WO2015186806A1 - Placenta extract and method for producing placenta extract - Google Patents

Placenta extract and method for producing placenta extract Download PDF

Info

Publication number
WO2015186806A1
WO2015186806A1 PCT/JP2015/066253 JP2015066253W WO2015186806A1 WO 2015186806 A1 WO2015186806 A1 WO 2015186806A1 JP 2015066253 W JP2015066253 W JP 2015066253W WO 2015186806 A1 WO2015186806 A1 WO 2015186806A1
Authority
WO
WIPO (PCT)
Prior art keywords
placenta extract
placenta
subcritical
molecular weight
treatment
Prior art date
Application number
PCT/JP2015/066253
Other languages
French (fr)
Japanese (ja)
Inventor
暁史 保母
靖晃 伊東
中村 真也
広瀬 直宏
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to JP2016525243A priority Critical patent/JPWO2015186806A1/en
Publication of WO2015186806A1 publication Critical patent/WO2015186806A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/50Placenta; Placental stem cells; Amniotic fluid; Amnion; Amniotic stem cells
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/30Meat extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/98Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin
    • A61K8/981Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin of mammals or bird
    • A61K8/982Reproductive organs; Embryos, Eggs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations

Definitions

  • the present invention relates to a placenta extract using placenta as a raw material and a method for producing a placenta extract.
  • it relates to a placenta extract exhibiting specific absorbance and nitrogen content and a method for producing a placenta extract.
  • Placenta is the placenta of mammals. In recent years, it has been used as health foods, cosmetic materials, pharmaceuticals, etc. due to its superior functionality represented by its antioxidant properties, ability to promote collagen production, collagenase inhibitory activity, and antihypertensive effect. Has been. In these uses, in order to exhibit the excellent functionality of the placenta, it is necessary to lower the molecular weight and solubilize the protein in the placenta to a peptide having excellent absorbability and functionality.
  • Patent Document 1 includes adding a yeast extract to a supernatant obtained by hydrolyzing a residue removed when extracting a high molecular protein such as a water-soluble protein from human placenta tissue with a proteolytic enzyme.
  • Patent Document 2 discloses a cosmetic composition containing a water-soluble component obtained by hydrolyzing pig and / or horse placenta by enzymatic treatment, and a phenol derivative.
  • an enzyme reaction auxiliary agent such as a pH adjuster or an enzyme stabilizer is added to the placenta material.
  • concentration of the active ingredient is diluted by the inclusion of these additives and a problem that a component derived from non-placenta is mixed.
  • placenta extract in order to blend placenta extract into cosmetics, foods, etc., particularly liquid products, it is required to have a high concentration of active ingredients such as low molecular weight peptides, and at the same time, it is also required to have low color and odor. Therefore, it is common to subject the placenta extract treated with an enzyme to a decolorization step using an ion exchange resin or activated carbon. However, when the decolorization step is performed on the enzyme-treated placenta extract, there is a problem that the active ingredients are significantly reduced along with the color and odor.
  • the present invention has been made in view of these problems, and an object thereof is to provide a placenta extract having a high concentration of active ingredients and little coloring.
  • the present invention relates to a placenta extract having an absorbance at a wavelength of 390 nm of 0.10 or less and a nitrogen content of 0.10% by mass or more.
  • a placenta extract having an absorbance of 0.01 to 0.10 is preferred.
  • a placenta extract having a nitrogen content of 0.10 to 1.0% by mass is preferred.
  • the placenta extract has a total peptide content of 70 to 99.5% by mass in the total solid content of the placenta extract.
  • the placenta extract is preferably a placenta extract in which the content of low molecular weight peptides having a molecular weight of 3000 or less in the total solid content of the placenta extract is 40 to 99.5% by mass.
  • the placenta extract has a free amino acid content of 0.01 to 30% by mass in the total solid content of the placenta extract.
  • a placenta extract in which the content of components having a molecular weight of 3000 or less in the total solid content of the placenta extract is 100% is preferable.
  • placenta extract that is extracted through a subcritical treatment of the placenta raw material.
  • a placenta extract extracted through activated carbon treatment is preferred.
  • the temperature of the subcritical treatment is 160 to 200 ° C. and the pressure is equal to or higher than the saturated vapor pressure.
  • the subcritical processing time is preferably 5 to 30 minutes.
  • the absorbance at a wavelength of 390 nm is 0.10 or less
  • a placenta extract production method for obtaining a placenta extract having a nitrogen content of 0.10% by mass or more An extraction process for subcritical processing of the placenta to obtain a subcritical processed product
  • the present invention relates to a method for producing a placenta extract, comprising a solid-liquid separation step of separating the subcritical processed product into an extract and a raw material residue.
  • the placenta extract production method includes a decolorization step after the subcritical processing extraction step.
  • a placenta extract production method in which the temperature of the subcritical process is 160 to 200 ° C. and the pressure is equal to or higher than the saturated vapor pressure is preferable.
  • a method for producing a placenta extract in which the subcritical processing time in the subcritical processing is 5 to 30 minutes is preferable.
  • a method for producing a placenta extract in which the treatment temperature in the decolorization step is 0 to 80 ° C. is preferred.
  • a method for producing a placenta extract in which the number of treatments in the decolorization step is 2 to 10 times is preferable.
  • the placenta extract having an absorbance at a wavelength of 390 nm of 0.10 or less and a nitrogen content of 0.10% by mass or more has a high active ingredient concentration and is colored. It is possible to provide a placenta extract that is suitable for use in cosmetics and foods, which has a small amount of placenta extract, and its appearance and flavor are important factors. Further, in the method for producing a placenta extract of the present invention, the absorbance at a wavelength of 390 nm is 0.10 or less, the nitrogen content is 0.10% by mass or more, the concentration of the active ingredient is high, and the placenta with little coloring. It is possible to provide a production method for obtaining a placenta extract suitable for use in cosmetics and foods, which is an extract, the appearance and flavor of which are important factors.
  • the placenta extract of the present invention is an extract using placenta as a raw material, and has an absorbance at a wavelength of 390 nm of 0.10 or less and a nitrogen content of 0.1% by mass or more.
  • a placenta extract having an absorbance at a wavelength of 390 nm and a nitrogen content in this range it is a placenta extract having a high active ingredient concentration and low coloration, and a cosmetic or cosmetic product whose appearance and flavor are important factors.
  • the absorbance at a wavelength of 390 nm in the placenta extract of the present invention is an index for coloring the extract from yellow to brown.
  • This absorbance can be measured with a commercially available visible ultraviolet spectrophotometer (such as GeneQuant 1300 manufactured by GE Healthcare Japan).
  • the absorbance is measured by a single beam method.
  • a cell containing a reference solution (water) is prepared.
  • the cell of the reference solution is set in a visible ultraviolet spectrophotometer and measured at a wavelength of 390 nm. Confirm that the measurement result is 0.00.
  • a cell in which the sample solution is put in the same cell as that used for the reference solution is prepared, set in a visible ultraviolet spectrophotometer, measured at a wavelength of 390 nm, and the measurement result becomes the absorbance of the sample solution.
  • the absorbance at a wavelength of 390 nm is 0.10 or less, preferably 0.08 or less, and more preferably 0.05 or less. If the absorbance exceeds 0.10, the placenta extract tends to be yellowish or odorous. In addition, the closer the absorbance value is to 0, the more colorless and transparent the placenta extract is. However, the placenta extract that has undergone subcritical treatment is less than 0.01 even if the decolorization step is performed. Since it has been confirmed that this does not occur, the lower limit of the absorbance of the placenta extract of the present invention at a wavelength of 390 nm is 0.01.
  • the absorbance of the placenta extract of the present invention at a wavelength of 390 nm is more preferably 0.028 to 0.084, and it is a practically effective concentration of active ingredient and becomes a placenta extract with little coloration. Easy to apply. In order to make the absorbance within the above numerical range, it can be adjusted by subjecting the placenta to subcritical processing and then performing decolorization processing.
  • the nitrogen content of the placenta extract of the present invention is the nitrogen content of free amino acids and peptides contained in the extract, and is an index of the active ingredient content in the placenta extract.
  • This nitrogen content is measured by the Kjeldahl method (a method in which sulfuric acid is added to the test solution, organic nitrogen in the solution is converted to ammonium sulfate, the liquid is made alkaline and heated, and the generated ammonia is quantified by titration). be able to. Specifically, it can be performed according to the method described in JIS K010244.
  • the measurement of nitrogen content by the Kjeldahl method is performed according to the following procedure. 1. An appropriate amount (3-10 mL) of the sample solution is placed in 500 mL of a beaker, sulfuric acid (1 + 35) is added to make it weakly acidic, and the mixture is heated to 30 mL to prepare a test solution. 2. After allowing the test solution to cool, a small amount of water is added and washed into a 200 mL Kjeldahl flask. 3. Add 10 mL of sulfuric acid, 5 g of potassium sulfate and 2 g of copper (II) sulfate pentahydrate, and heat to generate white smoke of sulfuric acid, followed by heating for about 30 minutes to decompose organic matter. 4).
  • distillation flask After standing to cool, add a small amount of water, heat to dissolve, wash to a distillation flask with water to make about 300 mL. 5.
  • a distillation flask is connected, and 200 mL of a graduated cylinder (plugged type) is used as a receiver, and 50 mL of sulfuric acid (25 mmol / L) is added.
  • sulfuric acid 25 mmol / L
  • the distillation flask is heated and distilled at a distillation rate of 5 to 7 mL / min. When about 140 mL is distilled, distillation is performed.
  • the ammonium ion concentration is determined by the following formula.
  • Formula X A (ba) ⁇ f ⁇ 1000 / F ⁇ 0.902
  • f Factor F of 50 mmol / L sodium hydroxide solution: Sample (mL)
  • 0.902 is an ammonium ion equivalent amount of 1 mL of 50 mmol / L sodium hydroxide solution.
  • the concentration of nitrogen content is calculated by the following formula Y.
  • Formula YN (b1-a1) ⁇ f ⁇ (1000 ⁇ 0.700) /V ⁇ 0.7766 N: Nitrogen content (mg / L) b1: 50 mmol / L sodium hydroxide solution (mL) required for titration of blank test a1: 50 mmol / L sodium hydroxide solution (mL) required for titration f: Factor V of 50 mmol / L sodium hydroxide solution: Amount of sample solution (mL) A: Ammonium ion concentration determined by Formula X (NH 4+ mg / L) In addition, 0.700 is a nitrogen equivalent (mg) of 1 mL of 50 mmol / L sodium hydroxide solution, and 0.7766 is a coefficient when converting ammonium ion into nitrogen equivalent. Further, the nitrogen content in the placenta extract of the present invention is expressed in mass%.
  • the nitrogen content of the placenta extract of the present invention is 0.10% by mass or more, preferably 0.15% by mass or more, and more preferably 0.20% by mass or more.
  • the nitrogen content is less than 0.10% by mass, the concentration of the active ingredient is not sufficient, and the excellent function of the placenta extract tends to be insufficient.
  • the upper limit of nitrogen content is not specifically limited, It can be 1.0 mass% or less.
  • the nitrogen content of the placenta extract of the present invention is more preferably 0.15 to 0.21% by mass, and it becomes a placenta extract having a practical active ingredient concentration and little coloration. Easy to apply.
  • it can adjust by performing a decoloring process after performing a subcritical process of a placenta.
  • the extraction components in the placenta extract of the present invention are roughly classified into four components: free amino acids, low molecular peptides having a molecular weight of 3000 or less, peptides having a molecular weight of more than 3000, and other components.
  • the content of free amino acids, peptides and other components in the present specification is indicated by mass% of each component with respect to the total solid content of the placenta extract.
  • the placenta extract contains a liquid component such as moisture
  • the placenta extract is dried or freeze-dried to remove the liquid component as the total solid content of the placenta extract.
  • Free amino acids include arginine, lysine, histidine, phenylalanine, tyrosine, leucine, isoleucine, methionine, valine, alanine, glycine, proline, glutamic acid (including glutamine), serine, threonine, aspartic acid (including asparagine), cystine, and tryptophan.
  • the amino acid which 18 types of amino acids exist independently is pointed out.
  • Free amino acids inhibit the absorption of functional peptides into the body and may reduce the absorbability and functionality of functional peptides.
  • the content of free amino acids is high, the peptide content is relatively low. And the functionality of the placenta extract may be reduced. Therefore, the content of free amino acids in the total solid content of the placenta extract is preferably as small as possible, but the placenta extract that has undergone the subcritical treatment should not be smaller than 0.01 even if the decolorization step is performed. Therefore, the lower limit of the content of free amino acid is 0.01% by mass.
  • the content of free amino acids in the total solid content of the placenta extract is preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably 5% by mass or less. Is most preferred.
  • a low molecular weight peptide having a molecular weight of 3000 or less refers to all peptides having a molecular weight of 3000 or less, in which at least one of the 18 kinds of amino acids is bound. These low molecular weight peptides with a molecular weight of 3000 or less have good absorbability to the human body, and the absorbed components are excellent in placenta extract typified by antioxidant properties, collagen production promoting ability, collagenase inhibitory activity, and blood pressure elevation inhibiting action. It is a component that easily exhibits high functionality.
  • the peptide having a molecular weight of greater than 3000 refers to all peptides having a molecular weight of greater than 3000 among peptides in which at least one of the 18 amino acids is bound.
  • Other components refer to all components other than peptides and amino acids, including inorganic components such as minerals, lipids, and carbohydrates. These other components are difficult to remove all by separation and extraction, and are contained in an amount of 0.5% by mass or more in the total solid content of the placenta extract.
  • the molecular weight in the total solid content of the placenta extract is 3000 or less.
  • the content of the components (free amino acid, low molecular peptide having a molecular weight of 3000 or less and other components having a molecular weight of 3000 or less) is preferably 100%, and preferably no component having a molecular weight of more than 3000 is contained.
  • the content of components having a molecular weight of 3000 or less in the total solid content of the placenta extract is close to 100%.
  • the content of components having a molecular weight of 3000 or less in the total solid content of the placenta extract is further close to 100%.
  • the content of all peptides in the total solid content of the placenta extract of the present invention is that the components absorbed by the human body are antioxidant and promote collagen production 70% by mass or more is preferable because it is easy to exhibit functionality such as performance.
  • the total peptide content in the total solid content of the placenta extract can be 70% by mass or more. Further, the total peptide content in the total solid content of the placenta extract is more preferably 75% by mass or more.
  • the functionality of the placenta extract may be lowered.
  • the upper limit of the peptide content is preferably as much as possible, but it is estimated that the upper limit is 99.5% by mass excluding the other components from the total solid content.
  • the inclusion of 40-99.5% by mass of a low molecular weight peptide having a molecular weight of 3000 or less in the total solid content of the placenta extract is said to enhance the functionality of the placenta extract.
  • the total solid content of the placenta extract preferably contains 40 to 99.5% by mass of a low molecular weight peptide having a molecular weight of 3000 or less.
  • the solid component can contain 40 to 99.5% by mass of a low molecular weight peptide having a molecular weight of 3000 or less.
  • the molecular weight distribution in the placenta extract of the present invention is measured by size exclusion chromatography using the separation mode of high performance liquid chromatography.
  • the sample solution injected into the high performance liquid chromatography is separated in the instrument, and the molecular weight is measured. It is carried out by a method of measuring the molecular weight utilizing the fact that the components are eluted in order from the largest.
  • a plurality of standard reagents with different molecular weights are specified, each standard reagent is measured by high performance liquid chromatography, peak elution time (X) and common logarithm of molecular weight (Y)
  • X peak elution time
  • Y common logarithm of molecular weight
  • the calibration curve will be explained based on examples. Seven standard reagents are used to create a calibration curve. The elution time of the peak in the high performance liquid chromatography for each molecular weight of the standard reagent is 6.85 minutes for the standard reagent 1: molecular weight 12,500 (reagent name: Cytochrome C), and the standard reagent 2: molecular weight For 6,512 (reagent name: Aprotinin), the elution time was 8.58 minutes. For standard reagent 3: molecular weight 1,423 (reagent name: Bacitracin), the elution time was 9.60 minutes.
  • the elution time is 9.79 minutes
  • the standard reagent 5 molecular weight 451 (reagent name: Gly-Gly-Tyr-Arg)
  • the elution time is 10.7 minutes.
  • the elution time was 11.7 minutes for reagent 6: molecular weight 189 (reagent name: Gly-Gly-Gly), and the elution time was 12.2 minutes for standard reagent 7: molecular weight 75 (reagent name: glycine).
  • the elution time was plotted on the X axis and the common logarithm of the molecular weight was plotted on the Y axis, and a calibration curve was created from the results.
  • the prepared calibration curve is shown in FIG. With the calibration curve in FIG. 1, the molecular weight corresponding to the peak elution time in high performance liquid chromatography can be confirmed. The molecular weight distribution can be calculated based on the confirmed molecular weight and the peak area of each peak. In this calibration curve, it was confirmed that the molecular weight was 3000 at an elution time of 9.1 minutes.
  • the molecular weight is 3000 or less.
  • the method for producing a placenta extract of the present invention includes an extraction step for subcritically treating a raw placenta to obtain a subcritical treatment, and a solid-liquid separation step for separating the extract from the raw material residue. Furthermore, you may include the decoloring process by activated carbon treatment. According to the production method, it is possible to produce a placenta extract having a high active ingredient concentration and little coloration.
  • the placenta as a raw material is not particularly limited as long as it is a mammalian placenta. From the viewpoint of easy availability, placenta such as pigs, cows, horses, sheep, wild boars, etc. preferable. Since placenta as a raw material may contain blood and other parts, it is preferable to perform a purification step such as washing before the extraction step.
  • the extraction step in the placenta extract production method of the present invention is a step of obtaining a subcritical processed product by subjecting the placenta raw material to subcritical processing.
  • the subcritical treatment is a process in which a subcritical fluid as an extracting agent brought into a subcritical state under a predetermined temperature and pressure is brought into contact with a raw material to be extracted (in the present invention, a placenta) to thereby extract predetermined components from the extracted raw material.
  • a subcritical fluid as an extracting agent brought into a subcritical state under a predetermined temperature and pressure is brought into contact with a raw material to be extracted (in the present invention, a placenta) to thereby extract predetermined components from the extracted raw material.
  • Is extracted For example, when water is raised to a pressure of 22.12 MPa and a temperature of 374.15 ° C., it shows a state where it is neither liquid nor gas. This point is called the critical point of water, and hot water at a temperature and pressure lower than
  • water when water is used as the extractant used for the subcritical treatment, it can be used in a liquid state or a gas state as long as it is a high-temperature water treatment. That is, water vapor may be supplied to the subcritical processing tank, water may be supplied, or both of them may be supplied.
  • the temperature of water or water vapor is desirably 100 ° C. or higher, and the desired reaction field is more liable to proceed in the liquid state than in the gas.
  • Examples of the extractant used for the subcritical treatment in the method for producing the placenta extract of the present invention include, in addition to water, ethylene, ethane, propane, carbon dioxide, methanol, ethanol, and mixtures thereof. Among these, it is most preferable to use water from the viewpoint of safety. Next, processing conditions when the extractant is water will be described.
  • the subcritical processing temperature of the placenta in the method for producing the placenta extract of the present invention is preferably between 160 and 200 ° C. By setting this temperature range, it is easy to produce a low molecular peptide having a molecular weight of 3000 or less, which is a functional component.
  • the molecular weight distribution can be measured by measuring the molecular weight distribution by high performance liquid chromatography. When the temperature of the subcritical treatment is less than 160 ° C., it tends to be difficult to produce a low molecular peptide having a molecular weight of 3000 or less.
  • the subcritical processing temperature in the method for producing the placenta extract of the present invention is more preferably 180 to 195 ° C. By setting it within this range, it becomes easy to produce a low molecular peptide having a molecular weight of 3000 or less in a shorter time.
  • the subcritical processing pressure of the placenta in the placenta extract production method of the present invention is equal to or higher than the saturated vapor pressure of the subcritical processing temperature (for example, 0.61 MPa or higher at 160 ° C., 1. It is preferable to carry out at 55 MPa or more. By using this pressure, it tends to be easy to produce a low molecular weight peptide having a molecular weight of 3000 or less.
  • the upper limit of the subcritical processing pressure is not particularly defined, it is preferably suppressed to around 20 to 30 MPa due to the specifications of the high pressure apparatus.
  • the placenta subcritical treatment time in the placenta extract production method of the present invention is preferably 5 to 30 minutes. By making it into the range of this processing time, there exists a tendency which becomes easy to produce
  • the subcritical processing time is less than 5 minutes, it tends to be difficult to produce a low molecular peptide.
  • the subcritical processing time exceeds 30 minutes the produced low molecular weight peptide is further excessively decomposed, and the amount of free amino acid produced tends to increase and the amount of low molecular weight peptide produced tends to decrease.
  • the subcritical processing time of the placenta in the method for producing the placenta extract of the present invention is 10 to 30 minutes. If it is this range, it will become easy to produce
  • the hydrolysis conditions by the subcritical treatment of the placenta when water is used as the subcritical treatment extractant the treatment temperature is 160 to 200 ° C., and the treatment pressure is saturated steam at the treatment temperature.
  • the treatment time is preferably 5 to 30 minutes or more. By carrying out under these conditions, a low molecular peptide can be produced with high efficiency.
  • the treatment temperature is 180 to 195 ° C.
  • the treatment pressure is equal to or higher than the saturated vapor pressure of the treatment temperature
  • the treatment time is 10 to 30 minutes, whereby a low molecular peptide having a molecular weight of 3000 or less can be obtained with the maximum efficiency. This is preferable.
  • the solid-liquid separation step in the method for producing the placenta extract of the present invention is a step of separating the subcritical processed product into the extract and the raw material residue (solid material).
  • Specific solid-liquid separation processes include filtration using filter paper, centrifugation, decantation, screw press, roller press, rotary drum screen, belt screen, vibrating screen, multi-plate vibrating filter, vacuum dehydration, pressure dehydration, Belt press, centrifugal concentration dehydration, multiple disk dehydration and the like can be mentioned. Among these, filtration is preferable because the operation is simple and the separation efficiency is excellent.
  • the extract obtained by the solid-liquid separation step in the method for producing the placenta extract of the present invention can be transferred to the next decolorization step as it is, and can be decolorized, but is stored after the drying step of drying the extract. It may be solid with good properties.
  • a general drying method can be used. Naturally, it is allowed to stand naturally, heat transfer drying such as box-type drying or spray drying which is a heating system, internal heat drying such as microwave drying, non-drying, etc. A heating system such as freeze drying, vacuum drying, suction drying, pressure drying, ultrasonic drying, and the like are possible. Of course, it is acceptable to dry using a general and simple oven and thermostat. Since the obtained solid matter is soluble in water, when it is desired to decolorize it, it can be dissolved again in water and transferred to the decolorization step.
  • the decolorization step in the method for producing the placenta extract of the present invention is the browning of the extract obtained in the solid-liquid separation step (including the extract obtained by dissolving the solid obtained in the drying step in water, the same applies hereinafter). Is a process of removing the color and making the color lighter.
  • a protein which is the main tissue of the placenta
  • the amino group of the protein reacts with the sugar contained in the raw material (so-called Maillard reaction) to form a substance called melanoidin And the protein browns to produce a blackish color.
  • This reaction is not limited to placenta, and this reaction is common for components containing protein, for example, charring of fish and meat, coloring of coffee and miso.
  • examples of the decolorization step for removing the browning of the extract include a method using an adsorbent such as activated carbon or ion exchange resin.
  • generated melanoidin to the fine hole of activated carbon and decolorizes from the reason that it can decolorize simply and efficiently is preferable.
  • the decolorization step by the activated carbon treatment is performed by adding a predetermined amount of activated carbon to the extract obtained in the solid-liquid separation step and stirring the mixture for a predetermined time. And solid-liquid separation.
  • the treatment temperature of the activated carbon treatment in the method for producing the placenta extract of the present invention is preferably 0 to 80 ° C, more preferably 10 to 60 ° C.
  • the processing temperature is less than 0 ° C.
  • the extract may be frozen, and even when it is not frozen, the amount of adsorption tends to decrease.
  • the treatment temperature exceeds 80 ° C., the solid content concentration changes due to evaporation of the liquid, and there is a tendency that efficient decolorization reproduction cannot be obtained.
  • the treatment time of the activated carbon treatment in the method for producing the placenta extract of the present invention is preferably 3 minutes or more, and more preferably 5 minutes or more. When the treatment time is less than 3 minutes, the adsorption does not proceed as expected and decolorization tends to be insufficient. Moreover, the processing time of the decoloring process is preferably within 120 minutes, and more preferably within 60 minutes. When the processing time of the decolorization process exceeds 120 minutes, the adsorption reaction reaches equilibrium, and there is a tendency that the efficiency of decolorization does not change and there is no change in the decolorization effect. When the processing time of the decoloring process is less than 3 minutes, the browning of the extract cannot be removed.
  • the solid-liquid separation method in the decolorization step by the activated carbon treatment is not particularly limited, and various methods mentioned as the solid-liquid separation step can be adopted, but the operation is simple, and the separation efficiency. Filtration and decantation are preferred because of their excellent performance.
  • the activated carbon used for the activated carbon treatment is not particularly limited, and a commercially available activated carbon is appropriately selected and used depending on the properties of melanoidin to be produced and availability. Can do.
  • activated carbon for melanoidin adsorption commercially available melanoidin or activated carbon for caramel adsorption can be used, and the production method is to control the pore size by general chemical (zinc) or steam activation treatment etc.
  • the Shirataka series and the carborafin series manufactured by Nippon Enviro Chemicals Co., Ltd. can be mentioned.
  • the amount of the activated carbon used in the method for producing the placenta extract of the present invention can be adjusted as appropriate according to the amount of melanoidin produced (that is, depending on the color intensity), but 100 mass of the liquid to be decolored.
  • the amount is preferably 0.1 to 30 parts by mass with respect to parts. When the amount is less than 0.1 parts by mass, the decolorization performance tends to be insufficient, and the effect of lowering the chromaticity tends to be insufficient. When the amount exceeds 30 parts by mass, the decolorization performance is improved, but yield loss occurs due to the penetration of the liquid component simultaneously with decolorization, and there is a tendency that a sufficient amount cannot be secured in the end. For the reason that the decolorization operation can be performed more efficiently, it is more preferable to add 1 to 10 parts by mass of the activated carbon.
  • the activated carbon treatment can be repeated a plurality of times with a small amount of activated carbon used instead of adjusting the amount of activated carbon. Furthermore, by performing the activated carbon treatment a plurality of times, the decolorization behavior / process is revealed in more detail, and the minimum necessary amount of activated carbon can be used.
  • the number of repetitions can be appropriately selected according to the amount of melanoidin (that is, depending on the color intensity), but is preferably about 2 to 10 times and more preferably about 2 to 5 times in view of the complexity of the process. By performing the treatment a plurality of times, the brown color of the extract can be further removed.
  • the extractant is water
  • the subcritical processing temperature is 190 to 195 ° C.
  • the subcritical processing pressure is equal to or higher than the saturated vapor pressure of the subcritical processing temperature
  • the subcritical processing time is 20 to It is desirable that the placenta be subcritically treated for 30 minutes to obtain a placenta subcritically treated product, and then decolorized by 2-5 times of activated carbon treatment.
  • the placenta extract obtained by the production method under the above conditions can have an absorbance at a wavelength of 390 nm in the range of 0.028 to 0.084, and the nitrogen content of the placenta extract can be 0.15 to 0.21. It can be in the range of mass%.
  • enzyme reaction aids such as pH adjusters and enzyme stabilizers are added to the placenta raw material, and the inclusion of these additives dilutes the concentration of the active ingredient, resulting in an extract.
  • the active ingredient concentration per unit becomes low.
  • placenta extract obtained by subcritical processing uses subcritical water extraction as a means of placenta extraction. Basically, only water is used to reduce the molecular weight of proteins and peptides. It is possible not to use any other additives. Therefore, the placenta extract obtained by using this extraction method basically has a high peptide concentration with a low molecular weight, and an extract having a higher active ingredient concentration than the prior art can be obtained. Therefore, if the placenta extract obtained by the conventional technique and the subcritical treatment is subjected to the same decolorization operation by the activated carbon treatment, the adsorbed amount of main components other than melanoidine that is necessarily removed by the activated carbon treatment, that is, the peptide amount is not changed. As a result, the amount of peptide in the solution after decolorization obtained is larger in the present invention. That is, the concentration of the active ingredient can be kept high even after decolorization.
  • the protein constituting the placenta is composed mainly of various amino acids, that is, about 20 kinds of amino acids constituting the living body, and naturally there are various types of peptide bonds, whereas In the enzyme treatment of the technology, only a low molecular weight is obtained by cleaving a specific peptide bond due to the substrate specificity of the enzyme. That is, since only a specific peptide bond can be cleaved by the method using enzyme treatment, the degree of molecular weight reduction is limited, and a molecular weight below a certain level cannot be reached.
  • the peptide bond is cleaved by the hydrolytic power of water under high temperature and high pressure.
  • the protein can be reduced in molecular weight. Therefore, it is possible to obtain a molecular weight distribution with more low molecular weight peptides than conventional enzyme treatment depending on temperature and time conditions.
  • the size of the low-molecular peptide obtained by the enzymatic treatment method matches the size of the pore size of the activated carbon for melanoidin adsorption, and the low-molecular peptide is also adsorbed along with the adsorption of melanoidin. It is presumed that the amount of peptide is reduced.
  • the size of low molecular peptides produced by extraction by subcritical water treatment exists as lower molecular peptides than the conventional method as described above. Adsorption of molecular peptides is unlikely to occur, and as a result, it is possible to obtain a decolored extract despite the large amount of low molecular peptides that are active ingredients.
  • the placenta extract of the present invention thus obtained may be diluted or concentrated in a timely manner according to the purpose of use.
  • Dilution is simple addition of water, addition of organic solvents such as ethanol, other liquids and food additives containing active ingredients, fragrances, phenoxyethanol and butanediol, glycerin, antiseptics for solids, or organic solvents in which they are dissolved And natural preservatives can be added.
  • the dilution increases the transparency, the amount of nitrogen decreases, but the dilution can be diluted while keeping the amount of nitrogen higher than that of the conventional extract.
  • Concentration can be performed by a general concentration method such as heat concentration or reduced pressure concentration. After drying by the above-described drying method, an appropriate amount of a solvent such as water can be added and dissolved.
  • the concentrate increases the nitrogen content, the transparency decreases, but the concentration can be performed while keeping the transparency higher than that of the conventional extract.
  • Example 1 ⁇ Extraction process> 200 g of pig placenta (Tokyo Shibaura Organ Co., Ltd.) and 200 g of distilled water were placed in a pressure-resistant container having a volume of 2 L, and subcritical processing was performed at a processing temperature of 195 ° C., a processing pressure of 1.6 MPa, and a processing time of 30 minutes. The pig placenta was washed with water and blood and other parts were removed. ⁇ Solid-liquid separation process> After finishing the subcritical treatment, the treated product in the pressure vessel was collected and suction filtered with a cellulose filter paper (pore size: 1 ⁇ m, 5C manufactured by Advantec), and the filtrate was collected. The collected filtrate was brown.
  • a cellulose filter paper pore size: 1 ⁇ m, 5C manufactured by Advantec
  • Example 2 The same decolorization process was performed on the extract obtained in Example 1, and the filtrate was collected again. The color of the resulting extract was visually colorless.
  • Comparative Examples 1 to 4 Commercially available placenta lotions 1 to 4 (all derived from porcine placenta, extraction process: enzyme treatment, decolorization process: activated carbon treatment) were designated as Comparative Examples 1 to 4. The apparent colors of each of Comparative Examples 1 and 2 were yellow, and Comparative Examples 3 and 4 were colorless.
  • Comparative Example 5 ⁇ Extraction process> To 200 g of pig placenta (Tokyo Shibaura Organ Co., Ltd.), 50 g of distilled water, 4 mL of protein hydrolase Alcalase (manufactured by Novozymes) and 2 mL of 25 mass% sodium hydroxide were added and reacted at 60 ° C. for 3 hours. Thereafter, the enzyme was inactivated by treatment at 90 ° C. for 1 hour. In order to substantially match the solid content concentration with Examples 1 and 2, distilled water was added after the deactivation treatment to make the total amount 400 g.
  • Nitrogen content measurement The nitrogen content in the extracts or lotions of Examples 1 and 2 and Comparative Examples 1 to 5 was determined using the Kjeldahl method (sulfuric acid was added to the test liquid, and the organic nitrogen in the liquid was converted to ammonium sulfate to obtain a liquid. Was made alkaline and heated, and the generated ammonia was determined by titration. Specifically, it was performed in accordance with the method described in JIS K0102244. The results are shown in Table 1 and FIG.
  • the molecular weight obtained this time is not more than the extra exclusion molecular weight (about 100,000) of the column used for the upper limit in all samples, and the maximum molecular weight calculated from the time when elution starts is about 20,000. there were. Therefore, it was found that all the proteins contained in the raw materials in the above Examples and Comparative Examples were converted into peptide forms having a molecular weight of about 100,000 or less, and further about 20,000 or less and contained in the sample. .
  • the placenta extract of the present invention is a placenta extract having a high concentration of active ingredients and little coloring. Furthermore, it can be seen that the placenta extract produced by the production method including the subcritical process described above is a placenta extract having a high concentration of active ingredients and little coloring. Moreover, in the comparative example 5, the smell which feels a raw odor was confirmed. However, in Examples 1 and 2, no odor felt as a raw odor was confirmed.
  • Comparative Examples 1 to 4 The molecular weight distribution (area) value for Comparative Examples 1 to 4 is very large. This is because Comparative Examples 1 to 4, which are commercially available placenta lotions, contain other ingredients (preservatives, This is presumed to be due to containing a large amount of (including the addition of an ultraviolet absorber, etc.).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Dermatology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Reproductive Health (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Virology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Immunology (AREA)
  • Birds (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cosmetics (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Provided is a placenta extract that contains an active ingredient at a high concentration and is scarcely colored and, therefore, suitably usable for cosmetics and foods in which appearance and flavor are highly appreciated. The placenta extract having an absorbance of 0.10 or less at a wavelength of 390 nm and containing 0.10 mass% or more of nitrogen is suitably usable for cosmetics and foods in which appearance and flavor are highly appreciated.

Description

プラセンタ抽出物およびプラセンタ抽出物の製造方法Placenta extract and method for producing placenta extract
 本発明はプラセンタを原料とするプラセンタ抽出物およびプラセンタ抽出物の製造方法に関する。特に、特定の吸光度および窒素含有量を示すプラセンタ抽出物およびプラセンタ抽出物の製造方法に関する。 The present invention relates to a placenta extract using placenta as a raw material and a method for producing a placenta extract. In particular, it relates to a placenta extract exhibiting specific absorbance and nitrogen content and a method for producing a placenta extract.
 プラセンタとは哺乳類の胎盤のことであり、近年、抗酸化性やコラーゲン産生促進能、コラゲナーゼ阻害活性、血圧上昇抑制作用に代表される優れた機能性から、健康食品、化粧品素材、医薬品などとして使用されている。これらの使用において、プラセンタの優れた機能性を発揮するためには、プラセンタ中の蛋白質を、吸収性や機能性に優れたペプチドまで低分子化、可溶化する必要がある。 Placenta is the placenta of mammals. In recent years, it has been used as health foods, cosmetic materials, pharmaceuticals, etc. due to its superior functionality represented by its antioxidant properties, ability to promote collagen production, collagenase inhibitory activity, and antihypertensive effect. Has been. In these uses, in order to exhibit the excellent functionality of the placenta, it is necessary to lower the molecular weight and solubilize the protein in the placenta to a peptide having excellent absorbability and functionality.
 従来、プラセンタを低分子化および可溶化したプラセンタ抽出物を得る方法として酵素処理による方法が知られている。例えば、特許文献1には、人胎盤組織から水溶性プロテインなどの高分子蛋白質を抽出する際に除去される残渣物を蛋白質分解酵素で加水分解させた上清に酵母抽出物を加えることを含むメラニン生成抑制剤の製造方法が開示されている。また、特許文献2には、ブタおよび/またはウマの胎盤を酵素処理により加水分解して得られる水溶性成分、およびフェノール誘導体を含有する化粧料組成物が開示されている。 Conventionally, a method using an enzyme treatment is known as a method for obtaining a placenta extract in which placenta is reduced in molecular weight and solubilized. For example, Patent Document 1 includes adding a yeast extract to a supernatant obtained by hydrolyzing a residue removed when extracting a high molecular protein such as a water-soluble protein from human placenta tissue with a proteolytic enzyme. A method for producing a melanin production inhibitor is disclosed. Patent Document 2 discloses a cosmetic composition containing a water-soluble component obtained by hydrolyzing pig and / or horse placenta by enzymatic treatment, and a phenol derivative.
特開昭53-142515号公報JP-A-53-142515 特開2002-212046号公報Japanese Patent Laid-Open No. 2002-212046
 しかしながら、従来の酵素処理による抽出方法では、酵素の添加は当然のことであるがその他の補助剤も添加することが必要となる。具体的には、酵素に加え、pH調整剤や酵素安定化剤などの酵素反応の補助剤がプラセンタ原料に添加される。これらの添加剤の含有により有効成分の濃度が希釈されるという問題や、非プラセンタ由来の成分が混入するという問題がある。 However, in the conventional extraction method by enzyme treatment, the addition of the enzyme is natural, but it is necessary to add other auxiliary agents. Specifically, in addition to the enzyme, an enzyme reaction auxiliary agent such as a pH adjuster or an enzyme stabilizer is added to the placenta material. There is a problem that the concentration of the active ingredient is diluted by the inclusion of these additives and a problem that a component derived from non-placenta is mixed.
 さらに、プラセンタ抽出物を化粧品や食品など、特に液体製品に配合するには、低分子化ペプチドなどの有効成分濃度が高いものが要求され、同時に色や臭いが少ないことも要求される。そのため、酵素処理したプラセンタ抽出物にイオン交換樹脂や活性炭などによる脱色工程を施すことが一般的である。しかしながら、酵素処理したプラセンタ抽出物に脱色工程を行うと、その色や臭いと併せて、有効成分も著しく減少してしまうという問題がある。 Furthermore, in order to blend placenta extract into cosmetics, foods, etc., particularly liquid products, it is required to have a high concentration of active ingredients such as low molecular weight peptides, and at the same time, it is also required to have low color and odor. Therefore, it is common to subject the placenta extract treated with an enzyme to a decolorization step using an ion exchange resin or activated carbon. However, when the decolorization step is performed on the enzyme-treated placenta extract, there is a problem that the active ingredients are significantly reduced along with the color and odor.
 有効成分の濃度を高くするための手段として、酵素処理による抽出工程および脱色工程を経て得られた抽出物を濃縮する方法が考えられるが、有効成分濃度と併せて色や臭いも濃くなるため、見た目および風味が重要な要素となる化粧品や食品への使用には適さない。また、有効成分の減少を阻止するための手段として、脱色工程を簡易な方法とすることが考えられるが、この場合は、脱色が不完全となり、黄色~茶色に着色されたプラセンタ抽出物となるため、見た目および風味が重要な要素となる化粧品や食品への使用には適さない。 As a means for increasing the concentration of the active ingredient, a method of concentrating the extract obtained through the extraction process and decoloring process by enzyme treatment is conceivable, but the color and odor increase along with the active ingredient concentration. Not suitable for use in cosmetics and foods where appearance and flavor are important factors. In addition, as a means for preventing the reduction of the active ingredient, it is conceivable that the decolorization process is a simple method, but in this case, the decolorization is incomplete, and a placenta extract colored yellow to brown is obtained. Therefore, it is not suitable for use in cosmetics and foods where appearance and flavor are important factors.
 本発明はこれらの問題に鑑みてなされたものであり、有効成分の濃度が高く、かつ着色の少ないプラセンタ抽出物を提供することを目的とする。 The present invention has been made in view of these problems, and an object thereof is to provide a placenta extract having a high concentration of active ingredients and little coloring.
 本発明は、波長390nmにおける吸光度が0.10以下であり、窒素含有量が0.10質量%以上であるプラセンタ抽出物に関する。 The present invention relates to a placenta extract having an absorbance at a wavelength of 390 nm of 0.10 or less and a nitrogen content of 0.10% by mass or more.
 吸光度が0.01~0.10であるプラセンタ抽出物であることが好ましい。 A placenta extract having an absorbance of 0.01 to 0.10 is preferred.
 窒素含有量が0.10~1.0質量%であるプラセンタ抽出物であることが好ましい。 A placenta extract having a nitrogen content of 0.10 to 1.0% by mass is preferred.
 プラセンタ抽出物の全固形分中における全ペプチドの含有量が70~99.5質量%であるプラセンタ抽出物であることが好ましい。 It is preferable that the placenta extract has a total peptide content of 70 to 99.5% by mass in the total solid content of the placenta extract.
 プラセンタ抽出物の全固形分中における分子量が3000以下の低分子化ペプチドの含有量が40~99.5質量%であるプラセンタ抽出物であることが好ましい。 The placenta extract is preferably a placenta extract in which the content of low molecular weight peptides having a molecular weight of 3000 or less in the total solid content of the placenta extract is 40 to 99.5% by mass.
 プラセンタ抽出物の全固形分中における遊離アミノ酸の含有量が0.01~30質量%であるプラセンタ抽出物であることが好ましい。 It is preferable that the placenta extract has a free amino acid content of 0.01 to 30% by mass in the total solid content of the placenta extract.
 プラセンタ抽出物の全固形分中における分子量3000以下の成分の含有量が100%であるプラセンタ抽出物であることが好ましい。 A placenta extract in which the content of components having a molecular weight of 3000 or less in the total solid content of the placenta extract is 100% is preferable.
 プラセンタ原料の亜臨界処理を経て抽出されるプラセンタ抽出物であることが好ましい。 It is preferably a placenta extract that is extracted through a subcritical treatment of the placenta raw material.
 さらに、活性炭処理を経て抽出されるプラセンタ抽出物であることが好ましい。 Furthermore, a placenta extract extracted through activated carbon treatment is preferred.
 亜臨界処理の温度が160~200℃であり、圧力が飽和蒸気圧以上であることが好ましい。 It is preferable that the temperature of the subcritical treatment is 160 to 200 ° C. and the pressure is equal to or higher than the saturated vapor pressure.
 亜臨界処理の時間が5~30分であることが好ましい。 The subcritical processing time is preferably 5 to 30 minutes.
 また、本発明は波長390nmにおける吸光度が0.10以下であり、
窒素含有量が0.10質量%以上であるプラセンタ抽出物を得るプラセンタ抽出物の製造方法であって、
プラセンタを亜臨界処理して亜臨界処理物を得る抽出工程、
前記亜臨界処理物を抽出液と原料残渣に分離する固液分離工程を含むことを特徴とするプラセンタ抽出物の製造方法に関する。
In the present invention, the absorbance at a wavelength of 390 nm is 0.10 or less,
A placenta extract production method for obtaining a placenta extract having a nitrogen content of 0.10% by mass or more,
An extraction process for subcritical processing of the placenta to obtain a subcritical processed product,
The present invention relates to a method for producing a placenta extract, comprising a solid-liquid separation step of separating the subcritical processed product into an extract and a raw material residue.
 亜臨界処理による抽出工程の後、脱色工程を含むプラセンタ抽出物の製造方法であることが好ましい。 It is preferable that the placenta extract production method includes a decolorization step after the subcritical processing extraction step.
 亜臨界処理における亜臨界処理の温度が160~200℃であり、圧力が飽和蒸気圧以上であるプラセンタ抽出物の製造方法が好ましい。 In the subcritical process, a placenta extract production method in which the temperature of the subcritical process is 160 to 200 ° C. and the pressure is equal to or higher than the saturated vapor pressure is preferable.
 亜臨界処理における亜臨界処理の時間が5~30分であるプラセンタ抽出物の製造方法が好ましい。 A method for producing a placenta extract in which the subcritical processing time in the subcritical processing is 5 to 30 minutes is preferable.
 脱色工程における処理温度が0~80℃であるプラセンタ抽出物の製造方法が好ましい。 A method for producing a placenta extract in which the treatment temperature in the decolorization step is 0 to 80 ° C. is preferred.
 脱色工程における処理時間が3~120分であるプラセンタ抽出物の製造方法が好ましい。 A method for producing a placenta extract in which the treatment time in the decolorization step is 3 to 120 minutes is preferable.
 脱色工程における処理回数が2~10回であるプラセンタ抽出物の製造方法が好ましい。 A method for producing a placenta extract in which the number of treatments in the decolorization step is 2 to 10 times is preferable.
 本発明のプラセンタ抽出物においては、波長390nmにおける吸光度が0.10以下であり、窒素含有量が0.10質量%以上であるプラセンタ抽出物によれば、有効成分の濃度が高く、かつ着色の少ないプラセンタ抽出物であって、見た目および風味が重要な要素となる化粧品や食品への使用に適したプラセンタ抽出物を提供することができる。また、本発明のプラセンタ抽出物の製造方法では、波長390nmにおける吸光度が0.10以下であり、窒素含有量が0.10質量%以上であり、有効成分の濃度が高く、かつ着色の少ないプラセンタ抽出物であって、見た目および風味が重要な要素となる化粧品や食品への使用に適したプラセンタ抽出物を得る製造方法を提供することができる。 In the placenta extract of the present invention, the placenta extract having an absorbance at a wavelength of 390 nm of 0.10 or less and a nitrogen content of 0.10% by mass or more has a high active ingredient concentration and is colored. It is possible to provide a placenta extract that is suitable for use in cosmetics and foods, which has a small amount of placenta extract, and its appearance and flavor are important factors. Further, in the method for producing a placenta extract of the present invention, the absorbance at a wavelength of 390 nm is 0.10 or less, the nitrogen content is 0.10% by mass or more, the concentration of the active ingredient is high, and the placenta with little coloring. It is possible to provide a production method for obtaining a placenta extract suitable for use in cosmetics and foods, which is an extract, the appearance and flavor of which are important factors.
プラセンタ抽出物の分子量分布測定における溶離時間-分子量(常用対数)での検量線の一例を示すグラフである。It is a graph which shows an example of the calibration curve in elution time-molecular weight (common logarithm) in the molecular weight distribution measurement of a placenta extract. プラセンタ抽出物を高速液体クロマトグラフィーで測定した結果の一例を示すグラフである。It is a graph which shows an example of the result of having measured the placenta extract by the high performance liquid chromatography. 実施例および比較例の抽出物の吸光度(390nm)および窒素含有量を示すグラフである。It is a graph which shows the light absorbency (390 nm) and nitrogen content of the extract of an Example and a comparative example.
 本発明のプラセンタ抽出物は、プラセンタを原料とする抽出物であり、波長390nmにおける吸光度が0.10以下であり、窒素含有量が0.1質量%以上であることを特徴とする。波長390nmにおける吸光度および窒素含有量がこの範囲にあるプラセンタ抽出物とすることにより、有効成分の濃度が高く、かつ着色の少ないプラセンタ抽出物であって、見た目および風味が重要な要素となる化粧品や食品への使用に適したプラセンタ抽出物である。 The placenta extract of the present invention is an extract using placenta as a raw material, and has an absorbance at a wavelength of 390 nm of 0.10 or less and a nitrogen content of 0.1% by mass or more. By using a placenta extract having an absorbance at a wavelength of 390 nm and a nitrogen content in this range, it is a placenta extract having a high active ingredient concentration and low coloration, and a cosmetic or cosmetic product whose appearance and flavor are important factors. Placenta extract suitable for food use.
 本発明のプラセンタ抽出物における波長390nmにおける吸光度は抽出物の黄色~茶色への着色の指標である。この吸光度は、市販の可視紫外分光光度計(GEヘルスケア・ジャパン株式会社製のGeneQuant 1300等)により測定することができる。 The absorbance at a wavelength of 390 nm in the placenta extract of the present invention is an index for coloring the extract from yellow to brown. This absorbance can be measured with a commercially available visible ultraviolet spectrophotometer (such as GeneQuant 1300 manufactured by GE Healthcare Japan).
 前記吸光度の測定は、シングルビーム方式で行うものであり、レファレンス溶液(水)を入れたセルを用意し、レファレンス溶液のセルを可視紫外分光光度計にセットし、波長390nmにて測定を行い、測定結果が0.00となることを確認する。その後、試料溶液をレファレンス溶液で用いたセルと同一のセルに入れたセルを用意し、可視紫外分光光度計にセットし、波長390nmにて測定を行い、測定結果が試料溶液の吸光度となる。 The absorbance is measured by a single beam method. A cell containing a reference solution (water) is prepared. The cell of the reference solution is set in a visible ultraviolet spectrophotometer and measured at a wavelength of 390 nm. Confirm that the measurement result is 0.00. Thereafter, a cell in which the sample solution is put in the same cell as that used for the reference solution is prepared, set in a visible ultraviolet spectrophotometer, measured at a wavelength of 390 nm, and the measurement result becomes the absorbance of the sample solution.
 本発明のプラセンタ抽出物では、波長390nmにおける吸光度は、0.10以下であり、0.08以下が好ましく、0.05以下がより好ましい。当該吸光度が0.10を超える場合は、プラセンタ抽出物が黄色を帯びたり、臭いを発生したりする傾向がある。また、当該吸光度の数値が0に近いほど着色がなく透明に近いプラセンタ抽出物であることを示すが、亜臨界処理を経たプラセンタ抽出物を、脱色工程を行ったとしても、0.01より小さくならないことが確認されていることから、本発明のプラセンタ抽出物の波長390nmにおける吸光度の下限は、0.01である。本発明のプラセンタ抽出物の波長390nmにおける吸光度は、0.028~0.084であることがさらに好ましく、実用的な有効成分の濃度であり、かつ着色の少ないプラセンタ抽出物となり、化粧品などへの適用がしやすい。なお、吸光度を上記の数値範囲内にするには、プラセンタを亜臨界処理をした後、脱色処理を行うことで調整することができる。 In the placenta extract of the present invention, the absorbance at a wavelength of 390 nm is 0.10 or less, preferably 0.08 or less, and more preferably 0.05 or less. If the absorbance exceeds 0.10, the placenta extract tends to be yellowish or odorous. In addition, the closer the absorbance value is to 0, the more colorless and transparent the placenta extract is. However, the placenta extract that has undergone subcritical treatment is less than 0.01 even if the decolorization step is performed. Since it has been confirmed that this does not occur, the lower limit of the absorbance of the placenta extract of the present invention at a wavelength of 390 nm is 0.01. The absorbance of the placenta extract of the present invention at a wavelength of 390 nm is more preferably 0.028 to 0.084, and it is a practically effective concentration of active ingredient and becomes a placenta extract with little coloration. Easy to apply. In order to make the absorbance within the above numerical range, it can be adjusted by subjecting the placenta to subcritical processing and then performing decolorization processing.
 本発明のプラセンタ抽出物の窒素含有量は抽出物中に含まれる遊離アミノ酸およびペプチドの窒素量であり、プラセンタ抽出物中の有効成分含有量の指標である。この窒素含有量は、ケルダール法(被検液に硫酸を加え、液中の有機体窒素を硫酸アンモニウムに変換し、液体をアルカリ性にして加熱し、発生するアンモニアを滴定によって定量する方法)によって測定することができる。具体的にはJIS K0102 44に記載の方法に準拠して行うことができる。 The nitrogen content of the placenta extract of the present invention is the nitrogen content of free amino acids and peptides contained in the extract, and is an index of the active ingredient content in the placenta extract. This nitrogen content is measured by the Kjeldahl method (a method in which sulfuric acid is added to the test solution, organic nitrogen in the solution is converted to ammonium sulfate, the liquid is made alkaline and heated, and the generated ammonia is quantified by titration). be able to. Specifically, it can be performed according to the method described in JIS K010244.
 ケルダール法による窒素含有量の測定は、以下の手順に行う。
1.試料溶液の適量(3-10mL)をビーカー500mLにとり、硫酸(1+35)を加えて弱酸性とし、加熱して30mLになるまで濃縮させて被検液を用意する。
2.被検液を放冷後、少量の水を加えてケルダールフラスコ200mLに洗い移す。
3.硫酸10mL、硫酸カリウム5g及び硫酸銅(II)五水和物2gを加え、加熱し、硫酸の白煙を発生させ、引き続き、約30分間加熱し有機物を分解させる。
4.放冷後、少量の水を加えて、加熱して溶かし、水で蒸留フラスコに洗い移して約300mLとする。
5.蒸留フラスコを連結し、受器にはメスシリンダー(有栓形)200mLを用い、硫酸(25mmol/L)50mLを入れる。蒸留フラスコ上部から注入ロートから水酸化ナトリウム溶液(500g/L)40mL加えた後、蒸留フラスコを加熱し、留出速度5~7mL/minで蒸留を行い、約140mLを留出した時点で蒸留を止め、冷却器及び逆流止めを外し、冷却器の内容物及び逆流止めの内外を少量の水で洗い、洗液は受器のメスシリンダー200mLに入れ、水を200mLの標線まで加えて、中和測定用サンプルを用意する。
6.空試験として水30mLをとり、3~5の操作を行い、中和測定用空試験サンプルを用意する。
7.中和測定用サンプルで得た液を全量使い、50mmol/L水酸化ナトリウム溶液で溶液の色が灰紫(pH4.8)になるまで滴定する。同じく中和測定用空試験サンプルを同様に水酸化ナトリウム溶液で滴定を行う。
8.硫酸(25mmol/L)を正しく三角フラスコ500mLにとり、メチルレッド-プロモクレゾールグリーン混合溶液5~7滴を加え、50mmol/L水酸化ナトリウム溶液で溶液の色が灰紫(pH4.8)になるまで滴定し、硫酸(25mmol/L)に相当する50mmol/L水酸化ナトリウム溶液の滴定量(mL)を求める。
The measurement of nitrogen content by the Kjeldahl method is performed according to the following procedure.
1. An appropriate amount (3-10 mL) of the sample solution is placed in 500 mL of a beaker, sulfuric acid (1 + 35) is added to make it weakly acidic, and the mixture is heated to 30 mL to prepare a test solution.
2. After allowing the test solution to cool, a small amount of water is added and washed into a 200 mL Kjeldahl flask.
3. Add 10 mL of sulfuric acid, 5 g of potassium sulfate and 2 g of copper (II) sulfate pentahydrate, and heat to generate white smoke of sulfuric acid, followed by heating for about 30 minutes to decompose organic matter.
4). After standing to cool, add a small amount of water, heat to dissolve, wash to a distillation flask with water to make about 300 mL.
5. A distillation flask is connected, and 200 mL of a graduated cylinder (plugged type) is used as a receiver, and 50 mL of sulfuric acid (25 mmol / L) is added. After adding 40 mL of sodium hydroxide solution (500 g / L) from the top of the distillation flask, the distillation flask is heated and distilled at a distillation rate of 5 to 7 mL / min. When about 140 mL is distilled, distillation is performed. Remove the stopper, cooler and backflow stopper, wash the contents of the cooler and the backflow inside and outside with a small amount of water, put the wash into a 200 mL graduated cylinder, add water to the 200 mL mark, Prepare a sample for sum measurement.
6). As a blank test, take 30 mL of water, perform steps 3 to 5, and prepare a blank test sample for neutralization measurement.
7). Using the whole amount of the solution obtained from the sample for neutralization measurement, titrate with a 50 mmol / L sodium hydroxide solution until the color of the solution becomes gray purple (pH 4.8). Similarly, a blank test sample for neutralization measurement is similarly titrated with a sodium hydroxide solution.
8). Add sulfuric acid (25 mmol / L) to a 500 mL Erlenmeyer flask correctly, add 5 to 7 drops of methyl red-promocresol green mixed solution until the color of the solution becomes gray purple (pH 4.8) with 50 mmol / L sodium hydroxide solution. Titration is performed to obtain a titer (mL) of a 50 mmol / L sodium hydroxide solution corresponding to sulfuric acid (25 mmol / L).
 以下の式によりアンモニウムイオン濃度を求める。
式X A=(b-a)×f×1000/F×0.902
A:アンモニウムイオン(NH4+mg/L)
b:硫酸(25mmol/L)50mLに相当する50mmol/L水酸化ナトリウム溶液(mL)
a:滴定に要した50mmol/L水酸化ナトリウム溶液(mL)
f:50mmol/L水酸化ナトリウム溶液のファクター
F:試料(mL)
なお、0.902は、50mmol/L水酸化ナトリウム溶液1mLのアンモニウムイオン相当量である。
The ammonium ion concentration is determined by the following formula.
Formula X A = (ba) × f × 1000 / F × 0.902
A: Ammonium ion (NH 4+ mg / L)
b: 50 mmol / L sodium hydroxide solution (mL) corresponding to 50 mL of sulfuric acid (25 mmol / L)
a: 50 mmol / L sodium hydroxide solution (mL) required for titration
f: Factor F of 50 mmol / L sodium hydroxide solution: Sample (mL)
In addition, 0.902 is an ammonium ion equivalent amount of 1 mL of 50 mmol / L sodium hydroxide solution.
 以下の式Yにより窒素含有量の濃度を算出する。
式Y N=(b1-a1)×f×(1000×0.700)/V×0.7766
N:窒素含有量(mg/L)
b1:空試験の滴定に要した50mmol/L水酸化ナトリウム溶液(mL)
a1:滴定に要した50mmol/L水酸化ナトリウム溶液(mL)
f:50mmol/L水酸化ナトリウム溶液のファクター
V:試料溶液の量(mL)
A:式Xで求めたアンモニウムイオン濃度(NH4+mg/L)
なお、0.700は、50mmol/L水酸化ナトリウム溶液1mLの窒素相当量(mg)、0.7766は、アンモニウムイオンを窒素相当量に換算するときの係数である。また、本発明のプラセンタ抽出物における窒素含有量は質量%で示す。
The concentration of nitrogen content is calculated by the following formula Y.
Formula YN = (b1-a1) × f × (1000 × 0.700) /V×0.7766
N: Nitrogen content (mg / L)
b1: 50 mmol / L sodium hydroxide solution (mL) required for titration of blank test
a1: 50 mmol / L sodium hydroxide solution (mL) required for titration
f: Factor V of 50 mmol / L sodium hydroxide solution: Amount of sample solution (mL)
A: Ammonium ion concentration determined by Formula X (NH 4+ mg / L)
In addition, 0.700 is a nitrogen equivalent (mg) of 1 mL of 50 mmol / L sodium hydroxide solution, and 0.7766 is a coefficient when converting ammonium ion into nitrogen equivalent. Further, the nitrogen content in the placenta extract of the present invention is expressed in mass%.
 本発明のプラセンタ抽出物の窒素含有量は、0.10質量%以上であり、0.15質量%以上が好ましく、0.20質量%以上がより好ましい。窒素含有量が0.10質量%未満の場合は、有効成分の濃度が十分ではなく、プラセンタ抽出物の優れた機能が不十分となる傾向がある。また、窒素含有量の上限は特に限定されないが、1.0質量%以下とすることができる。また、本発明のプラセンタ抽出物の窒素含有量は、0.15~0.21質量%であることがさらに好ましく、実用的な有効成分の濃度であり、かつ着色の少ないプラセンタ抽出物となり、化粧品などへの適用がしやすい。なお、窒素含有量を上記の数値範囲内にするには、プラセンタを亜臨界処理した後、脱色処理を行うことで調整することができる。 The nitrogen content of the placenta extract of the present invention is 0.10% by mass or more, preferably 0.15% by mass or more, and more preferably 0.20% by mass or more. When the nitrogen content is less than 0.10% by mass, the concentration of the active ingredient is not sufficient, and the excellent function of the placenta extract tends to be insufficient. Moreover, although the upper limit of nitrogen content is not specifically limited, It can be 1.0 mass% or less. Further, the nitrogen content of the placenta extract of the present invention is more preferably 0.15 to 0.21% by mass, and it becomes a placenta extract having a practical active ingredient concentration and little coloration. Easy to apply. In addition, in order to make nitrogen content into said numerical range, it can adjust by performing a decoloring process after performing a subcritical process of a placenta.
 本発明のプラセンタ抽出物における抽出成分は、遊離アミノ酸、分子量3000以下の低分子ペプチド、分子量3000超のペプチド、その他成分の4つに大別される。 The extraction components in the placenta extract of the present invention are roughly classified into four components: free amino acids, low molecular peptides having a molecular weight of 3000 or less, peptides having a molecular weight of more than 3000, and other components.
 なお、本明細書中の遊離アミノ酸、ペプチドおよびその他の成分の含有量は、プラセンタ抽出物の全固形分に対する各成分の質量%で示す。プラセンタ抽出物が水分などの液体成分を含む場合、プラセンタ抽出物を乾燥もしくは凍結乾燥させて液体成分を除去した状態のものを、プラセンタ抽出物の全固形分とする。 In addition, the content of free amino acids, peptides and other components in the present specification is indicated by mass% of each component with respect to the total solid content of the placenta extract. In the case where the placenta extract contains a liquid component such as moisture, the placenta extract is dried or freeze-dried to remove the liquid component as the total solid content of the placenta extract.
 遊離アミノ酸とは、アルギニン、リジン、ヒスチジン、フェニルアラニン、チロシン、ロイシン、イソロイシン、メチオニン、バリン、アラニン、グリシン、プロリン、グルタミン酸(グルタミン含む)、セリン、スレオニン、アスパラギン酸(アスパラギン含む)、シスチン、トリプトファンの18種類からなるアミノ酸が単独で存在するアミノ酸を指す。 Free amino acids include arginine, lysine, histidine, phenylalanine, tyrosine, leucine, isoleucine, methionine, valine, alanine, glycine, proline, glutamic acid (including glutamine), serine, threonine, aspartic acid (including asparagine), cystine, and tryptophan. The amino acid which 18 types of amino acids exist independently is pointed out.
 遊離アミノ酸は機能性ペプチドの体内への吸収を阻害し、機能性ペプチドの吸収性や機能性を低下させる恐れがある、また、遊離アミノ酸の含有率が高い場合は相対的にペプチドの含有率が低くなり、プラセンタ抽出物の機能性が低下する恐れがある。よって、プラセンタ抽出物の全固形分中の遊離アミノ酸の含有量は、少なければ少ないほど好ましいが、亜臨界処理を経たプラセンタ抽出物を、脱色工程を行ったとしても、0.01より小さくならないことが確認されていることから、遊離アミノ酸の含有量の下限値は0.01質量%である。プラセンタ抽出物の機能性を十分に発揮できるという理由から、プラセンタ抽出物の全固形分中の遊離アミノ酸の含有量は、30質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がもっとも好ましい。 Free amino acids inhibit the absorption of functional peptides into the body and may reduce the absorbability and functionality of functional peptides. In addition, when the content of free amino acids is high, the peptide content is relatively low. And the functionality of the placenta extract may be reduced. Therefore, the content of free amino acids in the total solid content of the placenta extract is preferably as small as possible, but the placenta extract that has undergone the subcritical treatment should not be smaller than 0.01 even if the decolorization step is performed. Therefore, the lower limit of the content of free amino acid is 0.01% by mass. For the reason that the functionality of the placenta extract can be sufficiently exhibited, the content of free amino acids in the total solid content of the placenta extract is preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably 5% by mass or less. Is most preferred.
 分子量3000以下の低分子ペプチドとは、前記18種類のアミノ酸のうち少なくとも1種が2分子以上結合したペプチドであって、分子量3000以下のすべてのペプチドを指す。これらの分子量3000以下の低分子ペプチドは、人体への吸収性がよく、吸収された成分が抗酸化性やコラーゲン産生促進能、コラゲナーゼ阻害活性、血圧上昇抑制作用に代表されるプラセンタ抽出物の優れた機能性を発揮しやすい成分である。 A low molecular weight peptide having a molecular weight of 3000 or less refers to all peptides having a molecular weight of 3000 or less, in which at least one of the 18 kinds of amino acids is bound. These low molecular weight peptides with a molecular weight of 3000 or less have good absorbability to the human body, and the absorbed components are excellent in placenta extract typified by antioxidant properties, collagen production promoting ability, collagenase inhibitory activity, and blood pressure elevation inhibiting action. It is a component that easily exhibits high functionality.
 分子量3000超のペプチドとは、前記18種類のアミノ酸のうち少なくとも1種が2分子以上結合したペプチドの内、分子量3000超のすべてのペプチドを指す。 The peptide having a molecular weight of greater than 3000 refers to all peptides having a molecular weight of greater than 3000 among peptides in which at least one of the 18 amino acids is bound.
 その他成分とは、ミネラルに代表される無機成分や脂質、炭水化物などでペプチド、アミノ酸以外のすべての成分を指す。これらのその他の成分は、分離、抽出で全てを取り除くことが困難であり、プラセンタ抽出物の全固形分中に0.5質量%以上含まれる。 Other components refer to all components other than peptides and amino acids, including inorganic components such as minerals, lipids, and carbohydrates. These other components are difficult to remove all by separation and extraction, and are contained in an amount of 0.5% by mass or more in the total solid content of the placenta extract.
 人体への吸収性がよく、吸収された成分が抗酸化性やコラーゲン産生促進能等の優れた機能性を発揮しやすい成分であることから、プラセンタ抽出物の全固形分中の分子量3000以下の成分(遊離アミノ酸、分子量3000以下の低分子ペプチドおよび分子量3000以下のその他成分の合計)の含有量は100%が好ましく、分子量3000超の成分は含有していないことが好ましい。プラセンタの亜臨界処理を行い、加水分解をさせることでプラセンタ抽出物の全固形分中の分子量3000以下の成分の含有量は100%に近くなる。また、亜臨界処理と脱色工程とを経たプラセンタ抽出物は、プラセンタ抽出物の全固形分中の分子量3000以下の成分の含有量が、さらに100%に近くなる。 Since the absorbability to the human body is good, and the absorbed component is a component that easily exhibits excellent functionality such as antioxidant properties and collagen production promoting ability, the molecular weight in the total solid content of the placenta extract is 3000 or less. The content of the components (free amino acid, low molecular peptide having a molecular weight of 3000 or less and other components having a molecular weight of 3000 or less) is preferably 100%, and preferably no component having a molecular weight of more than 3000 is contained. By performing the subcritical treatment of the placenta and hydrolyzing it, the content of components having a molecular weight of 3000 or less in the total solid content of the placenta extract is close to 100%. In addition, in the placenta extract that has undergone the subcritical treatment and the decolorization step, the content of components having a molecular weight of 3000 or less in the total solid content of the placenta extract is further close to 100%.
 本発明のプラセンタ抽出物における全固形分中の全ペプチド(分子量3000以下の低分子ペプチドおよび分子量3000超のペプチドの合計)の含有量は、人体に吸収された成分が抗酸化性やコラーゲン産生促進能等の機能性を発揮しやすいことから、70質量%以上が好ましい。亜臨界処理を経たプラセンタ抽出物においては、プラセンタ抽出物の全固形分中における全ペプチドの含有量を70質量%以上にすることができる。さらに、プラセンタ抽出物の全固形分中の全ペプチドの含有量は、75質量%以上がより好ましい。ペプチドの含有量が70質量%未満の場合は、プラセンタ抽出物の機能性が低下する恐れがある。また、ペプチドの含有量上限は多ければ多いほど好ましいが、全固形分から前記その他の成分を除いた99.5質量%が上限であると推測される。 The content of all peptides in the total solid content of the placenta extract of the present invention (the total of low molecular weight peptides with a molecular weight of 3000 or less and peptides with a molecular weight of more than 3000) is that the components absorbed by the human body are antioxidant and promote collagen production 70% by mass or more is preferable because it is easy to exhibit functionality such as performance. In the placenta extract that has undergone the subcritical treatment, the total peptide content in the total solid content of the placenta extract can be 70% by mass or more. Further, the total peptide content in the total solid content of the placenta extract is more preferably 75% by mass or more. When the content of the peptide is less than 70% by mass, the functionality of the placenta extract may be lowered. Further, the upper limit of the peptide content is preferably as much as possible, but it is estimated that the upper limit is 99.5% by mass excluding the other components from the total solid content.
 ペプチドのなかでも、特に分子量が3000以下の低分子化ペプチドをプラセンタ抽出物の全固形分中に、40~99.5質量%含有することが、プラセンタ抽出物の機能性をより強く発揮できるという理由から好ましい。言い換えると、プラセンタ抽出物の全固形分中に、分子量が3000以下の低分子化ペプチドを40~99.5質量%含有することが好ましく、亜臨界処理を経たプラセンタ抽出物におけるプラセンタ抽出物の全固形分中に、分子量が3000以下の低分子化ペプチドを40~99.5質量%含有することができるのである。 Among peptides, the inclusion of 40-99.5% by mass of a low molecular weight peptide having a molecular weight of 3000 or less in the total solid content of the placenta extract is said to enhance the functionality of the placenta extract. Preferred for reasons. In other words, the total solid content of the placenta extract preferably contains 40 to 99.5% by mass of a low molecular weight peptide having a molecular weight of 3000 or less. The solid component can contain 40 to 99.5% by mass of a low molecular weight peptide having a molecular weight of 3000 or less.
 本発明のプラセンタ抽出物における分子量分布測定は、高速液体クロマトグラフィーの分離モードを利用し、サイズ排除クロマトグラフィーにより測定し、高速液体クロマトグラフィーに注入されたサンプル溶液は,機器内で分離され、分子量の大きい成分から順に溶出されるということを利用して分子量を測定する方法により行う。そのためには、分子量が特定され、かつ、分子量が異なる標準試薬を複数用意し、それぞれの標準試薬を高速液体クロマトグラフィーにより測定し、ピークの溶離時間(X)と分子量の常用対数値(Y)との関係により検量線を作成することで、溶離時間と分子量の関係を求めることができる。そして、この検量線より溶離時間を分子量に変換することができる。 The molecular weight distribution in the placenta extract of the present invention is measured by size exclusion chromatography using the separation mode of high performance liquid chromatography. The sample solution injected into the high performance liquid chromatography is separated in the instrument, and the molecular weight is measured. It is carried out by a method of measuring the molecular weight utilizing the fact that the components are eluted in order from the largest. For this purpose, a plurality of standard reagents with different molecular weights are specified, each standard reagent is measured by high performance liquid chromatography, peak elution time (X) and common logarithm of molecular weight (Y) By creating a calibration curve based on the relationship, the relationship between elution time and molecular weight can be determined. The elution time can be converted into molecular weight from this calibration curve.
 前記検量線について事例を踏まえて説明をする。検量線を作成するためには7点の標準試薬を用いる。標準試薬の分子量ごとの高速液体クロマトグラフィーでのピークの溶離時間は、標準試薬1:分子量12,500(試薬名:Cytochrome C)については、溶離時間6.85分であり、標準試薬2:分子量6,512(試薬名:Aprotinin)については、溶離時間8.58分であり、標準試薬3:分子量1,423(試薬名:Bacitracin)については溶離時間9.60分であり、標準試薬4:分子量1046(試薬名:AngiotensinII)については、溶離時間9.79分であり、標準試薬5:分子量451(試薬名:Gly-Gly-Tyr-Arg)については溶離時間10.7分であり、標準試薬6:分子量189(試薬名:Gly-Gly-Gly)については溶離時間11.7分であり、標準試薬7:分子量75(試薬名:グリシン)については溶離時間12.2分であった。この測定結果および各標準試薬の分子量に基づき、X軸上に溶離時間、Y軸上に分子量の常用対数値をプロットし、その結果より検量線を作成した。作成した検量線を図1に示す。図1の検量線により、高速液体クロマトグラフィーでのピークの溶離時間に対して、該当する分子量を確認することができる。そして、確認された分子量および各ピークのピーク面積に基づき、分子量分布を算出することができる。なお、今回の検量線では、溶離時間9.1分のところで分子量が3000であることが確認された。よって、プラセンタ抽出物を拘束クロマトグラフィーで測定した結果、検出されたピークの溶離時間が9.1分以内であれば、分子量3000超であり、ピーク頂上の溶離時間が9.1分を越えていれば、分子量3000以下となる。 】 The calibration curve will be explained based on examples. Seven standard reagents are used to create a calibration curve. The elution time of the peak in the high performance liquid chromatography for each molecular weight of the standard reagent is 6.85 minutes for the standard reagent 1: molecular weight 12,500 (reagent name: Cytochrome C), and the standard reagent 2: molecular weight For 6,512 (reagent name: Aprotinin), the elution time was 8.58 minutes. For standard reagent 3: molecular weight 1,423 (reagent name: Bacitracin), the elution time was 9.60 minutes. For the molecular weight 1046 (reagent name: Angiotensin II), the elution time is 9.79 minutes, and for the standard reagent 5: molecular weight 451 (reagent name: Gly-Gly-Tyr-Arg), the elution time is 10.7 minutes. The elution time was 11.7 minutes for reagent 6: molecular weight 189 (reagent name: Gly-Gly-Gly), and the elution time was 12.2 minutes for standard reagent 7: molecular weight 75 (reagent name: glycine). Based on this measurement result and the molecular weight of each standard reagent, the elution time was plotted on the X axis and the common logarithm of the molecular weight was plotted on the Y axis, and a calibration curve was created from the results. The prepared calibration curve is shown in FIG. With the calibration curve in FIG. 1, the molecular weight corresponding to the peak elution time in high performance liquid chromatography can be confirmed. The molecular weight distribution can be calculated based on the confirmed molecular weight and the peak area of each peak. In this calibration curve, it was confirmed that the molecular weight was 3000 at an elution time of 9.1 minutes. Therefore, as a result of measuring the placenta extract by constrained chromatography, if the elution time of the detected peak is within 9.1 minutes, the molecular weight exceeds 3000 and the elution time at the peak peak exceeds 9.1 minutes. In this case, the molecular weight is 3000 or less.
 ここで、ブタ胎盤に蒸留水200gを入れて、処理温度:195℃、処理圧力:1.6MPa、処理時間30分間で亜臨界処理を行ったプラセンタ抽出物を高速液体クロマトグラフィーで測定した結果を図2に示す。図2では、検出されたピークが溶離時間9.1分を越えていることから、抽出物の分子量は3000以下であることを確認することができる。 Here, 200 g of distilled water was put into a pig placenta, and the result of measurement by high performance liquid chromatography of a placenta extract that was subcritically processed at a processing temperature of 195 ° C., a processing pressure of 1.6 MPa, and a processing time of 30 minutes is shown. As shown in FIG. In FIG. 2, since the detected peak exceeds the elution time of 9.1 minutes, it can be confirmed that the molecular weight of the extract is 3000 or less.
 本発明のプラセンタ抽出物の製造方法は、原料のプラセンタを亜臨界処理して亜臨界処理物を得る抽出工程、抽出液と原料残渣とを分離する固液分離工程を含んでいる。さらに、活性炭処理による脱色工程を含んでもよい。当該製造方法によれば、有効成分の濃度が高く、かつ着色の少ないプラセンタ抽出物を製造することができる。 The method for producing a placenta extract of the present invention includes an extraction step for subcritically treating a raw placenta to obtain a subcritical treatment, and a solid-liquid separation step for separating the extract from the raw material residue. Furthermore, you may include the decoloring process by activated carbon treatment. According to the production method, it is possible to produce a placenta extract having a high active ingredient concentration and little coloration.
 本発明のプラセンタ抽出物の製造方法においては、原料となるプラセンタは、哺乳類の胎盤であれば特に限定されず、入手容易性の観点からは、ブタ、ウシ、ウマ、ヒツジ、イノシシ等のプラセンタが好ましい。原料となるプラセンタは、血液やその他の部位が混在していることがあるため、抽出工程の前に洗浄などの精製工程を行うことが好ましい。 In the method for producing the placenta extract of the present invention, the placenta as a raw material is not particularly limited as long as it is a mammalian placenta. From the viewpoint of easy availability, placenta such as pigs, cows, horses, sheep, wild boars, etc. preferable. Since placenta as a raw material may contain blood and other parts, it is preferable to perform a purification step such as washing before the extraction step.
 本発明のプラセンタ抽出物の製造方法における抽出工程は、プラセンタ原料を亜臨界処理することで、亜臨界処理物を得る工程である。亜臨界処理とは、所定温度および圧力の条件下で亜臨界状態にした抽出剤としての亜臨界流体と抽出対象の原料(本発明ではプラセンタ)とを接触させることにより、抽出原料から所定の成分を抽出するものである。例えば、水は、圧力22.12MPa、温度374.15℃まで上げると液体でも気体でもない状態を示す。この点を水の臨界点といい、臨界点より低い温度および圧力の熱水を亜臨界水という。この亜臨界水は、誘電率低下とイオン積の向上により、優れた成分抽出作用と加水分解作用を有する。 The extraction step in the placenta extract production method of the present invention is a step of obtaining a subcritical processed product by subjecting the placenta raw material to subcritical processing. The subcritical treatment is a process in which a subcritical fluid as an extracting agent brought into a subcritical state under a predetermined temperature and pressure is brought into contact with a raw material to be extracted (in the present invention, a placenta) to thereby extract predetermined components from the extracted raw material. Is extracted. For example, when water is raised to a pressure of 22.12 MPa and a temperature of 374.15 ° C., it shows a state where it is neither liquid nor gas. This point is called the critical point of water, and hot water at a temperature and pressure lower than the critical point is called subcritical water. This subcritical water has an excellent component extraction action and hydrolysis action due to a decrease in dielectric constant and an improvement in ionic product.
 本発明のプラセンタ抽出物の製造方法において、亜臨界処理に用いる抽出剤として水を用いる場合、高温の水処理であれば液体状態でも気体状態でも利用することができる。即ち、亜臨界処理の処理槽へは、水蒸気を供給してもよく、水を供給してもよく、あるいはその両者を供給してもよい。水または水蒸気の温度は望ましくは100℃以上であり、望まれる反応場としては気体よりも液体状態の方が反応は進みやすいので、密閉に近い容器で強制的に液体の状態にしたいわゆる亜臨界の状態の水の使用が好ましい。より具体的には、金属やセラミックスなどの耐圧容器にプラセンタと抽出剤である水を入れて、密閉状態に近い状態にし、水の亜臨界状態(温度:100℃以上、圧力:飽和蒸気圧以上)で、両者の接触を一定時間以上行うことで得られる抽出物を亜臨界処理物とすることができる。 In the method for producing the placenta extract of the present invention, when water is used as the extractant used for the subcritical treatment, it can be used in a liquid state or a gas state as long as it is a high-temperature water treatment. That is, water vapor may be supplied to the subcritical processing tank, water may be supplied, or both of them may be supplied. The temperature of water or water vapor is desirably 100 ° C. or higher, and the desired reaction field is more liable to proceed in the liquid state than in the gas. The use of water in the state of More specifically, placenta and water as an extractant are placed in a pressure vessel such as metal or ceramics to bring it into a closed state, and the water is in a subcritical state (temperature: 100 ° C or higher, pressure: saturated vapor pressure or higher). ), The extract obtained by performing the contact between them for a certain time or more can be used as a subcritical processed product.
 本発明のプラセンタ抽出物の製造方法における亜臨界処理に用いる抽出剤は、水以外に、例えばエチレン、エタン、プロパン、二酸化炭素、メタノール、エタノールおよびそれらの混合物が挙げられる。これらの中で、安全性の観点から水を用いるのが最も好ましい。抽出剤が水の場合の処理条件について次に説明する。 Examples of the extractant used for the subcritical treatment in the method for producing the placenta extract of the present invention include, in addition to water, ethylene, ethane, propane, carbon dioxide, methanol, ethanol, and mixtures thereof. Among these, it is most preferable to use water from the viewpoint of safety. Next, processing conditions when the extractant is water will be described.
 本発明のプラセンタ抽出物の製造方法におけるプラセンタの亜臨界処理温度は、160~200℃の間が好ましい。この温度範囲にすることにより、機能性成分である分子量3000以下である低分子ペプチドを生成しやすい。分子量分布は、高速液体クロマトグラフィーによる分子量分布測定にて測定可能である。亜臨界処理の温度が160℃未満の場合は、分子量3000以下の低分子ペプチドを生成させることが難しくなる傾向がある。また、亜臨界処理の温度が200℃を超える場合は、生成された低分子ペプチドがさらに亜臨界反応を起こしてしまい、遊離アミノ酸の生成量が増え、分子量3000以下である低分子ペプチドの生成量を減少させる傾向が見られる。 The subcritical processing temperature of the placenta in the method for producing the placenta extract of the present invention is preferably between 160 and 200 ° C. By setting this temperature range, it is easy to produce a low molecular peptide having a molecular weight of 3000 or less, which is a functional component. The molecular weight distribution can be measured by measuring the molecular weight distribution by high performance liquid chromatography. When the temperature of the subcritical treatment is less than 160 ° C., it tends to be difficult to produce a low molecular peptide having a molecular weight of 3000 or less. Moreover, when the temperature of subcritical processing exceeds 200 degreeC, the produced | generated low molecular peptide will raise | generate a subcritical reaction further, the production amount of a free amino acid will increase, and the production amount of the low molecular peptide whose molecular weight is 3000 or less There is a tendency to decrease.
 さらに、本発明のプラセンタ抽出物の製造方法における亜臨界処理の温度は、180~195℃にすることがより好ましい。この範囲にすることで、分子量3000以下である低分子ペプチドをより短時間で生成しやすくなる。 Furthermore, the subcritical processing temperature in the method for producing the placenta extract of the present invention is more preferably 180 to 195 ° C. By setting it within this range, it becomes easy to produce a low molecular peptide having a molecular weight of 3000 or less in a shorter time.
 本発明のプラセンタ抽出物の製造方法におけるプラセンタの亜臨界処理圧力は、亜臨界の処理温度の飽和蒸気圧以上(その一例としては、160℃のときには0.61MPa以上、200℃以上のときには1.55MPa以上)で行うことが好ましい。この圧力にすることにより、分子量3000以下の低分子ペプチドを生成しやすくなる傾向がある。亜臨界処理の圧力の上限は特に定められないが、高圧装置の仕様上、20~30MPaあたりに抑えることが好ましい。 The subcritical processing pressure of the placenta in the placenta extract production method of the present invention is equal to or higher than the saturated vapor pressure of the subcritical processing temperature (for example, 0.61 MPa or higher at 160 ° C., 1. It is preferable to carry out at 55 MPa or more. By using this pressure, it tends to be easy to produce a low molecular weight peptide having a molecular weight of 3000 or less. Although the upper limit of the subcritical processing pressure is not particularly defined, it is preferably suppressed to around 20 to 30 MPa due to the specifications of the high pressure apparatus.
 本発明のプラセンタ抽出物の製造方法におけるプラセンタの亜臨界処理時間は、5~30分の間で行うことが好ましい。この処理時間の範囲にすることにより、低分子ペプチドを生成しやすくなる傾向がある。亜臨界処理時間が5分未満の場合は、低分子ペプチドを生成させることが困難となる傾向がある。亜臨界の処理時間が30分を超える場合は、生成された低分子ペプチドがさらに過分解してしまい、遊離アミノ酸の生成量が増え、低分子ペプチドの生成量を減少させる傾向がある。 The placenta subcritical treatment time in the placenta extract production method of the present invention is preferably 5 to 30 minutes. By making it into the range of this processing time, there exists a tendency which becomes easy to produce | generate a low molecular peptide. When the subcritical processing time is less than 5 minutes, it tends to be difficult to produce a low molecular peptide. When the subcritical processing time exceeds 30 minutes, the produced low molecular weight peptide is further excessively decomposed, and the amount of free amino acid produced tends to increase and the amount of low molecular weight peptide produced tends to decrease.
 さらに、本発明のプラセンタ抽出物の製造方法におけるプラセンタの亜臨界処理時間を10~30分にすることがより好ましい。この範囲であれば、低分子ペプチドをより効率的に生成しやすくなる傾向がある。 Furthermore, it is more preferable that the subcritical processing time of the placenta in the method for producing the placenta extract of the present invention is 10 to 30 minutes. If it is this range, it will become easy to produce | generate a low molecular peptide more efficiently.
 本発明のプラセンタ抽出物の製造方法における亜臨界処理の抽出剤を水とした場合におけるプラセンタの亜臨界処理による加水分解条件としては、処理温度は160~200℃、処理圧力は処理温度の飽和蒸気圧以上、処理時間は5~30分で行うことが好ましい。この条件で行うことで、低分子ペプチドを高効率で生成させることができる。さらに、処理温度は180~195℃、処理圧力は処理温度の飽和蒸気圧以上、処理時間は10~30分で行うことが、分子量3000以下の低分子ペプチドを最大限の効率で得ることができるという理由から好ましい。 In the production method of the placenta extract of the present invention, the hydrolysis conditions by the subcritical treatment of the placenta when water is used as the subcritical treatment extractant, the treatment temperature is 160 to 200 ° C., and the treatment pressure is saturated steam at the treatment temperature. The treatment time is preferably 5 to 30 minutes or more. By carrying out under these conditions, a low molecular peptide can be produced with high efficiency. Furthermore, the treatment temperature is 180 to 195 ° C., the treatment pressure is equal to or higher than the saturated vapor pressure of the treatment temperature, and the treatment time is 10 to 30 minutes, whereby a low molecular peptide having a molecular weight of 3000 or less can be obtained with the maximum efficiency. This is preferable.
 本発明のプラセンタ抽出物の製造方法における固液分離工程は、亜臨界処理物を抽出液と原料残渣(固体物)とに分離する工程である。具体的な固液分離工程としては、ろ紙を用いたろ過、遠心分離、デカンテーション、スクリュープレス、ローラープレス、ロータリードラムスクリーン、ベルトスクリーン、振動スクリーン、多重板振動フィルター、真空脱水、加圧脱水、ベルトプレス、遠心濃縮脱水、多重円板脱水などが挙げられる。なかでも、操作が簡便であり、分離効率に優れるという理由から、ろ過が好ましい。 The solid-liquid separation step in the method for producing the placenta extract of the present invention is a step of separating the subcritical processed product into the extract and the raw material residue (solid material). Specific solid-liquid separation processes include filtration using filter paper, centrifugation, decantation, screw press, roller press, rotary drum screen, belt screen, vibrating screen, multi-plate vibrating filter, vacuum dehydration, pressure dehydration, Belt press, centrifugal concentration dehydration, multiple disk dehydration and the like can be mentioned. Among these, filtration is preferable because the operation is simple and the separation efficiency is excellent.
 本発明のプラセンタ抽出物の製造方法における固液分離工程により得られた抽出液は、そのまま次の脱色工程に移行し、脱色を行うこともできるが、本抽出液を乾燥させる乾燥工程を経て保存性のよい固形状にしてもよい。この乾燥工程としては、一般的な乾燥方法を用いることができ、自然放置はもちろんのこと、加熱系である箱型乾燥や噴霧乾燥などの伝熱乾燥、マイクロ波乾燥などの内部発熱乾燥、非加熱系である凍結乾燥、真空乾燥、吸引乾燥、加圧乾燥、超音波乾燥等が可能である。一般的で簡便なオーブン、恒温槽を用いて乾燥することももちろん許容される。得られた固形物は水に可溶であるので脱色をしたいときには再度水に溶かし、脱色工程に移行することができる。 The extract obtained by the solid-liquid separation step in the method for producing the placenta extract of the present invention can be transferred to the next decolorization step as it is, and can be decolorized, but is stored after the drying step of drying the extract. It may be solid with good properties. As this drying step, a general drying method can be used. Naturally, it is allowed to stand naturally, heat transfer drying such as box-type drying or spray drying which is a heating system, internal heat drying such as microwave drying, non-drying, etc. A heating system such as freeze drying, vacuum drying, suction drying, pressure drying, ultrasonic drying, and the like are possible. Of course, it is acceptable to dry using a general and simple oven and thermostat. Since the obtained solid matter is soluble in water, when it is desired to decolorize it, it can be dissolved again in water and transferred to the decolorization step.
 本発明のプラセンタ抽出物の製造方法における脱色工程は、前記固液分離工程で得られた抽出液(前記乾燥工程により得られた固形物を水に溶かした抽出液を含む、以下同様)の褐変を取り除き、色を薄くする工程である。 The decolorization step in the method for producing the placenta extract of the present invention is the browning of the extract obtained in the solid-liquid separation step (including the extract obtained by dissolving the solid obtained in the drying step in water, the same applies hereinafter). Is a process of removing the color and making the color lighter.
 一般的に胎盤の主要組織である蛋白質を酵素処理や高温処理で低分子化すると、蛋白質のアミノ基と、同じく原料中に含まれる糖分とが反応(いわゆる、メイラード反応)して、メラノイジンという物質を生成し、蛋白質が褐変して黒味を生じる。プラセンタに限らず、この反応は蛋白を含む成分については一般的であり、例えば、魚や肉の焦げ、コーヒーや味噌の着色などがある。 In general, when a protein, which is the main tissue of the placenta, is reduced in molecular weight by enzymatic treatment or high-temperature treatment, the amino group of the protein reacts with the sugar contained in the raw material (so-called Maillard reaction) to form a substance called melanoidin And the protein browns to produce a blackish color. This reaction is not limited to placenta, and this reaction is common for components containing protein, for example, charring of fish and meat, coloring of coffee and miso.
 本発明のプラセンタ抽出物の製造方法においては抽出液の褐変を取り除く脱色工程としては、活性炭、イオン交換樹脂等の吸着剤を用いる方法などが挙げられる。なかでも、簡便に効率よく脱色できるという理由から、生成したメラノイジンを活性炭の細穴に吸着させて脱色する活性炭処理が好ましい。 In the method for producing the placenta extract of the present invention, examples of the decolorization step for removing the browning of the extract include a method using an adsorbent such as activated carbon or ion exchange resin. Especially, the activated carbon treatment which adsorb | sucks the produced | generated melanoidin to the fine hole of activated carbon and decolorizes from the reason that it can decolorize simply and efficiently is preferable.
 本発明のプラセンタ抽出物の製造方法における活性炭処理による脱色工程は、固液分離工程で得られた抽出液に所定量の活性炭を添加し、所定時間撹拌したものを、脱色後の抽出液と活性炭とに固液分離する工程である。 In the method for producing a placenta extract of the present invention, the decolorization step by the activated carbon treatment is performed by adding a predetermined amount of activated carbon to the extract obtained in the solid-liquid separation step and stirring the mixture for a predetermined time. And solid-liquid separation.
 本発明のプラセンタ抽出物の製造方法における活性炭処理の処理温度は、0~80℃が好ましく、10~60℃がより好ましい。処理温度が0℃未満の場合は抽出液が凍結してしまう恐れがあり、凍結しない場合でも吸着量が低下してしまう傾向がある。また、処理温度が80℃を超える場合は、液体の蒸発により固形分濃度が変化し、効率のよい脱色の再現が得られなくなる傾向がある。 The treatment temperature of the activated carbon treatment in the method for producing the placenta extract of the present invention is preferably 0 to 80 ° C, more preferably 10 to 60 ° C. When the processing temperature is less than 0 ° C., the extract may be frozen, and even when it is not frozen, the amount of adsorption tends to decrease. On the other hand, when the treatment temperature exceeds 80 ° C., the solid content concentration changes due to evaporation of the liquid, and there is a tendency that efficient decolorization reproduction cannot be obtained.
 本発明のプラセンタ抽出物の製造方法における活性炭処理の処理時間は、3分以上が好ましく、5分以上がより好ましい。処理時間が3分未満の場合は、吸着が思うように進行せず、脱色が不十分となる傾向がある。また、脱色工程の処理時間は120分以内が好ましく、60分以内がより好ましい。脱色工程の処理時間が120分を超える場合は、吸着反応が平衡に達してしまい、脱色の効果に変化がなく効率が悪くなる傾向がある。脱色工程の処理時間が3分未満の場合は、抽出液の褐変が取り除けない。 The treatment time of the activated carbon treatment in the method for producing the placenta extract of the present invention is preferably 3 minutes or more, and more preferably 5 minutes or more. When the treatment time is less than 3 minutes, the adsorption does not proceed as expected and decolorization tends to be insufficient. Moreover, the processing time of the decoloring process is preferably within 120 minutes, and more preferably within 60 minutes. When the processing time of the decolorization process exceeds 120 minutes, the adsorption reaction reaches equilibrium, and there is a tendency that the efficiency of decolorization does not change and there is no change in the decolorization effect. When the processing time of the decoloring process is less than 3 minutes, the browning of the extract cannot be removed.
 本発明のプラセンタ抽出物の製造方法においては、活性炭処理による脱色工程における固液分離方法は特に限定されず、固液分離工程として挙げた各種方法が採用できるが、操作が簡便であり、分離効率に優れるという理由から、ろ過やデカンテーションが好ましい。 In the method for producing the placenta extract of the present invention, the solid-liquid separation method in the decolorization step by the activated carbon treatment is not particularly limited, and various methods mentioned as the solid-liquid separation step can be adopted, but the operation is simple, and the separation efficiency. Filtration and decantation are preferred because of their excellent performance.
 本発明のプラセンタ抽出物の製造方法においては、活性炭処理に用いる活性炭としては特に限定されず、市販されている活性炭を、生成するメラノイジンの性質や入手のしやすさなどにより適宜選択して用いることができる。メラノイジン吸着用の活性炭としては、市販のメラノイジンやカラメル吸着用活性炭を用いることができ、製造法としては一般的な薬品(亜鉛)や水蒸気賦活処理などをして細孔径を制御しているものを用いることができる。例えば、日本エンバイロケミカルズ株式会社製の白鷹シリーズおよびカルボラフィンシリーズなどが挙げられる。 In the method for producing the placenta extract of the present invention, the activated carbon used for the activated carbon treatment is not particularly limited, and a commercially available activated carbon is appropriately selected and used depending on the properties of melanoidin to be produced and availability. Can do. As activated carbon for melanoidin adsorption, commercially available melanoidin or activated carbon for caramel adsorption can be used, and the production method is to control the pore size by general chemical (zinc) or steam activation treatment etc. Can be used. For example, the Shirataka series and the carborafin series manufactured by Nippon Enviro Chemicals Co., Ltd. can be mentioned.
 本発明のプラセンタ抽出物の製造方法における使用する活性炭の添加量は、生成したメラノイジンの量に応じ(すなわち、色の濃さに応じ)適宜調節することができるが、脱色しようとする液体100質量部に対し、0.1~30質量部が好ましい。0.1質量部未満の場合は、脱色性能が不十分となり、色度を下げる効果が不十分となる傾向がある。また、30質量部を超える場合は、脱色性能は向上するが、脱色と同時に液体成分の浸み込みによる収量ロスが起こってしまい、最終的に十分な量が確保できなくなる傾向がある。なお、より効率よく脱色操作を行うことができるという理由からは、活性炭の添加量を1~10質量部とすることがより好ましい。 The amount of the activated carbon used in the method for producing the placenta extract of the present invention can be adjusted as appropriate according to the amount of melanoidin produced (that is, depending on the color intensity), but 100 mass of the liquid to be decolored. The amount is preferably 0.1 to 30 parts by mass with respect to parts. When the amount is less than 0.1 parts by mass, the decolorization performance tends to be insufficient, and the effect of lowering the chromaticity tends to be insufficient. When the amount exceeds 30 parts by mass, the decolorization performance is improved, but yield loss occurs due to the penetration of the liquid component simultaneously with decolorization, and there is a tendency that a sufficient amount cannot be secured in the end. For the reason that the decolorization operation can be performed more efficiently, it is more preferable to add 1 to 10 parts by mass of the activated carbon.
 また、本発明のプラセンタ抽出物の製造方法において、活性炭の量を調整する代わりに活性炭使用量を少なめにして複数回、繰り返し活性炭処理を行うこともできる。さらに、活性炭処理を複数回行うことにより、脱色挙動・過程がより詳細に判明し、必要最小限の量の活性炭を使用することができるからである。繰り返し回数はメラノイジンの量に応じ(すなわち、色の濃さに応じ)適宜選択することができるが工程の煩雑さを考えると2~10回程度が好ましく、2~5回程度がより好ましい。複数回行うことで抽出液の褐色をより取り除くことができる。 In addition, in the method for producing the placenta extract of the present invention, the activated carbon treatment can be repeated a plurality of times with a small amount of activated carbon used instead of adjusting the amount of activated carbon. Furthermore, by performing the activated carbon treatment a plurality of times, the decolorization behavior / process is revealed in more detail, and the minimum necessary amount of activated carbon can be used. The number of repetitions can be appropriately selected according to the amount of melanoidin (that is, depending on the color intensity), but is preferably about 2 to 10 times and more preferably about 2 to 5 times in view of the complexity of the process. By performing the treatment a plurality of times, the brown color of the extract can be further removed.
 本発明のプラセンタ抽出物の製造方法においては、抽出剤を水とし、亜臨界処理温度は190~195℃、亜臨界処理圧力は亜臨界処理温度の飽和蒸気圧以上、亜臨界処理時間は20~30分の条件でプラセンタを亜臨界処理して、プラセンタの亜臨界処理物を得た後、2~5回の活性炭処理により脱色することが望ましい。前記条件下の製造方法で得られたプラセンタ抽出物は、波長390nmにおける吸光度を0.028~0.084の範囲にすることができ、プラセンタ抽出物の窒素含有量を0.15~0.21質量%の範囲にすることができる。 In the placenta extract production method of the present invention, the extractant is water, the subcritical processing temperature is 190 to 195 ° C., the subcritical processing pressure is equal to or higher than the saturated vapor pressure of the subcritical processing temperature, and the subcritical processing time is 20 to It is desirable that the placenta be subcritically treated for 30 minutes to obtain a placenta subcritically treated product, and then decolorized by 2-5 times of activated carbon treatment. The placenta extract obtained by the production method under the above conditions can have an absorbance at a wavelength of 390 nm in the range of 0.028 to 0.084, and the nitrogen content of the placenta extract can be 0.15 to 0.21. It can be in the range of mass%.
 従来の抽出方法である酵素処理による方法では、酵素の添加は当然のことであるがその他の補助剤を用いることが必要となる。具体的には、酵素に加え、pH調整剤や酵素安定化剤などの酵素反応の補助剤がプラセンタ原料に添加され、これらの添加剤の含有により有効成分の濃度が希釈されてしまい、抽出物あたりの有効成分濃度が低くなってしまう。 In the conventional extraction method using an enzyme treatment, it is natural to add an enzyme, but it is necessary to use other auxiliary agents. Specifically, in addition to enzymes, enzyme reaction aids such as pH adjusters and enzyme stabilizers are added to the placenta raw material, and the inclusion of these additives dilutes the concentration of the active ingredient, resulting in an extract. The active ingredient concentration per unit becomes low.
 一方、亜臨界処理により得られるプラセンタ抽出物では、プラセンタ抽出の手段として亜臨界水抽出を用いており、基本的には水のみの使用で蛋白質およびペプチドの低分子化を達成しており、水以外の添加物は一切使用しないことが可能である。従ってこの抽出法を用いて得られたプラセンタ抽出液は基本的に低分子化されたペプチド濃度が高くなり、従来技術に比べて有効成分濃度の高い抽出液を得ることができる。従って、従来技術と亜臨界処理により得られるプラセンタ抽出物を、同じ活性炭処理にて脱色操作を行えば、必然的に活性炭処理によって取り除かれるメラノイジン以外の主要成分、すなわちペプチドの吸着量は変わらないので結果的に得られる脱色後の溶液中のペプチド量は本発明のほうが多くなる。すなわち脱色しても有効成分の濃度を高いまま保つことができる。 On the other hand, placenta extract obtained by subcritical processing uses subcritical water extraction as a means of placenta extraction. Basically, only water is used to reduce the molecular weight of proteins and peptides. It is possible not to use any other additives. Therefore, the placenta extract obtained by using this extraction method basically has a high peptide concentration with a low molecular weight, and an extract having a higher active ingredient concentration than the prior art can be obtained. Therefore, if the placenta extract obtained by the conventional technique and the subcritical treatment is subjected to the same decolorization operation by the activated carbon treatment, the adsorbed amount of main components other than melanoidine that is necessarily removed by the activated carbon treatment, that is, the peptide amount is not changed. As a result, the amount of peptide in the solution after decolorization obtained is larger in the present invention. That is, the concentration of the active ingredient can be kept high even after decolorization.
 また、プラセンタを構成する蛋白質は種々のアミノ酸、いわゆる生体を構成する約20種のアミノ酸が主に結合して構成されており、当然のごとく様々な種類のペプチド結合が存在するのに対し、従来技術の酵素処理では酵素の基質特異性により、特定のペプチド結合の切断による低分子化のみが行われる。すなわち、酵素処理による方法では特定のペプチド結合しか切断することができないので、低分子化の度合いに限りがあり、ある一定以下の分子量に達することができない。 The protein constituting the placenta is composed mainly of various amino acids, that is, about 20 kinds of amino acids constituting the living body, and naturally there are various types of peptide bonds, whereas In the enzyme treatment of the technology, only a low molecular weight is obtained by cleaving a specific peptide bond due to the substrate specificity of the enzyme. That is, since only a specific peptide bond can be cleaved by the method using enzyme treatment, the degree of molecular weight reduction is limited, and a molecular weight below a certain level cannot be reached.
 本発明のプラセンタ抽出物の製造方法においては、亜臨界水処理による抽出では高温高圧下における水の加水分解力にてペプチド結合を切断するため、ペプチド結合の種類に関係なく、ランダムにペプチド結合を切断することで蛋白質を低分子化することができる。従って温度と時間の条件によって従来からの酵素処理よりも低分子ペプチドの多い分子量分布にすることが可能である。 In the method for producing the placenta extract of the present invention, in the extraction by subcritical water treatment, the peptide bond is cleaved by the hydrolytic power of water under high temperature and high pressure. By cleaving, the protein can be reduced in molecular weight. Therefore, it is possible to obtain a molecular weight distribution with more low molecular weight peptides than conventional enzyme treatment depending on temperature and time conditions.
 さらには、酵素処理による方法で得られた低分子ペプチドのサイズが、メラノイジン吸着用活性炭の細孔径に吸着するサイズに合致し、メラノイジンの吸着と共に低分子ペプチドも吸着されてしまい、脱色と共に有効成分であるペプチド量が減少してしまっていることが推測される。一方、亜臨界水処理による抽出により生成した低分子ペプチドのサイズは前述のように従来法よりもさらに低分子のペプチドとして存在するため、同様の活性炭処理を行えばメラノイジンの吸着は起こるものの、低分子ペプチドの吸着は起こりにくくなり、結果的に有効成分である低分子ペプチドが多いにもかかわらず、脱色された抽出物を得ることが可能となる。 Furthermore, the size of the low-molecular peptide obtained by the enzymatic treatment method matches the size of the pore size of the activated carbon for melanoidin adsorption, and the low-molecular peptide is also adsorbed along with the adsorption of melanoidin. It is presumed that the amount of peptide is reduced. On the other hand, the size of low molecular peptides produced by extraction by subcritical water treatment exists as lower molecular peptides than the conventional method as described above. Adsorption of molecular peptides is unlikely to occur, and as a result, it is possible to obtain a decolored extract despite the large amount of low molecular peptides that are active ingredients.
 なお、このようにして得られた本発明のプラセンタ抽出物は、その使用目的に応じ適時希釈や濃縮を行ってもよい。希釈は単なる加水、エタノールなどの有機溶剤の添加、その他有効成分を含む液体や食品添加物、香料、腐敗防止のためのフェノキシエタノールやブタンジオール、グリセリン、固形の防腐剤もしくはそれらを溶解させた有機溶剤や天然の防腐剤などを添加して行うことができる。希釈物は透明度は高まるものの窒素量は減少するが、従来の抽出物に比較してより窒素量を高く保ったまま希釈することができる。濃縮は熱濃縮、減圧濃縮など一般的な濃縮方法で行うことができ、前述の乾燥方法により乾燥させた後、適量の水などの溶媒を加え溶解させることもできる。濃縮物は窒素量は高まるものの透明度は減少するが、従来の抽出物に比べてより透明度を高く保ったまま濃縮を行うことができる。 In addition, the placenta extract of the present invention thus obtained may be diluted or concentrated in a timely manner according to the purpose of use. Dilution is simple addition of water, addition of organic solvents such as ethanol, other liquids and food additives containing active ingredients, fragrances, phenoxyethanol and butanediol, glycerin, antiseptics for solids, or organic solvents in which they are dissolved And natural preservatives can be added. Although the dilution increases the transparency, the amount of nitrogen decreases, but the dilution can be diluted while keeping the amount of nitrogen higher than that of the conventional extract. Concentration can be performed by a general concentration method such as heat concentration or reduced pressure concentration. After drying by the above-described drying method, an appropriate amount of a solvent such as water can be added and dissolved. Although the concentrate increases the nitrogen content, the transparency decreases, but the concentration can be performed while keeping the transparency higher than that of the conventional extract.
 本発明を実施例に基づいて説明するが、本発明は実施例のみに限定されるものではない。 The present invention will be described based on examples, but the present invention is not limited to the examples.
実施例1
<抽出工程>
 容積2Lの耐圧容器に、ブタ胎盤(東京芝浦臓器株式会社)200g、蒸留水200gを入れて、処理温度:195℃、処理圧力:1.6MPa、処理時間30分間で亜臨界処理を行った。ブタ胎盤は水による洗浄を行い、血液および他の部位を取り除いたものを使用した。
<固液分離工程>
 亜臨界処理を終了後、耐圧容器内の処理物を回収し、セルロース製ろ紙(孔径:1μm、Advantec製の5C)で吸引ろ過し、ろ液を回収した。回収したろ液は茶褐色であった。
<脱色工程(活性炭処理)1回目>
 得られたろ液50gをビーカーに量り取り、30℃の恒温水槽中でスターラーを用いて攪拌した。別途、ろ液100質量部に対し3質量部の活性炭(市販のメラノイジン吸着用活性炭を使用)を、ろ液を撹拌中のビーカーに添加した。さらに30分間攪拌後、恒温槽からビーカーを取り出し、固液分離工程と同様のろ紙で吸引ろ過を行い、ろ液を回収した。回収したろ液は少し濃い黄色であった。
<脱色工程(活性炭処理)2回目>
 脱色工程1回目で得られたろ液に対し、同様の脱色工程を行い、再度ろ液を回収した。得られた抽出液の色は見た目には無色であった。
Example 1
<Extraction process>
200 g of pig placenta (Tokyo Shibaura Organ Co., Ltd.) and 200 g of distilled water were placed in a pressure-resistant container having a volume of 2 L, and subcritical processing was performed at a processing temperature of 195 ° C., a processing pressure of 1.6 MPa, and a processing time of 30 minutes. The pig placenta was washed with water and blood and other parts were removed.
<Solid-liquid separation process>
After finishing the subcritical treatment, the treated product in the pressure vessel was collected and suction filtered with a cellulose filter paper (pore size: 1 μm, 5C manufactured by Advantec), and the filtrate was collected. The collected filtrate was brown.
<Decolorization process (activated carbon treatment) 1st time>
50 g of the obtained filtrate was weighed into a beaker and stirred using a stirrer in a constant temperature water bath at 30 ° C. Separately, 3 parts by mass of activated carbon (using commercially available activated melanoidin activated carbon) for 100 parts by mass of the filtrate was added to the beaker in which the filtrate was being stirred. Further, after stirring for 30 minutes, the beaker was taken out from the thermostatic bath and suction filtered with the same filter paper as in the solid-liquid separation step, and the filtrate was recovered. The collected filtrate was a little dark yellow.
<Decolorization process (activated carbon treatment) second time>
The same decolorization process was performed on the filtrate obtained in the first decolorization step, and the filtrate was collected again. The color of the resulting extract was visually colorless.
実施例2
 実施例1で得られた抽出液に対し、同様の脱色工程を行い、再度ろ液を回収した。得られた抽出液の色は見た目には無色であった。
Example 2
The same decolorization process was performed on the extract obtained in Example 1, and the filtrate was collected again. The color of the resulting extract was visually colorless.
比較例1~4
 市販のプラセンタ化粧水1~4(いずれも、ブタプラセンタ由来、抽出工程:酵素処理、脱色工程:活性炭処理)を比較例1~4とした。それぞれの見た目の色は比較例1および2が黄色、比較例3および4は無色であった。
Comparative Examples 1 to 4
Commercially available placenta lotions 1 to 4 (all derived from porcine placenta, extraction process: enzyme treatment, decolorization process: activated carbon treatment) were designated as Comparative Examples 1 to 4. The apparent colors of each of Comparative Examples 1 and 2 were yellow, and Comparative Examples 3 and 4 were colorless.
比較例5
<抽出工程>
 ブタ胎盤(東京芝浦臓器株式会社)200gに、蒸留水50g、蛋白質加水分解酵素Alcalase(Novozymes社製)4mL、25質量%水酸化ナトリウム2mLを添加し、60℃で3時間反応させた。その後、90℃で1時間処理し、酵素を失活させた。実施例1および2と固形分濃度を略あわせるため、失活処理後に蒸留水を添加して全量を400gとした。
<固液分離工程>
 酵素失活後の反応液をセルロース製ろ紙(孔径:1μm、Advantec製の5C)によりろ過し、ろ液を回収した。回収したろ液は茶褐色であった
<脱色工程(活性炭処理)1回目>
 得られたろ液50gをビーカーに量り取り、30℃の恒温水槽中でスターラーを用いて攪拌した。別途、ろ液100質量部に対し3質量部の活性炭(市販のメラノイジン吸着用活性炭)を、ろ液を撹拌中のビーカーに添加した。さらに30分間攪拌後、恒温槽からビーカーを取り出し、固液分離工程と同様のろ紙で吸引ろ過を行い、ろ液を回収した。回収したろ液は少し濃い黄色であった。
<脱色工程(活性炭処理)2回目>
 脱色工程1回目で得られたろ液に対し、同様の脱色工程を行い、再度ろ液を回収した。得られた抽出液の色は薄い黄色であった。
<脱色工程(活性炭処理)3回目>
 脱色工程1回目で得られたろ液に対し、同様の脱色工程を行い、再度ろ液を回収した。得られた抽出液の色は見た目無色であった。
Comparative Example 5
<Extraction process>
To 200 g of pig placenta (Tokyo Shibaura Organ Co., Ltd.), 50 g of distilled water, 4 mL of protein hydrolase Alcalase (manufactured by Novozymes) and 2 mL of 25 mass% sodium hydroxide were added and reacted at 60 ° C. for 3 hours. Thereafter, the enzyme was inactivated by treatment at 90 ° C. for 1 hour. In order to substantially match the solid content concentration with Examples 1 and 2, distilled water was added after the deactivation treatment to make the total amount 400 g.
<Solid-liquid separation process>
The reaction liquid after enzyme deactivation was filtered through cellulose filter paper (pore diameter: 1 μm, 5C manufactured by Advantec), and the filtrate was recovered. The collected filtrate was dark brown <Decolorization step (activated carbon treatment) 1st time>
50 g of the obtained filtrate was weighed into a beaker and stirred using a stirrer in a constant temperature water bath at 30 ° C. Separately, 3 parts by mass of activated carbon (commercial activated carbon for melanoidin adsorption) was added to 100 parts by mass of the filtrate, and the filtrate was added to the beaker in which the filtrate was being stirred. Further, after stirring for 30 minutes, the beaker was taken out from the thermostatic bath and suction filtered with the same filter paper as in the solid-liquid separation step, and the filtrate was recovered. The collected filtrate was a little dark yellow.
<Decolorization process (activated carbon treatment) second time>
The same decolorization process was performed on the filtrate obtained in the first decolorization step, and the filtrate was collected again. The color of the obtained extract was light yellow.
<Decolorization process (activated carbon treatment) third time>
The same decolorization process was performed on the filtrate obtained in the first decolorization step, and the filtrate was collected again. The color of the resulting extract was apparently colorless.
吸光度測定
 実施例1、2および比較例1~5の抽出液または化粧水の390nmにおける吸光度を可視紫外分光光度計(GEヘルスケア・ジャパン株式会社製のGeneQuant 1300)を用いて測定した。結果を表1および図1に示す。
Absorbance measurement Absorbance at 390 nm of the extract solutions and skin lotions of Examples 1 and 2 and Comparative Examples 1 to 5 was measured using a visible ultraviolet spectrophotometer (GeneQuant 1300 manufactured by GE Healthcare Japan Co., Ltd.). The results are shown in Table 1 and FIG.
窒素含有量測定
 実施例1、2および比較例1~5の抽出液または化粧水中の窒素含有量をケルダール法(被検液に硫酸を加え、液中の有機体窒素を硫酸アンモニウムに変換し、液体をアルカリ性にして加熱し、発生するアンモニアを滴定によって定量する方法)によって求めた。具体的にはJIS K0102 44に記載の方法に準拠して行った。結果を表1および図1に示す。
Nitrogen content measurement The nitrogen content in the extracts or lotions of Examples 1 and 2 and Comparative Examples 1 to 5 was determined using the Kjeldahl method (sulfuric acid was added to the test liquid, and the organic nitrogen in the liquid was converted to ammonium sulfate to obtain a liquid. Was made alkaline and heated, and the generated ammonia was determined by titration. Specifically, it was performed in accordance with the method described in JIS K0102244. The results are shown in Table 1 and FIG.
分子量分布測定
実施例1~2および比較例1~5の抽出液または化粧水を、0.45μmメンブランフィルターによりろ過し、高速液体クロマトグラフィー(アジレントテクノロジー社製HP1100シリーズ)による測定を行った。
Molecular Weight Distribution Measurement The extracts or lotions of Examples 1-2 and Comparative Examples 1-5 were filtered through a 0.45 μm membrane filter and measured by high performance liquid chromatography (HP1100 series manufactured by Agilent Technologies).
 分析条件については、カラム(東ソー社製 品番:TSK guard column SWXL(6.0mm I.D.×40mm)およびTSKgel G2000SWXL(7.8mm I.D.×300mm)を用い、溶離液を0.1w/v% TFA in MeCN/H2O=45/55、カラム温度35℃、流速1.0mL/min、検出UV220nm、導入量20μL、分析時間30minにて分子量分布測定用の標準試薬としてCytochrome C(和光純薬工業)分子量12,500、Aprotinin(CALBOCHEM)分子量6512、Bacitracin(Dr. Ehrenstorfer)分子量1,423、Angiotensin II(ペプチド研究所)分子量1,026、Gly-Gly-Tyr-Arg(ペプチド研究所)分子量451、Gly-Gly-Gly(ペプチド研究所)分子量189により同様な測定で検量線を作成し、溶離時間に対する分子量位置を決め、分子量分布、および分子量分画範囲におけるピーク面積を求め、分子量比率を求めた。結果を表1に示す。 For analysis conditions, a column (product number: TSK guard column SWXL (6.0 mm ID × 40 mm) and TSKgel G2000SWXL (7.8 mm ID × 300 mm) manufactured by Tosoh Corporation) was used, and the eluent was 0.1 w. / V% TFA in MeCN / H 2 O = 45/55, column temperature 35 ° C., flow rate 1.0 mL / min, detection UV 220 nm, introduction amount 20 μL, analysis time 30 min. Cytochrome C (standard reagent for molecular weight distribution measurement) Wako Pure Chemical Industries, Ltd.) Molecular weight 12,500, Aprotinin (CALBOCHEM) molecular weight 6512, Bacitracin (Dr. Ehrentorfer) molecular weight 1,423, Angiotensin II (Peptide Institute) Molecular weight 1,026, Gly-Gly-Tyr-Arg (peptide) Laboratory) Create a calibration curve with the same measurement based on molecular weight 451 and Gly-Gly-Gly (Peptide Institute) molecular weight 189, determine the molecular weight position relative to the elution time, find the molecular weight distribution, and the peak area in the molecular weight fractionation range The molecular weight ratio was determined and the results are shown in Table 1.
 なお、今回得られた分子量は、すべての試料においてその上限が用いたカラムの限外排除分子量(約10万)以下であり、溶出が開始する時間から算出される最大の分子量は約2万であった。よって上記実施例および比較例において原料中に含まれていたタンパク質は、すべて分子量約10万以下、さらには約2万以下のペプチドの形態に変換されて試料中に含まれていることが分かった。 In addition, the molecular weight obtained this time is not more than the extra exclusion molecular weight (about 100,000) of the column used for the upper limit in all samples, and the maximum molecular weight calculated from the time when elution starts is about 20,000. there were. Therefore, it was found that all the proteins contained in the raw materials in the above Examples and Comparative Examples were converted into peptide forms having a molecular weight of about 100,000 or less, and further about 20,000 or less and contained in the sample. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、本発明のプラセンタ抽出物は、有効成分の濃度が高く、かつ着色の少ないプラセンタ抽出物であることがわかる。さらに、前述の亜臨界処理を含む製造方法により製造されたプラセンタ抽出物は、有効成分の濃度が高く、かつ着色の少ないプラセンタ抽出物であることがわかる。また、比較例5では、生臭いと感じる臭いを確認された。しかしながら、実施例1、2では、生臭いと感じる臭いは確認されなかった。 From the results in Table 1, it can be seen that the placenta extract of the present invention is a placenta extract having a high concentration of active ingredients and little coloring. Furthermore, it can be seen that the placenta extract produced by the production method including the subcritical process described above is a placenta extract having a high concentration of active ingredients and little coloring. Moreover, in the comparative example 5, the smell which feels a raw odor was confirmed. However, in Examples 1 and 2, no odor felt as a raw odor was confirmed.
 なお、比較例1~4についての分子量分布(面積)の値が非常に大きいが、これは、市販のプラセンタ化粧水である比較例1~4はアミノ酸およびペプチド以外のその他の成分(保存料、紫外線吸収剤などの添加を含む)を大量に含有していることによるものと推測される。 The molecular weight distribution (area) value for Comparative Examples 1 to 4 is very large. This is because Comparative Examples 1 to 4, which are commercially available placenta lotions, contain other ingredients (preservatives, This is presumed to be due to containing a large amount of (including the addition of an ultraviolet absorber, etc.).

Claims (18)

  1. 波長390nmにおける吸光度が0.10以下であり、
    窒素含有量が0.10質量%以上であるプラセンタ抽出物。
    Absorbance at a wavelength of 390 nm is 0.10 or less,
    A placenta extract having a nitrogen content of 0.10% by mass or more.
  2. 前記吸光度が0.01~0.10である請求項1に記載のプラセンタ抽出物。 The placenta extract according to claim 1, wherein the absorbance is 0.01 to 0.10.
  3. 前記窒素含有量が0.10~1.0質量%である請求項1または2に記載のプラセンタ抽出物。 The placenta extract according to claim 1 or 2, wherein the nitrogen content is 0.10 to 1.0 mass%.
  4. 前記プラセンタ抽出物の全固形分中における全ペプチドの含有量が70~99.5質量%である請求項1~3のいずれか1項に記載のプラセンタ抽出物。 The placenta extract according to any one of claims 1 to 3, wherein the content of all peptides in the total solid content of the placenta extract is 70 to 99.5% by mass.
  5. 前記プラセンタ抽出物の全固形分中における分子量が3000以下の低分子化ペプチドの含有量が40~99.5質量%である請求項1~4のいずれか1項に記載のプラセンタ抽出物。 The placenta extract according to any one of claims 1 to 4, wherein the content of the low molecular weight peptide having a molecular weight of 3000 or less in the total solid content of the placenta extract is 40 to 99.5% by mass.
  6. 前記プラセンタ抽出物の全固形分中における遊離アミノ酸の含有量が0.01~30質量%である請求項1~5のいずれか1項に記載のプラセンタ抽出物。 6. The placenta extract according to claim 1, wherein the content of free amino acids in the total solid content of the placenta extract is 0.01 to 30% by mass.
  7. 前記プラセンタ抽出物の全固形分中における分子量3000以下の成分の含有量が100%である請求項1~6のいずれか1項に記載のプラセンタ抽出物。 The placenta extract according to any one of claims 1 to 6, wherein the content of a component having a molecular weight of 3000 or less in the total solid content of the placenta extract is 100%.
  8. 前記プラセンタ抽出物がプラセンタ原料の亜臨界処理を経て抽出されるプラセンタ抽出物である請求項1~7のいずれか1項に記載のプラセンタ抽出物。 The placenta extract according to any one of claims 1 to 7, wherein the placenta extract is a placenta extract extracted through a subcritical treatment of a placenta raw material.
  9. 前記プラセンタ抽出物が活性炭処理を経て抽出されるプラセンタ抽出物である請求項1~8のいずれか1項に記載のプラセンタ抽出物。 The placenta extract according to any one of claims 1 to 8, wherein the placenta extract is a placenta extract extracted through an activated carbon treatment.
  10. 亜臨界処理の温度が160~200℃であり、
    圧力が飽和蒸気圧以上である請求項8に記載のプラセンタ抽出物。
    The temperature of subcritical processing is 160-200 ° C,
    The placenta extract according to claim 8, wherein the pressure is equal to or higher than a saturated vapor pressure.
  11. 亜臨界処理の時間が5~30分である請求項8または10に記載のプラセンタ抽出物。 The placenta extract according to claim 8 or 10, wherein the subcritical processing time is 5 to 30 minutes.
  12. 波長390nmにおける吸光度が0.10以下であり、
    窒素含有量が0.10質量%以上であるプラセンタ抽出物を得るプラセンタ抽出物の製造方法であって、
    プラセンタを亜臨界処理して亜臨界処理物を得る抽出工程、
    前記亜臨界処理物を抽出液と原料残渣に分離する固液分離工程を含むことを特徴とするプラセンタ抽出物の製造方法。
    Absorbance at a wavelength of 390 nm is 0.10 or less,
    A placenta extract production method for obtaining a placenta extract having a nitrogen content of 0.10% by mass or more,
    An extraction process for subcritical processing of the placenta to obtain a subcritical processed product,
    A method for producing a placenta extract, comprising a solid-liquid separation step of separating the subcritical processed product into an extract and a raw material residue.
  13. 前記亜臨界処理による抽出工程の後、脱色工程を含む請求項12に記載のプラセンタ抽出物の製造方法。 The method for producing a placenta extract according to claim 12, further comprising a decolorization step after the extraction step by the subcritical treatment.
  14. 前記亜臨界処理における亜臨界処理の温度が160~200℃であり、圧力が飽和蒸気圧以上である請求項12または13に記載のプラセンタ抽出物の製造方法。 The method for producing a placenta extract according to claim 12 or 13, wherein a temperature of the subcritical treatment in the subcritical treatment is 160 to 200 ° C, and a pressure is equal to or higher than a saturated vapor pressure.
  15. 前記亜臨界処理における亜臨界処理の時間が5~30分である請求項12~14のいずれか1項に記載のプラセンタ抽出物の製造方法。 The method for producing a placenta extract according to any one of claims 12 to 14, wherein the subcritical treatment time in the subcritical treatment is 5 to 30 minutes.
  16. 前記脱色工程における処理温度が0~80℃である請求項13に記載のプラセンタ抽出物の製造方法。 The method for producing a placenta extract according to claim 13, wherein the treatment temperature in the decolorization step is 0 to 80 ° C.
  17. 前記脱色工程における処理時間が3~120分である請求項13または16に記載のプラセンタ抽出物の製造方法。 The method for producing a placenta extract according to claim 13 or 16, wherein the treatment time in the decolorization step is 3 to 120 minutes.
  18. 前記脱色工程における処理回数が2~10回である請求項13、16または17に記載のプラセンタ抽出物の製造方法。 The method for producing a placenta extract according to claim 13, 16 or 17, wherein the number of treatments in the decoloring step is 2 to 10 times.
PCT/JP2015/066253 2014-06-04 2015-06-04 Placenta extract and method for producing placenta extract WO2015186806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016525243A JPWO2015186806A1 (en) 2014-06-04 2015-06-04 Placenta extract and method for producing placenta extract

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-116193 2014-06-04
JP2014116193 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015186806A1 true WO2015186806A1 (en) 2015-12-10

Family

ID=54766874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066253 WO2015186806A1 (en) 2014-06-04 2015-06-04 Placenta extract and method for producing placenta extract

Country Status (2)

Country Link
JP (1) JPWO2015186806A1 (en)
WO (1) WO2015186806A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100998A (en) * 2015-12-02 2017-06-08 イビデン株式会社 Placenta extract and method for producing placenta extract
JP2017226606A (en) * 2016-06-21 2017-12-28 持田 騎一郎 Composition, agent, cosmetic product or health food
JP2020048538A (en) * 2018-09-28 2020-04-02 株式会社東洋新薬 Oral composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135488A (en) * 2005-11-18 2007-06-07 Nippon Meat Packers Inc Low molecular weight protein, and feed material or food material containing the same
JP2008017815A (en) * 2006-07-14 2008-01-31 Nippon Meat Packers Inc Anti-menopausal syndrome food
WO2014181769A1 (en) * 2013-05-09 2014-11-13 イビデン株式会社 Placenta extracts and method for preparing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135488A (en) * 2005-11-18 2007-06-07 Nippon Meat Packers Inc Low molecular weight protein, and feed material or food material containing the same
JP2008017815A (en) * 2006-07-14 2008-01-31 Nippon Meat Packers Inc Anti-menopausal syndrome food
WO2014181769A1 (en) * 2013-05-09 2014-11-13 イビデン株式会社 Placenta extracts and method for preparing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN, JEUNGHI ET AL.: "Skin Permeability of Porcine Placenta Extracts and Its Physiological Activities", KOREAN JOURNAL FOR FOOD SCIENCE OF ANIMAL RESOURCES, vol. 33, no. 3, 2013, pages 356 - 362, XP055242267, ISSN: 1225-8563 *
LEE, MI-YEON ET AL.: "Effects of High Pressure/ High Temperature Processing on the Recovery and Characteristics of Porcine Placenta Hydrolysates", KOREAN JOURNAL FOR FOOD SCIENCE OF ANIMAL RESOURCES, vol. 33, no. 4, 2013, pages 474 - 480, XP055242265, ISSN: 1225-8563 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100998A (en) * 2015-12-02 2017-06-08 イビデン株式会社 Placenta extract and method for producing placenta extract
JP2017226606A (en) * 2016-06-21 2017-12-28 持田 騎一郎 Composition, agent, cosmetic product or health food
JP2020048538A (en) * 2018-09-28 2020-04-02 株式会社東洋新薬 Oral composition
JP7239142B2 (en) 2018-09-28 2023-03-14 株式会社東洋新薬 oral composition

Also Published As

Publication number Publication date
JPWO2015186806A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
Hogan et al. Development of antioxidant rich peptides from milk protein by microbial proteases and analysis of their effects on lipid peroxidation in cooked beef
Najafian et al. Isolation, purification and identification of three novel antioxidative peptides from patin (Pangasius sutchi) myofibrillar protein hydrolysates
Dong et al. Development of a novel method for hot-pressure extraction of protein from chicken bone and the effect of enzymatic hydrolysis on the extracts
Görgüç et al. Simultaneous effect of vacuum and ultrasound assisted enzymatic extraction on the recovery of plant protein and bioactive compounds from sesame bran
Zhang et al. Antioxidant and antithrombotic activities of rapeseed peptides
Rawel et al. Nature of hydroxycinnamate-protein interactions
Wang et al. Impact of alcohol washing on the flavour profiles, functionality and protein quality of air classified pea protein enriched flour
JP7204720B2 (en) Chitin, hydrolysates, and methods for enzymatic hydrolysis of insects to produce one or more desired products
Hernández-Jabalera et al. Influence of peptides–phenolics interaction on the antioxidant profile of protein hydrolysates from Brassica napus
Lertittikul et al. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH
EA026579B1 (en) Protein isolation from oil seeds
WO2014181769A1 (en) Placenta extracts and method for preparing same
Kobbi et al. Purification and recovery of RuBisCO protein from alfalfa green juice: antioxidative properties of generated protein hydrolysate
WO2015186806A1 (en) Placenta extract and method for producing placenta extract
Ghatak et al. Peanut proteins: Applications, ailments and possible remediation
Kim et al. Antioxidant and angiotensin I-converting enzyme inhibitory activities of northern shrimp (Pandalus borealis) by-products hydrolysate by enzymatic hydrolysis
KR102438147B1 (en) Method of lowing collagen molecular weight of pig leather, Hide Splits, fishskin and pig leather produced by the same
Aissaoui et al. Two novel peptides with angiotensin I converting enzyme inhibitory and antioxidative activities from Scorpaena notata muscle protein hydrolysate
Hunsakul et al. Effects of thermal processing on antioxidant activities, amino acid composition and protein molecular weight distributions of jasmine rice bran protein hydrolysate
Vieira et al. Evaluation of the technological functional properties and antioxidant activity of protein hydrolysate obtained from brewers' spent grain
Karnjanapratum et al. Glycyl endopeptidase from papaya latex: Partial purification and use for production of fish gelatin hydrolysate
Asaduzzaman et al. Reduction of histamine and heavy metals in mackerel hydrolyzates produced by catalysts associated-subcritical water hydrolysis
Xiao et al. Effect of solution p H and activated carbon dosage on the decolourization ability, nitrogen components and antioxidant activity of peanut meal hydrolysate
KR20220084810A (en) Method for preparing hibiscus extract wiht high content of collagen
JP2017100998A (en) Placenta extract and method for producing placenta extract

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803275

Country of ref document: EP

Kind code of ref document: A1