WO2015186474A1 - Arc start control method for consumable electrode type arc welding, and welding device - Google Patents

Arc start control method for consumable electrode type arc welding, and welding device Download PDF

Info

Publication number
WO2015186474A1
WO2015186474A1 PCT/JP2015/063496 JP2015063496W WO2015186474A1 WO 2015186474 A1 WO2015186474 A1 WO 2015186474A1 JP 2015063496 W JP2015063496 W JP 2015063496W WO 2015186474 A1 WO2015186474 A1 WO 2015186474A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
welding current
wire
current
initial
Prior art date
Application number
PCT/JP2015/063496
Other languages
French (fr)
Japanese (ja)
Inventor
昇吾 中司
英市 佐藤
敦史 福永
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020167034071A priority Critical patent/KR101960151B1/en
Priority to CN201580029891.6A priority patent/CN106413966B/en
Publication of WO2015186474A1 publication Critical patent/WO2015186474A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/067Starting the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0732Stabilising of the arc current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the present invention relates to an arc start control method and welding apparatus for consumable electrode arc welding.
  • a short-circuit current is caused to flow by bringing both electrodes into contact with each other while a voltage is applied between the welding wire and the workpiece.
  • the arc is started by fusing the welding wire with an electric current and generating an arc between them.
  • the welding voltage is continuously controlled so as to synchronize the change between the wire feeding speed and the welding voltage, and further the welding voltage associated with the wire feeding speed. Is applied for a predetermined length of time (see Patent Document 4).
  • An object of the present invention is to suppress wire fusing during the arc start period and the occurrence of spatter accompanying the wire fusing.
  • the present invention feeds the welding wire toward the workpiece, and when the fed welding wire comes into contact with the workpiece, a welding current is passed through the welding wire and the workpiece,
  • a welding current is passed through the welding wire and the workpiece
  • an arc start control method for consumable electrode arc welding in which welding is started by generating an arc with a welding current, an initial welding current is supplied as the welding current when the welding wire comes into contact with the workpiece. And a step of supplying a steady welding current larger than the initial welding current as the welding current after a predetermined set period has elapsed after the supply of the initial welding current is started. It is said.
  • the initial welding current is selected from a range of 100 (A) to 300 (A), and the steady welding current is 350 (A).
  • the welding apparatus includes a power supply unit that supplies a welding current to a workpiece via a welding wire, and the welding wire that is fed toward the workpiece.
  • an initial welding current is supplied from the power supply unit as the welding current, and after a predetermined set period has elapsed since the start of the supply of the initial welding current, A current control unit that supplies a steady welding current larger than the initial welding current from the power supply unit.
  • a control device that controls welding work on the workpiece, a determination unit that detects that the initial welding current has flowed through the welding wire and the workpiece, and a power source that drives the power source unit A drive unit, wherein the control unit determines that the initial welding current has flowed through the welding wire and the workpiece by the determination unit, and further, after the predetermined set time has elapsed, A current setting signal for supplying the steady welding current from the power supply unit to the drive unit may be output.
  • FIG. 1 is a diagram showing a schematic configuration of a welding system 1 according to an embodiment of the present invention.
  • the welding system 1 performs welding of the workpiece 200 by a carbon dioxide arc welding method using carbon dioxide gas as a shielding gas among consumable electrode type (melting electrode type) gas shielded arc welding methods.
  • a welding system 1 as an example of a welding apparatus includes a welding torch 10 that welds a workpiece 200 using a welding wire 100, and a robot arm 20 that holds the welding torch 10 and sets the position and orientation of the welding torch 10.
  • the wire feeding device 30 that feeds the welding wire 100 to the welding torch 10, the shield gas supply device 40 that feeds the shielding gas (here, carbon dioxide gas) to the welding torch 10, and the welding wire 100 via the welding torch 10.
  • a power supply device 50 for controlling the welding current, the feeding speed, the welding speed, and the like.
  • the welding system 1 includes a robot control device 60 for controlling the robot arm 20 as an example of a control device for controlling a welding operation to the workpiece 200 by the welding torch 10 and the robot arm 20.
  • the robot controller 60 controls the movement and the speed (welding speed) of the welding torch 10 (welding wire 100) provided in the robot arm 20.
  • the robot control device 60 and the power supply device 50 can be configured to transmit and receive data and control signals.
  • the welding wire 100 used in the welding system 1 may be either a solid wire not containing flux or a flux-cored wire containing flux. Further, the welding current used in the welding system 1 may be either direct current or alternating current.
  • FIG. 2 is a diagram for explaining the configuration of the power supply control means provided in the welding system 1 shown in FIG.
  • a power supply device 50 as a power supply control unit includes a switch 51 that receives an instruction to start welding by an operator, a welding current setting unit 52 that sets a welding current to be supplied to the welding wire 100, and welding using the wire feeding device 30.
  • a feed rate setting unit 53 that sets the feed rate of the wire 100 and a welding current that converts a set value of the welding current set by the welding current setting unit 52 into a set value of the feed rate in the feed rate setting unit 53 / Feed speed conversion unit 54.
  • the power supply device 50 drives the power supply unit 55 based on the setting by the power supply unit 55 that supplies a welding current between the welding torch 10 (welding wire 100) and the workpiece 200 and the welding current setting unit 52.
  • a power supply drive unit 56 and a welding current detection unit 57 that detects a welding current flowing from the welding torch 10 to the workpiece 200 via the welding wire 100 are provided.
  • the power supply device 50 determines that the welding current has flowed based on the detection result of the welding current by the welding current detection unit 57, and outputs a determination result (current detection result).
  • An energization determination unit 59 that determines that the welding current has flowed for a predetermined time based on the determination result by the unit 58 and outputs the determination result (energization determination result) is provided.
  • the welding current setting unit 52 has a function as a current control unit.
  • FIG. 3 is a flowchart for explaining an arc start procedure in welding system 1 of the present embodiment.
  • FIG. 4 is a timing chart for explaining an example of an arc start procedure in the welding system 1 of the present embodiment.
  • the welding start signal S input from the switch 51 to the welding current setting unit 52, the feeding speed setting unit 53, and the power source driving unit 56, and the feeding speed setting unit 53 is connected to the wire feeding device 30.
  • the energization determination unit 59 is welded. Current It shows the relationship between the current judgment signal J to be output to the tough 52.
  • the welding start signal S
  • the welding start signal S, the current detection signal D, and the energization determination signal J are set to “L”, the feeding speed setting signal F and the welding current setting signal C are set to “0”, respectively. It is assumed that it is set. As a result, the feeding speed V and the welding current I are also assumed to be “0”. Furthermore, in the initial state before the arc start, the tip of the welding wire 100 held by the welding torch 10 is arranged at a position away from the workpiece 200 by a predetermined distance.
  • step 10 it is identified whether the welding start signal S input from the switch 51 is “L” or “H” (step 10). If the welding start signal S is “L” in step 10 (NO), the process returns to step 10 and the process is continued.
  • the welding current setting unit 52 changes the welding current setting signal C from “0” to “initial welding current setting value Ca” (Ste 20). Further, the feeding speed setting unit 53 changes the feeding speed setting signal F from “0” to “starting feeding speed setting value Fi” (step 30).
  • step 40 it is determined whether the current detection signal D input from the current determination unit 58 is “L” or “H” (step 40). If the current detection signal D is “L” in step 40 (NO), the process returns to step 40 and the process is continued.
  • the feed speed setting unit 53 changes the feed speed setting signal F from “start feed speed setting value Fi” to “initial feed”. Change to “feed speed set value Fa” (step 50).
  • step 60 it is identified whether the energization determination signal J input from the energization determination unit 59 is “L” or “H” (step 60).
  • the energization determination signal J is “L” in step 60 (NO)
  • the process returns to step 60 and the process is continued.
  • the welding current setting unit 52 changes the welding current setting signal C from “initial welding current setting value Ca” to “steady welding current setting value Cr”.
  • the feeding speed setting unit 53 changes the feeding speed setting signal F from “initial feeding speed setting value Fa” to “steady feeding speed setting value Fr” (step 80). Thereby, the arc start is completed.
  • the welding start signal S is changed from “L” to “H” (YES in step 10).
  • the welding current setting unit 52 changes the welding current setting signal C from “0” to “initial welding current setting value Ca”. 20: 0 ⁇ Ca)
  • the feeding speed setting unit 53 changes the feeding speed setting signal F from “0” to “starting feeding speed setting value Fi” (step 30: 0 ⁇ Fi).
  • the welding current setting signal C is set to the initial welding current setting value Ca. Accordingly, the power supply unit 55 applies a welding voltage corresponding to the initial welding current set value Ca between the welding wire 100 and the workpiece 200. However, at this time, feeding of the welding wire 100 has just started, and the tip of the welding wire 100 has not reached the workpiece 200. Therefore, at this time, the welding current I is maintained at “0”, and the current detection signal D and the energization determination signal J also remain “L”.
  • the feeding speed setting signal F is set to the starting feeding speed setting value Fi, whereby the wire feeding device 30 starts feeding the welding wire 100.
  • the feed speed V does not immediately reach the start feed speed Vi according to the start feed speed set value Fi from 0, it takes time to accelerate, so there is a slight delay (lag). Along with this, the starting feed speed Vi is reached.
  • the initial welding current Ia begins to flow as the welding current I through the welding wire 100 and the workpiece 200 by the set welding voltage. Further, as the initial welding current Ia flows through the welding wire 100, the tip side of the welding wire 100 is melted, and an arc (not shown) is generated between the welding wire 100 and the workpiece 200.
  • the welding current I (initial welding current Ia) has started to flow in this way is detected by the welding current detection unit 57 and the detection result is output to the current determination unit 58.
  • the current determination unit 58 changes the output current detection signal D from “L” to “H” (YES in Step 40).
  • the feeding speed setting unit 53 changes the feeding speed setting signal F from “starting feeding speed setting value Fi” to “initial feeding”. Change to “speed set value Fa” (step 50: Fi ⁇ Fa).
  • the feeding speed setting signal F is set to the initial feeding speed setting value Fa, whereby the wire feeding device 30 starts changing the feeding speed V of the welding wire 100.
  • the feed speed V does not immediately reach the initial feed speed Va corresponding to the initial feed speed set value Fa from the start feed speed Vi, but takes some time for acceleration.
  • the initial feeding speed Va is reached with a lag).
  • the energization determination unit 59 starts measuring time.
  • the energization determination unit 59 changes the energization determination signal J to be output from “L” to “H”. Change (YES in step 60).
  • the welding current setting unit 52 changes the welding current setting signal C from “initial welding current setting value Ca” to “steady welding current setting value Cr”.
  • the feeding speed setting unit 53 changes the feeding speed setting signal F from “initial feeding speed setting value Fa” to “steady feeding speed setting value Fr”.
  • Fa ⁇ Fr Fa ⁇ Fr
  • the welding current setting signal C is set to the steady welding current set value Cr, so that the welding current I flowing through the welding wire 100 shifts from the initial welding current Ia to the steady welding current Ir (Ia ⁇ Ir).
  • the wire feeding device 30 starts changing the feeding speed V of the welding wire 100 by setting the feeding speed setting signal F to the steady feeding speed setting value Fr.
  • the feed speed V does not immediately reach the steady feed speed Vr corresponding to the steady feed speed set value Fr from the initial feed speed Va, but takes some time for acceleration. ) To reach the steady feeding speed Vr. Thereby, the arc start is completed.
  • the welding current setting signal C is instantaneously switched from the initial welding current setting value Ca to the steady welding current setting value Cr, whereby the welding current I is changed to the initial welding current Ia.
  • the method for switching the welding current I from the initial welding current Ia to the steady welding current Ir is not limited to this.
  • FIG. 5 is a timing chart for explaining a modification of the arc start procedure in the welding system 1 of the present embodiment.
  • a slope setting value Cs is provided in the welding current setting signal C when the welding current setting signal C is switched from the initial welding current setting value Ca to the steady welding current setting value Cr.
  • the steady welding current set value Cr may be reached at a fourth time t4 when a predetermined time has elapsed from the third time t3.
  • the welding current I that is the initial welding current Ia at the third time t3 gradually increases at the rising slope Is from the third time t3 to the fourth time t4, and is steady at the fourth time t4.
  • the welding current Ir is reached.
  • the inclination setting value Cs is set in the feeding speed setting signal F along with the setting of the inclination setting value Cs in the welding current setting signal C.
  • the rising slope Vs is also set for the speed V.
  • an initial welding current Ia smaller than the steady welding current Ir is supplied as the welding current I, and the initial welding current Ia is set in advance. After flowing for a predetermined set period T, the initial welding current Ia is switched to the target steady welding current Ir. As a result, it is possible to suppress the fusing (wire fusing) of the welding wire 100 caused by the welding current I immediately after the arc start and the increase in spatter accompanying the wire fusing.
  • the rising slope Is is provided when switching from the initial welding current Ia to the steady welding current Ir.
  • the amount of current supplied to the welding wire 100 temporarily increases. Accordingly, at the time of switching, the red heat of the welding wire 100 increases, so that the welding wire 100 is easily softened and wire fusing is likely to occur. For this reason, the steep red heat of the welding wire 100 can be suppressed by providing the rising slope Is.
  • the steady welding current Ir is set to be high, it is possible to suppress wire fusing and burnback associated therewith, and to suppress an increase in spatter.
  • ⁇ Initial welding current Ia> The period during which the initial welding current Ia flows is provided to stabilize the arc before reaching the steady welding current Ir.
  • the welding current I exceeds 350 (A) the Joule heat generated in the welding wire 100 is increased, wire breakage is likely to occur, and the droplet transfer is also a globule transfer welding in which the droplet immediately below the wire becomes large. As a result, wire fusing is likely to occur and sputtering is likely to increase. Therefore, the initial welding current Ia is preferably 300 (A) or less.
  • the more preferable range of the initial welding current Ia is 100 (A) to 250 ( A).
  • the initial welding current Ia does not include 0 (A).
  • ⁇ Steady welding current Ir> The frequency of wire fusing changes depending on the value of the steady welding current Ir transferred from the initial welding current Ia, and the higher the steady welding current Ir, the more likely the wire fusing due to the red heat effect occurs.
  • the steady welding current Ir is less than 350 (A)
  • the steady welding current Ir exceeds 600 (A)
  • the range of the steady welding current Ir is defined as 350 (A) to 600 (A).
  • the current is 350 (A) to 550 (A).
  • the set period T is set to 20 (msec) or longer, the arc is stabilized while the initial welding current Ia is flowing, and therefore wire fusing at the time of transition from the initial welding current Ia to the steady welding current Ir is further suppressed. It becomes possible. Therefore, the set period T is preferably 20 (msec) or more, and more preferably 50 msec or more, since the arc is more stable. However, even if the setting period T through which the initial welding current Ia flows is excessively long, the efficiency is reduced. Therefore, the setting period T is preferably less than 700 (msec).
  • ⁇ Rising slope Is> When there is a difference between the steady welding current Ir and the initial welding current Ia, the welding wire 100 is easily red-hot, and the larger the current difference between the two is, the easier the welding wire 100 is softened by red heat. Along with this, wire fusing is likely to occur when the initial welding current Ia is shifted to the steady welding current Ir. It is preferable to provide the slope Is. By giving such a rising inclination Is, steep red heat of the wire can be suppressed, and therefore, it is more preferable to provide an inclination of 50 (A / 100 msec) or more. Note that the rising slope Is does not have to be a linear and continuous value (linear function of time) as shown in FIG. 5, and may be a curve or a step.
  • control may be performed to change the welding speed between the period in which the initial welding current Ia is supplied and the period in which the steady welding current Ir is supplied.
  • the welding speed during the period when the initial welding current Ia is supplied is set to be equal to or lower than the welding speed (the welding speed under this condition) during the period when the steady welding current Ir is supplied. This makes it possible to match the welding amount between the period in which the initial welding current Ia is supplied and the period in which the steady welding current Ir is supplied, and the bead shape of the start portion is stabilized.
  • the welding speed during the period in which the steady welding current Ir is supplied (the welding speed under this condition) is 0.
  • the welding speed during the period in which the initial welding current Ia is supplied is controlled to 0.3 (mpm).
  • the steady welding current Ir is controlled to a constant value.
  • the present invention is not limited to this, and it may be a pulse current that repeatedly applies a peak current to the base current at a certain frequency. Absent.
  • the arc start control according to the present embodiment is realized by the function provided in the power supply device 50.
  • the robot control device 60 may be configured to bear a part of the function for realizing the arc start control according to the present embodiment.
  • FIG. 6 is a diagram for explaining another configuration example of the power supply control means provided in the welding system 1 according to the embodiment of the present invention.
  • the switch 51, the welding current setting unit 52, and the energization determination unit 59 provided in the power supply device 50 in the configuration example illustrated in FIG. 2 are provided in the robot control device 60.
  • the power supply device 50 includes a power supply device interface unit 501 for sending and receiving various signals to and from the robot control device 60.
  • the robot control device 60 sends and receives various signals to and from the power supply device 50.
  • a control device interface unit 601 is provided.
  • the functions of the switch 51, the welding current setting unit 52, and the energization determining unit 59 provided in the robot control device 60 shown in FIG. 6 are the same as those provided in the power supply device 50 shown in FIG. Therefore, detailed description thereof is omitted here.
  • the welding start signal S, the welding current setting signal C, and the current detection signal D are exchanged between the power supply device 50 and the robot control device 60.
  • the functions of the welding current setting unit 52 and the feeding speed setting unit 53 in the present embodiment can be realized by an analog circuit or a digital circuit.
  • the welding current setting unit 52 and the feed rate setting unit 53 are realized by a digital circuit, for example, a program describing the output procedure of each control signal at each timing described with reference to FIGS. Is stored in a memory provided in the welding current setting unit 52 or the feeding speed setting unit 53, the function of the present embodiment can be implemented. And each function is implement
  • the inventor uses the welding system 1 shown in FIG. 1 and sets the welding wire 100 type, the diameter of the welding wire 100, the initial welding current Ia and the steady welding current Ir supplied to the welding wire 100, and the set period as welding conditions. Experiments for welding the workpiece 200 with different T and rising slope Is were performed, and the occurrence of arc breakage at the time of arc start was evaluated.
  • the type (wire type) of the welding wire 100 a solid wire not containing flux and a flux-cored wire containing flux were used.
  • the welding wire 100 having a diameter of ⁇ 1.2 (mm) and ⁇ 1.4 (mm) was used.
  • carbon dioxide gas (100% CO 2 ) was used as the shielding gas.
  • a steel plate defined by JIS G3106 SM490A was used as the workpiece 200 to be welded.
  • the initial welding current Ia was selected from the range of 100 (A) to 550 (A).
  • the steady welding current Ir was selected from the range of 250 (A) or more and 550 (A) or less.
  • the set period T was selected from the range of 0 (mesc) to 800 (msec).
  • the rising slope Is was selected from the range of no slope to 1500 (A / 100 msec) or less.
  • Tables 1 to 17 shown below show the relationship between the 336 welding conditions (No. 1 to No. 336) used in this experiment and the obtained evaluation results.
  • the solid wire is represented as “Solid”, and the flux-cored wire is represented as “Cored”.
  • No. 1-No. Reference numeral 50 (Tables 1 to 5) shows comparative examples of the present invention, and the rest show examples of the present invention.
  • the magnitudes of the initial welding current Ia and the steady welding current Ir at this time were 250 (A) to 500 (A).
  • the magnitudes of the initial welding current Ia and the steady welding current Ir at this time were 250 (A) to 500 (A).
  • the initial welding current Ia and the steady welding current Ir at this time were 250 (A) to 550 (A).
  • the initial welding current Ia and the steady welding current Ir at this time were 250 (A) to 550 (A).
  • Table 1 and Table 2 the wire type of the same wire diameter is different, but in Table 1 and Table 3, the wire diameter of the same wire type is different. Further, Table 2 and Table 4 have different wire diameters with the same wire type, and Tables 3 and 4 have different wire types with the same wire diameter.
  • Tables 1 to 4 in the conventional arc start method, since the initial welding current Ia and the steady welding current Ir have the same magnitude, the set period T is inevitably set to “0” and the rising slope Is. Becomes “none”.
  • Table 5 shows a case where a solid wire of ⁇ 1.2 is used as the welding wire 100 and the initial welding current Ia is smaller than the steady welding current Ir (Ia ⁇ Ir). At this time, the magnitude of the steady welding current Ir was 500 (A), and the magnitude of the initial welding current Ia was 100 (A).
  • the wire type and the wire diameter are the same in Table 1 and Table 5, the magnitude relationship between the initial welding current Ia and the steady welding current Ir is different.
  • the set period T was set to 700 (msec) to 800 (msec), and the rising slope Is was set to 1500 (A / 100 msec).
  • Table 6 shows that a ⁇ 1.2 solid wire is used as the welding wire 100, the initial welding current Ia is smaller than the steady welding current Ir (Ia ⁇ Ir), and the initial welding current Ia is fixed to 100 (A). Shows the case.
  • the magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
  • Table 7 also shows that a ⁇ 1.2 solid wire is used as the welding wire 100, the initial welding current Ia is smaller than the steady welding current Ir (Ia ⁇ Ir), and the initial welding current Ia is 200 (A). The case of fixing is shown. The magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
  • Table 8 uses a ⁇ 1.2 solid wire as the welding wire 100, reduces the initial welding current Ia compared to the steady welding current Ir (Ia ⁇ Ir), and sets the initial welding current Ia to 300 (A). The case of fixing is shown. The magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
  • the wire type and the wire diameter are the same, but the magnitude relationship between the initial welding current Ia and the steady welding current Ir is different.
  • the wire type and the wire diameter are the same, but the magnitude of the initial welding current Ia is different.
  • the set period T was set to 0 (msec) to 650 (msec), and the rising slope Is was set to 150 (A / 100 msec) to 1500 (A / 100 msec).
  • the set period T is set to 0 (msec) to 350 (msec), and the rising slope Is is set to 100 (A / 100 msec) to 1000 (A / 100 msec).
  • the setting period T is set to 0 (msec) to 250 (msec), and the rising slope Is is set to 50 (A / 100 msec) to 1000 (A / 100 msec).
  • Table 9 uses a flux-cored wire of ⁇ 1.2 as the welding wire 100, reduces the initial welding current Ia compared to the steady welding current Ir (Ia ⁇ Ir), and fixes the initial welding current Ia to 100 (A). Shows the case.
  • the magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
  • Table 10 shows that a flux-cored wire having a diameter of ⁇ 1.2 is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia ⁇ Ir), and the initial welding current Ia is 200 (A). The case where it fixes to is shown. The magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
  • Table 11 shows that a flux-cored wire of ⁇ 1.2 is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia ⁇ Ir), and the initial welding current Ia is 300 (A). The case where it fixes to is shown. The magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
  • the wire type and the wire diameter are the same in Table 2 and Tables 9 to 11, the magnitude relationship between the initial welding current Ia and the steady welding current Ir is different.
  • Tables 6 to 8 and Tables 9 to 11 have the same wire diameter but different wire types.
  • the magnitude of the initial welding current Ia is different.
  • the set period T was set to 0 (msec) to 250 (msec)
  • the rising slope Is was set to 50 (A / 100 msec) to 1500 (A / 100 msec).
  • the set period T is set to 0 (msec) to 325 (msec), and the rising slope Is is set to 100 (A / 100 msec) to 1500 (A / 100 msec). Further, in Table 11, the set period T is set to 0 (msec) to 175 (msec), and the rising slope Is is set to 50 (A / 100 msec) to 1500 (A / 100 msec).
  • Table 12 uses a ⁇ 1.4 solid wire as the welding wire 100, reduces the initial welding current Ia compared to the steady welding current Ir (Ia ⁇ Ir), and fixes the initial welding current Ia to 100 (A). Shows the case.
  • the magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
  • Table 13 shows that a solid wire of ⁇ 1.4 is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia ⁇ Ir), and the initial welding current Ia is 200 (A). The case of fixing is shown. The magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
  • Table 14 shows that a solid wire of ⁇ 1.4 is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia ⁇ Ir), and the initial welding current Ia is set to 300 (A). The case of fixing is shown. The magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
  • the wire type and the wire diameter are the same, but the magnitude relationship between the initial welding current Ia and the steady welding current Ir is different.
  • the wire diameters of the same wire types are different.
  • the wire type and the wire diameter are the same, but the magnitude of the initial welding current Ia is different.
  • the set period T is set to 0 (msec) to 275 (msec)
  • the rising slope Is is set to 250 (A / 100 msec) to 1500 (A / 100 msec).
  • the set period T is set to 0 (msec) to 225 (msec), and the rising slope Is is set to 200 (A / 100 msec) to 1500 (A / 100 msec). Further, in Table 14, the set period T is set to 0 (msec) to 225 (msec), and the rising slope Is is set to 200 (A / 100 msec) to 1500 (A / 100 msec).
  • Table 15 uses a ⁇ 1.4 flux-cored wire as the welding wire 100, reduces the initial welding current Ia compared to the steady welding current Ir (Ia ⁇ Ir), and fixes the initial welding current Ia to 100 (A). Shows the case.
  • the magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
  • Table 16 also shows that a ⁇ 1.4 flux cored wire is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia ⁇ Ir), and the initial welding current Ia is 200 (A). The case where it fixes to is shown. The magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
  • Table 17 shows that a ⁇ 1.4 flux cored wire is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia ⁇ Ir), and the initial welding current Ia is 300 (A). The case where it fixes to is shown. The magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
  • the wire type and the wire diameter are the same in Table 4 and Tables 15 to 17, the magnitude relationship between the initial welding current Ia and the steady welding current Ir is different.
  • Tables 9 to 11 and Tables 15 to 17 have the same wire type but different wire diameters.
  • the magnitude of the initial welding current Ia is different.
  • the setting period T is set to 0 (msec) to 175 (msec)
  • the rising slope Is is set to 250 (A / 100 msec) to 1500 (A / 100 msec).
  • the set period T is set to 0 (msec) to 125 (msec), and the rising slope Is is set to 250 (A / 100 msec) to 1500 (A / 100 msec). Further, in Table 17, the set period T is set to 0 (msec) to 200 (msec), and the rising slope Is is set to 150 (A / 100 msec) to 1500 (A / 100 msec).
  • the inventor uses the welding system 1 shown in FIG. 1 and sets the welding wire 100 type, the diameter of the welding wire 100, the initial welding current Ia and the steady welding current Ir supplied to the welding wire 100, and the set period as welding conditions.
  • the scattered matter refers to a spatter generated from the start to the end of welding, a wire piece of the welding wire 100 scattered at the time of wire fusing, or the like.
  • a solid wire containing no flux was used as the type (wire type) of the welding wire 100.
  • the diameter of the welding wire 100 was ⁇ 1.2 mm.
  • carbon dioxide gas (100% CO 2 ) was used as the shielding gas.
  • a steel plate defined by JIS G3106 SM490A was used as the workpiece 200 to be welded.
  • the initial welding current Ia was selected from the range of 250 (A) to 500 (A). Further, in this experiment, the steady welding current Ir was selected from the range of 350 (A) to 500 (A). Furthermore, in this experiment, the set period T was selected from the range of 0 (mesc) to 50 (msec). In this experiment, the rising slope Is was selected from the range of no slope to 200 (A / 100 msec) or less.
  • Table 18 and Table 19 below show the relationship between the eight welding conditions (No. 337 to No. 344) used in this experiment and the obtained evaluation results.
  • No. shown in Table 18 The welding conditions of 337 to N0.340 are No. 1 shown in Table 1. 5, no. 7, no. 9, no. 11 corresponds to each.
  • No. The reduction rate of 341 is No. 337 based on the result of No. 337 and shown in Table 19.
  • the reduction rate of 342 is No. shown in Table 18.
  • the reduction rate of 343 is No. shown in Table 18. 339 based on the result of No. 339.
  • the reduction rate of 344 is No. shown in Table 18. Based on 340 results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

