WO2015186359A1 - Wavelength controlling optical member, light emitting device and lighting apparatus - Google Patents

Wavelength controlling optical member, light emitting device and lighting apparatus Download PDF

Info

Publication number
WO2015186359A1
WO2015186359A1 PCT/JP2015/002815 JP2015002815W WO2015186359A1 WO 2015186359 A1 WO2015186359 A1 WO 2015186359A1 JP 2015002815 W JP2015002815 W JP 2015002815W WO 2015186359 A1 WO2015186359 A1 WO 2015186359A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
optical member
wavelength
fine particles
containing fine
Prior art date
Application number
PCT/JP2015/002815
Other languages
French (fr)
Japanese (ja)
Inventor
俊平 藤井
哲 山内
郁子 青木
佐智子 土井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016525705A priority Critical patent/JP6213938B2/en
Publication of WO2015186359A1 publication Critical patent/WO2015186359A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a wavelength control optical member, a light emitting device, and a lighting fixture. Specifically, the present invention relates to a wavelength control optical member, a light emitting device, and a lighting fixture that have improved durability of the contained pigment.
  • the infrared absorbing filter used in the liquid crystal display device contains a near infrared absorbing dye, but this near infrared absorbing dye also has low light resistance. Therefore, in order to improve the light resistance of the near-infrared absorbing dye, a near-infrared absorbing filter in which the near-infrared absorbing dye is contained in fine particles has been proposed (see, for example, Patent Document 2).
  • the present invention has been made in view of such problems of the conventional technology. And the objective of this invention is providing the wavelength control optical member, light-emitting device, and lighting fixture which improved durability, especially light resistance and heat resistance of a pigment
  • the wavelength controlling optical member according to the first aspect of the present invention includes a matrix resin and pigment-containing fine particles dispersed inside the matrix resin.
  • the dye-containing fine particles contain a dye having a maximum absorption wavelength within a range of 400 nm to 650 nm, a singlet oxygen quencher, an antioxidant, and an ultraviolet absorber.
  • the wavelength control optical member according to the second aspect of the present invention is the optical member according to the first aspect, wherein the matrix resin contains at least one of the following resins. That is, the matrix resin contains at least one selected from the group consisting of acrylic resins, polycarbonate resins, acrylic-styrene copolymers, styrene resins, silicone resins, and cycloolefin resins.
  • the wavelength control optical member according to the third aspect of the present invention is the optical member according to the first or second aspect, the dye-containing fine particles, the dye, the singlet oxygen quencher, the antioxidant and the ultraviolet absorber are It is coated with at least one of the following materials. That is, the dye, the singlet oxygen quencher, the antioxidant, and the ultraviolet absorber are coated with at least one of a hydrolysis condensate of alkoxysilane and polysilazane.
  • the wavelength control optical member according to a fourth aspect of the present invention is the optical member according to any one of the first to third aspects, wherein the dye is selected from the group consisting of phthalocyanine-based, tetraazaporphyrin-based and porphyrin-based. At least one.
  • the wavelength control optical member according to the fifth aspect of the present invention is the optical member according to any one of the first to fourth aspects, wherein the average particle size of the dye-containing fine particles is 100 nm to 30 ⁇ m.
  • a light emitting device includes a light emitting element, a wavelength conversion member that converts the wavelength of light emitted from the light emitting element, and the wavelength control optical member according to any one of the first to fifth aspects. .
  • a lighting fixture according to a seventh aspect of the present invention includes the light emitting device according to the sixth aspect.
  • FIG. 1 is a schematic view showing an example of a wavelength control optical member according to an embodiment of the present invention.
  • A is the schematic which shows the pigment
  • (b) is the schematic which shows an example of pigment
  • FIG. 2 is a schematic view showing another example of the dye-containing fine particles dispersed in the wavelength control optical member.
  • FIG. 3 is a schematic diagram illustrating an example of a light emitting device according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing an example of a lighting fixture according to the embodiment of the present invention.
  • FIG. 1 is a schematic view showing an example of a wavelength control optical member according to an embodiment of the present invention.
  • A is the schematic which shows the pigment
  • (b) is the schematic which shows an example of pigment
  • FIG. 5 is a schematic diagram illustrating a configuration of a lighting fixture according to the embodiment of the present invention.
  • A is a disassembled perspective view of the lamp in a lighting fixture
  • (b) is a schematic sectional drawing of an LED module
  • (c) is sectional drawing which shows the filter used for a lamp.
  • the wavelength control optical member, the light emitting device, and the lighting fixture according to the present embodiment will be described in detail with reference to the drawings.
  • the dimension ratio of drawing quoted by the following embodiment is exaggerated on account of description, and may differ from an actual ratio.
  • the wavelength control optical member 10 includes a matrix resin 1 and pigment-containing fine particles 2 dispersed in the matrix resin 1. Further, the dye-containing fine particles 2 contain a dye 3 having a maximum absorption wavelength within a range of 400 nm to 650 nm, a singlet oxygen quencher 4, an antioxidant 5, and an ultraviolet absorber 6.
  • the wavelength control optical member 10 of the present embodiment includes a dye 3 having a maximum absorption wavelength within a range of 400 nm to 650 nm, a singlet oxygen quencher 4, an oxidation resin, and a matrix resin 1.
  • the inhibitor 5 is dispersed.
  • the distances between the singlet oxygen quencher 4 and the antioxidant 5 and the dye 3 are too far apart.
  • the effects of the singlet oxygen quencher 4 and the antioxidant 5 do not sufficiently reach the dye 3, and the deterioration of the dye 3 cannot be suppressed.
  • the dye 3, the singlet oxygen quencher 4, and the antioxidant 5 are contained inside the dye-containing fine particles 2. That is, the dye 3, the singlet oxygen quencher 4 and the antioxidant 5 as the deterioration suppressing additive are enclosed in the dye-containing fine particles 2.
  • the dye-containing fine particles 2 are dispersed in the matrix resin 1.
  • the dye-containing fine particles 2 contain an ultraviolet absorber 6 as a deterioration inhibiting additive in addition to the dye 3, the singlet oxygen quencher 4 and the antioxidant 5. Therefore, the ultraviolet absorber 6 is disposed in the vicinity of the dye 3 and the ultraviolet light hardly reaches the dye 3, so that it is possible to suppress deterioration of the dye 3 due to absorption of the ultraviolet light.
  • the dye 3 according to the present embodiment is not particularly limited as long as it has a maximum absorption wavelength in the range of 400 nm to 650 nm.
  • the dye 3 for example, at least one selected from the group consisting of phthalocyanine, tetraazaporphyrin, and porphyrin can be used.
  • the phthalocyanine dye include CI Direct Blue 86, 87, 189, and 199.
  • the phthalocyanine dye include CI Acid Blue 249.
  • tetraazaporphyrin-based dyes include TAP-2, TAP-18, and TAP-45 (manufactured by Yamada Chemical Co., Ltd.).
  • porphyrin pigments examples include 5,10,15,20-tetraphenyl-21H, 23H-porphyrin (manufactured by Wako Chemical Co., Ltd.). These pigment
  • dyes may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the singlet oxygen quencher 4 is not particularly limited as long as oxygen in the air is activated by light energy to trap singlet oxygen and inactivate singlet oxygen.
  • Examples of singlet oxygen quenchers include transition metal complexes, dyes (infrared absorbing dyes), amines, phenols, sulfides, and the like.
  • a dialkyl phosphate, a dialkyl dithiocarbanate, benzene dithiol, or a similar dithiol is exemplified as a ligand, and nickel, copper, or cobalt is exemplified as a central metal.
  • the dyes include polymethine dyes, cyanine dyes, azurenium dyes, pyrylium dyes, squarylium dyes, croconium dyes, aminium dyes, imonium dyes, and diimonium dyes.
  • these singlet oxygen quenchers may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the antioxidant 5 according to the present embodiment is not particularly limited as long as it can suppress the auto-oxidation of the dye 3.
  • the antioxidant include phenolic antioxidants, amine-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants.
  • phenol-based antioxidants and amine-based antioxidants are preferable, and hindered amines are particularly preferable among the amine-based antioxidants.
  • phenolic antioxidants examples include 2,6-t-butyl-4-methylphenol and n-octadecyl-3- (3'5'-di-t-butyl4'-hydroxyphenyl) propionate.
  • examples of the phenolic antioxidant include tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxymethyl)] methane.
  • examples of amine-based antioxidants include ADK STAB (registered trademark) LA-77, LA-57, LA-52, LA-62, LA-63, LA-67, and LA-68 (manufactured by ADEKA Corporation). .
  • amine antioxidant examples include TINUVIN (registered trademark) 123, TINUVIN 144, TINUVIN 622, TINUVIN 765, and TINUVIN 944 (manufactured by BASF Japan Ltd.).
  • these antioxidants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the ultraviolet absorber 6 is not particularly limited as long as it has a characteristic of low transmittance in the wavelength range of 280 nm to 360 nm.
  • the UV absorber include triazine UV absorbers, benzophenone UV absorbers, benzotriazole UV absorbers, cyanoacrylate UV absorbers, hydroxybenzoate UV absorbers, and the like.
  • triazine ultraviolet absorbers examples include 2,4-bis [hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3,5-triazine.
  • 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6-diphenyl-1,3,5-triazine, 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6-bis ( 2,4-dimethylphenyl) -1,3,5-triazine and the like can also be mentioned.
  • benzophenone ultraviolet absorber examples include 2,2′-dihydroxy-4,4′-di (hydroxymethyl) benzophenone, 2,2′-dihydroxy-4,4′-di (2-hydroxyethyl) benzophenone, and the like. It is done.
  • Benzotriazole ultraviolet absorbers include 2- [2′-hydroxy-5 ′-(hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(2-hydroxyethyl) phenyl ] -2H-benzotriazole and the like.
  • Examples of the cyanoacrylate ultraviolet absorber include 2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate, ethyl-2-cyano-3,3′-diphenyl acrylate, and the like.
  • Examples of hydroxybenzoate ultraviolet absorbers include phenyl salicylate, 4-t-butylphenyl salicylate, 2,5-t-butyl-4-hydroxybenzoic acid n-hexadecyl ester, and the like. In addition, these ultraviolet absorbers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the pigment 3, the singlet oxygen quencher 4, the antioxidant 5, and the ultraviolet absorber 6 are coated with the particulate material 7 inside the pigment-containing fine particles 2.
  • a particulate material 7 is preferably a resin composed of at least one of a hydrolysis-condensation product of alkoxysilane and polysilazane. These resins have high transmittance in the visible light region of 380 nm to 780 nm and can be further granulated more easily.
  • An alkoxysilane hydrolysis condensate is a condensate obtained by hydrolyzing an alkoxysilane and then dehydrating and condensing it.
  • Specific examples of the alkoxysilane include, for example, triphenylethoxysilane, trimethylethoxysilane, triethylethoxysilane, triphenylmethoxysilane, triethylmethoxysilane, and ethyldimethylmethoxysilane.
  • methyldiethylmethoxysilane ethyldimethylethoxysilane, methyldiethylethoxysilane, phenyldimethylmethoxysilane, phenyldiethylmethoxysilane, phenyldimethylethoxysilane, phenyldiethylethoxysilane.
  • methyldiphenylmethoxysilane ethyldiphenylmethoxysilane
  • methyldiphenylethoxysilane methyldiphenylethoxysilane
  • ethyldiphenylethoxysilane tert-butoxytrimethylsilane, and butoxytrimethylsilane.
  • vinyltrimethoxysilane vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -methacryloxypropyltriethoxysilane.
  • Examples also include N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and ⁇ -aminopropyltriethoxysilane.
  • Examples also include methyltriacetoxysilane, ethyltriacetoxysilane, N- ⁇ -phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -chloropropyltrimethoxysilane, and ⁇ -mercaptopropyltrimethoxysilane.
  • Examples also include triethoxysilane, trimethoxysilane, triisopropoxysilane, tri-n-propoxysilane, triacetoxysilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, and tetraisopropoxysilane.
  • the hydrolysis-condensation product of alkoxysilane may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Polysilazane is a polymer having “— (SiH 2 —NH) —” as a repeating unit, and examples thereof include chain polysilazane and cyclic polysilazane. At this time, all or part of H may be substituted with a substituent.
  • Examples of the chain polysilazane include perhydropolysilazane, polymethylhydrosilazane, polyN-methylsilazane, polyN- (triethylsilyl) allylsilazane, polyN- (dimethylamino) cyclohexylsilazane, and phenylpolysilazane.
  • polysilazane may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a resin that stably disperses the dye-containing fine particles 2 and has a high transmittance in the visible light region of 380 nm to 780 nm can be used.
  • Such a matrix resin 1 contains at least one selected from the group consisting of acrylic resins, polycarbonate resins, acrylic-styrene copolymers, styrene resins, silicone resins and cycloolefin resins. preferable.
  • the acrylic resin is obtained by polymerizing a (meth) acrylic monomer as a main component, and may contain another monomer copolymerizable with the (meth) acrylic monomer.
  • a resin obtained by polymerizing an acrylic monomer can be used. Examples of such acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and cyclohexyl (meth) acrylate.
  • ⁇ -carboxyethyl (meth) acrylate diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate.
  • trimethylolpropane tri (meth) acrylate pentaerythritol tri (meth) acrylate
  • 1,6-hexanediol diglycidyl ether di (meth) acrylate 1,6-hexanediol diglycidyl ether di (meth) acrylate.
  • Bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol diglycidyl ether di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and tricyclodecanyl (meth) acrylate are also included.
  • an acrylic monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • (meth) acrylic includes acrylic and methacrylic
  • “(meth) acrylate” includes acrylate and methacrylate.
  • polycarbonate resin examples include aromatic polycarbonate polymers obtained by reacting dihydric phenol with phosgene or a carbonic acid diester compound, and aromatic polycarbonate resins that are copolymers thereof.
  • polycarbonate-based resin also include an aliphatic polycarbonate resin obtained by a copolymer of carbon dioxide and epoxide.
  • examples of the polycarbonate-based resin include aromatic-aliphatic polycarbonates obtained by copolymerizing these resins.
  • linear aliphatic divalent carboxylic acids such as adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid and the like can also be mentioned as copolymer monomers for polycarbonate resins.
  • a polycarbonate-type resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the acrylic-styrene copolymer is obtained by polymerizing a (meth) acrylic monomer and a styrene monomer as main components.
  • the acrylic-styrene copolymer may contain a (meth) acrylic monomer and another monomer copolymerizable with the styrene monomer.
  • Examples of the acryl-styrene copolymer include styrene- (meth) acrylic acid ester copolymer, styrene-diethylaminoethyl methacrylate copolymer, and styrene-butadiene-acrylic acid ester copolymer.
  • a styrene-butadiene copolymer, a styrene-butadiene-chlorinated paraffin copolymer, or a styrene-methyl methacrylate copolymer can also be used.
  • the styrene resin is obtained by polymerizing a styrene monomer as a main component.
  • the styrene monomer include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, and p-methoxystyrene.
  • p-tert-butylstyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, and p-chlorostyrene are also included. These styrenic monomers may be used alone or in combination of two or more.
  • the silicone resin is a resin having a three-dimensional network structure by crosslinking a linear polymer composed of siloxane bonds.
  • silicone resins include dimethyl silicones whose side chains are composed of, for example, methyl groups, and aromatic silicones that are partially substituted with aromatic molecules.
  • aromatic silicone is particularly preferable as the silicone resin.
  • the cycloolefin resin is a resin having a main chain composed of carbon-carbon bonds and having a cyclic hydrocarbon structure in at least a part of the main chain.
  • examples of the cycloolefin resin include an addition copolymer of ethylene and norbornene, an addition copolymer of ethylene and tetracyclododecene, and the like.
  • the average particle diameter of the dye-containing fine particles 2 is preferably 50 nm to 30 ⁇ m, and more preferably 100 nm to 30 ⁇ m.
  • the average particle diameter of the dye-containing fine particles 2 is within this range, the singlet oxygen quencher 4, the antioxidant 5 and the ultraviolet absorber 6 can always be arranged in the vicinity of the dye 3. Therefore, it is possible to efficiently suppress the deterioration of the dye 3.
  • the average particle diameter of the dye-containing fine particles 2 can be measured by observing the cross section of the wavelength control optical member 10 using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like.
  • the wavelength control optical member 10 includes the matrix resin 1 and the dye-containing fine particles 2 dispersed inside the matrix resin 1.
  • the dye-containing fine particles 2 contain a dye 3 having a maximum absorption wavelength within a range of 400 nm to 650 nm, a singlet oxygen quencher 4, an antioxidant 5, and an ultraviolet absorber 6. Therefore, in the vicinity of the dye 3, the singlet oxygen quencher 4 inactivates the singlet oxygen, the antioxidant 5 suppresses the auto-oxidation of the dye, and the ultraviolet absorber 6 prevents the ultraviolet light 6 from reaching the dye 3. Suppress. As a result, it is possible to improve the durability of the dye 3, particularly the light resistance and heat resistance, and to improve the stability of the dye.
  • the dye 3 is coated with the particulate material 7, and the dye-containing fine particles 2 are dispersed inside the matrix resin 1, the dye 3 is difficult to come into contact with oxygen in the atmosphere. As a result, it is possible to further suppress oxidation of the dye 3 due to contact with oxygen.
  • the singlet oxygen quencher 4, the antioxidant 5, the ultraviolet absorber 6, and the particulate material 7 are difficult to inhibit light absorption in the visible light region by the dye 3. Therefore, even when these are arranged in the vicinity of the dye 3, the spectral characteristics of the dye 3 can be maintained.
  • the dye-containing fine particles 2 may contain the dye 3, the singlet oxygen quencher 4, the antioxidant 5 and the ultraviolet absorber 6 inside, and the structure of the particles. Is not particularly limited. However, from the viewpoint of further suppressing the arrival of ultraviolet rays with respect to the dye 3, it is preferable that the dye 3 is arranged at the center of the dye-containing fine particles 2 and the ultraviolet absorber 6 is arranged at the outer periphery of the dye-containing fine particles 2.
  • the dye-containing fine particle 2A may have a core-shell structure having a core portion 8 and a shell portion 9 covering the periphery of the core portion 8.
  • the core portion 8 preferably contains the dye 3, the singlet oxygen quencher 4 and the antioxidant 5, and the shell portion 9 preferably contains the ultraviolet absorber 6.
  • the singlet oxygen quencher 4 and the antioxidant 5 are disposed together with the dye 3 in the core portion 8, whereby the oxidation of the dye 3 can be suppressed.
  • the ultraviolet absorber 6 is disposed on the outer periphery of the dye 3, the short wavelength light is absorbed by the shell portion 9 and the short wavelength light is difficult to reach the dye 3, thereby further suppressing deterioration of the dye 3. It becomes possible to do.
  • the core 8 may contain an ultraviolet absorber 6 in addition to the dye 3, the singlet oxygen quencher 4 and the antioxidant 5.
  • the content of the ultraviolet absorber 6 is preferably higher in the shell portion 9 than in the core portion 8.
  • the same material as the particulate material 7 can be used as the resin covering the dye 3, the singlet oxygen quencher 4 and the antioxidant 5.
  • the same material as that of the particleizing material 7 can be used for the resin covering the ultraviolet absorbent 6.
  • the shell portion 9 is made of a material having a high gas barrier property and further suppresses contact between the dye 3 and oxygen.
  • a material having such a gas barrier property for example, a high gas barrier resin such as polyvinylidene chloride (PVDC) or polyvinyl alcohol (PVA) can be used.
  • PVDC polyvinylidene chloride
  • PVA polyvinyl alcohol
  • metal oxides such as silica and derivatives thereof can also be used.
  • the manufacturing method of the wavelength control optical member according to the present embodiment is not particularly limited as long as the dye-containing fine particles 2 can be dispersed in the matrix resin 1.
  • the wavelength control optical member can be obtained by applying the dispersion liquid on the substrate and removing the solvent.
  • the method for applying the dispersion liquid to the substrate is not particularly limited, and for example, a spray coating method, a spin coating method, a slit coating method, a roll coating method, or the like can be used.
  • a transparent substrate can be used as the substrate to which the dispersion is applied, and for example, a glass plate such as soda-lime glass, low alkali borosilicate glass, non-alkali aluminoborosilicate glass, or the like can be used.
  • resin plates such as polycarbonate, polymethyl methacrylate, and polyethylene terephthalate can also be used.
  • the wavelength control optical member can be manufactured by the following method. First, after the above-mentioned pigment-containing fine particles are dispersed in a solvent, a matrix resin precursor is dissolved in the dispersion. In that case, a polymerization initiator is added as needed. Then, the wavelength control optical member can be obtained by applying the dispersion to a substrate and polymerizing and curing the precursor of the matrix resin.
  • the matrix resin is a thermosetting resin, it is cured by heating, and when it is an active energy ray curable resin, it is cured by an active energy ray (electromagnetic wave, ultraviolet ray, visible ray, infrared ray, electron beam, ⁇ ray, etc.). It can be carried out.
  • additives may be added to the above dispersion.
  • the additive include a plasticizer, a polymerization stabilizer, an optical brightener, a magnetic powder, an ultraviolet absorber, an antistatic agent, and a flame retardant.
  • the method for producing the dye-containing fine particles 2 is not particularly limited as long as the particles containing the dye 3, the singlet oxygen quencher 4, the antioxidant 5, and the ultraviolet absorber 6 in the particulate material 7 can be obtained.
  • the pigment-containing fine particles 2 can be produced by, for example, an interfacial polymerization method, a W / O-based in-liquid drying method, a stover method, and a spray drying method.
  • the dye-containing fine particles 2 can also be produced by, for example, an in situ polymerization method, a phase separation method from an aqueous solution, a phase separation method from an organic solvent, a melt dispersion cooling method, or an air suspension coating method.
  • the interfacial polymerization method is a method in which a hydrophobic monomer and a hydrophilic monomer are combined to form particles using a chemical reaction at the interface of emulsion droplets.
  • an oil phase premix in which oil-soluble monomers (precursor of particulate material) and active ingredients (pigment, singlet oxygen quencher, antioxidant and ultraviolet absorber) are uniformly mixed is prepared. Make it.
  • an aqueous phase containing a water-soluble monomer and an emulsifying dispersant for reacting with an oil-soluble monomer to form a film is prepared.
  • the oil phase premix is dispersed in the prepared aqueous phase.
  • the obtained emulsified dispersion (O / W emulsion or W / O emulsion) is heated and polymerized by heating at the interface between the oil phase and the water phase, whereby the dye-containing fine particles 2 can be obtained. .
  • the solution in which the wall membrane material is dissolved is removed by dispersing the wall membrane material solution in a water medium and heating or reducing the pressure while stirring. Thereby, the pigment
  • the dye-containing fine particles 2 can be produced by a Stover method.
  • the above-described alkoxysilane and catalyst are added to an alcohol solution in which a dye, a singlet oxygen quencher, an antioxidant and an ultraviolet absorber are mixed, and the mixture is stirred, heated and dried to produce the dye-containing fine particles 2. be able to.
  • the wavelength control optical member of this embodiment can be produced by a known film forming method. Furthermore, the pigment-containing fine particles 2 in the wavelength control optical member can also be produced by a known granulation method. Therefore, the wavelength control optical member of this embodiment can be manufactured at low cost.
  • the light emitting device of this embodiment includes a light emitting element, a wavelength conversion member that converts the wavelength of light emitted from the light emitting element, and the above-described wavelength control optical member.
  • FIG. 3 shows an LED module 11 which is an example of a light emitting device.
  • an LED element 13 as a light emitting element is mounted on a circuit board 12.
  • the LED element 13 is covered with a wavelength conversion member 14.
  • the LED element 13 is a blue LED element that has a main light emission peak in a range of, for example, 380 to 500 nm and emits blue light.
  • Examples of such LED elements 13 include gallium nitride-based LED elements.
  • the wavelength conversion member 14 contains, for example, at least one phosphor 15 of a blue phosphor, a green phosphor, a yellow phosphor and a red phosphor in a translucent material such as a silicone resin.
  • the blue phosphor is excited by the light emitted from the LED element 13 and emits blue light.
  • the green phosphor and the yellow phosphor are also excited by the light emitted from the LED element 13, and emit green light and yellow light, respectively.
  • the blue phosphor has an emission peak in the wavelength range of 470 nm to 500 nm
  • the green phosphor has an emission peak in the wavelength range of 500 nm to 540 nm
  • the yellow phosphor has an emission peak in the wavelength range of 545 nm to 595 nm.
  • the blue phosphor include BaMgAl 10 O 17 : Eu 2+ , CaMgSi 2 O 6 : Eu 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+, and the like.
  • Examples of the green phosphor include (Ba, Sr) 2 SiO 4 : Eu 2+ , Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Mn 2+. Can be mentioned.
  • Examples of the yellow phosphor include (Sr, Ba) 2 SiO 4 : Eu 2+ , (Y, Gd) 3 Al 5 O 12 : Ce 3+ , and ⁇ -Ca—SiAlON: Eu 2+ .
  • the red phosphor is excited by the LED element 13 and / or the emitted light of at least one of the green phosphor and the yellow phosphor, and emits red light.
  • the red phosphor has an emission peak in the wavelength region of 600 nm to 650 nm.
  • Examples of the red phosphor include Sr 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ , SrAlSi 4 N 7 : Eu 2+ , CaS: Eu 2+ , La 2 O 2 S: Eu 3+ , Y 3 Mg 2 ( AlO 4 ) (SiO 4 ) 2 : Ce 3+ .
  • the wavelength control optical member 10 that reduces the radiation intensity of at least a part of the light emitted from the LED element 13 or the phosphor 15 is disposed on the emission surface side of the LED module 11.
  • a wavelength control optical member 10 for example, the whiteness of the paper surface irradiated with the emitted light can be increased and the visibility can be improved.
  • the light-emitting device of this embodiment uses a wavelength control optical member that has high durability, particularly light resistance and heat resistance. Therefore, desired spectral characteristics can be obtained over a long period of time. Further, when the wavelength control optical member is used as a color filter of, for example, a liquid crystal display device or an organic EL display device, it becomes possible to contribute to high brightness and optical contrast over a long period of time.
  • the lighting fixture of this embodiment is provided with the above-mentioned light-emitting device.
  • FIG. 4 shows a desk stand 20 including the LED module 11 as an example of a lighting fixture.
  • the desk stand 20 has a lighting main body 22 mounted on a substantially disc-shaped base 21.
  • the illumination body 22 has an arm 23, and the lamp module 30 on the tip side of the arm 23 includes the LED module 11.
  • the illumination main body 22 is provided with a switch 22a, and the lighting state of the LED module 11 is changed by turning on / off the switch 22a.
  • the lamp 30 includes a substantially cylindrical base portion 31, a light source unit 32, an orientation control portion 33, a filter 34 made of the above-described wavelength control optical member, and a cover 35.
  • the light source unit 32 includes the LED module 11 as shown in FIG.
  • the orientation controller 33 is used to control the light from the light source unit 32 to a desired light distribution, and includes a lens in this embodiment.
  • the orientation control unit 33 may have a reflection plate or a light guide plate in addition to the lens depending on the configuration of the illumination device.
  • the filter 34 and the orientation control unit 33 may be integrated.
  • a coating portion 34 b that acts as a filter 34 may be formed by coating the surface of the transparent resin portion 34 a constituting the orientation control portion 33.
  • the lighting fixture of this embodiment uses a wavelength control optical member that has high durability, particularly light resistance and heat resistance of the pigment. Therefore, desired spectral characteristics can be obtained over a long period of time. That is, the lighting fixture of this embodiment can improve the visibility by increasing the whiteness of the paper surface irradiated with radiated light, for example.
  • TAP dye TAP18 manufactured by Yamada Chemical Co., Ltd .
  • 1 part by mass Singlet oxygen quencher CIR-965i manufactured by Nippon Carlit Co., Ltd .
  • 2 parts by mass UV absorber IRGANOX (registered trademark) -1010 manufactured by BASF Japan Ltd .
  • 2.4 parts by mass Antioxidant TINUVIN (registered trademark) PA144 manufactured by BASF Japan Ltd .
  • 2 parts by mass Metal alkoxide Tetraethoxysilane manufactured by Wako Pure Chemical Industries, Ltd .
  • 5 parts by mass Ion exchange water 1 mass by mass of tetraethoxysilane 1.8 parts by mass with respect to parts
  • Ammonia water (1N) 0.1 parts by mass with respect to 1 part by mass of tetraethoxysilane
  • the dye-containing fine particles prepared as described above were dispersed in toluene, and then an acrylic resin was added and stirred to prepare a dye-dispersed coating solution. And the test sample of this example was produced by apply
  • the acrylic resin Acrypet (registered trademark) VH manufactured by Mitsubishi Rayon Co., Ltd. was used.
  • Example 2 A test sample of this example was produced in the same manner as in Example 1 except that the amount of tetraethoxysilane added was 10 parts by mass. The average particle size of the dye-containing fine particles obtained in this example was 1.2 ⁇ m.
  • Example 3 (Preparation of pigment-containing fine particles) First, a mixed solution was prepared by dissolving a tetraazaporphyrin dye (TAP dye), a singlet oxygen quencher, an antioxidant, and an ultraviolet absorber in anhydrous dibutyl ether and stirring. Next, polysilazane was added to the mixed solution and stirred for 12 hours. Thereafter, the precipitate was filtered and dried to prepare the dye-containing fine particles of this example. The average particle size of the obtained pigment-containing fine particles was 1.1 ⁇ m.
  • TEP dye tetraazaporphyrin dye
  • TAP dye TAP18 manufactured by Yamada Chemical Co., Ltd .; 1 part by mass Singlet oxygen quencher: CIR-965i manufactured by Nippon Carlit Co., Ltd .; 2 parts by mass UV absorber: IRGANOX-1010 manufactured by BASF Japan Ltd .; 2.4 mass Part Antioxidant: TINUVIN PA144 manufactured by BASF Japan Ltd .; 2 parts by mass Polysilazane: AQUAMICA (registered trademark) NAX120 manufactured by AZ Electronic Materials; 5 parts by mass
  • the dye-containing fine particles prepared as described above were dispersed in toluene, and then an acrylic resin was added and stirred to prepare a dye-dispersed coating solution.
  • the mixing amount of the pigment-containing fine particles and the acrylic resin was the same as that in Example 1.
  • the test sample of this example was produced by apply
  • the acrylic resin used was Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.
  • Example 4 A test sample of this example was produced in the same manner as in Example 3 except that the amount of polysilazane added was 10 parts by mass. The average particle size of the dye-containing fine particles obtained in this example was 0.8 ⁇ m.
  • TAP dye tetraazaporphyrin dye
  • butanol 1: 4 mixed solvent and stirring. did.
  • an acrylic resin was added to the mixed solution and sufficiently stirred. And ion-exchange water was thrown into this mixed solution, and also after adding a non
  • the product name and addition amount of each raw material are as follows.
  • the stirrer used at the time of agitation is a lab solution (registered trademark) manufactured by PRIMIX Corporation.
  • TAP dye TAP18 manufactured by Yamada Chemical Co., Ltd .
  • 1 part by mass Singlet oxygen quencher CIR-965i manufactured by Nippon Carlit Co., Ltd .
  • 2 parts by mass UV absorber IRGANOX-1010 manufactured by BASF Japan Ltd .
  • 2 parts by mass Acrylic resin A-165 manufactured by DIC Corporation; 5 parts by mass Ion exchange water: 200 parts by mass with respect to 1 part by mass of acrylic resin
  • Surfactant Kishida 0.005 parts by mass per 1 part by mass of Bridge 35 manufactured by Chemical Co., Ltd.
  • the dye-containing fine particles prepared as described above were dispersed in toluene, and then an acrylic resin was added and stirred to prepare a dye-dispersed coating solution.
  • the mixing amount of the pigment-containing fine particles and the acrylic resin was the same as that in Example 1.
  • the test sample of this example was produced by apply
  • the acrylic resin used was Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.
  • Example 6 A test sample of this example was produced in the same manner as in Example 3 except that the amount of the acrylic resin used in the dye-containing fine particles was 10 parts by mass. The average particle size of the dye-containing fine particles obtained in this example was 1.0 ⁇ m.
  • the prepared dye-dispersed coating solution was applied onto a slide glass plate with a bar coater and dried to form a coating film, thereby preparing a test sample of this example.
  • the acrylic resin used was Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.
  • the residual ratio of the test samples of Examples 1 to 6 was 60% or more, but the residual ratio of the test sample of Comparative Example 1 was 55%. From this, it is understood that the durability is improved by making the pigment, the singlet oxygen quencher, the antioxidant and the ultraviolet absorber fine. Further, when Examples 1, 3 and 5 are compared with Examples 2, 4 and 6, respectively, it can be seen that the durability is improved by increasing the amount of the particulate material.
  • a singlet oxygen quencher, an antioxidant, and an ultraviolet absorber as deterioration suppressing additives are disposed in the vicinity of the pigment. Therefore, since the effect of the degradation inhibitor is easily exerted on the dye, it is possible to improve the durability of the dye 3, particularly the light resistance and the heat resistance, and to increase the stability of the dye.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

This wavelength controlling optical member is provided with a matrix resin (1) and dye-containing fine particles (2) that are dispersed in the matrix resin. The dye-containing fine particles contain a dye (3) that has a maximum absorption wavelength within the range of from 400 nm to 650 nm, a singlet oxygen quencher (4), an antioxidant (5) and an ultraviolet absorbent (6). A light emitting device and a lighting apparatus according to the present invention comprise a light emitting element, a wavelength conversion member that converts the wavelength of light emitted from the light emitting element, and a wavelength controlling optical member.

Description

波長制御光学部材、発光装置及び照明器具Wavelength control optical member, light emitting device, and lighting fixture
 本発明は、波長制御光学部材、発光装置及び照明器具に関する。詳細には本発明は、含有する色素の耐久性を向上させた波長制御光学部材、発光装置及び照明器具に関する。 The present invention relates to a wavelength control optical member, a light emitting device, and a lighting fixture. Specifically, the present invention relates to a wavelength control optical member, a light emitting device, and a lighting fixture that have improved durability of the contained pigment.
 従来、液晶表示装置に用いられるカラーフィルタの高明度化及び高コントラスト化のため、染料を溶解させた樹脂組成物を用いることが提案されている。しかし、染料は、光エネルギーによって酸素が励起されて一重項酸素になり、この一重項酸素が染料を酸化・分解して退色するため、耐光性が悪いことが知られている。そのため、染料の耐光性を改善するために、重合性化合物に染料を加え、さらに一重項酸素クエンチャーと酸化防止剤の双方を添加することが提案されている(例えば、特許文献1参照)。 Conventionally, it has been proposed to use a resin composition in which a dye is dissolved in order to increase the brightness and contrast of a color filter used in a liquid crystal display device. However, it is known that a dye has poor light resistance because oxygen is excited by light energy to become singlet oxygen, and the singlet oxygen is oxidized and decomposed to discolor the dye. Therefore, in order to improve the light resistance of the dye, it has been proposed to add a dye to the polymerizable compound and further add both a singlet oxygen quencher and an antioxidant (see, for example, Patent Document 1).
 また、液晶表示装置に用いられる赤外線吸収フィルタは近赤外線吸収色素を含有するが、この近赤外線吸収色素も耐光性が低い。そのため、近赤外線吸収色素の耐光性を向上させるために、近赤外線吸収色素を微粒子中に含有させた近赤外線吸収フィルタが提案されている(例えば、特許文献2参照)。 In addition, the infrared absorbing filter used in the liquid crystal display device contains a near infrared absorbing dye, but this near infrared absorbing dye also has low light resistance. Therefore, in order to improve the light resistance of the near-infrared absorbing dye, a near-infrared absorbing filter in which the near-infrared absorbing dye is contained in fine particles has been proposed (see, for example, Patent Document 2).
特開2011-141356号公報JP 2011-141356 A 特開2010-60617号公報JP 2010-60617 A
 しかしながら、特許文献1では、樹脂組成物内で染料、一重項酸素クエンチャー及び酸化防止剤が均一に離れて存在しているため、一重項酸素クエンチャー及び酸化防止剤の性能が染料に対して十分に発揮されていなかった。また、特許文献2では、微粒子を構成する樹脂で近赤外線吸収色素を被覆しているだけであるため、耐光性が不十分であった。 However, in Patent Document 1, since the dye, the singlet oxygen quencher and the antioxidant are uniformly separated in the resin composition, the performance of the singlet oxygen quencher and the antioxidant is in comparison with the dye. It was not fully demonstrated. Moreover, in patent document 2, since the near-infrared absorption pigment | dye is only coat | covered with resin which comprises microparticles | fine-particles, light resistance was inadequate.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、色素の耐久性、特に耐光性及び耐熱性を向上させた波長制御光学部材、発光装置及び照明器具を提供することにある。 The present invention has been made in view of such problems of the conventional technology. And the objective of this invention is providing the wavelength control optical member, light-emitting device, and lighting fixture which improved durability, especially light resistance and heat resistance of a pigment | dye.
 本発明の第1の態様に係る波長制御光学部材は、マトリックス樹脂と、マトリックス樹脂の内部に分散する色素含有微粒子とを備える。そして、色素含有微粒子は、400nm~650nmの範囲内に最大吸収波長を有する色素と、一重項酸素クエンチャーと、酸化防止剤と、紫外線吸収剤とを含有する。 The wavelength controlling optical member according to the first aspect of the present invention includes a matrix resin and pigment-containing fine particles dispersed inside the matrix resin. The dye-containing fine particles contain a dye having a maximum absorption wavelength within a range of 400 nm to 650 nm, a singlet oxygen quencher, an antioxidant, and an ultraviolet absorber.
 本発明の第2の態様に係る波長制御光学部材は、第1の態様に係る光学部材において、マトリックス樹脂は次の樹脂の少なくとも一つを含有する。つまり、マトリックス樹脂は、アクリル系樹脂、ポリカーボネート系樹脂、アクリル-スチレン共重合体、スチレン系樹脂、シリコーン系樹脂及びシクロオレフィン系樹脂からなる群より選ばれる少なくとも一つを含有する。 The wavelength control optical member according to the second aspect of the present invention is the optical member according to the first aspect, wherein the matrix resin contains at least one of the following resins. That is, the matrix resin contains at least one selected from the group consisting of acrylic resins, polycarbonate resins, acrylic-styrene copolymers, styrene resins, silicone resins, and cycloolefin resins.
 本発明の第3の態様に係る波長制御光学部材は、第1又は第2の態様に係る光学部材において、色素含有微粒子に関し、色素、一重項酸素クエンチャー、酸化防止剤及び紫外線吸収剤は、次の少なくとも一つの材料により被覆される。つまり、色素、一重項酸素クエンチャー、酸化防止剤及び紫外線吸収剤は、アルコキシシランの加水分解縮合物及びポリシラザンの少なくともいずれか一方により被覆される。 The wavelength control optical member according to the third aspect of the present invention is the optical member according to the first or second aspect, the dye-containing fine particles, the dye, the singlet oxygen quencher, the antioxidant and the ultraviolet absorber are It is coated with at least one of the following materials. That is, the dye, the singlet oxygen quencher, the antioxidant, and the ultraviolet absorber are coated with at least one of a hydrolysis condensate of alkoxysilane and polysilazane.
 本発明の第4の態様に係る波長制御光学部材は、第1乃至第3のいずれかの態様に係る光学部材において、色素は、フタロシアニン系、テトラアザポルフィリン系及びポルフィリン系からなる群より選ばれる少なくとも一つである。 The wavelength control optical member according to a fourth aspect of the present invention is the optical member according to any one of the first to third aspects, wherein the dye is selected from the group consisting of phthalocyanine-based, tetraazaporphyrin-based and porphyrin-based. At least one.
 本発明の第5の態様に係る波長制御光学部材は、第1乃至第4のいずれかの態様に係る光学部材において、色素含有微粒子の平均粒子径は100nm~30μmである。 The wavelength control optical member according to the fifth aspect of the present invention is the optical member according to any one of the first to fourth aspects, wherein the average particle size of the dye-containing fine particles is 100 nm to 30 μm.
 本発明の第6の態様に係る発光装置は、発光素子と、発光素子が発する光を波長変換する波長変換部材と、第1乃至第5のいずれかの態様に係る波長制御光学部材とを備える。 A light emitting device according to a sixth aspect of the present invention includes a light emitting element, a wavelength conversion member that converts the wavelength of light emitted from the light emitting element, and the wavelength control optical member according to any one of the first to fifth aspects. .
 本発明の第7の態様に係る照明器具は、第6の態様に係る発光装置を備える。 A lighting fixture according to a seventh aspect of the present invention includes the light emitting device according to the sixth aspect.
図1は、本発明の実施形態に係る波長制御光学部材の一例を示す概略図である。(a)はマトリックス樹脂の内部に分散する色素含有微粒子を示す概略図であり、(b)は色素含有微粒子の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a wavelength control optical member according to an embodiment of the present invention. (A) is the schematic which shows the pigment | dye containing microparticles | fine-particles disperse | distributed inside a matrix resin, (b) is the schematic which shows an example of pigment | dye containing microparticles | fine-particles. 図2は、波長制御光学部材に分散する色素含有微粒子の他の例を示す概略図である。FIG. 2 is a schematic view showing another example of the dye-containing fine particles dispersed in the wavelength control optical member. 図3は、本発明の実施形態に係る発光装置の一例を示す概略図である。FIG. 3 is a schematic diagram illustrating an example of a light emitting device according to an embodiment of the present invention. 図4は、本発明の実施形態に係る照明器具の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of a lighting fixture according to the embodiment of the present invention. 図5は、本発明の実施形態に係る照明器具の構成を示す概略図である。(a)は照明器具における灯具の分解斜視図であり、(b)はLEDモジュールの概略断面図であり、(c)は灯具に使用されるフィルタを示す断面図である。FIG. 5 is a schematic diagram illustrating a configuration of a lighting fixture according to the embodiment of the present invention. (A) is a disassembled perspective view of the lamp in a lighting fixture, (b) is a schematic sectional drawing of an LED module, (c) is sectional drawing which shows the filter used for a lamp.
 以下、本実施形態に係る波長制御光学部材、発光装置及び照明器具について図面を参照しながら詳細に説明する。なお、以下の実施形態で引用する図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the wavelength control optical member, the light emitting device, and the lighting fixture according to the present embodiment will be described in detail with reference to the drawings. In addition, the dimension ratio of drawing quoted by the following embodiment is exaggerated on account of description, and may differ from an actual ratio.
[波長制御光学部材]
 本実施形態に係る波長制御光学部材10は、図1に示すように、マトリックス樹脂1と、マトリックス樹脂1に分散する色素含有微粒子2とを備える。さらに色素含有微粒子2は、400nm~650nmの範囲内に最大吸収波長を有する色素3と、一重項酸素クエンチャー4と、酸化防止剤5と、紫外線吸収剤6とを含有している。
[Wavelength control optical member]
As shown in FIG. 1, the wavelength control optical member 10 according to the present embodiment includes a matrix resin 1 and pigment-containing fine particles 2 dispersed in the matrix resin 1. Further, the dye-containing fine particles 2 contain a dye 3 having a maximum absorption wavelength within a range of 400 nm to 650 nm, a singlet oxygen quencher 4, an antioxidant 5, and an ultraviolet absorber 6.
 本実施形態の波長制御光学部材10は、図1に示すように、マトリックス樹脂1の内部に、400nm~650nmの範囲内に最大吸収波長を有する色素3と、一重項酸素クエンチャー4と、酸化防止剤5とを分散させている。ここで、特許文献1のように、これらを単にマトリックス樹脂1に分散させただけでは、一重項酸素クエンチャー4及び酸化防止剤5と色素3との距離が離れすぎてしまう。その結果、一重項酸素クエンチャー4及び酸化防止剤5の効果が色素3に十分に及ばず、色素3の劣化を抑制することができない。 As shown in FIG. 1, the wavelength control optical member 10 of the present embodiment includes a dye 3 having a maximum absorption wavelength within a range of 400 nm to 650 nm, a singlet oxygen quencher 4, an oxidation resin, and a matrix resin 1. The inhibitor 5 is dispersed. Here, if these are simply dispersed in the matrix resin 1 as in Patent Document 1, the distances between the singlet oxygen quencher 4 and the antioxidant 5 and the dye 3 are too far apart. As a result, the effects of the singlet oxygen quencher 4 and the antioxidant 5 do not sufficiently reach the dye 3, and the deterioration of the dye 3 cannot be suppressed.
 しかしながら、本実施形態の波長制御光学部材10では、色素含有微粒子2の内部に色素3と、一重項酸素クエンチャー4と、酸化防止剤5とを含有させている。つまり、色素3と、劣化抑制添加剤としての一重項酸素クエンチャー4及び酸化防止剤5とを色素含有微粒子2内に封入している。そして、この色素含有微粒子2をマトリックス樹脂1の内部に分散させる構成となっている。その結果、色素3の近傍に一重項酸素クエンチャー4及び酸化防止剤5が常に配置されているため、一重項酸素クエンチャー4及び酸化防止剤5の効果を色素3に効率的に及ぼすことが可能となる。 However, in the wavelength control optical member 10 of this embodiment, the dye 3, the singlet oxygen quencher 4, and the antioxidant 5 are contained inside the dye-containing fine particles 2. That is, the dye 3, the singlet oxygen quencher 4 and the antioxidant 5 as the deterioration suppressing additive are enclosed in the dye-containing fine particles 2. The dye-containing fine particles 2 are dispersed in the matrix resin 1. As a result, since the singlet oxygen quencher 4 and the antioxidant 5 are always arranged in the vicinity of the dye 3, the effects of the singlet oxygen quencher 4 and the antioxidant 5 can be effectively exerted on the dye 3. It becomes possible.
 さらに本実施形態では、色素含有微粒子2の内部に、色素3、一重項酸素クエンチャー4及び酸化防止剤5に加え、劣化抑制添加剤としての紫外線吸収剤6も含有している。そのため、紫外線吸収剤6が色素3の近傍に配置され、紫外線が色素3に到達し難くなることから、紫外線を吸収することによる色素3の劣化を抑制することが可能となる。 Furthermore, in the present embodiment, the dye-containing fine particles 2 contain an ultraviolet absorber 6 as a deterioration inhibiting additive in addition to the dye 3, the singlet oxygen quencher 4 and the antioxidant 5. Therefore, the ultraviolet absorber 6 is disposed in the vicinity of the dye 3 and the ultraviolet light hardly reaches the dye 3, so that it is possible to suppress deterioration of the dye 3 due to absorption of the ultraviolet light.
 本実施形態に係る色素3としては、400nm~650nmの範囲内に最大吸収波長を有するものであれば特に限定されない。色素3としては、例えばフタロシアニン系、テトラアザポルフィリン系及びポルフィリン系からなる群より選ばれる少なくとも一つを用いることができる。フタロシアニン系の色素としては、例えばC.I.ダイレクトブルー86,87,189,199などが挙げられる。また、フタロシアニン系色素としては、C.I.アシッドブルー249なども挙げられる。テトラアザポルフィリン系の色素としては、例えばTAP-2、TAP-18、TAP-45(山田化学工業株式会社製)等が挙げられる。ポルフィリン系の色素としては、例えば5,10,15,20-テトラフェニル-21H,23H-ポルフィリン(株式会社ワコーケミカル製)が挙げられる。これらの色素は一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 The dye 3 according to the present embodiment is not particularly limited as long as it has a maximum absorption wavelength in the range of 400 nm to 650 nm. As the dye 3, for example, at least one selected from the group consisting of phthalocyanine, tetraazaporphyrin, and porphyrin can be used. Examples of the phthalocyanine dye include CI Direct Blue 86, 87, 189, and 199. Examples of the phthalocyanine dye include CI Acid Blue 249. Examples of tetraazaporphyrin-based dyes include TAP-2, TAP-18, and TAP-45 (manufactured by Yamada Chemical Co., Ltd.). Examples of porphyrin pigments include 5,10,15,20-tetraphenyl-21H, 23H-porphyrin (manufactured by Wako Chemical Co., Ltd.). These pigment | dyes may be used individually by 1 type, and may be used in combination of 2 or more type.
 本実施形態に係る一重項酸素クエンチャー4としては、空気中の酸素が光のエネルギーにより活性化して生成した一重項酸素をトラップし、一重項酸素を不活性化するものであれば特に限定されない。一重項酸素クエンチャーとしては、遷移金属錯体、色素類(赤外線吸収色素)、アミン類、フェノール類、スルフィド類などが挙げられる。遷移金属錯体は、配位子としてジアルキルホスフェイト、ジアルキルジチオカルバネート、ベンゼンジチオール又はその類似ジチオールが挙げられ、中心金属としてニッケル、銅又はコバルトが挙げられる。色素類としては、ポリメチン色素、シアニン色素、アズレニウム色素、ピリリウム色素、スクアリリウム色素、クロコニウム色素、アミニウム色素、イモニウム色素、ジイモニウム色素などが挙げられる。なお、これらの一重項酸素クエンチャーは一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 The singlet oxygen quencher 4 according to the present embodiment is not particularly limited as long as oxygen in the air is activated by light energy to trap singlet oxygen and inactivate singlet oxygen. . Examples of singlet oxygen quenchers include transition metal complexes, dyes (infrared absorbing dyes), amines, phenols, sulfides, and the like. In the transition metal complex, a dialkyl phosphate, a dialkyl dithiocarbanate, benzene dithiol, or a similar dithiol is exemplified as a ligand, and nickel, copper, or cobalt is exemplified as a central metal. Examples of the dyes include polymethine dyes, cyanine dyes, azurenium dyes, pyrylium dyes, squarylium dyes, croconium dyes, aminium dyes, imonium dyes, and diimonium dyes. In addition, these singlet oxygen quenchers may be used individually by 1 type, and may be used in combination of 2 or more types.
 本実施形態に係る酸化防止剤5としては、色素3の自動酸化を抑制できるものであれば特に限定されない。酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられる。特にフェノール系酸化防止剤とアミン系酸化防止剤が好ましく、アミン系酸化防止剤の中では特にヒンダードアミンが好ましい。 The antioxidant 5 according to the present embodiment is not particularly limited as long as it can suppress the auto-oxidation of the dye 3. Examples of the antioxidant include phenolic antioxidants, amine-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants. In particular, phenol-based antioxidants and amine-based antioxidants are preferable, and hindered amines are particularly preferable among the amine-based antioxidants.
 フェノール系酸化防止剤としては、2,6-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(3’5’-ジ-t-ブチル4’-ヒドロキシフェニル)プロピオネート等が挙げられる。また、フェノール系酸化防止剤としては、テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル)]メタンなども挙げられる。アミン系酸化防止剤としては、アデカスタブ(登録商標)LA-77、LA-57、LA-52、LA-62、LA-63、LA-67、LA-68(株式会社ADEKA製)などが挙げられる。また、アミン系酸化防止剤としては、TINUVIN(登録商標)123、TINUVIN144、TINUVIN622、TINUVIN765、TINUVIN944(BASFジャパン株式会社製)なども挙げられる。なお、これらの酸化防止剤は一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 Examples of phenolic antioxidants include 2,6-t-butyl-4-methylphenol and n-octadecyl-3- (3'5'-di-t-butyl4'-hydroxyphenyl) propionate. Examples of the phenolic antioxidant include tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxymethyl)] methane. Examples of amine-based antioxidants include ADK STAB (registered trademark) LA-77, LA-57, LA-52, LA-62, LA-63, LA-67, and LA-68 (manufactured by ADEKA Corporation). . Examples of the amine antioxidant include TINUVIN (registered trademark) 123, TINUVIN 144, TINUVIN 622, TINUVIN 765, and TINUVIN 944 (manufactured by BASF Japan Ltd.). In addition, these antioxidants may be used individually by 1 type, and may be used in combination of 2 or more type.
 本実施形態に係る紫外線吸収剤6としては、280nm~360nmの波長範囲の透過率が低い特性を有するものであれば、特に限定されない。紫外線吸収剤はとしては、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ヒドロキシベンゾエート系紫外線吸収剤などを挙げることができる。 The ultraviolet absorber 6 according to the present embodiment is not particularly limited as long as it has a characteristic of low transmittance in the wavelength range of 280 nm to 360 nm. Examples of the UV absorber include triazine UV absorbers, benzophenone UV absorbers, benzotriazole UV absorbers, cyanoacrylate UV absorbers, hydroxybenzoate UV absorbers, and the like.
 トリアジン系紫外線吸収剤としては、2,4-ビス[ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン等が挙げられる。また、2-(2-ヒドロキシ-4-ヒドロキシメチルフェニル)-4,6-ジフェニル-1,3,5-トリアジン、2-(2-ヒドロキシ-4-ヒドロキシメチルフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等も挙げられる。ベンゾフェノン系紫外線吸収剤としては、2,2'-ジヒドロキシ-4,4'-ジ(ヒドロキシメチル)ベンゾフェノン、2,2'-ジヒドロキシ-4,4'-ジ(2-ヒドロキシエチル)ベンゾフェノン等が挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、2-〔2'-ヒドロキシ-5'-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2'-ヒドロキシ-5'-(2-ヒドロキシエチル)フェニル〕-2H-ベンゾトリアゾール等が挙げられる。シアノアクリレート系紫外線吸収剤としては、2-エチルヘキシル-2-シアノ-3,3'-ジフェニルアクリレート、エチル-2-シアノ-3,3'-ジフェニルアクリレート等が挙げられる。ヒドロキシベンゾエート系紫外線吸収剤としては、フェニルサルシレート、4-t-ブチルフェニルサルシレート、2,5-t-ブチル-4-ヒドロキシ安息香酸n-ヘキサデシルエステル等が挙げられる。なお、これらの紫外線吸収剤は一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 Examples of triazine ultraviolet absorbers include 2,4-bis [hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3,5-triazine. In addition, 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6-diphenyl-1,3,5-triazine, 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6-bis ( 2,4-dimethylphenyl) -1,3,5-triazine and the like can also be mentioned. Examples of the benzophenone ultraviolet absorber include 2,2′-dihydroxy-4,4′-di (hydroxymethyl) benzophenone, 2,2′-dihydroxy-4,4′-di (2-hydroxyethyl) benzophenone, and the like. It is done. Benzotriazole ultraviolet absorbers include 2- [2′-hydroxy-5 ′-(hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(2-hydroxyethyl) phenyl ] -2H-benzotriazole and the like. Examples of the cyanoacrylate ultraviolet absorber include 2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate, ethyl-2-cyano-3,3′-diphenyl acrylate, and the like. Examples of hydroxybenzoate ultraviolet absorbers include phenyl salicylate, 4-t-butylphenyl salicylate, 2,5-t-butyl-4-hydroxybenzoic acid n-hexadecyl ester, and the like. In addition, these ultraviolet absorbers may be used individually by 1 type, and may be used in combination of 2 or more type.
 上述のように、色素3、一重項酸素クエンチャー4、酸化防止剤5及び紫外線吸収剤6は、色素含有微粒子2の内部に、粒子化材7によって被覆されている。このような粒子化材7は、アルコキシシランの加水分解縮合物及びポリシラザンの少なくともいずれか一方からなる樹脂であることが好ましい。これらの樹脂は、380nm~780nmの可視光領域において高い透過率を有し、さらに容易に造粒することが可能である。 As described above, the pigment 3, the singlet oxygen quencher 4, the antioxidant 5, and the ultraviolet absorber 6 are coated with the particulate material 7 inside the pigment-containing fine particles 2. Such a particulate material 7 is preferably a resin composed of at least one of a hydrolysis-condensation product of alkoxysilane and polysilazane. These resins have high transmittance in the visible light region of 380 nm to 780 nm and can be further granulated more easily.
 アルコキシシランの加水分解縮合物は、アルコキシシランを加水分解した後に脱水縮合させて得られる縮合物である。アルコキシシランの具体例としては、例えば、トリフェニルエトキシシラン、トリメチルエトキシシラン、トリエチルエトキシシラン、トリフェニルメトキシシラン、トリエチルメトキシシラン、エチルジメチルメトキシシランが挙げられる。メチルジエチルメトキシシラン、エチルジメチルエトキシシラン、メチルジエチルエトキシシラン、フェニルジメチルメトキシシラン、フェニルジエチルメトキシシラン、フェニルジメチルエトキシシラン、フェニルジエチルエトキシシランも挙げられる。また、メチルジフェニルメトキシシラン、エチルジフェニルメトキシシラン、メチルジフェニルエトキシシラン、エチルジフェニルエトキシシラン、tert-ブトキシトリメチルシラン、ブトキシトリメチルシランも挙げられる。ビニルトリメトキシシラン、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシランも挙げられる。N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランも挙げられる。メチルトリアセトキシシラン、エチルトリアセトキシシラン、N-β-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシランも挙げられる。トリエトキシシラン、トリメトキシシラン、トリイソプロポキシシラン、トリ-n-プロポキシシラン、トリアセトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシランも挙げられる。なお、アルコキシシランの加水分解縮合物は一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 An alkoxysilane hydrolysis condensate is a condensate obtained by hydrolyzing an alkoxysilane and then dehydrating and condensing it. Specific examples of the alkoxysilane include, for example, triphenylethoxysilane, trimethylethoxysilane, triethylethoxysilane, triphenylmethoxysilane, triethylmethoxysilane, and ethyldimethylmethoxysilane. Mention may also be made of methyldiethylmethoxysilane, ethyldimethylethoxysilane, methyldiethylethoxysilane, phenyldimethylmethoxysilane, phenyldiethylmethoxysilane, phenyldimethylethoxysilane, phenyldiethylethoxysilane. Also included are methyldiphenylmethoxysilane, ethyldiphenylmethoxysilane, methyldiphenylethoxysilane, ethyldiphenylethoxysilane, tert-butoxytrimethylsilane, and butoxytrimethylsilane. Also included are vinyltrimethoxysilane, vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-methacryloxypropyltriethoxysilane. Examples also include N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, and γ-aminopropyltriethoxysilane. Examples also include methyltriacetoxysilane, ethyltriacetoxysilane, N-β-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, and γ-mercaptopropyltrimethoxysilane. Examples also include triethoxysilane, trimethoxysilane, triisopropoxysilane, tri-n-propoxysilane, triacetoxysilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, and tetraisopropoxysilane. In addition, the hydrolysis-condensation product of alkoxysilane may be used individually by 1 type, and may be used in combination of 2 or more type.
 ポリシラザンは、「-(SiH-NH)-」を繰り返し単位とするポリマーであり、鎖状ポリシラザン、環状ポリシラザン等が挙げられる。この際、Hの全部又は一部が置換基で置換されていてもよい。鎖状ポリシラザンとしては、ペルヒドロポリシラザン、ポリメチルヒドロシラザン、ポリN-メチルシラザン、ポリN-(トリエチルシリル)アリルシラザン、ポリN-(ジメチルアミノ)シクロヘキシルシラザン、フェニルポリシラザン等が挙げられる。なお、ポリシラザンは一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 Polysilazane is a polymer having “— (SiH 2 —NH) —” as a repeating unit, and examples thereof include chain polysilazane and cyclic polysilazane. At this time, all or part of H may be substituted with a substituent. Examples of the chain polysilazane include perhydropolysilazane, polymethylhydrosilazane, polyN-methylsilazane, polyN- (triethylsilyl) allylsilazane, polyN- (dimethylamino) cyclohexylsilazane, and phenylpolysilazane. In addition, polysilazane may be used individually by 1 type, and may be used in combination of 2 or more type.
 色素含有微粒子2が分散するマトリックス樹脂1としては、色素含有微粒子2を安定的に分散させ、さらに380nm~780nmの可視光領域において高い透過率を有する樹脂を用いることができる。このようなマトリックス樹脂1としては、アクリル系樹脂、ポリカーボネート系樹脂、アクリル-スチレン共重合体、スチレン系樹脂、シリコーン系樹脂及びシクロオレフィン系樹脂からなる群より選ばれる少なくとも一つを含有することが好ましい。 As the matrix resin 1 in which the dye-containing fine particles 2 are dispersed, a resin that stably disperses the dye-containing fine particles 2 and has a high transmittance in the visible light region of 380 nm to 780 nm can be used. Such a matrix resin 1 contains at least one selected from the group consisting of acrylic resins, polycarbonate resins, acrylic-styrene copolymers, styrene resins, silicone resins and cycloolefin resins. preferable.
 アクリル系樹脂は、(メタ)アクリル系単量体を主成分として重合させたものであり、(メタ)アクリル系単量体と共重合可能な他の単量体を含んでいてもよい。アクリル系樹脂としては、アクリル系モノマーを重合してなる樹脂を用いることができる。このようなアクリル系モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレートが挙げられる。β-カルボキシエチル(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートも挙げられる。また、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、1,6-ヘキサンジオールジグリシジルエーテルジ(メタ)アクリレートも挙げられる。ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオペンチルグリコールジグリシジルエーテルジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレートも挙げられる。なお、アクリル系モノマーは一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。また、本明細書において、「(メタ)アクリル系」とは、アクリル系とメタクリル系とを包含するものであり、「(メタ)アクリレート」とは、アクリレートとメタクリレートとを包含するものである。 The acrylic resin is obtained by polymerizing a (meth) acrylic monomer as a main component, and may contain another monomer copolymerizable with the (meth) acrylic monomer. As the acrylic resin, a resin obtained by polymerizing an acrylic monomer can be used. Examples of such acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and cyclohexyl (meth) acrylate. Also included are β-carboxyethyl (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate. Also included are trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and 1,6-hexanediol diglycidyl ether di (meth) acrylate. Bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol diglycidyl ether di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and tricyclodecanyl (meth) acrylate are also included. In addition, an acrylic monomer may be used individually by 1 type, and may be used in combination of 2 or more type. In the present specification, “(meth) acrylic” includes acrylic and methacrylic, and “(meth) acrylate” includes acrylate and methacrylate.
 ポリカーボネート系樹脂としては、例えば二価フェノールと、ホスゲン又は炭酸ジエステル化合物とを反応させることによって得られる芳香族ポリカーボネート重合体、及びこれらの共重合体である芳香族ポリカーボネート樹脂が挙げられる。また、ポリカーボネート系樹脂としては、二酸化炭素とエポキシドとの共重合体によって得られる脂肪族ポリカーボネート樹脂も挙げられる。さらに、ポリカーボネート系樹脂としては、これらを共重合した芳香族-脂肪族ポリカーボネートも挙げられる。また、アジピン酸,ピメリン酸,スベリン酸,アゼライン酸,セバシン酸,デカンジカルボン酸等の直鎖状脂肪族二価カルボン酸等も、ポリカーボネート系樹脂の共重合モノマーとして挙げられる。なお、ポリカーボネート系樹脂は一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 Examples of the polycarbonate resin include aromatic polycarbonate polymers obtained by reacting dihydric phenol with phosgene or a carbonic acid diester compound, and aromatic polycarbonate resins that are copolymers thereof. Examples of the polycarbonate-based resin also include an aliphatic polycarbonate resin obtained by a copolymer of carbon dioxide and epoxide. Further, examples of the polycarbonate-based resin include aromatic-aliphatic polycarbonates obtained by copolymerizing these resins. Further, linear aliphatic divalent carboxylic acids such as adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid and the like can also be mentioned as copolymer monomers for polycarbonate resins. In addition, a polycarbonate-type resin may be used individually by 1 type, and may be used in combination of 2 or more type.
 アクリル-スチレン共重合体としては、(メタ)アクリル系単量体及びスチレン系単量体を主成分として重合したものである。また、アクリル-スチレン共重合体は、(メタ)アクリル系単量体及びスチレン系単量体と共重合可能な他の単量体を含んでいてもよい。アクリル-スチレン共重合体としては、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-ジエチルアミノエチルメタアクリレート共重合体、スチレン-ブタジエン-アクリル酸エステル共重合体が挙げられる。また、スチレン-ブタジエン共重合体、スチレン-ブタジエン-塩素化パラフィン共重合体、スチレン-メチルメタアクリレート共重合体も使用することができる。 The acrylic-styrene copolymer is obtained by polymerizing a (meth) acrylic monomer and a styrene monomer as main components. The acrylic-styrene copolymer may contain a (meth) acrylic monomer and another monomer copolymerizable with the styrene monomer. Examples of the acryl-styrene copolymer include styrene- (meth) acrylic acid ester copolymer, styrene-diethylaminoethyl methacrylate copolymer, and styrene-butadiene-acrylic acid ester copolymer. A styrene-butadiene copolymer, a styrene-butadiene-chlorinated paraffin copolymer, or a styrene-methyl methacrylate copolymer can also be used.
 スチレン系樹脂は、スチレン系単量体を主成分として重合させたものである。スチレン系単量体としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレンが挙げられる。また、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレンも挙げられる。これらのスチレン系単量体は一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 The styrene resin is obtained by polymerizing a styrene monomer as a main component. Examples of the styrene monomer include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, and p-methoxystyrene. Further, p-tert-butylstyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, and p-chlorostyrene are also included. These styrenic monomers may be used alone or in combination of two or more.
 シリコーン系樹脂は、シロキサン結合からなる直鎖状高分子が架橋することで三次元網状構造となっている樹脂である。そして、シリコーン系樹脂としては、側鎖が例えばメチル基で構成されるジメチル系シリコーンや、一部分が芳香族系分子に置換されている芳香族系シリコーンがある。本実施形態では、シリコーン系樹脂として特に好ましいのは芳香族系シリコーンである。 The silicone resin is a resin having a three-dimensional network structure by crosslinking a linear polymer composed of siloxane bonds. Examples of silicone resins include dimethyl silicones whose side chains are composed of, for example, methyl groups, and aromatic silicones that are partially substituted with aromatic molecules. In the present embodiment, aromatic silicone is particularly preferable as the silicone resin.
 シクロオレフィン系樹脂は、主鎖が炭素-炭素結合からなり、主鎖の少なくとも一部に環状炭化水素構造を有する樹脂である。シクロオレフィン系樹脂としては、エチレンとノルボルネンの付加共重合体や、エチレンとテトラシクロドデセンの付加共重合体などが挙げられる。 The cycloolefin resin is a resin having a main chain composed of carbon-carbon bonds and having a cyclic hydrocarbon structure in at least a part of the main chain. Examples of the cycloolefin resin include an addition copolymer of ethylene and norbornene, an addition copolymer of ethylene and tetracyclododecene, and the like.
 本実施形態の波長制御光学部材10において、色素含有微粒子2の平均粒子径は50nm~30μmであることが好ましく、100nm~30μmであることがより好ましい。色素含有微粒子2の平均粒子径がこの範囲内であることにより、色素3の近傍に常に一重項酸素クエンチャー4、酸化防止剤5及び紫外線吸収剤6を配置させることができる。そのため、色素3の劣化を効率的に抑制することが可能となる。なお、色素含有微粒子2の平均粒子径は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等を用いて、波長制御光学部材10の断面を観察することにより測定することができる。 In the wavelength control optical member 10 of the present embodiment, the average particle diameter of the dye-containing fine particles 2 is preferably 50 nm to 30 μm, and more preferably 100 nm to 30 μm. When the average particle diameter of the dye-containing fine particles 2 is within this range, the singlet oxygen quencher 4, the antioxidant 5 and the ultraviolet absorber 6 can always be arranged in the vicinity of the dye 3. Therefore, it is possible to efficiently suppress the deterioration of the dye 3. The average particle diameter of the dye-containing fine particles 2 can be measured by observing the cross section of the wavelength control optical member 10 using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like.
 このように、本実施形態に係る波長制御光学部材10は、マトリックス樹脂1と、マトリックス樹脂1の内部に分散する色素含有微粒子2とを備える。そして、色素含有微粒子2は、400nm~650nmの範囲内に最大吸収波長を有する色素3と、一重項酸素クエンチャー4と、酸化防止剤5と、紫外線吸収剤6とを含有する。そのため、色素3の近傍において、一重項酸素クエンチャー4が一重項酸素を不活性化し、酸化防止剤5が色素の自動酸化を抑制し、さらに紫外線吸収剤6が紫外線の色素3への到達を抑制する。その結果、色素3の耐久性、特に耐光性及び耐熱性を向上させ、色素の安定性を高めることが可能となる。 Thus, the wavelength control optical member 10 according to this embodiment includes the matrix resin 1 and the dye-containing fine particles 2 dispersed inside the matrix resin 1. The dye-containing fine particles 2 contain a dye 3 having a maximum absorption wavelength within a range of 400 nm to 650 nm, a singlet oxygen quencher 4, an antioxidant 5, and an ultraviolet absorber 6. Therefore, in the vicinity of the dye 3, the singlet oxygen quencher 4 inactivates the singlet oxygen, the antioxidant 5 suppresses the auto-oxidation of the dye, and the ultraviolet absorber 6 prevents the ultraviolet light 6 from reaching the dye 3. Suppress. As a result, it is possible to improve the durability of the dye 3, particularly the light resistance and heat resistance, and to improve the stability of the dye.
 また、色素3は粒子化材7によって被覆され、さらに色素含有微粒子2はマトリックス樹脂1の内部に分散しているため、色素3は大気中の酸素と接触し難い。その結果、酸素との接触による色素3の酸化をより抑制することが可能となる。 Further, since the dye 3 is coated with the particulate material 7, and the dye-containing fine particles 2 are dispersed inside the matrix resin 1, the dye 3 is difficult to come into contact with oxygen in the atmosphere. As a result, it is possible to further suppress oxidation of the dye 3 due to contact with oxygen.
 さらに、一重項酸素クエンチャー4、酸化防止剤5、紫外線吸収剤6及び粒子化材7は、色素3による可視光領域の光吸収を阻害し難い。そのため、これらが色素3の近傍に配置されている場合でも、色素3の分光特性を維持することができる。 Furthermore, the singlet oxygen quencher 4, the antioxidant 5, the ultraviolet absorber 6, and the particulate material 7 are difficult to inhibit light absorption in the visible light region by the dye 3. Therefore, even when these are arranged in the vicinity of the dye 3, the spectral characteristics of the dye 3 can be maintained.
 なお、本実施形態の波長制御光学部材において、色素含有微粒子2は、色素3、一重項酸素クエンチャー4、酸化防止剤5及び紫外線吸収剤6を内部に含有していればよく、粒子の構造は特に限定されない。ただ、色素3に対する紫外線の到達をより抑制する観点から、色素3が色素含有微粒子2の中心部に配置され、紫外線吸収剤6が色素含有微粒子2の外周部に配置されていることが好ましい。 In the wavelength control optical member of the present embodiment, the dye-containing fine particles 2 may contain the dye 3, the singlet oxygen quencher 4, the antioxidant 5 and the ultraviolet absorber 6 inside, and the structure of the particles. Is not particularly limited. However, from the viewpoint of further suppressing the arrival of ultraviolet rays with respect to the dye 3, it is preferable that the dye 3 is arranged at the center of the dye-containing fine particles 2 and the ultraviolet absorber 6 is arranged at the outer periphery of the dye-containing fine particles 2.
 具体的には、図2に示すように、色素含有微粒子2Aは、コア部8と、コア部8の周囲を被覆するシェル部9とを有するコア-シェル構造を有していてもよい。そして、コア部8には色素3、一重項酸素クエンチャー4及び酸化防止剤5が含まれ、シェル部9には紫外線吸収剤6が含まれていることが好ましい。このように、コア部8に色素3と共に一重項酸素クエンチャー4及び酸化防止剤5が配置されることにより、色素3の酸化を抑制することができる。さらに、色素3の外周に紫外線吸収剤6が配置されているため、シェル部9により短波長光が吸収され、短波長光が色素3に到達し難くなることから、色素3の劣化をより抑制することが可能となる。 Specifically, as shown in FIG. 2, the dye-containing fine particle 2A may have a core-shell structure having a core portion 8 and a shell portion 9 covering the periphery of the core portion 8. The core portion 8 preferably contains the dye 3, the singlet oxygen quencher 4 and the antioxidant 5, and the shell portion 9 preferably contains the ultraviolet absorber 6. As described above, the singlet oxygen quencher 4 and the antioxidant 5 are disposed together with the dye 3 in the core portion 8, whereby the oxidation of the dye 3 can be suppressed. Furthermore, since the ultraviolet absorber 6 is disposed on the outer periphery of the dye 3, the short wavelength light is absorbed by the shell portion 9 and the short wavelength light is difficult to reach the dye 3, thereby further suppressing deterioration of the dye 3. It becomes possible to do.
 なお、コア部8は、色素3、一重項酸素クエンチャー4及び酸化防止剤5の他に紫外線吸収剤6を含有しても構わない。ただ、短波長光の吸収を促進し、色素の劣化を抑制する観点から、紫外線吸収剤6の含有量は、コア部8よりもシェル部9の方が多いことが好ましい。 The core 8 may contain an ultraviolet absorber 6 in addition to the dye 3, the singlet oxygen quencher 4 and the antioxidant 5. However, from the viewpoint of promoting the absorption of short-wavelength light and suppressing the deterioration of the pigment, the content of the ultraviolet absorber 6 is preferably higher in the shell portion 9 than in the core portion 8.
 コア部8において、色素3、一重項酸素クエンチャー4及び酸化防止剤5を覆う樹脂は、粒子化材7と同じ材料を用いることができる。また、シェル部9において、紫外線吸収剤6を覆う樹脂も粒子化材7と同じ材料を用いることができる。ただ、シェル部9は、高いガスバリア性を有する材料を用い、色素3と酸素との接触をより抑制することが好ましい。このようなガスバリア性を有する材料としては、例えばポリ塩化ビニリデン(PVDC)やポリビニルアルコール(PVA)のような高ガスバリア性樹脂を用いることができる。また、ガスバリア性を有する材料としては、シリカのような金属酸化物及びその誘導体も用いることができる。 In the core portion 8, the same material as the particulate material 7 can be used as the resin covering the dye 3, the singlet oxygen quencher 4 and the antioxidant 5. In the shell portion 9, the same material as that of the particleizing material 7 can be used for the resin covering the ultraviolet absorbent 6. However, it is preferable that the shell portion 9 is made of a material having a high gas barrier property and further suppresses contact between the dye 3 and oxygen. As a material having such a gas barrier property, for example, a high gas barrier resin such as polyvinylidene chloride (PVDC) or polyvinyl alcohol (PVA) can be used. In addition, as a material having gas barrier properties, metal oxides such as silica and derivatives thereof can also be used.
[波長制御光学部材の製造方法]
 次に、波長制御光学部材の製造方法について説明する。本実施形態に係る波長制御光学部材の製造方法は、マトリックス樹脂1に色素含有微粒子2を分散させることができれば特に限定されない。
[Method for Manufacturing Wavelength Control Optical Member]
Next, the manufacturing method of a wavelength control optical member is demonstrated. The manufacturing method of the wavelength control optical member according to the present embodiment is not particularly limited as long as the dye-containing fine particles 2 can be dispersed in the matrix resin 1.
 具体的には、まず上述の色素含有微粒子を溶媒に分散させた後、当該分散液にマトリックス樹脂を溶解する。その後、当該分散液を基板に塗布し、溶媒を除去することにより、波長制御光学部材を得ることができる。基板に対する分散液の塗布方法は特に限定されないが、例えばスプレーコート法、スピンコート法、スリットコート法、ロールコート法等が利用できる。また、溶媒を除去する際には、減圧乾燥機、コンベクションオーブン、IRオーブン、ホットプレートなどを使用してもよい。 Specifically, first, the above-mentioned pigment-containing fine particles are dispersed in a solvent, and then the matrix resin is dissolved in the dispersion. Then, the wavelength control optical member can be obtained by applying the dispersion liquid on the substrate and removing the solvent. The method for applying the dispersion liquid to the substrate is not particularly limited, and for example, a spray coating method, a spin coating method, a slit coating method, a roll coating method, or the like can be used. Moreover, when removing a solvent, you may use a vacuum dryer, a convection oven, IR oven, a hotplate, etc.
 分散液を塗布する基板としては透明基板を使用することができ、例えばソーダ石灰ガラス、低アルカリ硼珪酸ガラス、無アルカリアルミノ硼珪酸ガラスなどのガラス板を使用することができる。また、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンテレフタレートなどの樹脂板も使用することができる。 A transparent substrate can be used as the substrate to which the dispersion is applied, and for example, a glass plate such as soda-lime glass, low alkali borosilicate glass, non-alkali aluminoborosilicate glass, or the like can be used. In addition, resin plates such as polycarbonate, polymethyl methacrylate, and polyethylene terephthalate can also be used.
 波長制御光学部材は、次のような方法でも製造することができる。まず、上述の色素含有微粒子を溶媒に分散させた後、当該分散液にマトリックス樹脂の前駆体を溶解する。その際、必要に応じて重合開始剤を添加する。その後、当該分散液を基板に塗布し、マトリックス樹脂の前駆体を重合し硬化することにより、波長制御光学部材を得ることができる。なお、マトリックス樹脂が熱硬化性樹脂の場合には加熱により、活性エネルギー線硬化性樹脂の場合には活性エネルギー線(電磁波、紫外線、可視光線、赤外線、電子線、γ線等)により、硬化を行うことができる。 The wavelength control optical member can be manufactured by the following method. First, after the above-mentioned pigment-containing fine particles are dispersed in a solvent, a matrix resin precursor is dissolved in the dispersion. In that case, a polymerization initiator is added as needed. Then, the wavelength control optical member can be obtained by applying the dispersion to a substrate and polymerizing and curing the precursor of the matrix resin. When the matrix resin is a thermosetting resin, it is cured by heating, and when it is an active energy ray curable resin, it is cured by an active energy ray (electromagnetic wave, ultraviolet ray, visible ray, infrared ray, electron beam, γ ray, etc.). It can be carried out.
 なお、上述の分散液には、マトリックス樹脂及び色素含有微粒子以外に、その他の添加剤を添加してもよい。添加剤としては、例えば可塑剤、重合安定剤、蛍光増白剤、磁性粉、紫外線吸収剤、帯電防止剤、難燃剤などを挙げることができる。 In addition to the matrix resin and the pigment-containing fine particles, other additives may be added to the above dispersion. Examples of the additive include a plasticizer, a polymerization stabilizer, an optical brightener, a magnetic powder, an ultraviolet absorber, an antistatic agent, and a flame retardant.
 色素含有微粒子2の製造方法は、粒子化材7中に上述の色素3、一重項酸素クエンチャー4、酸化防止剤5及び紫外線吸収剤6を含有する粒子とすることができれば、特に限定されない。色素含有微粒子2は、例えば界面重合法、W/O系液中乾燥法、ストーバー法、及びスプレードライ法により製造することができる。また、色素含有微粒子2は、例えばin Situ重合法、水溶液からの相分離法、有機溶媒からの相分離法、融解分散冷却法、気中懸濁被覆法により製造することもできる。 The method for producing the dye-containing fine particles 2 is not particularly limited as long as the particles containing the dye 3, the singlet oxygen quencher 4, the antioxidant 5, and the ultraviolet absorber 6 in the particulate material 7 can be obtained. The pigment-containing fine particles 2 can be produced by, for example, an interfacial polymerization method, a W / O-based in-liquid drying method, a stover method, and a spray drying method. The dye-containing fine particles 2 can also be produced by, for example, an in situ polymerization method, a phase separation method from an aqueous solution, a phase separation method from an organic solvent, a melt dispersion cooling method, or an air suspension coating method.
 界面重合法は、疎水性モノマーと親水性モノマーを組み合わせ、エマルション液滴の界面での化学反応を利用して粒子化する方法である。具体的には、まず、油溶性のモノマー(粒子化材の前駆体)と有効成分(色素、一重項酸素クエンチャー、酸化防止剤及び紫外線吸収剤)とを均一に混合した油相プレミックスを作製する。さらに、油溶性のモノマーと反応して膜を形成するための水溶性モノマーと乳化分散剤とを含む水相を作製する。次に、作製した水相に油相プレミックスを分散させる。そして、得られた乳化分散液(O/Wのエマルション又はW/Oのエマルション)を加熱することにより、油相と水相の界面で加熱重合させることにより、色素含有微粒子2を得ることができる。 The interfacial polymerization method is a method in which a hydrophobic monomer and a hydrophilic monomer are combined to form particles using a chemical reaction at the interface of emulsion droplets. Specifically, first, an oil phase premix in which oil-soluble monomers (precursor of particulate material) and active ingredients (pigment, singlet oxygen quencher, antioxidant and ultraviolet absorber) are uniformly mixed is prepared. Make it. Furthermore, an aqueous phase containing a water-soluble monomer and an emulsifying dispersant for reacting with an oil-soluble monomer to form a film is prepared. Next, the oil phase premix is dispersed in the prepared aqueous phase. The obtained emulsified dispersion (O / W emulsion or W / O emulsion) is heated and polymerized by heating at the interface between the oil phase and the water phase, whereby the dye-containing fine particles 2 can be obtained. .
 W/O系液中乾燥法では、まず芯物質(色素、一重項酸素クエンチャー、酸化防止剤及び紫外線吸収剤)が乳化又は分散されている壁膜物質(粒子化材の前駆体)の溶液を作製する。次に、壁膜物質の溶液を水の媒体中に分散し、攪拌しつつ加温又は減圧することによって、壁膜物質を溶解している溶剤を除去する。これにより、水媒体中に色素含有微粒子2を作製することができる。 In the W / O-in-liquid drying method, first, a solution of a wall film material (precursor of particulate material) in which a core material (pigment, singlet oxygen quencher, antioxidant and ultraviolet absorber) is emulsified or dispersed. Is made. Next, the solution in which the wall membrane material is dissolved is removed by dispersing the wall membrane material solution in a water medium and heating or reducing the pressure while stirring. Thereby, the pigment | dye containing microparticles | fine-particles 2 can be produced in an aqueous medium.
 粒子化材がシリカ系の材料からなる場合には、ストーバー法により色素含有微粒子2を製造することができる。つまり、色素、一重項酸素クエンチャー、酸化防止剤及び紫外線吸収剤を混合したアルコール溶液に、上述のアルコキシシラン及び触媒を加えて攪拌し、加熱・乾燥することにより、色素含有微粒子2を作製することができる。 When the particulate material is made of a silica-based material, the dye-containing fine particles 2 can be produced by a Stover method. In other words, the above-described alkoxysilane and catalyst are added to an alcohol solution in which a dye, a singlet oxygen quencher, an antioxidant and an ultraviolet absorber are mixed, and the mixture is stirred, heated and dried to produce the dye-containing fine particles 2. be able to.
 このように、本実施形態の波長制御光学部材は公知の膜形成法により作製できる。さらに、波長制御光学部材中の色素含有微粒子2も公知の造粒方法により作製できる。そのため、本実施形態の波長制御光学部材は安価に作製することが可能である。 Thus, the wavelength control optical member of this embodiment can be produced by a known film forming method. Furthermore, the pigment-containing fine particles 2 in the wavelength control optical member can also be produced by a known granulation method. Therefore, the wavelength control optical member of this embodiment can be manufactured at low cost.
[発光装置]
 次に、本実施形態に係る発光装置について説明する。本実施形態の発光装置は、発光素子と、発光素子が発する光を波長変換する波長変換部材と、上述の波長制御光学部材とを備える。
[Light emitting device]
Next, the light emitting device according to this embodiment will be described. The light emitting device of this embodiment includes a light emitting element, a wavelength conversion member that converts the wavelength of light emitted from the light emitting element, and the above-described wavelength control optical member.
 図3では、発光装置の一例であるLEDモジュール11を示す。LEDモジュール11は、回路基板12に、発光素子としてのLED素子13が実装されている。そして、このLED素子13が波長変換部材14により覆われている。 FIG. 3 shows an LED module 11 which is an example of a light emitting device. In the LED module 11, an LED element 13 as a light emitting element is mounted on a circuit board 12. The LED element 13 is covered with a wavelength conversion member 14.
 LED素子13は、例えば380~500nmの範囲内に主な発光ピークを有し、青色の光を出射する青色LED素子である。このようなLED素子13としては、窒化ガリウム系のLED素子が挙げられる。 The LED element 13 is a blue LED element that has a main light emission peak in a range of, for example, 380 to 500 nm and emits blue light. Examples of such LED elements 13 include gallium nitride-based LED elements.
 波長変換部材14は、シリコーン樹脂等の透光性材料内に、例えば青色蛍光体、緑色蛍光体、黄色蛍光体及び赤色蛍光体の少なくとも1種類以上の蛍光体15を含有している。青色蛍光体は、LED素子13の出射光により励起され、青色光を出射する。緑色蛍光体及び黄色蛍光体もLED素子13の出射光により励起され、それぞれ緑色光及び黄色光を出射する。 The wavelength conversion member 14 contains, for example, at least one phosphor 15 of a blue phosphor, a green phosphor, a yellow phosphor and a red phosphor in a translucent material such as a silicone resin. The blue phosphor is excited by the light emitted from the LED element 13 and emits blue light. The green phosphor and the yellow phosphor are also excited by the light emitted from the LED element 13, and emit green light and yellow light, respectively.
 青色蛍光体は470nm~500nmの波長域に発光ピークを持ち、緑色蛍光体は500nm~540nmの波長域に発光ピークを持ち、黄色蛍光体は545nm~595nmの波長域に発光ピークを持つものである。青色蛍光体としては、例えばBaMgAl1017:Eu2+、CaMgSi:Eu2+、BaMgSi:Eu2+、Sr10(POCl:Eu2+などが挙げられる。緑色蛍光体としては、例えば(Ba,Sr)SiO:Eu2+、CaMg(SiOCl:Eu2+、CaMg(SiOCl:Eu2+,Mn2+が挙げられる。黄色蛍光体としては、例えば(Sr,Ba)SiO:Eu2+、(Y,Gd)Al12:Ce3+、α-Ca-SiAlON:Eu2+が挙げられる。 The blue phosphor has an emission peak in the wavelength range of 470 nm to 500 nm, the green phosphor has an emission peak in the wavelength range of 500 nm to 540 nm, and the yellow phosphor has an emission peak in the wavelength range of 545 nm to 595 nm. . Examples of the blue phosphor include BaMgAl 10 O 17 : Eu 2+ , CaMgSi 2 O 6 : Eu 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+, and the like. Examples of the green phosphor include (Ba, Sr) 2 SiO 4 : Eu 2+ , Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Mn 2+. Can be mentioned. Examples of the yellow phosphor include (Sr, Ba) 2 SiO 4 : Eu 2+ , (Y, Gd) 3 Al 5 O 12 : Ce 3+ , and α-Ca—SiAlON: Eu 2+ .
 赤色蛍光体は、LED素子13や、緑色蛍光体及び黄色蛍光体の少なくとも一方の出射光により励起され、赤色光を出射する。赤色蛍光体は、600nm~650nmの波長域に発光ピークを持つものである。赤色蛍光体としては、例えばSrSi:Eu2+、CaAlSiN:Eu2+、SrAlSi:Eu2+、CaS:Eu2+、LaS:Eu3+、YMg(AlO)(SiO:Ce3+が挙げられる。 The red phosphor is excited by the LED element 13 and / or the emitted light of at least one of the green phosphor and the yellow phosphor, and emits red light. The red phosphor has an emission peak in the wavelength region of 600 nm to 650 nm. Examples of the red phosphor include Sr 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ , SrAlSi 4 N 7 : Eu 2+ , CaS: Eu 2+ , La 2 O 2 S: Eu 3+ , Y 3 Mg 2 ( AlO 4 ) (SiO 4 ) 2 : Ce 3+ .
 LEDモジュール11の出射面側には、LED素子13や蛍光体15から出射された光の少なくとも一部の放射強度を低減する波長制御光学部材10が配置されている。このような波長制御光学部材10を用いて放射光の一部の強度を低減することにより、例えば、放射光が照射される紙面の白色度を高め、視認性を向上させることが可能となる。 The wavelength control optical member 10 that reduces the radiation intensity of at least a part of the light emitted from the LED element 13 or the phosphor 15 is disposed on the emission surface side of the LED module 11. By reducing the intensity of part of the emitted light using such a wavelength control optical member 10, for example, the whiteness of the paper surface irradiated with the emitted light can be increased and the visibility can be improved.
 本実施形態の発光装置は、色素の耐久性、特に耐光性及び耐熱性が高い波長制御光学部材を用いている。そのため、長期に亘り所望の分光特性を得ることが可能となる。また、波長制御光学部材を例えば液晶表示装置や有機EL表示装置のカラーフィルタとして用いた場合、長期に亘り高明度化及び光コントラスト化に寄与することが可能となる。 The light-emitting device of this embodiment uses a wavelength control optical member that has high durability, particularly light resistance and heat resistance. Therefore, desired spectral characteristics can be obtained over a long period of time. Further, when the wavelength control optical member is used as a color filter of, for example, a liquid crystal display device or an organic EL display device, it becomes possible to contribute to high brightness and optical contrast over a long period of time.
[照明器具]
 次に、本実施形態に係る照明器具について説明する。本実施形態の照明器具は、上述の発光装置を備えている。
[lighting equipment]
Next, the lighting fixture which concerns on this embodiment is demonstrated. The lighting fixture of this embodiment is provided with the above-mentioned light-emitting device.
 図4では、照明器具の一例として、LEDモジュール11を備えたデスクスタンド20を示す。図4に示すように、デスクスタンド20は、略円板状のベース21上に照明本体22が取り付けられている。照明本体22はアーム23を有し、アーム23の先端側の灯具30にはLEDモジュール11を備える。照明本体22にはスイッチ22aが設けられ、このスイッチ22aをオン・オフ操作することでLEDモジュール11の点灯状態が変更されるようになっている。 FIG. 4 shows a desk stand 20 including the LED module 11 as an example of a lighting fixture. As shown in FIG. 4, the desk stand 20 has a lighting main body 22 mounted on a substantially disc-shaped base 21. The illumination body 22 has an arm 23, and the lamp module 30 on the tip side of the arm 23 includes the LED module 11. The illumination main body 22 is provided with a switch 22a, and the lighting state of the LED module 11 is changed by turning on / off the switch 22a.
 図5(a)に示すように、灯具30は、略円筒状のベース部31と、光源ユニット32と、配向制御部33と、上述の波長制御光学部材からなるフィルタ34と、カバー35とを備える。光源ユニット32は、図5(b)に示すようにLEDモジュール11を備える。配向制御部33は、光源ユニット32の光を所望の配光に制御するために用いられるものであり、本実施形態ではレンズを備えている。ただし、配向制御部33としては、レンズの他に、照明装置の構成によって反射板や導光板を有していてもよい。 As shown in FIG. 5A, the lamp 30 includes a substantially cylindrical base portion 31, a light source unit 32, an orientation control portion 33, a filter 34 made of the above-described wavelength control optical member, and a cover 35. Prepare. The light source unit 32 includes the LED module 11 as shown in FIG. The orientation controller 33 is used to control the light from the light source unit 32 to a desired light distribution, and includes a lens in this embodiment. However, the orientation control unit 33 may have a reflection plate or a light guide plate in addition to the lens depending on the configuration of the illumination device.
 なお、フィルタ34と配向制御部33は、一体構成としてもよい。その一例として、例えば図5(c)に示すように、配向制御部33を構成する透明樹脂部34aの表面にコーティングを施して、フィルタ34として作用するコーティング部34bを形成してもよい。 The filter 34 and the orientation control unit 33 may be integrated. As an example, for example, as shown in FIG. 5C, a coating portion 34 b that acts as a filter 34 may be formed by coating the surface of the transparent resin portion 34 a constituting the orientation control portion 33.
 本実施形態の照明器具は、色素の耐久性、特に耐光性及び耐熱性が高い波長制御光学部材を用いている。そのため、長期に亘り所望の分光特性を得ることが可能となる。つまり、本実施形態の照明器具は、例えば放射光が照射される紙面の白色度を高め、視認性を向上させることが可能となる。 The lighting fixture of this embodiment uses a wavelength control optical member that has high durability, particularly light resistance and heat resistance of the pigment. Therefore, desired spectral characteristics can be obtained over a long period of time. That is, the lighting fixture of this embodiment can improve the visibility by increasing the whiteness of the paper surface irradiated with radiated light, for example.
 以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to examples and comparative examples, but the present embodiment is not limited to these examples.
[実施例1]
 (色素含有微粒子の作製)
 まず、テトラアザポルフィリン系色素(TAP系色素)、一重項酸素クエンチャー、酸化防止剤、紫外線吸収剤をイソプロピルアルコール:エタノール=1:4の混合溶媒に溶解して攪拌することにより、混合溶液を作製した。次に、当該混合溶液にテトラエトキシシランを投入して攪拌した後、エタノール、イオン交換水及びアンモニア水の混合液を投入し、5時間攪拌を行った。その後、析出物を濾過して乾燥することにより、本実施例の色素含有微粒子を作製した。なお、得られた色素含有微粒子の平均粒子径は、1.2μmであった。各原料の製品名及び添加量は、次のとおりである。
 TAP系色素:山田化学工業株式会社製TAP18;1質量部
 一重項酸素クエンチャー:日本カーリット株式会社製CIR-965i;2質量部
 紫外線吸収剤:BASFジャパン株式会社製IRGANOX(登録商標)-1010;2.4質量部
 酸化防止剤:BASFジャパン株式会社製TINUVIN(登録商標)PA144;2質量部
 金属アルコキシド:和光純薬工業株式会社製テトラエトキシシラン;5質量部
 イオン交換水:テトラエトキシシラン1質量部に対して1.8質量部
 アンモニア水(1N):テトラエトキシシラン1質量部に対して0.1質量部
[Example 1]
(Preparation of pigment-containing fine particles)
First, a mixed solution is prepared by dissolving a tetraazaporphyrin dye (TAP dye), a singlet oxygen quencher, an antioxidant, and an ultraviolet absorber in a mixed solvent of isopropyl alcohol: ethanol = 1: 4 and stirring. Produced. Next, tetraethoxysilane was added to the mixed solution and stirred, and then a mixed solution of ethanol, ion-exchanged water and ammonia water was added and stirred for 5 hours. Thereafter, the precipitate was filtered and dried to prepare the dye-containing fine particles of this example. The average particle size of the obtained dye-containing fine particles was 1.2 μm. The product name and addition amount of each raw material are as follows.
TAP dye: TAP18 manufactured by Yamada Chemical Co., Ltd .; 1 part by mass Singlet oxygen quencher: CIR-965i manufactured by Nippon Carlit Co., Ltd .; 2 parts by mass UV absorber: IRGANOX (registered trademark) -1010 manufactured by BASF Japan Ltd .; 2.4 parts by mass Antioxidant: TINUVIN (registered trademark) PA144 manufactured by BASF Japan Ltd .; 2 parts by mass Metal alkoxide: Tetraethoxysilane manufactured by Wako Pure Chemical Industries, Ltd .; 5 parts by mass Ion exchange water: 1 mass by mass of tetraethoxysilane 1.8 parts by mass with respect to parts Ammonia water (1N): 0.1 parts by mass with respect to 1 part by mass of tetraethoxysilane
 (波長制御光学部材の作製)
 上述のように作製した色素含有微粒子をトルエンに分散させた後、アクリル樹脂を投入して攪拌することで、色素分散塗布液を作製した。そして、作製した色素分散塗布液をスライドガラス板上にバーコーターにて塗布して乾燥し、塗膜を形成することにより、本例の試験サンプルを作製した。なお、アクリル樹脂は、三菱レイヨン株式会社製アクリペット(登録商標)VHを使用した。
(Production of wavelength control optical member)
The dye-containing fine particles prepared as described above were dispersed in toluene, and then an acrylic resin was added and stirred to prepare a dye-dispersed coating solution. And the test sample of this example was produced by apply | coating the produced pigment dispersion coating liquid on a slide glass plate with a bar coater, and drying and forming a coating film. As the acrylic resin, Acrypet (registered trademark) VH manufactured by Mitsubishi Rayon Co., Ltd. was used.
[実施例2]
 テトラエトキシシランの添加量を10質量部とした以外は実施例1と同様にして、本例の試験サンプルを作製した。なお、本例で得られた色素含有微粒子の平均粒子径は、1.2μmであった。
[Example 2]
A test sample of this example was produced in the same manner as in Example 1 except that the amount of tetraethoxysilane added was 10 parts by mass. The average particle size of the dye-containing fine particles obtained in this example was 1.2 μm.
[実施例3]
 (色素含有微粒子の作製)
 まず、テトラアザポルフィリン系色素(TAP系色素)、一重項酸素クエンチャー、酸化防止剤、紫外線吸収剤を無水ジブチルエーテルに溶解して攪拌することにより、混合溶液を作製した。次に、当該混合溶液にポリシラザンを投入し、12時間攪拌を行った。その後、析出物を濾過して乾燥することにより、本実施例の色素含有微粒子を作製した。なお、得られた色素含有微粒子の平均粒子径は、1.1μmであった。各原料の製品名及び添加量は、次のとおりである。
 TAP系色素:山田化学工業株式会社製TAP18;1質量部
 一重項酸素クエンチャー:日本カーリット株式会社製CIR-965i;2質量部
 紫外線吸収剤:BASFジャパン株式会社製IRGANOX-1010;2.4質量部
 酸化防止剤:BASFジャパン株式会社製TINUVIN PA144;2質量部
 ポリシラザン:AZエレクトロニックマテリアルズ社製アクアミカ(登録商標)NAX120;5質量部
[Example 3]
(Preparation of pigment-containing fine particles)
First, a mixed solution was prepared by dissolving a tetraazaporphyrin dye (TAP dye), a singlet oxygen quencher, an antioxidant, and an ultraviolet absorber in anhydrous dibutyl ether and stirring. Next, polysilazane was added to the mixed solution and stirred for 12 hours. Thereafter, the precipitate was filtered and dried to prepare the dye-containing fine particles of this example. The average particle size of the obtained pigment-containing fine particles was 1.1 μm. The product name and addition amount of each raw material are as follows.
TAP dye: TAP18 manufactured by Yamada Chemical Co., Ltd .; 1 part by mass Singlet oxygen quencher: CIR-965i manufactured by Nippon Carlit Co., Ltd .; 2 parts by mass UV absorber: IRGANOX-1010 manufactured by BASF Japan Ltd .; 2.4 mass Part Antioxidant: TINUVIN PA144 manufactured by BASF Japan Ltd .; 2 parts by mass Polysilazane: AQUAMICA (registered trademark) NAX120 manufactured by AZ Electronic Materials; 5 parts by mass
 (波長制御光学部材の作製)
 上述のように作製した色素含有微粒子をトルエンに分散させた後、アクリル樹脂を投入して攪拌することで、色素分散塗布液を作製した。なお、色素含有微粒子及びアクリル樹脂の混合量は、実施例1と同量とした。そして、作製した色素分散塗布液をスライドガラス板上にバーコーターにて塗布して乾燥し、塗膜を形成することにより、本例の試験サンプルを作製した。なお、アクリル樹脂は、三菱レイヨン株式会社製アクリペットVHを使用した。
(Production of wavelength control optical member)
The dye-containing fine particles prepared as described above were dispersed in toluene, and then an acrylic resin was added and stirred to prepare a dye-dispersed coating solution. The mixing amount of the pigment-containing fine particles and the acrylic resin was the same as that in Example 1. And the test sample of this example was produced by apply | coating the produced pigment dispersion coating liquid on a slide glass plate with a bar coater, and drying and forming a coating film. The acrylic resin used was Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.
[実施例4]
 ポリシラザンの添加量を10質量部とした以外は実施例3と同様にして、本例の試験サンプルを作製した。なお、本例で得られた色素含有微粒子の平均粒子径は、0.8μmであった。
[Example 4]
A test sample of this example was produced in the same manner as in Example 3 except that the amount of polysilazane added was 10 parts by mass. The average particle size of the dye-containing fine particles obtained in this example was 0.8 μm.
[実施例5]
 (色素含有微粒子の作製)
 まず、テトラアザポルフィリン系色素(TAP系色素)、一重項酸素クエンチャー、酸化防止剤、紫外線吸収剤をトルエン:ブタノール=1:4の混合溶媒に溶解して攪拌することにより、混合溶液を作製した。次に、当該混合溶液にアクリル樹脂を投入し、十分に攪拌した。そして、この混合溶液にイオン交換水を投入し、さらに非イオン性界面活性剤を添加した後、1500rpmで2時間攪拌した。その後、析出物を濾過して乾燥することにより、本実施例の色素含有微粒子を作製した。なお、得られた色素含有微粒子の平均粒子径は、0.8μmであった。各原料の製品名及び添加量は、次のとおりである。また、攪拌の際に使用した攪拌機は、プライミクス株式会社製ラボ・リューション(登録商標)である。
 TAP系色素:山田化学工業株式会社製TAP18;1質量部
 一重項酸素クエンチャー:日本カーリット株式会社製CIR-965i;2質量部
 紫外線吸収剤:BASFジャパン株式会社製IRGANOX-1010;2.4質量部
 酸化防止剤:BASFジャパン株式会社製TINUVIN PA144;2質量部
 アクリル樹脂:DIC株式会社製A-165;5質量部
 イオン交換水:アクリル樹脂1質量部に対して200質量部
 界面活性剤:キシダ化学株式会社製ブリッジ35、イオン交換水1質量部に対して0.005質量部
[Example 5]
(Preparation of pigment-containing fine particles)
First, a mixed solution is prepared by dissolving a tetraazaporphyrin dye (TAP dye), a singlet oxygen quencher, an antioxidant, and an ultraviolet absorber in a toluene: butanol = 1: 4 mixed solvent and stirring. did. Next, an acrylic resin was added to the mixed solution and sufficiently stirred. And ion-exchange water was thrown into this mixed solution, and also after adding a nonionic surfactant, it stirred at 1500 rpm for 2 hours. Thereafter, the precipitate was filtered and dried to prepare the dye-containing fine particles of this example. The average particle size of the obtained pigment-containing fine particles was 0.8 μm. The product name and addition amount of each raw material are as follows. Moreover, the stirrer used at the time of agitation is a lab solution (registered trademark) manufactured by PRIMIX Corporation.
TAP dye: TAP18 manufactured by Yamada Chemical Co., Ltd .; 1 part by mass Singlet oxygen quencher: CIR-965i manufactured by Nippon Carlit Co., Ltd .; 2 parts by mass UV absorber: IRGANOX-1010 manufactured by BASF Japan Ltd .; 2.4 mass Part Antioxidant: TINUVIN PA144 manufactured by BASF Japan Ltd .; 2 parts by mass Acrylic resin: A-165 manufactured by DIC Corporation; 5 parts by mass Ion exchange water: 200 parts by mass with respect to 1 part by mass of acrylic resin Surfactant: Kishida 0.005 parts by mass per 1 part by mass of Bridge 35 manufactured by Chemical Co., Ltd.
 (波長制御光学部材の作製)
 上述のように作製した色素含有微粒子をトルエンに分散させた後、アクリル樹脂を投入して攪拌することで、色素分散塗布液を作製した。なお、色素含有微粒子及びアクリル樹脂の混合量は、実施例1と同量とした。そして、作製した色素分散塗布液をスライドガラス板上にバーコーターにて塗布して乾燥し、塗膜を形成することにより、本例の試験サンプルを作製した。なお、アクリル樹脂は、三菱レイヨン株式会社製アクリペットVHを使用した。
(Production of wavelength control optical member)
The dye-containing fine particles prepared as described above were dispersed in toluene, and then an acrylic resin was added and stirred to prepare a dye-dispersed coating solution. The mixing amount of the pigment-containing fine particles and the acrylic resin was the same as that in Example 1. And the test sample of this example was produced by apply | coating the produced pigment dispersion coating liquid on a slide glass plate with a bar coater, and drying and forming a coating film. The acrylic resin used was Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.
[実施例6]
 色素含有微粒子で使用するアクリル樹脂の添加量を10質量部とした以外は実施例3と同様にして、本例の試験サンプルを作製した。なお、本例で得られた色素含有微粒子の平均粒子径は、1.0μmであった。
[Example 6]
A test sample of this example was produced in the same manner as in Example 3 except that the amount of the acrylic resin used in the dye-containing fine particles was 10 parts by mass. The average particle size of the dye-containing fine particles obtained in this example was 1.0 μm.
[比較例1]
 実施例1のTAP系色素、一重項酸素クエンチャー、酸化防止剤、紫外線吸収剤をアクリル樹脂に投入し、攪拌することで、色素分散塗布液を作製した。この際、アクリル樹脂中のTAP系色素、一重項酸素クエンチャー、酸化防止剤及び紫外線吸収剤の濃度が実施例1と同じになるように調整した。
[Comparative Example 1]
The TAP pigment | dye of Example 1, a singlet oxygen quencher, antioxidant, and the ultraviolet absorber were thrown into the acrylic resin, and the pigment dispersion coating liquid was produced by stirring. At this time, the concentration of the TAP dye, singlet oxygen quencher, antioxidant and ultraviolet absorber in the acrylic resin was adjusted to be the same as in Example 1.
 そして、作製した色素分散塗布液をスライドガラス板上にバーコーターにて塗布して乾燥し、塗膜を形成することにより、本例の試験サンプルを作製した。なお、アクリル樹脂は、三菱レイヨン株式会社製アクリペットVHを使用した。 Then, the prepared dye-dispersed coating solution was applied onto a slide glass plate with a bar coater and dried to form a coating film, thereby preparing a test sample of this example. The acrylic resin used was Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.
[評価]
 実施例及び比較例の試験サンプルを、ダイプラ・ウィンテス株式会社製メタルウェザー(登録商標)試験機を用いて劣化させた。そして、分光光度計(株式会社日立ハイテクノロジーズ製U4100)にて、劣化前と劣化後の試験サンプルの全光線透過率を測定した。
[Evaluation]
The test samples of Examples and Comparative Examples were deteriorated using a metal weather (registered trademark) tester manufactured by Daipura Wintes Co., Ltd. The total light transmittance of the test sample before and after deterioration was measured with a spectrophotometer (U4100 manufactured by Hitachi High-Technologies Corporation).
 得られた全光線透過率より、色素の最大吸収波長(595nm)の初期透過率(劣化試験前の透過率、T0)及び劣化試験後の透過率(T1)を計測し、以下の式1から残存率を算出した。実施例及び比較例の残存率の結果を表1に示す。
[数1]
 残存率(%)=[劣化試験後の透過率(T1)]/[劣化試験前の透過率(T0)]×100
From the obtained total light transmittance, the initial transmittance (transmittance before deterioration test, T0) and the transmittance after deterioration test (T1) of the maximum absorption wavelength (595 nm) of the dye are measured. The residual rate was calculated. Table 1 shows the results of the residual ratios of the examples and comparative examples.
[Equation 1]
Residual rate (%) = [transmittance after deterioration test (T1)] / [transmittance before deterioration test (T0)] × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~6の試験サンプルは残存率が60%以上となったが、比較例1の試験サンプルは残存率が55%となった。このことから、色素、一重項酸素クエンチャー、酸化防止剤及び紫外線吸収剤を微粒子化することにより、耐久性が向上することが分かる。また、実施例1、3及び5と実施例2、4及び6とをそれぞれ比較すると、粒子化材が増加することにより、耐久性も向上することが分かる。 As shown in Table 1, the residual ratio of the test samples of Examples 1 to 6 was 60% or more, but the residual ratio of the test sample of Comparative Example 1 was 55%. From this, it is understood that the durability is improved by making the pigment, the singlet oxygen quencher, the antioxidant and the ultraviolet absorber fine. Further, when Examples 1, 3 and 5 are compared with Examples 2, 4 and 6, respectively, it can be seen that the durability is improved by increasing the amount of the particulate material.
 特願2014-117245号(出願日:2014年6月6日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2014-117245 (filing date: June 6, 2014) are incorporated herein by reference.
 以上、実施例に沿って本実施形態の内容を説明したが、本実施形態はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 As described above, the contents of the present embodiment have been described according to the examples. However, the present embodiment is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements are possible. is there.
 本実施形態の波長制御光学部材は、色素の近傍に、劣化抑制添加剤としての一重項酸素クエンチャー、酸化防止剤及び紫外線吸収剤を配置している。そのため、色素に対して劣化抑制添加剤の効果が及びやすいことから、色素3の耐久性、特に耐光性及び耐熱性を向上させ、色素の安定性を高めることが可能となる。 In the wavelength control optical member of the present embodiment, a singlet oxygen quencher, an antioxidant, and an ultraviolet absorber as deterioration suppressing additives are disposed in the vicinity of the pigment. Therefore, since the effect of the degradation inhibitor is easily exerted on the dye, it is possible to improve the durability of the dye 3, particularly the light resistance and the heat resistance, and to increase the stability of the dye.
 1 マトリックス樹脂
 2,2A 色素含有微粒子
 3 色素
 4 一重項酸素クエンチャー
 5 酸化防止剤
 6 紫外線吸収剤
 10 波長制御光学部材
DESCRIPTION OF SYMBOLS 1 Matrix resin 2,2A Dye containing fine particle 3 Dye 4 Singlet oxygen quencher 5 Antioxidant 6 Ultraviolet absorber 10 Wavelength control optical member

Claims (7)

  1.  マトリックス樹脂と、前記マトリックス樹脂の内部に分散する色素含有微粒子とを備え、
     前記色素含有微粒子は、400nm~650nmの範囲内に最大吸収波長を有する色素と、一重項酸素クエンチャーと、酸化防止剤と、紫外線吸収剤とを含有する波長制御光学部材。
    A matrix resin, and pigment-containing fine particles dispersed inside the matrix resin,
    The wavelength-controlling optical member, wherein the dye-containing fine particles contain a dye having a maximum absorption wavelength in a range of 400 nm to 650 nm, a singlet oxygen quencher, an antioxidant, and an ultraviolet absorber.
  2.  前記マトリックス樹脂は、アクリル系樹脂、ポリカーボネート系樹脂、アクリル-スチレン共重合体、スチレン系樹脂、シリコーン系樹脂及びシクロオレフィン系樹脂からなる群より選ばれる少なくとも一つを含有する請求項1に記載の波長制御光学部材。 2. The matrix resin according to claim 1, wherein the matrix resin contains at least one selected from the group consisting of acrylic resins, polycarbonate resins, acrylic-styrene copolymers, styrene resins, silicone resins, and cycloolefin resins. Wavelength control optical member.
  3.  前記色素含有微粒子において、前記色素、一重項酸素クエンチャー、酸化防止剤及び紫外線吸収剤は、アルコキシシランの加水分解縮合物及びポリシラザンの少なくともいずれか一方により被覆される請求項1又は2に記載の波長制御光学部材。 3. The dye according to claim 1, wherein the dye, the singlet oxygen quencher, the antioxidant and the ultraviolet absorber are coated with at least one of an alkoxysilane hydrolysis condensate and polysilazane in the dye-containing fine particles. Wavelength control optical member.
  4.  前記色素は、フタロシアニン系、テトラアザポルフィリン系及びポルフィリン系からなる群より選ばれる少なくとも一つである請求項1乃至3のいずれか一項に記載の波長制御光学部材。 The wavelength controlling optical member according to any one of claims 1 to 3, wherein the pigment is at least one selected from the group consisting of phthalocyanine, tetraazaporphyrin, and porphyrin.
  5.  前記色素含有微粒子の平均粒子径は、100nm~30μmである請求項1乃至4のいずれか一項に記載の波長制御光学部材。 The wavelength control optical member according to any one of claims 1 to 4, wherein an average particle diameter of the dye-containing fine particles is 100 nm to 30 µm.
  6.  発光素子と、前記発光素子が発する光を波長変換する波長変換部材と、請求項1乃至5のいずれか一項に記載の波長制御光学部材と、を備える発光装置。 A light-emitting device comprising: a light-emitting element; a wavelength conversion member that converts the wavelength of light emitted from the light-emitting element; and the wavelength control optical member according to any one of claims 1 to 5.
  7.  請求項6に記載の発光装置を備える照明器具。 A lighting fixture comprising the light emitting device according to claim 6.
PCT/JP2015/002815 2014-06-06 2015-06-03 Wavelength controlling optical member, light emitting device and lighting apparatus WO2015186359A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016525705A JP6213938B2 (en) 2014-06-06 2015-06-03 Wavelength control optical member, light emitting device, and lighting fixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014117245 2014-06-06
JP2014-117245 2014-06-06

Publications (1)

Publication Number Publication Date
WO2015186359A1 true WO2015186359A1 (en) 2015-12-10

Family

ID=54766442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002815 WO2015186359A1 (en) 2014-06-06 2015-06-03 Wavelength controlling optical member, light emitting device and lighting apparatus

Country Status (2)

Country Link
JP (1) JP6213938B2 (en)
WO (1) WO2015186359A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138534A (en) * 2016-02-05 2017-08-10 パナソニックIpマネジメント株式会社 Wavelength control optical member, light-emitting device and lighting fixture
KR20180051313A (en) * 2016-11-08 2018-05-16 엘지디스플레이 주식회사 Organic light emitting display device
JP2019026778A (en) * 2017-08-01 2019-02-21 Dic株式会社 Ink composition and method for producing the same, photoconversion layer and color filter
JP2019070063A (en) * 2017-10-06 2019-05-09 三井化学株式会社 Filling material dispersion
JP2019164898A (en) * 2018-03-19 2019-09-26 三井化学株式会社 Light guide plate
JP2019164214A (en) * 2018-03-19 2019-09-26 三井化学株式会社 Coating material
WO2021192795A1 (en) * 2020-03-23 2021-09-30 東レ株式会社 Color conversion composition, color conversion film, light source unit, display, and lighting including same, and compound
US11505675B2 (en) * 2016-09-20 2022-11-22 Essilor International Polycarbonate resin compositions with consistent color and stable blue-cut performance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980226A (en) * 1995-09-11 1997-03-28 Toshiba Corp Coloring material for display element, display element using the same and color filter
JP2001089510A (en) * 1999-09-22 2001-04-03 Soken Chem & Eng Co Ltd Colored polymer particle and method for producing the same
JP2001294628A (en) * 2000-04-13 2001-10-23 Sekisui Chem Co Ltd Colored resin emulsion, ink for ink-jet and color filter
JP2010171007A (en) * 2008-12-25 2010-08-05 Fujifilm Corp Display device
US20120301724A1 (en) * 2011-05-24 2012-11-29 Ecole Polytechnique Federale De Lausanne (Epfl) Color conversion films comprising polymer-substituted organic fluorescent dyes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980226A (en) * 1995-09-11 1997-03-28 Toshiba Corp Coloring material for display element, display element using the same and color filter
JP2001089510A (en) * 1999-09-22 2001-04-03 Soken Chem & Eng Co Ltd Colored polymer particle and method for producing the same
JP2001294628A (en) * 2000-04-13 2001-10-23 Sekisui Chem Co Ltd Colored resin emulsion, ink for ink-jet and color filter
JP2010171007A (en) * 2008-12-25 2010-08-05 Fujifilm Corp Display device
US20120301724A1 (en) * 2011-05-24 2012-11-29 Ecole Polytechnique Federale De Lausanne (Epfl) Color conversion films comprising polymer-substituted organic fluorescent dyes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAAKI NAKAMURA: "Blue Light Cut Biryushi no Kaihatsu", JETI, vol. 61, no. 7, 28 June 2013 (2013-06-28), pages 15 - 17 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138534A (en) * 2016-02-05 2017-08-10 パナソニックIpマネジメント株式会社 Wavelength control optical member, light-emitting device and lighting fixture
US11505675B2 (en) * 2016-09-20 2022-11-22 Essilor International Polycarbonate resin compositions with consistent color and stable blue-cut performance
KR20180051313A (en) * 2016-11-08 2018-05-16 엘지디스플레이 주식회사 Organic light emitting display device
KR102660751B1 (en) * 2016-11-08 2024-04-24 엘지디스플레이 주식회사 Organic light emitting display device
JP2019026778A (en) * 2017-08-01 2019-02-21 Dic株式会社 Ink composition and method for producing the same, photoconversion layer and color filter
JP7013705B2 (en) 2017-08-01 2022-02-01 Dic株式会社 Ink composition and its manufacturing method, light conversion layer and color filter
JP2019070063A (en) * 2017-10-06 2019-05-09 三井化学株式会社 Filling material dispersion
JP2019164898A (en) * 2018-03-19 2019-09-26 三井化学株式会社 Light guide plate
JP2019164214A (en) * 2018-03-19 2019-09-26 三井化学株式会社 Coating material
WO2021192795A1 (en) * 2020-03-23 2021-09-30 東レ株式会社 Color conversion composition, color conversion film, light source unit, display, and lighting including same, and compound

Also Published As

Publication number Publication date
JPWO2015186359A1 (en) 2017-04-20
JP6213938B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6213938B2 (en) Wavelength control optical member, light emitting device, and lighting fixture
JP6678331B2 (en) Wavelength controlling optical member, light emitting device and lighting equipment
CN107109021B (en) Color conversion film, method of manufacturing the same, backlight unit and display device
JP2017161755A (en) Light-emitting device and illumination apparatus including the same
TWI598663B (en) Color conversion film and method for preparing the same and back light unit and display apparatus comprising the same
JP6464534B2 (en) Dye composite, light conversion film, and electronic device including the same
KR101915352B1 (en) Backlight unit and display apparatus comprising the same
TWI583775B (en) Color conversion film and method of preparing the same and back light unit comprising the same
US20190292446A1 (en) Wavelength conversion film and backlight unit
TWI711863B (en) Display device
US20190302497A1 (en) Wavelength conversion film and method of manufacturing wavelength conversion film
KR102216397B1 (en) Color conversion film, back light unit and display appratus comprising the same
WO2016158192A1 (en) Optical film, method for manufacturing same, optical barrier film, and color conversion film
KR102022398B1 (en) Color conversion film and method for preparing the same and back light unit comprising the same
JP2017003815A (en) Wavelength control optical member, light-emitting device, and lighting fixture
CN112285999A (en) Solvent-free curable composition, cured film, color filter, and display device
JP2016111208A (en) Wavelength control optical member, light emission device and illumination equipment
KR20160094885A (en) Color conversion film and back light unit and display appratus comprising the same
KR102038742B1 (en) Color conversion film and back light unit and display appratus comprising the same
JP2017011153A (en) Wavelength control optical member, light emitting device and luminaire
KR20180068625A (en) Yellow curableresin composition, color filter and display device having the same
KR102208205B1 (en) 2 Component type Light Diffusion Coating Agent
KR20170047803A (en) Light conversion device comprising organic fluorescence dye and backlight unit and display apparatus comprising the same
JP2020507921A (en) Lighting module including color conversion film
JP2011116914A (en) Fluorescent solution, fluorescent film and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525705

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803483

Country of ref document: EP

Kind code of ref document: A1