WO2015186407A1 - Gas measurement device and measurement method - Google Patents

Gas measurement device and measurement method Download PDF

Info

Publication number
WO2015186407A1
WO2015186407A1 PCT/JP2015/058265 JP2015058265W WO2015186407A1 WO 2015186407 A1 WO2015186407 A1 WO 2015186407A1 JP 2015058265 W JP2015058265 W JP 2015058265W WO 2015186407 A1 WO2015186407 A1 WO 2015186407A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
light
gas
measurement
detector
Prior art date
Application number
PCT/JP2015/058265
Other languages
French (fr)
Japanese (ja)
Inventor
彰 守川
稲永 康隆
河野 裕之
柏野 敦彦
智規 近野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015535917A priority Critical patent/JP5875741B1/en
Publication of WO2015186407A1 publication Critical patent/WO2015186407A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • This invention relates to a gas measuring device and the like.
  • a conventional gas measuring device for example, it is used to measure the gas in oil in order to monitor the state of insulating oil inside oil-filled electrical equipment such as a transformer and a reactor.
  • the following patent document 1 discloses a specific example of such a method.
  • insulating oil is collected from the oil-filled electrical device body, gas dissolved in the insulating oil is extracted, and the extracted gas is introduced into the hollow fiber.
  • the light introduced from one end of the hollow fiber by the LED as the light source is detected by a detection unit in the vicinity of the other end of the hollow fiber through the gas in the fiber, and calculation and diffraction are performed. Since there is light absorption in the hollow fiber according to the gas concentration, the gas amount can be measured from the output difference.
  • a plurality of bandpass filters are installed in the vicinity of the light emitting unit.
  • Patent Document 2 discloses a gas detector including a light source, a measurement cell, an infrared detection element as an infrared sensor, a bandpass filter, and a heat conduction suppression unit.
  • JP 2012-242111 A page 7, page 34 to page 8, line 11; FIG. 5
  • Japanese Patent Laying-Open No. 2013-185996 page 4, page 37 to page 7, line 18, FIG. 1
  • the present invention has been made to solve the above-described problems, and realizes a stable measurement that is hardly affected by the heat from the light source, and obtains a gas measurement device that can measure at a higher speed. It is an object.
  • the present invention includes a hollow fiber into which a gas to be measured is introduced, a light projecting unit that is disposed on one end side of the hollow fiber and irradiates light from a light source into the hollow fiber, A detector that detects light that has passed through the hollow fiber at the tip of the other end that is sealed with a transparent member, and a measurement that measures the gas to be measured based on the light detected by the detector
  • An optical filter provided in a gap between the control unit and the other end of the hollow fiber and the detector and having a transmission frequency band that transmits light in the light absorption band of the gas out of the light that has passed through the hollow fiber
  • FIG. It is a schematic sectional drawing which shows the gas measuring device by Embodiment 5 of this invention. It is a schematic sectional drawing which shows an example of the gas measuring device by Embodiment 6 of this invention. It is a schematic sectional drawing which shows another example of the gas measuring device by Embodiment 6 of this invention.
  • FIG. 1 is a schematic sectional view of a gas measuring apparatus according to Embodiment 1 of the present invention.
  • a light projecting unit 5, a hollow fiber 6, a detecting unit 7, a lock-in amplifier 8, and a measurement / control unit 9 are provided, and an oil-filled electrical device 10 and a gas sample extraction mechanism 11 are connected to these. .
  • the oil-filled electrical device 10 is, for example, an oil-filled transformer or an oil-filled reactor, and the inside thereof is filled with insulating oil.
  • the gas sample extraction mechanism 11 is connected to the oil-filled electrical device 10 through the pipes 12a and 12b.
  • An extraction container 13 for extracting a gas dissolved (dissolved and mixed) in the insulating oil is provided in the gas sample extraction mechanism 11.
  • the gas sample extraction mechanism 11 is provided with a pump (not shown) for decompressing the inside of the extraction container 13. By decompressing the inside of the extraction container 13, a gas sample is extracted from the insulating oil inside the extraction container 13. The extracted gas sample is sent to the detection unit 7 through the pipe 14a.
  • a three-way valve 27 for switching the gas sample flow path, and a dirt removal filter 15 for removing mist (water, oil, etc.) and sulfur components contained in the gas sample are provided.
  • a pipe 14b is connected to one end side of the branch of the three-way valve 27. Further, the dirt removal filter 15 and the detection unit 7 are connected in order, and the pipe 14c is connected to the other end side so that the air is open.
  • the light projecting unit 5 is configured as follows.
  • the light projecting unit 5 itself is a sealed and highly airtight casing.
  • Infrared light generated from the filament 16 that is a light source is collected by the reflector 17 and optically connected to one end side of the hollow fiber 6 via a resonance chopper 18 that chops the collected infrared light. It is connected.
  • the curved inner wall surface of the reflector 17 serving as a light condensing part is in a mirror surface state in which gold or the like is deposited, and has a function of reflecting and condensing light including a wavelength to be measured.
  • the reflector 17 has a spherical shape, an elliptical spherical shape, and the like. However, it is desirable to optimize the shape so that the light is condensed as much as possible on one end side of the hollow fiber 6. Further, light other than the measurement wavelength is not necessary for measurement, and far infrared rays (heat rays) having a wavelength of 5 ⁇ m or more act to heat the hollow fiber 6.
  • the inner wall surface of the reflector 17 is formed by depositing various dielectrics so as to be a dielectric layer such as alumina that reflects light in the wavelength region including the measurement wavelength or only light in the measurement wavelength instead of gold deposition. Also good.
  • the measurement wavelength region is a wavelength region of light corresponding to various gases measured by the measurement / control unit 9.
  • the resonance chopper 18 physically operates a pair of blades 3a and 3b by electromagnetic force.
  • the gap between the blade 3a and the blade 3b is periodically changed between 0.1 mm and 5 mm so that the infrared light is chopped.
  • the frequency at which the blade chops is preferably in the range of 100 to 10000 Hz, but is 2000 Hz here.
  • the light projecting unit 5 and the detecting unit 7 are connected by a hollow fiber 6.
  • the light projecting unit 5 is provided with a pipe 19 for discharging a gas sample and a pump 20.
  • the direction of infrared light and the direction of flow of the gas sample are reversed. That is, infrared light is conducted from the light projecting unit 5 to the detection unit 7 through the hollow fiber 6, while the gas sample is made to flow from the detection unit 7 to the light projection unit 5 through the hollow fiber 6.
  • the light source may be an LED or a laser instead of the filament 16, and the means is not particularly limited as long as it emits mid-infrared light. Since some of the infrared light is far-infrared, LEDs and lasers also serve as heat sources and have the same problems as in the case of the filament 16. Also, the number need not be one, and a plurality may be used side by side.
  • a gas sample to be measured and infrared light are passed through the hollow fiber 6, and the inside also serves as a conduction between the gas cell and the infrared light.
  • the hollow fiber 6 has a characteristic that the optical path length of the infrared light can be increased, and at the same time, since the inner diameter is small, the heat conduction from the light projecting portion 5 is small.
  • the hollow fiber 6 can be manufactured by a known method such as sputtering of Ni, Al, Au, Ag or the like on a cylindrical base material such as quartz glass and then coating with a cyclic olefin polymer. A detailed description of the method is omitted.
  • the hollow fiber 6 generally has an inner diameter of 0.5 to 1.0 mm, but here, the inner diameter of 0.7 mm was used. Although it is desirable that the hollow fiber 6 has a long length because of high sensitivity, it is difficult to manufacture the long hollow fiber 6, and a 3 m long fiber 6 was used here.
  • the volume of the cell can be calculated from the inner diameter and the length, and in this embodiment is calculated as 1.15 mL (milliliter). In order to replace the gas sample to be measured inside the hollow fiber 6, the gas amount of about 2 to 3 times the internal volume is required at least, so the volume of the gas sample needs to be at least 4 mL.
  • the detection unit 7 is configured as follows. Although the detection unit 7 itself is a mere housing, it is wrapped with a heat insulating material such as urethane foam, and is kept warm so that the inside becomes a constant temperature. Further, unlike the light projecting unit 5, the detecting unit 7 does not need to have high airtightness.
  • the gas sample introduction part 21 connected to the other end side of the hollow fiber 6 and the other end side of the pipe 14 b is provided with a glass window 22 that is a transparent member facing the other end side of the hollow fiber 6. That is, a glass window 22 is provided on the opposite side of the gas sample introduction portion 21 to the side where the other end of the hollow fiber 6 is connected, and the other end of the hollow fiber 6 is sealed with the glass window 22. Yes.
  • the glass window 22 is made of a material that transmits infrared light, such as quartz glass.
  • the glass window 22 may be made of quartz glass alone, it may be a filter that removes light having a wavelength not related to measurement.
  • a short wave pass filter that removes infrared light of 5 ⁇ m or more known as heat rays may be used. Thereby, the influence of heat can be excluded.
  • the short wave pass filter is made of, for example, quartz glass coated with a multilayer film such as alumina on a base material such as sapphire and silicon, and has a function of blocking infrared light having a specific wavelength or more.
  • a rotation unit 23 is provided at a position facing the glass window 22 outside the gas sample introduction unit 21, and bandpass filters 4 a, 4 b, 4 c, and 4 d are mounted therein.
  • FIG. 2 is a configuration diagram viewed from the direction of the detector 25 of the rotating unit 23. As shown in FIG. 2, the four bandpass filters 4a, 4b, 4c, and 4d are installed in the same circle. By rotating the rotating unit 23, the bandpass filters 4a, 4b, 4c, and 4d are In order, they are appropriately selected so as to be on a straight line connecting the lens 24 and the detector 25. The order of rotation is 4a, 4b, 4c, 4d.
  • the bandpass filters 4a, 4b, 4c, and 4d may be attached to a slide jig (not shown) that slides in a linear direction (for example, laterally) and may be switched by sliding.
  • the rotating unit 23 and the slide jig are used as a band-pass filter switching mechanism.
  • the switching mechanism includes a movable portion corresponding to the rotating portion 23 and the like provided with a bandpass filter, and a support portion that movably supports the movable portion.
  • each of the single bandpass filters or the bandpass filters 4a, 4b, 4c, and 4d and the switching mechanism thereof is an optical filter unit.
  • the bandpass filters 4a, 4b, 4c, and 4d are made by coating a base material such as quartz glass, sapphire, or silicon with a multilayer film such as alumina, and have a role of blocking infrared light other than near the center wavelength. Since the absorption characteristics are different for each type of gas, bandpass filters 4a, 4b, 4c, and 4d corresponding to each gas are provided. That is, each of the bandpass filters 4a, 4b, 4c, and 4d has a transmission frequency band that transmits light in a light absorption band of a different type of gas, and the transmission frequency band is different.
  • the bandpass filters 4a, 4b, 4c, and 4d have a characteristic of transmitting infrared light having a wavelength apart from the center wavelength by a certain range, and are defined by a half-value width. Although the influence of the spectrum of other interfering gases can be cut off by reducing the half-value width, there is a demerit that the light sensitivity decreases and the measurement sensitivity decreases, so depending on the spectral characteristics of other gases and the target measurement lower limit value. Set the half width. Further, the band-pass filters 4a, 4b, 4c, and 4d may be a combination of a short wave pass filter and a long wave pass filter instead of a single band pass filter.
  • Bandpass filter 4a is used for acetylene measurement.
  • the bandpass filter 4b is a transparent glass for background measurement,
  • the bandpass filter 4c is for measuring carbon dioxide,
  • the band pass filter 4d was used for measuring carbon monoxide.
  • the number of bandpass filters is four, but may be two, three, or five or more. Note that the switching mechanism is not required when there is one bandpass filter.
  • a lens 24 is provided in the gap between the rotating unit 23 and the glass window 22. The lens 24 may be fixed to the above-mentioned supporting portion that does not rotate and supports the rotating portion 23, or may be fixed by a dedicated support (not shown). Infrared light emitted from the other end of the hollow fiber 6 (the end on the detection unit 7 side) is not guided by a constant light beam, that is, a bundle of 0.7 mm, but is diffused, so that it is condensed by the lens 24. .
  • the lens 24 Since the lens 24 has a role of collecting infrared light, it is made of, for example, quartz and has a convex shape. The condensed infrared light is configured to be guided to the detector 25 having the detector element 31 through the band-pass filter 4a.
  • the focal length and the lens diameter of the lens 24 are determined according to the diameter of the hollow fiber 6 and the distance between the lens 24 and the detector 25. Here, the focal length is 25 mm and the lens diameter is 8 mm.
  • the detector 25 uses a photoconductive element such as PbSe, InSb, or MCT, a photomultiplier, or the like, but is not particularly limited here, and may be anything that can detect infrared light.
  • the photoconductive element and photomultiplier used for the detector 25 have a characteristic that the sensitivity is higher as the temperature is lower. Therefore, the Peltier cooler 26 is installed to increase the sensitivity by cooling the entire detector 25.
  • the installation position of the resonant chopper 18 is preferably as far away from the detector 25 as possible. This is because the resonance chopper 18 is electromagnetically operated, so that not only electromagnetic noise is generated but also physical noise (vibration) is generated, so that the measurement sensitivity of the detector 25 is not affected.
  • the gap between the blade 3a and the blade 3b of the resonance chopper 18 may be a gap of about 1 mm at maximum depending on the resonance frequency of the resonance chopper 18.
  • the inner diameter of the hollow fiber 6 is 0.7 mm and there is not much difference in size. Therefore, in order to guide infrared light as much as possible inside the hollow fiber 6, the installation position of the resonance chopper 18 is set. Is preferably as close as possible to one end side of the hollow fiber 6 on the light projecting portion 5 side.
  • the filament 16, one end and the other end of the hollow fiber 6, the lens 24, and the detector 25 are installed on the same straight line as an axis 37 a indicated by a one-dot chain line.
  • the infrared light guide direction in the hollow fiber 6 and the gas sample flow direction are opposite, but they may be the same direction.
  • the pipe 14b of the pipe 14 is inserted into the light projecting unit 5, the other end side of the pipe 14b extends to one end side of the hollow fiber 6, the pipe 19 and the pump 20 are provided in the detection unit 7, and the lower end of the pipe 19 is Connected to the gas sample introduction unit 21.
  • the lock-in amplifier 8 is electrically connected to the output from the detector 25 and the output of the resonance chopper 18.
  • the output of the lock-in amplifier 8 is connected to the measurement / control unit 9.
  • the measurement / control unit 9 has a built-in memory (not shown) for temporarily storing data. If necessary, the measurement / control unit 9 includes an AD conversion unit (not shown), and an external port (not shown) for transferring data to a personal computer or the like is provided in the measurement / control unit 9. Arithmetic processing may be performed by a personal computer or the like.
  • a power supply unit and a driver for supplying power to each of the filament 16, the resonance chopper 18, the pump 20, the rotating unit 23, the detector 25, the Peltier cooler 26, and the three-way valve 27 are controlled by the measurement / control unit 9 so that each operates properly.
  • the control lines from the measurement / control unit 9 to each unit are not shown because the drawings are complicated.
  • the filament 16 is lit for a certain time before starting the measurement, for example, 1 to 4 hours before (S1, S2). Since the filament 16 takes time to reach a stable state, it is lit in advance. However, if the amount of light is immediately stabilized, it may be lit immediately before the measurement.
  • Measurement is first performed on the background (first time) (S10).
  • the gas sample to be measured in this case is atmospheric air, but a nitrogen + oxygen cylinder (mixing ratio 79:21) may be separately prepared and introduced.
  • the gas sample flow path is set to cb (S11).
  • mist and sulfur components contained in the gas sample are removed by the dirt removal filter 15.
  • the gas sample that has passed through the filter 15 is sent to the detection unit 7.
  • a gas sample is sent into the gas sample introduction part 21 inside the detection part 7, and the gas sample introduction part 21 is filled with the gas sample.
  • the gas sample inside the gas sample introduction part 21 flows into the light projecting part 5 through the hollow fiber 6, and is further discharged to the outside through the pipe 19 from the light projecting part 5.
  • the flow rate at this time is not particularly defined, but considering the operating range of the pump 20, a range of 0.1 to 1.0 L / min is appropriate. Considering the internal volume of the hollow fiber 6 as described above, it is only necessary to introduce a gas sample of at least about 4 mL, so that the operation time is about 2.4 to 24 seconds.
  • the gas sample to be analyzed is introduced into the hollow fiber 6.
  • the pump 20 is temporarily stopped, and the gas sample inside the hollow fiber 6 is brought into a stationary state.
  • the reason for setting the stationary state is to avoid a decrease in the S / N ratio due to the inside of the hollow fiber 6 being in a flow state or being a source of noise due to vibration during operation of the pump 20 ( S12).
  • the rotation unit 23 In the state where the inside of the hollow fiber 6 is filled with the gas sample, the rotation unit 23 is rotated and the bandpass filter 4a is used (S13). Infrared light emitted from the filament 16 passes through the gap between the blades 3 a and 3 b of the resonance chopper 18 and is guided to one end of the hollow fiber 6. Infrared light guided from one end of the hollow fiber 6 is transmitted through the hollow fiber 6 and emitted from the other end of the hollow fiber 6. At this time, since the gas sample is air inside the hollow fiber 6, there is no absorption of infrared light except for carbon dioxide.
  • Infrared light emitted from the other end of the hollow fiber 6 passes through the glass window 22 in the gas sample introduction portion 21 and is collected by the lens 24, passes through the bandpass filter 4a, and has an appropriate wavelength range. It is received by the detector 25 on the detection unit 7 side as infrared light. The detector 25 outputs an electrical signal having an intensity corresponding to the received light intensity of infrared light.
  • the output signal from the detector 25 is sent to the lock-in amplifier 8.
  • the lock-in amplifier 8 removes noise by performing synchronous detection with the output signal from the resonance chopper 18.
  • the output signal from which the noise has been removed is subjected to calculation of moving average processing in the measurement / control unit 9, and background data is stored in the memory in the measurement / control unit 9 (S14).
  • the rotation unit 23 is rotated after a predetermined time to switch from the bandpass filter 4a to 4b (S15, S16). Similarly, the output signal from the detector 25 is synchronously added (synchronized) by the lock-in amplifier 8. Then, a moving average process is performed on the output signal from which noise has been removed, and the result is stored in the memory in the measurement / control unit 9 as background data. Next, by rotating the rotator 23, the bandpass filters 4b to 4c and the bandpass filters 4c to 4d are switched to perform the same measurement, and the data is stored in the memory in the measurement / control unit 9 (S14-S16). repeat).
  • the gas component contained in the insulating oil is measured (S20). Only the gas sample is different, and the measurement flow is the same as the background measurement. Insulating oil is collected from the oil-filled electrical device 10 via the pipe 12a. The collected insulating oil is sent to the gas sample extraction mechanism 11. In order to extract the gas sample dissolved in the insulating oil, the extraction container 13 of the gas sample extraction mechanism 11 is decompressed. This extracts a gas sample from the insulating oil.
  • the gas sample flow path is set to ab by switching the three-way valve 27 (S21). By operating the pump 20, mist and sulfur components contained in the gas sample are removed by the dirt removal filter 15. The gas sample that has passed through the filter 15 is sent to the detection unit 7.
  • the gas sample is sent to the gas sample introduction unit 21 inside the detection unit 7 to fill the gas sample introduction unit 21 with the gas sample.
  • the pump 20 provided on the light projecting unit 5 side is further operated.
  • the gas sample inside the gas sample introduction part 21 flows from the detection part 7 to the light projecting part 5 through the inside of the hollow fiber 6, and is further discharged from the light projecting part 5 to the outside through the pipe 19.
  • a gas sample to be analyzed is introduced into the hollow fiber 6.
  • the pump 20 is temporarily stopped, and the gas sample inside the hollow fiber 6 is brought into a stationary state (S22).
  • the bandpass filter to be used is set to the bandpass filter 4a (S23), and the infrared light emitted from the filament 16 passes through the gap between the blades 3a and 3b of the resonance chopper 18 and is guided to one end of the hollow fiber 6. Infrared light guided from one end of the hollow fiber 6 is transmitted through the hollow fiber 6 and emitted from the other end of the hollow fiber 6. At this time, infrared light is absorbed inside the hollow fiber 6 by the flowing gas sample. Infrared light emitted from the other end of the hollow fiber 6 passes through the glass window 22 in the gas sample introduction portion 21 and is collected by the lens 24, passes through the bandpass filter 4a, and has an appropriate wavelength range. It is received by the detector 25 on the detection unit 7 side as infrared light. The detector 25 outputs an electrical signal having an intensity corresponding to the received light intensity of infrared light.
  • the output signal from the detector 25 is sent to the lock-in amplifier 8.
  • the lock-in amplifier 8 removes noise by performing synchronous detection with the output signal from the resonance chopper 18.
  • the output signal from which the noise has been removed is subjected to calculation of moving average processing in the measurement / control unit 9, and the gas component data is stored in the memory in the measurement / control unit 9 (S24).
  • the bandpass filter 4a is switched to 4b by rotating the rotating unit 23 after a predetermined time has elapsed (S25, S26).
  • the output signal from the detector 25 is sent to the lock-in amplifier 8, and the lock-in amplifier 8 removes noise by synchronous addition (synchronous detection) with the output signal from the resonance chopper 18.
  • the output signal from which the noise has been removed is subjected to a calculation of moving average processing in the measurement / control unit 9, and gas component data is stored in a memory in the measurement / control unit 9.
  • the second background measurement (S30) is performed in the same manner as the first time (S31-S37). Since the operation is the same as the first time, the description is omitted.
  • the measured value is calculated from the data stored in the measurement / control section 9 (S40). Calculate the average of the first and second measurements in the background.
  • the average calculation may be either a simple average or a logarithmic average, but here it is a simple average.
  • the background voltage value is not constant in time and always fluctuates due to the influence of drift noise. By this averaging operation, it is possible to cope with drift noise whose background value changes with time, and to realize measurement that is hardly affected by noise.
  • the difference from the measured value at the time of gas component measurement is obtained, and the difference in sensor output voltage (unit is V) is compared with the previously calculated calibration curve. Calculate and output the gas concentration.
  • the sensor output voltage difference that is, the output voltage difference of the detector 25 (hereinafter the same) is larger than the background fluctuation.
  • the ground measurement may be performed only once.
  • FIG. 4 shows an example of the measurement result.
  • the gas component was measured by using a gas sample of 5 ppm of acetylene instead of the extracted gas of the insulating oil.
  • the outlet of a gas cylinder of 5 ppm acetylene is directly connected to the gas sample introduction part 21.
  • the bandpass filter was fixed by using only the bandpass filter 4a for measurement. The measurement is performed by switching the gas sample every 10 minutes, in the order of background (air) ⁇ acetylene 5 ppm ⁇ background (air).
  • the introduction time of the gas sample was 2 minutes.
  • the sensor output voltage is unstable, so it is not subject to calculation.
  • the moving average value is calculated by stopping the introduction after 2 minutes and measuring 8 minutes until 10 minutes later.
  • the measured value A of the background (first time) was 2.081V.
  • the sensor output voltage B when acetylene was 5 ppm was 2.075V.
  • the background (second time) sensor output voltage A ' was 2.079V. Therefore, the measured value of the background is the average value of A and A 'and is 2.080V.
  • the sensor output voltage difference is the difference between 2.080V and 2.075V, which is 0.005V. Since acetylene 5 ppm has a relatively low concentration and drift noise cannot be ignored compared to the sensor output voltage difference, a method of measuring the background before and after the measurement of the gas sample is effective.
  • FIG. 5 shows a gas measuring device using the transmission cell 1 instead of the hollow fiber 6.
  • the permeation cell 1 is provided with a gas sample inlet 1a and a gas sample outlet 1b.
  • the gas sample inlet 1a is connected to the pipe 14b and the dirt removal filter 15, and is configured so that the background or insulating oil gas can be introduced as in FIG.
  • the light source 2 is the same as the filament 16 in FIG.
  • infrared light is irradiated from one end side into the transmission cell 1 in which a background or insulating oil gas is sealed.
  • Infrared rays are transmitted through the transmission cell 1 and guided to the detector 25 via the band-pass filters 4 a and 4 b of the rotating part provided on the other end side in the transmission cell 1.
  • the transmission cell 1 is configured so that the inside reflects infrared light.
  • the material is not limited, but generally it is made of stainless steel because metal is often used.
  • the gas sample to be analyzed is introduced into the permeation cell 1 from the gas sample inlet 1a along the direction a, and discharged from the gas sample outlet 1b to the outside of the permeation cell 1 along the direction b.
  • the experiment was performed using a gas of 5 ppm acetylene as a sample gas, and compared each of the apparatus shown in FIG. 1 showing the first embodiment and the apparatus shown in FIG. 5 (hereinafter referred to as “conventional method”).
  • the gas component is measured without measuring the background. That is, in the flowchart of FIG. 3, only the measurement of the gas component (S20) was performed.
  • the switching time of each of the bandpass filters 4a, 4b, 4c, and 4d is 120 seconds. That is, after 120 seconds had elapsed, for example, the experiment was conducted for a total of 480 seconds assuming that the bandpass filter 4a was switched to 4b.
  • FIG. 6 shows the results of measurement by a conventional gas measuring device. Immediately after switching of any of the bandpass filters 4a, 4b, 4c, and 4d, peak noise is generated as indicated by a round circle. It was found that noise was included for 40 seconds immediately after switching of the bandpass filter, and this was not suitable for measurement in this time domain.
  • FIG. 7 shows a measurement result in the gas measuring apparatus of the present embodiment. It can be seen that the peak noise immediately after switching as shown in FIG. 6 does not occur and is stable. Even if the band-pass filter is switched, noise is not mixed and immediately stabilized, thereby achieving an effect of realizing high-speed measurement.
  • the cause of the noise mixing is not only the influence of the heat transmitted to the bandpass filters 4a, 4b, 4c, 4d already described, but also the vibration generated when the rotating part 23 rotates is the resonance chopper. 18 is transmitted to noise. This is because the resonance chopper 18 is susceptible to vibration because it transmits or blocks infrared light by opening and closing the blades 3a and 3b. Therefore, as shown in FIG. 1 shown in the first embodiment, separating the rotating unit 23 and the resonant chopper 18 as much as possible leads to noise reduction.
  • noise generation is small even when the band-pass filter is switched, so that more stable high-speed measurement can be realized.
  • FIG. FIG. 8 is a schematic cross-sectional view of a gas measuring device according to Embodiment 2 of the present invention.
  • the difference from the configuration shown in FIG. 1 of the first embodiment is that the infrared light derived from the glass window 22 is guided directly to the detector 25 via the band-pass filter 4a without using the lens 24. Since the infrared light derived from the glass window 22 is diffused due to the absence of the lens 24, the infrared light reaching the detector 25 decreases.
  • the hollow fiber 6 is different from general solid optical fibers, and the light propagation area is air, so the numerical aperture cannot be defined.
  • the hollow fiber 6 is a multimode transmission, and the incident angle at the light entrance of the hollow fiber 6 allows arbitrary light to enter, but for higher-order modes, that is, the mode where the incident angle of the hollow fiber 6 is large, Since loss increases in the hollow fiber 6, the transmission efficiency decreases. Since the diffusion state of the light from the exit of the hollow fiber 6 cannot be obtained from the numerical aperture, the degree of diffusion from the exit of the hollow fiber 6 was examined experimentally here.
  • FIG. 9 shows only the optical member (optical system portion) in FIG. 8, and the description of some members is omitted.
  • An angle between a straight line connecting one end side (light entrance) of the hollow fiber 6 and the end of the reflector 17 and a straight line connecting one end side of the hollow fiber 6 and the filament 16 serving as a light source is defined as ⁇ 1 . Since the filament 16 can be approximated as a point light source, the incident angle of the light emitted from the filament 16 to the hollow fiber 6 has a maximum ⁇ 1 .
  • FIG. 10 is a configuration diagram of the shielding plate 30 as viewed from the detector 25 side.
  • the shielding plate 30 is a plate material that does not transmit light, such as aluminum, with a hole having a diameter r.
  • the amount of light reaching the detector element 31 in the detector 25 was measured by changing the distance L1.
  • the diameter r was 1 mm
  • the distance L2 between the other end of the hollow fiber 6 and the detector element 31 was 40 mm.
  • the detector element 31 has a rectangular shape of 3 ⁇ 3 mm (in this case, a square).
  • FIG. 11 is a diagram showing a change in relative light quantity when the distance L1 is changed from 0 mm to 40 mm.
  • the relative light quantity indicates the ratio of the output voltage at each L1 when the output voltage from the detector 25 without the shielding plate 30 is 1.0.
  • the relative light amount decreases as L1 increases.
  • L1 which is 0.95 as a relative light quantity is read
  • L1 is 10 mm.
  • the relative light quantity is 1.0 to 0.95, the light quantity is reduced by 5%.
  • ⁇ 2 in FIG. 9 is obtained by the following equation.
  • ⁇ 2 arctan (r / 2 / L1)
  • the distance between the glass window 22 and the detector element 31 is 7 mm or less, which satisfies this experimental result. It becomes. Therefore, when the thickness of the rotating part 23 is 7 mm or less, as shown in FIG. 8 of the second embodiment, it has been found that there is no problem in terms of sensitivity even if the lens 24 is not used.
  • the configuration and operation of the other parts of the gas measurement device according to the second embodiment are the same as the configuration and operation of the corresponding part of the gas measurement device according to the first embodiment, and therefore description thereof is omitted.
  • the effect of the second embodiment is the same as in the first embodiment, since the generation of noise is small even when the band-pass filter is switched, stable high-speed measurement can be realized, but measurement with a smaller number of components is possible. is there.
  • FIG. 12 is a schematic cross-sectional view of a gas measuring device according to Embodiment 3 of the present invention.
  • the differences from the configuration shown in FIG. 1 of the first embodiment are as follows.
  • the position of the lens 24 is placed in the gap between the rotating unit 23 and the glass window 22, but in FIG. 12 showing the present embodiment, the position of the lens 24 is in the gap between the rotating unit 23 and the detector 25. The point is different.
  • the lens 24 is a concave lens.
  • FIG. 13 is an enlarged view of the vicinity of the periphery including the lens 24 in FIG. 1 and shows the state of diffusion and collection of infrared light emitted from the hollow fiber 6.
  • FIG. 14 is an enlarged view of the vicinity including the lens 24 of FIG.
  • the lens 24 immediately collects infrared light emitted from the hollow fiber 6, and the bandpass filter 4a is heated.
  • Cheap On the other hand, in the configuration shown in FIG. 14, since the infrared light from the hollow fiber 6 is once diffused, the bandpass filter 4a is hardly heated.
  • it is necessary to use a lens (concave lens) 24 according to the third embodiment having a larger curvature than that of the lens (convex lens) 24 according to the first embodiment it is difficult to condense, and the measurement sensitivity may be slightly different depending on conditions. Since it may be lowered, it is desirable to select either the configuration of the first embodiment or the third embodiment in accordance with the balance between measurement sensitivity and high-speed measurement.
  • the effect of the third embodiment is that the generation of noise is small even when the band-pass filter is switched, so that stable high-speed measurement can be realized, and further measurement without being affected by heating. Is possible.
  • FIG. 15 shows a schematic sectional view of a gas measuring apparatus according to Embodiment 4 of the present invention.
  • the difference from the configuration shown in FIG. 1 of the first embodiment is as follows.
  • a rotary chopper 35 is installed instead of the resonant chopper 18 shown in FIG.
  • FIG. 16 is a configuration diagram of the light shielding plate 36 as viewed from the direction of the filament 16.
  • four holes 36 a are formed, and transmission and blocking of infrared light is realized by rotating the light shielding plate 36.
  • the number of holes 36a is not necessarily four, and may be any number.
  • the transmission and cutoff frequencies generated by the rotation are suitably in the range of 100 to 10000 Hz, but here, 2000 Hz as in the first embodiment.
  • the effect of the fourth embodiment is that, as in the first embodiment, noise generation is small even when the bandpass filter is switched, so that stable high-speed measurement can be realized. Therefore, the effect of blocking heat is greater.
  • FIG. 17 is a schematic sectional view of a gas measuring apparatus according to Embodiment 5 of the present invention.
  • the difference from the configuration shown in FIG. 1 of the first embodiment is as follows.
  • the wavelength tunable filter 29 is installed instead of the rotating unit 23 and the bandpass filters 4a, 4b, 4c, and 4d shown in FIG.
  • the wavelength tunable filter 29 is a mechanism in which optical characteristics (including the transmission frequency band) change when the applied voltage of the film is changed according to the Fabry-Bellows interference principle.
  • the bandpass filters 4a, 4b, 4c, and 4d are not mechanically rotated and switched as in the first embodiment, but the characteristics of the filter are electrically switched. There is almost no movement of air, and the temperature change with time is small. It should be noted that the portion consisting of the bandpass filters 4a, 4b, 4c, and 4d and the switching mechanism thereof, and the portion consisting of the wavelength variable filter 29 and the power supply unit (not shown) for changing the applied voltage in each of the above embodiments, Also referred to as a variable optical filter section.
  • the lens 24 may be omitted.
  • the lens 24 is installed on the glass window 22 side, it may be installed on the detector 25 side as in the third embodiment. Since the structure of the other part of the gas measuring device according to the fifth embodiment is the same as the structure of the corresponding part of the gas measuring device according to the first embodiment, the description thereof will be omitted.
  • the operation is almost the same as in the first embodiment, but instead of switching the bandpass filters 4a, 4b, 4c, and 4d in the first embodiment by the rotating unit 23, the applied voltage of the wavelength tunable filter 29 is changed to change the filter. It is different in changing the characteristics.
  • the effect of the fifth embodiment is that, as in the first embodiment, the wavelength tunable filter 29 is not heated, so that stable high-speed measurement can be realized. Further, since there is no mechanical operation, more stable measurement can be performed. It becomes possible. In addition, a more space-saving device can be realized.
  • FIG. FIG. 18 shows a schematic sectional view of a gas measuring apparatus according to Embodiment 6 of the present invention.
  • the difference from the configuration shown in FIG. 1 of the first embodiment is as follows.
  • a part of the hollow fiber 6 shown in FIG. 1 is wound in a round shape to form a spiral shape or a wound coil shape.
  • the filament 16 and one end of the hollow fiber 6, i.e., the region near the resonance chopper 18, are placed on the same straight line as shown by the one-dot chain line axis 37 b.
  • the detector 25, the lens 24, and the other end of the hollow fiber 6, that is, the region near the gas sample introduction portion 21, are installed on the same straight line as shown by the one-dot chain line 37c.
  • the hollow fiber 6 may be bent so that the shaft 37b and the shaft 37c form an angle with each other, instead of winding the hollow fiber 6 in a bowl shape.
  • FIG. 18 the three-way valve 27, the pipes 14a and 14b, the extraction container 13, the oil-filled electrical device 10, the gas sample extraction mechanism 11, and the pipes 12a and 12b are omitted in FIG.
  • the connections are the same as in FIG.
  • the bandpass filter 4a and the detector 25 are included in a cylindrical range including the shaft 37a, and the influence of heat cannot be completely excluded.
  • the hollow fiber 6 is connected to the detector 25, for example, the shaft 37b that is the optical axis from the filament 16 that is the light source and one end of the hollow fiber 6 to the hollow fiber 6, and the other end of the hollow fiber 6. What is necessary is just to make it the shape which the axis
  • the hollow fiber 6 is bent into, for example, a U shape or an L shape as shown in FIG.
  • the bent angle is not limited to 90 degrees and 180 degrees. That is, the angle ⁇ at which the shaft 37b and the shaft 37c intersect may be 90 degrees as shown in FIG. 19, or may be 60 degrees, for example. As a result, a portion where the detector 25 and the lens 24 are located can be set at a position away from the area 38 extending linearly along the hollow fiber 6 from the light projecting portion 5 having the filament 16.
  • the shaft 37b and the shaft 37c form an angle of 180 degrees with each other (parallel and opposite directions) and overlap each other. The distance is set so as not to become.
  • the substantial exclusive area of the gas measuring device is small compared to the case where the L-shaped hollow fiber 6 is used (the exclusive length in the vertical direction of the drawing of FIG. 18 is short), and actually It is preferable when installing a gas measuring device.
  • the hollow fiber 6 has, for example, one bent shape so that the detector 25 is installed at a position other than the area 38 extending linearly from the light source 2 of the light projecting unit 5 to the hollow fiber 6.
  • the effect of the sixth embodiment is that stable high-speed measurement can be realized as in the first embodiment, but more stable high-speed measurement can be realized by suppressing the heating of the bandpass filter 4a.
  • the gas measuring device according to the present invention is applicable to gas measuring devices in various fields.

Abstract

A gas measurement device wherein: a light projection unit is provided at one end side of a hollow fiber into which gas to be measured is introduced; light from a light source is irradiated into the hollow fiber; a detector is disposed past the other end side of the hollow fiber, which is sealed by a transparent member; light passing through the hollow fiber is detected; a measurement and control unit measures the gas to be measured on the basis of the detected light; an optical filter unit is provided in a space between the other end of the hollow fiber and the detector and transmits light that has passed through the hollow fiber and is within the light absorption band of the gas; and the hollow fiber has a bent shape such that the detector is placed in a position outside of the area extending linearly from the light source of the light projection unit to the hollow fiber.

Description

ガス計測装置とその計測方法Gas measuring device and measuring method
 この発明は、ガス計測装置等に関するものである。 This invention relates to a gas measuring device and the like.
 従来のガス計測装置としては例えば、変圧器、リアクトル等の油入電気機器の内部の絶縁油の状態を監視するために、油中のガスを計測するのに使用されている。例えば下記特許文献1に、このような方法の具体例が開示されている。下記特許文献1で示されたガス分析装置では、油入電気機器本体から絶縁油が採取されて、絶縁油に溶存するガスが抽出され、抽出されたガスは中空ファイバに導入される。光源であるLEDにより中空ファイバの一端から導入された光は、ファイバ内のガスを通して中空ファイバの他端の近傍にある検出部により検出されて、演算、回析が行われる。ガスの濃度に応じて中空ファイバ内の光の吸収があることから、その出力差からガス量が測定できる。ガスの種類に応じて測定を行うために、発光部の近傍に複数のバンドパスフィルタが設置されている。 As a conventional gas measuring device, for example, it is used to measure the gas in oil in order to monitor the state of insulating oil inside oil-filled electrical equipment such as a transformer and a reactor. For example, the following patent document 1 discloses a specific example of such a method. In the gas analyzer disclosed in Patent Document 1 below, insulating oil is collected from the oil-filled electrical device body, gas dissolved in the insulating oil is extracted, and the extracted gas is introduced into the hollow fiber. The light introduced from one end of the hollow fiber by the LED as the light source is detected by a detection unit in the vicinity of the other end of the hollow fiber through the gas in the fiber, and calculation and diffraction are performed. Since there is light absorption in the hollow fiber according to the gas concentration, the gas amount can be measured from the output difference. In order to perform measurement according to the type of gas, a plurality of bandpass filters are installed in the vicinity of the light emitting unit.
 また、下記特許文献2には、光源と測定セルと、赤外線センサとして赤外線検知素子と、バンドパスフィルタと、熱伝導抑制部とを備えたガス検出器が開示されている。 Further, Patent Document 2 below discloses a gas detector including a light source, a measurement cell, an infrared detection element as an infrared sensor, a bandpass filter, and a heat conduction suppression unit.
特開2012-242311号公報(7頁34~8頁11行、図5)JP 2012-242111 A (page 7, page 34 to page 8, line 11; FIG. 5) 特開2013-185996号公報(4頁37~7頁18行、図1)Japanese Patent Laying-Open No. 2013-185996 (page 4, page 37 to page 7, line 18, FIG. 1)
 以上のような従来のガス計測装置にあっては、バンドパスフィルタが光源に由来する熱により加熱された場合に、バンドパスフィルタの光学特性、すなわち中心波長の移動や半値幅(半値全幅)が変動することで、安定した測定が困難であるという問題点があった。
 また複数のガスを同時に測定する場合は、バンドパスフィルタを一定時間毎に切り替えて、それぞれの出力を求めるが、バンドパスフィルタの切り替え直後は温度が一定しないため安定せず、安定するまで待つ必要があることから高速の測定ができないという問題点があった。
In the conventional gas measuring apparatus as described above, when the bandpass filter is heated by the heat derived from the light source, the optical characteristics of the bandpass filter, that is, the shift of the center wavelength and the half width (full width at half maximum) are Due to the fluctuation, there is a problem that stable measurement is difficult.
Also, when measuring multiple gases at the same time, switch the bandpass filter every fixed time to obtain the respective output, but the temperature is not constant immediately after switching the bandpass filter, so it is not stable and it is necessary to wait until it becomes stable Therefore, there was a problem that high-speed measurement was impossible.
 この発明は、上記のような問題点を解決するためになされたものであり、光源からの熱の影響を受け難く安定した測定を実現し、さらに高速で測定可能なガス計測装置等を得ることを目的としている。 The present invention has been made to solve the above-described problems, and realizes a stable measurement that is hardly affected by the heat from the light source, and obtains a gas measurement device that can measure at a higher speed. It is an object.
 この発明は、内部に測定対象のガスが導入された中空ファイバと、前記中空ファイバの一端側に配置されて前記中空ファイバの内部に光源からの光を照射する投光部と、前記中空ファイバの透明部材で封止された他端側の先において前記中空ファイバの内部を通過した光を検出する検出器と、前記検出器で検出された光に基づいて、測定対象の前記ガスを計測する計測・制御部と、前記中空ファイバの他端と前記検出器の隙間に設けられ、前記中空ファイバの内部を通過した光のうち前記ガスの光吸収帯の光を透過する透過周波数帯域を有する光学フィルタ部と、を備え、前記中空ファイバが、前記検出器を前記投光部の前記光源から前記中空ファイバに直線的に延びるエリア以外の位置に設置するように曲げられた形状を有するガス計測装置。 The present invention includes a hollow fiber into which a gas to be measured is introduced, a light projecting unit that is disposed on one end side of the hollow fiber and irradiates light from a light source into the hollow fiber, A detector that detects light that has passed through the hollow fiber at the tip of the other end that is sealed with a transparent member, and a measurement that measures the gas to be measured based on the light detected by the detector An optical filter provided in a gap between the control unit and the other end of the hollow fiber and the detector and having a transmission frequency band that transmits light in the light absorption band of the gas out of the light that has passed through the hollow fiber A gas measurement in which the hollow fiber is bent so that the detector is installed at a position other than an area extending linearly from the light source of the light projecting unit to the hollow fiber. Location.
 この発明では、光源からの熱の影響を受け難く安定した測定を実現し、さらに高速で測定可能なガス計測装置等を提供できる。 In the present invention, it is possible to provide a gas measuring device and the like that can realize a stable measurement that is hardly affected by the heat from the light source and can measure at a higher speed.
この発明の実施の形態1によるガス計測装置を示す概略断面図である。It is a schematic sectional drawing which shows the gas measuring device by Embodiment 1 of this invention. 図1の回転部23の検出器25の方向から見た構成図である。It is the block diagram seen from the direction of the detector 25 of the rotation part 23 of FIG. この発明の実施の形態1によるガス計測装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the gas measuring device by Embodiment 1 of this invention. この発明の実施の形態1による測定結果の一例を示す図である。It is a figure which shows an example of the measurement result by Embodiment 1 of this invention. 一般的なNDIR法によるガス計測装置の概略断面図である。It is a schematic sectional drawing of the gas measuring device by a general NDIR method. 一般的なNDIR法によるガス計測装置の実験結果を示す図である。It is a figure which shows the experimental result of the gas measuring device by a general NDIR method. この発明の実施の形態1によるガス計測装置の実験結果を示す図である。It is a figure which shows the experimental result of the gas measuring device by Embodiment 1 of this invention. この発明の実施の形態2によるガス計測装置を示す概略断面図である。It is a schematic sectional drawing which shows the gas measuring device by Embodiment 2 of this invention. 図8のガス計測装置の一部を抜粋して示した概略断面図である。It is the schematic sectional drawing which extracted and showed a part of gas measuring device of FIG. 図9の検出器25の側から見た遮蔽板30の構成図である。It is a block diagram of the shielding board 30 seen from the detector 25 side of FIG. 図9の距離L1を変化させた時の相対光量の変化を示した図である。It is the figure which showed the change of the relative light quantity when changing the distance L1 of FIG. この発明の実施の形態3によるガス計測装置を示す概略断面図である。It is a schematic sectional drawing which shows the gas measuring device by Embodiment 3 of this invention. この発明の実施の形態1のガス計測装置におけるレンズ24付近の拡大断面図である。It is an expanded sectional view of the lens 24 vicinity in the gas measuring device of Embodiment 1 of this invention. この発明の実施の形態3のガス計測装置におけるレンズ24付近の拡大断面図である。It is an expanded sectional view of the lens 24 vicinity in the gas measuring device of Embodiment 3 of this invention. この発明の実施の形態4によるガス計測装置を示す概略断面図である。It is a schematic sectional drawing which shows the gas measuring device by Embodiment 4 of this invention. 図15の遮光板36をフィラメント16の方向から見た構成図である。It is the block diagram which looked at the light-shielding plate 36 of FIG. 15 from the direction of the filament 16. FIG. この発明の実施の形態5によるガス計測装置を示す概略断面図である。It is a schematic sectional drawing which shows the gas measuring device by Embodiment 5 of this invention. この発明の実施の形態6によるガス計測装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the gas measuring device by Embodiment 6 of this invention. この発明の実施の形態6によるガス計測装置の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the gas measuring device by Embodiment 6 of this invention.
 以下、この発明によるガス計測装置等を各実施の形態に従って図面を用いて説明する。
なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。
 また、各実施の形態に係るガス計測装置は、油入電気機器内の絶縁油に溶存するガスを測定する目的で使用される。ただし、このような用途に限定されず、この発明は、一般的なガス測定の用途にも利用可能である。
Hereinafter, a gas measuring device and the like according to the present invention will be described with reference to the drawings according to each embodiment.
In each embodiment, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
Moreover, the gas measuring device which concerns on each embodiment is used in order to measure the gas which melt | dissolves in the insulating oil in oil-filled electrical equipment. However, the present invention is not limited to such applications, and the present invention can also be used for general gas measurement applications.
 実施の形態1.
 図1はこの発明の実施の形態1に係るガス計測装置の概略断面図を示したものである。
投光部5、中空ファイバ6、検出部7、ロックインアンプ8、計測・制御部9を備えており、これらに接続する形で油入電気機器10およびガスサンプル抽出機構11が接続されている。
Embodiment 1 FIG.
1 is a schematic sectional view of a gas measuring apparatus according to Embodiment 1 of the present invention.
A light projecting unit 5, a hollow fiber 6, a detecting unit 7, a lock-in amplifier 8, and a measurement / control unit 9 are provided, and an oil-filled electrical device 10 and a gas sample extraction mechanism 11 are connected to these. .
 油入電気機器10は、たとえば油入変圧器、油入リアクトルであり、その内部には絶縁油が満たされている。ガスサンプル抽出機構11は油入電気機器10と配管12a,12bを通して接続される。絶縁油に溶存する(溶けて混ざっている)ガスを抽出するための抽出容器13がガスサンプル抽出機構11内に設けられている。 The oil-filled electrical device 10 is, for example, an oil-filled transformer or an oil-filled reactor, and the inside thereof is filled with insulating oil. The gas sample extraction mechanism 11 is connected to the oil-filled electrical device 10 through the pipes 12a and 12b. An extraction container 13 for extracting a gas dissolved (dissolved and mixed) in the insulating oil is provided in the gas sample extraction mechanism 11.
 ガスサンプル抽出機構11には抽出容器13の内部を減圧するためのポンプ(図示せず)が設けられる。抽出容器13の内部を減圧することにより、抽出容器13の内部の絶縁油からガスサンプルが抽出される。抽出されたガスサンプルは配管14aを通じて検出部7に送られる。配管14aの途中には、ガスサンプル流路を切り替えるための三方弁27、およびガスサンプルに含まれるミスト(水、油など)および硫黄成分などを除去するための汚れ除去フィルタ15が設けられている。三方弁27の分岐された一端側には配管14bが接続され、さらに汚れ削除フィルタ15、検出部7が順に接続され、他端側は配管14cが接続されて空気開放状態となっている。 The gas sample extraction mechanism 11 is provided with a pump (not shown) for decompressing the inside of the extraction container 13. By decompressing the inside of the extraction container 13, a gas sample is extracted from the insulating oil inside the extraction container 13. The extracted gas sample is sent to the detection unit 7 through the pipe 14a. In the middle of the pipe 14a, a three-way valve 27 for switching the gas sample flow path, and a dirt removal filter 15 for removing mist (water, oil, etc.) and sulfur components contained in the gas sample are provided. . A pipe 14b is connected to one end side of the branch of the three-way valve 27. Further, the dirt removal filter 15 and the detection unit 7 are connected in order, and the pipe 14c is connected to the other end side so that the air is open.
 投光部5は以下のように構成される。投光部5自体は密閉された気密性の高い筐体である。光源であるフィラメント16から発生された赤外光が、リフレクタ17で集光され、集光された赤外光がこれをチョップする共振チョッパ18を介して、中空ファイバ6の一端側と光学的に接続されている。 The light projecting unit 5 is configured as follows. The light projecting unit 5 itself is a sealed and highly airtight casing. Infrared light generated from the filament 16 that is a light source is collected by the reflector 17 and optically connected to one end side of the hollow fiber 6 via a resonance chopper 18 that chops the collected infrared light. It is connected.
 集光部であるリフレクタ17の湾曲した内側の内壁面は金などを蒸着した鏡面状態となっており、測定対象の波長を含む光を反射して集光する機能を持つ。リフレクタ17の形状は球面、楕円球面などが存在するが、形状を最適化することで、中空ファイバ6の一端側になるべく集光するように構成することが望ましい。また測定波長以外の光は測定には必要が無く、さらには波長5μm以上の遠赤外線(熱線)は中空ファイバ6を加熱する作用がある。したがって、リフレクタ17の内壁面は、金蒸着の代わりに測定波長を含む波長領域の光または測定波長のみの光を反射させるアルミナ等の誘電体層となるように各種誘電体を蒸着させたものとしてもよい。
 なお、測定波長領域は計測・制御部9で計測される各種ガスに対応する光の波長領域である。
The curved inner wall surface of the reflector 17 serving as a light condensing part is in a mirror surface state in which gold or the like is deposited, and has a function of reflecting and condensing light including a wavelength to be measured. The reflector 17 has a spherical shape, an elliptical spherical shape, and the like. However, it is desirable to optimize the shape so that the light is condensed as much as possible on one end side of the hollow fiber 6. Further, light other than the measurement wavelength is not necessary for measurement, and far infrared rays (heat rays) having a wavelength of 5 μm or more act to heat the hollow fiber 6. Therefore, the inner wall surface of the reflector 17 is formed by depositing various dielectrics so as to be a dielectric layer such as alumina that reflects light in the wavelength region including the measurement wavelength or only light in the measurement wavelength instead of gold deposition. Also good.
The measurement wavelength region is a wavelength region of light corresponding to various gases measured by the measurement / control unit 9.
 共振チョッパ18は、2枚で1組のブレード3a、3bを電磁力により物理的に動作させる。ブレード3aとブレード3bの間隙が0.1~5mmの間で周期的に変化することで赤外光をチョップする機構となっている。ブレードがチョップする周波数は100~10000Hzの範囲が好ましいが、ここでは2000Hzとした。 The resonance chopper 18 physically operates a pair of blades 3a and 3b by electromagnetic force. The gap between the blade 3a and the blade 3b is periodically changed between 0.1 mm and 5 mm so that the infrared light is chopped. The frequency at which the blade chops is preferably in the range of 100 to 10000 Hz, but is 2000 Hz here.
 投光部5と検出部7とは中空ファイバ6によって接続される。また投光部5にはガスサンプルを排出する配管19とポンプ20が備え付けられている。中空ファイバ6内では赤外光の方向とガスサンプルの流れる方向は逆としている。すなわち、赤外光は投光部5から中空ファイバ6を介して検出部7に導通されるのに対し、ガスサンプルは検出部7から中空ファイバ6を介して投光部5に流すようにしている。なお光源は、フィラメント16の代わりにLEDやレーザーを用いてもよく、中赤外光を発するものであれば手段は特に限定されない。赤外光の一部は遠赤外線であることから、LEDやレーザーも発熱源となり、フィラメント16の場合と同様な課題がある。また個数も1個である必要はなく、複数個を並べて用いてもよい。 The light projecting unit 5 and the detecting unit 7 are connected by a hollow fiber 6. The light projecting unit 5 is provided with a pipe 19 for discharging a gas sample and a pump 20. In the hollow fiber 6, the direction of infrared light and the direction of flow of the gas sample are reversed. That is, infrared light is conducted from the light projecting unit 5 to the detection unit 7 through the hollow fiber 6, while the gas sample is made to flow from the detection unit 7 to the light projection unit 5 through the hollow fiber 6. Yes. The light source may be an LED or a laser instead of the filament 16, and the means is not particularly limited as long as it emits mid-infrared light. Since some of the infrared light is far-infrared, LEDs and lasers also serve as heat sources and have the same problems as in the case of the filament 16. Also, the number need not be one, and a plurality may be used side by side.
 この発明の実施の形態1では、中空ファイバ6の内部に測定対象のガスサンプルおよび赤外光が通されており、内部はガスのセルと赤外光の導通を兼ねている。中空ファイバ6は赤外光の光路長を長くすることが可能であると同時に、内径が小さいことから投光部5からの熱伝導が小さいという特性を持っている。 In the first embodiment of the present invention, a gas sample to be measured and infrared light are passed through the hollow fiber 6, and the inside also serves as a conduction between the gas cell and the infrared light. The hollow fiber 6 has a characteristic that the optical path length of the infrared light can be increased, and at the same time, since the inner diameter is small, the heat conduction from the light projecting portion 5 is small.
 中空ファイバ6は、石英ガラスなどの円筒形母材にNi,Al,Au、Agなどのスパッタリングを行ない、その後に環状オレフィンポリマをコーティングするなどの公知の方法によって作製可能であるため、ここでは製作方法についての詳細な説明を省略する。中空ファイバ6の内径は0.5~1.0mmのものが一般的であるが、ここでは0.7mmのものを用いた。中空ファイバ6の長さが長い方が高感度となって望ましいが、長尺の中空ファイバ6の製作は困難であることから、ここでは3mのものを用いた。内径と長さからセルの容量が計算可能であり、本実施の形態では1.15mL(ミリリットル)と計算される。中空ファイバ6の内部の測定するガスサンプルを置換するためには、内部容量の2~3倍程度のガス量が最低必要であることから、ガスサンプルの容量は少なくとも4mL必要となる。 The hollow fiber 6 can be manufactured by a known method such as sputtering of Ni, Al, Au, Ag or the like on a cylindrical base material such as quartz glass and then coating with a cyclic olefin polymer. A detailed description of the method is omitted. The hollow fiber 6 generally has an inner diameter of 0.5 to 1.0 mm, but here, the inner diameter of 0.7 mm was used. Although it is desirable that the hollow fiber 6 has a long length because of high sensitivity, it is difficult to manufacture the long hollow fiber 6, and a 3 m long fiber 6 was used here. The volume of the cell can be calculated from the inner diameter and the length, and in this embodiment is calculated as 1.15 mL (milliliter). In order to replace the gas sample to be measured inside the hollow fiber 6, the gas amount of about 2 to 3 times the internal volume is required at least, so the volume of the gas sample needs to be at least 4 mL.
 検出部7は以下のように構成される。検出部7自体は単なる筐体であるが、発泡ウレタンなどの断熱材で包まれており、内部が一定温度になるように保温している。また検出部7は投光部5とは異なり、気密性を高くする必要はない。中空ファイバ6の他端側と配管14bの他端側に接続されたガスサンプル導入部21は、中空ファイバ6の他端側に面して透明部材であるガラス窓22を設けている。すなわち、ガスサンプル導入部21の中空ファイバ6の他端側が接続された側と反対側にガラス窓22が設けられ、中空ファイバ6の他端側はガラス窓22で封止されたかたちとなっている。ガラス窓22は赤外光を透過する材質、例えば石英ガラスなどが用いられる。
 ガラス窓22は石英ガラス単独としてもよいが、測定とは関係のない波長の光を除去するフィルタとしてもよい。例えば熱線として知られる5μm以上の赤外光を除去するショートウェイブパスフィルタとしてもよい。これにより熱の影響を除外することができる。ショートウェイブパスフィルタは具体的には例えば、石英ガラスにサファイヤ、シリコンなどの母材にアルミナ等の多層膜をコーティングしたものからなり、特定波長以上の赤外光を遮断する機能を有する。
The detection unit 7 is configured as follows. Although the detection unit 7 itself is a mere housing, it is wrapped with a heat insulating material such as urethane foam, and is kept warm so that the inside becomes a constant temperature. Further, unlike the light projecting unit 5, the detecting unit 7 does not need to have high airtightness. The gas sample introduction part 21 connected to the other end side of the hollow fiber 6 and the other end side of the pipe 14 b is provided with a glass window 22 that is a transparent member facing the other end side of the hollow fiber 6. That is, a glass window 22 is provided on the opposite side of the gas sample introduction portion 21 to the side where the other end of the hollow fiber 6 is connected, and the other end of the hollow fiber 6 is sealed with the glass window 22. Yes. The glass window 22 is made of a material that transmits infrared light, such as quartz glass.
Although the glass window 22 may be made of quartz glass alone, it may be a filter that removes light having a wavelength not related to measurement. For example, a short wave pass filter that removes infrared light of 5 μm or more known as heat rays may be used. Thereby, the influence of heat can be excluded. Specifically, the short wave pass filter is made of, for example, quartz glass coated with a multilayer film such as alumina on a base material such as sapphire and silicon, and has a function of blocking infrared light having a specific wavelength or more.
 ガスサンプル導入部21の外側のガラス窓22に対向する位置に回転部23を設け、その内部にバンドパスフィルタ4a、4b、4c、4dが装着されている。図2は回転部23の検出器25の方向から見た構成図である。図2に示すように、バンドパスフィルタ4a、4b、4c、4dの4枚が同一円内に設置されており、回転部23を回転させることで、バンドパスフィルタ4a、4b、4c、4dが順番に、レンズ24と検出器25を結ぶ直線上にくるように適宜選択される。回転の順番は4a、4b、4c、4dの順とする。回転部23の代わりに、バンドパスフィルタ4a、4b、4c、4dを直線方向(例えば横)にスライドするスライド冶具(図示省略)に取り付けて、スライドさせて切り替えてもよい。
 なお、回転部23、スライド治具をバンドパスフィルタの切替機構とする。切替機構は、バンドパスフィルタを設けた回転部23等に相当する可動部と、この可動部を可動に支持する支持部からなる。さらに、単一のバンドパスフィルタ、またはバンドパスフィルタ4a、4b、4c、4dとその切替機構を、それぞれ光フィルタ部とする。
A rotation unit 23 is provided at a position facing the glass window 22 outside the gas sample introduction unit 21, and bandpass filters 4 a, 4 b, 4 c, and 4 d are mounted therein. FIG. 2 is a configuration diagram viewed from the direction of the detector 25 of the rotating unit 23. As shown in FIG. 2, the four bandpass filters 4a, 4b, 4c, and 4d are installed in the same circle. By rotating the rotating unit 23, the bandpass filters 4a, 4b, 4c, and 4d are In order, they are appropriately selected so as to be on a straight line connecting the lens 24 and the detector 25. The order of rotation is 4a, 4b, 4c, 4d. Instead of the rotating unit 23, the bandpass filters 4a, 4b, 4c, and 4d may be attached to a slide jig (not shown) that slides in a linear direction (for example, laterally) and may be switched by sliding.
The rotating unit 23 and the slide jig are used as a band-pass filter switching mechanism. The switching mechanism includes a movable portion corresponding to the rotating portion 23 and the like provided with a bandpass filter, and a support portion that movably supports the movable portion. Further, each of the single bandpass filters or the bandpass filters 4a, 4b, 4c, and 4d and the switching mechanism thereof is an optical filter unit.
 バンドパスフィルタ4a、4b、4c、4dは石英ガラス、サファイヤ、シリコンなどの母材にアルミナ等の多層膜をコーティングしたものであり、中心波長付近以外の赤外光を遮断する役割を持つ。ガスの種類毎に吸収特性が異なるため、それぞれに対応したバンドパスフィルタ4a、4b、4c、4dを設けている。すなわちバンドパスフィルタ4a、4b、4c、4dは、それぞれ異なる種類のガスの光吸収帯の光を透過する透過周波数帯域を有し、透過周波数帯域がそれぞれ異なる。例えば波長に換算した場合、
 アセチレンであれば3.05μm、
 二酸化炭素であれば4.25μm、
 一酸化炭素であれば4.70μm
などとして、目的とするガス種類に応じて適宜選択すればよい。バンドパスフィルタ4a、4b、4c、4dは中心波長から一定範囲の幅離れた波長の赤外光を透過する特性があり、半値幅で規定される。半値幅を小さくすると他の妨害ガスのスペクトルの影響を遮断できるが、光量が減少して測定感度が低下するデメリットがあることから、他のガスのスペクトル特性や目標とする測定下限値に応じて半値幅を設定する。またバンドパスフィルタ4a、4b、4c、4dとしてバンドパスフィルタの単独の構成ではなく、ショートウェイブパスフィルタとロングウェイブパスフィルタの組み合わせでもよい。
The bandpass filters 4a, 4b, 4c, and 4d are made by coating a base material such as quartz glass, sapphire, or silicon with a multilayer film such as alumina, and have a role of blocking infrared light other than near the center wavelength. Since the absorption characteristics are different for each type of gas, bandpass filters 4a, 4b, 4c, and 4d corresponding to each gas are provided. That is, each of the bandpass filters 4a, 4b, 4c, and 4d has a transmission frequency band that transmits light in a light absorption band of a different type of gas, and the transmission frequency band is different. For example, when converted to wavelength,
3.05 μm for acetylene,
4.25μm for carbon dioxide,
4.70μm for carbon monoxide
For example, it may be appropriately selected according to the target gas type. The bandpass filters 4a, 4b, 4c, and 4d have a characteristic of transmitting infrared light having a wavelength apart from the center wavelength by a certain range, and are defined by a half-value width. Although the influence of the spectrum of other interfering gases can be cut off by reducing the half-value width, there is a demerit that the light sensitivity decreases and the measurement sensitivity decreases, so depending on the spectral characteristics of other gases and the target measurement lower limit value. Set the half width. Further, the band- pass filters 4a, 4b, 4c, and 4d may be a combination of a short wave pass filter and a long wave pass filter instead of a single band pass filter.
 ここでは、
 バンドパスフィルタ4aはアセチレン測定用、
 バンドパスフィルタ4bはバックグラウンド測定用の透明ガラス、
 バンドパスフィルタ4cは二酸化炭素測定用、
 バンドパスフィルタ4dは一酸化炭素測定用とした。
here,
Bandpass filter 4a is used for acetylene measurement.
The bandpass filter 4b is a transparent glass for background measurement,
The bandpass filter 4c is for measuring carbon dioxide,
The band pass filter 4d was used for measuring carbon monoxide.
 バンドパスフィルタの個数は4枚としたが、2枚、3枚、あるいは5枚以上でもよい。
なお、バンドパスフィルタが1枚の場合には切替機構は不要である。回転部23とガラス窓22の間隙にレンズ24を設けている。レンズ24は回転部23を可能に支持する回転しない上述の支持部に固定してもよいし、専用に設けた支持具(図示省略)で固定してもよい。中空ファイバ6の他端(検出部7側の端)から射出された赤外光は、一定の光束すなわち0.7mmの束で導光されるわけではなく拡散するため、レンズ24により集光する。
レンズ24は赤外光を集光する役割を持つため、例えば石英製のものであり、凸形状としている。集光された赤外光はバンドパスフィルタ4aを介して、検出器素子31を有する検出器25に導光されるように構成されている。レンズ24の焦点距離およびレンズ径は中空ファイバ6の径、レンズ24と検出器25の間の距離に応じて決めるが、ここでは焦点距離は25mm、レンズ径は8mmとした。検出器25はPbSe、InSb、MCTなど光導電素子、フォトマルチプライヤーなどを用いるが、ここでは特に限定されず、赤外光を検出できるものであれば何でもよい。検出器25に用いられる光導電素子、フォトマルチプライヤーは温度が低いほど感度が高い特性がある。よってペルチェ冷却器26は検出器25全体を冷却することで高感度とするために設置している。
The number of bandpass filters is four, but may be two, three, or five or more.
Note that the switching mechanism is not required when there is one bandpass filter. A lens 24 is provided in the gap between the rotating unit 23 and the glass window 22. The lens 24 may be fixed to the above-mentioned supporting portion that does not rotate and supports the rotating portion 23, or may be fixed by a dedicated support (not shown). Infrared light emitted from the other end of the hollow fiber 6 (the end on the detection unit 7 side) is not guided by a constant light beam, that is, a bundle of 0.7 mm, but is diffused, so that it is condensed by the lens 24. .
Since the lens 24 has a role of collecting infrared light, it is made of, for example, quartz and has a convex shape. The condensed infrared light is configured to be guided to the detector 25 having the detector element 31 through the band-pass filter 4a. The focal length and the lens diameter of the lens 24 are determined according to the diameter of the hollow fiber 6 and the distance between the lens 24 and the detector 25. Here, the focal length is 25 mm and the lens diameter is 8 mm. The detector 25 uses a photoconductive element such as PbSe, InSb, or MCT, a photomultiplier, or the like, but is not particularly limited here, and may be anything that can detect infrared light. The photoconductive element and photomultiplier used for the detector 25 have a characteristic that the sensitivity is higher as the temperature is lower. Therefore, the Peltier cooler 26 is installed to increase the sensitivity by cooling the entire detector 25.
 なお共振チョッパ18の設置位置は検出器25から、可能な限り遠ざけることが望ましい。共振チョッパ18は電磁的に動作させることから、電磁的なノイズが発生する他に、物理的なノイズ(振動)も発生することから、検出器25の測定感度に影響を及ぼさないためである。共振チョッパ18のブレード3aとブレード3bの間隙は、共振チョッパ18の共振周波数に依存するが最大1mm程度の間隙となる場合もある。前述のとおり、中空ファイバ6の内径は0.7mmであり、大きさにあまり差がないため、中空ファイバ6の内部に可能な限り赤外光を導光させるために、共振チョッパ18の設置位置は中空ファイバ6の投光部5側の一端側になるべく近づけることが望ましい。 It should be noted that the installation position of the resonant chopper 18 is preferably as far away from the detector 25 as possible. This is because the resonance chopper 18 is electromagnetically operated, so that not only electromagnetic noise is generated but also physical noise (vibration) is generated, so that the measurement sensitivity of the detector 25 is not affected. The gap between the blade 3a and the blade 3b of the resonance chopper 18 may be a gap of about 1 mm at maximum depending on the resonance frequency of the resonance chopper 18. As described above, the inner diameter of the hollow fiber 6 is 0.7 mm and there is not much difference in size. Therefore, in order to guide infrared light as much as possible inside the hollow fiber 6, the installation position of the resonance chopper 18 is set. Is preferably as close as possible to one end side of the hollow fiber 6 on the light projecting portion 5 side.
 また、この実施の形態では、フィラメント16、中空ファイバ6の一端および他端、レンズ24、検出器25は一点鎖線で示している軸37aのように同一直線上に設置している。 In this embodiment, the filament 16, one end and the other end of the hollow fiber 6, the lens 24, and the detector 25 are installed on the same straight line as an axis 37 a indicated by a one-dot chain line.
 本実施の形態では中空ファイバ6内の赤外光の導光方向とガスサンプルの流れる方向は逆向きとしたが、同じ方向でもよい。この場合は配管14の配管14bが投光部5に挿入され、配管14bの他端側が中空ファイバ6の一端側に延び、配管19とポンプ20は検出部7に設けられ、配管19の下端がガスサンプル導入部21に接続される。 In this embodiment, the infrared light guide direction in the hollow fiber 6 and the gas sample flow direction are opposite, but they may be the same direction. In this case, the pipe 14b of the pipe 14 is inserted into the light projecting unit 5, the other end side of the pipe 14b extends to one end side of the hollow fiber 6, the pipe 19 and the pump 20 are provided in the detection unit 7, and the lower end of the pipe 19 is Connected to the gas sample introduction unit 21.
 ロックインアンプ8は検出器25からの出力と共振チョッパ18の出力とに電気的に接続されている。ロックインアンプ8の出力は計測・制御部9と接続されている。計測・制御部9にはデータを一時的に保管するメモリ(図示省略)を内蔵している。また、必要に応じて、計測・制御部9にAD変換部(図示省略)を内蔵させ、パーソナルコンピュータ等にデータを転送するための外部ポート(図示省略)を計測・制御部9に用意し、パーソナルコンピュータ等で演算処理を行ってもよい。 The lock-in amplifier 8 is electrically connected to the output from the detector 25 and the output of the resonance chopper 18. The output of the lock-in amplifier 8 is connected to the measurement / control unit 9. The measurement / control unit 9 has a built-in memory (not shown) for temporarily storing data. If necessary, the measurement / control unit 9 includes an AD conversion unit (not shown), and an external port (not shown) for transferring data to a personal computer or the like is provided in the measurement / control unit 9. Arithmetic processing may be performed by a personal computer or the like.
 さらに図示しないが、フィラメント16、共振チョッパ18、ポンプ20、回転部23、検出器25、ペルチェ冷却器26、三方弁27のそれぞれについて電力を供給するための電源部やドライバがあり(共に図示省略)、それぞれが適正に動作するように、例えば計測・制御部9により制御される。なお、計測・制御部9からの各部への制御線等は図面が煩雑になるため図示が省略されている。 Although not shown, there are a power supply unit and a driver for supplying power to each of the filament 16, the resonance chopper 18, the pump 20, the rotating unit 23, the detector 25, the Peltier cooler 26, and the three-way valve 27 (both not shown). ), For example, is controlled by the measurement / control unit 9 so that each operates properly. The control lines from the measurement / control unit 9 to each unit are not shown because the drawings are complicated.
 次に実施の形態1に係るガス計測装置の動作について図3のフローチャートに従って説明する。この動作の制御は、例えば計測・制御部9により行われる。 Next, the operation of the gas measuring apparatus according to Embodiment 1 will be described with reference to the flowchart of FIG. This operation is controlled by, for example, the measurement / control unit 9.
 測定を開始する前の一定時間例えば、1~4時間前からフィラメント16を点灯させておく(S1、S2)。フィラメント16は安定した状態になるまでに時間を要することから、あらかじめ点灯させておくが、光量が直ちに安定するのであれば、測定直前に点灯させておいてもよい。 The filament 16 is lit for a certain time before starting the measurement, for example, 1 to 4 hours before (S1, S2). Since the filament 16 takes time to reach a stable state, it is lit in advance. However, if the amount of light is immediately stabilized, it may be lit immediately before the measurement.
 測定はまず最初に、バックグラウンド(1回目)について行う(S10)。この場合の測定対象のガスサンプルは大気空気とするが、別途、窒素+酸素ボンベ(混合比79:21)を用意して、導入してもよい。三方弁27を切り替えることでガスサンプル流路をc-bとする(S11)。ポンプ20を動作させることで、ガスサンプルに含まれるミストおよび硫黄成分などが汚れ削除フィルタ15で除去される。フィルタ15を通ったガスサンプルは検出部7へと送られる。 Measurement is first performed on the background (first time) (S10). The gas sample to be measured in this case is atmospheric air, but a nitrogen + oxygen cylinder (mixing ratio 79:21) may be separately prepared and introduced. By switching the three-way valve 27, the gas sample flow path is set to cb (S11). By operating the pump 20, mist and sulfur components contained in the gas sample are removed by the dirt removal filter 15. The gas sample that has passed through the filter 15 is sent to the detection unit 7.
 次に検出部7の内部のガスサンプル導入部21にガスサンプルを送り込んで、ガスサンプル導入部21をガスサンプルで充満させる。さらにポンプ20を動作させると、ガスサンプル導入部21の内部のガスサンプルが中空ファイバ6の内部を通って投光部5の内部へと流れ、さらに投光部5から配管19を通じて外部に排出される。この時の流量は特に規定はないが、ポンプ20の動作範囲を考慮すると、0.1~1.0L/minの範囲が適当である。前述のように中空ファイバ6の内容積を考慮して、少なくとも4mL程度のガスサンプルを導入すればよいことから、動作時間としては2.4~24秒程度である。
ただし実際には測定の安定性を考慮して、より長い時間でガスサンプルを導入した方が望ましく、絶縁油から得られるガスサンプルの容量や測定時間を考慮して、導入時間を決めるのが望ましい。この結果、中空ファイバ6の内部に分析(測定)対象のガスサンプルが導入される。ここでポンプ20は一旦停止させ、中空ファイバ6の内部のガスサンプルは静止状態とする。静止状態とする理由としては、中空ファイバ6の内部が流動状態となることや、ポンプ20の動作時の振動によりノイズの発生源となることで、SN比が低下することを避けるためである(S12)。
Next, a gas sample is sent into the gas sample introduction part 21 inside the detection part 7, and the gas sample introduction part 21 is filled with the gas sample. When the pump 20 is further operated, the gas sample inside the gas sample introduction part 21 flows into the light projecting part 5 through the hollow fiber 6, and is further discharged to the outside through the pipe 19 from the light projecting part 5. The The flow rate at this time is not particularly defined, but considering the operating range of the pump 20, a range of 0.1 to 1.0 L / min is appropriate. Considering the internal volume of the hollow fiber 6 as described above, it is only necessary to introduce a gas sample of at least about 4 mL, so that the operation time is about 2.4 to 24 seconds.
In practice, however, it is desirable to introduce the gas sample in a longer time in consideration of measurement stability, and it is desirable to determine the introduction time in consideration of the volume of the gas sample obtained from the insulating oil and the measurement time. . As a result, the gas sample to be analyzed (measured) is introduced into the hollow fiber 6. Here, the pump 20 is temporarily stopped, and the gas sample inside the hollow fiber 6 is brought into a stationary state. The reason for setting the stationary state is to avoid a decrease in the S / N ratio due to the inside of the hollow fiber 6 being in a flow state or being a source of noise due to vibration during operation of the pump 20 ( S12).
 中空ファイバ6の内部をガスサンプルを充填した状態において、回転部23を回転させバンドパスフィルタ4aを使用する設定とする(S13)。フィラメント16が発する赤外光は共振チョッパ18のブレード3a、3bの間隙を通過し、中空ファイバ6の一方端へと導かれる。中空ファイバ6の一方端から導かれた赤外光は中空ファイバ6の内部を伝達して中空ファイバ6の他方端から出射する。このときに中空ファイバ6の内部では、ガスサンプルは空気であるため、二酸化炭素を除いて赤外光の吸収はない。中空ファイバ6の他方端から出射された赤外光は、ガスサンプル導入部21内のガラス窓22を通過してレンズ24で集光され、バンドパスフィルタ4aを通過して、適当な波長範囲の赤外光として検出部7側の検出器25で受光される。検出器25は赤外光の受光強度に応じた強度を有する電気信号を出力する。 In the state where the inside of the hollow fiber 6 is filled with the gas sample, the rotation unit 23 is rotated and the bandpass filter 4a is used (S13). Infrared light emitted from the filament 16 passes through the gap between the blades 3 a and 3 b of the resonance chopper 18 and is guided to one end of the hollow fiber 6. Infrared light guided from one end of the hollow fiber 6 is transmitted through the hollow fiber 6 and emitted from the other end of the hollow fiber 6. At this time, since the gas sample is air inside the hollow fiber 6, there is no absorption of infrared light except for carbon dioxide. Infrared light emitted from the other end of the hollow fiber 6 passes through the glass window 22 in the gas sample introduction portion 21 and is collected by the lens 24, passes through the bandpass filter 4a, and has an appropriate wavelength range. It is received by the detector 25 on the detection unit 7 side as infrared light. The detector 25 outputs an electrical signal having an intensity corresponding to the received light intensity of infrared light.
 検出器25からの出力信号は、ロックインアンプ8に送られる。ロックインアンプ8では、共振チョッパ18からの出力信号と同期検波することでノイズを除去する。ノイズを除去した出力信号は計測・制御部9において移動平均処理の演算を行い、バックグラウンドのデータを計測・制御部9内のメモリに蓄積する(S14)。 The output signal from the detector 25 is sent to the lock-in amplifier 8. The lock-in amplifier 8 removes noise by performing synchronous detection with the output signal from the resonance chopper 18. The output signal from which the noise has been removed is subjected to calculation of moving average processing in the measurement / control unit 9, and background data is stored in the memory in the measurement / control unit 9 (S14).
 次に、一定時間経過後に回転部23を回転させることでバンドパスフィルタ4aから4bに切り替え(S15,S16)、以下同様に、検出器25からの出力信号をロックインアンプ8で同期加算(同期検波)して、ノイズを除去した出力信号の移動平均処理の演算を行い、バックグラウンドのデータとして、計測・制御部9内のメモリに蓄積する。次に回転部23を回転させることでバンドパスフィルタ4bから4c、さらにバンドパスフィルタ4cから4dに切り替えて同様に測定を行い、データを計測・制御部9内のメモリに蓄積する(S14-S16を繰り返す)。 Next, the rotation unit 23 is rotated after a predetermined time to switch from the bandpass filter 4a to 4b (S15, S16). Similarly, the output signal from the detector 25 is synchronously added (synchronized) by the lock-in amplifier 8. Then, a moving average process is performed on the output signal from which noise has been removed, and the result is stored in the memory in the measurement / control unit 9 as background data. Next, by rotating the rotator 23, the bandpass filters 4b to 4c and the bandpass filters 4c to 4d are switched to perform the same measurement, and the data is stored in the memory in the measurement / control unit 9 (S14-S16). repeat).
 以上で1回目のバックグラウンドの測定が終了する(S17)。このバックグラウンドの測定においては、二酸化炭素を除いて通常は測定対象となるガス成分が含まれていないため、この測定値を0ppmであるとみなす。 This completes the first background measurement (S17). In this background measurement, except for carbon dioxide, since the gas component that is the measurement object is usually not included, this measurement value is regarded as 0 ppm.
 次に絶縁油に含まれるガス成分の測定を行う(S20)。ガスサンプルが異なるのみであり、測定の流れはバックグラウンドの測定と同様である。絶縁油を油入電気機器10から配管12aを経由して採取する。採取された絶縁油はガスサンプル抽出機構11に送られる。絶縁油に溶存するガスサンプルを抽出するために、ガスサンプル抽出機構11の抽出容器13が減圧される。これにより絶縁油からガスサンプルが抽出される。 Next, the gas component contained in the insulating oil is measured (S20). Only the gas sample is different, and the measurement flow is the same as the background measurement. Insulating oil is collected from the oil-filled electrical device 10 via the pipe 12a. The collected insulating oil is sent to the gas sample extraction mechanism 11. In order to extract the gas sample dissolved in the insulating oil, the extraction container 13 of the gas sample extraction mechanism 11 is decompressed. This extracts a gas sample from the insulating oil.
 三方弁27を切り替えることでガスサンプル流路をa-bとする(S21)。ポンプ20を動作させることで、ガスサンプルに含まれるミストおよび硫黄成分などが汚れ削除フィルタ15で除去される。フィルタ15を通ったガスサンプルは検出部7へと送られる。 The gas sample flow path is set to ab by switching the three-way valve 27 (S21). By operating the pump 20, mist and sulfur components contained in the gas sample are removed by the dirt removal filter 15. The gas sample that has passed through the filter 15 is sent to the detection unit 7.
 検出部7の内部のガスサンプル導入部21にガスサンプルを送り込んでガスサンプル導入部21をガスサンプルで充満させる。次に、投光部5側に設けられたポンプ20をさらに動作させる。これにより、ガスサンプル導入部21の内部のガスサンプルが中空ファイバ6の内部を通って検出部7から投光部5へと流れ、さらに投光部5から配管19を通じて外部に排出される。この時、中空ファイバ6の内部に分析対象のガスサンプルが導入される。ここでポンプ20は一旦停止させ、中空ファイバ6の内部のガスサンプルは静止状態とする(S22)。 The gas sample is sent to the gas sample introduction unit 21 inside the detection unit 7 to fill the gas sample introduction unit 21 with the gas sample. Next, the pump 20 provided on the light projecting unit 5 side is further operated. Thereby, the gas sample inside the gas sample introduction part 21 flows from the detection part 7 to the light projecting part 5 through the inside of the hollow fiber 6, and is further discharged from the light projecting part 5 to the outside through the pipe 19. At this time, a gas sample to be analyzed is introduced into the hollow fiber 6. Here, the pump 20 is temporarily stopped, and the gas sample inside the hollow fiber 6 is brought into a stationary state (S22).
 使用するバンドパスフィルタをバンドパスフィルタ4aに設定し(S23)、フィラメント16が発する赤外光は共振チョッパ18のブレード3a、3bの間隙を通過し、中空ファイバ6の一方端へと導かれる。中空ファイバ6の一方端から導かれた赤外光は中空ファイバ6の内部を伝達して中空ファイバ6の他方端から出射する。このときに中空ファイバ6の内部では、流れるガスサンプルによって赤外光が吸収される。中空ファイバ6の他方端から出射された赤外光は、ガスサンプル導入部21内のガラス窓22を通過してレンズ24で集光され、バンドパスフィルタ4aを通過して、適当な波長範囲の赤外光として検出部7側の検出器25で受光される。検出器25は赤外光の受光強度に応じた強度を有する電気信号を出力する。 The bandpass filter to be used is set to the bandpass filter 4a (S23), and the infrared light emitted from the filament 16 passes through the gap between the blades 3a and 3b of the resonance chopper 18 and is guided to one end of the hollow fiber 6. Infrared light guided from one end of the hollow fiber 6 is transmitted through the hollow fiber 6 and emitted from the other end of the hollow fiber 6. At this time, infrared light is absorbed inside the hollow fiber 6 by the flowing gas sample. Infrared light emitted from the other end of the hollow fiber 6 passes through the glass window 22 in the gas sample introduction portion 21 and is collected by the lens 24, passes through the bandpass filter 4a, and has an appropriate wavelength range. It is received by the detector 25 on the detection unit 7 side as infrared light. The detector 25 outputs an electrical signal having an intensity corresponding to the received light intensity of infrared light.
 検出器25からの出力信号は、ロックインアンプ8に送られる。ロックインアンプ8では、共振チョッパ18からの出力信号と同期検波することでノイズを除去する。ノイズを除去した出力信号は計測・制御部9において移動平均処理の演算を行い、ガス成分のデータを計測・制御部9内のメモリに蓄積する(S24)。 The output signal from the detector 25 is sent to the lock-in amplifier 8. The lock-in amplifier 8 removes noise by performing synchronous detection with the output signal from the resonance chopper 18. The output signal from which the noise has been removed is subjected to calculation of moving average processing in the measurement / control unit 9, and the gas component data is stored in the memory in the measurement / control unit 9 (S24).
 この後はバックグラウンドの測定の時と同様に、一定時間経過後に回転部23を回転させることでバンドパスフィルタ4aから4bに切り替える(S25,S26)。以下同様に検出器25からの出力信号がロックインアンプ8に送られ、ロックインアンプ8では、共振チョッパ18からの出力信号と同期加算(同期検波)することでノイズを除去する。ノイズを除去した出力信号は計測・制御部9において移動平均処理の演算を行い、ガス成分のデータを計測・制御部9内のメモリに蓄積する。次に回転部23を回転させることでバンドパスフィルタ4bから4c、さらにバンドパスフィルタ4cから4dに切り替えて同様に測定を行い、データを計測・制御部9内のメモリに蓄積する(S24-S26を繰り返す)。以上で絶縁油に含まれるガスサンプルの測定が終了する(S27)。 Thereafter, similarly to the background measurement, the bandpass filter 4a is switched to 4b by rotating the rotating unit 23 after a predetermined time has elapsed (S25, S26). Similarly, the output signal from the detector 25 is sent to the lock-in amplifier 8, and the lock-in amplifier 8 removes noise by synchronous addition (synchronous detection) with the output signal from the resonance chopper 18. The output signal from which the noise has been removed is subjected to a calculation of moving average processing in the measurement / control unit 9, and gas component data is stored in a memory in the measurement / control unit 9. Next, by rotating the rotator 23, the bandpass filters 4b to 4c and the bandpass filters 4c to 4d are switched to perform the same measurement, and the data is stored in the memory in the measurement / control unit 9 (S24-S26). repeat). This completes the measurement of the gas sample contained in the insulating oil (S27).
 次に2回目のバックグラウンドの測定(S30)を1回目の時と同様に行う(S31-S37)。操作は1回目と同様であるので説明は省略する。 Next, the second background measurement (S30) is performed in the same manner as the first time (S31-S37). Since the operation is the same as the first time, the description is omitted.
 最後に計測・制御部9内に蓄積されたデータから測定値を演算する(S40)。バックグラウンドの1回目と2回目の測定値の平均値を計算する。平均の計算は単純平均または対数平均のいずれでもよいが、ここでは単純平均とした。バックグラウンドの電圧値は時間的に一定ではなく、ドリフトノイズの影響により常に変動する。この平均化の操作により、時間とともにバックグラウンドの値が変化するドリフトノイズに対応することができ、ノイズに影響を受けにくい測定を実現できる。 Finally, the measured value is calculated from the data stored in the measurement / control section 9 (S40). Calculate the average of the first and second measurements in the background. The average calculation may be either a simple average or a logarithmic average, but here it is a simple average. The background voltage value is not constant in time and always fluctuates due to the influence of drift noise. By this averaging operation, it is possible to cope with drift noise whose background value changes with time, and to realize measurement that is hardly affected by noise.
 バックグラウンドの測定値を得た後にこの値を基準として、ガス成分測定時の測定値との差分を求め、センサ出力電圧差(単位はV)とし、予め算出しておいた検量線と対比させガスの濃度を演算して出力する。 After obtaining the measured value of the background, using this value as a reference, the difference from the measured value at the time of gas component measurement is obtained, and the difference in sensor output voltage (unit is V) is compared with the previously calculated calibration curve. Calculate and output the gas concentration.
 なお絶縁油からのガスの濃度が比較的高いと予想される場合は、バックグラウンドの変動に比してセンサ出力電圧差、すなわち検出器25の出力電圧差(以下同様)、が大きいため、バックグラウンドの測定は1回だけとしてもよい。 When the concentration of gas from the insulating oil is expected to be relatively high, the sensor output voltage difference, that is, the output voltage difference of the detector 25 (hereinafter the same) is larger than the background fluctuation. The ground measurement may be performed only once.
 図4は測定結果の一例を示すもので、ここではガス成分の測定は絶縁油の抽出ガスの代わりに、アセチレン5ppmのガスサンプルを用いた。具体的にはアセチレン5ppmのガスボンベの出口をガスサンプル導入部21に直接接続している。またバンドパスフィルタはバンドパスフィルタ4aのみ使用で固定して測定を行った。測定は10分毎にガスサンプルを切り替えており、バックグラウンド(空気)→アセチレン5ppm→バックグラウンド(空気)の順番である。ガスサンプルの導入時間は2分とした。 FIG. 4 shows an example of the measurement result. Here, the gas component was measured by using a gas sample of 5 ppm of acetylene instead of the extracted gas of the insulating oil. Specifically, the outlet of a gas cylinder of 5 ppm acetylene is directly connected to the gas sample introduction part 21. The bandpass filter was fixed by using only the bandpass filter 4a for measurement. The measurement is performed by switching the gas sample every 10 minutes, in the order of background (air) → acetylene 5 ppm → background (air). The introduction time of the gas sample was 2 minutes.
 図4に示すようにガスサンプルの導入時はセンサ出力電圧は不安定であることから演算の対象外としている。2分後に導入を停止して10分後までの8分間を測定対象として、移動平均値を計算する。その結果、バックグラウンド(1回目)の測定値Aは2.081Vであった。アセチレン5ppmのときのセンサ出力電圧Bは2.075Vであった。バックグラウンド(2回目)のセンサ出力電圧A’は2.079Vであった。したがってバックグラウンドの測定値はAとA’の平均値であり2.080Vである。センサ出力電圧差は2.080Vと2.075Vの差分であり0.005Vとなった。アセチレン5ppmは比較的低濃度であり、センサ出力電圧差に比してドリフトノイズが無視できないことから、ガスサンプルの測定の前後にバックグラウンドの測定を行う手法が有効である。 As shown in FIG. 4, when the gas sample is introduced, the sensor output voltage is unstable, so it is not subject to calculation. The moving average value is calculated by stopping the introduction after 2 minutes and measuring 8 minutes until 10 minutes later. As a result, the measured value A of the background (first time) was 2.081V. The sensor output voltage B when acetylene was 5 ppm was 2.075V. The background (second time) sensor output voltage A 'was 2.079V. Therefore, the measured value of the background is the average value of A and A 'and is 2.080V. The sensor output voltage difference is the difference between 2.080V and 2.075V, which is 0.005V. Since acetylene 5 ppm has a relatively low concentration and drift noise cannot be ignored compared to the sensor output voltage difference, a method of measuring the background before and after the measurement of the gas sample is effective.
 次に本実施の形態での実験結果について示す。図1で示す本実施の形態1の他に、図5に示すような一般的なNDIR(非分散赤外吸収分光)法によるガス計測装置についても実験を行い、両者の結果を比較する。図5は中空ファイバ6の代わりに透過セル1を用いたガス計測装置である。図5において、透過セル1に、ガスサンプル流入口1aと、ガスサンプル排出口1bとが設けられる。ガスサンプル流入口1aは、配管14b、汚れ除去フィルタ15と接続しており、図1と同様にバックグラウンドや絶縁油のガスの導入が可能となるように構成している。光源2は図1のフィラメント16と同様であり、バックグラウンドや絶縁油のガスが封入された透過セル1内に一端側から光源2により赤外線が照射される。赤外線は透過セル1内を伝達して、透過セル1内の他端側に設けられた回転部のバンドパスフィルタ4a,4bを介して検出器25に導光される。 Next, the experimental results in this embodiment will be shown. In addition to the first embodiment shown in FIG. 1, an experiment is also performed for a gas measuring apparatus using a general NDIR (non-dispersive infrared absorption spectroscopy) method as shown in FIG. 5, and the results of both are compared. FIG. 5 shows a gas measuring device using the transmission cell 1 instead of the hollow fiber 6. In FIG. 5, the permeation cell 1 is provided with a gas sample inlet 1a and a gas sample outlet 1b. The gas sample inlet 1a is connected to the pipe 14b and the dirt removal filter 15, and is configured so that the background or insulating oil gas can be introduced as in FIG. The light source 2 is the same as the filament 16 in FIG. 1, and infrared light is irradiated from one end side into the transmission cell 1 in which a background or insulating oil gas is sealed. Infrared rays are transmitted through the transmission cell 1 and guided to the detector 25 via the band- pass filters 4 a and 4 b of the rotating part provided on the other end side in the transmission cell 1.
 透過セル1は内部が赤外光を反射するように構成されている。材質は問わないが、一般的には金属製のものが多く使われることからステンレス製のものとしている。分析対象のガスサンプルは、方向aに沿ってガスサンプル流入口1aから透過セル1の内部に導入され、方向bに沿ってガスサンプル排出口1bから透過セル1の外部に排出される。 The transmission cell 1 is configured so that the inside reflects infrared light. The material is not limited, but generally it is made of stainless steel because metal is often used. The gas sample to be analyzed is introduced into the permeation cell 1 from the gas sample inlet 1a along the direction a, and discharged from the gas sample outlet 1b to the outside of the permeation cell 1 along the direction b.
 図5に示された構成では、光源2からの熱の大部分が透過セル1内の内壁を反射して、バンドパスフィルタ4a,4bを加熱する。また透過セル1の金属部分からの熱伝達によっても加熱される。バンドパスフィルタ4aが加熱されると、フィルタの透過特性、例えば中心波長や半値幅が変化する。またバンドパスフィルタ4aからバンドパスフィルタ4bに切り替える際に、透過セル1内での物理的な移動となることから、温度が変化し、ノイズの原因となる。このため図5に示された構成では、複数のガスサンプル成分を高速で測定する場合は高精度の測定が困難である。 In the configuration shown in FIG. 5, most of the heat from the light source 2 reflects the inner wall of the transmission cell 1 to heat the bandpass filters 4a and 4b. It is also heated by heat transfer from the metal portion of the transmission cell 1. When the bandpass filter 4a is heated, the transmission characteristics of the filter, such as the center wavelength and the half width, change. In addition, when switching from the bandpass filter 4a to the bandpass filter 4b, a physical movement in the transmission cell 1 causes the temperature to change and causes noise. For this reason, with the configuration shown in FIG. 5, it is difficult to measure with high accuracy when measuring a plurality of gas sample components at high speed.
 実験は、サンプルガスとしてアセチレン5ppmのガスを用いて、本実施の形態1を示す図1の装置と、図5に示す装置(以下、「従来方式」とする)のそれぞれについて行って比較した。実験はバックグラウンドの測定を行わずに、ガス成分のみの測定を行っている。すなわち図3のフローチャートにおいて、ガス成分の測定(S20)のみを行った。バンドパスフィルタ4a、4b、4c、4dのそれぞれの切り替える時間は120秒である。
すなわち120秒経過後に、例えばバンドパスフィルタ4aから4bに切り替えるとして、合計480秒間の実験を行った。
The experiment was performed using a gas of 5 ppm acetylene as a sample gas, and compared each of the apparatus shown in FIG. 1 showing the first embodiment and the apparatus shown in FIG. 5 (hereinafter referred to as “conventional method”). In the experiment, only the gas component is measured without measuring the background. That is, in the flowchart of FIG. 3, only the measurement of the gas component (S20) was performed. The switching time of each of the bandpass filters 4a, 4b, 4c, and 4d is 120 seconds.
That is, after 120 seconds had elapsed, for example, the experiment was conducted for a total of 480 seconds assuming that the bandpass filter 4a was switched to 4b.
 図6は従来方式のガス計測装置による測定結果を示すものである。バンドパスフィルタ4a、4b、4c、4dのいずれの切り替え直後にも丸い円で示すようにピークのノイズが発生している。バンドパスフィルタの切り替え直後から40秒間はノイズが含まれており、この時間領域では測定に適さないことが分かった。 FIG. 6 shows the results of measurement by a conventional gas measuring device. Immediately after switching of any of the bandpass filters 4a, 4b, 4c, and 4d, peak noise is generated as indicated by a round circle. It was found that noise was included for 40 seconds immediately after switching of the bandpass filter, and this was not suitable for measurement in this time domain.
 図7は本実施の形態のガス計測装置における測定結果を示すものである。図6のような切り替え直後のピークのノイズが発生せず、安定していることがわかる。バンドパスフィルタを切り替えてもノイズが混入せずに直ちに安定化することにより、高速な測定が実現できる効果を奏する。
 なお、ピークノイズに限らずノイズが混入する原因として、既に述べたバンドパスフィルタ4a、4b、4c、4dに伝わる熱の影響の他に、回転部23が回転するときに発生する振動が共振チョッパ18に伝わることでノイズの発生につながる。共振チョッパ18はブレード3a、3bの開閉により赤外光を透過または遮断していることから、振動の影響を受けやすいためである。したがって本実施の形態1で示す図1のように、回転部23と共振チョッパ18はできるだけ離すことが、ノイズの低減につながる。
FIG. 7 shows a measurement result in the gas measuring apparatus of the present embodiment. It can be seen that the peak noise immediately after switching as shown in FIG. 6 does not occur and is stable. Even if the band-pass filter is switched, noise is not mixed and immediately stabilized, thereby achieving an effect of realizing high-speed measurement.
In addition to the peak noise, the cause of the noise mixing is not only the influence of the heat transmitted to the bandpass filters 4a, 4b, 4c, 4d already described, but also the vibration generated when the rotating part 23 rotates is the resonance chopper. 18 is transmitted to noise. This is because the resonance chopper 18 is susceptible to vibration because it transmits or blocks infrared light by opening and closing the blades 3a and 3b. Therefore, as shown in FIG. 1 shown in the first embodiment, separating the rotating unit 23 and the resonant chopper 18 as much as possible leads to noise reduction.
 このように、実施の形態1によれば、バンドパスフィルタの切替時においてもノイズの発生が小さいため、より安定した高速測定を実現できる。 As described above, according to the first embodiment, noise generation is small even when the band-pass filter is switched, so that more stable high-speed measurement can be realized.
 実施の形態2.
 図8はこの発明の実施の形態2に係るガス計測装置の概略断面図を示したものである。
実施の形態1の図1に示す構成と異なる点は、レンズ24を用いずにガラス窓22から導出した赤外光をバンドパスフィルタ4aを介して直接検出器25に導光するものである。
レンズ24が存在しないことでガラス窓22から導出した赤外光は拡散するため、検出器25に届く赤外光は減少する。
Embodiment 2. FIG.
FIG. 8 is a schematic cross-sectional view of a gas measuring device according to Embodiment 2 of the present invention.
The difference from the configuration shown in FIG. 1 of the first embodiment is that the infrared light derived from the glass window 22 is guided directly to the detector 25 via the band-pass filter 4a without using the lens 24.
Since the infrared light derived from the glass window 22 is diffused due to the absence of the lens 24, the infrared light reaching the detector 25 decreases.
 中空ファイバ6は一般の充実型の光ファイバとは異なり、光の伝搬領域が空気であるため、開口数(Numerical Aperture)が定義できない。中空ファイバ6はマルチモードによる伝送であり、中空ファイバ6の光の入口の入射角は任意の光が入射可能であるが、高次のモードすなわち、中空ファイバ6の入射角が大きいモードについては、中空ファイバ6内で損失が大きくなるため、伝送効率が低下する。中空ファイバ6の出口からの光の拡散状況は開口数から求めることができないため、ここでは実験的に中空ファイバ6の出口からどの程度拡散するかを調べた。 The hollow fiber 6 is different from general solid optical fibers, and the light propagation area is air, so the numerical aperture cannot be defined. The hollow fiber 6 is a multimode transmission, and the incident angle at the light entrance of the hollow fiber 6 allows arbitrary light to enter, but for higher-order modes, that is, the mode where the incident angle of the hollow fiber 6 is large, Since loss increases in the hollow fiber 6, the transmission efficiency decreases. Since the diffusion state of the light from the exit of the hollow fiber 6 cannot be obtained from the numerical aperture, the degree of diffusion from the exit of the hollow fiber 6 was examined experimentally here.
 図9は図8において、光関係の部材(光学系部分)についてのみ図示したもので、一部の部材の記載を省略している。中空ファイバ6の一端側(光の入口)とリフレクタ17の端部とを結んだ直線と、中空ファイバ6の一端側と光源であるフィラメント16を結んだ直線との角度をθ1とする。フィラメント16は点光源と近似できるため、フィラメント16から発した光の中空ファイバ6への入射角はθ1が最大となる。 FIG. 9 shows only the optical member (optical system portion) in FIG. 8, and the description of some members is omitted. An angle between a straight line connecting one end side (light entrance) of the hollow fiber 6 and the end of the reflector 17 and a straight line connecting one end side of the hollow fiber 6 and the filament 16 serving as a light source is defined as θ 1 . Since the filament 16 can be approximated as a point light source, the incident angle of the light emitted from the filament 16 to the hollow fiber 6 has a maximum θ 1 .
 中空ファイバ6の他端側(光の出口)については、中空ファイバ6の他端側から距離L1の位置に遮蔽板30を設置する。図10は検出器25の側から見た遮蔽板30の構成図であり、遮蔽板30はアルミなど光を通さない板材に直径rの穴をあけたものである。実験は距離L1を変化させて検出器25内の検出器素子31に達する光量を測定した。直径rは1mmとし、中空ファイバ6の他端側と検出器素子31の距離L2は40mmとした。
検出器素子31は3×3mmの矩形状(この場合は正方形)の大きさとした。
About the other end side (light exit) of the hollow fiber 6, the shielding board 30 is installed in the position of the distance L1 from the other end side of the hollow fiber 6. FIG. FIG. 10 is a configuration diagram of the shielding plate 30 as viewed from the detector 25 side. The shielding plate 30 is a plate material that does not transmit light, such as aluminum, with a hole having a diameter r. In the experiment, the amount of light reaching the detector element 31 in the detector 25 was measured by changing the distance L1. The diameter r was 1 mm, and the distance L2 between the other end of the hollow fiber 6 and the detector element 31 was 40 mm.
The detector element 31 has a rectangular shape of 3 × 3 mm (in this case, a square).
 図11は距離L1を0mmから40mmまで変化させた時の相対光量の変化を示した図である。相対光量は、遮蔽板30が無い状態での検出器25からの出力電圧を1.0としたときの各L1での出力電圧の割合を示したものである。 FIG. 11 is a diagram showing a change in relative light quantity when the distance L1 is changed from 0 mm to 40 mm. The relative light quantity indicates the ratio of the output voltage at each L1 when the output voltage from the detector 25 without the shielding plate 30 is 1.0.
 図11によれば、L1が増加するに従い、相対光量が減少している。ここで相対光量として0.95となるL1を読み取るとL1は10mmであった。相対光量が1.0から0.95は光量として5%の低下であるが、検出器25の感度面からは実質的に問題ないことから、このL1が10mmまでを感度面で低下は殆どないとみなす。このとき図9においてθ2は以下の式で求められる。 According to FIG. 11, the relative light amount decreases as L1 increases. Here, when L1 which is 0.95 as a relative light quantity is read, L1 is 10 mm. When the relative light quantity is 1.0 to 0.95, the light quantity is reduced by 5%. However, since there is substantially no problem in terms of the sensitivity of the detector 25, there is almost no reduction in sensitivity from L1 up to 10 mm. It is considered. At this time, θ 2 in FIG. 9 is obtained by the following equation.
  θ2=arctan(r/2/L1) θ 2 = arctan (r / 2 / L1)
 この実験結果から、L2、すなわち、中空ファイバ6の他端側から検出器素子31までの距離が10mm以下であれば、中空ファイバ6の他端側から出た光は殆ど損失することなく、検出器素子31で受光できるが、L2が10mmを超えると損失が無視できない。
図8および図9に示すように、中空ファイバ6の他端とガラス窓22は面一(同一平面を構成)にすることは、ガスの流路の関係で2mm程度の隙間を開ける必要があり、さらにガラス窓22は強度を考慮すると少なくとも1mmの厚さが必要であることから、難しく、実質的にはガラス窓22と検出器素子31の間隔が7mm以下が、この実験結果を満たす用件となる。したがって、回転部23の厚さが7mm以下となれば、本実施の形態2の図8に示すように、レンズ24を用いなくても感度面で問題ないことが分かった。
From this experimental result, when L2, that is, the distance from the other end of the hollow fiber 6 to the detector element 31 is 10 mm or less, the light emitted from the other end of the hollow fiber 6 is hardly lost and detected. The device element 31 can receive light, but if L2 exceeds 10 mm, the loss cannot be ignored.
As shown in FIGS. 8 and 9, the other end of the hollow fiber 6 and the glass window 22 must be flush with each other (constitute the same plane) so that a gap of about 2 mm is required because of the gas flow path. Furthermore, the glass window 22 needs to have a thickness of at least 1 mm in consideration of the strength, which is difficult. In practice, the distance between the glass window 22 and the detector element 31 is 7 mm or less, which satisfies this experimental result. It becomes. Therefore, when the thickness of the rotating part 23 is 7 mm or less, as shown in FIG. 8 of the second embodiment, it has been found that there is no problem in terms of sensitivity even if the lens 24 is not used.
 ただし回転部23の厚さをあまり薄くできない場合は、実施の形態1に示す図1の構成にした方が、結果的に感度が高くなることから、回転部23やレンズ24に必要なコストとのバランスなどの観点でどちらかを選択するかを決めるのが望ましい。 However, when the thickness of the rotating part 23 cannot be reduced too much, the configuration shown in FIG. 1 shown in the first embodiment results in higher sensitivity. It is desirable to decide which one to choose from the viewpoint of balance.
 この実施の形態2に係るガス計測装置の他の部分の構成や動作は、実施の形態1に係るガス計測装置の対応する部分の構成や動作と同様であるので説明を省略する。 The configuration and operation of the other parts of the gas measurement device according to the second embodiment are the same as the configuration and operation of the corresponding part of the gas measurement device according to the first embodiment, and therefore description thereof is omitted.
 この実施の形態2効果は実施の形態1と同様に、バンドパスフィルタの切替時においてもノイズの発生が小さいため、安定した高速測定を実現できるが、より部品数が少ない構成で測定が可能である。 The effect of the second embodiment is the same as in the first embodiment, since the generation of noise is small even when the band-pass filter is switched, stable high-speed measurement can be realized, but measurement with a smaller number of components is possible. is there.
 実施の形態3.
 図12はこの発明の実施の形態3に係るガス計測装置の概略断面図を示したものである。実施の形態1の図1に示す構成と異なる部分は以下の点である。図1ではレンズ24の位置は、回転部23とガラス窓22との間の間隙に置いていたが、本実施の形態を示す図12では、回転部23と検出器25との間の間隙に置いている点が異なる。レンズ24はここでは凹レンズを用いている。図13は図1におけるレンズ24を含む周辺付近の拡大図であり、中空ファイバ6から出た赤外光の拡散、集光状況を示している。また図14は図12のレンズ24を含む周辺付近の拡大図である。
Embodiment 3 FIG.
FIG. 12 is a schematic cross-sectional view of a gas measuring device according to Embodiment 3 of the present invention. The differences from the configuration shown in FIG. 1 of the first embodiment are as follows. In FIG. 1, the position of the lens 24 is placed in the gap between the rotating unit 23 and the glass window 22, but in FIG. 12 showing the present embodiment, the position of the lens 24 is in the gap between the rotating unit 23 and the detector 25. The point is different. Here, the lens 24 is a concave lens. FIG. 13 is an enlarged view of the vicinity of the periphery including the lens 24 in FIG. 1 and shows the state of diffusion and collection of infrared light emitted from the hollow fiber 6. FIG. 14 is an enlarged view of the vicinity including the lens 24 of FIG.
 図1および図13のレンズ(凸レンズ)24の位置では、図13に示すようにレンズ24は中空ファイバ6から出た赤外光を即座に集光する作用があり、バンドパスフィルタ4aは加熱されやすい。一方、図14に示す構成では、中空ファイバ6からの赤外光は一度拡散されているため、バンドパスフィルタ4aは加熱され難い。ただしこの実施の形態3のレンズ(凹レンズ)24は実施の形態1のレンズ(凸レンズ)24に比べて曲率の大きいものを使用する必要があることから集光が難しく、条件によっては測定感度が若干低下する可能もあることから、測定感度と高速測定のバランスで、実施の形態1か実施の形態3の構成のどちらかを選択するのが望ましい。 At the position of the lens (convex lens) 24 in FIGS. 1 and 13, as shown in FIG. 13, the lens 24 immediately collects infrared light emitted from the hollow fiber 6, and the bandpass filter 4a is heated. Cheap. On the other hand, in the configuration shown in FIG. 14, since the infrared light from the hollow fiber 6 is once diffused, the bandpass filter 4a is hardly heated. However, since it is necessary to use a lens (concave lens) 24 according to the third embodiment having a larger curvature than that of the lens (convex lens) 24 according to the first embodiment, it is difficult to condense, and the measurement sensitivity may be slightly different depending on conditions. Since it may be lowered, it is desirable to select either the configuration of the first embodiment or the third embodiment in accordance with the balance between measurement sensitivity and high-speed measurement.
 実施の形態3に係るガス計測装置の他の部分の構成や動作は、実施の形態1に係るガス計測装置の対応する部分の構成や動作と同様であるので説明は省略する。 Since the configuration and operation of other parts of the gas measurement device according to the third embodiment are the same as the configuration and operation of the corresponding portion of the gas measurement device according to the first embodiment, description thereof will be omitted.
 この実施の形態3における効果は実施の形態1と同様に、バンドパスフィルタの切替時においてもノイズの発生が小さいため、安定した高速測定を実現でき、さらに、より加熱の影響を受けずに測定が可能である。 As in the first embodiment, the effect of the third embodiment is that the generation of noise is small even when the band-pass filter is switched, so that stable high-speed measurement can be realized, and further measurement without being affected by heating. Is possible.
 実施の形態4.
 図15はこの発明の実施の形態4に係るガス計測装置の概略断面図を示したものである。実施の形態1の図1に示す構成と異なるところは以下の点である。図15の構成では、図1に示す共振チョッパ18の代わりに回転式チョッパ35を設置する。
Embodiment 4 FIG.
FIG. 15 shows a schematic sectional view of a gas measuring apparatus according to Embodiment 4 of the present invention. The difference from the configuration shown in FIG. 1 of the first embodiment is as follows. In the configuration of FIG. 15, a rotary chopper 35 is installed instead of the resonant chopper 18 shown in FIG.
 回転式チョッパ35は、周知の構成を適用することが可能であり、たとえばステンレスやアルミの薄板によって形成された遮光板36およびその遮光板36を回転するモータ(図示省略)等によって構成される。図16は遮光板36をフィラメント16の方向から見た構成図である。図13に示すように穴36aが4個開けられており、遮光板36が回転することで赤外光の透過、遮断を実現する。なお穴36aは4個である必要はなく任意の数でよい。回転によって生じる透過、遮断の周波数は共振チョッパ18の場合と同様に100~10000Hzの範囲が適当であるが、ここでは実施の形態1と同じく2000Hzとした。 A known configuration can be applied to the rotary chopper 35, which includes, for example, a light shielding plate 36 formed of a thin plate of stainless steel or aluminum, a motor (not shown) that rotates the light shielding plate 36, and the like. FIG. 16 is a configuration diagram of the light shielding plate 36 as viewed from the direction of the filament 16. As shown in FIG. 13, four holes 36 a are formed, and transmission and blocking of infrared light is realized by rotating the light shielding plate 36. The number of holes 36a is not necessarily four, and may be any number. As in the case of the resonant chopper 18, the transmission and cutoff frequencies generated by the rotation are suitably in the range of 100 to 10000 Hz, but here, 2000 Hz as in the first embodiment.
 実施の形態4に係るガス計測装置の他の部分の構成や動作は、実施の形態1に係るガス計測装置の対応する部分の構成や動作と同様であるので説明を省略する。 Since the configuration and operation of other parts of the gas measurement device according to the fourth embodiment are the same as the configuration and operation of the corresponding portion of the gas measurement device according to the first embodiment, the description thereof is omitted.
 この実施の形態4における効果は実施の形態1と同様に、バンドパスフィルタの切替時においてもノイズの発生が小さいため、安定した高速測定を実現でき、さらに、遮光版によるブレードが共振チョッパによるブレードよりも大きいため、熱を遮断する効果がより大きい。 The effect of the fourth embodiment is that, as in the first embodiment, noise generation is small even when the bandpass filter is switched, so that stable high-speed measurement can be realized. Therefore, the effect of blocking heat is greater.
 実施の形態5.
 図17はこの発明の実施の形態5に係るガス計測装置の概略断面図を示したものである。実施の形態1の図1に示す構成と異なるところは以下の点である。図17に示す構成では、図1に示す回転部23、バンドパスフィルタ4a、4b、4c、4dの代わりに波長可変フィルタ29を設置した。
Embodiment 5 FIG.
FIG. 17 is a schematic sectional view of a gas measuring apparatus according to Embodiment 5 of the present invention. The difference from the configuration shown in FIG. 1 of the first embodiment is as follows. In the configuration shown in FIG. 17, the wavelength tunable filter 29 is installed instead of the rotating unit 23 and the bandpass filters 4a, 4b, 4c, and 4d shown in FIG.
 波長可変フィルタ29は、ファブリベローの干渉原理により、膜の印加電圧を変化させると光学特性(透過周波数帯域を含む)が変化する機構である。実施の形態1のようにバンドパスフィルタ4a、4b、4c、4dをそれぞれ機械的に回転させて切り替えるのではなく、電気的にフィルタの特性を切り替えることから、機械的な動きがなく測定環境の空気の動きが殆どなく、経時的な温度変化が小さい。
 なお、上記各実施の形態のバンドパスフィルタ4a、4b、4c、4dとその切替機構からなる部分と、波長可変フィルタ29とその印加電圧を変化させる電源部(図示省略)からなる部分を、波長可変光フィルタ部とも称する。
The wavelength tunable filter 29 is a mechanism in which optical characteristics (including the transmission frequency band) change when the applied voltage of the film is changed according to the Fabry-Bellows interference principle. The bandpass filters 4a, 4b, 4c, and 4d are not mechanically rotated and switched as in the first embodiment, but the characteristics of the filter are electrically switched. There is almost no movement of air, and the temperature change with time is small.
It should be noted that the portion consisting of the bandpass filters 4a, 4b, 4c, and 4d and the switching mechanism thereof, and the portion consisting of the wavelength variable filter 29 and the power supply unit (not shown) for changing the applied voltage in each of the above embodiments, Also referred to as a variable optical filter section.
 また、実施の形態2と同様に波長可変フィルタ29が十分に薄くできる場合はレンズ24を省略してもよい。 Further, as in the second embodiment, when the wavelength tunable filter 29 can be made sufficiently thin, the lens 24 may be omitted.
 なおレンズ24はガラス窓22側に設置したが、実施の形態3と同様に検出器25側に設置してもよい。この実施の形態5に係るガス計測装置の他の部分の構成は、実施の形態1に係るガス計測装置の対応する部分の構成と同様であるので説明を省略する。 Although the lens 24 is installed on the glass window 22 side, it may be installed on the detector 25 side as in the third embodiment. Since the structure of the other part of the gas measuring device according to the fifth embodiment is the same as the structure of the corresponding part of the gas measuring device according to the first embodiment, the description thereof will be omitted.
 動作も実施の形態1とほぼ同様であるが、実施の形態1においてバンドパスフィルタ4a、4b、4c、4dを回転部23で切り替える代わりに、波長可変フィルタ29の印加電圧を変化させてフィルタの特性を変化させる点が異なる。 The operation is almost the same as in the first embodiment, but instead of switching the bandpass filters 4a, 4b, 4c, and 4d in the first embodiment by the rotating unit 23, the applied voltage of the wavelength tunable filter 29 is changed to change the filter. It is different in changing the characteristics.
 この実施の形態5における効果は実施の形態1と同様に、波長可変フィルタ29が加熱されないため、安定した高速測定を実現できることであり、さらに、機械的な動作がないため、より安定した測定が可能となる。またより省スペースな装置を実現できる。 The effect of the fifth embodiment is that, as in the first embodiment, the wavelength tunable filter 29 is not heated, so that stable high-speed measurement can be realized. Further, since there is no mechanical operation, more stable measurement can be performed. It becomes possible. In addition, a more space-saving device can be realized.
 実施の形態6.
 図18はこの発明の実施の形態6に係るガス計測装置の概略断面図を示したものである。実施の形態1の図1に示す構成と異なるところは以下の点である。図18に示す構成では、図1に示す中空ファイバ6の一部をとぐろ状に巻き、螺旋形状または巻線コイル形状にする。これにより、フィラメント16と中空ファイバ6の一端すなわち共振チョッパ18の近傍領域とは一点鎖線の軸37bに示すように同一直線上に設置されることになる。また、検出器25とレンズ24と中空ファイバ6の他端側すなわちガスサンプル導入部21の近傍領域とは一点鎖線の軸37cに示すように同一直線上に設置されることになる。なお、中空ファイバ6はとぐろ状に巻く代わりに、上記軸37bと軸37cが互いに角度をなす状態になるように中空ファイバ6を曲げてもよい。
Embodiment 6 FIG.
FIG. 18 shows a schematic sectional view of a gas measuring apparatus according to Embodiment 6 of the present invention. The difference from the configuration shown in FIG. 1 of the first embodiment is as follows. In the configuration shown in FIG. 18, a part of the hollow fiber 6 shown in FIG. 1 is wound in a round shape to form a spiral shape or a wound coil shape. As a result, the filament 16 and one end of the hollow fiber 6, i.e., the region near the resonance chopper 18, are placed on the same straight line as shown by the one-dot chain line axis 37 b. Further, the detector 25, the lens 24, and the other end of the hollow fiber 6, that is, the region near the gas sample introduction portion 21, are installed on the same straight line as shown by the one-dot chain line 37c. Note that the hollow fiber 6 may be bent so that the shaft 37b and the shaft 37c form an angle with each other, instead of winding the hollow fiber 6 in a bowl shape.
 また図18では図1において三方弁27、配管14a、14b、抽出容器13、油入り電気機器10、ガスサンプル抽出機構11、配管12a、12bは図示を省略しているが、実際にはこれらは図1と同様に接続されている。 In FIG. 18, the three-way valve 27, the pipes 14a and 14b, the extraction container 13, the oil-filled electrical device 10, the gas sample extraction mechanism 11, and the pipes 12a and 12b are omitted in FIG. The connections are the same as in FIG.
 フィラメント16から発せられた熱の一部はリフレクタ17で反射され、熱は軸37bの周囲を直線的に伝達する特性となっている。すなわちエリア38の範囲は高温となる傾向がある。フィラメント16から距離が離れれば、熱の影響を受けにくくなるが、このエリア38の範囲はその周辺と比較して相対的に高温となる傾向がある。したがって、エリア38すなわち軸37bを含んだ円筒状の範囲にバンドパスフィルタ4aや検出器25を設置しないことにより、熱の影響をより軽減することができる。円筒状の範囲の半径rの適当な範囲はフィラメント16の出力に依存するが、3cm以上必要である。一方、実施の形態1に示す図1においては軸37aを含む円筒状の範囲にバンドパスフィルタ4aや検出器25が含まれており、熱の影響を完全には除外することができない。その他の構成および動作は実施の形態1と同様である。
 すなわち中空ファイバ6を、例えは、光源であるフィラメント16と中空ファイバ6の一端を結ぶフィラメント16から中空ファイバ6への光軸となる軸37bと、中空ファイバ6の他端と検出器25を結ぶ中空ファイバ6の他端から検出器25への光軸となる軸37cとが、互いに角度をなすような形状とすればよい。中空ファイバ6は例えばU字形状または図19に示すようにL字形状等に曲げられたものとする。曲げた角度は90度、180度に限定されない。すなわち軸37bと軸37cの交わる角度θは図19に示すように90度であってもよいし、例えば60度であってもよい。これにより検出器25とレンズ24のある部分は、フィラメント16を有する投光部5から中空ファイバ6に沿って直線的に延びるエリア38から離れた位置に設定できる。
 図18の構成例では、中空ファイバ6を巻線コイル形状またはU字形状に曲げたものとしたことにより、軸37bと軸37cが互いに180度の角をなし(平行で逆方向)かつ互いに重ならないように距離が置かれている。このような構成は、例えばL字形状の中空ファイバ6を使用した場合に比べガス計測装置の実質的な専有面積が小さく(図18の図面の縦方向の専有する長さが短い)、実際にガス計測装置を設置する上で好ましい。
 より広義には、中空ファイバ6は、検出器25を投光部5の光源2から中空ファイバ6に直線的に延びるエリア38以外の位置に設置するように、例えば1箇所が曲げられた形状を有する。
Part of the heat generated from the filament 16 is reflected by the reflector 17, and the heat has a characteristic of linearly transmitting around the shaft 37b. That is, the area 38 tends to be hot. If the distance from the filament 16 is increased, it is less susceptible to heat, but the area 38 tends to be relatively hot compared to its surroundings. Therefore, the influence of heat can be further reduced by not installing the bandpass filter 4a and the detector 25 in the cylindrical range including the area 38, that is, the shaft 37b. An appropriate range of the radius r of the cylindrical range depends on the output of the filament 16, but 3 cm or more is necessary. On the other hand, in FIG. 1 shown in the first embodiment, the bandpass filter 4a and the detector 25 are included in a cylindrical range including the shaft 37a, and the influence of heat cannot be completely excluded. Other configurations and operations are the same as those in the first embodiment.
That is, the hollow fiber 6 is connected to the detector 25, for example, the shaft 37b that is the optical axis from the filament 16 that is the light source and one end of the hollow fiber 6 to the hollow fiber 6, and the other end of the hollow fiber 6. What is necessary is just to make it the shape which the axis | shaft 37c used as the optical axis to the detector 25 from the other end of the hollow fiber 6 makes an angle mutually. The hollow fiber 6 is bent into, for example, a U shape or an L shape as shown in FIG. The bent angle is not limited to 90 degrees and 180 degrees. That is, the angle θ at which the shaft 37b and the shaft 37c intersect may be 90 degrees as shown in FIG. 19, or may be 60 degrees, for example. As a result, a portion where the detector 25 and the lens 24 are located can be set at a position away from the area 38 extending linearly along the hollow fiber 6 from the light projecting portion 5 having the filament 16.
In the configuration example of FIG. 18, since the hollow fiber 6 is bent into a wound coil shape or a U shape, the shaft 37b and the shaft 37c form an angle of 180 degrees with each other (parallel and opposite directions) and overlap each other. The distance is set so as not to become. In such a configuration, for example, the substantial exclusive area of the gas measuring device is small compared to the case where the L-shaped hollow fiber 6 is used (the exclusive length in the vertical direction of the drawing of FIG. 18 is short), and actually It is preferable when installing a gas measuring device.
More broadly, the hollow fiber 6 has, for example, one bent shape so that the detector 25 is installed at a position other than the area 38 extending linearly from the light source 2 of the light projecting unit 5 to the hollow fiber 6. Have.
 この実施の形態6における効果は実施の形態1と同様に、安定した高速測定が実現できるが、バンドパスフィルタ4aの加熱を抑えることで、さらに安定した高速測定を実現できる。 The effect of the sixth embodiment is that stable high-speed measurement can be realized as in the first embodiment, but more stable high-speed measurement can be realized by suppressing the heating of the bandpass filter 4a.
 なお、この発明は上記各実施の形態に限定されるものではなく、これらの可能な組み合わせを全て含む。 Note that the present invention is not limited to the above embodiments, and includes all possible combinations thereof.
産業上の利用の可能性Industrial applicability
 この発明によるガス計測装置は種々の分野のガス計測装置に適用可能である。 The gas measuring device according to the present invention is applicable to gas measuring devices in various fields.

Claims (9)

  1.  内部に測定対象のガスが導入された中空ファイバと、
     前記中空ファイバの一端側に配置されて前記中空ファイバの内部に光源からの光を照射する投光部と、
     前記中空ファイバの透明部材で封止された他端側の先において前記中空ファイバの内部を通過した光を検出する検出器と、
     前記検出器で検出された光に基づいて、測定対象の前記ガスを計測する計測・制御部と、
     前記中空ファイバの他端と前記検出器の隙間に設けられ、前記中空ファイバの内部を通過した光のうち前記ガスの光吸収帯の光を透過する透過周波数帯域を有する光学フィルタ部と、
     を備え、
     前記中空ファイバが、前記検出器を前記投光部の前記光源から前記中空ファイバに直線的に延びるエリア以外の位置に設置するように曲げられた形状を有するガス計測装置。
    A hollow fiber in which a gas to be measured is introduced;
    A light projecting unit disposed on one end of the hollow fiber to irradiate light from a light source inside the hollow fiber;
    A detector for detecting light that has passed through the interior of the hollow fiber at the other end side sealed with the transparent member of the hollow fiber;
    Based on the light detected by the detector, a measurement / control unit that measures the gas to be measured,
    An optical filter unit provided in a gap between the other end of the hollow fiber and the detector, and having a transmission frequency band that transmits light in a light absorption band of the gas out of the light that has passed through the hollow fiber;
    With
    The gas measuring device having a shape in which the hollow fiber is bent so that the detector is installed at a position other than an area linearly extending from the light source of the light projecting unit to the hollow fiber.
  2.  前記中空ファイバの透明部材と前記検出器の隙間に集光用のレンズを備える請求項1に記載のガス計測装置。 The gas measuring device according to claim 1, further comprising a condensing lens in a gap between the transparent member of the hollow fiber and the detector.
  3.  前記光学フィルタ部と前記検出器の間隙に前記集光用のレンズを備えた請求項2に記載のガス計測装置。 3. The gas measuring device according to claim 2, wherein the condensing lens is provided in a gap between the optical filter unit and the detector.
  4.  前記光学フィルタ部が、前記透過周波数帯域が可変なものである請求項1から3までのいずれか1項に記載のガス計測装置。 The gas measuring device according to any one of claims 1 to 3, wherein the optical filter section has a variable transmission frequency band.
  5.  上記光学フィルタ部が、印加電圧を変化させると透過周波数帯域が変化する波長可変フィルタからなる請求項4に記載のガス計測装置。 The gas measuring device according to claim 4, wherein the optical filter unit is a wavelength tunable filter whose transmission frequency band changes when the applied voltage is changed.
  6.  光を断続的に遮断する回転式チョッパまたは共振式チョッパを前記投光部の前記光源と前記中空ファイバの一端側の間隙に設置した請求項1から5までのいずれか1項に記載のガス計測装置。 The gas measurement according to any one of claims 1 to 5, wherein a rotary chopper or a resonant chopper that intermittently blocks light is installed in a gap between the light source of the light projecting unit and one end of the hollow fiber. apparatus.
  7.  前記透明部材の代わりに、5μm以上の赤外光を除去するショートウェイブパスフィルタを設けた請求項1から6までのいずれか1項に記載のガス計測装置。 The gas measuring device according to any one of claims 1 to 6, wherein a short wave pass filter for removing infrared light of 5 µm or more is provided instead of the transparent member.
  8.  前記投光部が前記光源からの光を集光する集光部を有し、前記集光部は、測定波長を含む波長領域の光を集光する請求項1から7までのいずれか1項に記載のガス計測装置。 The said light projection part has a condensing part which condenses the light from the said light source, The said condensing part condenses the light of the wavelength range containing a measurement wavelength. The gas measuring device described in 1.
  9.  中空ファイバの内部に測定対象のガスを導入し、
     前記中空ファイバの一端側から前記中空ファイバの内部に光源を有する投光部から光を照射し、
     前記中空ファイバの透明部材で封止されている他端の先で、前記中空ファイバの内部を通過した光のうち、上記ガスの光吸収帯の光を透過する光学フィルタ部を透過した光を検出器で検出し、
     前記検出された光に基づいて、測定対象の前記ガスを計測し、
     前記中空ファイバとして、前記検出器を前記投光部の前記光源から前記中空ファイバに直線的に延びるエリア以外の位置に設置するように曲げられた形状を有するものを使用する、ガス計測方法。
    Introduce the gas to be measured into the hollow fiber,
    Irradiating light from a light projecting unit having a light source inside the hollow fiber from one end side of the hollow fiber,
    At the tip of the other end sealed by the transparent member of the hollow fiber, light that has passed through the hollow fiber is detected through the optical filter that transmits light in the light absorption band of the gas. Detect with the instrument,
    Based on the detected light, measure the gas to be measured,
    A gas measurement method using a hollow fiber having a shape bent so that the detector is installed at a position other than an area extending linearly from the light source of the light projecting unit to the hollow fiber.
PCT/JP2015/058265 2014-06-04 2015-03-19 Gas measurement device and measurement method WO2015186407A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015535917A JP5875741B1 (en) 2014-06-04 2015-03-19 Gas measuring device and measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-115760 2014-06-04
JP2014115760 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015186407A1 true WO2015186407A1 (en) 2015-12-10

Family

ID=54766488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058265 WO2015186407A1 (en) 2014-06-04 2015-03-19 Gas measurement device and measurement method

Country Status (2)

Country Link
JP (1) JP5875741B1 (en)
WO (1) WO2015186407A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207432A (en) * 2016-05-20 2017-11-24 三菱電機株式会社 Gas analyzing device and gas analysis method
JP2018185194A (en) * 2017-04-25 2018-11-22 三菱電機株式会社 Gas analyzer
JP2018189589A (en) * 2017-05-10 2018-11-29 株式会社豊田中央研究所 Concentration measuring device and concentration measurement method
CN109100438A (en) * 2018-07-26 2018-12-28 新乡迈特能源技术有限公司 A kind of gas sensor with gas chromatographic analysis function
JP2020509395A (en) * 2017-03-03 2020-03-26 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariat A L’Energie Atomique Et Aux Energies Alternatives Electronic nose calibration method
CN111257268A (en) * 2020-03-23 2020-06-09 京东方科技集团股份有限公司 Infrared filtering device, preparation method thereof and infrared gas sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218639A (en) * 1982-06-15 1983-12-19 Tetsuji Matsui Open light path system infrared-ray gas analyzer
JPH0612949U (en) * 1991-12-30 1994-02-18 日新電機株式会社 Gas concentration measuring device
JPH07198600A (en) * 1993-12-28 1995-08-01 Shimazu S D Kk Fourier transform multi-component continuous absorption analyzer
JPH09281039A (en) * 1995-12-29 1997-10-31 Instrumentarium Oy Method and apparatus for measurement of concentration of alcohol in gas mixture by making use of absorption of radiation
US5957858A (en) * 1996-07-26 1999-09-28 Polestar Technologies, Inc. Systems and methods for monitoring relative concentrations of different isotopic forms of a chemical species
JP2010043885A (en) * 2008-08-11 2010-02-25 Hochiki Corp Device and method for detecting specific substance
JP2012088098A (en) * 2010-10-18 2012-05-10 Seiko Epson Corp Optical module and optical analysis device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218639A (en) * 1982-06-15 1983-12-19 Tetsuji Matsui Open light path system infrared-ray gas analyzer
JPH0612949U (en) * 1991-12-30 1994-02-18 日新電機株式会社 Gas concentration measuring device
JPH07198600A (en) * 1993-12-28 1995-08-01 Shimazu S D Kk Fourier transform multi-component continuous absorption analyzer
JPH09281039A (en) * 1995-12-29 1997-10-31 Instrumentarium Oy Method and apparatus for measurement of concentration of alcohol in gas mixture by making use of absorption of radiation
US5957858A (en) * 1996-07-26 1999-09-28 Polestar Technologies, Inc. Systems and methods for monitoring relative concentrations of different isotopic forms of a chemical species
JP2010043885A (en) * 2008-08-11 2010-02-25 Hochiki Corp Device and method for detecting specific substance
JP2012088098A (en) * 2010-10-18 2012-05-10 Seiko Epson Corp Optical module and optical analysis device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAISUKE WATANABE ET AL.: "Development of a capillary flow- cell for the infrared spectroscopy in gas phase using a hollow core fiber, and its application to the qualitative analysis of hydrochloric acid", JAPANESE JOURNAL OF FORENSIC SCIENCE AND TECHNOLOGY, vol. 19, no. 1, 4 February 2014 (2014-02-04), pages 71 - 76, XP055240070 *
NORIO FUJITSUKA ET AL.: "Alcohol Detection in Exhaled Air by NDIR Method", JOURNAL OF THE JAPAN SOCIETY OF INFRARED SCIENCE AND TECHNOLOGY, vol. 23, no. 2, 28 December 2013 (2013-12-28), pages 17 - 21 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207432A (en) * 2016-05-20 2017-11-24 三菱電機株式会社 Gas analyzing device and gas analysis method
JP2020509395A (en) * 2017-03-03 2020-03-26 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariat A L’Energie Atomique Et Aux Energies Alternatives Electronic nose calibration method
JP7376874B2 (en) 2017-03-03 2023-11-09 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ How to calibrate an electronic nose
JP2018185194A (en) * 2017-04-25 2018-11-22 三菱電機株式会社 Gas analyzer
JP2018189589A (en) * 2017-05-10 2018-11-29 株式会社豊田中央研究所 Concentration measuring device and concentration measurement method
CN109100438A (en) * 2018-07-26 2018-12-28 新乡迈特能源技术有限公司 A kind of gas sensor with gas chromatographic analysis function
CN111257268A (en) * 2020-03-23 2020-06-09 京东方科技集团股份有限公司 Infrared filtering device, preparation method thereof and infrared gas sensor
CN111257268B (en) * 2020-03-23 2023-11-28 京东方科技集团股份有限公司 Infrared filter device, manufacturing method thereof and infrared gas sensor

Also Published As

Publication number Publication date
JP5875741B1 (en) 2016-03-02
JPWO2015186407A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5875741B1 (en) Gas measuring device and measuring method
De Cumis et al. Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring
US11156561B2 (en) Device for analyzing a product to be analyzed located in a product space
US10670564B2 (en) Photoacoustic detector
FI107194B (en) Analysis of gas mixtures by infrared method
RU2645899C2 (en) Optical chemical analyzer and liquid depth sensor
US5610400A (en) Spectroscopic measuring sensor for the analysis of mediums
US10871398B2 (en) Gas analyzer
US9377358B2 (en) Spectroscopy system using waveguide and employing a laser medium as its own emissions detector
US20180156715A1 (en) Hollow fibre waveguide gas cells
KR20210027487A (en) Normal incidence in situ process monitor sensor
JP6183227B2 (en) Insertion type gas concentration measuring device
US20230014558A1 (en) Self-calibrated spectroscopic and ai-based gas analyzer
JP2012242311A (en) Gas analyzer
JP2010156544A (en) Terahertz light measuring device
JP2010210543A (en) Sensor unit, terahertz spectral measurement apparatus, and terahertz spectral measurement method
CA2461328A1 (en) A multiplexed type of spectrophone
JP2010164511A (en) Sensor unit, terahertz spectral measurement apparatus, and terahertz spectral measurement method
US20040233426A1 (en) Raman probe and Raman spectrum measuring apparatus utilizing the same
KR101721976B1 (en) Terahertz sensor
US20160178506A1 (en) Photothermal Conversion Spectroscopic Analyzer
JP2010249726A (en) Gas analyzer
Schmitt et al. Resonant photoacoustic cells for laser-based methane detection
US7151265B2 (en) Chopped radiation source
CN204064886U (en) Far-infrared spectrum scanner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015535917

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803450

Country of ref document: EP

Kind code of ref document: A1