The purpose of the present invention is to suppress wire fusion and spatter formation associated with the wire fusion during the arc start period. The present invention provides an arc start control method for consumable electrode type arc welding, wherein a welding wire is fed, at a first time point (t1), toward an object to be welded, the fed welding wire makes contact with the object to be welded so that a welding current (I) flows through the welding wire and the object to be welded, and an arc is generated by the welding current (I) in order to start welding. In this method, an initial welding current (Ia) is supplied as the welding current (I) when the welding wire has come into contact, at a second time point (t2), with the object to be welded, and a steady-state welding current (Ir) which is higher than the initial welding current (Ia) is supplied as the welding current (I) after a predetermined set time period (T) has elapsed from the start of the supply of the initial welding current (Ia).

Description

消耗電極式アーク溶接のアークスタート制御方法、溶接装置Arc start control method and welding apparatus for consumable electrode arc welding
 本発明は、消耗電極式アーク溶接のアークスタート制御方法、溶接装置に関する。 The present invention relates to an arc start control method and welding apparatus for consumable electrode arc welding.
 例えば消耗電極式を採用したガスシールドアーク溶接では、溶接動作を開始する際に、溶接ワイヤと被溶接物との間に電圧を印加した状態で両者を接触させることによって短絡電流を流し、この短絡電流にて溶接ワイヤを溶断させて両者の間にアークを発生させることで、アークスタートを行う。 For example, in gas shielded arc welding using a consumable electrode type, when starting a welding operation, a short-circuit current is caused to flow by bringing both electrodes into contact with each other while a voltage is applied between the welding wire and the workpiece. The arc is started by fusing the welding wire with an electric current and generating an arc between them.
 公報記載の従来技術として、溶接ワイヤと被溶接物とが接触すると溶接ワイヤの送給を停止すると共に溶接電源装置から予め定めた大電流の初期短絡電流を通電し、初期短絡電流の通電によって溶接ワイヤの先端部が溶断してアークが発生し、このアーク発生時点で溶接ワイヤを予め定めた定常の送給速度で送給を開始すると共に定常の溶接電流を通電するアークスタート制御方法において、初期短絡電流の通電によって溶接ワイヤの先端部が溶断してアークが発生した時点で、予め定めた燃上り抑制期間を設け、燃上り抑制期間中は溶接ワイヤの送給を停止したままで予め定めた小電流の燃上り抑制電流を通電し、燃上り抑制期間終了後に定常の溶接電流を通電するものが存在する(特許文献1参照)。 As a prior art described in the publication, when the welding wire comes into contact with the work piece, the welding wire is stopped and a predetermined large initial short-circuit current is supplied from the welding power source, and welding is performed by applying the initial short-circuit current. In the arc start control method in which the tip of the wire is melted and an arc is generated, and the welding wire is fed at a predetermined steady feeding speed at the time of the arc and a steady welding current is energized. When the arc is generated by melting the tip of the welding wire by energizing the short-circuit current, a predetermined burnup suppression period is provided, and the welding wire feed is stopped during the burnup suppression period. There is one that energizes a small current burnup suppression current and energizes a steady welding current after the completion of the burnup suppression period (see Patent Document 1).
 また、他の公報記載の従来技術として、アークスタートから負荷電流が安定して定常状態に至るまでの初期期間において、負荷電流の最大値を400A以下に抑えるとともに、短絡の発生間隔を50msec以下とする初期制御を行うものが存在する(特許文献2参照)。 In addition, as a prior art described in other publications, the maximum value of the load current is suppressed to 400 A or less and the short-circuit occurrence interval is set to 50 msec or less in the initial period from the arc start until the load current is stabilized and reaches a steady state. There is one that performs initial control (see Patent Document 2).
 さらに、他の公報記載の従来技術として、溶接開始に際して、溶接トーチから送給される溶接ワイヤを被溶接物に接触させて初期電流を通電し、その後に溶接ワイヤを引き離すことによって初期アークを発生させた後に定常アークへと移行させる消耗電極アーク溶接のアークスタート制御方法において、初期電流の立ち上がりに傾斜をつけるものが存在する(特許文献3参照)。 Furthermore, as a prior art described in other publications, when welding is started, an initial arc is generated by bringing a welding wire fed from a welding torch into contact with an object to be welded and energizing an initial current, and then separating the welding wire. There is an arc start control method of consumable electrode arc welding in which a transition to a steady arc is made after the start of the current, and an initial current rises with a slope (see Patent Document 3).
 さらにまた、他の公報記載の従来技術として、アークスタート期間において、ワイヤ送給速度と溶接電圧との変化を同期するように連続的に制御し、さらにワイヤ送給速度に対応付けられた溶接電圧を所定時間の長さ印加するものが存在する(特許文献4参照)。 Furthermore, as a prior art described in other publications, during the arc start period, the welding voltage is continuously controlled so as to synchronize the change between the wire feeding speed and the welding voltage, and further the welding voltage associated with the wire feeding speed. Is applied for a predetermined length of time (see Patent Document 4).
 また、他の公報記載の従来技術として、アークスタート時に溶接電流を検出してその検出結果に基づいて溶接ロボットに取り付けられた溶接用トーチを移動させる溶接ロボットのアークスタート制御方法が存在する。この従来技術は、溶接電流が所定時間連続して流れない場合には溶接ロボットの動作による溶接用トーチの溶接線方向への移動を停止したままとなる。一方、溶接電流が所定時間連続して流れた場合には溶接ロボットの動作による溶接用トーチの溶接線方向への移動を開始する(特許文献5参照)。 Also, as a prior art described in other publications, there is an arc start control method for a welding robot that detects a welding current at the time of arc start and moves a welding torch attached to the welding robot based on the detection result. In this prior art, when the welding current does not continuously flow for a predetermined time, the movement of the welding torch in the welding line direction by the operation of the welding robot remains stopped. On the other hand, when the welding current flows continuously for a predetermined time, movement of the welding torch in the welding line direction by the operation of the welding robot is started (see Patent Document 5).
特開2004-25265号公報JP 2004-25265 A 特開2008-12580号公報JP 2008-12580 A 特開2008-149361号公報JP 2008-149361 A 特開2009-101370号公報JP 2009-101370 A 特開2010-172953号公報JP 2010-172953 A
 アークスタートの期間中では、アークが発生した直後から定常の状態に移行するまでの間に、溶接ワイヤに溶接電流が流れすぎると、溶接ワイヤが赤熱し、これに伴って溶接ワイヤが溶断するワイヤ溶断と呼ばれる現象が生じる。そして、このようなワイヤ溶断が生じると、アーク切れに伴うスパッタや、溶断した溶接ワイヤの周辺への飛散などが発生する。 During the arc start period, if the welding current flows too much in the welding wire immediately after the arc is generated until it shifts to a steady state, the welding wire becomes red hot, and the welding wire melts accordingly. A phenomenon called fusing occurs. When such wire fusing occurs, spatter due to arc breakage, scattering around the fusing welding wire, and the like occur.
 本発明は、アークスタートの期間中におけるワイヤ溶断およびワイヤ溶断に伴うスパッタの発生を抑制することを目的とする。 An object of the present invention is to suppress wire fusing during the arc start period and the occurrence of spatter accompanying the wire fusing.
 本発明は、溶接ワイヤを被溶接物に向けて送給し、送給される当該溶接ワイヤが当該被溶接物に接触することで当該溶接ワイヤと当該被溶接物とに溶接電流を流し、当該溶接電流にてアークを発生させることにより溶接を開始する消耗電極式アーク溶接のアークスタート制御方法において、前記溶接ワイヤと前記被溶接物とが接触した際に、前記溶接電流として初期溶接電流を供給する工程と、前記初期溶接電流の供給を開始してから予め決められた設定期間が経過した後、前記溶接電流として当該初期溶接電流よりも大きい定常溶接電流を供給する工程とを有することを特徴としている。
 この消耗電極式アーク溶接のアークスタート制御方法において、前記初期溶接電流の大きさが100(A)以上且つ300(A)以下となる範囲から選択され、前記定常溶接電流の大きさが350(A)以上且つ550(A)以下となる範囲から選択されることを特徴とすることができる。
 また、前記設定期間が25(msec)以上且つ700(msec)未満となる範囲から選択されることを特徴とすることができる。
 さらに、前記初期溶接電流を供給する工程と前記定常溶接電流を供給する工程との間に、立ち上がり傾斜を設ける工程を有することを特徴とすることができる。
 さらにまた、前記立ち上がり傾斜を設ける工程では、当該立ち上がり傾斜を1500(A/100msec)以下に設定することを特徴とすることができる。
 また、他の観点から捉えると、本発明の溶接装置は、溶接ワイヤを介して被溶接物に溶接電流を供給する電源部と、前記被溶接物に向けて送給される前記溶接ワイヤが当該被溶接物に接触した際に、前記溶接電流として初期溶接電流を前記電源部から供給させ、当該初期溶接電流の供給を開始してから予め決められた設定期間が経過した後、当該溶接電流として当該初期溶接電流よりも大きい定常溶接電流を当該電源部から供給させる電流制御部とを含んでいる。
 この溶接装置において、前記被溶接物に対する溶接作業を制御する制御装置と、前記溶接ワイヤおよび前記被溶接物に前記初期溶接電流が流れたことを検知する判定部と、前記電源部を駆動する電源駆動部と、をさらに備え、前記制御装置は、前記判定部により前記溶接ワイヤおよび前記被溶接物に前記初期溶接電流が流れたと判定され、さらに予め決められた設定時間が経過した後に、前記電源駆動部に対して前記電源部から前記定常溶接電流を供給させる電流設定信号を出力することを特徴とすることができる。
The present invention feeds the welding wire toward the workpiece, and when the fed welding wire comes into contact with the workpiece, a welding current is passed through the welding wire and the workpiece, In an arc start control method for consumable electrode arc welding in which welding is started by generating an arc with a welding current, an initial welding current is supplied as the welding current when the welding wire comes into contact with the workpiece. And a step of supplying a steady welding current larger than the initial welding current as the welding current after a predetermined set period has elapsed after the supply of the initial welding current is started. It is said.
In this arc start control method for consumable electrode arc welding, the initial welding current is selected from a range of 100 (A) to 300 (A), and the steady welding current is 350 (A). ) And 550 (A) or less.
Further, the setting period may be selected from a range of 25 (msec) or more and less than 700 (msec).
Furthermore, it can be characterized by having a step of providing a rising slope between the step of supplying the initial welding current and the step of supplying the steady welding current.
Furthermore, in the step of providing the rising slope, the rising slope can be set to 1500 (A / 100 msec) or less.
From another point of view, the welding apparatus according to the present invention includes a power supply unit that supplies a welding current to a workpiece via a welding wire, and the welding wire that is fed toward the workpiece. When the workpiece is contacted, an initial welding current is supplied from the power supply unit as the welding current, and after a predetermined set period has elapsed since the start of the supply of the initial welding current, A current control unit that supplies a steady welding current larger than the initial welding current from the power supply unit.
In this welding apparatus, a control device that controls welding work on the workpiece, a determination unit that detects that the initial welding current has flowed through the welding wire and the workpiece, and a power source that drives the power source unit A drive unit, wherein the control unit determines that the initial welding current has flowed through the welding wire and the workpiece by the determination unit, and further, after the predetermined set time has elapsed, A current setting signal for supplying the steady welding current from the power supply unit to the drive unit may be output.
 本発明によれば、アークスタートの期間中におけるワイヤ溶断およびワイヤ溶断に伴うスパッタの発生を抑制することができる。 According to the present invention, it is possible to suppress the occurrence of wire fusing during the arc start period and the occurrence of spatter accompanying the wire fusing.
本発明の実施の形態に係る溶接システムの概略構成を示す図である。It is a figure showing a schematic structure of a welding system concerning an embodiment of the invention. 溶接システムに設けられた電源制御手段の構成を説明するための図である。It is a figure for demonstrating the structure of the power supply control means provided in the welding system. 本実施の形態の溶接システムにおけるアークスタートの手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure of the arc start in the welding system of this Embodiment. 本実施の形態の溶接システムにおけるアークスタートの手順の一例を説明するためのタイミングチャートである。It is a timing chart for demonstrating an example of the procedure of the arc start in the welding system of this Embodiment. 本実施の形態の溶接システムにおけるアークスタートの手順の変形例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the modification of the procedure of the arc start in the welding system of this Embodiment. 溶接システムに設けられた電源制御手段の他の構成例を説明するための図である。It is a figure for demonstrating the other structural example of the power supply control means provided in the welding system.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
 図1は、本発明の実施の形態に係る溶接システム1の概略構成を示す図である。この溶接システム1は、消耗電極式(溶極式)のガスシールドアーク溶接法のうち、炭酸ガスをシールドガスとして用いる炭酸ガスアーク溶接法によって、被溶接物200の溶接を行うものである。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a diagram showing a schematic configuration of a welding system 1 according to an embodiment of the present invention. The welding system 1 performs welding of the workpiece 200 by a carbon dioxide arc welding method using carbon dioxide gas as a shielding gas among consumable electrode type (melting electrode type) gas shielded arc welding methods.
 溶接装置の一例としての溶接システム1は、溶接ワイヤ100を用いて被溶接物200を溶接する溶接トーチ10と、溶接トーチ10を保持するとともに溶接トーチ10の位置や姿勢を設定するロボットアーム20と、溶接トーチ10に溶接ワイヤ100を送給するワイヤ送給装置30と、溶接トーチ10にシールドガス(ここでは炭酸ガス)を供給するシールドガス供給装置40と、溶接トーチ10を介して溶接ワイヤ100に溶接電流を供給するとともに、溶接電流、送給速度および溶接速度等の制御を行う電源装置50とを備える。 A welding system 1 as an example of a welding apparatus includes a welding torch 10 that welds a workpiece 200 using a welding wire 100, and a robot arm 20 that holds the welding torch 10 and sets the position and orientation of the welding torch 10. The wire feeding device 30 that feeds the welding wire 100 to the welding torch 10, the shield gas supply device 40 that feeds the shielding gas (here, carbon dioxide gas) to the welding torch 10, and the welding wire 100 via the welding torch 10. And a power supply device 50 for controlling the welding current, the feeding speed, the welding speed, and the like.
 また、この溶接システム1は、溶接トーチ10およびロボットアーム20による被溶接物200に対する溶接作業を制御する制御装置の一例として、ロボットアーム20を制御するためのロボット制御装置60を備える。ロボット制御装置60により、ロボットアーム20に設けられた溶接トーチ10(溶接ワイヤ100)の移動およびその速度(溶接速度)が制御される。なお、ロボット制御装置60と電源装置50とは、データや制御信号の送受信が可能な構成とすることができる。 Further, the welding system 1 includes a robot control device 60 for controlling the robot arm 20 as an example of a control device for controlling a welding operation to the workpiece 200 by the welding torch 10 and the robot arm 20. The robot controller 60 controls the movement and the speed (welding speed) of the welding torch 10 (welding wire 100) provided in the robot arm 20. The robot control device 60 and the power supply device 50 can be configured to transmit and receive data and control signals.
 この溶接システム1で用いる溶接ワイヤ100としては、フラックスを含まないソリッドワイヤあるいはフラックスを含むフラックス入りワイヤのどちらであってもよい。
 また、この溶接システム1で用いる溶接電流としては、直流および交流のどちらであってもよい。
The welding wire 100 used in the welding system 1 may be either a solid wire not containing flux or a flux-cored wire containing flux.
Further, the welding current used in the welding system 1 may be either direct current or alternating current.
 図2は、図1に示す溶接システム1に設けられた電源制御手段の構成を説明するための図である。
 電源制御手段としての電源装置50は、作業者による溶接開始の指示を受け付けるスイッチ51と、溶接ワイヤ100に供給する溶接電流を設定する溶接電流設定部52と、ワイヤ送給装置30を用いた溶接ワイヤ100の送給速度を設定する送給速度設定部53と、溶接電流設定部52によって設定された溶接電流の設定値を送給速度設定部53における送給速度の設定値に変換する溶接電流/送給速度変換部54とを備える。また、電源装置50は、溶接トーチ10(溶接ワイヤ100)と被溶接物200との間に溶接電流を供給する電源部55と、溶接電流設定部52による設定に基づいて電源部55を駆動する電源駆動部56と、溶接トーチ10から溶接ワイヤ100を介して被溶接物200に流れる溶接電流を検知する溶接電流検知部57とを備える。さらに、電源装置50は、溶接電流検知部57による溶接電流の検知結果に基づいて溶接電流が流れたことを判定し、その判定結果(電流検知結果)を出力する電流判定部58と、電流判定部58による判定結果に基づいて溶接電流が予め決められた時間だけ流れたことを判定し、その判定結果(通電判定結果)を出力する通電判定部59とを備える。なお、本実施の形態では、溶接電流設定部52が、電流制御部としての機能を有している。
FIG. 2 is a diagram for explaining the configuration of the power supply control means provided in the welding system 1 shown in FIG.
A power supply device 50 as a power supply control unit includes a switch 51 that receives an instruction to start welding by an operator, a welding current setting unit 52 that sets a welding current to be supplied to the welding wire 100, and welding using the wire feeding device 30. A feed rate setting unit 53 that sets the feed rate of the wire 100 and a welding current that converts a set value of the welding current set by the welding current setting unit 52 into a set value of the feed rate in the feed rate setting unit 53 / Feed speed conversion unit 54. Further, the power supply device 50 drives the power supply unit 55 based on the setting by the power supply unit 55 that supplies a welding current between the welding torch 10 (welding wire 100) and the workpiece 200 and the welding current setting unit 52. A power supply drive unit 56 and a welding current detection unit 57 that detects a welding current flowing from the welding torch 10 to the workpiece 200 via the welding wire 100 are provided. Furthermore, the power supply device 50 determines that the welding current has flowed based on the detection result of the welding current by the welding current detection unit 57, and outputs a determination result (current detection result). An energization determination unit 59 that determines that the welding current has flowed for a predetermined time based on the determination result by the unit 58 and outputs the determination result (energization determination result) is provided. In the present embodiment, the welding current setting unit 52 has a function as a current control unit.
 次に、本実施の形態の溶接システム1を用いた溶接方法におけるアークスタートの手順について説明を行う。
 図3は、本実施の形態の溶接システム1におけるアークスタートの手順を説明するためのフローチャートである。また、図4は、本実施の形態の溶接システム1におけるアークスタートの手順の一例を説明するためのタイミングチャートである。
Next, an arc start procedure in the welding method using the welding system 1 of the present embodiment will be described.
FIG. 3 is a flowchart for explaining an arc start procedure in welding system 1 of the present embodiment. FIG. 4 is a timing chart for explaining an example of an arc start procedure in the welding system 1 of the present embodiment.
 ここで、図4は、スイッチ51から溶接電流設定部52、送給速度設定部53および電源駆動部56に入力される溶接開始信号Sと、送給速度設定部53がワイヤ送給装置30に出力する送給速度設定信号Fと、送給速度設定信号Fに基づいてワイヤ送給装置30が送給を行う溶接ワイヤ100の実際の送給速度Vと、溶接電流設定部52が溶接電流/送給速度変換部54および電源駆動部56に出力する溶接電流設定信号Cと、溶接電流設定信号Cに基づいて溶接ワイヤ100に実際に流れる溶接電流Iと、溶接電流検知部57による溶接電流Iの検知に基づいて電流判定部58が送給速度設定部53および通電判定部59に出力する電流検知信号Dと、電流判定部58による電流検知信号Dの出力に基づいて通電判定部59が溶接電流設定部52に出力する通電判定信号Jとの関係を示している。ここで、溶接開始信号S、電流検知信号Dおよび通電判定信号Jは、それぞれローレベル(L)およびハイレベル(H)の2状態をとり得る。 4 shows the welding start signal S input from the switch 51 to the welding current setting unit 52, the feeding speed setting unit 53, and the power source driving unit 56, and the feeding speed setting unit 53 is connected to the wire feeding device 30. The feeding speed setting signal F to be output, the actual feeding speed V of the welding wire 100 that the wire feeding device 30 feeds based on the feeding speed setting signal F, and the welding current setting unit 52 determines the welding current / Welding current setting signal C output to feeding speed conversion unit 54 and power supply driving unit 56, welding current I actually flowing to welding wire 100 based on welding current setting signal C, and welding current I by welding current detection unit 57 On the basis of the current detection signal D output from the current determination unit 58 to the feed speed setting unit 53 and the energization determination unit 59 based on the detection of the current and the output of the current detection signal D from the current determination unit 58, the energization determination unit 59 is welded. Current It shows the relationship between the current judgment signal J to be output to the tough 52. Here, the welding start signal S, the current detection signal D, and the energization determination signal J can take two states of low level (L) and high level (H), respectively.
 なお、アークスタートする前の初期状態において、溶接開始信号S、電流検知信号Dおよび通電判定信号Jは「L」に、送給速度設定信号Fおよび溶接電流設定信号Cは「0」に、それぞれ設定されているものとする。また、その結果として、送給速度Vおよび溶接電流Iも、それぞれ「0」となっているものとする。さらに、アークスタートする前の初期状態において、溶接トーチ10に保持された溶接ワイヤ100の先端は、被溶接物200に対し、予め決められた距離だけ離れた位置に配置されているものとする。 In the initial state before the arc start, the welding start signal S, the current detection signal D, and the energization determination signal J are set to “L”, the feeding speed setting signal F and the welding current setting signal C are set to “0”, respectively. It is assumed that it is set. As a result, the feeding speed V and the welding current I are also assumed to be “0”. Furthermore, in the initial state before the arc start, the tip of the welding wire 100 held by the welding torch 10 is arranged at a position away from the workpiece 200 by a predetermined distance.
 では、図3を参照しつつ、アークスタートにおける処理の手順について説明を行う。
 まず、スイッチ51から入力されてくる溶接開始信号Sが「L」か「H」かの識別を行う(ステップ10)。ステップ10において溶接開始信号Sが「L」であった場合(NO)は、ステップ10に戻って処理を続行する。
Now, the procedure of the process at the arc start will be described with reference to FIG.
First, it is identified whether the welding start signal S input from the switch 51 is “L” or “H” (step 10). If the welding start signal S is “L” in step 10 (NO), the process returns to step 10 and the process is continued.
 一方、ステップ10において溶接開始信号Sが「H」であった場合(YES)、溶接電流設定部52は、溶接電流設定信号Cを「0」から「初期溶接電流設定値Ca」に変更する(ステップ20)。また、送給速度設定部53は、送給速度設定信号Fを「0」から「開始時送給速度設定値Fi」に変更する(ステップ30)。 On the other hand, when the welding start signal S is “H” in Step 10 (YES), the welding current setting unit 52 changes the welding current setting signal C from “0” to “initial welding current setting value Ca” ( Step 20). Further, the feeding speed setting unit 53 changes the feeding speed setting signal F from “0” to “starting feeding speed setting value Fi” (step 30).
 次に、電流判定部58から入力されてくる電流検知信号Dが「L」か「H」かの判別を行う(ステップ40)。ステップ40において電流検知信号Dが「L」であった場合(NO)は、ステップ40に戻って処理を続行する。 Next, it is determined whether the current detection signal D input from the current determination unit 58 is “L” or “H” (step 40). If the current detection signal D is “L” in step 40 (NO), the process returns to step 40 and the process is continued.
 一方、ステップ40において電流検知信号Dが「H」であった場合(YES)、送給速度設定部53は、送給速度設定信号Fを「開始時送給速度設定値Fi」から「初期送給速度設定値Fa」に変更する(ステップ50)。 On the other hand, when the current detection signal D is “H” in step 40 (YES), the feed speed setting unit 53 changes the feed speed setting signal F from “start feed speed setting value Fi” to “initial feed”. Change to “feed speed set value Fa” (step 50).
 続いて、通電判定部59から入力されてくる通電判定信号Jが「L」か「H」かの識別を行う(ステップ60)。ステップ60において通電判定信号Jが「L」であった場合(NO)は、ステップ60に戻って処理を続行する。 Subsequently, it is identified whether the energization determination signal J input from the energization determination unit 59 is “L” or “H” (step 60). When the energization determination signal J is “L” in step 60 (NO), the process returns to step 60 and the process is continued.
 一方、ステップ60において通電判定信号Jが「H」であった場合(YES)、溶接電流設定部52は、溶接電流設定信号Cを「初期溶接電流設定値Ca」から「定常溶接電流設定値Cr」に変更する(ステップ70)。また、送給速度設定部53は、送給速度設定信号Fを「初期送給速度設定値Fa」から「定常送給速度設定値Fr」に変更する(ステップ80)。
 これにより、アークスタートが完了する。
On the other hand, when the energization determination signal J is “H” in step 60 (YES), the welding current setting unit 52 changes the welding current setting signal C from “initial welding current setting value Ca” to “steady welding current setting value Cr”. (Step 70). Further, the feeding speed setting unit 53 changes the feeding speed setting signal F from “initial feeding speed setting value Fa” to “steady feeding speed setting value Fr” (step 80).
Thereby, the arc start is completed.
 では、上述したアークスタートの手順を、図4に示すタイミングチャートを参照しながら具体的に説明する。 Here, the arc start procedure described above will be specifically described with reference to the timing chart shown in FIG.
 第1時刻t1において、スイッチ51が「オフ」から「オン」に切り換えられると、溶接開始信号Sが、「L」から「H」に変更される(ステップ10においてYES)。溶接開始信号Sが「L」から「H」に変更されることに伴い、溶接電流設定部52は、溶接電流設定信号Cを「0」から「初期溶接電流設定値Ca」に変更し(ステップ20:0<Ca)、且つ、送給速度設定部53は、送給速度設定信号Fを「0」から「開始時送給速度設定値Fi」に変更する(ステップ30:0<Fi)。 When the switch 51 is switched from “off” to “on” at the first time t1, the welding start signal S is changed from “L” to “H” (YES in step 10). As the welding start signal S is changed from “L” to “H”, the welding current setting unit 52 changes the welding current setting signal C from “0” to “initial welding current setting value Ca”. 20: 0 <Ca), and the feeding speed setting unit 53 changes the feeding speed setting signal F from “0” to “starting feeding speed setting value Fi” (step 30: 0 <Fi).
 第1時刻t1において、溶接電流設定信号Cが初期溶接電流設定値Caに設定される。これに伴い、電源部55は、初期溶接電流設定値Caに応じた溶接電圧を、溶接ワイヤ100と被溶接物200との間に印加する。ただし、この時点では、溶接ワイヤ100の送給が開始されたばかりであり、被溶接物200に溶接ワイヤ100の先端が到達していない。このため、この時点において、溶接電流Iは「0」を維持した状態となっており、電流検知信号Dおよび通電判定信号Jも「L」のままである。 At the first time t1, the welding current setting signal C is set to the initial welding current setting value Ca. Accordingly, the power supply unit 55 applies a welding voltage corresponding to the initial welding current set value Ca between the welding wire 100 and the workpiece 200. However, at this time, feeding of the welding wire 100 has just started, and the tip of the welding wire 100 has not reached the workpiece 200. Therefore, at this time, the welding current I is maintained at “0”, and the current detection signal D and the energization determination signal J also remain “L”.
 また、第1時刻t1において、送給速度設定信号Fが開始時送給速度設定値Fiに設定されることにより、ワイヤ送給装置30は、溶接ワイヤ100の送給を開始する。ただし、送給速度Vは、0から、開始時送給速度設定値Fiに応じた開始時送給速度Viに直ちに到達するのではなく、加速に時間を要するため、若干の遅れ(ラグ)を伴って開始時送給速度Viに到達する。 Also, at the first time t1, the feeding speed setting signal F is set to the starting feeding speed setting value Fi, whereby the wire feeding device 30 starts feeding the welding wire 100. However, since the feed speed V does not immediately reach the start feed speed Vi according to the start feed speed set value Fi from 0, it takes time to accelerate, so there is a slight delay (lag). Along with this, the starting feed speed Vi is reached.
 次に、第1時刻t1から時間が経過した第2時刻t2にて、送給に伴って溶接ワイヤ100の先端が被溶接物200に到達(接触)すると、初期溶接電流設定値Caに応じて設定された溶接電圧により、溶接ワイヤ100および被溶接物200に、溶接電流Iとして初期溶接電流Iaが流れ始める。また、溶接ワイヤ100に初期溶接電流Iaが流れることに伴って溶接ワイヤ100の先端側が溶融し、溶接ワイヤ100と被溶接物200との間にアーク(図示せず)が発生する。 Next, when the tip of the welding wire 100 reaches (contacts) the workpiece 200 at the second time t2 when the time has elapsed from the first time t1, according to the initial welding current set value Ca. The initial welding current Ia begins to flow as the welding current I through the welding wire 100 and the workpiece 200 by the set welding voltage. Further, as the initial welding current Ia flows through the welding wire 100, the tip side of the welding wire 100 is melted, and an arc (not shown) is generated between the welding wire 100 and the workpiece 200.
 このようにして溶接電流I(初期溶接電流Ia)が流れ始めたことは、溶接電流検知部57によって検知され、その検知結果が電流判定部58に出力される。これを受けた電流判定部58は、出力する電流検知信号Dを「L」から「H」に変更する(ステップ40においてYES)。電流検知信号Dが「L」から「H」に変更されることに伴い、送給速度設定部53は、送給速度設定信号Fを「開始時送給速度設定値Fi」から「初期送給速度設定値Fa」に変更する(ステップ50:Fi<Fa)。 That the welding current I (initial welding current Ia) has started to flow in this way is detected by the welding current detection unit 57 and the detection result is output to the current determination unit 58. Receiving this, the current determination unit 58 changes the output current detection signal D from “L” to “H” (YES in Step 40). As the current detection signal D is changed from “L” to “H”, the feeding speed setting unit 53 changes the feeding speed setting signal F from “starting feeding speed setting value Fi” to “initial feeding”. Change to “speed set value Fa” (step 50: Fi <Fa).
 第2時刻t2において、送給速度設定信号Fが初期送給速度設定値Faに設定されることにより、ワイヤ送給装置30は、溶接ワイヤ100の送給速度Vの変更を開始する。ただし、送給速度Vは、開始時送給速度Viから、初期送給速度設定値Faに応じた初期送給速度Vaに直ちに到達するのではなく、加速に時間を要するため、若干の遅れ(ラグ)を伴って初期送給速度Vaに到達する。 At the second time t2, the feeding speed setting signal F is set to the initial feeding speed setting value Fa, whereby the wire feeding device 30 starts changing the feeding speed V of the welding wire 100. However, the feed speed V does not immediately reach the initial feed speed Va corresponding to the initial feed speed set value Fa from the start feed speed Vi, but takes some time for acceleration. The initial feeding speed Va is reached with a lag).
 また、第2時刻t2において電流検知信号Dが「L」から「H」に変更されることに伴い、通電判定部59は、計時を開始する。 Also, as the current detection signal D is changed from “L” to “H” at the second time t2, the energization determination unit 59 starts measuring time.
