时间序号内,相同的频率资源编号对应不同的频率序号,即,两个频率资源编号例如图7中的频率资源编号1和5,在不同的时间序号内对应的频率序号不相同,这样一来,能够实现频率域干扰的随机化。
相应的,作为另一实施例,所述Qf和/或Qt由小区标识确定,例如所述Qf=mod(ID_cell,N)和/或所述Qt=mod(ID_cell,M),其中ID_cell为小区标识。
应理解,通过小区标识来确定频率和/或时间跳变步长,可以实现小区间的干扰随机化,有利于接收端对小区间干扰进行干扰抑制或消除。
可替代地,作为另一实施例,所述小区标识可以为物理小区标识(英文全称:Physical Cell Identifier;英文简称:PCI)。
应理解,在LTE通信系统中通过物理小区标识来确定频率和/或时间跳变步长,可以实现小区间的干扰随机化,有利于接收端对小区间干扰进行干扰抑制或消除。
可替代地,作为另一实施例,所述资源编号是由所述用户设备对控制信号占用的物理资源进行分组后确定的包括:所述用户设备根据分组结果确定资源编号,所述分组结果是从第三方或接收端获取的,即接收端或第三方对控制信号占用的物理资源进行分组。
可替代地,作为另一实施例,所述处理器920具体用于,根据资源编号与一个或多个控制信号占用的物理资源的对应关系对控制信号占用的物理资源进行分组,然后根据分组结果确定资源编号,所述资源编号与一个或多个控制信号占用的物理资源的对应关系是预设的,接收端反馈的或第三方提供的。
可替代地,作为另一实施例,所述发送器930具体用于,向接收端发送 资源编号与一个或多个控制信号占用的物理资源的对应关系。
可选的,所述接收器910具体用于,接收基站发送的指示信号。
应注意,图9所示的用户设备能够实现图1的方法实施例中由用户设备完成的各个过程。用户设备900的其他功能和操作可以参考图1的方法实施例中涉及用户设备的过程。为避免重复,此处不再详述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种信号传输的方法,其特征在于,包括:
    用户设备接收指示信号,所述指示信号用于指示一个或多个控制信号占用的物理资源的资源编号,所述资源编号包括所述物理资源的时间信息和频率信息;
    所述用户设备根据所述资源编号将所述一个或多个控制信号配置到相对应的物理资源上;
    所述用户设备发送所述一个或多个控制信号。
  2. 根据权利要求1所述的方法,其特征在于,所述资源编号是通过对控制信号占用的物理资源进行分组后确定的,所述时间资源信息为时间序号,所述频率信息为频率序号,
    不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号,或
    不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号,或
    不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号,或
    不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号。
  3. 根据权利要求2所述的方法,其特征在于,在不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,x为零或正整数,M,N为正整数。
  4. 根据权利要求2所述的方法,其特征在于,在不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为 零或正整数,Qf为频率跳变步长,x为零或正整数,M,N,Qf为正整数。
  5. 根据权利要求2所述的方法,其特征在于,在不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,x为零或正整数,M,N,Qt为正整数。
  6. 根据权利要求2所述的方法,其特征在于,在不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,Qf为频率跳变步长,x为零或正整数,M,N,Qt,Qf为正整数。
  7. 根据权利要求1所述的方法,其特征在于,所述时间信息为时间资源编号,所述频率信息为频率资源编号,在不同的时间资源编号内,相同的频率资源编号对应相同或不同的频率序号。
  8. 根据权利要求7所述的方法,其特征在于,在不同的时间资源编号内,相同的频率资源编号对应相同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x,N),其中,mod()为求余函数,x为零或正整数,N为正整数,表示每个时间序号对应的频率资源编号数量。
  9. 根据权利要求7所述的方法,其特征在于,在不同的时间资源编号内,相同的频率资源编号对应不同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x+Pt*Qf,N),其中,mod()为求余函数,Pt表示时间序 号,取值为零或正整数,N表示每个时间序号对应的频率资源编号数量,Qf为频率跳变步长,x为零或正整数,N,Qf为正整数。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述Qf和/或Qt由小区标识确定。
  11. 根据权利要求10所述的方法,其特征在于,所述Qf=mod(ID_cell,N)和/或所述Qt=mod(ID_cell,M),其中ID_cell为小区标识。
  12. 根据权利要求11所述的方法,其特征在于,所述小区标识为物理小区标识。
  13. 根据权利要求1-9中任一项所述的方法,其特征在于,所述M和/或N为大于等于2的正整数。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述用户设备接收指示信号包括:
    所述用户设备接收基站发送的指示信号。
  15. 一种用户设备,其特征在于,包括:
    接收单元,用于接收指示信号,所述指示信号用于指示一个或多个控制信号占用的物理资源的资源编号,所述资源编号包括所述物理资源的时间信息和频率信息;
    配置单元,用于根据所述资源编号将所述一个或多个控制信号配置到相对应的物理资源上;
    发送单元,用于发送所述一个或多个控制信号。
  16. 根据权利要求15所述的用户设备,其特征在于,所述资源编号是通过对控制信号占用的物理资源进行分组后确定的,所述时间资源信息为时间序号,所述频率信息为频率序号,
