JP4312999B2 - Arc start control method. - Google Patents

Arc start control method. Download PDF

Info

Publication number
JP4312999B2
JP4312999B2 JP2002187119A JP2002187119A JP4312999B2 JP 4312999 B2 JP4312999 B2 JP 4312999B2 JP 2002187119 A JP2002187119 A JP 2002187119A JP 2002187119 A JP2002187119 A JP 2002187119A JP 4312999 B2 JP4312999 B2 JP 4312999B2
Authority
JP
Japan
Prior art keywords
welding
current
arc
period
suppression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002187119A
Other languages
Japanese (ja)
Other versions
JP2004025265A (en
Inventor
太志 西坂
紅軍 仝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2002187119A priority Critical patent/JP4312999B2/en
Publication of JP2004025265A publication Critical patent/JP2004025265A/en
Application granted granted Critical
Publication of JP4312999B2 publication Critical patent/JP4312999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ワイヤ送給モータによって、溶接ワイヤを被溶接物へ送給してアークスタートさせる消耗電極式アーク溶接のアークスタート制御方法に関する。
【0002】
【従来の技術】
図6は、従来技術のアークスタート制御方法を実施する溶接電源装置のブロック図である。以下、同図を参照して各回路ブロックについて説明する。
【0003】
溶接ワイヤ1は、ワイヤ送給モータWMと直結した送給ロール5によって、溶接トーチ4を通って送給される。溶接電源装置PSからの溶接電圧Vwは、溶接トーチ4の先端に取り付けられた図示省略のコンタクトチップ4aによって溶接ワイヤ1に給電する。
【0004】
出力電流検出回路IDは、溶接電流Iwを検出して、出力電流検出信号Idを出力する。出力電圧検出回路VDは、溶接電圧Vwを検出して、出力電圧検出信号Vdを出力する。
【0005】
短絡検出回路SAは、上記出力電圧検出信号Vdを入力として、溶接ワイヤ1と被溶接物2との接触を検出して、接触状態のとき短絡検出信号SaをHighレベルにして出力する。
【0006】
定常の送給速度設定回路WSは、定常の送給速度設定値Wsを出力する。送給制御回路FCは、外部から溶接開始信号Stが入力されると、溶接ワイヤ1を被溶接物2へ予め定めた初期送給速度設定値Wiに応じた送給制御信号Fcを出力し、続けて上記短絡検出信号SaがHighレベルになった時点で溶接ワイヤ1が被溶接物2に接触したと判別して上記送給制御信号Fcの出力を停止し、続けて上記短絡検出信号SaがHighレベルからLowレベルになったときに溶接ワイヤ1と被溶接物2との接触が解除と判別して、上記定常の送給速度設定値Wsに応じた送給制御信号Fcを出力する。
【0007】
電圧設定回路VSは、電圧設定値Vsを出力する。出力制御回路SCは、外部からの溶接開始信号Stが入力されると動作を開始し、短絡検出信号SaがHighレベルの期間中は初期短絡電流設定値Isに応じた出力制御信号Scを出力し、短絡検出信号SaがLowレベルの期間中は定常の溶接電流設定値Iiに応じた出力制御信号Scを出力する。
【0008】
溶接電源主回路INVは、商用電源を入力として、インバータ制御、サイリスタ位相制御等によってアーク3を安定にするために適した溶接電圧Vw及び溶接電流Iwを出力する。この溶接電源主回路INVは、短絡検出信号SaがHighレベルの期間中は初期短絡電流を通電する定電流特性又は垂下特性を形成し、短絡検出信号SaがLowレベルの期間中は定常の溶接電流を通電し、上記電圧設定値Vsに対応した定電圧特性を形成する。
【0009】
図7は、図6に示す溶接電源装置の動作を説明するための波形図である。図7(A)は溶接開始信号Stの時間変化を示し、図7(B)は溶接電圧Vwの時間変化を示し、図7(C)は溶接電流Iwの時間変化を示し、図7(D)は短絡検出信号Saの時間変化を示し、図7(E)は送給制御信号Fcの時間変化を示し、図7(F)はワイヤ先端・被溶接物間距離Lwの時間変化を示し、同図のS1〜S5は各時刻における溶接ワイヤ1の送給状態を示している。以下、同図を参照して説明する。
【0010】
図7(A)に示す時刻t=t1において、溶接開始信号Stが外部から入力されると、図7(E)に示す初期送給速度設定値Wiに応じた送給制御信号Fcが出力され、図7(S1)に示すように、溶接ワイヤ1は被溶接物2への送給が開始される。また、同時に溶接電源主回路INVの無負荷電圧が図7(B)に示す溶接電圧Vwとして印加する。次に、時刻t1〜t2の期間中は、上記初期送給速度設定値Wiに応じた速度で溶接ワイヤ1が送給され、図7(F)に示すように、ワイヤ先端・被溶接物間距離Lwは徐々に短くなる。
【0011】
図7(A)に示す時刻t=t2において、図7(S2)に示すように、溶接ワイヤ1が被溶接物2に接触すると、図7(D)に示すように、短絡検出信号SaがLowレベルからHighレベルになる。この短絡検出信号SaがHighレベルになると、図7(E)に示す送給制御信号Fcの出力を停止すると共に溶接ワイヤ1の送給を停止する。同時に図7(C)に示す溶接電流Iwが大電流の初期短絡電流として通電する。次に、時刻t2〜t3の期間中は、溶接ワイヤ1の送給が停止したままで初期短絡電流が通電する。
【0012】
図7(A)に示す時刻t=t3において、図7(S3)に示すように上記溶接ワイヤ1の先端部が初期短絡電流の通電によって溶断してアーク3bが発生する。このとき燃え上がりが生じて、図7(F)に示すワイヤ先端・被溶接物間距離Lwは長くなると共に図7(B)に示す溶接電圧Vwも高くなる。つぎに、アーク3bが発生した時点で短絡検出信号SaがLowレベルになり、この短絡検出信号SaがLowレベルになると、上記溶接ワイヤ1は定常の送給速度設定値Wsに応じた速度で送給される。
【0013】
図7(A)に示す時刻t=t4において、上記溶接ワイヤ1は定常の送給速度設定値Wsに応じた速度で送給され、溶接電源主回路INVは、定電圧特性を形成し定常の溶接電流値Iiに応じた溶接電流を通電する。
【0014】
【発明が解決しようとする課題】
溶接ワイヤ(軟質アルミワイヤ)を被溶接物へ送給してアークスタートさせる消耗電極式アーク溶接において、アークスタート時に長期短絡(短絡期間100ms以上)が発生すると、上記溶接ワイヤは初期短絡電流の通電によって、溶接ワイヤの先端部が溶断してアークが発生する。このとき溶接ワイヤが大電流の初期短絡電流の通電によって燃え上りが速くなるためアーク長が非常に長くなる。このアークスタート発生時のアーク長の変化によって定常アークのアーク長への移行に時間がかかり、このためにアークスタート時の溶接ビード外観が悪くなるという課題がある。
【0015】
【課題を解決するための手段】
第1の発明は、溶接電源装置に溶接開始信号が入力されると溶接ワイヤを被溶接物へ送給すると共に前記溶接電源装置の出力を開始し、前記送給によって前記溶接ワイヤと前記被溶接物とが接触したことを検出すると前記溶接ワイヤの送給を停止すると共に前記溶接電源装置から予め定めた初期短絡電流を通電し、前記初期短絡電流の通電によって前記溶接ワイヤの先端部が溶断し、アークが発生した時点から前記溶接ワイヤを予め定めた定常の送給速度で被溶接物へ送給を開始すると共に前記定常の送給速度に対応した定常の溶接電流を通電する消耗電極式アーク溶接のアークスタート制御方法において、前記溶接ワイヤと前記被溶接物との接触期間を算出し前記接触期間の長さが予め定めた基準接触期間以上のとき、前記アークが発生した時点から前記溶接ワイヤの送給停止を継続すると共に前記初期短絡電流より低い予め定めた燃上り抑制電流に移行して前記アークを所定期間継続する燃上り抑制期間を設け、前記燃上り抑制期間が終了すると前記溶接ワイヤを前記定常の送給速度で再び前記被溶接物へ送給すると共に前記燃上り抑制電流を前記定常の溶接電流に移行し、前記算出した接触期間の長さが前記基準接触期間未満のとき、前記アークが発生した時点から前記溶接ワイヤを前記定常の送給速度で再び前記被溶接物へ送給を開始すると共に前記初期短絡電流を前記定常の溶接電流に移行することを特徴とするアークスタート制御方法である。
【0016】
第2の発明は、前記接触期間の長さに応じて前記燃上り抑制期間を自動設定することを特徴とする請求項1のアークスタート制御方法である。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。図1は、本発明のアークスタート制御方法を実施する溶接電源装置のブロック図である。同図において、図6に示す従来技術の電源装置装置のブロック図と同一符号は、同一動作を行なうので説明は省略して相違する動作について説明する。
【0019】
燃上り抑制演算回路CTは、短絡検出信号Saに応じて溶接ワイヤ1と被溶接物2との接触状態を判別し、上記短絡検出信号SaがHighレベルからLowレベルになると溶接ワイヤ1の先端部が被溶接物2から溶断されたと判別して、予め定めた期間の燃上り抑制演算信号Ctを出力する。
【0020】
燃上り抑制対応送給制御回路FCSは、外部から溶接開始信号Stが入力されると、予め定めた初期送給速度設定値Wiに応じた燃上り抑制対応送給制御信号Fcsを出力し、続けて上記短絡検出信号SaがHighレベルの期間中は上記燃上り抑制対応送給制御信号Fcsの出力を停止し、続けて上記燃上り抑制演算信号CtがHighレベルの期間中は上記燃上り抑制対応送給制御信号Fcsの停止を維持する。続いて、上記短絡検出信号Saと燃上り抑制演算信号CtとがLowレベルになると、定常の送給速度設定値Wsに応じた燃上り抑制対応送給制御信号Fcsを出力する。
【0021】
燃上り抑制対応出力制御信号SCSは、外部からの溶接開始信号Stが入力されると動作を開始し、短絡検出信号SaのみがHighレベルの期間中は初期短絡電流設定値Isを選択し、上記初期短絡電流設定値Isに応じた出力制御信号Scを出力し、上記燃上り抑制演算信号CtのみがHighレベルの期間中は燃上り抑制電流設定信号Ilを選択し、上記燃上り抑制電流設定信号Ilに応じた出力制御信号Scを出力し、上記短絡検出信号Saと燃上り抑制演算信号CtとがLowレベルの期間中は定常の溶接電流設定値Iiを選択し、上記定常の溶接電流設定値Iiに応じた出力制御信号Scを出力する。
【0022】
図2は、図1に示す溶接電源装置の動作を説明するための波形図である。図2(A)は溶接開始信号Stの時間変化を示し、図2(B)は溶接電圧Vwの時間変化を示し、図2(C)は溶接電流Iwの時間変化を示し、図2(D)は短絡検出信号Saの時間変化を示し、図2(E)は燃上り抑制演算信号Ctの時間変化を示し、図2(F)は燃上り抑制対応送給制御信号Fcsの時間変化を示し、図2(G)はワイヤ先端・被溶接物間距離Lwの時間変化を示し、同図のS1〜S5は各時刻における溶接ワイヤ1の送給状態を示している。以下、同図を参照して説明する。
【0023】
図2(A)に示す時刻t=t1において、溶接開始信号Stが外部から入力されると、図2(F)に示す初期送給速度設定値Wiに応じた燃上り抑制対応送給制御信号Fcsが出力され、図2(S1)に示すように、溶接ワイヤ1は被溶接物2への送給が開始される。また、同時に溶接電源主回路INVの無負荷電圧が図2(B)に示す溶接電圧Vwとして印加する。次に、時刻t1〜t2の期間中は、上記初期送給速度設定値Wiに応じた速度で溶接ワイヤ1が送給され、図2(G)に示すように、ワイヤ先端・被溶接物間距離Lwは徐々に短くなる。
【0024】
図2(A)に示す時刻t=t2において、図2(S2)に示すように、溶接ワイヤ1が被溶接物2に接触すると、図2(D)に示すように、短絡検出信号SaがLowレベルからHighレベルになる。この短絡検出信号SaがHighレベルになると、図2(F)に示す燃上り抑制対応送給制御信号Fcsの出力を停止すると共に溶接ワイヤ1の送給を停止する。同時に図2(C)に示す溶接電流Iwが大電流の初期短絡電流として通電する。次に、時刻t2〜t3の期間中は、溶接ワイヤ1の送給が停止されたままで初期短絡電流が通電する。
【0025】
図2(A)に示す時刻t=t3において、図2(S3)に示すように上記溶接ワイヤ1の先端部が上記初期短絡電流の通電によって溶断してアーク3aが発生する。このとき燃上り抑制演算回路CTは、入力信号の短絡検出信号SaがHighレベルからLowレベルになり溶接ワイヤ1の先端部が被溶接物2から溶断されたと判別して、図2(E)に示す予め定めた期間の燃上り抑制演算信号CtをHighレベルにして出力する。上記燃上り抑制演算信号CtがHighレベルの燃上り抑制期間中T3は、溶接ワイヤ1の送給を停止すると共に予め定めた小電流の燃上り抑制電流設定信号Ilに応じた溶接電流Iwを出力して溶接ワイヤ1の燃上りを抑制して、図2(G)に示すワイヤ先端・被溶接物間距離Lwが長くなるのを防止する。
【0026】
図2(A)に示す時刻t=t4において、上記燃上り抑制演算信号Ctと短絡検出信号SaとがLowレベルになると燃上り抑制対応送給制御回路FCSは、上記定常の送給速度設定値Wsに応じた速度送給で溶接ワイヤ1を送給すると共に燃上り抑制対応出力制御信号SCSは、定常の溶接電流設定値Iiに応じた出力制御信号Scを出力する。次に、時刻t4〜t5の期間中は、接電源主回路INVは、定電圧特性を形成して定常の溶接電流信号Iiに応じた溶接電流を通電する。
【0027】
[実施例2]
図3は、本発明のアークスタート制御方法を実施する実施例2の溶接電源装置のブロック図である。同図において、図1及び図6に示す電源装置装置のブロック図と同一符号は、同一動作を行なうので説明は省略して相違する動作について説明する。
【0028】
基準の接触時間設定回路TRは、基準の接触時間設定値Trを出力する。
【0029】
燃上り抑制演算比較回路CTCは、図2(B)に示す接触期間T2を算出し、上記算出した接触期間T2と基準の接触時間設定回路TRによって設定された基準の接触時間設定値Trとを比較して、上記算出した接触期間T2が基準の接触期間Tr以上のときに、予め定めた燃上り抑制期間T3の燃上り抑制演算比較信号Ctcを出力する。
【0030】
上記燃上り抑制演算比較信号Ctcが出力期間中、溶接ワイヤ1の送給を停止したままで予め定めて小電流の燃上り抑制電流信号Ilに応じた溶接電流Iwを出力して溶接ワイヤ1の燃上りを抑制して、ワイヤ先端・被溶接物間距離Lwが長くなるのを防止する。
【0031】
上記算出した接触時間T2が予め定めた基準の接触期間設定信号Tr未満のときに、アークが発生した時点で予め定めた定常の送給速度Wsに切り換えて被溶接物1への送給を開始すると共に定常の送給速度Wsに対応した定常の溶接電流Iiを通電する。
【0032】
[実施例3]
実施例3は、実施例2の溶接電源装置のブロック図と同一構成であり、違いは図4に示す接触期間と燃上り抑制時間との関係図より燃上り抑制期間T3を自動設定することにある。
【0033】
燃上り抑制演算比較回路CTCは、接触期間T2を算出し、上記算出した接触期間T2と基準の接触時間設定回路TRによって設定された基準の接触時間設定値Trとを比較して、上記算出した接触期間T2が基準の接触期間Tr以上のとき、図4に示す接触期間と燃上り抑制時間との関係式より燃上り抑制演算比較信号Ctcの燃上り抑制期間T3を自動演算して出力する。
【0034】
図5は、上記実施例3の方法で、溶接ワイヤ1.2[mm]の軟質アルミワイヤを使用し、溶接電流100[A]、溶接電圧17[V]に設定して、溶接スタートを100回行なったとき、スタート時の溶接電圧が定常の溶接電圧17[V]より3[V]以上高くなった回数を測定した溶接電圧上昇比較図である。
【0035】
【発明の効果】
アークスタート時に長期短絡が発生すると、上記溶接ワイヤは初期短絡電流の通電によって溶接ワイヤの先端部が溶断してアークが発生する。このアークが発生した時点で予め定めた燃上り抑制期間を設け、上記燃上り抑制期間中は溶接ワイヤの送給を停止したままで予め定めた小電流の燃上り抑制電流を通電することにより溶接ワイヤの燃え上りを抑制し、アークスタート時のアーク長が長くなるのを防止する。その結果アークスタート部分の溶接ビード外観が良好になる。
【図面の簡単な説明】
【図1】本発明のアークスタート制御方法を実施する溶接電源装置のブロック図である。
【図2】図1に示す溶接電源装置の動作を説明するための波形図である。
【図3】本発明のアークスタート制御方法を実施する実施例2の溶接電源装置のブロック図である。
【図4】短絡期間と燃上り抑制期間との関係図である。
【図5】本発明の効果を示すスタート時の溶接電圧上昇比較図である。
【図6】従来技術のアークスタート制御方法を実施する溶接電源装置のブロック図である。
【図7】図5に示す溶接電源装置の動作を説明するための波形図である。
【符号の説明】
1 溶接ワイヤ
2 被溶接物
3 アーク
3a 本発明の初期アーク(発生状態)
3b 従来の初期アーク(発生状態)
3c 定常のアーク(発生状態)
4 溶接トーチ
4a コンタクトチップ
5 ワイヤ送給装置の送給ロール
CT 燃上り抑制演算回路
CTC 燃上り抑制演算比較回路
FC 送給制御回路
FCS 燃上り抑制対応送給制御回路
ID 出力電流検出回路
INV 溶接電源主回路
PS 溶接電源装置
PSC 燃上り抑制対応溶接電源装置
TR 基準の接触時間設定回路
SA 短絡検出回路
SC 出力制御回路
SCS 燃上り抑制対応出力制御回路
VD 出力電圧検出回路
VS 電圧設定回路
WS 定常の送給速度設定回路
WM ワイヤ送給モータ
Ct 燃上り抑制演算信号
Ctc 燃上り抑制演算比較信号
Fc 送給制御信号
Fcs 燃上り抑制対応送給制御信号
Id 出力電流検出信号
Ii 定常の溶接電流(値/設定値)
Il 燃上り抑制電流(値/設定値)
Is 初期短絡電流(値/設定値)
Iw 溶接電流
Lw ワイヤ先端・被溶接物間距離
Sa 短絡検出信号
Sc 出力制御信号
St 溶接開始信号
Tr 基準の接触時間(値/設定値)
Vd 出力電圧検出信号
Vs 電圧設定値
Vw 溶接電圧
Wi 初期送給速度設定値
Ws 定常の送給速度設定値
T1 スローダウン期間
T2 接触期間
T3 燃上り抑制期間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an arc start control method for consumable electrode arc welding in which a welding wire is fed to an object to be welded by a wire feed motor to start the arc.
[0002]
[Prior art]
FIG. 6 is a block diagram of a welding power source apparatus that implements a conventional arc start control method. Hereinafter, each circuit block will be described with reference to FIG.
[0003]
The welding wire 1 is fed through the welding torch 4 by a feeding roll 5 directly connected to the wire feeding motor WM. The welding voltage Vw from the welding power source device PS is fed to the welding wire 1 by a contact tip 4a (not shown) attached to the tip of the welding torch 4.
[0004]
The output current detection circuit ID detects the welding current Iw and outputs an output current detection signal Id. The output voltage detection circuit VD detects the welding voltage Vw and outputs an output voltage detection signal Vd.
[0005]
The short-circuit detection circuit SA receives the output voltage detection signal Vd as an input, detects contact between the welding wire 1 and the workpiece 2 and outputs the short-circuit detection signal Sa at a high level in the contact state.
[0006]
The steady feeding speed setting circuit WS outputs a steady feeding speed setting value Ws. When a welding start signal St is input from the outside, the feed control circuit FC outputs a feed control signal Fc corresponding to a predetermined initial feed speed setting value Wi to the workpiece 2 from the welding wire 1, Subsequently, when the short circuit detection signal Sa becomes High level, it is determined that the welding wire 1 has contacted the workpiece 2 and the output of the feed control signal Fc is stopped, and then the short circuit detection signal Sa is When the high level is changed to the low level, it is determined that the contact between the welding wire 1 and the workpiece 2 is released, and the feed control signal Fc corresponding to the steady feed speed set value Ws is output.
[0007]
The voltage setting circuit VS outputs a voltage setting value Vs. The output control circuit SC starts operation when an external welding start signal St is input, and outputs an output control signal Sc corresponding to the initial short-circuit current set value Is while the short-circuit detection signal Sa is at a high level. During the period when the short circuit detection signal Sa is at the low level, the output control signal Sc corresponding to the steady welding current set value Ii is output.
[0008]
The welding power source main circuit INV receives a commercial power source and outputs a welding voltage Vw and a welding current Iw suitable for stabilizing the arc 3 by inverter control, thyristor phase control, or the like. This welding power source main circuit INV forms a constant current characteristic or a drooping characteristic in which an initial short circuit current is passed during a period in which the short circuit detection signal Sa is at a high level, and a steady welding current in a period in which the short circuit detection signal Sa is at a low level. And a constant voltage characteristic corresponding to the voltage set value Vs is formed.
[0009]
FIG. 7 is a waveform diagram for explaining the operation of the welding power source apparatus shown in FIG. 7A shows the time change of the welding start signal St, FIG. 7B shows the time change of the welding voltage Vw, FIG. 7C shows the time change of the welding current Iw, and FIG. ) Shows the time change of the short circuit detection signal Sa, FIG. 7 (E) shows the time change of the feed control signal Fc, FIG. 7 (F) shows the time change of the wire tip / workpiece distance Lw, S1 to S5 in the figure show the feeding state of the welding wire 1 at each time. Hereinafter, a description will be given with reference to FIG.
[0010]
When the welding start signal St is input from the outside at time t = t1 shown in FIG. 7A, a feed control signal Fc corresponding to the initial feed speed setting value Wi shown in FIG. As shown in FIG. 7 (S1), feeding of the welding wire 1 to the workpiece 2 is started. At the same time, the no-load voltage of the welding power source main circuit INV is applied as the welding voltage Vw shown in FIG. Next, during the period from the time t1 to the time t2, the welding wire 1 is fed at a speed corresponding to the initial feed speed setting value Wi, and as shown in FIG. The distance Lw is gradually shortened.
[0011]
At time t = t2 shown in FIG. 7A, when the welding wire 1 comes into contact with the work piece 2 as shown in FIG. 7S2, the short circuit detection signal Sa is changed as shown in FIG. From Low level to High level. When this short circuit detection signal Sa becomes High level, the output of the feed control signal Fc shown in FIG. 7E is stopped and the feed of the welding wire 1 is stopped. At the same time, the welding current Iw shown in FIG. 7C is energized as a large initial short circuit current. Next, during the period from time t2 to t3, the initial short-circuit current is energized while the feeding of the welding wire 1 is stopped.
[0012]
At time t = t3 shown in FIG. 7 (A), as shown in FIG. 7 (S3), the tip of the welding wire 1 is melted by energizing the initial short-circuit current to generate an arc 3b. At this time, burning occurs, and the wire tip-to-be-welded distance Lw shown in FIG. 7 (F) becomes longer and the welding voltage Vw shown in FIG. 7 (B) also becomes higher. Next, when the arc 3b is generated, the short-circuit detection signal Sa becomes a low level. When the short-circuit detection signal Sa becomes a low level, the welding wire 1 is fed at a speed corresponding to the steady feeding speed set value Ws. Be paid.
[0013]
At time t = t4 shown in FIG. 7A, the welding wire 1 is fed at a speed corresponding to the steady feeding speed set value Ws, and the welding power source main circuit INV forms a constant voltage characteristic and is steady. A welding current corresponding to the welding current value Ii is applied.
[0014]
[Problems to be solved by the invention]
In consumable electrode arc welding in which a welding wire (soft aluminum wire) is fed to the workpiece and arc-started, if a long-term short-circuit occurs (short-circuit period of 100 ms or more) at the start of the arc, the welding wire is energized with an initial short-circuit current. As a result, the tip of the welding wire is melted and an arc is generated. At this time, the welding wire is rapidly burned up by energization of a large initial short-circuit current, so that the arc length becomes very long. Due to the change in the arc length at the time of the arc start, it takes time to shift to the arc length of the steady arc. For this reason, there is a problem that the appearance of the weld bead at the time of the arc start is deteriorated.
[0015]
[Means for Solving the Problems]
According to a first aspect of the present invention, when a welding start signal is input to the welding power source device, the welding wire is fed to the work piece and the output of the welding power source device is started. When the contact with the object is detected, the feeding of the welding wire is stopped and a predetermined initial short-circuit current is supplied from the welding power source, and the tip of the welding wire is melted by the supply of the initial short-circuit current. The consumable electrode arc that starts feeding the welding wire to the workpiece at a predetermined steady feeding speed from the time when the arc is generated and supplies a steady welding current corresponding to the steady feeding speed. In the welding arc start control method, the arc is generated when the contact period between the welding wire and the workpiece is calculated and the length of the contact period is equal to or longer than a predetermined reference contact period. A continuation stop of the welding wire from the point in time and a transition to a predetermined flaming suppression current lower than the initial short-circuit current to provide a flaming suppression period for continuing the arc for a predetermined period, When finished, the welding wire is fed again to the workpiece at the steady feeding speed, the burnup suppression current is shifted to the steady welding current, and the calculated length of the contact period is the reference contact. When the period is less than the period, starting to feed the welding wire to the workpiece again at the steady feeding speed from the time when the arc is generated, and shifting the initial short circuit current to the steady welding current. An arc start control method is characterized.
[0016]
The second invention is the arc start control method according to claim 1, wherein the burn-up suppression period is automatically set according to the length of the contact period.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a welding power source apparatus that implements the arc start control method of the present invention. In the figure, the same reference numerals as those in the block diagram of the prior art power supply apparatus shown in FIG.
[0019]
The burn-up suppression calculation circuit CT determines the contact state between the welding wire 1 and the workpiece 2 according to the short circuit detection signal Sa, and when the short circuit detection signal Sa changes from the High level to the Low level, the tip of the welding wire 1 is detected. Is burned out from the work piece 2, and a burn-up suppression calculation signal Ct for a predetermined period is output.
[0020]
When the welding start signal St is input from the outside, the fuel consumption suppression-corresponding feed control circuit FCS outputs a fuel rise restraint-corresponding feed control signal Fcs corresponding to a predetermined initial feed speed setting value Wi, and continues. During the period when the short-circuit detection signal Sa is at a high level, the output of the fuel supply control signal Fcs for suppressing the increase in fuel is stopped, and subsequently, during the period when the increase control signal Ct is at a high level, the above-described increase in fuel suppression is supported. The stop of the feed control signal Fcs is maintained. Subsequently, when the short-circuit detection signal Sa and the fuel up suppression control signal Ct are at a low level, the fuel up suppression compatible feeding control signal Fcs corresponding to the steady feeding speed set value Ws is output.
[0021]
The burn-up suppression corresponding output control signal SCS starts operation when an external welding start signal St is input, and selects the initial short-circuit current set value Is while only the short-circuit detection signal Sa is at the high level. An output control signal Sc corresponding to the initial short-circuit current set value Is is output, and during the period when only the above-described fuel up suppression control signal Ct is at a high level, the fuel up suppression current setting signal Il is selected, and the above fuel up suppression current setting signal is selected. The output control signal Sc corresponding to Il is output, the steady welding current set value Ii is selected while the short circuit detection signal Sa and the burnup suppression calculation signal Ct are at the low level, and the steady welding current set value is selected. An output control signal Sc corresponding to Ii is output.
[0022]
FIG. 2 is a waveform diagram for explaining the operation of the welding power source apparatus shown in FIG. 2A shows the time change of the welding start signal St, FIG. 2B shows the time change of the welding voltage Vw, FIG. 2C shows the time change of the welding current Iw, and FIG. ) Shows the time change of the short circuit detection signal Sa, FIG. 2 (E) shows the time change of the burnup suppression calculation signal Ct, and FIG. 2 (F) shows the time change of the fuel supply control signal Fcs corresponding to the burnup suppression. FIG. 2 (G) shows the change over time in the distance Lw between the wire tip and the workpiece, and S1 to S5 in FIG. 2 show the feeding state of the welding wire 1 at each time. Hereinafter, a description will be given with reference to FIG.
[0023]
When a welding start signal St is input from the outside at time t = t1 shown in FIG. 2 (A), a fuel supply control signal corresponding to the fuel upregulation corresponding to the initial feed speed setting value Wi shown in FIG. 2 (F). Fcs is output, and as shown in FIG. 2 (S1), feeding of the welding wire 1 to the workpiece 2 is started. At the same time, the no-load voltage of the welding power source main circuit INV is applied as the welding voltage Vw shown in FIG. Next, during the period from the time t1 to the time t2, the welding wire 1 is fed at a speed according to the initial feed speed setting value Wi, and as shown in FIG. The distance Lw is gradually shortened.
[0024]
At time t = t2 shown in FIG. 2 (A), when the welding wire 1 contacts the work piece 2 as shown in FIG. 2 (S2), as shown in FIG. From Low level to High level. When the short-circuit detection signal Sa becomes High level, the output of the fuel suppression control feeding control signal Fcs shown in FIG. 2 (F) is stopped and the feeding of the welding wire 1 is stopped. At the same time, the welding current Iw shown in FIG. 2C is energized as a large initial short circuit current. Next, during the period from time t2 to t3, the initial short-circuit current is energized while the feeding of the welding wire 1 is stopped.
[0025]
At time t = t3 shown in FIG. 2 (A), as shown in FIG. 2 (S3), the distal end portion of the welding wire 1 is melted by the energization of the initial short-circuit current to generate an arc 3a. At this time, the burn-up suppression calculation circuit CT determines that the short-circuit detection signal Sa of the input signal has changed from the High level to the Low level and the tip of the welding wire 1 has been melted from the work piece 2, and FIG. The burn-up suppression calculation signal Ct for the predetermined period shown is output at a high level. During the fuel up suppression period in which the fuel up suppression calculation signal Ct is at a high level, the feeding of the welding wire 1 is stopped and a welding current Iw corresponding to a predetermined small current fuel up suppression current setting signal Il is output. Then, the burn-up of the welding wire 1 is suppressed to prevent the distance Lw between the wire tip and the workpiece to be welded shown in FIG.
[0026]
At time t = t4 shown in FIG. 2 (A), when the fuel up suppression control signal Ct and the short circuit detection signal Sa become low level, the fuel up suppression compatible feed control circuit FCS sets the steady feed speed set value. The welding wire 1 is fed at a speed feeding according to Ws, and the output control signal SCS corresponding to the burnup suppression outputs an output control signal Sc corresponding to the steady welding current set value Ii. Next, during the period from time t4 to time t5, the contact power supply main circuit INV forms a constant voltage characteristic and energizes a welding current according to a steady welding current signal Ii.
[0027]
[Example 2]
FIG. 3 is a block diagram of a welding power source apparatus according to a second embodiment that implements the arc start control method of the present invention. In this figure, the same reference numerals as those in the block diagrams of the power supply apparatus shown in FIGS. 1 and 6 perform the same operations, and thus the description thereof will be omitted and different operations will be described.
[0028]
The reference contact time setting circuit TR outputs a reference contact time setting value Tr.
[0029]
The burn-up suppression calculation comparison circuit CTC calculates the contact period T2 shown in FIG. 2B, and calculates the calculated contact period T2 and the reference contact time setting value Tr set by the reference contact time setting circuit TR. In comparison, when the calculated contact period T2 is equal to or longer than the reference contact period Tr, a fuel up suppression calculation comparison signal Ctc for a predetermined fuel up suppression period T3 is output.
[0030]
During the output period of the burnup suppression calculation comparison signal Ctc, the welding current Iw corresponding to the small current burnup suppression current signal Il is output in advance while the feeding of the welding wire 1 is stopped. Suppression of burning is prevented, and the distance Lw between the wire tip and the workpiece is prevented from becoming long.
[0031]
When the calculated contact time T2 is less than a predetermined reference contact period setting signal Tr, the feeding to the workpiece 1 is started by switching to a predetermined steady feeding speed Ws when an arc is generated. In addition, a steady welding current Ii corresponding to the steady feeding speed Ws is applied.
[0032]
[Example 3]
The third embodiment has the same configuration as the block diagram of the welding power source apparatus of the second embodiment, and the difference is that the burnup suppression period T3 is automatically set based on the relationship diagram between the contact period and the burnup suppression time shown in FIG. is there.
[0033]
The burn-up suppression calculation comparison circuit CTC calculates the contact period T2 by comparing the calculated contact period T2 with the reference contact time setting value Tr set by the reference contact time setting circuit TR. When the contact period T2 is equal to or longer than the reference contact period Tr, the burnup suppression period T3 of the burnup suppression calculation comparison signal Ctc is automatically calculated and output from the relational expression between the contact period and the burnup suppression time shown in FIG.
[0034]
FIG. 5 shows the method of Example 3 described above, using a soft aluminum wire with a welding wire of 1.2 [mm], setting the welding current to 100 [A], the welding voltage to 17 [V], and starting welding at 100. It is a welding voltage rise comparison figure which measured the frequency | count that the welding voltage at the time of starting was 3 [V] or more higher than the steady welding voltage 17 [V].
[0035]
【The invention's effect】
When a long-term short circuit occurs at the start of the arc, the welding wire is melted at the tip of the welding wire by the initial short-circuit current, and an arc is generated. When this arc occurs, a predetermined burnup suppression period is provided, and welding is performed by supplying a predetermined small current rise suppression current while stopping the feeding of the welding wire during the burnup suppression period. Suppresses the burn-up of the wire and prevents the arc length at the start of arc from becoming long. As a result, the weld bead appearance at the arc start portion is improved.
[Brief description of the drawings]
FIG. 1 is a block diagram of a welding power source apparatus for implementing an arc start control method of the present invention.
FIG. 2 is a waveform diagram for explaining the operation of the welding power source device shown in FIG. 1;
FIG. 3 is a block diagram of a welding power source apparatus according to a second embodiment that implements the arc start control method of the present invention.
FIG. 4 is a relationship diagram between a short-circuit period and a burn-up suppression period.
FIG. 5 is a comparison diagram of the welding voltage rise at the start showing the effect of the present invention.
FIG. 6 is a block diagram of a welding power source apparatus that implements a conventional arc start control method.
7 is a waveform diagram for explaining the operation of the welding power source apparatus shown in FIG. 5. FIG.
[Explanation of symbols]
1 Welding Wire 2 Workpiece 3 Arc 3a Initial Arc of the Present Invention
3b Conventional initial arc (occurrence state)
3c Steady arc (occurrence state)
4 Welding torch 4a Contact tip 5 Feeding roll CT of wire feeding device Burnup suppression calculation circuit CTC Burnup suppression calculation comparison circuit FC Feeding control circuit FCS Feeding control circuit ID corresponding to burnup suppression Output current detection circuit INV Welding power supply Main circuit PS Welding power supply device PSC Welding power suppression compatible welding power supply device TR Standard contact time setting circuit SA Short-circuit detection circuit SC Output control circuit SCS Output control circuit VD for fuel suppression control Output voltage detection circuit VS Voltage setting circuit WS Regular transmission Feed speed setting circuit WM Wire feed motor Ct Burnup suppression calculation signal Ctc Burnup suppression calculation comparison signal Fc Feed control signal Fcs Feed control signal Id corresponding to burnup suppression Output current detection signal Ii Steady welding current (value / setting) value)
Il Burnup suppression current (value / setting value)
Is Initial short circuit current (value / setting value)
Iw Welding current Lw Distance between wire tip and work piece Sa Short circuit detection signal Sc Output control signal St Welding start signal Tr Reference contact time (value / setting value)
Vd Output voltage detection signal Vs Voltage set value Vw Welding voltage Wi Initial feed speed set value Ws Steady feed speed set value T1 Slow down period T2 Contact period T3 Burnup suppression period

Claims (2)

溶接電源装置に溶接開始信号が入力されると溶接ワイヤを被溶接物へ送給すると共に前記溶接電源装置の出力を開始し、前記送給によって前記溶接ワイヤと前記被溶接物とが接触したことを検出すると前記溶接ワイヤの送給を停止すると共に前記溶接電源装置から予め定めた初期短絡電流を通電し、前記初期短絡電流の通電によって前記溶接ワイヤの先端部が溶断し、アークが発生した時点から前記溶接ワイヤを予め定めた定常の送給速度で被溶接物へ送給を開始すると共に前記定常の送給速度に対応した定常の溶接電流を通電する消耗電極式アーク溶接のアークスタート制御方法において、前記溶接ワイヤと前記被溶接物との接触期間を算出し前記接触期間の長さが予め定めた基準接触期間以上のとき、前記アークが発生した時点から前記溶接ワイヤの送給停止を継続すると共に前記初期短絡電流より低い予め定めた燃上り抑制電流に移行して前記アークを所定期間継続する燃上り抑制期間を設け、前記燃上り抑制期間が終了すると前記溶接ワイヤを前記定常の送給速度で再び前記被溶接物へ送給すると共に前記燃上り抑制電流を前記定常の溶接電流に移行し、前記算出した接触期間の長さが前記基準接触期間未満のとき、前記アークが発生した時点から前記溶接ワイヤを前記定常の送給速度で再び前記被溶接物へ送給を開始すると共に前記初期短絡電流を前記定常の溶接電流に移行することを特徴とするアークスタート制御方法。When a welding start signal is input to the welding power source device, the welding wire is fed to the workpiece and the output of the welding power source device is started, and the welding wire and the workpiece are brought into contact by the feeding. When the welding wire is stopped, the welding power supply device is stopped and a predetermined initial short-circuit current is supplied from the welding power source. When the initial short-circuit current is supplied, the tip of the welding wire is melted and an arc is generated . The arc start control method for consumable electrode arc welding that starts feeding the welding wire from the workpiece to the workpiece at a predetermined steady feeding speed and energizes a steady welding current corresponding to the steady feeding speed. In the above, the contact period between the welding wire and the workpiece is calculated, and when the length of the contact period is equal to or longer than a predetermined reference contact period, A continuation stop of the contact wire and a transition to a predetermined flaming suppression current lower than the initial short-circuit current are provided to provide a flaming suppression period for continuing the arc for a predetermined period. The welding wire is fed again to the workpiece at the steady feeding speed, the burnup suppression current is shifted to the steady welding current, and the calculated length of the contact period is less than the reference contact period. When the arc is generated, the welding wire is again fed to the workpiece at the steady feeding speed, and the initial short circuit current is shifted to the steady welding current. Arc start control method. 前記接触期間の長さに応じて前記燃上り抑制期間を自動設定することを特徴とする請求項1のアークスタート制御方法。  The arc start control method according to claim 1, wherein the burn-up suppression period is automatically set according to the length of the contact period.
JP2002187119A 2002-06-27 2002-06-27 Arc start control method. Expired - Fee Related JP4312999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187119A JP4312999B2 (en) 2002-06-27 2002-06-27 Arc start control method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187119A JP4312999B2 (en) 2002-06-27 2002-06-27 Arc start control method.

Publications (2)

Publication Number Publication Date
JP2004025265A JP2004025265A (en) 2004-01-29
JP4312999B2 true JP4312999B2 (en) 2009-08-12

Family

ID=31182254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187119A Expired - Fee Related JP4312999B2 (en) 2002-06-27 2002-06-27 Arc start control method.

Country Status (1)

Country Link
JP (1) JP4312999B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702375B2 (en) * 2008-02-07 2011-06-15 パナソニック株式会社 Arc welding control method and arc welding apparatus
CN102672308A (en) * 2012-05-10 2012-09-19 刘裕国 Touch arc striking electric welding machine and electric welding touch arc striking control method
JP6320851B2 (en) 2014-06-06 2018-05-09 株式会社神戸製鋼所 Arc start control method and welding apparatus for consumable electrode arc welding
CN113333913B (en) * 2021-06-07 2023-03-17 深圳合大电气有限公司 Residence state arc striking method for gas metal arc welding

Also Published As

Publication number Publication date
JP2004025265A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP4312999B2 (en) Arc start control method.
JP3368851B2 (en) Pulse welding apparatus and control method thereof
JP4490011B2 (en) Arc start control method
JP3990182B2 (en) Arc start control method
JP2004017059A (en) Arc start control method of laser irradiation electric arc welding
JP2002178145A (en) Arc start control method and welding power source device
JP2006231414A (en) Method for controlling start of arc
JP2004188430A (en) Arc end control method
JP3990151B2 (en) Arc start control method
JPS6254585B2 (en)
JP4661164B2 (en) Consumable electrode arc welding equipment
JP2873716B2 (en) Starting AC arc
JP5082665B2 (en) Arc welding control method and arc welding machine
JP5257403B2 (en) Consumable electrode arc welding equipment
JP2004042056A (en) Arc and control method
JP2022045136A (en) Welding power source system
JP4501355B2 (en) Arc welding control method and arc welding machine
JP2007216303A (en) Arc start control method
JP2005028380A (en) Retract arc start control method for consumable electrode arc welding
JP2002248572A (en) Arc start control method
JP2002178146A (en) Arc start control method
JP4850638B2 (en) Polarity switching short-circuit arc welding method
JPS60223661A (en) Arc welding method
JP4252636B2 (en) Consumable electrode gas shield arc welding method
JPS60223662A (en) Arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4312999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees