JP2004188430A - Arc end control method - Google Patents

Arc end control method Download PDF

Info

Publication number
JP2004188430A
JP2004188430A JP2002356347A JP2002356347A JP2004188430A JP 2004188430 A JP2004188430 A JP 2004188430A JP 2002356347 A JP2002356347 A JP 2002356347A JP 2002356347 A JP2002356347 A JP 2002356347A JP 2004188430 A JP2004188430 A JP 2004188430A
Authority
JP
Japan
Prior art keywords
welding
wire
arc length
arc
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002356347A
Other languages
Japanese (ja)
Inventor
Toshiro Uesono
敏郎 上園
Futoshi Nishisaka
太志 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2002356347A priority Critical patent/JP2004188430A/en
Publication of JP2004188430A publication Critical patent/JP2004188430A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an arc end control method of the consumable electrode type gas-shielded arc welding to feed a welding wire to a work to be welded by a wire feed motor. <P>SOLUTION: When a welding start signal is input, a welding wire is advanced and fed to a work at a regular feed speed, and the regular welding current corresponding to the regular feed speed runs. When the input of the welding start signal is stopped, the retractive feed of the welding wire is started at the predetermined speed, and the wire melting suppressing current runs. Then, the arc length measuring current of a range having the positive characteristic larger than that of the wire melting suppressing current runs for the arc length measurement time, the arc length is calculated by the arc voltage caused by the energization, and the target retraction distance which is the difference between the arc length and the distance from a wire tip when the welding is completed and the work is calculated. When the arc length measurement time is elapsed, running of the arc length measuring current is stopped, the welding wire is retractively fed by the target retraction distance, and the welding is completed in this arc end control method. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ワイヤ送給モータによって、溶接ワイヤを被溶接物へ送給する消耗電極式ガスシールドアーク溶接のアークエンド制御方法に関するものである。
【0002】
【従来の技術】
従来技術1では、図6に示すように、溶接起動設定部11の信号により溶接終了判定部12で溶接終了時を判定し、溶接電圧検出部16で溶接電圧の瞬時値を検出し、この溶接電圧検出部16の出力を短絡・アーク判定部17に入力して短絡またはアークを判定し、前記溶接終了判定部12の出力と前記短絡・アーク判定部17の出力を計測部13に入力し、溶接終了時に発生する短絡が解除された時点を時間起点として所定時間経過後に溶接出力を停止する信号を起動部14に出力するようにしている。
【0003】
駆動部14では、出力制御部15からの溶接出力を制御する信号と、前記計測部13の信号を入力し、前記計測部13から出力停止信号を入力したときに、前記出力制御部15からの入力信号をスイッチング素子30に出力するのを停止している。
【0004】
このように従来技術1では、溶接終了時の短絡解除時を時間起点として所定時間経過後に溶接出力を停止するようにしている。なお、溶接終了時の短絡解除信号(アーク発生信号)が前記計測部13に入力されると、前記計測部13では短絡解除時を時間起点として予め設定した所定時間出力する。
【0005】
この所定時間は0でも良いし0〜数msecと設定しても良い。その後、出力停止信号を駆動部14出力し出力を停止する。
【0006】
これにより、ワイヤ先端部の溶滴が移行したことを検出して出力を停止するため球滴表面に形成される酸化物量を抑制できワイヤ先端の球滴径はワイヤ径の約1.0〜1.2倍と小さく、つぎのアークスタートの失敗を抑制できる。ただし、ワイヤ先端・被溶接物間距離の値に応じて、上記ワイヤ先端部の溶融粒径の値に変動が生じる。(特許文献1参照)
【0007】
従来技術2は、最終パルス電流の通電を判別することによって、最終の溶滴が離脱した直後のワイヤ先端の状態をワイヤ先端の溶融金属量又は溶融球の大きさの制御の基点にして、ワイヤ先端の溶融金属量又は溶融球の大きさを次回の瞬時アークスタートに最適な状態にする時間だけ、ベース電流を通電した後に溶接を終了するパルスアーク溶接終了方法である。ただし、ワイヤ先端・被溶接物間距離の値に応じて、上記ワイヤ先端部の溶融粒径の値に変動が生じる。(特許文献2参照)
【0008】
【特許文献1】
特開2002−292464号公報
【特許文献2】
特開平9−267171号公報
【0009】
【発明が解決しようとする課題】
溶接ワイヤ(軟質アルミワイヤ)を被溶接物へ送給する消耗電極式ガスシールドアーク溶接のアークエンド制御方法において、溶接開始信号終了と共にワイヤ送給を停止した状態で所定のワイヤ先端・被溶接物間距離を得るために予め定めたワイヤ溶融電流を通電してワイヤ先端部を溶融する。このときワイヤ先端・被溶接物間距離の値に応じて、上記ワイヤ先端部の溶融量が変わり溶融粒径の大きさに違いが生じる。上記よりワイヤ先端・被溶接物間距離が長くなると上記ワイヤ先端部の溶融粒径が大きくなり、次回以後のアークスタート率が悪くなってしまう。
【0010】
【課題を解決するための手段】
請求項1の発明は、溶接電源装置PSCに溶接開始信号Stが入力されると溶接ワイヤ1を予め定めた定常の送給速度で被溶接物2に前進送給すると共に前記定常の送給速度に対応した定常の溶接電流Iiを通電し、続いて前記溶接開始信号Stの入力が停止すると前記溶接ワイヤ1を被溶接物2から予め定めた速度で後退送給を開始すると共に小電流のワイヤ溶融抑制電流Irを予め定めた時間通電し、続いて前記ワイヤ溶融抑制電流Irより大きいアーク特性が正特性を有する範囲の値に予め定めたアーク長計測電流Isを予め定めたアーク長計測時間T2の間通電すると共に前記アーク長計測電流Isの通電によるアーク電圧によってアーク長Lkを算出し、前記算出したアーク長Lkと予め定めた溶接終了時ワイヤ先端・被溶接物間距離Lwとの差である目標後退距離Irを算出し、続いて前記アーク長計測時間T2が経過すると前記アーク長計測電流Isの通電を停止してアークを消滅させると共に前記目標後退距離Lrだけ前記後退送給を継続した後に、前記後退送給を停止して溶接を終了することを特徴とするアークエンド制御方法。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。図1は、本発明のアークエンド制御方法を実施する溶接電源装置のブロック図である。
【0012】
溶接ワイヤ1は、ワイヤ送給モータWMと直結した送給ロール5によって、溶接トーチ4を通って送給される。溶接電源装置PSCからの溶接電圧Vwは、溶接トーチ4の先端に取り付けられた図2に示すコンタクトチップ4aによって溶接ワイヤ1に給電する。
【0013】
出力電流検出回路IDは、溶接電流Iwを検出して、出力電流検出信号Idとして出力する。出力電圧検出回路VDは、溶接電圧(アーク電圧)Vwを検出して、出力電圧検出信号Vdとして出力する。
【0014】
単安定マルチバイブレータ回路FFは、外部からの溶接開始信号StがHighレベルからLowレベル(溶接開始信号終了)になると動作を開始し、予め定めた時間の単安定マルチバイブレータ信号FfをHighレベルにしてアーク長検出指令回路VR、出力制御回路SCS及びオアー回路ORに出力する。
【0015】
アーク長検出指令回路VRは、単安定マルチバイブレータ信号FfがHighレベルからLowレベルになると動作を開始し、予め定めた時間のアーク長検出指令信号VrをHighレベルにしてアーク検出演算回路VL及び出力制御回路SCSに出力する。
【0016】
アーク長検出演算回路VLは、アーク長検出指令信号Vrが入力されると動作を開始し、出力電圧検出信号Vdからアーク長Lkを演算及び算出してアーク長検出演算信号Vlを出力制御回路SCSに出力する。
【0017】
出力制御回路SCSは、外部から溶接開始信号Stが入力されて上記溶接開始信号StがHighレベルの期間中は、予め定めた定常の溶接電流設定値Iiを選択し、上記定常の溶接電流設定値Iiに応じた出力制御信号Scを出力する。続けて溶接開始信号StがHighレベルからLowレベル(溶接開始信号終了)になると単安定マルチバイブレータ信号FfがHighレベルになり、上記単安定マルチバイブレータ信号FfがHighレベルの期間中は動作を継続し、上記単安定マルチバイブレータ信号Ffによって予め定めたワイヤ溶融抑制電流設定値Irを選択し、上記ワイヤ溶融抑制電流設定値Irに応じた出力制御信号Scを出力する。また、上記ワイヤ溶融抑制電流設定値Irは溶接ワイヤ1の先端部が溶融しない小電流の値に設定している。
【0018】
出力制御回路SCSは、アーク長検出指令信号VrがHighレベルの期間中も動作を継続し、上記アーク長検出指令信号Vrによって予め定めたアーク長計測電流設定値Isを選択し、上記アーク長計測電流設定値Isに応じた出力制御信号Scを出力すると共に溶接終了時ワイヤ先端・被溶接物間距離Lwとアーク長検出演算信号Vlとの差である目標後退距離Lrを算出してワイヤ後退指令信号Srとして出力する。
【0019】
オアー回路ORは、ワイヤ後退指令信号Srと単安定マルチバイブレータ信号Ffとのオアー論理を取ってオアー信号Orとして出力する。
【0020】
定常の送給速度設定回路WSは、定常の送給速度設定信号Wsを出力する。 ワイヤ送給制御回路FCSは、外部から溶接開始信号Stが入力され上記溶接開始信号StがHighレベルの期間中は、定常の送給速度設定値Wsに応じたワイヤ送給制御信号Fcsを出力し、続けて溶接開始信号StがHighレベルからLowレベル(溶接開始信号終了)になると共にオアー信号OrがHighレベルの期間中は、予め定めた後退送給速度設定値Wrに応じたワイヤ送給制御信号Fcsを出力し、ワイヤ送給モータWMを逆回転させて溶接ワイヤ1を後退送給する。