    不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号,或
    不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号,或
    不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号,或
    不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号。
  17. 根据权利要求16所述的用户设备,其特征在于,在不同物理资源组内相同的资源编号对应相同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,x为零或正整数,M,N为正整数。
  18. 根据权利要求16所述的用户设备,其特征在于,在不同物理资源组内相同的资源编号对应相同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod(x,M),频率序号为mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qf为频率跳变步长,x为零或正整数,M,N,Qf为正整数。
  19. 根据权利要求16所述的用户设备,其特征在于,在不同物理资源组内相同的资源编号对应不同的时间序号和相同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为floor(x/M),其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,x为零或正整数,M,N,Qt为正整数。
  20. 根据权利要求16所述的用户设备,其特征在于,在不同物理资源组内相同的资源编号对应不同的时间序号和不同的频率序号时,每个物理资源组包括M个时间资源,每个时间资源包括N个频率资源,则资源编号为x的物理资源的时间序号为mod{mod(x,M)-mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)+mod[[floor(x/M)+1]*Qt*P,M-1],M}、mod{mod(x,M)-[mod[floor(x/M),M-1]+1]*Qt*P,M}或mod{mod(x,M)+[mod[floor(x/M),M-1]+1]*Qt*P,M},频率序号为 mod[floor(x/M)+P*Qf,N],其中,mod()为求余函数,floor()为向下取整函数,P表示物理资源组序号,取值为零或正整数,Qt为时间跳变步长,Qf为频率跳变步长,x为零或正整数,M,N,Qt,Qf为正整数。
  21. 根据权利要求15所述的用户设备,其特征在于,所述时间信息为时间资源编号,所述频率信息为频率资源编号,在不同的时间资源编号内,相同的频率资源编号对应相同或不同的频率序号。
  22. 根据权利要求21所述的用户设备,其特征在于,在不同的时间资源编号内,相同的频率资源编号对应相同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x,N),其中,mod()为求余函数,x为零或正整数,N为正整数,表示每个时间序号对应的频率资源编号数量。
  23. 根据权利要求21所述的用户设备,其特征在于,在不同的时间资源编号内,相同的频率资源编号对应不同的频率序号时,频率资源编号为x的物理资源的频率序号为mod(x+Pt*Qf,N),其中,mod()为求余函数,Pt表示时间序号,取值为零或正整数,N表示每个时间序号对应的频率资源编号数量,Qf为频率跳变步长,x为零或正整数,N,Qf为正整数。
  24. 根据权利要求15-23中任一项所述的用户设备,其特征在于,所述Qf和/或Qt由小区标识确定。
  25. 根据权利要求24所述的用户设备,其特征在于,所述Qf=mod(ID_cell,N)和/或所述Qt=mod(ID_cell,M),其中ID_cell为小区标识。
  26. 根据权利要求25所述的用户设备,其特征在于,所述小区标识为物理小区标识。
  27. 根据权利要求15-23中任一项所述的用户设备,其特征在于,所述M和/或N为大于等于2的正整数。
  28. 根据权利要求15-27中任一项所述的用户设备,其特征在于,
    所述接收单元具体用于,接收基站发送的指示信号。
PCT/CN2014/088206 2014-06-09 2014-10-09 信号传输的方法和用户设备 WO2015188537A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480002441.3A CN104704888B (zh) 2014-06-09 2014-10-09 信号传输的方法和用户设备
EP14870666.6A EP2986070B1 (en) 2014-06-09 2014-10-09 Signal transmission method and user equipment
ES14870666.6T ES2670643T3 (es) 2014-06-09 2014-10-09 Procedimiento de transmisión de señal y equipo de usuario
JP2016526438A JP6093994B2 (ja) 2014-06-09 2014-10-09 信号送信方法及びユーザ装置
KR1020157019265A KR20160018449A (ko) 2014-06-09 2014-10-09 신호 전송 방법 및 사용자 기기
US14/750,768 US9680620B2 (en) 2014-06-09 2015-06-25 Signal transmission method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2014/079495 2014-06-09
CN2014079495 2014-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/750,768 Continuation US9680620B2 (en) 2014-06-09 2015-06-25 Signal transmission method and user equipment

Publications (1)

Publication Number Publication Date
WO2015188537A1 true WO2015188537A1 (zh) 2015-12-17

Family

ID=54185811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088206 WO2015188537A1 (zh) 2014-06-09 2014-10-09 信号传输的方法和用户设备

Country Status (4)

Country Link
EP (1) EP2986070B1 (zh)
JP (1) JP6093994B2 (zh)
ES (1) ES2670643T3 (zh)
WO (1) WO2015188537A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108124310B (zh) * 2016-11-29 2020-04-14 华为技术有限公司 一种跳频通信方法及其设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931961A (zh) * 2009-06-23 2010-12-29 华为技术有限公司 实现中继系统回程链路控制信道传输的方法、系统和设备
US20130044652A1 (en) * 2011-08-15 2013-02-21 Yiping Wang Notifying a ul/dl configuration in lte tdd systems
CN103716273A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 D2d通信方法及设备
CN103796309A (zh) * 2012-10-31 2014-05-14 华为终端有限公司 控制信息的传输方法、基站及用户设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222765B2 (ja) * 2009-03-25 2013-06-26 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び移動通信方法
US8280391B2 (en) * 2009-08-21 2012-10-02 Samsung Electronics Co., Ltd. Method and apparatus for identifying downlink message responsive to random access preambles transmitted in different uplink channels in mobile communication system supporting carrier aggregation
CN102238747A (zh) * 2010-04-30 2011-11-09 夏普株式会社 上行物理控制信息传输方法,基站和用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931961A (zh) * 2009-06-23 2010-12-29 华为技术有限公司 实现中继系统回程链路控制信道传输的方法、系统和设备
US20130044652A1 (en) * 2011-08-15 2013-02-21 Yiping Wang Notifying a ul/dl configuration in lte tdd systems
CN103716273A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 D2d通信方法及设备
CN103796309A (zh) * 2012-10-31 2014-05-14 华为终端有限公司 控制信息的传输方法、基站及用户设备

Also Published As

Publication number Publication date
EP2986070A4 (en) 2016-02-17
JP6093994B2 (ja) 2017-03-15
ES2670643T3 (es) 2018-05-31
JP2016529784A (ja) 2016-09-23
EP2986070B1 (en) 2018-03-07
EP2986070A1 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
TWI812603B (zh) 數據傳輸方法和裝置
US9680620B2 (en) Signal transmission method and user equipment
TWI775790B (zh) 傳輸數據的方法、終端設備和網絡設備
JP7019793B2 (ja) 無線通信方法、ネットワーク機器及び端末装置
US10270576B2 (en) Information transmission method, user equipment, and base station
CN112369093B (zh) 同步信号块ssb传输方式的确定方法、设备、芯片和介质
KR101862737B1 (ko) 장치-대-장치 통신 방법 및 사용자 장비
CA3067270C (en) Method for data transmission, terminal device and network device
WO2019051707A1 (zh) 用于传输信息的方法、终端设备和网络设备
TW201844038A (zh) 傳輸信號的方法、網絡設備和終端設備
CN106465362B (zh) D2d信号跳频方法及基站
JP2017506842A (ja) リソース割振り方法およびユーザ機器
CA3064473A1 (en) Data transmission method, terminal device, and network device
US11770833B2 (en) Communication method, terminal device, and network device
WO2018082551A1 (zh) 控制信道的资源配置方法、基站和终端设备
KR101720600B1 (ko) 정보 송신 방법, 기지국, 및 사용자 장비
US20180070375A1 (en) Method and Device for Transmitting Channel State Information Reference Signal
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
JP7361150B2 (ja) 無線通信の方法、ネットワーク装置及び端末装置
WO2016054814A1 (zh) Lte-u载波信息的传输方法、基站和用户设备
WO2015188537A1 (zh) 信号传输的方法和用户设备
WO2018113558A1 (zh) 下行传输方法、基站和终端设备
US20170265219A1 (en) Data transmission method and user equipment
CN104704888A (zh) 信号传输的方法和用户设备
US10136430B2 (en) Data transmission using frequency resources determined from frequency resource numbers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014870666

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157019265

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016526438

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE