WO2015186899A1 - Method for manufacturing light-absorption layer for thin-film solar cell - Google Patents

Method for manufacturing light-absorption layer for thin-film solar cell Download PDF

Info

Publication number
WO2015186899A1
WO2015186899A1 PCT/KR2015/003419 KR2015003419W WO2015186899A1 WO 2015186899 A1 WO2015186899 A1 WO 2015186899A1 KR 2015003419 W KR2015003419 W KR 2015003419W WO 2015186899 A1 WO2015186899 A1 WO 2015186899A1
Authority
WO
WIPO (PCT)
Prior art keywords
selenium
reaction vessel
substrate
manufacturing
solar cell
Prior art date
Application number
PCT/KR2015/003419
Other languages
French (fr)
Korean (ko)
Inventor
김용안
Original Assignee
주식회사 쎄믹스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쎄믹스 filed Critical 주식회사 쎄믹스
Publication of WO2015186899A1 publication Critical patent/WO2015186899A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/024Arrangements for cooling, heating, ventilating or temperature compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a light absorbing layer for thin film solar cells, and more particularly, to a method for manufacturing a light absorbing layer for thin film solar cells, wherein the selenization process is performed using a non-vacuum spray method or a non-vacuum print method.
  • CIGS solar cells are referred to as CIGS solar cells, which use a compound composed of four elements, copper (Cu), indium (In), gallium (Ga), and selenium (Se), as a light absorption layer.
  • CIS-based thin film solar cells generally form a metal back electrode layer on a substrate, and form a p-type light absorption layer, which is an im-vi group 2 compound, and furthermore an n-type high resistance buffer layer and an n-type transparent conductive film ( The window layer formed of TC0) is formed in order.
  • the P-type light absorbing layer is formed by forming a metal precursor film on the back electrode by a method of producing copper, indium, gallium, and selenium as a high temperature evaporator, and by sputtering, and heat-treating it by the selenization / sulfation method There is a step method.
  • the manufacturing process of CIGS thin film based on the two-step method is largely two steps.
  • elements of copper (Cu), rhythm (In), and gallium (Ga) are deposited on the soda ash glass coated with molybdenum electrode in an appropriate ratio by sputtering, nanopowder, and electrolysis.
  • the precursor deposited as above is subjected to selenization or selenium sulfide to form a CIGS compound having an appropriate composition ratio of elements of copper (Cu), indium (In), gallium (Ga), and selenium (Se). .
  • a method of applying silver to the substrate while flowing a hydrogen selenide (H 2 Se) gas which is a toxic gas, is used in the selenization process.
  • H 2 Se hydrogen selenide
  • the exposure standard is set at 0.05 ppm
  • the use of toxic gas selenide for the process requires a huge amount of facility costs to be equipped with safety facilities due to safety problems.
  • the present invention for solving the above problems is a thin-film solar cell that can proceed with the selenization process that can easily supply not only selenium source but also sulfur and sodium sources without using hydrogen gas selenium (H 2 Se) gas. It is an object to provide a method for producing a light absorption layer.
  • Thin film according to the characteristics of the present invention for achieving the above technical problem Method for manufacturing a light absorption layer for a solar cell, (a) depositing a precursor containing at least one of copper, indium, gallium on the substrate; (b) depositing selenium on one side of the interior of the reaction vessel; (c) arranging the substrate in the reaction vessel, wherein the salen deposition surface of the reaction vessel and the precursor deposition surface of the substrate face each other at a predetermined interval, and then closing the reaction vessel; (d) charging the sealed reaction vessel into a reaction chamber of a rapid heat treatment equipment; (e) heat treating the reaction vessel to selenize the precursor of the substrate to form a light absorption layer on the surface of the substrate.
  • the reaction vessel is provided with a detachable body and a cover, and the body is preferably configured to be sealed by a cover.
  • the step (b) is performed by applying a selenium solution to a surface of the reaction container using a non-vacuum spray technique or a non-vacuum print technique.
  • selenium is deposited on one surface of the inside of the reaction container, and the selenium solution is characterized in that selenium powder, sulfur powder, and sodium are dissolved in a solvent.
  • the method comprises the steps of: (f) removing excess selenol in the reaction vessel after selenization, and (g) removing the reaction vessel and substrate from which the excess selenium has been removed. It is preferable to further comprise the step of cooling by forced air circulation in the atmospheric atmosphere.
  • the separation distance between the selenium deposition surface of the reaction vessel and the precursor deposition surface of the substrate is in a range of 1 to 30 ⁇ s. desirable.
  • the heat treatment time of the step (e) is preferably in the range of 1 to 60 minutes, the temperature of the substrate in the reaction vessel of 450 ⁇ 580 ° C. It is preferable to heat-treat so that it may become a range.
  • the rapid heat treatment In the method for manufacturing a light absorbing insect for a thin film solar cell according to the first feature described above, the rapid heat treatment. And the heat source is configured to be individually controllable.
  • the reaction chamber When the heat treatment of the reaction vessel is carried out, the reaction chamber preferably controls the selenization reaction by controlling the temperature of the heat source.
  • a method for manufacturing a thin film for absorbing light of a thin film is obtained by depositing a solution containing selenium powder, sulfur, and sodium source by using a non-vacuum spray method or a bar-coat ing method on the ceiling or the bottom of a heated semi-reactor. After the precursor substrate is placed in the reaction vessel, it is characterized in that the selenization by heat treatment. Therefore, the method according to the present invention can supply selenium using elemental selenium powder without using toxic gas hydrogen selenide (Se). In addition, the method according to the present invention, without using expensive evaporator equipment to deposit selenium on the CuInGa precursor, it is possible to supply the selenium more stably by using the element selenium powder.
  • the selenium supply method according to the present invention can reduce the production cost of the CIGS light absorbing layer by reducing the consumption of selenium.
  • the selenization heat treatment time according to the present invention can form CIGS crystals in a short time from 1 to 60 minutes.
  • the selenium supply device can uniformly supply selenium, sodium and sulfur, and it is easy to adjust the amount of supply.
  • the manufacturing method of the CIGS light absorption layer according to the present invention can be used as a manufacturing method of the semiconductor layer of the solar cell.
  • the method according to the present invention is much safer because it does not use toxic gas hydrogen selenide gas, it can save the cost of the safety equipment facility by toxic gas can reduce the cost of manufacturing CIGS light absorbing layer.
  • the amount of selenium can be easily controlled, unnecessary waste of selenium can be reduced, thereby reducing the manufacturing cost.
  • FIG. 1 is a flowchart sequentially illustrating a method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention.
  • FIG. 2 is FE-SEM photographs of arbitrary surfaces of a precursor deposited on a substrate on which a back electrode layer is formed by using vacuum sputtering.
  • A is a photograph of separately depositing CuGa binary alloy tar 3 ⁇ 4 and In targets.
  • b) is a photograph of the CuGa binary element target and the In target deposited at the same time.
  • FIG. 3 is a conceptual diagram illustrating a process of depositing selenium on one surface of a reaction vessel in a non-vacuum spray method in a method of manufacturing an optical hop layer for a thin film solar cell according to a preferred embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a process of depositing selenium on one surface of a reaction container in a non-vacuum printing method using a bar coater in the method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention.
  • 5 is a cross-sectional view illustrating a state in which a substrate is disposed in a reaction container in the method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a high-speed heat treatment equipment for applying a heat treatment to the semi-agitator container assembled with the substrate in the method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention.
  • FIG. 7 illustrates a FE-SEM photograph of an arbitrary cross section of a CIGS light absorbing layer prepared by the method in the method of manufacturing a light absorbing layer for a thin film solar cell according to a preferred embodiment of the present invention.
  • the present invention is characterized by forming a thin film for optical hop water by selenizing a substrate by placing and heat treating a substrate on which a precursor is deposited in a reaction vessel on which selenium is deposited.
  • a method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • 1 is a flowchart sequentially illustrating a method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention.
  • the method of manufacturing a light absorbing layer for a thin film solar cell includes depositing a precursor on a substrate (S100), depositing selenium on one surface of a reaction container (S110), and in the reaction container. Placing and sealing the substrate (S120), loading the reaction vessel into the reaction chamber (S130), heat treating the reaction vessel to selenization (S140), removing excess selenium and cooling (S150) To provide a light absorption layer on the surface of the substrate.
  • a back electrode layer is deposited on the substrate using a vacuum sputtering method, and a CuInGa precursor is deposited on the back electrode layer.
  • the method of depositing the CuInGa precursor has various embodiments.
  • One embodiment may deposit the CuInGa precursor using a vacuum sputtering method, and the CuGa binary element alloy is deposited when the CuInGa precursor is deposited by the vacuum sputtering method.
  • ⁇ target and may be used in all targets with or, Al loy a CuInGa alloy target element 3 to the appropriate element ratio.
  • by depositing by a vacuum sputtering method using a CuGa binary element target and an In target CuGa and In can be deposited simultaneously in the form of l ayer by l ayer.
  • FIG. 2 is a FE-SEM photograph of an arbitrary surface of a precursor deposited on a substrate on which a back electrode layer is formed by vacuum sputtering in a method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention.
  • FIG. 2 (a) is a SEM photograph of a CuGa layer deposited on a molybdenum-deposited soda ash glass using an Al loy CuGa two-element target having an appropriate element ratio, followed by In deposition using an In target.
  • FIG. 2 (b) shows an SEM image of an arbitrary surface on which CuGa and In are deposited at the same time. You can see it deposited very uniformly. Therefore, from this
  • the method of forming a precursor by simultaneously depositing a CuGa 2 element target and an In target has the advantage of more uniform deposition than the method of (a).
  • the reaction vessel is provided with a detachable body and a cover, the body is composed of a structure that is sealed by the cover, it is preferable that it is configured in the form of a box with a space inside the body.
  • the reaction container is preferably formed of one of ceramic glass and graphite which is also resistant to silver.
  • the selenium feeder provides a stored selenium solution in which Na is dissolved in a solvent and a mixture of selenium powder and sulfur powder.
  • a solvent a mixture of selenium powder and sulfur powder.
  • the selenium solution is preferably stirred continuously so that the solute does not precipitate until it is deposited.
  • One embodiment for depositing selenium on a surface of the reaction vessel form, and depositing a selenium solution in a non-vacuum spray on the inside surface of the inside of the bottom surface of the main body or the cover of the reaction vessel to the "features.
  • 3 is a conceptual diagram illustrating a process of depositing selenium on one surface of a reaction chamber in a method of manufacturing a light absorption layer for a solar cell according to a preferred embodiment of the present invention.
  • the selenium solution storage container 304 is a container in which a selenium solution is stored therein and continuously stirs so that the solute of the selenium solution does not precipitate.
  • the selenium solution is a solution provided by the aforementioned selenium supply device.
  • the selenium solution is sprayed using a spray nozzle 303 connected to the selenium solution storage container to one surface of the main body or cover of the reaction vessel 302 to deposit selenium.
  • the solvent of the selenium solution is evaporated and the solutes of selenium, sulfur and sodium are Deposited on the substrate.
  • Another embodiment of depositing selenium on one side of the reaction vessel is characterized in that the selenium solution is deposited on the bottom surface of the inside of the body of the reaction vessel or the inner surface of the lid by a non-vacuum print method.
  • FIG. 4 is a view illustrating a process of depositing selenium on one surface of a reaction container in a non-vacuum print method using a bar coater in a method of manufacturing a light absorption layer for a solar cell according to a preferred embodiment of the present invention.
  • Figure 4 (a) is a view showing a bar coater
  • (b) shows a deposition using a non-vacuum printing method using a bar coater.
  • the bar coater 409 is preferably configured to be wound around the outer circumferential surface of the rod 405 of the cylindrical shape to a uniform thickness of the coil 406.
  • the solution 407 is coated by the bar coater to a certain thickness on the surface.
  • the selenium solution 411-a of the selenium storage container 410 is supplied to the cover of the reaction container 408 or the bottom surface of the body to which selenium is deposited, and the bar coater 409. ) Passes through the selenium solution (411-b), the selenium solution (411-c) is uniformly applied to one side of the reaction vessel. At this time, the thickness of the selenium solution applied to one side of the reaction container can be adjusted by adjusting the thickness of the coil of the bar coater.
  • the selenium solution is dried to leave only the solute including selenium on the surface of the reaction container, thereby completing the deposition.
  • step (S120) of placing and sealing the substrate in the reaction vessel will be described in detail.
  • FIG. 5 is a cross-sectional view illustrating a state in which a substrate is disposed in a reaction vessel in the method of manufacturing a light absorption layer for a solar cell according to a preferred embodiment of the present invention.
  • the substrate is placed inside the reaction container.
  • the precursor mounting surface of the substrate and the selenium deposition surface of the reaction vessel are disposed to face each other, but the precursor mounting surface of the substrate and the selenium deposition surface of the reaction vessel are preferably spaced apart from each other by a predetermined distance.
  • the selenium deposition surface of the reaction vessel may be the inner surface of the lid of the reaction vessel or the bottom surface of the body of the reaction vessel. Referring to FIG.
  • the substrate 514 in an embodiment in which the substrate is placed in the reaction vessel, the substrate 514 is disposed on the bottom surface of the main body 515 of the reaction vessel, and the lid 513 of the reaction vessel is By placing it, the reaction container is kept in a closed state as a whole. At this time, it is preferable that the selenium is deposited on the inner surface of the cover 513, and the surface on which the precursor of the substrate 514 is deposited is disposed to face upward.
  • substrate is 1-30 micrometers.
  • spacers 517 having the same height are uniformly disposed on the bottom surface of the body portion 516 of the reaction vessel, and thereon
  • the substrate 519 is disposed, and the lid 518 of the reaction vessel is placed so that the reaction vessel is kept in a closed state as a whole.
  • the spacer 517 is preferably made of the same material as the reaction vessel in consideration of the heat transfer coefficient. At this time, it is preferable that the selenium is deposited on the inner bottom surface of the main body of the reaction container, and the surface on which the precursor of the substrate 519 is deposited is disposed downward, that is, facing the inner bottom surface of the main body.
  • Rapid thermal annealing preferably has a heat source (Heat ing source) at the top and bottom, respectively, and the heat source may use one of a halogen lamp, IR heater, SIC heater. Can be.
  • the reaction chamber of the rapid heat treatment equipment uses a thick graphite chuck to continuously provide a constant temperature.
  • the inside of the reaction chamber is preferably heat treated in a nitrogen (N 2 ) atmosphere.
  • the semi-reactor is assembled with the substrate in a high temperature reaction chamber to rapidly heat-treat the selenization reaction chamber to form a light absorption layer. remind When the reaction vessel is heat treated, it is preferable to be in the range of 1 minute to 60 minutes, and the temperature of the substrate in the reaction vessel is preferably heat-treated in the range of 450 to 580 ° C.
  • the high speed heat treatment equipment 600 includes an inlet side buffer chamber 618, a reaction chamber 610, and an outlet side buffer chamber 621, and the reaction chamber 610 is disposed at the top and the bottom thereof, respectively. It is preferred that the heat source 620 is provided, and the heat source can be individually controlled by a controller.
  • the reaction chamber 610 has a gas inlet 619.
  • the step of removing and cooling excess selenium removes the excess selenium remaining after the selenization reaction through the vacuum in the outlet side buffer chamber 619. At this time, lift the cover of the semi-wool container to completely remove the selenium. The vacuum is maintained at 1X10E-1 1X10E-2 torr for 2-10 minutes. After removing the excess selenium, the reaction vessel is cooled by a common method of using forced air circulation cooling in nitrogen or an atmosphere using a cooler 622. Through the above method, the fabrication of the CIGS light absorbing layer is completed.
  • FIG. 7 shows a FE-SEM photograph of an arbitrary cross section of a CIGS light absorbing layer manufactured by the method in the method of manufacturing a light absorbing layer for a solar cell according to a preferred embodiment of the present invention. 7, it can be seen that by the method according to the present invention, a uniform and large grain size CIGS light absorbing layer of about 1 thickness is produced. Meanwhile, a high resistance buffer layer is deposited on the CIGS light absorbing layer formed by the above method, and a TC0 layer is deposited thereon to complete the CIGS solar cell.
  • the light absorption layer manufacturing method for a thin film solar cell according to the present invention can be widely used in a CIGS solar cell manufacturing method.

Abstract

The present invention relates to a method for manufacturing a light-absorption layer for a CIGS solar cell. The method comprises the steps of: (a) depositing, on a substrate, a precursor including at least one of copper, indium, and gallium; (b) depositing selenium on one surface of the inside of a reaction container; (c) arranging the substrate inside the reaction container such that the selenium-deposited surface of the reaction container is spaced apart at a predetermined distance from the precursor-deposited surface of the substrate such that each surface faces the other, and then sealing the reaction container; (d) feeding the sealed reaction container into a reaction chamber of rapid thermal annealing equipment; and (e) annealing the reaction container so as to selenize the precursor of the substrate, thereby forming the light-absorption layer on the surface of the substrate.

Description

【명세서】  【Specification】
【발명의 명칭】 [Name of invention]
박막 태양전지용 광흡수층 제조 방법  Method for manufacturing light absorption layer for thin film solar cell
【기술분야】 Technical Field
본 발명은 박막 태양 전지용 광흡수층 제조 방법에 관한 것으로서, 더욱 구체적으로는, 비진공 스프레이 방식 또는 비진공 프린트 방식을 이용하여 셀렌화 공정을 진행하는 박막 태양전지용 광흡수층 제조 방법에 관한 것이다.  The present invention relates to a method for manufacturing a light absorbing layer for thin film solar cells, and more particularly, to a method for manufacturing a light absorbing layer for thin film solar cells, wherein the selenization process is performed using a non-vacuum spray method or a non-vacuum print method.
【배경기술】 Background Art
CIGS 태양전지는 구리 (Cu) , 인듐 ( In) , 갈륨 (Ga) , 및 샐레늄 (Se)의 4가지 원소가 합쳐져서 구성되는 화합물을 광흡수층으로 이용하는 태양전지를 CIGS 태양전지라 한다. CIS계 박막 태양전지는 일반적으로, 기판 상에 금속의 이면전극층을 형성하고, 그 위에 i-m-vi2족 화합물인 p형 광흡수층을 형성하며, 더욱이 n형 고저항 버퍼층, n형 투명전도막 (TC0)으로 형성되는 원도우층을 순서대로 형성하여 구성된다. CIGS solar cells are referred to as CIGS solar cells, which use a compound composed of four elements, copper (Cu), indium (In), gallium (Ga), and selenium (Se), as a light absorption layer. CIS-based thin film solar cells generally form a metal back electrode layer on a substrate, and form a p-type light absorption layer, which is an im-vi group 2 compound, and furthermore an n-type high resistance buffer layer and an n-type transparent conductive film ( The window layer formed of TC0) is formed in order.
P형 광흡수층은 이면전극 상에 구리, 인듐, 갈륨, 및 셀렌을 고온의 Evaporator로 제작하는 방법과 스퍼터링법 등에 의하여 금속 프리커서막을 형성하고, 이것을 샐렌화 /황화법으로 열처리하여 형성하는 2-step 방법이 있다.  The P-type light absorbing layer is formed by forming a metal precursor film on the back electrode by a method of producing copper, indium, gallium, and selenium as a high temperature evaporator, and by sputtering, and heat-treating it by the selenization / sulfation method There is a step method.
일반적으로 2-step 방법을 기반으로 한 CIGS 박막의 제조 공정은 크게 두 단계를 거친다. 첫 번째 단계로 몰리브덴 전극이 입혀진 소다회 유리 위에 구리 (Cu) , 인듬 ( In) , 갈륨 (Ga)의 원소를 적정 비율로 스퍼터링, 나노파우더, 전기분해법 등으로 증착시킨다.  In general, the manufacturing process of CIGS thin film based on the two-step method is largely two steps. In the first step, elements of copper (Cu), rhythm (In), and gallium (Ga) are deposited on the soda ash glass coated with molybdenum electrode in an appropriate ratio by sputtering, nanopowder, and electrolysis.
두 번째 단계로 상기와 같이 증착된 전구체를 셀렌화 또는 셀렌, 황화 등을 거쳐 구리 (Cu) , 인듐 ( In) , 갈륨 (Ga) 및 셀레늄 (Se) 원소의 적정 조성 비율을 갖는 CIGS 화합물을 만든다. 일반적으로 셀렌화 공정시에 유독 기체인 셀렌화수소 (H2Se) 기체를 흘려주면서 기판에 은도를 가하는 방법을 이용하고 있다. 하지만, 셀렌화수소의 경우 노출 기준이 0.05ppm으로 설정되어 있는 맹독성 가스이므로, 공정올 위하여 유독 기체인 셀렌화수소를 사용함에 따라 안전성의 문제에 의한 안전설비를 갖추기 위해 엄청난 양의 시설비가 전제되어야 하기 때문에 CIGS 광흡수층의 단가가 상승하는 단점이 있다. 상기의 문제로 인해 유독 기체인 샐렌화수소를 사용하지 않고, 셀렌 엘리먼트 (e l ement )를 Evaporator를 이용하여, CuInGa 프리커서 위에 증착시킨 후 열처리하는 방법이 최근 연구되고 있다. 하지만 프리커서 기판에 셀렌을 아주 균일하게 증착시켜야만 하는 어려움이 있고, Evaporator가 고진공을 필요로 하기 때문에 고비용의 시설비가 전제되어야 한다. 그러므로 CIGS 광흡수층의 단가가 상승하는 단점이 있다. In the second step, the precursor deposited as above is subjected to selenization or selenium sulfide to form a CIGS compound having an appropriate composition ratio of elements of copper (Cu), indium (In), gallium (Ga), and selenium (Se). . In general, a method of applying silver to the substrate while flowing a hydrogen selenide (H 2 Se) gas, which is a toxic gas, is used in the selenization process. However, in the case of hydrogen selenide, since the exposure standard is set at 0.05 ppm, the use of toxic gas selenide for the process requires a huge amount of facility costs to be equipped with safety facilities due to safety problems. There is a disadvantage in that the cost of the CIGS light absorbing layer increases. Due to the above problem, a method of thermally treating a selenium element (e ement) by depositing it on a CuInGa precursor using an evaporator without using hydrogen selenide, which is a toxic gas, has recently been studied. However, there is a difficulty in depositing selenium evenly on the precursor substrate, and since the evaporator requires high vacuum, a high cost of equipment must be assumed. Therefore, there is a disadvantage in that the cost of the CIGS light absorbing layer increases.
또한, 국제특허공개번호 1V0 2013/062414를 통해, 셀렌을 고온으로 증발시켜 기체 상태로 급속가열장치 (Rapid Thermal Anea I ing;RTA)의 챔버 내부에 직접 공급하는 방법이 개시되었다. 하지만 이 방법 또한 셀렌의 농도 유지에 어려움이 따르고, 큰 반웅 챔버 내부 전체를 고 농도의 셀렌 분위기로 유지해야만 하는데, 이러기 위해서는 많은 양의 샐렌이 필요하기 때문에 CIGS 광흡 ^층의 단가가 상승하는 단점이 있다.  In addition, International Patent Publication No. 1V0 2013/062414 discloses a method of directly supplying selenium to a high temperature in a gaseous state and directly supplying the inside of a chamber of a rapid heating apparatus (RTA). However, this method also has difficulty in maintaining the concentration of selenium, and the entire inside of the large reaction chamber must be maintained in a high concentration of selenium atmosphere, which requires a large amount of selenium, which increases the cost of the CIGS absorbing layer. have.
또한, 미국등록특허 US 6, 881, 647 에 개시된 바와 같이, 셀렌이 증착된 기판과 프리커서 기판을 완전히 밀착시켜 셀렌올 공급하는 방법이 있지만, 이 방법 또한, 기판에 샐렌을 매우 균일하게 증착시켜야만 하는 어려움이 있고 , 황, 나트륨소스를 섞어서 동시에 공급하려 할 때 예기치 못한 화학반웅이 일어날 수도 있기 때문에 어려움이 따른다.  In addition, as disclosed in US Pat. No. 6,881,647, there is a method of supplying selenol by closely contacting a substrate on which selenium is deposited with a precursor substrate, but this method must also deposit selenium on the substrate very uniformly. This is difficult because unexpected chemical reactions can occur when mixing sulfur and sodium sources at the same time.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
전술한 문제점을 해결하기 위한 본 발명은 유독 기체인 셀렌화수소 (H2Se)가스를 사용하지 않으면서, 셀렌 소스 뿐만 아니라 황, 나트륨 소스를 손쉽게 공급할 수 있는 셀렌화 공정을 진행할 수 있는 박막 태양전지용 광흡수층 제조 방법을 제공하는 것을 목적으로 한다. 【기술적 해결방법】 The present invention for solving the above problems is a thin-film solar cell that can proceed with the selenization process that can easily supply not only selenium source but also sulfur and sodium sources without using hydrogen gas selenium (H 2 Se) gas. It is an object to provide a method for producing a light absorption layer. Technical Solution
전술한 기술적 과제를 달성하기 위한 본 발명의 특징에 따른 박막 태양전지용 광흡수층 제조 방법은, (a) 구리, 인듐, 갈륨 중 하나 이상을 포함하는 프리커서를 기판에 증착하는 단계; (b) 반웅 용기의 내부의 일면에 샐렌을 증착시키는 단계; (c ) 상기 반웅 용기내에 상기 기판을 배치하되, 상기 반웅 용기의 샐렌 증착면과 상기 기판의 프리커서 증착면이 일정 간격 이격되면서 서로 마주보도록 배치한 후, 상기 반웅 용기를 밀폐시키는 단계; (d) 상기 밀폐된 반웅 용기를 급속 열처리 장비의 반웅 챔버내에 장입시키는 단계; (e) 상기 반웅 용기를 열처리하여 기판의 프리커서를 셀렌화하는 단계;를 구비하여, 기판의 표면에 광흡수층을 형성한다. Thin film according to the characteristics of the present invention for achieving the above technical problem Method for manufacturing a light absorption layer for a solar cell, (a) depositing a precursor containing at least one of copper, indium, gallium on the substrate; (b) depositing selenium on one side of the interior of the reaction vessel; (c) arranging the substrate in the reaction vessel, wherein the salen deposition surface of the reaction vessel and the precursor deposition surface of the substrate face each other at a predetermined interval, and then closing the reaction vessel; (d) charging the sealed reaction vessel into a reaction chamber of a rapid heat treatment equipment; (e) heat treating the reaction vessel to selenize the precursor of the substrate to form a light absorption layer on the surface of the substrate.
.전술한 제 1 특징에 따른 박막 태양전지용 광흡수층 제조 방법에 있어서, 상기 반웅 용기는 분리 가능한 본체와 덮개를 구비하며, 상기 본체는 덮개에 의해 밀폐되는 구조로 구성된 것이 바람직하다.  In the method of manufacturing a light absorbing layer for a thin film solar cell according to the first aspect described above, the reaction vessel is provided with a detachable body and a cover, and the body is preferably configured to be sealed by a cover.
전술한 제 1 특징에 따른 박막 태양전지용 광흡수층 제조 방법에 있어서, 상기 (b) 단계는, 반웅 용기의 내부의 일면에 셀렌 용액을 비진공 스프레이 기법 또는 비진공 프린트 기법올 이용하여 도포한 후 열처리하여, 반웅 용기의 내부의 일면에 셀렌을 증착시키는 것을 특징으로 하며, 상기 샐렌 용액은 용매에 셀렌 파우더, 황 파우더 및 나트륨이 용해된 것을 특징으로 한다.  In the method for manufacturing a light absorbing layer for a thin film solar cell according to the first feature described above, the step (b) is performed by applying a selenium solution to a surface of the reaction container using a non-vacuum spray technique or a non-vacuum print technique. In this case, selenium is deposited on one surface of the inside of the reaction container, and the selenium solution is characterized in that selenium powder, sulfur powder, and sodium are dissolved in a solvent.
전술한 제 1 특징에 따른 박막 태양전지용 광흡수층 제조 방법에 있어서, 셀렌화한 후 ( f ) 반응 용기 내의 잉여 셀렌올 제거하는 단계, 및 (g) 잉여 샐렌이 제거된 반응 용기와 기판을 질소 또는 대기 분위기에서 강제 공기 순환시켜 냉각시키는 단계를 더 구비하는 것이 바람직하다.  In the method for manufacturing a light absorption layer for a thin film solar cell according to the first aspect described above, the method comprises the steps of: (f) removing excess selenol in the reaction vessel after selenization, and (g) removing the reaction vessel and substrate from which the excess selenium has been removed. It is preferable to further comprise the step of cooling by forced air circulation in the atmospheric atmosphere.
전술한 제 1 특징에 따른 박막 태양전지용 광흡수층 제조 방법에 있어서, 상기 ( c ) 단계에서 상기 반응 용기의 셀렌 증착면과 상기 기판의 프리커서 증착면의 이격 간격은 1 ~ 30隱의 범위인 것이 바람직하다.  In the method of manufacturing a light absorption layer for a thin film solar cell according to the first aspect described above, in the step (c), the separation distance between the selenium deposition surface of the reaction vessel and the precursor deposition surface of the substrate is in a range of 1 to 30 μs. desirable.
전술한 게 1 특징에 따른 박막 태양전지용 광흡수층 제조 방법에 있어서, 상기 (e) 단계의 열처리 시간은 1 ~ 60 분의 범위인 것이 바람직하며, 반응 용기내의 기판의 온도가 450 ~ 580 °C의 범위가 되도록 열처리하는 것이 바람직하다. In the method for manufacturing a light absorption layer for a thin film solar cell according to the above-mentioned feature 1, the heat treatment time of the step (e) is preferably in the range of 1 to 60 minutes, the temperature of the substrate in the reaction vessel of 450 ~ 580 ° C. It is preferable to heat-treat so that it may become a range.
전술한 제 1 특징에 따른 박막 태양전지용 광흡수충 제조 방법에 있어서, 상기 급속 열처리.장비는 반웅 챔버의 상부 및 하부에 각각 열원을 구비하고, 상기 열원은 개별 제어가능하도록 구성된 것을 특징으로 하며, 상기 반웅 용기의 열처리시 상기 반웅 햄버는 열원의 온도를 각각 제어하여 셀렌화 반응을 제어할 수 있도록 하는 것이 바람직하다. 【유리한 효과】 In the method for manufacturing a light absorbing insect for a thin film solar cell according to the first feature described above, the rapid heat treatment. And the heat source is configured to be individually controllable. When the heat treatment of the reaction vessel is carried out, the reaction chamber preferably controls the selenization reaction by controlling the temperature of the heat source. Advantageous Effects
본 발명에 따른 박막 광흡수용 박막 제조방법은, 셀렌 파우더와 황, 나트륨 소스가 섞여 있는 용액을 가열된 반웅용기의 천장 혹은 바닥에 비진공 스프레이법 또는 Bar-coat ing법을 이용하여 증착시킨 후 반응용기 내부에 프리커서 기판을 넣은 후 열처리시켜 셀렌화하는 것을 특징으로 한다. 따라서, 본 발명에 따른 방법은, 유독 기체인 셀렌화수소 ( Se)를 사용하지 않고 엘리먼트 셀렌 파우더를 이용하여 샐렌을 공급시킬 수 있다. 또한, 본 발명에 따른 방법은, CuInGa 프리커서 위에 셀렌을 증착시키기 위해 고가의 evaporator 장비를 사용하지 않고, 엘리먼트 샐렌 파우더를 이용하여 보다 안정적으로 셀렌을 공급시킬 수 있다.  According to the present invention, a method for manufacturing a thin film for absorbing light of a thin film is obtained by depositing a solution containing selenium powder, sulfur, and sodium source by using a non-vacuum spray method or a bar-coat ing method on the ceiling or the bottom of a heated semi-reactor. After the precursor substrate is placed in the reaction vessel, it is characterized in that the selenization by heat treatment. Therefore, the method according to the present invention can supply selenium using elemental selenium powder without using toxic gas hydrogen selenide (Se). In addition, the method according to the present invention, without using expensive evaporator equipment to deposit selenium on the CuInGa precursor, it is possible to supply the selenium more stably by using the element selenium powder.
또한 본 발명에 따른 셀렌 공급 방법은 셀렌의 소모량을 줄여 CIGS 광흡수층의 제조 단가를 낮출 수 있다.  In addition, the selenium supply method according to the present invention can reduce the production cost of the CIGS light absorbing layer by reducing the consumption of selenium.
또한 본 발명에 따른 셀렌화 열처리 시간은 1 ~ 60분으로 짧은 시간에 CIGS 결정을 형성시킬 수 있다.  In addition, the selenization heat treatment time according to the present invention can form CIGS crystals in a short time from 1 to 60 minutes.
또한 본 발명에 따른 tack-t ime을 줄여 다수의 셀렌화 장치가 필요하다는 문제점을 해결할 수 있다.  In addition, it is possible to solve the problem that a plurality of selenization apparatus is required by reducing the tack-time according to the present invention.
또한 본 발명에 따른 셀렌화 도중 반응용기 내부를 질소 분위기로 유지시킴으로써 외부의 오염을 최소화시킬 수 있다 .  In addition, by keeping the inside of the reaction vessel in a nitrogen atmosphere during selenization according to the present invention it is possible to minimize the contamination of the outside.
또한 본 발명에 따른 셀렌 공급 장치로 균일하게 셀렌과 나트륨 및 황을 공급할 수 있으며 , 공급양의 조절이 용이하다.  In addition, the selenium supply device according to the present invention can uniformly supply selenium, sodium and sulfur, and it is easy to adjust the amount of supply.
또한 본 발명에 따른 CIGS 광흡수층의 제조방법은 태양전지의 반도체층의 제조방법으로 이용될 수 있다.  In addition, the manufacturing method of the CIGS light absorption layer according to the present invention can be used as a manufacturing method of the semiconductor layer of the solar cell.
또한, 본 발명에 따른 방법은 유독 기체인 샐렌화 수소 가스를 사용하지 않기 때문에 훨씬 안전하고, 유독가스에 의한 안전설비 시설비용을 아낄 수 있어 CIGS 광흡수층 제조 단가가 줄어드는 효과를 볼 수 있다. 또한, 셀렌양의 컨트롤이 용이 하기 때문에, 불필요한 셀렌의 낭비를 줄어들어 제조 단가를 줄일 수 있는 효과를 볼 수 있다. 【£면의 간단한 설명】 In addition, the method according to the present invention is much safer because it does not use toxic gas hydrogen selenide gas, it can save the cost of the safety equipment facility by toxic gas can reduce the cost of manufacturing CIGS light absorbing layer. In addition, since the amount of selenium can be easily controlled, unnecessary waste of selenium can be reduced, thereby reducing the manufacturing cost. [A brief description of the side]
도 1은 본 발명의 바람직한 실시예에 따른 박막 태양전지용 광흡수층 제조 방법을 순차적으로 도시한 흐름도이다.  1 is a flowchart sequentially illustrating a method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention.
도 2는 진공스퍼터링을 이용하여 이면 전극층이 형성된 기판위에 증착시킨 프리커서의 임의 표면에서의 FE-SEM 사진들로서, (a)는 CuGa 2원소 합금 타¾과 In 타겟을 따로 증착한 사진이며, (b)는 CuGa 2원소 합금 타겟과 In 타겟을 동시에 증착한 사진이다.  FIG. 2 is FE-SEM photographs of arbitrary surfaces of a precursor deposited on a substrate on which a back electrode layer is formed by using vacuum sputtering. (A) is a photograph of separately depositing CuGa binary alloy tar ¾ and In targets. b) is a photograph of the CuGa binary element target and the In target deposited at the same time.
도 3은 본 발명의 바람직한 실시예에 따른 박막 태양전지용 광홉수층 제조 방법에 있어서, 비진공 스프레이 방식으로 반웅 용기의 일면에 셀레늄을 증착하는 과정을 설명하기 위하여 도시한 개념도이다.  3 is a conceptual diagram illustrating a process of depositing selenium on one surface of a reaction vessel in a non-vacuum spray method in a method of manufacturing an optical hop layer for a thin film solar cell according to a preferred embodiment of the present invention.
도 4는 본 발명의 바람직한 실시예에 따른 박막 태양전지용 광흡수층 제조 방법에 있어서, 바코터를 이용한 비진공 프린트 방식으로 반웅 용기의 일면에 셀레늄을 증착하는 과정을 설명하기 위하여 도시한 개념도이다. 도 5는 본 발명의 바람직한 실시예에 따른 박막 태양전지용 광흡수층 제조 방법에 있어서, 반응 용기내에 기판을 배치한 상태를 도시한 단면도들이다.  4 is a conceptual diagram illustrating a process of depositing selenium on one surface of a reaction container in a non-vacuum printing method using a bar coater in the method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention. 5 is a cross-sectional view illustrating a state in which a substrate is disposed in a reaction container in the method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention.
도 6은 본 발명의 바람직한 실시예에 따른 박막 태양전지용 광흡수층 제조 방법에 있어서, 상기 기판과 조립된 반웅용기에 열처리를 가하여 셀렌화 반웅을 시켜주는 고속 열처리 장비의 단면도를 나타낸 것이다.  6 is a cross-sectional view of a high-speed heat treatment equipment for applying a heat treatment to the semi-agitator container assembled with the substrate in the method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 실시예에 따른 박막 태양전지용 광흡수층 제조 방법에 있어서, 상기 방법으로 제작된 CIGS 광 흡수층의 임의 단면에서의 FE-SEM 사진을 나타낸다.  FIG. 7 illustrates a FE-SEM photograph of an arbitrary cross section of a CIGS light absorbing layer prepared by the method in the method of manufacturing a light absorbing layer for a thin film solar cell according to a preferred embodiment of the present invention.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
본 발명은 일면에 셀렌이 증착된 반응 용기에 프리커서가 증착된 기판을 배치하여 열처리함으로써, 기판을 셀렌화시켜 광홉수용 박막을 형성하는 것을 특징으로 한다. . 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 박막 태양전지용 광흡수층 제조 방법에 대하여 구체적으로 설명한다. 도 1은 본 발명의 바람직한 실시예에 따른 박막 태양전지용 광흡수층 제조 방법을 순차적으로 도시한 흐름도이다. The present invention is characterized by forming a thin film for optical hop water by selenizing a substrate by placing and heat treating a substrate on which a precursor is deposited in a reaction vessel on which selenium is deposited. . Hereinafter, a method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. 1 is a flowchart sequentially illustrating a method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention.
도 1을 참조하면 , 본 실시예에 따른 박막 태양전지용 광흡수층 제조 방법은, 프리커서를 기판에 증착하는 단계 (S100) , 반웅 용기의 일면에 셀렌을 증착시키는 단계 (S110) , 상기 반웅 용기내에 상기 기판을 배치하고 밀폐시키는 단계 (S120) , 상기 반웅 용기를 반웅 챔버내에 장입시키는 단계 (S130) , 상기 반웅 용기를 열처리하여 샐렌화하는 단계 (S140) , 잉여 셀렌 제거 및 냉각하는 단계 (S150)를 구비하여, 기판의 표면에 광흡수층을 형성한다. 전술한 각 단계들에 대하여 보다 구체적으로 설명한다.  Referring to FIG. 1, the method of manufacturing a light absorbing layer for a thin film solar cell according to the present embodiment includes depositing a precursor on a substrate (S100), depositing selenium on one surface of a reaction container (S110), and in the reaction container. Placing and sealing the substrate (S120), loading the reaction vessel into the reaction chamber (S130), heat treating the reaction vessel to selenization (S140), removing excess selenium and cooling (S150) To provide a light absorption layer on the surface of the substrate. Each of the above-described steps will be described in more detail.
먼저, 프리커서를 기판에 증착하는 단계 (S100)는, 기판 위에 진공스퍼터링 방법을 이용하여 이면전극층을 증착시키고, 상기 이면전극층 위에 CuInGa 프리커서를 증착한다. 상기 CuInGa 프리커서를 증착하는 방법은 여러가지 실시형태가 있다ᅳ 일 실시형태는 진공스퍼터링 방법을 이용하여 CuInGa 프리커서를 증착시킬 수 있 ο으며, CuInGa 프리커서를 진공스퍼터링 방법으로 증착시 CuGa 2원소 합금 타겟과 In 타겟올 사용하거나, 적절한 원소 비율로 Al loy된 CuInGa 3원소 합금 타겟을 사용할 수도 있다. 다른 실시형태로는, CuGa 2원소 합금 타겟과 In 타겟을 이용하여 진공스퍼터링 방법으로 증착시키는 것으로서, CuGa과 In을 동시에 l ayer by l ayer 형태로 증착시킬 수 있다. First, in step S100 of depositing a precursor on a substrate, a back electrode layer is deposited on the substrate using a vacuum sputtering method, and a CuInGa precursor is deposited on the back electrode layer. The method of depositing the CuInGa precursor has various embodiments. One embodiment may deposit the CuInGa precursor using a vacuum sputtering method, and the CuGa binary element alloy is deposited when the CuInGa precursor is deposited by the vacuum sputtering method. target and may be used in all targets with or, Al loy a CuInGa alloy target element 3 to the appropriate element ratio. In another embodiment, by depositing by a vacuum sputtering method using a CuGa binary element target and an In target, CuGa and In can be deposited simultaneously in the form of l ayer by l ayer.
도 2는 본 발명의 바람직한 실시예에 따른 박막 태양전지용 광흡수층 제조 방법에 있어서, 진공스퍼터링을 이용하여 이면 전극층이 형성된 기판위에 증착시킨 프리커서의 임의 표면에서의 FE-SEM 사진으로서, CuGa 2원소 합금 타겟과 In 타겟을 이용하여 진공스퍼터링 방법으로 CuInGa 프리커서를 증착시킨 임의 표면에서의 SEM 사진이다. 도 2의 (a)는 몰리브덴이 증착된 소다회 유리 위에 적절한 원소 비율로 Al loy된 CuGa 2원소 타겟을 이용하여 CuGa 층을 증착시킨 후, In 타겟을 이용하여 In을 증착시킨 SEM 사진으로서, 이로부터 CuGa은 몰리브덴 위에 아주 균일하게 증착이 되었지만, In같은 경우는 굉장히 많은 void가 형성됨을 확인할 수 있다. 이와 같은 문제점을 해결하기 위해 실험을 통해 CuGa과 In을 동시에 스퍼터링시키는 방밥을 알아냈다. 도 2의 (b)는 CuGa과 In을 동시에 증착시킨 임의 표면의 SEM 사진을 나타낸 것으로서, 이로부터, void가 전혀 없고 아주 균일하게 증착된 모습을 확인할 수 있다. 따라서, 이로부터 도FIG. 2 is a FE-SEM photograph of an arbitrary surface of a precursor deposited on a substrate on which a back electrode layer is formed by vacuum sputtering in a method of manufacturing a light absorption layer for a thin film solar cell according to a preferred embodiment of the present invention. SEM photographs on arbitrary surfaces of CuInGa precursors deposited by vacuum sputtering using an alloy target and an In target. FIG. 2 (a) is a SEM photograph of a CuGa layer deposited on a molybdenum-deposited soda ash glass using an Al loy CuGa two-element target having an appropriate element ratio, followed by In deposition using an In target. CuGa was deposited evenly on the molybdenum, but in the case of In, it can be seen that a lot of voids are formed. In order to solve this problem, we found a method for sputtering CuGa and In simultaneously. FIG. 2 (b) shows an SEM image of an arbitrary surface on which CuGa and In are deposited at the same time. You can see it deposited very uniformly. Therefore, from this
2의 (b)에 도시된 바와 같이 CuGa 2원소 타겟과 In 타겟을 동시에 증착시켜 프리커서를 형성하는 방법이 ( a)의 방법보다 더 균일하게 증착시킬 수 있는 장점을 가짐을 알 수 있다. As shown in 2 (b), it can be seen that the method of forming a precursor by simultaneously depositing a CuGa 2 element target and an In target has the advantage of more uniform deposition than the method of (a).
다음, 반응 용기의 일면에 셀렌을 증착시키는 단계 (S110)에 대하여 구체적으로 설명한다. 상기 반응 용기는 분리 가능한 본체와 덮개를 구비하며, 상기 본체는 덮개에 의해 밀폐되는 구조로 구성되며, 본체의 내부에 공간이 있는 박스 형태로 구성된 것이 바람직하다. 상기 반웅 용기는 고은에도 강한 세라믹 글라스, 그라파이트 중 하나로 형성된 것이 바람직하다 .  Next, the step (S110) of depositing selenium on one surface of the reaction vessel will be described in detail. The reaction vessel is provided with a detachable body and a cover, the body is composed of a structure that is sealed by the cover, it is preferable that it is configured in the form of a box with a space inside the body. The reaction container is preferably formed of one of ceramic glass and graphite which is also resistant to silver.
셀레늄 공급 장치는 용매에 Na이 용해되어 있으며 셀레늄 파우더 및 황 파우더가 섞여 저장된 샐렌 용액을 제공한다. Na 소스로는 NaOH , N S , NaF 중 하나를 사용할 수 있으며, 용매로는 물, 알코올 중 하나를 사용할 수 있다. 상기 셀렌 용액은 증착될 때까지 용질이 침전되지 않도록 계속 저어주는 것이 바람직하다 .  The selenium feeder provides a stored selenium solution in which Na is dissolved in a solvent and a mixture of selenium powder and sulfur powder. As the Na source, one of NaOH, N S and NaF may be used, and as the solvent, one of water and alcohol may be used. The selenium solution is preferably stirred continuously so that the solute does not precipitate until it is deposited.
반응 용기의 일면에 셀렌을 증착시키는 일 실시형태는, 반응 용기의 본체의 내부의 바닥면이나 덮개의 내측면에 비진공 스프레이 방식으로 셀렌 용액을 증착시키는 것을' 특징으로 한다. 도 3은 본 발명의 바람직한 실시예에 따른 태양전지용 광흡수층 제조 방법에 있어서, 비진공 스프레이 방식으로 반웅 용기의 일면에 셀레늄을 증착하는 과정을 설명하기 위하여 도시한 개념도이다. One embodiment for depositing selenium on a surface of the reaction vessel form, and depositing a selenium solution in a non-vacuum spray on the inside surface of the inside of the bottom surface of the main body or the cover of the reaction vessel to the "features. 3 is a conceptual diagram illustrating a process of depositing selenium on one surface of a reaction chamber in a method of manufacturing a light absorption layer for a solar cell according to a preferred embodiment of the present invention.
도 3을 참조하면, 셀렌 용액 저장 용기 (304)는 내부에 샐렌 용액이 저장되어 있는 용기로서, 셀렌 용액의 용질이 침전되지 않도록 계속 저어준다. 상기 셀렌 용액은 전술한 셀레늄 공급 장치에 의해 제공된 용액이다. 셀레늄을 증착시키고자 하는 반웅 용기 (302 )의 본체 또는 덮개의 일면으로 셀렌 용액 저장 용기에 연결된 분사 노즐 (303)을 이용하여 셀렌 용액을 스프레이 방식으로 분사한다. 이 때, 히팅소스 (301 )을 이용하여 셀레늄을 증착시킬 반웅 용기 (302)를 가열시킴으로써, 반웅 용기의 일면에 셀렌 용액이 분사되면, 셀렌 용액의 용매는 증발되고 샐렌, 황, 나트륨의 용질은 기판에 증착된다. 반응 용기의 일면에 셀렌을 증착시키는 다른 실시형태는, 반웅 용기의 본체의 내부의 바닥면이나 덮개의 내측면에 비진공 프린트 방식으로 셀렌 용액을 증착시키는 것을 특징으로 한다. Referring to FIG. 3, the selenium solution storage container 304 is a container in which a selenium solution is stored therein and continuously stirs so that the solute of the selenium solution does not precipitate. The selenium solution is a solution provided by the aforementioned selenium supply device. The selenium solution is sprayed using a spray nozzle 303 connected to the selenium solution storage container to one surface of the main body or cover of the reaction vessel 302 to deposit selenium. At this time, by heating the reaction vessel 302 to deposit selenium using the heating source 301, when the selenium solution is sprayed on one side of the reaction vessel, the solvent of the selenium solution is evaporated and the solutes of selenium, sulfur and sodium are Deposited on the substrate. Another embodiment of depositing selenium on one side of the reaction vessel is characterized in that the selenium solution is deposited on the bottom surface of the inside of the body of the reaction vessel or the inner surface of the lid by a non-vacuum print method.
도 4는 본 발명의 바람직한 실시예에 따른 태양전지용 광흡수층 제조 방법에 있어서 , 바코터 (Bar-Coater )를 이용한 비진공 프린트 방식으로 반웅 용기의 일면에 셀레늄올 증착하는 과정을 설명하기 위하여 도시한 개념도이다. 도 4의 (a)는 바코터를 도시한 도면이며, (b)는 바코터를 이용하여 비진공 프린트 방식으로 증착시키는 것을 도시한 것이다. 도 4의 (a)를 참조하면, 바코터 (409)는 원기등 형태의 막대 (405)의 외주면에 코일 (406)올 균일한 두께로 감아 구성된 것이 바람직하다. 전술한 구성을 갖는 바코터를 용액 (407)위로 통과시키면, 용액 (407)는 바코터에 의해 표면위에 일정한 두께로 코팅이 된다.  4 is a view illustrating a process of depositing selenium on one surface of a reaction container in a non-vacuum print method using a bar coater in a method of manufacturing a light absorption layer for a solar cell according to a preferred embodiment of the present invention. Conceptual diagram. Figure 4 (a) is a view showing a bar coater, (b) shows a deposition using a non-vacuum printing method using a bar coater. Referring to Figure 4 (a), the bar coater 409 is preferably configured to be wound around the outer circumferential surface of the rod 405 of the cylindrical shape to a uniform thickness of the coil 406. When a bar coater having the above-described configuration is passed over the solution 407, the solution 407 is coated by the bar coater to a certain thickness on the surface.
도 4의 (b)를 참조하면, 셀렌을 증착하고자 하는 반웅 용기 (408)의 덮개나 본체의 바닥면위에 셀렌 저장 용기 (410)의 셀렌 용액 (411-a)을 공급하고 , 바코터 (409)를 상기 셀레 용액 (411-b)위를 통과시킴에 따라, 반응 용기의 일면에 셀렌 용액 (411— c )이 균일하게 도포된다. 이때, 반웅 용기의 일면에 도포되는 샐렌 용액의 두께는 바코터의 코일의 두께를 조절함으로써, 조절할 수 있다.  Referring to FIG. 4B, the selenium solution 411-a of the selenium storage container 410 is supplied to the cover of the reaction container 408 or the bottom surface of the body to which selenium is deposited, and the bar coater 409. ) Passes through the selenium solution (411-b), the selenium solution (411-c) is uniformly applied to one side of the reaction vessel. At this time, the thickness of the selenium solution applied to one side of the reaction container can be adjusted by adjusting the thickness of the coil of the bar coater.
바코터에 의해 균일하게 셀렌 용액이 도포된 반응 용기 (408)를 팬 (412 )을 통과시킴으로써, 셀렌 용액을 건조시켜 반웅 용기의 표면에 셀렌을 포함한 용질만 남게 되어 증착이 완료된다.  By passing the reaction vessel 408 uniformly coated with the selenium solution by the bar coater through the fan 412, the selenium solution is dried to leave only the solute including selenium on the surface of the reaction container, thereby completing the deposition.
다음, 상기 반웅 용기내에 상기 기판을 배치하고 밀폐시키는 단계 (S120)에 대하여 구체적으로 설명한다.  Next, the step (S120) of placing and sealing the substrate in the reaction vessel will be described in detail.
도 5는 본 발명의 바람직한 실시예에 따른 태양전지용 광흡수층 제조 방법에 있어서ᅳ 반응 용기내에 기판을 배치한 상태를 도시한 단면도들이다. 도 5를 참조하면, 기판을 반웅 용기의 내부에 배치한 것을 특징으로 한다. 이 때, 기판의 프리커서 장착면과 반웅 용기의 셀렌 증착면이 서로 마주보도록 배치하되, 기판의 프리커서 장착면과 반웅 용기의 셀렌 증착면이 일정 거리 이격되어 배치된 것이 바람직하다. 반웅 용기의 샐렌 증착면은 반웅 용기의 덮개의 내측면 또는 반웅 용기의 본체의 바닥면이 될 수 있다. 도 5의 (a)를 참조하면, 반웅 용기에 기판을 배치하는 일 실시형태는, 반웅 용기의 본체부 (515)의 바닥면에 기판 (514)이 배치되고, 반웅 용기의 덮개 (513)가 놓임으로써, 반웅 용기가 전체적으로 밀폐된 상태를 유지하도록 하는 것이다. 이때, 덮개 (513)의 내측면에 샐렌이 증착되고, 기판 (514)의 프리커서가 증착된 면이 상부를 향하도록 배치된 것이 바람직하다. 5 is a cross-sectional view illustrating a state in which a substrate is disposed in a reaction vessel in the method of manufacturing a light absorption layer for a solar cell according to a preferred embodiment of the present invention. Referring to Figure 5, it is characterized in that the substrate is placed inside the reaction container. At this time, the precursor mounting surface of the substrate and the selenium deposition surface of the reaction vessel are disposed to face each other, but the precursor mounting surface of the substrate and the selenium deposition surface of the reaction vessel are preferably spaced apart from each other by a predetermined distance. The selenium deposition surface of the reaction vessel may be the inner surface of the lid of the reaction vessel or the bottom surface of the body of the reaction vessel. Referring to FIG. 5A, in an embodiment in which the substrate is placed in the reaction vessel, the substrate 514 is disposed on the bottom surface of the main body 515 of the reaction vessel, and the lid 513 of the reaction vessel is By placing it, the reaction container is kept in a closed state as a whole. At this time, it is preferable that the selenium is deposited on the inner surface of the cover 513, and the surface on which the precursor of the substrate 514 is deposited is disposed to face upward.
상기 반응 용기의 셀렌 증착면과 기판의 프리커서면의 이격 거리는 1~30画의 범위인 것이 바람직하다.  It is preferable that the separation distance of the selenium deposition surface of the said reaction container and the precursor surface of a board | substrate is 1-30 micrometers.
도 5의 (b)를 참조하면, 반웅 용기에 기판을 배치하는 다른 실시형태는, 반응 용기의 본체부 (516)의 바닥면에 동일한 높이를 갖는 스페이서 (517)들이 균일하게 배치되고, 그 위에 기판 (519)이 배치되며 , 반응 용기의 덮개 (518)가 놓임으로써, 반웅 용기가 전체적으로 밀폐된 상태를 유지하도록 하는 것이다. 상기 스페이서 (517)는 열 전달 계수를 고려하여, 반응 용기와 같은 재질로 제작된 것이 바람직하다. 이때, 반웅 용기의 본체의 내부 바닥면에 셀렌이 증착되고, 기판 (519)의 프리커서가 증착된 면이 하부, 즉 본체의 내부 바닥면을 향하도록 배치된 것이 바람직하다.  Referring to FIG. 5B, in another embodiment of disposing a substrate in a reaction vessel, spacers 517 having the same height are uniformly disposed on the bottom surface of the body portion 516 of the reaction vessel, and thereon The substrate 519 is disposed, and the lid 518 of the reaction vessel is placed so that the reaction vessel is kept in a closed state as a whole. The spacer 517 is preferably made of the same material as the reaction vessel in consideration of the heat transfer coefficient. At this time, it is preferable that the selenium is deposited on the inner bottom surface of the main body of the reaction container, and the surface on which the precursor of the substrate 519 is deposited is disposed downward, that is, facing the inner bottom surface of the main body.
다음, 상기 반웅 용기를 급속 열처리 장비의 반웅 챔버내에 장입시키는 단계 (S130) , 상기 반웅 용기를 열처리하여 셀렌화하는 단계 (S140) , 기판의 표면에 광흡수층을 형성하는 단계 (S150)에 대하여 구체적으로 설명한다.  Next, the step of charging the reaction vessel in the reaction chamber of the rapid heat treatment equipment (S130), the step of heat treatment of the reaction vessel and selenization (S140), the step of forming a light absorption layer on the surface of the substrate (S150) Explain.
본 실시예에 따른 급속 열처리 장비 (Rapid Thermal Aneal ing ;RTA)는 상부 및 하부에 각각 열원 (Heat ing Source)이 있는 것이 바람직하며, 상기 열원으로는 할로겐램프, IR 히터, SIC 히터 중 하나를 사용할 수 있다. 또한, 상기 급속 열처리 장비의 반웅 챔버는 일정한 온도를 지속적으로 제공하기 위해 두꺼운 그라파이터 척을 사용하는 것이 바람직하다. 한편 셀렌화 도중 외부 오염을 막기 위해 반웅 챔버의 내부를 질소 (N2) 분위기로 열처리를 진행하는 것이 바람직하다. Rapid thermal annealing (RTA) according to the present embodiment preferably has a heat source (Heat ing source) at the top and bottom, respectively, and the heat source may use one of a halogen lamp, IR heater, SIC heater. Can be. In addition, it is preferable that the reaction chamber of the rapid heat treatment equipment uses a thick graphite chuck to continuously provide a constant temperature. Meanwhile, in order to prevent external contamination during selenization, the inside of the reaction chamber is preferably heat treated in a nitrogen (N 2 ) atmosphere.
상기 반웅 용기를 열처리하여 셀렌화하는 단계 (S140)는, 상기 기판과 조립된 반웅용기를 고온의 반웅 챔버에서 급속 열처리하여 반웅용기 내부에서 셀렌화 반웅이 이루어져 광흡수층을 형성하게 된다. 상기 반응용기를 열처리시 1분 ~ 60분의 범위로 하는 것이 바람직하며, 상기 반응용기 내 기판의 온도가 450 ~ 580 °C 의 범위로 열처리하는 것이 바람직하다. In the step (S140) of heat treatment of the reaction vessel container and selenization, the semi-reactor is assembled with the substrate in a high temperature reaction chamber to rapidly heat-treat the selenization reaction chamber to form a light absorption layer. remind When the reaction vessel is heat treated, it is preferable to be in the range of 1 minute to 60 minutes, and the temperature of the substrate in the reaction vessel is preferably heat-treated in the range of 450 to 580 ° C.
도 6은 본 발명의 바람직한 실시예에 따른 태양전지용 광흡수층 제조 방법에 있어서, 상기 기판과 조립된 반웅용기에 열처리를 가하여 셀렌화 반응을 시켜주는 고속 열처리 장비의 단면도를 나타낸 것이다. 도 6을 참조하면, 고속 열처리 장비 (600)는 입구측 버퍼 챔버 (618), 반응 챔버 (610), 출구측 버퍼 챔버 (621)을 구비하고, 상기 반웅 챔버 (610)는 상부와 하부에 각각 열원 (620)을 구비하며, 상기 열원은 콘트롤러에 의해 개별 제어가 가능한 것이 바람직하다. 상기 반웅 챔버 (610)는 가스 주입구 (619)를 구비한다.  6 is a cross-sectional view of a high-speed heat treatment equipment for the selenization reaction by applying a heat treatment to the semi-agitator vessel assembled with the substrate in the solar cell light absorption layer manufacturing method according to a preferred embodiment of the present invention. Referring to FIG. 6, the high speed heat treatment equipment 600 includes an inlet side buffer chamber 618, a reaction chamber 610, and an outlet side buffer chamber 621, and the reaction chamber 610 is disposed at the top and the bottom thereof, respectively. It is preferred that the heat source 620 is provided, and the heat source can be individually controlled by a controller. The reaction chamber 610 has a gas inlet 619.
전술한 구성을 갖는 고속 열처리 장비 (600)의 입구측 버퍼 챔버 (618ᅵ로 상기 조립된 반응용기 (617)가 장입되면, 외부의 오염원을 제거해주기 위해 1X10E-1 ~ 1X10E-2 torr까지 진공을 2 ~ 10분간 유지시켜. 준다. 그 후, 입구측 버퍼챔버를 질소 가스로 대기압까지 채워준다. 이유는 실제 열처리 반응이 이루어지는 반웅 챔버가 가스 주입구 (619)를 통해 순환되는 질소로 인해 항상 대기압 상태를 유지하고 있기 때문이다. 반응용기가 질소분위기의 반웅 챔버로 들어가 2분 ~ 60분간 480 - 600 °C로 열처리하여 셀렌화 반응올 시켜준다. 샐렌화 반웅이 끝난 반응용기는 출구측 버퍼챔버 (621)로 이동된다. When the assembled reaction vessel 617 is charged into the inlet buffer chamber 618 of the high-speed heat treatment apparatus 600 having the above-described configuration, a vacuum is applied to 1X10E-1 to 1X10E-2 torr to remove external contaminants. Hold for 2 to 10 minutes, then fill the inlet buffer chamber with nitrogen gas to atmospheric pressure because the reaction chamber where the actual heat treatment takes place is always at atmospheric pressure due to nitrogen circulating through the gas inlet 619. The reaction vessel enters the reaction chamber of the nitrogen atmosphere and heat-treated at 480-600 ° C for 2 to 60 minutes to allow selenization reaction. 621).
다음, 잉여 셀렌 제거 및 냉각하는 단계 (S150)는 출구측 버퍼챔버 (619)에서는 샐렌화 반응 후 남은 잉여셀렌을 진공을 통해 제거시켜 준다. 이때, 셀렌의 완전 제거를 위해 반웅용기의 덮개를 들어 준다. 진공은 1X10E-1 1X10E-2 torr로 2 - 10분간 유지를 시켜준다. 잉여셀렌의 제거가 끝난 반응용기는 냉각기 (622)를 이용하여 질소 또는 대기 분위기에서 강제 공기 순환 냉각시키는 공넁식 방법을 통해 식혀주는 과정을 거친다. 상기 방법을 통해 CIGS 광 흡수층 제작이 완성된다.  Next, the step of removing and cooling excess selenium (S150) removes the excess selenium remaining after the selenization reaction through the vacuum in the outlet side buffer chamber 619. At this time, lift the cover of the semi-wool container to completely remove the selenium. The vacuum is maintained at 1X10E-1 1X10E-2 torr for 2-10 minutes. After removing the excess selenium, the reaction vessel is cooled by a common method of using forced air circulation cooling in nitrogen or an atmosphere using a cooler 622. Through the above method, the fabrication of the CIGS light absorbing layer is completed.
도 7은 본 발명의 바람직한 실시예에 따른 태양전지용 광흡수층 제조 방법에 있어서, 상기 방법으로 제작된 CIGS 광 흡수층의 임의 단면에서의 FE- SEM 사진을 나타낸다. 도 7을 통해, 본 발명에 따른 방법에 의하여, 약 1 두께의 균일하면서 Grain크기가큰 CIGS 광 흡수층이 제작됨을 알수 있다. 한편, 전술한 방법에 의해 형성된 CIGS 광 흡수층 위에 고저항의 버퍼층을 증착하고, 그 위에 TC0층을 증착해서 CIGS 태양전지를 완성하게 된다. FIG. 7 shows a FE-SEM photograph of an arbitrary cross section of a CIGS light absorbing layer manufactured by the method in the method of manufacturing a light absorbing layer for a solar cell according to a preferred embodiment of the present invention. 7, it can be seen that by the method according to the present invention, a uniform and large grain size CIGS light absorbing layer of about 1 thickness is produced. Meanwhile, a high resistance buffer layer is deposited on the CIGS light absorbing layer formed by the above method, and a TC0 layer is deposited thereon to complete the CIGS solar cell.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나, 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 웅용이 가능함을 알 수 있을 것이다. 그리고, 이러한 변형과 웅용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.  Although the present invention has been described above with reference to preferred embodiments thereof, this is merely an example and is not intended to limit the present invention, and those skilled in the art do not depart from the essential characteristics of the present invention. It will be appreciated that various modifications and alterations are not possible in the scope. And differences relating to such modifications and uses will be construed as being included in the scope of the invention defined in the appended claims.
【산업상 이용가능성】 Industrial Applicability
본 발명에 따른 박막 태양전지용 광흡수층 제조 방법은 CIGS 태양 전지 제조 방법에 널리 사용될 수 있다.  The light absorption layer manufacturing method for a thin film solar cell according to the present invention can be widely used in a CIGS solar cell manufacturing method.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
(a) 구리, 인듬, 갈륨 중 하나 이상을 포함하는 프리커서를 기판에 증착하는 단계;  (a) depositing a precursor comprising at least one of copper, sulphate, and gallium on a substrate;
(b) 반웅 용기의 내부의 일면에 샐렌을 증착시키는 단계;  (b) depositing selenium on one side of the interior of the reaction vessel;
( C ) 상기 반웅 용기내에 상기 기판을 배치하되, 상기 반웅 용기의 셀렌 증착면과 상기 기판의 프리커서 증착면이 일정 간격 이격되면서 서로 마주보도록 배치한 후, 상기 반응 용기를 밀폐시키는 단계;  (C) disposing the substrate in the reaction vessel, wherein the selenium deposition surface of the reaction vessel and the precursor deposition surface of the substrate face each other at a predetermined interval, and then sealing the reaction vessel;
(d) 상기 밀폐된 반웅 용기를 급속 열처리 장비의 반웅 챔버내에 장입시키는 단계 ;  (d) charging the sealed reaction vessel into a reaction chamber of a rapid heat treatment apparatus;
(e) 상기 반웅 용기를 열처리하여 기판의 프리커서를 셀렌화하는 단계; 를 구비하여, 기판의 표면에 광흡수층을 형성하는 것을 특징으로 하는 박막 태양전지용 광흡수층 제조 방법 .  (e) heat treating the reaction vessel to selenize the precursor of the substrate; And a light absorption layer formed on the surface of the substrate.
【청구항 2】 [Claim 2]
거 U항에 있어서, 상기 반응 용기는 분리 가능한 본체와 덮개를 구비하며, 상기 본체는 덮개에 의해 밀폐되는 구조로 구성된 것을 특징으로 하는 박막 태양전지용 광흡수층 제조 방법.  The method according to claim U, wherein the reaction vessel has a detachable body and a cover, the body is a light absorption layer manufacturing method for a thin film solar cell, characterized in that the structure is configured by the cover is closed.
【청구항 3】 [Claim 3]
제 1항에 있어서, 상기 (b) 단계는, 반웅 용기의 내부의 일면에 셀렌 용액을 비진공 스프레이 기법 또는 비진공 프린트 기법올 이용하여 도포한 후 열처리하여, 반웅 용기의 내부의 일면에 샐렌을 증착시키는 것을 특징으로 하며,  The method of claim 1, wherein the step (b) comprises applying a selenium solution to one surface of the reaction vessel using a non-vacuum spray technique or a non-vacuum print technique, followed by heat treatment, thereby applying selenium to one surface of the reaction vessel. Characterized in that the deposition,
상기 셀렌 용액은 용매에 셀렌 파우더가 용해되어 구성된 것을 특징으로 하는 박막 태양전지용 광홉수층 제조 방법.  The selenium solution is an optical hop layer for thin-film solar cell manufacturing method characterized in that the selenium powder is dissolved in a solvent.
【청구항 4】 [Claim 4]
제 3항에 있어서, 상기 셀렌 용액은 용매에 황 파우더 및 나트륨이 추가로 더 용해된 것을 특징으로 하는 박막 태양전지용 광흡수층 제조 방법. The method of claim 3, wherein the selenium solution is further dissolved in sulfur powder and sodium in a solvent.
【청구항 5] [Claim 5]
제 1항에 있어서, 상기 박막 태양전지용 광흡수층 제조 방법은, 샐렌화한 후 ( f ) 반웅 용기 내의 잉여 셀렌을 제거하는 단계를 더 포함하는 것을 특징으로 하는 박막 태양전지용 광흡수층 제조 방법 .  The method of claim 1, wherein the method of manufacturing a light absorption layer for thin film solar cells further comprises the step of removing the excess selenium in the reaction vessel after (f) selenization.
【청구항 6】 [Claim 6]
제 5항에 있어서, 상기 박막 태양전지용 광홉수층 제조 방법은, (g) 잉여 샐렌이 제거된 반응 용기와 기판을 질소 또는 대기 분위기에서 강제 공기 순환시켜 넁각시키는 단계를 더 구비하는 것을 특징으로 하는 박막 태양전지용 광흡수층 제조 방법.  The method of claim 5, wherein the method of manufacturing an optical hop layer for a thin film solar cell further comprises: (g) subjecting the reaction vessel from which the excess selenium has been removed to the substrate by forced air circulation in a nitrogen or air atmosphere. Method for manufacturing a light absorption layer for solar cells.
【청구항 7] [Claim 7]
제 1항에 있어서, 상기 (c) 단계에서 상기 반웅 용기와 셀렌 증착면과 상기 기판의 프리커서- -증착면의ᅳ아격 간격은 r ~ 30 " ^의 범위인 것을 특징으로 하는 박막 태양전지용 광흡수층 제조 방법 . The thin film solar cell of claim 1, wherein the spacing between the reaction vessel, the selenium deposition surface, and the precursor-deposition surface of the substrate in the step (c) is in a range of r to 30 ". Method of manufacturing absorbing layer.
【청구항 8】 [Claim 8]
저 U항에 있어서, 상기 (e) 단계의 열처리 시간은 1 ~ 60 분의 범위인 것을 특징으로 하는 박막 태양전지용 광흡수층 제조 방법 .  The method according to claim U, wherein the heat treatment time of the step (e) is a light absorption layer manufacturing method for a thin film solar cell, characterized in that in the range of 1 to 60 minutes.
【청구항 9】 [Claim 9]
제 1항에 있어서, 상기 (e) 단계는 반웅 용기내의 기판의 온도가 450 - 580 °C의 범위가 되도록 열처리하는 것을 특징으로 하는 박막 태양전지용 광흡수층 제조 방법 . The method of claim 1, wherein the step (e) comprises heat treatment such that the temperature of the substrate in the reaction vessel is in the range of 450-580 ° C.
【청구항 10】 [Claim 10]
제 1항에 있어서 , 상기 급속열처리 장비는반웅챔버의 상부및 하부에 각각 열원을구비하고, 상기 열원은개별제어가능하도록구성된 것을특징으로하며, 상기 반웅 용기의 열처리시 상기 반웅 챔버는 열원의 온도를 각각 제어하여 셀렌화 반응을 제어할 수 있도록 하는 것을 특징으로 하는 박막 태양전지용 광흡수층 제조 방법 .  According to claim 1, wherein the rapid heat treatment equipment is characterized in that the heat source is provided on the upper and lower portions of the reaction chamber, respectively, wherein the heat source is configured to be individually controllable, wherein the reaction chamber is the temperature of the heat source during the heat treatment of the reaction chamber Method for manufacturing a light absorption layer for a thin film solar cell, characterized in that to control the selenization reaction by controlling the respective.
PCT/KR2015/003419 2014-06-05 2015-04-06 Method for manufacturing light-absorption layer for thin-film solar cell WO2015186899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0068368 2014-06-05
KR1020140068368A KR20150140084A (en) 2014-06-05 2014-06-05 Method of fabricating an optical absorber for a thin film solar cell

Publications (1)

Publication Number Publication Date
WO2015186899A1 true WO2015186899A1 (en) 2015-12-10

Family

ID=54766942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003419 WO2015186899A1 (en) 2014-06-05 2015-04-06 Method for manufacturing light-absorption layer for thin-film solar cell

Country Status (2)

Country Link
KR (1) KR20150140084A (en)
WO (1) WO2015186899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108436328A (en) * 2018-03-04 2018-08-24 苏州辰正太阳能设备有限公司 Novel intelligent welding of battery film lampshade

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110098598A (en) * 2010-02-26 2011-09-01 한국전자통신연구원 Manufacturing method for thin film of absorber layer, manufacturing method for thin film solar cell using thereof
KR20120051206A (en) * 2010-11-12 2012-05-22 영남대학교 산학협력단 Method of making the photovoltaic cigs absorber
KR20120123097A (en) * 2010-02-23 2012-11-07 쌩-고벵 글래스 프랑스 Device for forming a reduced chamber space, and method for positioning multilayer bodies
JP2013041873A (en) * 2011-08-11 2013-02-28 Kyocera Corp Thin film manufacturing method and thin film manufacturing apparatus
KR20130042765A (en) * 2011-10-19 2013-04-29 주식회사 아바코 Apparatus and method thermal processing for cigs-based compound solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120123097A (en) * 2010-02-23 2012-11-07 쌩-고벵 글래스 프랑스 Device for forming a reduced chamber space, and method for positioning multilayer bodies
KR20110098598A (en) * 2010-02-26 2011-09-01 한국전자통신연구원 Manufacturing method for thin film of absorber layer, manufacturing method for thin film solar cell using thereof
KR20120051206A (en) * 2010-11-12 2012-05-22 영남대학교 산학협력단 Method of making the photovoltaic cigs absorber
JP2013041873A (en) * 2011-08-11 2013-02-28 Kyocera Corp Thin film manufacturing method and thin film manufacturing apparatus
KR20130042765A (en) * 2011-10-19 2013-04-29 주식회사 아바코 Apparatus and method thermal processing for cigs-based compound solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108436328A (en) * 2018-03-04 2018-08-24 苏州辰正太阳能设备有限公司 Novel intelligent welding of battery film lampshade

Also Published As

Publication number Publication date
KR20150140084A (en) 2015-12-15

Similar Documents

Publication Publication Date Title
TWI413269B (en) Method and apparatus for converting precursor layers into photovoltaic absorbers
KR101193034B1 (en) Method for forming light absorbing layer in CIS-based thin film solar battery
US9064700B2 (en) Crystallization annealing processes for production of CIGS and CZTS thin-films
US20070243657A1 (en) Method and Apparatus to Form Thin Layers of Materials on a Base
KR101663918B1 (en) Process box for forming a reduced chamber space, and method for positioning multilayer bodies
US20050006221A1 (en) Method for forming light-absorbing layer
WO2012165710A1 (en) Method for manufacturing light-absorption layer of solar cell through selenization process under elemental selenium vapor atmosphere and thermal processing apparatus for manufacturing light-absorbing layer
US9238861B2 (en) Closed-space annealing process for production of CIGS thin-films
US20090148598A1 (en) Methods and Apparatus to Provide Group VIA Materials to Reactors for Group IBIIIAVIA Film Formation
US9157153B2 (en) Closed-space annealing of chalcogenide thin-films with volatile species
CN102031497B (en) Large scale method and furnace system for selenization of thin film photovoltaic materials
KR101284760B1 (en) Rapid thermal process apparatus for solar cell and processing method using thereof
CN104737301B (en) In thermal process, glass bending avoids
CN106409659B (en) Compound semiconductor film and preparation method thereof
KR101779508B1 (en) A Processing Apparatus for Manufacturing Thin Film Solar Cell and Method for Thermal Processing using the same
WO2015186899A1 (en) Method for manufacturing light-absorption layer for thin-film solar cell
KR101403479B1 (en) Device for preparation of compound semiconductor, and the preparation method of compound semiconductor using the same
US20170062634A1 (en) Method to Condition an Annealing Tool for High Quality CuZnSnS(Se) Films to Achieve High Performance Solar Cells Reliably
CN110565060A (en) Preparation method of light absorption layer of thin-film solar cell
RU2212080C2 (en) PROCESS OF MANUFACTURE OF CHALCOPYRITE CuInSe2,Cu(In,Ga)Se2,CuGaSe2 THIN FILMS
CN110571155A (en) Preparation method of light absorption layer of thin-film solar cell
CN110957393B (en) Preparation method of light absorption layer of thin-film solar cell
US10053364B2 (en) Heat treatment method and the product prepared therefrom
KR101978040B1 (en) Chalcogenization heat treatment apparatus and chalcogenization heat treatment method
WO2011135420A1 (en) Process for the production of a compound semiconductor layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803616

Country of ref document: EP

Kind code of ref document: A1