 その後、第2時刻t2から、計時時間が予め決められた設定期間Tを経過した第3時刻t3に到達すると、通電判定部59は、出力する通電判定信号Jを「L」から「H」に変更する(ステップ60においてYES)。通電判定信号Jが「L」から「H」に変更されることに伴い、溶接電流設定部52は、溶接電流設定信号Cを「初期溶接電流設定値Ca」から「定常溶接電流設定値Cr」に変更し(ステップ70:Ca<Cr)、且つ、送給速度設定部53は、送給速度設定信号Fを「初期送給速度設定値Fa」から「定常送給速度設定値Fr」に変更する(ステップ80:Fa<Fr)。 After that, when reaching the third time t3 after the preset time T has elapsed from the second time t2, the energization determination unit 59 changes the energization determination signal J to be output from “L” to “H”. Change (YES in step 60). As the energization determination signal J is changed from “L” to “H”, the welding current setting unit 52 changes the welding current setting signal C from “initial welding current setting value Ca” to “steady welding current setting value Cr”. (Step 70: Ca <Cr), and the feeding speed setting unit 53 changes the feeding speed setting signal F from “initial feeding speed setting value Fa” to “steady feeding speed setting value Fr”. (Step 80: Fa <Fr).
 第3時刻t3において、溶接電流設定信号Cが定常溶接電流設定値Crに設定されることにより、溶接ワイヤ100に流れる溶接電流Iは、初期溶接電流Iaから定常溶接電流Irに移行する(Ia<Ir)。 At the third time t3, the welding current setting signal C is set to the steady welding current set value Cr, so that the welding current I flowing through the welding wire 100 shifts from the initial welding current Ia to the steady welding current Ir (Ia < Ir).
 また、第3時刻t3において、送給速度設定信号Fが定常送給速度設定値Frに設定されることにより、ワイヤ送給装置30は、溶接ワイヤ100の送給速度Vの変更を開始する。ただし、送給速度Vは、初期送給速度Vaから、定常送給速度設定値Frに応じた定常送給速度Vrに直ちに到達するのではなく、加速に時間を要するため、若干の遅れ(ラグ)を伴って定常送給速度Vrに到達する。
 これにより、アークスタートが完了する。
Further, at the third time t3, the wire feeding device 30 starts changing the feeding speed V of the welding wire 100 by setting the feeding speed setting signal F to the steady feeding speed setting value Fr. However, the feed speed V does not immediately reach the steady feed speed Vr corresponding to the steady feed speed set value Fr from the initial feed speed Va, but takes some time for acceleration. ) To reach the steady feeding speed Vr.
Thereby, the arc start is completed.
 なお、図4に示した例では、第3時刻t3において、溶接電流設定信号Cを初期溶接電流設定値Caから定常溶接電流設定値Crに瞬時に切り替えることで、溶接電流Iを初期溶接電流Iaから定常溶接電流Irに瞬時に切り替えるようにした。しかし、溶接電流Iを初期溶接電流Iaから定常溶接電流Irに切り替える際の方式は、これに限られるものではない。 In the example shown in FIG. 4, at the third time t3, the welding current setting signal C is instantaneously switched from the initial welding current setting value Ca to the steady welding current setting value Cr, whereby the welding current I is changed to the initial welding current Ia. To the steady welding current Ir. However, the method for switching the welding current I from the initial welding current Ia to the steady welding current Ir is not limited to this.
 図5は、本実施の形態の溶接システム1におけるアークスタートの手順の変形例を説明するためのタイミングチャートである。
 図5に示すように、第3時刻t3において、溶接電流設定信号Cを初期溶接電流設定値Caから定常溶接電流設定値Crに切り替える際の溶接電流設定信号Cに傾斜設定値Csを設け、第3時刻t3から所定の時間が経過した第4時刻t4において、定常溶接電流設定値Crに到達させるようにしてもよい。この場合には、第3時刻t3において初期溶接電流Iaとなっている溶接電流Iが、第3時刻t3から第4時刻t4に向けて立ち上がり傾斜Isにて漸次増加し、第4時刻t4において定常溶接電流Irに到達することになる。また、この例においては、溶接電流設定信号Cに傾斜設定値Csが設けられることに伴って、送給速度設定信号Fにも傾斜設定値Fsが設定されることになり、結果として、送給速度Vにも立ち上がり傾斜Vsが設定されることになる。
FIG. 5 is a timing chart for explaining a modification of the arc start procedure in the welding system 1 of the present embodiment.
As shown in FIG. 5, at a third time t3, a slope setting value Cs is provided in the welding current setting signal C when the welding current setting signal C is switched from the initial welding current setting value Ca to the steady welding current setting value Cr. The steady welding current set value Cr may be reached at a fourth time t4 when a predetermined time has elapsed from the third time t3. In this case, the welding current I that is the initial welding current Ia at the third time t3 gradually increases at the rising slope Is from the third time t3 to the fourth time t4, and is steady at the fourth time t4. The welding current Ir is reached. Further, in this example, the inclination setting value Cs is set in the feeding speed setting signal F along with the setting of the inclination setting value Cs in the welding current setting signal C. The rising slope Vs is also set for the speed V.
 本実施の形態の溶接システム1では、被溶接物200と溶接ワイヤ100とが接触する際に、溶接電流Iとして定常溶接電流Irよりも小さい初期溶接電流Iaを流すとともに、初期溶接電流Iaを予め決められた設定期間Tの間だけ流した後に、初期溶接電流Iaを目的とする定常溶接電流Irに切り替えるようにした。
 これにより、アークスタート直後の溶接電流Iによって生じる溶接ワイヤ100の溶断(ワイヤ溶断)、および、ワイヤ溶断に伴うスパッタの増加を抑制することができる。
In the welding system 1 of the present embodiment, when the work piece 200 and the welding wire 100 are in contact with each other, an initial welding current Ia smaller than the steady welding current Ir is supplied as the welding current I, and the initial welding current Ia is set in advance. After flowing for a predetermined set period T, the initial welding current Ia is switched to the target steady welding current Ir.
As a result, it is possible to suppress the fusing (wire fusing) of the welding wire 100 caused by the welding current I immediately after the arc start and the increase in spatter accompanying the wire fusing.
 また、本実施の形態の溶接システム1における図5に示した例では、初期溶接電流Iaから定常溶接電流Irへの切り替え時に立ち上がり傾斜Isを設けた。
 初期溶接電流Iaから定常溶接電流Irへの切り替え時においては、溶接ワイヤ100に供給される電流量が一時的に多くなる。これに伴い、切り替え時においては、溶接ワイヤ100の赤熱が大きくなることで、溶接ワイヤ100が軟化しやすくなるとともに、ワイヤ溶断が生じやすくなる。
 このため、立ち上がり傾斜Isを設けることにより、溶接ワイヤ100の急峻な赤熱を抑制できる。その結果、特に定常溶接電流Irが高く設定される場合にあっては、ワイヤ溶断およびこれに伴うバーンバックを抑制することが可能となり、スパッタの増加も抑制することが可能になる。
Further, in the example shown in FIG. 5 in the welding system 1 of the present embodiment, the rising slope Is is provided when switching from the initial welding current Ia to the steady welding current Ir.
At the time of switching from the initial welding current Ia to the steady welding current Ir, the amount of current supplied to the welding wire 100 temporarily increases. Accordingly, at the time of switching, the red heat of the welding wire 100 increases, so that the welding wire 100 is easily softened and wire fusing is likely to occur.
For this reason, the steep red heat of the welding wire 100 can be suppressed by providing the rising slope Is. As a result, particularly when the steady welding current Ir is set to be high, it is possible to suppress wire fusing and burnback associated therewith, and to suppress an increase in spatter.
 ではここで、本実施の形態の溶接システム1を用いたガスシールドアーク溶接のアークスタート制御方法における各種条件の特徴について、説明を行っておく。 Here, the characteristics of various conditions in the arc start control method of gas shielded arc welding using the welding system 1 of the present embodiment will be described.
<初期溶接電流Ia>
 初期溶接電流Iaを流す期間は、定常溶接電流Irに至る前にアークを安定させるために設けられる。溶接電流Iが小さいほど、溶接ワイヤ100に生じるジュール熱が小さく、かつ安定した溶滴移行となるため、下限は規定しない。ただし、溶接電流Iが350(A)を超えると、溶接ワイヤ100に発生するジュール熱が高くなってワイヤ溶断が生じやすくなり、更に溶滴移行もワイヤ直下の溶滴が大きくなるグロビュール移行溶接になるため、ワイヤ溶断が発生しやすくなりスパッタも増加しやすくなる。よって、初期溶接電流Iaは300(A)以下とすることが好ましい。加えて、短絡移行は、溶接電流Iが100(A)~250(A)となる範囲内において最もアークが安定することから、初期溶接電流Iaのより好ましい範囲は、100(A)~250(A)となる。なお、初期溶接電流Iaは0(A)を含まない。
<Initial welding current Ia>
The period during which the initial welding current Ia flows is provided to stabilize the arc before reaching the steady welding current Ir. The smaller the welding current I, the smaller the Joule heat generated in the welding wire 100 and the more stable droplet transfer, so no lower limit is defined. However, if the welding current I exceeds 350 (A), the Joule heat generated in the welding wire 100 is increased, wire breakage is likely to occur, and the droplet transfer is also a globule transfer welding in which the droplet immediately below the wire becomes large. As a result, wire fusing is likely to occur and sputtering is likely to increase. Therefore, the initial welding current Ia is preferably 300 (A) or less. In addition, since the arc is most stable in the range where the welding current I is 100 (A) to 250 (A) in the short-circuit transition, the more preferable range of the initial welding current Ia is 100 (A) to 250 ( A). The initial welding current Ia does not include 0 (A).
<定常溶接電流Ir>
 初期溶接電流Iaから移行する定常溶接電流Irの値によって、ワイヤ溶断の頻度が変わり、定常溶接電流Irが高くなるほど、赤熱効果によるワイヤ溶断が生じやすい傾向となる。ここで、定常溶接電流Irが350(A)を下回る場合においては、赤熱が生じ難いため、本発明の効果が現れにくい。一方、定常溶接電流Irが600(A)を超える場合には、溶接が安定しない。よって、定常溶接電流Irの範囲は350(A)~600(A)と規程する。さらに、安定した溶接を行うには、350(A)~550(A)であることがより好ましい。
<Steady welding current Ir>
The frequency of wire fusing changes depending on the value of the steady welding current Ir transferred from the initial welding current Ia, and the higher the steady welding current Ir, the more likely the wire fusing due to the red heat effect occurs. Here, in the case where the steady welding current Ir is less than 350 (A), since red heat hardly occurs, the effect of the present invention hardly appears. On the other hand, when the steady welding current Ir exceeds 600 (A), welding is not stable. Therefore, the range of the steady welding current Ir is defined as 350 (A) to 600 (A). Further, in order to perform stable welding, it is more preferable that the current is 350 (A) to 550 (A).
<設定期間T>
 設定期間Tを20(msec)以上とした場合、初期溶接電流Iaを流している間にアークが安定することから、初期溶接電流Iaから定常溶接電流Irに移行する際のワイヤ溶断をより抑制することが可能になる。よって、設定期間Tは20(msec)以上とすることが好ましく、50msec以上とすると、よりアークが安定するため、より好ましい。ただし、初期溶接電流Iaを流す設定期間Tを長くしすぎても、効率の低下を招くため、設定期間Tについては、700(msec)未満とすることが好ましい。
<Set period T>
When the set period T is set to 20 (msec) or longer, the arc is stabilized while the initial welding current Ia is flowing, and therefore wire fusing at the time of transition from the initial welding current Ia to the steady welding current Ir is further suppressed. It becomes possible. Therefore, the set period T is preferably 20 (msec) or more, and more preferably 50 msec or more, since the arc is more stable. However, even if the setting period T through which the initial welding current Ia flows is excessively long, the efficiency is reduced. Therefore, the setting period T is preferably less than 700 (msec).
<立ち上がり傾斜Is>
 定常溶接電流Irと初期溶接電流Iaとに差がある場合は、溶接ワイヤ100が赤熱しやすくなり、両者の電流差が大きいほど、溶接ワイヤ100が赤熱によって軟化しやすくなる。これに伴い、初期溶接電流Iaから定常溶接電流Irに移行する際にワイヤ溶断が発生し易くなるため、初期溶接電流Iaから定常溶接電流Irへの移行において、1500(A/100msec)以下の立ち上がり傾斜Isを設けることが好ましい。このような立ち上がり傾斜Isをつけることにより、急峻なワイヤの赤熱が抑制できるため、50(A/100msec)以上の傾きを設けることがより好ましい。
 なお、立ち上がり傾斜Isは、図5に示したような直線的で連続した値(時間の一次関数)である必要はなく、曲線状、ステップ状などであってもよい。
<Rising slope Is>
When there is a difference between the steady welding current Ir and the initial welding current Ia, the welding wire 100 is easily red-hot, and the larger the current difference between the two is, the easier the welding wire 100 is softened by red heat. Along with this, wire fusing is likely to occur when the initial welding current Ia is shifted to the steady welding current Ir. It is preferable to provide the slope Is. By giving such a rising inclination Is, steep red heat of the wire can be suppressed, and therefore, it is more preferable to provide an inclination of 50 (A / 100 msec) or more.
Note that the rising slope Is does not have to be a linear and continuous value (linear function of time) as shown in FIG. 5, and may be a curve or a step.
 なお、上述した説明においては、アークスタートにおける溶接速度の設定については、特に詳述しなかった。ただし、ビード始端部の溶着量を合わせるために、初期溶接電流Iaを供給している期間と定常溶接電流Irを供給している期間とで、溶接速度を変化させる制御を行ってもよい。例えば、初期溶接電流Iaを供給している期間の溶接速度を、定常溶接電流Irを供給している期間の溶接速度(本条件の溶接速度)以下とする。これにより、初期溶接電流Iaを供給している期間と定常溶接電流Irを供給している期間とで溶着量を整合させることが可能となり、スタート部のビード形状が安定することになる。 In the above description, the setting of the welding speed at the arc start was not specifically described. However, in order to match the welding amount at the bead start end, control may be performed to change the welding speed between the period in which the initial welding current Ia is supplied and the period in which the steady welding current Ir is supplied. For example, the welding speed during the period when the initial welding current Ia is supplied is set to be equal to or lower than the welding speed (the welding speed under this condition) during the period when the steady welding current Ir is supplied. This makes it possible to match the welding amount between the period in which the initial welding current Ia is supplied and the period in which the steady welding current Ir is supplied, and the bead shape of the start portion is stabilized.
 例として、定常送給速度Vrが20(mpm)且つ初期送給速度Vaが10(mpm)の場合に、定常溶接電流Irを供給している期間の溶接速度(本条件の溶接速度)が0.6(mpm)であるとき、初期溶接電流Iaを供給している期間の溶接速度は0.3(mpm)に制御される。 As an example, when the steady feeding speed Vr is 20 (mpm) and the initial feeding speed Va is 10 (mpm), the welding speed during the period in which the steady welding current Ir is supplied (the welding speed under this condition) is 0. When it is 0.6 (mpm), the welding speed during the period in which the initial welding current Ia is supplied is controlled to 0.3 (mpm).
 また、上述した説明においては、定常溶接電流Irを一定値に制御していたが、これに限られるものではなく、ベース電流に対しピーク電流をある一定の周波数で繰り返し印加するパルス電流としてもかまわない。 In the above description, the steady welding current Ir is controlled to a constant value. However, the present invention is not limited to this, and it may be a pulse current that repeatedly applies a peak current to the base current at a certain frequency. Absent.
 次に、本実施の形態における溶接システム1の他の構成例について説明する。
 図2に示した構成例では、電源装置50に設けられた機能により、本実施の形態によるアークスタートの制御を実現した。これに対し、本実施の形態によるアークスタートの制御を実現する機能の一部をロボット制御装置60にて担う構成とすることもできる。
Next, another configuration example of the welding system 1 in the present embodiment will be described.
In the configuration example shown in FIG. 2, the arc start control according to the present embodiment is realized by the function provided in the power supply device 50. On the other hand, the robot control device 60 may be configured to bear a part of the function for realizing the arc start control according to the present embodiment.
 図6は、本発明の実施の形態に係る溶接システム1に設けられた電源制御手段の他の構成例を説明するための図である。
 図6に示す構成例では、図2に示した構成例で電源装置50に設けられていたスイッチ51、溶接電流設定部52および通電判定部59が、ロボット制御装置60に設けられている。また、電源装置50はロボット制御装置60との間で各種信号の授受を行うための電源装置インタフェース部501を備えており、ロボット制御装置60は電源装置50との間で各種信号の授受を行うための制御装置インタフェース部601を備えている。
FIG. 6 is a diagram for explaining another configuration example of the power supply control means provided in the welding system 1 according to the embodiment of the present invention.
In the configuration example illustrated in FIG. 6, the switch 51, the welding current setting unit 52, and the energization determination unit 59 provided in the power supply device 50 in the configuration example illustrated in FIG. 2 are provided in the robot control device 60. In addition, the power supply device 50 includes a power supply device interface unit 501 for sending and receiving various signals to and from the robot control device 60. The robot control device 60 sends and receives various signals to and from the power supply device 50. A control device interface unit 601 is provided.
 ここで、図6に示すロボット制御装置60に設けられたスイッチ51、溶接電流設定部52および通電判定部59のそれぞれが有する機能は、図2に示す電源装置50に設けられていたものと基本的に同じであるため、ここでは、その詳細な説明を省略する。また、図6に示す例においては、電源装置50とロボット制御装置60との間で、溶接開始信号S、溶接電流設定信号Cおよび電流検知信号Dの授受が行われる。 Here, the functions of the switch 51, the welding current setting unit 52, and the energization determining unit 59 provided in the robot control device 60 shown in FIG. 6 are the same as those provided in the power supply device 50 shown in FIG. Therefore, detailed description thereof is omitted here. In the example shown in FIG. 6, the welding start signal S, the welding current setting signal C, and the current detection signal D are exchanged between the power supply device 50 and the robot control device 60.
 なお、本実施の形態における溶接電流設定部52や送給速度設定部53の機能は、アナログ回路やデジタル回路にて実現することが可能である。ここで、溶接電流設定部52や送給速度設定部53をデジタル回路にて実現する場合、例えば、図3および図4に基づいて説明した各タイミングにおける各制御信号の出力の手順を記述したプログラムを溶接電流設定部52や送給速度設定部53に設けられるメモリに格納することにより、本実施の形態の機能を実装することができる。そして、溶接電流設定部52や送給速度設定部53に設けられるCPUがメモリに格納されたプログラムを実行することにより、各機能が実現される。 Note that the functions of the welding current setting unit 52 and the feeding speed setting unit 53 in the present embodiment can be realized by an analog circuit or a digital circuit. Here, when the welding current setting unit 52 and the feed rate setting unit 53 are realized by a digital circuit, for example, a program describing the output procedure of each control signal at each timing described with reference to FIGS. Is stored in a memory provided in the welding current setting unit 52 or the feeding speed setting unit 53, the function of the present embodiment can be implemented. And each function is implement | achieved when CPU provided in the welding current setting part 52 and the feeding speed setting part 53 runs the program stored in memory.
 以下、実施例に基づいて本発明をさらに詳細に説明する。ただし、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
<アーク切れ調査>
 本発明者は、図1に示す溶接システム1を用い、溶接条件として、溶接ワイヤ100の種別、溶接ワイヤ100の線径、溶接ワイヤ100に供給する初期溶接電流Iaおよび定常溶接電流Ir、設定期間T、立ち上がり傾斜Isを種々異ならせて被溶接物200を溶接する実験を行い、アークスタート時におけるアーク切れの発生状態について評価を行った。
<Arc break investigation>
The inventor uses the welding system 1 shown in FIG. 1 and sets the welding wire 100 type, the diameter of the welding wire 100, the initial welding current Ia and the steady welding current Ir supplied to the welding wire 100, and the set period as welding conditions. Experiments for welding the workpiece 200 with different T and rising slope Is were performed, and the occurrence of arc breakage at the time of arc start was evaluated.
 なお、この実験では、溶接ワイヤ100の種別(ワイヤ種)として、フラックスを含まないソリッドワイヤと、フラックスを含むフラックス入りワイヤとを用いた。
 また、この実験では、溶接ワイヤ100の線径として、φ1.2(mm)、φ1.4(mm)のものを用いた。
 さらに、この実験では、シールドガスとして炭酸ガス(100%CO)を用いた。
 さらにまた、この実験では、溶接対象となる被溶接物200として、JIS G3106 SM490Aで規定される鋼板を用いた。
In this experiment, as the type (wire type) of the welding wire 100, a solid wire not containing flux and a flux-cored wire containing flux were used.
In this experiment, the welding wire 100 having a diameter of φ1.2 (mm) and φ1.4 (mm) was used.
Further, in this experiment, carbon dioxide gas (100% CO 2 ) was used as the shielding gas.
Furthermore, in this experiment, a steel plate defined by JIS G3106 SM490A was used as the workpiece 200 to be welded.
 また、この実験では、100(A)以上550(A)以下の範囲から、初期溶接電流Iaを選択した。
 さらに、この実験では、250(A)以上550(A)以下の範囲から、定常溶接電流Irを選択した。
 さらにまた、この実験では、0(mesc)以上800(msec)以下の範囲から、設定期間Tを選択した。
 そして、この実験では、傾き無しから1500(A/100msec)以下の範囲から、立ち上がり傾斜Isを選択した。
In this experiment, the initial welding current Ia was selected from the range of 100 (A) to 550 (A).
Furthermore, in this experiment, the steady welding current Ir was selected from the range of 250 (A) or more and 550 (A) or less.
Furthermore, in this experiment, the set period T was selected from the range of 0 (mesc) to 800 (msec).
In this experiment, the rising slope Is was selected from the range of no slope to 1500 (A / 100 msec) or less.
 また、この実験では、各条件について、ビードオンプレートの下向き溶接にて溶接長10cmの溶接を30回ずつ行い、30回中で生じたアーク切れの回数をカウントし、アーク切れ発生率(アーク切れ回数/30回×100%)を求めた。そして、アーク切れ発生率が0%となったものを良として評価「◎」とし、アーク切れ発生率が20%以下となったものを可として評価「○」とし、アーク切れ発生率が20%超となったものを不可として評価「×」とした。 In this experiment, for each condition, welding with a weld length of 10 cm was performed 30 times each by bead-on-plate downward welding, and the number of arc breaks that occurred in 30 times was counted, and the arc breakage rate (arc breakage rate) Frequency / 30 times × 100%). When the arc break occurrence rate is 0%, the evaluation is “Good”, and when the arc break occurrence rate is 20% or less, the evaluation is “Good”, and the arc break occurrence rate is 20%. An evaluation of “x” was given as the result of being unacceptable.
 以下に示す表1~表17は、この実験で用いた336個(No.1~No.336)の溶接条件と得られた評価結果との関係を示すものである。なお、表1~表17においては、ソリッドワイヤを「Solid」と表記し、フラックス入りワイヤを「Cored」と表記した。 Tables 1 to 17 shown below show the relationship between the 336 welding conditions (No. 1 to No. 336) used in this experiment and the obtained evaluation results. In Tables 1 to 17, the solid wire is represented as “Solid”, and the flux-cored wire is represented as “Cored”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 ここで、No.1~No.50(表1~表5)は本発明の比較例を示しており、残りが本発明の実施例を示している。 Here, No. 1-No. Reference numeral 50 (Tables 1 to 5) shows comparative examples of the present invention, and the rest show examples of the present invention.
 まず、表1~表4について説明を行う。
 表1は、溶接ワイヤ100としてφ1.2のソリッドワイヤを用い、従来のアークスタート法である初期溶接電流Iaおよび定常溶接電流Irを同じ大きさとした場合(Ia=Ir)を示している。なお、このときの初期溶接電流Iaおよび定常溶接電流Irの大きさは、250(A)~500(A)とした。
First, Tables 1 to 4 will be described.
Table 1 shows a case where a φ1.2 solid wire is used as the welding wire 100 and the initial welding current Ia and the steady welding current Ir, which are the conventional arc start method, have the same magnitude (Ia = Ir). The magnitudes of the initial welding current Ia and the steady welding current Ir at this time were 250 (A) to 500 (A).
 また、表2は、溶接ワイヤ100としてφ1.2のフラックス入りワイヤを用い、従来のアークスタート法である初期溶接電流Iaおよび定常溶接電流Irを同じ大きさとした場合(Ia=Ir)を示している。なお、このときの初期溶接電流Iaおよび定常溶接電流Irの大きさは、250(A)~500(A)とした。 Table 2 shows a case where a flux-cored wire of φ1.2 is used as the welding wire 100 and the initial welding current Ia and the steady welding current Ir, which are conventional arc start methods, have the same magnitude (Ia = Ir). Yes. The magnitudes of the initial welding current Ia and the steady welding current Ir at this time were 250 (A) to 500 (A).
 さらに、表3は、溶接ワイヤ100としてφ1.4のソリッドワイヤを用い、従来のアークスタート法である初期溶接電流Iaおよび定常溶接電流Irを同じ大きさとした場合(Ia=Ir)を示している。なお、このときの初期溶接電流Iaおよび定常溶接電流Irの大きさは、250(A)~550(A)とした。 Further, Table 3 shows a case where a solid wire of φ1.4 is used as the welding wire 100 and the initial welding current Ia and the steady welding current Ir, which are conventional arc start methods, have the same magnitude (Ia = Ir). . The initial welding current Ia and the steady welding current Ir at this time were 250 (A) to 550 (A).
 さらにまた、表4は、溶接ワイヤ100としてφ1.4のフラックス入りワイヤを用い、従来のアークスタート法である初期溶接電流Iaおよび定常溶接電流Irを同じ大きさとした場合(Ia=Ir)を示している。なお、このときの初期溶接電流Iaおよび定常溶接電流Irの大きさは、250(A)~550(A)とした。 Furthermore, Table 4 shows a case where a φ1.4 flux cored wire is used as the welding wire 100 and the initial welding current Ia and the steady welding current Ir, which are the conventional arc start method, have the same magnitude (Ia = Ir). ing. The initial welding current Ia and the steady welding current Ir at this time were 250 (A) to 550 (A).
 このように、表1と表2とでは、線径が同じであるもののワイヤ種が異なっており、表1と表3とでは、ワイヤ種が同じであるものの線径が異なっている。また、表2と表4とでは、ワイヤ種が同じであるもの線径が異なっており、表3と表4とでは、線径が同じであるもののワイヤ種が異なっている。なお、表1~表4では、従来のアークスタート法であって、初期溶接電流Iaおよび定常溶接電流Irが同じ大きさとなるので、必然的に、設定期間Tは「0」となり、立ち上がり傾斜Isは「無し」となる。 Thus, in Table 1 and Table 2, the wire type of the same wire diameter is different, but in Table 1 and Table 3, the wire diameter of the same wire type is different. Further, Table 2 and Table 4 have different wire diameters with the same wire type, and Tables 3 and 4 have different wire types with the same wire diameter. In Tables 1 to 4, in the conventional arc start method, since the initial welding current Ia and the steady welding current Ir have the same magnitude, the set period T is inevitably set to “0” and the rising slope Is. Becomes “none”.
 次に、表5について説明を行う。
 表5は、溶接ワイヤ100としてφ1.2のソリッドワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくした場合(Ia<Ir)を示している。なお、このときの定常溶接電流Irの大きさは500(A)とし、初期溶接電流Iaの大きさは100(A)とした。
Next, Table 5 will be described.
Table 5 shows a case where a solid wire of φ1.2 is used as the welding wire 100 and the initial welding current Ia is smaller than the steady welding current Ir (Ia <Ir). At this time, the magnitude of the steady welding current Ir was 500 (A), and the magnitude of the initial welding current Ia was 100 (A).
 このように、表1と表5とでは、ワイヤ種および線径が同じであるものの、初期溶接電流Iaおよび定常溶接電流Irの大小関係が異なっている。なお、表5では、設定期間Tを700(msec)~800(msec)とし、立ち上がり傾斜Isを1500(A/100msec)とした。 Thus, although the wire type and the wire diameter are the same in Table 1 and Table 5, the magnitude relationship between the initial welding current Ia and the steady welding current Ir is different. In Table 5, the set period T was set to 700 (msec) to 800 (msec), and the rising slope Is was set to 1500 (A / 100 msec).
 次いで、表6~表8について説明を行う。
 表6は、溶接ワイヤ100としてφ1.2のソリッドワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを100(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、350(A)~500(A)とした。
Next, Tables 6 to 8 will be described.
Table 6 shows that a φ1.2 solid wire is used as the welding wire 100, the initial welding current Ia is smaller than the steady welding current Ir (Ia <Ir), and the initial welding current Ia is fixed to 100 (A). Shows the case. The magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
 また、表7は、溶接ワイヤ100としてφ1.2のソリッドワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを200(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、350(A)~500(A)とした。 Table 7 also shows that a φ1.2 solid wire is used as the welding wire 100, the initial welding current Ia is smaller than the steady welding current Ir (Ia <Ir), and the initial welding current Ia is 200 (A). The case of fixing is shown. The magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
 さらに、表8は、溶接ワイヤ100としてφ1.2のソリッドワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを300(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、350(A)~500(A)とした。 Further, Table 8 uses a φ1.2 solid wire as the welding wire 100, reduces the initial welding current Ia compared to the steady welding current Ir (Ia <Ir), and sets the initial welding current Ia to 300 (A). The case of fixing is shown. The magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
 このように、表1と表6~表8とでは、ワイヤ種および線径が同じであるものの、初期溶接電流Iaおよび定常溶接電流Irの大小関係が異なっている。また、表6~表8では、ワイヤ種および線径が同じであるものの、初期溶接電流Iaの大きさが異なっている。なお、表6では、設定期間Tを0(msec)~650(msec)とし、立ち上がり傾斜Isを150(A/100msec)~1500(A/100msec)とした。また、表7では、設定期間Tを0(msec)~350(msec)とし、立ち上がり傾斜Isを100(A/100msec)~1000(A/100msec)とした。さらに、表8では、設定期間Tを0(msec)~250(msec)とし、立ち上がり傾斜Isを50(A/100msec)~1000(A/100msec)とした。 Thus, in Table 1 and Tables 6 to 8, the wire type and the wire diameter are the same, but the magnitude relationship between the initial welding current Ia and the steady welding current Ir is different. In Tables 6 to 8, the wire type and the wire diameter are the same, but the magnitude of the initial welding current Ia is different. In Table 6, the set period T was set to 0 (msec) to 650 (msec), and the rising slope Is was set to 150 (A / 100 msec) to 1500 (A / 100 msec). In Table 7, the set period T is set to 0 (msec) to 350 (msec), and the rising slope Is is set to 100 (A / 100 msec) to 1000 (A / 100 msec). Further, in Table 8, the setting period T is set to 0 (msec) to 250 (msec), and the rising slope Is is set to 50 (A / 100 msec) to 1000 (A / 100 msec).
 続いて、表9~表11について説明を行う。
 表9は、溶接ワイヤ100としてφ1.2のフラックス入りワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを100(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、350(A)~500(A)とした。
Subsequently, Tables 9 to 11 will be described.
Table 9 uses a flux-cored wire of φ1.2 as the welding wire 100, reduces the initial welding current Ia compared to the steady welding current Ir (Ia <Ir), and fixes the initial welding current Ia to 100 (A). Shows the case. The magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
 また、表10は、溶接ワイヤ100としてφ1.2のフラックス入りワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを200(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、350(A)~500(A)とした。 Table 10 shows that a flux-cored wire having a diameter of φ1.2 is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia <Ir), and the initial welding current Ia is 200 (A). The case where it fixes to is shown. The magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
 さらに、表11は、溶接ワイヤ100としてφ1.2のフラックス入りワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを300(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、350(A)~500(A)とした。 Further, Table 11 shows that a flux-cored wire of φ1.2 is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia <Ir), and the initial welding current Ia is 300 (A). The case where it fixes to is shown. The magnitude of the steady welding current Ir at this time was 350 (A) to 500 (A).
 このように、表2と表9~表11とでは、ワイヤ種および線径が同じであるものの、初期溶接電流Iaおよび定常溶接電流Irの大小関係が異なっている。また、表6~表8と表9~表11とでは、線径が同じであるもののワイヤ種が異なっている。さらに、表9~表11では、ワイヤ種および線径が同じであるものの、初期溶接電流Iaの大きさが異なっている。なお、表9では、設定期間Tを0(msec)~250(msec)とし、立ち上がり傾斜Isを50(A/100msec)~1500(A/100msec)とした。また、表10では、設定期間Tを0(msec)~325(msec)とし、立ち上がり傾斜Isを100(A/100msec)~1500(A/100msec)とした。さらに、表11では、設定期間Tを0(msec)~175(msec)とし、立ち上がり傾斜Isを50(A/100msec)~1500(A/100msec)とした。 Thus, although the wire type and the wire diameter are the same in Table 2 and Tables 9 to 11, the magnitude relationship between the initial welding current Ia and the steady welding current Ir is different. Tables 6 to 8 and Tables 9 to 11 have the same wire diameter but different wire types. Further, in Tables 9 to 11, although the wire type and the wire diameter are the same, the magnitude of the initial welding current Ia is different. In Table 9, the set period T was set to 0 (msec) to 250 (msec), and the rising slope Is was set to 50 (A / 100 msec) to 1500 (A / 100 msec). In Table 10, the set period T is set to 0 (msec) to 325 (msec), and the rising slope Is is set to 100 (A / 100 msec) to 1500 (A / 100 msec). Further, in Table 11, the set period T is set to 0 (msec) to 175 (msec), and the rising slope Is is set to 50 (A / 100 msec) to 1500 (A / 100 msec).
 今度は、表12~表14について説明を行う。
 表12は、溶接ワイヤ100としてφ1.4のソリッドワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを100(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、400(A)~550(A)とした。
Next, Table 12 to Table 14 will be described.
Table 12 uses a φ1.4 solid wire as the welding wire 100, reduces the initial welding current Ia compared to the steady welding current Ir (Ia <Ir), and fixes the initial welding current Ia to 100 (A). Shows the case. The magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
 また、表13は、溶接ワイヤ100としてφ1.4のソリッドワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを200(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、400(A)~550(A)とした。 Table 13 shows that a solid wire of φ1.4 is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia <Ir), and the initial welding current Ia is 200 (A). The case of fixing is shown. The magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
 さらに、表14は、溶接ワイヤ100としてφ1.4のソリッドワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを300(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、400(A)~550(A)とした。 Further, Table 14 shows that a solid wire of φ1.4 is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia <Ir), and the initial welding current Ia is set to 300 (A). The case of fixing is shown. The magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
 このように、表3と表12~表14とでは、ワイヤ種および線径が同じであるものの、初期溶接電流Iaおよび定常溶接電流Irの大小関係が異なっている。また、表6~表8と表12~表14とでは、ワイヤ種が同じであるものの線径が異なっている。さらに、表12~表14では、ワイヤ種および線径が同じであるものの、初期溶接電流Iaの大きさが異なっている。なお、表12では、設定期間Tを0(msec)~275(msec)とし、立ち上がり傾斜Isを250(A/100msec)~1500(A/100msec)とした。また、表13では、設定期間Tを0(msec)~225(msec)とし、立ち上がり傾斜Isを200(A/100msec)~1500(A/100msec)とした。さらに、表14では、設定期間Tを0(msec)~225(msec)とし、立ち上がり傾斜Isを200(A/100msec)~1500(A/100msec)とした。 Thus, in Table 3 and Tables 12 to 14, the wire type and the wire diameter are the same, but the magnitude relationship between the initial welding current Ia and the steady welding current Ir is different. In Tables 6 to 8 and Tables 12 to 14, the wire diameters of the same wire types are different. Further, in Tables 12 to 14, the wire type and the wire diameter are the same, but the magnitude of the initial welding current Ia is different. In Table 12, the set period T is set to 0 (msec) to 275 (msec), and the rising slope Is is set to 250 (A / 100 msec) to 1500 (A / 100 msec). In Table 13, the set period T is set to 0 (msec) to 225 (msec), and the rising slope Is is set to 200 (A / 100 msec) to 1500 (A / 100 msec). Further, in Table 14, the set period T is set to 0 (msec) to 225 (msec), and the rising slope Is is set to 200 (A / 100 msec) to 1500 (A / 100 msec).
 最後に、表15~表17について説明を行う。
 表15は、溶接ワイヤ100としてφ1.4のフラックス入りワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを100(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、400(A)~550(A)とした。
Finally, Tables 15 to 17 will be described.
Table 15 uses a φ1.4 flux-cored wire as the welding wire 100, reduces the initial welding current Ia compared to the steady welding current Ir (Ia <Ir), and fixes the initial welding current Ia to 100 (A). Shows the case. The magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
 また、表16は、溶接ワイヤ100としてφ1.4のフラックス入りワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを200(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、400(A)~550(A)とした。 Table 16 also shows that a φ1.4 flux cored wire is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia <Ir), and the initial welding current Ia is 200 (A). The case where it fixes to is shown. The magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
 さらに、表17は、溶接ワイヤ100としてφ1.4のフラックス入りワイヤを用い、定常溶接電流Irに比べて初期溶接電流Iaを小さくする(Ia<Ir)とともに、初期溶接電流Iaを300(A)に固定した場合を示している。なお、このときの定常溶接電流Irの大きさは、400(A)~550(A)とした。 Further, Table 17 shows that a φ1.4 flux cored wire is used as the welding wire 100, the initial welding current Ia is made smaller than the steady welding current Ir (Ia <Ir), and the initial welding current Ia is 300 (A). The case where it fixes to is shown. The magnitude of the steady welding current Ir at this time was 400 (A) to 550 (A).
 このように、表4と表15~表17とでは、ワイヤ種および線径が同じであるものの、初期溶接電流Iaおよび定常溶接電流Irの大小関係が異なっている。また、表9~表11と表15~表17とでは、ワイヤ種が同じであるものの線径が異なっている。さらに、表15~表17では、ワイヤ種および線径が同じであるものの、初期溶接電流Iaの大きさが異なっている。なお、表15では、設定期間Tを0(msec)~175(msec)とし、立ち上がり傾斜Isを250(A/100msec)~1500(A/100msec)とした。また、表16では、設定期間Tを0(msec)~125(msec)とし、立ち上がり傾斜Isを250(A/100msec)~1500(A/100msec)とした。さらに、表17では、設定期間Tを0(msec)~200(msec)とし、立ち上がり傾斜Isを150(A/100msec)~1500(A/100msec)とした。 Thus, although the wire type and the wire diameter are the same in Table 4 and Tables 15 to 17, the magnitude relationship between the initial welding current Ia and the steady welding current Ir is different. Tables 9 to 11 and Tables 15 to 17 have the same wire type but different wire diameters. Further, in Tables 15 to 17, although the wire type and the wire diameter are the same, the magnitude of the initial welding current Ia is different. In Table 15, the setting period T is set to 0 (msec) to 175 (msec), and the rising slope Is is set to 250 (A / 100 msec) to 1500 (A / 100 msec). In Table 16, the set period T is set to 0 (msec) to 125 (msec), and the rising slope Is is set to 250 (A / 100 msec) to 1500 (A / 100 msec). Further, in Table 17, the set period T is set to 0 (msec) to 200 (msec), and the rising slope Is is set to 150 (A / 100 msec) to 1500 (A / 100 msec).
 次に、結果について説明を行う。
 表1~表4から明らかなように、定常溶接電流Irが比較的小さい条件(線径φ1.2の場合にはIr≦300(A)、線径φ1.4の場合にはIr≦325(A))では、アークスタートにおけるアーク切れ発生率が低下(良化)する。ただし、この範囲は、本発明に係る課題の範囲外となる。一方、定常溶接電流Irが比較的大きい条件(線径φ1.2の場合にはIr≧325(A)、線径φ1.4の場合にはIr≧350(A))では、アークスタートにおけるアーク切れ発生率が上昇(悪化)する。
Next, the results will be described.
As is apparent from Tables 1 to 4, conditions under which the steady welding current Ir is relatively small (Ir ≦ 300 (A) when the wire diameter is φ1.2, Ir ≦ 325 when the wire diameter is φ1.4 ( In A)), the arc breakage occurrence rate at the arc start decreases (improves). However, this range is outside the scope of the subject according to the present invention. On the other hand, under conditions where the steady welding current Ir is relatively large (Ir ≧ 325 (A) when the wire diameter is φ1.2, Ir ≧ 350 (A) when the wire diameter is φ1.4), the arc at the arc start Cutting rate increases (deteriorates).
 表5から明らかなように、定常溶接電流Irに比べて初期溶接電流Iaを小さくした場合であっても、設定期間Tが比較的長い条件では、アークスタートにおけるアーク切れ発生率が上昇(悪化)する。 As can be seen from Table 5, even when the initial welding current Ia is smaller than the steady welding current Ir, the occurrence rate of arc breakage at the arc start increases (deteriorates) under a relatively long set period T. To do.
 表6~表8から明らかなように、全ての条件において、アークスタートにおけるアーク切れ発生率が低下(良化)する。 As is clear from Tables 6 to 8, the arc break occurrence rate at the arc start decreases (improves) under all conditions.
 表9~表11から明らかなように、全ての条件において、アークスタートにおけるアーク切れ発生率が低下(良化)する。 As is clear from Tables 9 to 11, the arc break occurrence rate at the arc start decreases (improves) under all conditions.
 表12~表14から明らかなように、全ての条件において、アークスタートにおけるアーク切れ発生率が低下(良化)する。 As is clear from Tables 12 to 14, the arc break occurrence rate at the arc start decreases (improves) under all conditions.
 表15~表17から明らかなように、全ての条件において、アークスタートにおけるアーク切れ発生率が低下(良化)する。 As is clear from Tables 15 to 17, the arc break occurrence rate at the arc start decreases (improves) under all conditions.
<飛散物調査>
 本発明者は、図1に示す溶接システム1を用い、溶接条件として、溶接ワイヤ100の種別、溶接ワイヤ100の線径、溶接ワイヤ100に供給する初期溶接電流Iaおよび定常溶接電流Ir、設定期間T、立ち上がり傾斜Isを種々異ならせて被溶接物200を溶接する実験を行い、アークスタート時における飛散物の発生状態について評価を行った。ここで、飛散物は、溶接のスタートからエンドまでに発生するスパッタやワイヤ溶断時に飛散する溶接ワイヤ100のワイヤ片等を指す。
<Flying matter survey>
The inventor uses the welding system 1 shown in FIG. 1 and sets the welding wire 100 type, the diameter of the welding wire 100, the initial welding current Ia and the steady welding current Ir supplied to the welding wire 100, and the set period as welding conditions. Experiments for welding the workpiece 200 with different T and rising slopes Is were performed, and the state of occurrence of scattered objects at the time of arc start was evaluated. Here, the scattered matter refers to a spatter generated from the start to the end of welding, a wire piece of the welding wire 100 scattered at the time of wire fusing, or the like.
 なお、この実験では、溶接ワイヤ100の種別(ワイヤ種)として、フラックスを含まないソリッドワイヤを用いた。
 また、この実験では、溶接ワイヤ100の線径として、φ1.2mmのものを用いた。
 さらに、この実験では、シールドガスとして炭酸ガス(100%CO)を用いた。
 さらにまた、この実験では、溶接対象となる被溶接物200として、JIS G3106 SM490Aで規定される鋼板を用いた。
In this experiment, a solid wire containing no flux was used as the type (wire type) of the welding wire 100.
In this experiment, the diameter of the welding wire 100 was φ1.2 mm.
Further, in this experiment, carbon dioxide gas (100% CO 2 ) was used as the shielding gas.
Furthermore, in this experiment, a steel plate defined by JIS G3106 SM490A was used as the workpiece 200 to be welded.
 また、この実験では、250(A)以上500(A)以下の範囲から、初期溶接電流Iaを選択した。
 さらに、この実験では、350(A)以上500(A)以下の範囲から、定常溶接電流Irを選択した。
 さらにまた、この実験では、0(mesc)以上50(msec)以下の範囲から、設定期間Tを選択した。
 そして、この実験では、傾き無しから200(A/100msec)以下の範囲から、立ち上がり傾斜Isを選択した。
In this experiment, the initial welding current Ia was selected from the range of 250 (A) to 500 (A).
Further, in this experiment, the steady welding current Ir was selected from the range of 350 (A) to 500 (A).
Furthermore, in this experiment, the set period T was selected from the range of 0 (mesc) to 50 (msec).
In this experiment, the rising slope Is was selected from the range of no slope to 200 (A / 100 msec) or less.
 そして、この実験では、各条件について、ビードオンプレートの下向き溶接にて溶接長10cmの溶接を30回ずつ行い、30回中で生じたφ0.72mm以上の飛散物の数をカウントし、定常溶接電流Irを同じ大きさに設定した従来のアークスタート法を用いた場合に対する減少率を求めた。そして、減少率が80%以上となったものを良として評価「◎」とし、減少率が30%以上となったものを可として評価「○」とし、減少率が30%未満となったものとを不可として評価「×」とした。 In this experiment, for each condition, welding with a weld length of 10 cm was performed 30 times each by bead-on-plate downward welding, and the number of scattered objects of φ0.72 mm or more generated in 30 times was counted, and the steady welding current Ir The rate of decrease was obtained when the conventional arc start method with the same size was used. Those with a reduction rate of 80% or more were rated as “Good”, those with a reduction rate of 30% or more were evaluated as “Good”, and the reduction rate was less than 30%. And was evaluated as “x”.
 以下に示す表18および表19は、この実験で用いた8個(No.337~No.344)の溶接条件と得られた評価結果との関係を示すものである。なお、表18に示すNo.337~N0.340の溶接条件は、表1に示したNo.5、No.7、No.9、No.11のそれぞれに対応している。また、表19に示すNo.341の減少率は表18に示すNo.337の結果に基づいて決まり、表19に示すNo.342の減少率は表18に示すNo.338の結果に基づいて決まり、表19に示すNo.343の減少率は表18に示すNo.339の結果に基づいて決まり、表19に示すNo.344の減少率は表18に示すNo.340の結果に基づいて決まる。 Table 18 and Table 19 below show the relationship between the eight welding conditions (No. 337 to No. 344) used in this experiment and the obtained evaluation results. In addition, No. shown in Table 18 The welding conditions of 337 to N0.340 are No. 1 shown in Table 1. 5, no. 7, no. 9, no. 11 corresponds to each. In addition, No. The reduction rate of 341 is No. 337 based on the result of No. 337 and shown in Table 19. The reduction rate of 342 is No. shown in Table 18. 338 based on the result of No. 338 and shown in Table 19. The reduction rate of 343 is No. shown in Table 18. 339 based on the result of No. 339. The reduction rate of 344 is No. shown in Table 18. Based on 340 results.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 次に、結果について説明を行う。
 表18および表19から明らかなように、定常溶接電流Irよりも初期溶接電流Iaを小さく設定し、且つ、初期溶接電流Iaから定常溶接電流Irへの移行において立ち上がり傾斜Isを設けることにより、アークスタート中における飛散物の量が減少することが理解される。また、定常溶接電流Irと初期溶接電流Iaとの差が大きい場合に、飛散物の減少率がより大きくなることがわかる。
Next, the results will be described.
As apparent from Table 18 and Table 19, by setting the initial welding current Ia to be smaller than the steady welding current Ir and providing the rising slope Is in the transition from the initial welding current Ia to the steady welding current Ir, the arc It can be seen that the amount of scattered matter during the start is reduced. Further, it can be seen that when the difference between the steady welding current Ir and the initial welding current Ia is large, the reduction rate of the scattered matter becomes larger.
1…溶接システム、10…溶接トーチ、20…ロボットアーム、30…ワイヤ送給装置、40…シールドガス供給装置、50…電源装置、51…スイッチ、52…溶接電流設定部、53…送給速度設定部、54…溶接電流/送給速度変換部、55…電源部、56…電源駆動部、57…溶接電流検知部、58…電流判定部、59…通電判定部、60…ロボット制御装置、100…溶接ワイヤ、200…被溶接物 DESCRIPTION OF SYMBOLS 1 ... Welding system, 10 ... Welding torch, 20 ... Robot arm, 30 ... Wire feeding apparatus, 40 ... Shield gas supply apparatus, 50 ... Power supply apparatus, 51 ... Switch, 52 ... Welding current setting part, 53 ... Feeding speed Setting unit 54 ... Welding current / feed speed conversion unit 55 ... Power source unit 56 ... Power source drive unit 57 ... Welding current detection unit 58 ... Current determination unit 59 ... Energization determination unit 60 ... Robot controller 100 ... welding wire, 200 ... workpiece

Claims (7)

  1.  溶接ワイヤを被溶接物に向けて送給し、送給される当該溶接ワイヤが当該被溶接物に接触することで当該溶接ワイヤと当該被溶接物とに溶接電流を流し、当該溶接電流にてアークを発生させることにより溶接を開始する消耗電極式アーク溶接のアークスタート制御方法において、
     前記溶接ワイヤと前記被溶接物とが接触した際に、前記溶接電流として初期溶接電流を供給する工程と、
     前記初期溶接電流の供給を開始してから予め決められた設定期間が経過した後、前記溶接電流として当該初期溶接電流よりも大きい定常溶接電流を供給する工程と
    を有することを特徴とする消耗電極式アーク溶接のアークスタート制御方法。
    The welding wire is fed toward the workpiece, and when the fed welding wire comes into contact with the workpiece, a welding current is passed between the welding wire and the workpiece, and the welding current is In the arc start control method of consumable electrode arc welding that starts welding by generating an arc,
    Supplying an initial welding current as the welding current when the welding wire and the workpiece are in contact with each other;
    A consumable electrode comprising a step of supplying a steady welding current larger than the initial welding current as the welding current after a predetermined set period has elapsed after the supply of the initial welding current has started. Arc start control method for type arc welding.
  2.  前記初期溶接電流の大きさが100(A)以上且つ300(A)以下となる範囲から選択され、
     前記定常溶接電流の大きさが350(A)以上且つ550(A)以下となる範囲から選択されること
    を特徴とする請求項1記載の消耗電極式アーク溶接のアークスタート制御方法。
    The initial welding current is selected from a range of 100 (A) or more and 300 (A) or less,
    The arc start control method for consumable electrode arc welding according to claim 1, wherein the steady welding current is selected from a range of 350 (A) to 550 (A).
  3.  前記設定期間が25(msec)以上且つ700(msec)未満となる範囲から選択されることを特徴とする請求項1または2記載の消耗電極式アーク溶接のアークスタート制御方法。 3. The arc start control method for consumable electrode arc welding according to claim 1, wherein the set period is selected from a range of 25 (msec) or more and less than 700 (msec).
  4.  前記初期溶接電流を供給する工程と前記定常溶接電流を供給する工程との間に、立ち上がり傾斜を設ける工程を有することを特徴とする請求項1記載の消耗電極式アーク溶接のアークスタート制御方法。 2. The arc start control method for consumable electrode arc welding according to claim 1, further comprising a step of providing a rising slope between the step of supplying the initial welding current and the step of supplying the steady welding current.
  5.  前記立ち上がり傾斜を設ける工程では、当該立ち上がり傾斜を1500(A/100msec)以下に設定することを特徴とする請求項4記載の消耗電極式アーク溶接のアークスタート制御方法。 5. The arc start control method for consumable electrode arc welding according to claim 4, wherein in the step of providing the rising slope, the rising slope is set to 1500 (A / 100 msec) or less.
  6.  溶接ワイヤを介して被溶接物に溶接電流を供給する電源部と、
     前記被溶接物に向けて送給される前記溶接ワイヤが当該被溶接物に接触した際に、前記溶接電流として初期溶接電流を前記電源部から供給させ、当該初期溶接電流の供給を開始してから予め決められた設定期間が経過した後、当該溶接電流として当該初期溶接電流よりも大きい定常溶接電流を当該電源部から供給させる電流制御部と
    を含む溶接装置。
    A power supply for supplying a welding current to the workpiece via a welding wire;
    When the welding wire fed toward the workpiece is in contact with the workpiece, an initial welding current is supplied as the welding current from the power supply unit, and the supply of the initial welding current is started. And a current control unit that supplies a steady welding current larger than the initial welding current as the welding current from the power supply unit after a predetermined set period has elapsed.
  7.  前記被溶接物に対する溶接作業を制御する制御装置と、
     前記溶接ワイヤおよび前記被溶接物に前記初期溶接電流が流れたことを検知する判定部と、
     前記電源部を駆動する電源駆動部と、をさらに備え、
     前記制御装置は、前記判定部により前記溶接ワイヤおよび前記被溶接物に前記初期溶接電流が流れたと判定され、さらに予め決められた設定時間が経過した後に、前記電源駆動部に対して前記電源部から前記定常溶接電流を供給させる電流設定信号を出力することを特徴とする請求項6記載の溶接装置。
    A control device for controlling welding work on the workpiece;
    A determination unit for detecting that the initial welding current flows through the welding wire and the workpiece;
    A power supply drive unit for driving the power supply unit,
    The control device determines that the initial welding current has flowed through the welding wire and the work piece by the determination unit and, further, after a predetermined set time has elapsed, the power supply unit with respect to the power supply unit The welding apparatus according to claim 6, wherein a current setting signal for supplying the steady welding current is output.
PCT/JP2015/063496 2014-06-06 2015-05-11 Arc start control method for consumable electrode type arc welding, and welding device WO2015186474A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167034071A KR101960151B1 (en) 2014-06-06 2015-05-11 Arc start control method for consumable electrode type arc welding, and welding device
CN201580029891.6A CN106413966B (en) 2014-06-06 2015-05-11 Arc starting control method for consumable electrode type arc welding and welding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014117822A JP6320851B2 (en) 2014-06-06 2014-06-06 Arc start control method and welding apparatus for consumable electrode arc welding
JP2014-117822 2014-06-06

Publications (1)

Publication Number Publication Date
WO2015186474A1 true WO2015186474A1 (en) 2015-12-10

Family

ID=54766552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063496 WO2015186474A1 (en) 2014-06-06 2015-05-11 Arc start control method for consumable electrode type arc welding, and welding device

Country Status (4)

Country Link
JP (1) JP6320851B2 (en)
KR (1) KR101960151B1 (en)
CN (1) CN106413966B (en)
WO (1) WO2015186474A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107350606B (en) * 2017-08-23 2019-08-16 唐山松下产业机器有限公司 Pulse controlled method and electric welding machine
KR101987967B1 (en) * 2017-11-23 2019-06-11 한국생산기술연구원 Arc welding control method
CN108098117B (en) * 2018-01-02 2020-04-10 清华大学 TIG electric arc assisted MIG welding non-contact arc striking method and device
CN115283785B (en) * 2022-07-07 2023-11-24 西部超导材料科技股份有限公司 Butt welding method of auxiliary electrode for VAR

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149361A (en) * 2006-12-20 2008-07-03 Daihen Corp Arc start control method for consumable electrode arc welding
WO2009051107A1 (en) * 2007-10-16 2009-04-23 Daihen Corporation Arc start control method
JP2011025307A (en) * 2009-06-29 2011-02-10 Daihen Corp Arc start control method
JP2012245547A (en) * 2011-05-27 2012-12-13 Daihen Corp Welding device
WO2013128262A1 (en) * 2012-03-02 2013-09-06 Lincoln Global, Inc. Apparatus for and method of starting arc welding process with pulsing wire before initiation of arcing

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890376A (en) * 1981-11-24 1983-05-30 Hitachi Seiko Ltd Arc welding device
JPS5939471A (en) * 1982-08-30 1984-03-03 Ishikawajima Harima Heavy Ind Co Ltd Tig welding method
JPS60108175A (en) * 1983-11-18 1985-06-13 Osaka Denki Kk Arc starting method in consumable electrode type arc welding method
JPS613667A (en) * 1984-06-18 1986-01-09 Kobe Steel Ltd Method of starting arc welding
JP3312713B2 (en) * 1995-04-28 2002-08-12 オリジン電気株式会社 AC plasma arc welding machine
JP2002160059A (en) * 2000-11-29 2002-06-04 Babcock Hitachi Kk Arc starting method and welding apparatus in consumable electrode arc welding
JP4490011B2 (en) * 2001-11-13 2010-06-23 株式会社ダイヘン Arc start control method
JP4312999B2 (en) 2002-06-27 2009-08-12 株式会社ダイヘン Arc start control method.
JP2005262264A (en) * 2004-03-18 2005-09-29 Daihen Corp Arc start method for consumable electrode gas shielded arc welding
JP4934363B2 (en) 2006-07-07 2012-05-16 株式会社小松製作所 Arc welding machine control method and arc welding machine
US8440935B2 (en) * 2006-10-27 2013-05-14 Panasonic Corporation Automatic welding equipment
JP4946785B2 (en) 2007-10-22 2012-06-06 パナソニック株式会社 Arc welding control method and arc welding apparatus
JP2010172953A (en) 2009-02-02 2010-08-12 Panasonic Corp Arc start control method, and welding robot system
JP2012206167A (en) * 2011-03-14 2012-10-25 Daihen Corp Method for controlling arc start of consumption electrode arc welding
CN102672307B (en) * 2011-03-14 2016-03-16 株式会社大亨 The striking control method of sacrificial electrode arc welding
CN103846528B (en) * 2014-03-21 2015-12-09 佛山晓世科技服务有限公司 A kind of annular solder method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149361A (en) * 2006-12-20 2008-07-03 Daihen Corp Arc start control method for consumable electrode arc welding
WO2009051107A1 (en) * 2007-10-16 2009-04-23 Daihen Corporation Arc start control method
EP2206574A1 (en) * 2007-10-16 2010-07-14 Daihen Corporation Arc start control method
JP2011025307A (en) * 2009-06-29 2011-02-10 Daihen Corp Arc start control method
JP2012245547A (en) * 2011-05-27 2012-12-13 Daihen Corp Welding device
WO2013128262A1 (en) * 2012-03-02 2013-09-06 Lincoln Global, Inc. Apparatus for and method of starting arc welding process with pulsing wire before initiation of arcing

Also Published As

Publication number Publication date
CN106413966B (en) 2022-07-08
CN106413966A (en) 2017-02-15
KR101960151B1 (en) 2019-03-19
JP6320851B2 (en) 2018-05-09
JP2015229187A (en) 2015-12-21
KR20160147056A (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP5400696B2 (en) Consumable electrode type gas shielded arc welding method and consumable electrode type gas shielded arc welding system
US8373093B2 (en) Method and system to increase heat input to a weld during a short-circuit arc welding process
MX2015003481A (en) Dabbing pulsed welding system and method.
JP6577879B2 (en) Method and system for increasing heat input to a weld during a short-circuit arc welding process
JP2017205805A (en) Method and system to use combination of filler wire feed and high intensity energy source for welding and arc suppression of variable polarity hot-wire
WO2015186474A1 (en) Arc start control method for consumable electrode type arc welding, and welding device
JP5840921B2 (en) Constriction detection control method for consumable electrode arc welding
CN108883486B (en) Arc welding control method
JP6524412B2 (en) Arc welding control method
JP6395644B2 (en) Arc welding method, arc welding apparatus and arc welding control apparatus
JP4952315B2 (en) Composite welding method and composite welding equipment
WO2020218288A1 (en) Arc welding control method and arc welding device
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
JP2010214399A (en) Arc welding method
US20220055136A1 (en) Arc welding method and arc welding device
JP6754935B2 (en) Arc welding control method
JP6994623B2 (en) Arc start method
JP2010194566A (en) Gma welding method
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP4461874B2 (en) Welding equipment
CN113825580B (en) Arc welding method and arc welding device
JP5577210B2 (en) Two-electrode arc welding method and two-electrode arc welding system
CN116100121A (en) Welding or additive manufacturing systems employing discontinuous electrode feed
CN113677471A (en) Multiple welding process
JP2016209915A (en) Method for starting two-wire welding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034071

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803560

Country of ref document: EP

Kind code of ref document: A1