【0021】
溶接電源主回路INVは、商用電源を入力として、インバータ制御、サイリスタ位相制御等によってアーク3を安定にするために適した溶接電圧Vw及び溶接電流Iwを出力する。
【0022】
図3は、図1に示す溶接電源装置の動作を説明するための波形図である。図3(A)は溶接開始信号Stの時間変化を示し、図3(B)は溶接電圧(アーク電圧)Vwの時間変化を示し、図3(C)は溶接電流(アーク電流)Iwの時間変化を示す。図3(D)は単安定マルチバイブレータ信号Ffの時間変化を示し、図3(E)はアーク長検出指令信号Vrの時間変化を示し、図3(F)はアーク長検出演算信号Vlの時間変化を示し、図3(G)はワイヤ後退指令信号Srの時間変化を示し、図3(H)はオアー信号Orの時間変化を示し、図3(I)はワイヤ送給制御信号Fcsの時間変化を示し、図3のS1〜S4は各時刻における溶接ワイヤ1の先端部と被溶接物2との距離を示している。以下、同図を参照して動作を説明する。
【0023】
図3に示す時刻t=t1において、ワイヤ送給制御回路FCSに溶接開始信号Stが外部から入力されてHighレベルの期間中は、定常の送給速度設定値Wsに応じた送給制御信号Fcsが出力され、図3(S1)に示すように、溶接ワイヤ1を前進送給しながら定常の溶接電流値Iiを通電する。続いて、時刻t1〜t2の期間中は、上記定常の送給速度設定値Wsに応じた速度で上記溶接ワイヤ1が前進送給され、短絡とアークを繰り返しながら溶接を行う。
【0024】
図3に示す時刻t=t2において、溶接開始信号StがLowレベル(溶接開始信号終了)になると、図1に示す、単安定マルチバイブレータ回路FFは動作を開始し、予め定めたワイヤ溶融抑制電流通電時間T1の間、単安定マルチバイブレータ信号FfをHighレベルにする。ワイヤ送給制御回路FCSは、上記溶接開始信号StがLowレベル(溶接開始信号終了)になった時点から予め定めた後退送給速度設定値Wrに応じた速度で後退送給を開始し、出力制御回路SCSは、図3(D)に示す、単安定マルチバイブレータ信号FfがHighレベルの期間中は動作を継続し、ワイヤ溶融抑制電流設定値Irを選択して、溶接ワイヤ1の先端部が溶融しない小電流のワイヤ溶融抑制電流Irを図3(G)に示す、ワイヤ溶融抑制電流通電時間T1の間、通電して溶接ワイヤ1の先端部が溶融しない小アークを発生させる。
【0025】
図3に示す時刻t=t3において、アーク長検出指令回路VRは、単安定マルチバイブレータ信号FfがHighレベルからLowレベルになると動作を開始し、図3(E)に示す、アーク長検出指令信号Vrを予め定めたアーク長計測時間T2の間、Highレベルにして出力する。アーク長検出演算回路VLは、アーク長検出指令信号VrがHighレベルになると動作を開始し、出力電圧検出信号Vdからアーク長Lkを演算及び算出してアーク長検出演算信号Vlとして出力制御回路SCSに出力する。上記出力制御信号SCSは、予め定めた溶接終了時ワイヤ先端・被溶接物間距離Lwとアーク長Lkとの差である目標後退距離Lrを算出して、前記目標後退距離Lrに対応したワイヤ後退指令信号Srを出力する。
【0026】
図3に示す時刻t=t4において、アーク長計測時間T2が経過すると目標後退距離Lrが算出したと判断して出力制御信号SCSは、出力制御信号Scの出力を停止してアークを消滅させる。
【0027】
ワイヤ送給制御回路FCSは上記ワイヤ後退指令信号SrがHighレベルの期間中は溶接ワイヤ1を後退送給し、時刻t=t5において溶接ワイヤ1が目標後退距離Lrを後退したと判断して上記ワイヤ後退指令信号SrをLowレベルにし、溶接ワイヤの後退送給を停止して溶接を終了する。
【0028】
図4は、ワイヤ先端・被溶接物間距離Lwを予め定めた距離(5mm)に設定し、アーク電流とアーク電圧との関係を示したものである。図4に示すBは正特性範囲と負特性範囲の境界を示し、アーク長が検出できる最小電流値である。本発明のアーク長計測電流は正特性を有し、上記図4に示すB近傍の正特性の電流を使用している。また、図4に示すAは負特性範囲を有し、ワイヤ先端が溶融しない値であり、本発明のワイヤ溶融抑制電流として使用している。負特性範囲においてはアークの指向性、硬直性に乏しく、ワイヤ先端と母材間の距離に比例した電圧が得られにくい。
【0029】
図5は、ワイヤ先端・被溶接物間距離Lwを予め定めた距離(5mm)に設定し、アークエンドを繰り返し50回行なったときの、ワイヤ先端・被溶接物間距離Lwの実測値の分布図である。上記より本発明では、ワイヤ先端・被溶接物間距離Lwの実測値と設定値とでは、誤差が小さい。
【0030】
【発明の効果】
溶接ワイヤ(軟質アルミワイヤ)を被溶接物へ送給する消耗電極式ガスシールドアーク溶接において、アークエンド終了時にアーク長計測電流を通電し、アーク長計測電流の通電によって発生するアーク電圧よりアーク長を算出し、上記算出したアーク長と予め定めたワイヤ先端・被溶接物間距離との差である目標後退距離を算出し、上記算出した目標後退距離の値に達するまでアークを消滅して溶接ワイヤの後退送給をすることにより、(1)ワイヤ先端・被溶接物間距離Lwの設定値に対して、ほぼ同一の値が得られる。(2)ワイヤ先端・被溶接物間距離Lwの値に関係なく、上記ワイヤ先端部の溶融粒径の値が常に一定になるために、次回以後のアークスタートの成功率が大きく改善できる。
【図面の簡単な説明】
【図1】本発明のアークエンド制御方法を実施する溶接電源装置のブロック図である。
【図2】図1に示す溶接電源装置の構成図である。
【図3】図1に示す溶接電源装置の動作を説明するための波形図である。
【図4】アーク長計測電流とアーク長との関係図である。
【図5】ワイヤ先端・被溶接物間距離Lwを予め定めた距離(5mm)に設定したときの従来技術と本発明とのワイヤ先端・被溶接物間距離Lwの分布図である。
【図6】従来技術の溶接電源装置のブロック図である。
【符号の説明】
1 溶接ワイヤ
2 被溶接物
3 アーク
4 溶接トーチ
4a コンタクトチップ
5 ワイヤ送給装置の送給ロール
AS アーク判別回路
FF 単安定マルチバイブレータ回路
FCS ワイヤ送給制御回路
ID 出力電流検出回路
INV 溶接電源主回路
OR オアー回路
PSC 溶接電源装置
SCS 出力制御回路
VD 出力電圧検出回路
VL アーク長検出演算回路
VR アーク長検出指令回路
VS 出力電圧設定回路
WS 定常の送給速度設定回路
WM ワイヤ送給モータ
7 ワイヤ送給装置
8 トーチ
9 ワイヤ
10 母材
11 溶接起動設定部
12 溶接終了判定部
13 計数部
14 駆動部
15 出力制御部
16 溶接電圧検出部
20 第1整流部
30 スイッチング素子
40 主変圧器
50 第2整流器
60 直流リアクトル
Ff 単安定マルチバイブレータ信号
Fcs ワイヤ送給制御信号
Id 出力電流検出信号
Ii 定常の溶接電流(値/設定値)
Ir ワイヤ溶融抑制電流(値/設定値)
Is アーク長計測電流(値/設定値)
Iw 溶接電流(アーク電流)
Lk アーク長
Lr 目標後退距離
Lw ワイヤ先端・被溶接物間距離
Sc 出力制御信号
Sr ワイヤ後退指令信号
St 溶接開始信号
Vd 出力電圧検出信号
Vl アーク長検出演算信号
Vr アーク長検出指令信号
Vs 出力電圧設定信号
Vw 溶接電圧(アーク電圧)
Wr 後退送給速度設定値
Ws 定常の送給速度設定値
T1 ワイヤ溶融抑制電流通電時間
T2 アーク長計測時間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an arc end control method for consumable electrode type gas shielded arc welding in which a welding wire is fed to a workpiece by a wire feeding motor.
[0002]
[Prior art]
In the prior art 1, as shown in FIG. 6, the end of welding is determined by a welding end determination unit 12 based on a signal from a welding start setting unit 11, and an instantaneous value of welding voltage is detected by a welding voltage detection unit 16, and the welding voltage is detected. The output of the voltage detection unit 16 is input to the short-circuit / arc determination unit 17 to determine short-circuit or arc, and the output of the welding end determination unit 12 and the output of the short-circuit / arc determination unit 17 are input to the measurement unit 13, A signal for stopping the welding output after a predetermined time has elapsed is output to the starting unit 14 after a predetermined time has elapsed from the time when the short circuit generated at the end of welding is released.
[0003]
In the drive unit 14, when a signal for controlling the welding output from the output control unit 15 and a signal from the measuring unit 13 are input, and when an output stop signal is input from the measuring unit 13, the output control unit 15 The output of the input signal to the switching element 30 is stopped.
[0004]
As described above, in the prior art 1, the welding output is stopped after the lapse of a predetermined time from the time when the short circuit is released at the end of welding as the time start point. When a short-circuit release signal (arc generation signal) at the end of welding is input to the measuring unit 13, the measuring unit 13 outputs a predetermined time set in advance from the time when the short-circuit is released.
[0005]
This predetermined time may be 0 or may be set to 0 to several msec. Thereafter, an output stop signal is output to the drive unit 14 to stop the output.
[0006]
Thereby, since the output of the droplet at the tip of the wire is detected and the output is stopped, the amount of oxide formed on the surface of the droplet can be suppressed, and the diameter of the droplet at the tip of the wire is about 1.0 to 1 of the wire diameter. .2 times smaller, so that failure of the next arc start can be suppressed. However, the value of the molten particle size at the wire tip varies depending on the value of the distance between the wire tip and the workpiece. (See Patent Document 1)
[0007]
The prior art 2 determines the energization of the final pulse current to determine the state of the wire tip immediately after the final droplet has detached as the base point for controlling the amount of molten metal at the wire tip or the size of the molten sphere, This is a pulse arc welding termination method in which welding is terminated after a base current has been applied for a period of time in which the amount of molten metal at the tip or the size of the molten ball is optimized for the next instantaneous arc start. However, the value of the molten particle size at the wire tip varies depending on the value of the distance between the wire tip and the workpiece. (See Patent Document 2)
[0008]
[Patent Document 1]
JP 2002-292464 A [Patent Document 2]
JP-A-9-267171
[Problems to be solved by the invention]
In the arc end control method of consumable electrode type gas shielded arc welding in which a welding wire (a soft aluminum wire) is fed to a work to be welded, a predetermined wire tip and a work to be welded are supplied in a state where the wire supply is stopped together with the end of a welding start signal. A predetermined wire melting current is applied to obtain the distance, and the tip of the wire is melted. At this time, depending on the value of the distance between the wire tip and the work to be welded, the amount of melting at the wire tip changes, resulting in a difference in the size of the melt particle size. If the distance between the tip of the wire and the work to be welded is longer than the above, the melt particle size at the tip of the wire increases, and the arc start rate after the next time becomes worse.
[0010]
[Means for Solving the Problems]
According to the first aspect of the present invention, when a welding start signal St is input to the welding power supply device PSC, the welding wire 1 is forward-fed to the workpiece 2 at a predetermined steady-state feeding speed, and the steady-state feeding speed is set. When the input of the welding start signal St is stopped, a reverse welding of the welding wire 1 from the workpiece 2 is started at a predetermined speed, and a small current wire is applied. The melting suppression current Ir is supplied for a predetermined time, and then the arc length measurement current Is, which is larger than the wire melting suppression current Ir, is set to a value in a range having a positive characteristic, and the arc length measurement current Is is set to a predetermined arc length measurement time T2. And the arc length Lk is calculated from the arc voltage by the application of the arc length measurement current Is, and the calculated arc length Lk and a predetermined distance between the wire tip and the workpiece at the end of welding. A target retreat distance Ir, which is a difference from the separation Lw, is calculated. Subsequently, when the arc length measurement time T2 elapses, the supply of the arc length measurement current Is is stopped to extinguish the arc, and the arc is extinguished by the target retreat distance Lr. An arc end control method, characterized in that after the backward feeding is continued, the backward feeding is stopped and the welding is terminated.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a welding power supply device that implements the arc end control method of the present invention.
[0012]
The welding wire 1 is fed through a welding torch 4 by a feed roll 5 directly connected to a wire feed motor WM. The welding voltage Vw from the welding power supply PSC is supplied to the welding wire 1 by a contact tip 4a shown in FIG.
[0013]
The output current detection circuit ID detects the welding current Iw and outputs it as an output current detection signal Id. The output voltage detection circuit VD detects a welding voltage (arc voltage) Vw and outputs it as an output voltage detection signal Vd.
[0014]
The monostable multivibrator circuit FF starts operation when the external welding start signal St changes from High level to Low level (end of the welding start signal), and sets the monostable multivibrator signal Ff for a predetermined time to High level. It outputs to the arc length detection command circuit VR, the output control circuit SCS, and the OR circuit OR.
[0015]
The arc length detection command circuit VR starts its operation when the monostable multivibrator signal Ff changes from the high level to the low level, sets the arc length detection command signal Vr for a predetermined time to the high level, and sets the arc detection arithmetic circuit VL and the output. Output to the control circuit SCS.
[0016]
The arc length detection calculation circuit VL starts operation when the arc length detection command signal Vr is input, calculates and calculates the arc length Lk from the output voltage detection signal Vd, and outputs the arc length detection calculation signal Vl to the output control circuit SCS. Output to
[0017]
The output control circuit SCS selects a predetermined steady-state welding current set value Ii during a period in which the welding start signal St is input from the outside and the welding start signal St is at the High level, and the steady-state welding current set value is selected. An output control signal Sc corresponding to Ii is output. Subsequently, when the welding start signal St changes from the High level to the Low level (end of the welding start signal), the monostable multivibrator signal Ff changes to the High level, and the operation is continued while the monostable multivibrator signal Ff is at the High level. The wire melting suppression current setting value Ir predetermined by the monostable multivibrator signal Ff is selected, and an output control signal Sc corresponding to the wire melting suppression current setting value Ir is output. The wire melting suppression current setting value Ir is set to a small current value at which the tip of the welding wire 1 does not melt.
[0018]
The output control circuit SCS continues to operate even during the period in which the arc length detection command signal Vr is at the High level, selects an arc length measurement current setting value Is determined in advance by the arc length detection command signal Vr, and performs the arc length measurement. An output control signal Sc according to the current set value Is is output, and at the end of welding, a target retreat distance Lr, which is a difference between the distance Lw between the tip of the wire and the workpiece and the arc length detection calculation signal Vl, is calculated, and a wire retreat command is issued. Output as signal Sr.
[0019]
The OR circuit OR takes the OR logic of the wire retreat command signal Sr and the monostable multivibrator signal Ff and outputs the result as an OR signal Or.
[0020]
The steady feed speed setting circuit WS outputs a steady feed speed setting signal Ws. The wire feed control circuit FCS outputs the wire feed control signal Fcs according to the steady feed speed set value Ws during a period when the welding start signal St is input from the outside and the welding start signal St is at the High level. Subsequently, while the welding start signal St is changed from the High level to the Low level (the welding start signal ends) and the OR signal Or is at the High level, the wire feeding control according to the predetermined backward feeding speed set value Wr is performed. A signal Fcs is output, and the wire feeding motor WM is rotated in reverse to feed the welding wire 1 backward.
[0021]
The welding power supply main circuit INV receives a commercial power supply and outputs a welding voltage Vw and a welding current Iw suitable for stabilizing the arc 3 by inverter control, thyristor phase control, and the like.
[0022]
FIG. 3 is a waveform diagram for explaining the operation of the welding power supply device shown in FIG. 3A shows a time change of the welding start signal St, FIG. 3B shows a time change of the welding voltage (arc voltage) Vw, and FIG. 3C shows a time of the welding current (arc current) Iw. Indicates a change. 3D shows a time change of the monostable multivibrator signal Ff, FIG. 3E shows a time change of the arc length detection command signal Vr, and FIG. 3F shows a time of the arc length detection calculation signal Vl. FIG. 3 (G) shows the time change of the wire retreat command signal Sr, FIG. 3 (H) shows the time change of the OR signal Or, and FIG. 3 (I) shows the time of the wire feed control signal Fcs. 3 indicate the distance between the tip of the welding wire 1 and the workpiece 2 at each time. Hereinafter, the operation will be described with reference to FIG.
[0023]
At time t = t1 shown in FIG. 3, while the welding start signal St is input from the outside to the wire feed control circuit FCS and the period is at the High level, the feed control signal Fcs corresponding to the steady feed speed set value Ws. As shown in FIG. 3 (S1), a steady welding current value Ii is supplied while the welding wire 1 is fed forward. Subsequently, during the period from time t1 to t2, the welding wire 1 is fed forward at a speed corresponding to the steady feed speed set value Ws, and welding is performed while repeating a short circuit and an arc.
[0024]
When the welding start signal St becomes a low level (end of the welding start signal) at time t = t2 shown in FIG. 3, the monostable multivibrator circuit FF shown in FIG. During the energization time T1, the monostable multivibrator signal Ff is set to High level. The wire feed control circuit FCS starts reverse feed at a speed corresponding to a predetermined reverse feed speed set value Wr from the time when the welding start signal St becomes Low level (end of the welding start signal), and outputs The control circuit SCS continues to operate while the monostable multivibrator signal Ff is at the High level shown in FIG. 3 (D), selects the wire melting suppression current setting value Ir, and changes the tip of the welding wire 1. The wire melting suppression current Ir of a small current that does not melt is supplied during the wire melting suppression current supply time T1 shown in FIG. 3 (G) to generate a small arc in which the tip of the welding wire 1 does not melt.
[0025]
At time t = t3 shown in FIG. 3, the arc length detection command circuit VR starts operating when the monostable multivibrator signal Ff changes from the High level to the Low level, and the arc length detection command signal shown in FIG. Vr is set to High level for a predetermined arc length measurement time T2 and output. The arc length detection calculation circuit VL starts operation when the arc length detection command signal Vr becomes High level, calculates and calculates the arc length Lk from the output voltage detection signal Vd, and outputs it as an arc length detection calculation signal Vl. Output to The output control signal SCS calculates a target retreat distance Lr, which is a difference between a predetermined distance Lw between the tip of the wire and the workpiece to be welded at the end of welding and the arc length Lk, and calculates a wire retreat corresponding to the target retreat distance Lr. It outputs a command signal Sr.
[0026]
At time t = t4 shown in FIG. 3, when the arc length measurement time T2 elapses, it is determined that the target retreat distance Lr has been calculated, and the output control signal SCS stops outputting the output control signal Sc to extinguish the arc.
[0027]
The wire feed control circuit FCS feeds back the welding wire 1 during the period in which the wire retreat command signal Sr is at the High level, and determines that the welding wire 1 has retreated the target retreat distance Lr at time t = t5. The wire retreat command signal Sr is set to Low level, the reversal feed of the welding wire is stopped, and the welding is terminated.
[0028]
FIG. 4 shows the relationship between the arc current and the arc voltage by setting the distance Lw between the wire tip and the work to be welded to a predetermined distance (5 mm). B shown in FIG. 4 indicates the boundary between the positive characteristic range and the negative characteristic range, and is the minimum current value at which the arc length can be detected. The arc length measurement current of the present invention has a positive characteristic, and a current having a positive characteristic near B shown in FIG. 4 is used. In addition, A shown in FIG. 4 has a negative characteristic range and is a value at which the wire tip does not melt, and is used as the wire melting suppression current of the present invention. In the negative characteristic range, the directivity and rigidity of the arc are poor, and it is difficult to obtain a voltage proportional to the distance between the wire tip and the base material.
[0029]
FIG. 5 shows the distribution of measured values of the distance Lw between the wire tip and the workpiece when the distance Lw between the tip of the wire and the workpiece is set to a predetermined distance (5 mm) and the arc end is repeated 50 times. FIG. As described above, in the present invention, the error between the measured value and the set value of the distance Lw between the wire tip and the workpiece is small.
[0030]
【The invention's effect】
In consumable electrode type gas shielded arc welding, in which a welding wire (soft aluminum wire) is fed to the workpiece, an arc length measurement current is applied at the end of the arc end, and the arc length is calculated from the arc voltage generated by applying the arc length measurement current. Calculate the target retreat distance, which is the difference between the calculated arc length and the predetermined distance between the wire tip and the workpiece, and extinguish the arc until the value of the calculated target retreat distance is reached. By retreating the wire, (1) substantially the same value as the set value of the distance Lw between the wire tip and the workpiece can be obtained. (2) Regardless of the value of the distance Lw between the wire tip and the object to be welded, the value of the molten particle size at the wire tip is always constant, so that the success rate of the next and subsequent arc starts can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a block diagram of a welding power supply device for implementing an arc end control method of the present invention.
FIG. 2 is a configuration diagram of the welding power supply device shown in FIG.
FIG. 3 is a waveform diagram for explaining the operation of the welding power supply device shown in FIG.
FIG. 4 is a relationship diagram between an arc length measurement current and an arc length.
FIG. 5 is a distribution diagram of the distance Lw between the wire tip and the workpiece according to the related art and the present invention when the distance Lw between the tip of the wire and the workpiece is set to a predetermined distance (5 mm).
FIG. 6 is a block diagram of a conventional welding power supply device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Welding wire 2 Workpiece 3 Arc 4 Welding torch 4a Contact tip 5 Feed roll AS of a wire feeder Arc discrimination circuit FF Monostable multivibrator circuit FCS Wire feed control circuit ID Output current detection circuit INV Welding power supply main circuit OR OR circuit PSC Welding power supply SCS Output control circuit VD Output voltage detection circuit VL Arc length detection calculation circuit VR Arc length detection command circuit VS Output voltage setting circuit WS Steady feed speed setting circuit WM Wire feed motor 7 Wire feed Apparatus 8 Torch 9 Wire 10 Base material 11 Welding start setting unit 12 Welding end determining unit 13 Counting unit 14 Drive unit 15 Output control unit 16 Welding voltage detecting unit 20 First rectifying unit 30 Switching element 40 Main transformer 50 Second rectifier 60 DC reactor Ff Monostable multivibrator signal Fcs Wire feed Control signal Id Output current detection signal Ii Steady welding current (value / set value)
Ir Wire melting suppression current (value / set value)
Is Arc length measurement current (value / set value)
Iw welding current (arc current)
Lk Arc length Lr Target retreat distance Lw Distance between wire tip and workpiece Sc Output control signal Sr Wire retreat command signal St Weld start signal Vd Output voltage detection signal Vl Arc length detection calculation signal Vr Arc length detection command signal Vs Output voltage setting Signal Vw Welding voltage (arc voltage)
Wr Reverse feed speed set value Ws Steady feed speed set value T1 Wire melting suppression current conduction time T2 Arc length measurement time

Claims (1)

溶接電源装置に溶接開始信号が入力されると溶接ワイヤを予め定めた定常の送給速度で被溶接物に前進送給すると共に前記定常の送給速度に対応した定常の溶接電流を通電し、続いて前記溶接開始信号の入力が停止すると前記溶接ワイヤを被溶接物から予め定めた速度で後退送給を開始すると共に小電流のワイヤ溶融抑制電流を予め定めた時間通電し、続いて前記ワイヤ溶融抑制電流より大きいアーク特性が正特性を有する範囲の値に予め定めたアーク長計測電流を予め定めたアーク長計測時間の間通電すると共に前記アーク長計測電流の通電によるアーク電圧によってアーク長を算出し、前記算出したアーク長と予め定めた溶接終了時ワイヤ先端・被溶接物間距離との差である目標後退距離を算出し、続いて前記アーク長計測時間が経過すると前記アーク長計測電流の通電を停止してアークを消滅させると共に前記目標後退距離だけ前記後退送給を継続した後に、前記後退送給を停止して溶接を終了することを特徴とするアークエンド制御方法。When a welding start signal is input to the welding power source device, the welding wire is forward-fed to the workpiece at a predetermined steady feeding speed and a steady welding current corresponding to the steady feeding speed is applied, Subsequently, when the input of the welding start signal is stopped, the welding wire is started to retreat from the workpiece at a predetermined speed, and a small current wire melting suppression current is supplied for a predetermined time. An arc length greater than the melting suppression current is supplied with a predetermined arc length measurement current to a value in a range having a positive characteristic for a predetermined arc length measurement time, and the arc length is set by an arc voltage caused by the application of the arc length measurement current. Calculate and calculate a target retreat distance which is a difference between the calculated arc length and a predetermined distance between the wire tip and the workpiece at the end of welding, and then the arc length measurement time elapses. And stopping the energization of the arc length measurement current to extinguish the arc and continuing the reverse feed for the target reverse distance, stopping the reverse feed and terminating the welding. Control method.
JP2002356347A 2002-12-09 2002-12-09 Arc end control method Pending JP2004188430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356347A JP2004188430A (en) 2002-12-09 2002-12-09 Arc end control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356347A JP2004188430A (en) 2002-12-09 2002-12-09 Arc end control method

Publications (1)

Publication Number Publication Date
JP2004188430A true JP2004188430A (en) 2004-07-08

Family

ID=32756710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356347A Pending JP2004188430A (en) 2002-12-09 2002-12-09 Arc end control method

Country Status (1)

Country Link
JP (1) JP2004188430A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899759B1 (en) * 2007-08-27 2009-05-27 정인용 Apparatus for providing filler wire of welding device
JP2015506847A (en) * 2012-02-10 2015-03-05 リンカーン グローバル,インコーポレイテッド Welding device with automatic welding wire retraction
JP2016179503A (en) * 2012-03-16 2016-10-13 パナソニックIpマネジメント株式会社 Arc welding control method and arc welding device
US10562124B2 (en) 2010-12-14 2020-02-18 Lincoln Global, Inc. Welding apparatus with automated welding retraction
CN112770859A (en) * 2018-09-26 2021-05-07 株式会社神户制钢所 Welding power supply, welding system, control method for welding power supply, and program
US11198191B2 (en) 2010-12-14 2021-12-14 Lincoln Global, Inc. Manual welding apparatus having an automatic wire retract method
AU2020286241B2 (en) * 2016-08-31 2022-10-20 Esab Ab Arc stop

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899759B1 (en) * 2007-08-27 2009-05-27 정인용 Apparatus for providing filler wire of welding device
US10562124B2 (en) 2010-12-14 2020-02-18 Lincoln Global, Inc. Welding apparatus with automated welding retraction
US11198191B2 (en) 2010-12-14 2021-12-14 Lincoln Global, Inc. Manual welding apparatus having an automatic wire retract method
JP2015506847A (en) * 2012-02-10 2015-03-05 リンカーン グローバル,インコーポレイテッド Welding device with automatic welding wire retraction
JP2018149603A (en) * 2012-02-10 2018-09-27 リンカーン グローバル,インコーポレイテッド Welding apparatus with automated welding wire retraction
JP2016179503A (en) * 2012-03-16 2016-10-13 パナソニックIpマネジメント株式会社 Arc welding control method and arc welding device
AU2020286241B2 (en) * 2016-08-31 2022-10-20 Esab Ab Arc stop
US11772181B2 (en) 2016-08-31 2023-10-03 Esab Ab Arc stop
CN112770859A (en) * 2018-09-26 2021-05-07 株式会社神户制钢所 Welding power supply, welding system, control method for welding power supply, and program

Similar Documents

Publication Publication Date Title
JP5191997B2 (en) Arc start control method
JP2002086271A (en) Control method and power source device for ac pulse arc welding
US8536487B2 (en) Arc welding method
JP2009154173A (en) Ending control method of two-wire welding
JP6524412B2 (en) Arc welding control method
JP2004188430A (en) Arc end control method
JP4490011B2 (en) Arc start control method
US20220055136A1 (en) Arc welding method and arc welding device
JP5943460B2 (en) Arc start control method for consumable electrode arc welding
JP2016026880A (en) Pulsed arc welding output control method
JP2022185997A (en) Pulse arc welding power source
JP2002178145A (en) Arc start control method and welding power source device
JP7053121B2 (en) Arc welding control method
JP2022045136A (en) Welding power source system
JP2004042056A (en) Arc and control method
JP4312999B2 (en) Arc start control method.
JP5805952B2 (en) Arc start control method for plasma MIG welding
JP2002178146A (en) Arc start control method
JP2007216303A (en) Arc start control method
JP5888943B2 (en) End control method of pulse arc welding
JP2002248572A (en) Arc start control method
WO2020235620A1 (en) Arc welding method and arc welding device
JP2016022507A (en) Pulse arc weldment control method
JP6176785B2 (en) Two-wire welding end control method
JP5511462B2 (en) Plasma MIG welding method