WO2015186334A1 - 基地局、受信確認方法、およびプログラムが記憶された記憶媒体 - Google Patents

基地局、受信確認方法、およびプログラムが記憶された記憶媒体 Download PDF

Info

Publication number
WO2015186334A1
WO2015186334A1 PCT/JP2015/002747 JP2015002747W WO2015186334A1 WO 2015186334 A1 WO2015186334 A1 WO 2015186334A1 JP 2015002747 W JP2015002747 W JP 2015002747W WO 2015186334 A1 WO2015186334 A1 WO 2015186334A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
pusch
base station
harq
harq information
Prior art date
Application number
PCT/JP2015/002747
Other languages
English (en)
French (fr)
Inventor
佑樹 小暮
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016525691A priority Critical patent/JP6274311B2/ja
Priority to US15/315,807 priority patent/US10291361B2/en
Publication of WO2015186334A1 publication Critical patent/WO2015186334A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a base station, a reception confirmation method, and a storage medium in which a program is stored in a mobile communication system, and relates to a mobile communication technique in which delivery confirmation is performed by HARQ (Hybrid Automatic Repeat Request).
  • HARQ Hybrid Automatic Repeat Request
  • the present invention matches the DRX state between the base station and the terminal from the HARQ delivery status, which corresponds to a DRX (Discontinuous Reception) function for the purpose of suppressing power consumption of the terminal in the LTE (Long Term Evolution) scheme.
  • the present invention relates to a mobile communication technology that provides an opportunity to eliminate useless transmission / reception processing.
  • the physical channels used in the LTE (Long Term Evolution) method are defined as the following five physical channels as downlink physical channels transmitted from the base station to the terminal. Yes.
  • the five physical channels of the downlink are PBCH (Physical Broadcast CHannel), PDCCH (Physical Downlink Control CHannel), PCFICH (Physical Control Format Indicator CHannel), PDSCH (Physical Downlink Shared CHannel), and PHICH (Physical Hybrid-arbrid-ar. (automatic repeat request) Indicator CHannel).
  • PBCH is a channel for transmitting broadcast information.
  • the PDCCH is a channel for transmitting information for decoding downlink packet data.
  • PCFICH is a channel for transmitting information for decoding PDCCH.
  • the PDSCH is a channel for transmitting downlink packet data.
  • the PHICH is a channel for transmitting a check result of CRC (Cyclic Redundancy Check) of PUSCH (Physical / Uplink / Shared / CHannel) described later.
  • the following three physical channels are defined as uplink physical channels transmitted from the terminal to the base station. That is, the three physical channels of the uplink are composed of PRACH (Physical RandomnelAccess CHannel), PUCCH (Physical Uplink Control CHannel), and PUSCH.
  • PRACH Physical RandomnelAccess CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Control CHannel
  • PRACH is a channel for synchronizing with the uplink and sending for power control.
  • the PUCCH is a channel for transmitting HAQ information (to be described later) and CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), and RI (Rank Indicator) indicating reception quality.
  • the HARQ information is information for notifying the PDSCH decoding status as ACK (ACKnowledment) / NACK (Negative ACKnowledment) / DTX (Discontinuous Transmission).
  • the PUSCH is a channel for transmitting uplink packet data in addition to the information included in the PUCCH. Note that one of PUCCH and PUSCH is transmitted depending on the presence or absence of uplink packet data.
  • the operation when a terminal receives a signal from a base station is as follows.
  • the terminal first receives PCFICH after receiving PBCH transmitted from the base station.
  • the terminal checks the number of OFDM (Orthogonal Frequency Division Multiplex) symbols to which the PDCCH is mapped based on the CFI value (CFI: Control Indicator) detected from the PCFICH, and detects the PDCCH for itself. .
  • CFI Control Indicator
  • the operation when the terminal transmits a signal to the base station is as follows.
  • the terminal-specific PDCCH transmitted from the base station is not detected, the terminal transmits the PUCCH.
  • the terminal starts transmission of PUSCH according to the detected uplink control information.
  • the base station checks the received PUSCH using CRC (Cyclic Redundancy Check), and transmits the result to the terminal using PHICH.
  • the terminal performs retransmission control of uplink packet data based on the PHICH CRC check result from the base station.
  • the DRX function is adopted for the purpose of power saving of the terminal.
  • the DRX function refers to a function of reducing power consumption of a terminal by putting the terminal to sleep in a specific state and stopping monitoring of PDCCH.
  • the terminal having the DRX function decodes the PDCCH transmitted from the base station for scheduling only in the next OnDuration section.
  • a section in which the terminal does not decode PDCCH is called a “DRX section”.
  • the terminal can start DRX Inactivity Timer (extend the active section) and continue data communication.
  • the terminal could not receive the PDCCH even though the base station transmitted the PDCCH to the terminal due to a radio error or the like.
  • the terminal is a DRX section, so that radio resources are wasted.
  • Patent Document 1 describes packet retransmission control by HARQ.
  • packet loss due to DTX ⁇ ACK misrecognition is detected without affecting an existing communication device.
  • DTX ⁇ ACK misrecognition means that the transmission side communication apparatus misrecognizes as DACK, that is, that there is no retransmission request from the reception side communication apparatus, and is mainly controlled in the reception side communication apparatus. Occurs due to channel decoding failure.
  • the communication system disclosed in Patent Literature 1 includes a transmission-side communication device that transmits a different packet and a reception-side communication device that receives a packet, each having a sequence number added thereto.
  • the receiving-side communication device includes a receiving unit and a determining unit.
  • the receiving unit receives a packet using a plurality of processes.
  • the determination unit detects a missing reception of any one of the packets in the reception unit based on the sequence number. In this case, the determination unit determines whether or not the one packet is lost due to the DTX ⁇ ACK misrecognition in the communication device on the transmission side based on the usage status of each process.
  • Patent Document 2 discloses a technique that can limit the probability of DTX vs. ACK error to an acceptable level.
  • the base station disclosed in Patent Document 2 has an interface and a processor.
  • the interface is included in the Acknowledge / Negative Acknowledgment (ACK / NACK) resource in the uplink control channel, and the generated bundled ACK / NACK value and the detected downlink grant within the user equipment's received bandwidth. It is configured to receive information about the number.
  • the processor performs ACK / NACK / DTX (intermittent transmission) detection based on the received information, and based on this ACK / NACK / DTX detection, whether the detected ACK / NACK status represents the correct ACK / NACK It is configured to determine whether.
  • Patent Document 3 discloses a retransmission control method and a reception side apparatus that can minimize packet loss when transmission confirmation information transmitted through the HARQ feedback physical channel is erroneously detected in the transmission side apparatus.
  • the transmission side device disclosed in Patent Literature 3 includes a MAC multiplexing unit, a MAC header adding unit, and a shared physical control channel receiving unit.
  • the receiving side device includes a shared physical control channel transmission unit.
  • the MAC header adding unit transmits the user data transmitted from the MAC multiplexing unit on a transport channel multiplexed with the shared physical data channel by adding a MAC header and an error correction code (such as CRC). Protocol data unit (packet) is generated.
  • the shared physical control channel reception unit receives delivery confirmation information such as ACK / NACK via the shared physical control channel (HARQ feedback physical channel) and notifies the corresponding HARQ process.
  • the shared physical control channel receiving unit determines that it is in the DTX state when it does not receive delivery confirmation information for each packet within a predetermined period.
  • the shared physical control channel transmission unit transmits the acknowledgment information (ACK / NACK) notified from each HARQ process via the shared physical control channel (HARQ feedback physical channel).
  • Patent Document 4 discloses a base station apparatus and a communication control method that can appropriately perform scheduling processing and HARQ processing in LTE downlink and uplink.
  • the base station apparatus disclosed in Patent Document 4 includes a baseband signal processing unit, and the baseband signal processing unit includes a layer 1 processing unit.
  • the layer 1 processing unit demodulates and decodes CQI and delivery confirmation information mapped to the uplink control channel transmitted on the uplink.
  • the layer 1 processing unit maps the physical uplink control channel (PUCCH) located on both sides of the system band.
  • the received delivery confirmation information or CQI is received.
  • the layer 1 processing unit notifies the MAC processing unit of the delivery confirmation information or the CQI reception result.
  • the delivery confirmation information is one of ACK, NACK, or DTX, and the DTX means that the mobile station did not actually deliver the delivery confirmation information. If it is determined to be 'DTX', the base station apparatus retransmits the downlink shared channel.
  • the scheduling process refers to a process of selecting a mobile station that receives user data using a shared channel in the downlink of the subframe.
  • Patent Document 5 discloses a terminal device and a retransmission control method that can improve the characteristics of a response signal (ACK / NACK signal, “A / N”) having bad transmission characteristics.
  • the base station disclosed in Patent Document 5 includes a data transmission control unit, a modulation unit, a PUCCH extraction unit, and a retransmission control signal generation unit.
  • the data transmission control unit When the data transmission control unit receives NACK or DTX for downlink data transmitted in a certain downlink unit band from the retransmission control signal generation unit, the data transmission control unit outputs retained data corresponding to the downlink unit band to the modulation unit. When the data transmission control unit receives an ACK for the downlink transmitted in a certain downlink unit band from the retransmission control signal generation unit, the data transmission control unit deletes the retained data corresponding to the downlink unit band.
  • the PUCCH extraction unit extracts a signal in the PUCCH region corresponding to the bundled ACK / NACK resource that has been notified to the terminal in advance from the PUCCH signal included in the received signal. Further, the PUCCH extraction unit, from the PUCCH signal included in the received signal, the A / N associated with the CCE (Control Channel Element) occupied by the DPCCH used for transmission of the downlink allocation control information (DCI). A plurality of PUCCH regions corresponding to a resource and a plurality of A / N resources previously notified to the terminal are extracted.
  • CCE Control Channel Element
  • a “DTX-ACK” error and a “DTX-NACK” error may occur.
  • the “DTX-ACK” error and the “DTX-NACK” error mean that when the terminal determines that the PDSCH decoding status is DTX because the PDCCH is not detected, the base station determines that the PDSCH decoding status is ACK or This means that it is erroneously detected as NACK. More specifically, it is assumed that the base station determines that the PDSCH decoding status is DTX on the downlink even though the base station has transmitted PDSCH. At this time, the base station decodes HASCH information of PUSCH. For this reason, in the case of DTX, the base station decodes the PUSCH packet data as HARQ information and erroneously detects the PDSCH decoding status as ACK or NACK.
  • the base station determines that “the terminal has received PDCCH”. For this reason, the base station can schedule retransmission by transmitting only HARQ information to the terminal by PHICH without transmitting PDCCH called non-adaptive retransmission.
  • a “DTX-ACK” error and a “DTX-NACK” error may occur.
  • the terminal determines that the PDSCH is an ACK, but cannot receive the uplink control information. In this case, the terminal transmits HARQ information using PUCCH. However, since the base station attempts to determine HARQ information by decoding PUSCH, a “DTX-ACK” error or a “DTX-NACK” error may occur. is there.
  • Patent Document 1 merely discloses a technical idea of determining whether or not a packet is lost due to DTX ⁇ ACK misrecognition in a communication device on the transmission side based on the usage status of each process. Absent.
  • Patent Document 2 it is simply included in the Acknowledge / Negative Acknowledgment (ACK / NACK) resource in the uplink control channel, and the generated bundled ACK / NACK value and the detected within the reception bandwidth of the user equipment.
  • Information on the number of downlink grants received perform ACK / NACK / DTX (intermittent transmission) detection based on the received information, and detect ACK / NACK / DTX based on the ACK / NACK / DTX detection. Only the technical idea of determining whether the NACK state represents a correct ACK / NACK is disclosed.
  • Patent Document 3 merely discloses a technical idea of determining that the packet is in the DTX state when the delivery confirmation information for each packet is not received within a predetermined period.
  • Patent Document 4 when receiving acknowledgment information or CQI relating to a mobile station that does not receive user data in the uplink in the subframe, the physical uplink control channel (PUCCH) located on both sides of the system band is received. Only the technical idea of performing the reception processing of the mapped delivery confirmation information or CQI is disclosed.
  • Patent Document 5 discloses a base station that includes a PUCCH extraction unit that simply extracts a signal in a PUCCH region corresponding to a bundled ACK / NACK resource that has been previously notified to a terminal from a PUCCH signal included in a received signal. It has only been done.
  • the object of the present invention is to provide a wireless communication system in which retransmission control of a packet is performed by HARQ and reception confirmation determination is performed at the terminal, even when the terminal cannot receive the uplink control information. It is to provide a technique for avoiding a “DTX-ACK” error or a “DTX-NACK” error.
  • One aspect of the present invention is a base station in a wireless communication system in which retransmission control of packets is performed by HARQ (Hybrid Automatic Repeat reQuest), and HARQ information received from a terminal and PUSCH (Physical Uplink) transmitted from the terminal.
  • a PUSCH reception processing unit that performs reception of the HARQ information from the PUSCH and a CRC (cyclic redundancy check) check of packet data included in the PUSCH when the transmission timing of (Shared CHannel) overlaps;
  • a HARQ information determination unit that receives the HARQ information determined by the PUSCH reception processing unit and the CRC check result and performs reception confirmation at the terminal by the HARQ.
  • FIG. 7 is a block diagram which shows the structure of the LTE (Long Term Evolution) system of the related art which is one of the systems of the mobile communication system to which the present invention is applied.
  • 7 is a flowchart for explaining the operation of a terminal when the terminal receives a signal from a base station in the LTE scheme of the related technology.
  • 7 is a flowchart for explaining an operation of a base station when a terminal receives a signal from the base station in the LTE scheme of the related technology.
  • 7 is a flowchart for explaining the operation of a terminal when the terminal transmits a signal to a base station in the LTE scheme of the related technology.
  • 7 is a flowchart for explaining an operation of a base station when a terminal transmits a signal to the base station in the LTE scheme of the related technology. It is a block diagram showing the structure of the base station of the radio
  • FIG. 1 is a block diagram showing a configuration of a related technology LTE (Long Term Evolution) system, which is one of mobile communication system systems to which the present invention is applied.
  • LTE Long Term Evolution
  • the LTE scheme includes a terminal 10 that is a mobile station and a base station 20.
  • a terminal 10 that is a mobile station and a base station 20.
  • only one terminal 10 and one base station 20 are shown for convenience of explanation, but a plurality of terminals 10 and base stations 20 are actually provided.
  • a wireless line (physical channel) is set between the terminal 10 and the base station 20.
  • the radio channel (physical channel)
  • the channel from the terminal 10 to the base station 20 is called an uplink (uplink)
  • the channel from the base station 20 to the terminal 10 is called a downlink (downlink).
  • the following five physical channels are defined as downlink physical channels transmitted from the base station 20 to the terminal 10.
  • the five physical channels of the downlink are PBCH (Physical Broadcast CHannel), PDCCH (Physical Downlink Control CHannel), PCFICH (Physical Control Format Indicator CHannel), PDSCH (Physical Downlink Shared CHannel), and PHICH (Physical Hybrid-arbrid-ar. Indicator CHannel).
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PCFICH Physical Control Format Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PHICH Physical Hybrid-arbrid-ar. Indicator CHannel
  • PBCH is a channel for transmitting broadcast information.
  • the PDCCH is a channel for transmitting information for decoding downlink packet data.
  • PCFICH is a channel for transmitting information for decoding PDCCH.
  • the PDSCH is a channel for transmitting downlink packet data.
  • the PHICH is a channel for transmitting a result of CRC check of PUSCH (Physical Uplink Shared CHannel) described later.
  • the following three physical channels are defined as uplink physical channels transmitted from the terminal 10 to the base station 20.
  • the three physical channels of the uplink are composed of PRACH (Physical Random Access CHannel), PUCCH (Physical Uplink Control CHannel), and PUSCH.
  • PRACH Physical Random Access CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Control CHannel
  • PRACH is a channel for synchronizing with the uplink and sending for power control.
  • the PUCCH is a channel for transmitting HAQ information (to be described later) and CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), and RI (Rank Indicator) indicating reception quality.
  • the HARQ information is information for notifying the PDSCH decoding status as ACK (ACKnowledment) / NACK (Negative ACKnowledment) / DTX (Discontinuous Transmission).
  • the PUSCH is a channel for transmitting uplink packet data in addition to the information included in the PUCCH. Note that one of PUCCH and PUSCH is transmitted depending on the presence or absence of uplink packet data.
  • the base station 20 transmits PBCH (step S201), and then transmits PCFICH (step S202).
  • the terminal 10 first receives the PBCH transmitted from the base station 20 (step S101) and then receives the PCFICH (step S102).
  • the base station 20 transmits a PDCCH (step S203), and transmits a PDSCH (step S204).
  • the terminal 10 subsequently checks the number of OFDM (Orthogonal Frequency Division Multiplex) symbols to which the PDCCH is mapped based on the CFI value (CFI: Control Format Indicator) detected from the PCFICH.
  • CFI Control Format Indicator
  • the base station 20 transmits the PDCCH (step S203).
  • the terminal 10 when the terminal 10 does not detect the PDCCH for itself transmitted from the base station 20 (NO in step S103), the terminal 10 transmits the PUCCH (step S105).
  • step S106 when the PDCCH for itself is detected (YES in step S103), the terminal 10 starts transmission of PUSCH by the detected uplink control information (step S106).
  • the base station 20 receives the PUSCH (step S205), performs a CRC (cyclic redundancy check) on the received PUSCH (step S206), and obtains the result. It transmits to the terminal 10 by PHICH (step S207).
  • CRC cyclic redundancy check
  • the terminal 10 receives the PHICH from the base station (step S107), performs a PHICH CRC check (step S108), and performs retransmission control of uplink packet data based on the CRC result. (Step S109).
  • the DRX function is adopted for the purpose of power saving of the terminal 10.
  • the DRX function refers to a function of reducing power consumption of the terminal 10 by putting the terminal 10 to sleep in a specific state and stopping monitoring of the PDCCH.
  • the terminal 10 does not receive the PDCCH in the OnDuration section that becomes Active because there is no data to be transmitted and received.
  • the terminal 10 having the DRX function decodes the PDCCH transmitted by the base station 20 for scheduling only in the next OnDuration section.
  • a section in which terminal 10 does not decode PDCCH is referred to as a “DRX section”.
  • the terminal 10 when the terminal 10 receives the PDCCH in the OnDuration section that becomes Active, the terminal 10 can start the DRX Inactivity Timer of the terminal 10 (extend the OnDuration section that becomes Active) and continue data communication. At this time, the base station 20 also activates the DRX Inactivity Timer of the base station 20 (extends the OnDuration section that becomes Active).
  • the terminal 10 cannot receive the PDCCH (step S103 in FIG. 4). NO).
  • the OnDuration section in which only the base station 20 is active is extended, even if the base station 20 continues scheduling and transmits the PDCCH, the terminal 10 is a DRX section, and thus radio resources are wasted. .
  • the “DTX-ACK” error and the “DTX-NACK” error mean that the base station 20 erroneously detects ACK or NACK even though the terminal 10 determines that the PDSCH decoding status is DTX.
  • the base station 20 determines that the terminal 10 is in the downlink and the PDSCH decoding status is DTX even though the base station 20 has transmitted the PDSCH.
  • the base station 20 decodes HARQ information of PUSCH, not PUCCH. Therefore, when the PDSCH decoding status is DTX, the base station 20 decodes the PUSCH packet data as HARQ information, and erroneously detects the PDSCH decoding status as ACK or NACK.
  • the base station 20 determines NACK based on the PUSCH CRC check result (see step S206 in FIG. 5), the base station 20 indicates that “the terminal 10 has received the PDCCH. ("YES" in step S103 in FIG. 4). Therefore, the base station 20 can schedule retransmission by transmitting only HARQ information to the terminal 10 by PHICH without transmitting PDCCH called non-adaptive retransmission (see step S207 in FIG. 5). However, even when such control is performed, a “DTX-ACK” error and a “DTX-NACK” error may occur.
  • the technique described in the above Japanese Patent Application No. 2013-055039 can be a means for solving the case where the terminal 10 can receive the uplink control information (YES in step S103 in FIG. 4). 10 cannot be received (NO in step S103 of FIG. 4).
  • the terminal 10 determines that the PDSCH is an ACK. Assume that control information could not be received (see NO in step S103 in FIG. 4). In this case, the terminal 10 transmits HARQ information not on PUSCH but on PUCCH (see step S105 in FIG. 4). However, the base station 20 attempts to determine HARQ information by decoding the PUSCH (see steps S205 and S206 in FIG. 5). For this reason, a “DTX-ACK” error or a “DTX-NACK” error may occur.
  • the object of the present invention is to provide a wireless communication system in which retransmission control of a packet is performed by HARQ and reception confirmation determination is performed at the terminal, even when the terminal cannot receive the uplink control information. It is to provide a technique for avoiding a “DTX-ACK” error or a “DTX-NACK” error.
  • An embodiment of the present invention is a base station including a PUSCH reception processing unit, a PUCCH reception processing unit, and a HARQ information determination unit in a wireless communication system in which retransmission control of packets is performed by HARQ.
  • the PUSCH reception processing unit performs CRC check determination of packet data included in the PUSCH.
  • the PUSCH reception processing unit receives HARQ information from PUSCH.
  • the PUCCH reception processing unit receives HARQ information from the PUCCH when transmission timings of HARQ information and PUSCH do not overlap.
  • the HARQ information determination unit receives the HARQ information determined by the PUSCH reception processing unit and the PUCCH reception processing unit and the CRC check result, thereby confirming reception at the terminal by HARQ.
  • the base station transmits a PDCCH containing only uplink control information to the terminal.
  • the PUSCH reception processing unit performs CRC check determination, and the HARQ information determination unit determines that the terminal has transmitted PUSCH only when the CRC check result is OK, and activates DRX Inactivity Timer. This is to avoid a “DTX-ACK” error or a “DTX-NACK” error when determining PUSCH reception when the terminal has not received the PDCCH.
  • the base station transmits a PDSCH and a PDCCH for uplink control information to the terminal.
  • the PUSCH reception processing unit performs the CRC check determination, and the HARQ information determination unit determines that the terminal has transmitted the PUSCH only when the CRC check result is OK, and the DRX Inactivity Timer.
  • the PUSCH reception processing unit performs CRC check determination, and the HARQ information determination unit performs DRX only when the CRC check result is OK and the HARQ information received from the terminal is determined to be ACK or NACK. Start Inactivity Timer.
  • the terminal may receive the PDCCH and activate the DRX Inactivity Timer of the terminal. For this reason, at the time of retransmission, the base station does not activate the DRXDRInactivity ⁇ Timer of the base station, thereby avoiding assigning useless resources to the terminal due to DRX state mismatch.
  • the base station of the above embodiment is represented by a method, a terminal corresponding to the base station, a method executed by the terminal, a wireless communication system including the base station and the terminal, and these methods as a computer
  • a program to be executed by the program and a recording medium on which these programs are recorded are also effective as an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the configuration of the base station 20 of the wireless communication system according to the first specific example of the present invention.
  • the base station 20 includes an antenna unit 101, a signal receiving unit 102, a PUCCH reception processing unit 103, a PUSCH reception processing unit 104, a scheduling processing unit 106, a HARQ information determination unit 105, a transmission A packet data processing unit 107, a PDSCH transmission data generation unit 108, and a signal transmission unit 109 are provided.
  • the signal receiving unit 102 includes first to Nth reception processing units 102-1 to 102-N (N is a positive integer) corresponding to each mobile station (terminal) 10.
  • the first to Nth reception processing units 102-1 to 102-N separate the uplink signal from the mobile station 10 received by the antenna unit 101 into the reception signal for each mobile station 10, and respectively convert them into baseband signals. Convert. Then, the first to Nth reception processing units 102-1 to 102-N send the converted baseband signals to the PUCCH reception processing unit 103 and the PUSCH reception processing unit 104.
  • the PUCCH reception processing unit 103 extracts downlink reception signal quality (CQI), HARQ reception information, and uplink data transmission request from the input baseband signal. PUCCH reception processing section 103 then sends HARQ reception information to HARQ information determination section 105.
  • CQI downlink reception signal quality
  • HARQ reception information uplink data transmission request from the input baseband signal.
  • PUCCH reception processing section 103 then sends HARQ reception information to HARQ information determination section 105.
  • the PUCCH reception processing unit 103 receives HARQ information from the PUCCH transmitted from the terminal 10 when the transmission timing of the HARQ information received from the terminal 10 and the PUSCH transmitted from the terminal 10 do not overlap.
  • the PUSCH reception processing unit 104 extracts uplink data packets, downlink received signal quality (CQI), and HARQ reception information from the mobile station 10. Then, the PUSCH reception unit 104 sends HARQ reception information to the HARQ information determination unit 105. Also, the PUSCH reception processing unit 104 performs CRC check on the uplink data packet received from the mobile station 10 and sends the CRC check result to the HARQ information determination unit 105.
  • CQI downlink received signal quality
  • the PUSCH reception processing unit 104 receives the HARQ information from the PUSCH and also performs CRC of the packet data included in the PUSCH. Make a check decision.
  • the HARQ information determination unit 105 holds HARQ reception information for the PDSCH received from the PUCCH reception processing unit 103 and the PUSCH reception processing unit 104. Also, the HARQ information determination unit 105 holds the PUSCH CRC check result received from the PUSCH reception processing unit 104. That is, the HARQ information determination unit 105 operates as a holding unit that holds HARQ reception information and a CRC check result. Furthermore, the HARQ information determination unit 105 determines the HARQ reception result for each downlink and uplink with each mobile station 10 managed from the received (held) information. HARQ information determination section 105 then sends the HARQ reception result to scheduling processing section 106.
  • the scheduling processing unit 106 determines retransmission control of packet data and a DRX state based on the HARQ reception result input from the HARQ information determination unit 105. In particular, the scheduling processing unit 106 performs scheduling and allocates radio resources when On ⁇ Duration or Inactivity Timer is active in both downlink and uplink based on the determined DRX state.
  • the scheduling processing unit 106 sends the resource allocation result to the PUCCH reception processing unit 103, the PUSCH reception processing unit 104, the PDSCH transmission data generation unit 108, and the signal transmission unit 109.
  • the PUCCH reception processing unit 103 and the PUSCH reception processing unit 104 perform data reception processing based on the input resource allocation result.
  • the PDSCH transmission data generation unit 108 performs data transmission processing based on the input resource allocation result.
  • the transmission packet data processing unit 107 sends transmission data (downlink data) for each mobile station 10 to the PDSCH transmission data generation unit 108.
  • the PDSCH transmission data generation unit 108 transmits the packet data generated by the transmission packet data processing unit 107 to the selected mobile station 10.
  • the signal transmission unit 109 generates and transmits a PDCCH to the selected mobile station 10 based on the information input from the scheduling processing unit 106 and the PDSCH transmission data generation unit 108. Further, the signal transmission unit 109 transmits the packet data generated by the transmission packet data processing unit 108 as PDSCH.
  • FIG. 7 is a flowchart showing the HARQ determination operation and the DRX Inactivity Timer activation determination operation related to the downlink in the HARQ information determination unit 105 and the scheduling processing unit 106.
  • the base station 20 since the base station 20 performs scheduling of the PDSCH and the PUSCH at the same time, and the HARQ information and the PUSCH transmission timing overlap, the base station 20 receives the HARQ information for the PDSCH from the PUSCH.
  • the DRXDRInactivity Timer activation determination procedure in the embodiment is shown.
  • the scheduling processing unit 106 determines whether the scheduled PDSCH is initial transmission or retransmission in the HARQ process (step S301).
  • the HARQ information determination unit 105 determines whether the CRC is OK from the CRC check result of the PUSCH input from the PUSCH reception processing unit 104. (Step S302).
  • the HARQ information determination unit 105 determines HARQ information for the PDSCH scheduled simultaneously with the PUSCH input from the PUSCH reception processing unit 104 (step S303). .
  • the HARQ information determination unit 105 determines that the PDCCH for allocating the PDSCH resource has been received by the terminal 10, and activates DRX Inactivity Timer ( Step S304).
  • step S301 if it is determined in step S301 that the PDSCH is a retransmission, the HARQ information determination unit 105 does not start DRX Inactivity Timer (step S305). The reason is to avoid starting the DRXDRInactivity Timer only for the base station 20 because the PDCCH for allocating the PDSCH resource may be received by the terminal 10 at the time of initial transmission.
  • step S302 If the CRC check result is NG (NO) in step S302, the HARQ information determination unit 105 does not start the DRX Inactivity Timer (step S305). The reason is that it is not possible to accurately determine that the terminal 10 has received the PDCCH for allocating PDSCH resources, so that only the base station 20 does not activate the DRX Inactivity Timer.
  • the HARQ information determination unit 105 determines that the terminal 10 has not received the PDCCH for allocating the PDSCH resource, and does not activate the DRX Inactivity Timer (step S305). .
  • FIG. 8 is a flowchart showing the HARQ determination operation and DRX Inactivity Timer activation determination operation related to the uplink in the HARQ information determination unit 105 and the scheduling processing unit 106.
  • FIG. 8 shows a DRX Inactivity Timer activation determination procedure in the first embodiment when the base station 20 performs PUSCH scheduling and the base station 20 receives the PUSCH.
  • the scheduling processing unit 106 determines whether the scheduled PUSCH is first transmission or retransmission in the HARQ process (step S401).
  • the HARQ information determination unit 105 determines the PUSCH DTX determination result input from the PUSCH reception processing unit 104 (step S402).
  • the HARQ information determination unit 105 determines whether the CRC is OK from the PUSCH CRC check result input from the PUSCH reception processing unit 104. (Step S403).
  • step S404 when it is determined in step S403 that the CRC check result is OK, the HARQ information determination unit 105 determines that the PDCCH for allocating PUSCH resources has been received by the terminal 10, and activates DRX Inactivity Timer (step S404).
  • step S401 if it is determined in step S401 that the PUSCH is a retransmission, the HARQ information determination unit 105 does not start DRX Inactivity Timer (step S405).
  • the PDCCH for allocating PUSCH resources may be received at the time of initial transmission by the terminal 10, so that only the base station 20 avoids starting the DRX Inactivity Timer.
  • the HARQ information determination unit 105 does not start DRX Inactivity Timer (step S405). The reason is that it is determined that the terminal 10 has not received the PDCCH for allocating the PUSCH resource and only the base station 20 activates the DRX Inactivity Timer.
  • step S403 If the CRC check result is NG (NO) in step S403, the HARQ information determination unit 105 does not start the DRX Inactivity Timer (step S405). The reason is that it is not possible to accurately determine that the terminal 10 has received the PDCCH for allocating PUSCH resources, so that only the base station 20 avoids starting the DRX Inactivity Timer.
  • the first effect is that the possibility of scheduling useless resources can be suppressed.
  • the reason is as follows. Due to a “DTX-ACK” error and a “DTX-NACK” error between the base station 20 and the terminal 10, it is erroneously determined that the terminal 10 has received the PDCCH transmitted from the base station 20 for scheduling by the terminal 10. Therefore, since the base station 20 activates DRX Inactivity Timer, there is a possibility that useless resources are scheduled. In order to suppress this, in the downlink, erroneous determination is made by determining the activation of the DRX Inactivity Timer based on the CRC check result of the PUSCH scheduled simultaneously with the scheduling of the PDSCH and the HARQ information transmitted by the terminal 10. It is because it can suppress.
  • the second effect is that erroneous determination of “DTX-NACK” error can be suppressed.
  • the reason for this is that, as described above, in the uplink, activation of DRX Inactivity Timer is determined based on the CRC check result of PUSCH. Since the probability that the CRC is accidentally determined to be OK is quite low, it is not necessary to consider the occurrence of the “DTX-ACK” error.
  • a third effect is that useless resource allocation can be suppressed during retransmission.
  • the reason is that the start timing of the DRX Inactivity Timer with respect to the terminal 10 is suppressed by not starting the DRX Inactivity Timer regardless of the HARQ determination or the PUSCH CRC check result.
  • FIG. 9 is a flowchart showing HARQ determination operation and CQI reception determination operation related to the uplink in the base station 20 of the wireless communication system of the second specific example of the present invention.
  • FIG. 9 is a flowchart showing the reception determination operation of CQI information related to the uplink in the HARQ information determination unit 105 and the scheduling processing unit 106.
  • FIG. 9 shows a CQI reception determination procedure in the case where the base station 20 receives CQI information on the PUSCH when the base station 20 performs scheduling of PUSCH overlapping with periodic CQI transmission timing.
  • step S ⁇ b> 501 the HARQ information determination unit 105 determines whether or not the CRC is OK from the PUSCH CRC check result input from the PUSCH reception processing unit 104.
  • the HARQ information determination unit 105 determines that the terminal 10 has received the PDCCH for allocating the PUSCH resource, and receives the CQI information included in the PUSCH. (Step S502).
  • the HARQ information determination unit 105 does not receive CQI information (step S503). The reason is to avoid erroneous detection of CQI because it cannot be accurately determined that the terminal 10 has received the PDCCH for allocating PUSCH resources.
  • the effect of the second specific example of the present invention is that erroneous detection of CQI information can be suppressed.
  • the reason is as follows.
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the base station 20 may erroneously detect the CQI information.
  • HARQ Hybrid Automatic Repeat reQuest
  • the HARQ information determination unit determines that the terminal has transmitted the PUSCH only when the CRC check result is OK, and starts a DRX Inactivity Timer.
  • the base station according to appendix 1.
  • the HARQ information determination unit determines that the terminal has transmitted the PUSCH only for the uplink when the CRC check result is OK, and activates the DRX Inactivity Timer.
  • the base station according to appendix 1.
  • the HARQ information determination unit activates a DRX Inactivity Timer only when the CRC check result is OK for the downlink and the HARQ information received from the terminal is determined to be ACK or NACK.
  • the base station according to appendix 1.
  • the HARQ information determination unit is the base station according to Supplementary Note 3 or 4, wherein the DRX Inactivity Timer is not activated.
  • a PUCCH reception processor that receives the HARQ information from a PUCCH (Physical Uplink Control CHannel) transmitted from the terminal when the HARQ information and the PUSCH transmission timing do not overlap;
  • the HARQ information determination unit performs reception confirmation at the terminal by the HARQ by receiving the HARQ information and the CRC check result determined by the PUSCH reception processing unit and the PUCCH reception processing unit.
  • the base station according to any one of appendices 1 to 6.
  • the HARQ information determination unit receives CQI information included in the PUSCH only when the CRC check result is determined to be OK.
  • the base station according to appendix 1.
  • Appendix 9 A mobile communication system comprising the base station according to any one of appendices 1 to 8 and a terminal that communicates with the base station.
  • HARQ Hybrid Automatic Repeat reQuest
  • PUSCH Physical Uplink Shared CHannel
  • the HARQ information is received from the PUSCH and packet data included in the PUSCH
  • CRC cyclic redundancy check
  • the HARQ information determination step determines that the terminal has transmitted the PUSCH only when the CRC check result is OK, and starts a DRX Inactivity Timer.
  • the reception confirmation method according to attachment 10.
  • the HARQ information determination step determines that the terminal has transmitted the PUSCH only for the uplink when the CRC check result is OK, and activates the DRX Inactivity Timer.
  • the reception confirmation method according to attachment 10.
  • the HARQ information determination step activates the DRX Inactivity Timer only when the CRC check result is OK for the downlink and the HARQ information received from the terminal is determined to be ACK or NACK.
  • the reception confirmation method according to attachment 10.
  • the HARQ information determination step receives the HARQ information and the CRC check result determined in the PUSCH reception processing step and the PUSCCH reception processing step, thereby confirming reception at the terminal by the HARQ.
  • the reception confirmation method according to any one of appendices 10 to 15.
  • the HARQ information determination step receives CQI information included in the PUSCH only when the CRC check result is determined to be OK.
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ information received from the terminal overlaps with a PUSCH (Physical Uplink Shared CHannel) transmission timing transmitted from the terminal
  • the HARQ information is received from the PUSCH and packet data included in the PUSCH PUSCH reception processing procedure for performing CRC (cyclic redundancy check) check determination, HARQ information determination procedure for confirming reception at the terminal by the HARQ by receiving the HARQ information determined in the PUSCH reception processing procedure and the CRC check result;
  • CRC cyclic redundancy check

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

[課題]アップリンク制御情報を端末が受信できなかった場合でも、「DTX-ACK」エラーまたは「DTX-NACK」エラーを回避すること。 [解決手段]HARQによりパケットの再送制御が行われる無線通信システムにおける基地局(20)は、端末(10)から受信したHARQ情報と端末(10)から送信されるPUSCHの送信タイミングとが重なったときに、PUSCHからHARQ情報の受信を行うと共に、PUSCHに含まれるパケットデータのCRCチェック判定を行うPUSCH受信処理部(104)と、PUSCH受信処理部で判定したHARQ情報とCRCチェック結果とを受信することで、HARQによる端末(10)での受信確認を行うHARQ情報判定部(105)と、を備える。

Description

基地局、受信確認方法、およびプログラムが記憶された記憶媒体
 本発明は、移動通信システムにおける基地局及び受信確認方法、プログラムが記憶された記憶媒体に関し、HARQ(Hybrid Automatic Repeat reQuest)により送達確認が行われる移動通信技術に関する。特に、本発明は、LTE (Long Term Evolution)方式における端末の電力消費の抑制を目的としたDRX(Discontinuous Reception)機能に相当する、HARQの送達状況から基地局と端末とのDRX状態を一致させて、無駄な送受信処理を省く機会を与える移動通信技術に関する。
 移動通信システムの方式の1つであるLTE (Long Term Evolution)方式で用いられる物理チャネルは、基地局から端末に送信されるダウンリンクの物理チャネルとして、次に述べる5つの物理チャネルが規定されている。すなわち、ダウンリンクの5つの物理チャネルは、PBCH(Physical Broadcast CHannel)、PDCCH(Physical Downlink Control CHannel)、PCFICH(Physical Control Format Indicator CHannel)、PDSCH(Physical Downlink Shared CHannel)、およびPHICH(Physical Hybrid-arq(automatic repeat request) Indicator CHannel)から成る。
 PBCHは、報知情報を送信するためのチャネルである。PDCCHは、ダウンリンクのパケットデータをデコードするための情報を送信するためのチャネルである。PCFICHは、PDCCHをデコードするための情報を送信するためのチャネルである。PDSCHは、ダウンリンクのパケットデータを送信するためのチャネルである。PHICHは、後述するPUSCH(Physical Uplink Shared CHannel)のCRC(Cyclic Redundancy Check)のチェックの結果を送信するためのチャネルである。
 また、LTE方式では、端末から基地局に送信されるアップリンクの物理チャネルとして、次に述べる3つの物理チャネルが規定されている。すなわち、アップリンクの3つの物理チャネルは、PRACH(Physical Random Access CHannel)、PUCCH(Physical Uplink Control CHannel)、およびPUSCHから成る。
 PRACHは、アップリンクと同期を取り、電力制御を行うために送るためのチャネルである。PUCCHは、後述するHARQ情報や受信品質を示すCQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)やRI(Rank Indicator)を送信するためのチャネルである。HARQ情報は、PDSCHのデコード状況をACK(ACKnowledment)/NACK(Negative ACKnowledment)/DTX(Discontinuous Transmission)として通知するための情報である。PUSCHは、PUCCHに含まれる情報に加え、アップリンクのパケットデータを送信するためのチャネルである。なお、PUCCHとPUSCHとは、アップリンクのパケットデータの有無により、どちらか一方が送信される。
 LTE方式において、端末が基地局から信号を受信する際の動作は、下記のようになっている。端末は、先ず、基地局から送信されるPBCHを受信した後に、PCFICHを受信する。引き続いて、端末は、PCFICHから検出したCFI値(CFI:Control Format Indicator)に基づいて、PDCCHがマッピングされているOFDM(Orthogonal Frequency Division Multiplex)シンボル数を確認し、自身向けのPDCCHの検出を行う。そして、端末は、自身向けのPDCCHが検出できたら、検出したダウンリンク制御情報によりPDSCHの受信を開始する。
 また、LTE方式において、端末が基地局に信号を送信する際の動作は、下記のようになっている。端末は、基地局から送信される自身向けのPDCCHが検出されなかった場合、PUCCHを送信する。一方、自身向けのPDCCHが検出された場合、端末は、検出したアップリンク制御情報によりPUSCHの送信を開始する。また、この場合、基地局は、受信したPUSCHに対してCRC(Cyclic Redundancy Check)によるチェックを行い、その結果をPHICHで端末に送信する。端末は、基地局からのPHICHのCRCチェックの結果を基に、アップリンクのパケットデータの再送制御を行う。
 LTE方式において、端末の省電力を目的としてDRX機能が採用されている。DRX機能とは、特定の状態で端末を休眠させ、PDCCHのモニタリングを停止させることで、端末の電力消費を低減させる機能をいう。具体的には、送受信するデータがないために、ActiveとなるOnDuration区間でPDCCHを端末が受信しなかったとする。この場合、DRX機能を有する端末は、スケジューリングのために基地局が送信するPDCCHを、次のOnDuration区間においてしかデコードしない。端末がPDCCHをデコードしない区間を「DRX区間」と呼ぶ。一方、Active区間でPDCCHを端末が受信した場合、端末は、DRX Inactivity Timerを起動し(Active区間を延長し)、データ通信を継続できる。
 無線上でのエラー等により、基地局が端末に対してPDCCHを送信したにも関わらず、端末がPDCCHを受信できなかったとする。この場合に、基地局のみActive区間を延長してしまうと、基地局がスケジューリングを継続し、PDCCHを送信しても、端末はDRX区間のため、無線リソースが無駄となる。
 本発明に関連する先行技術が種々提案されている。
 例えば、特許文献1には、HARQによるパケットの再送制御について記載されている。特許文献1に開示されている通信システムでは、既存の通信装置に影響を及ぼすこと無く、DTX→ACK誤認に伴うパケットの欠落を検出している。ここで、DTX→ACK誤認は、送信側の通信装置が、DTX、すなわち受信側の通信装置からの再送要求がないことをACKとして誤認することであり、主に、受信側の通信装置における制御チャネルのデコード失敗に起因して発生する。
 特許文献1に開示されている通信システムは、シーケンス番号をそれぞれ付加した、互いに異なるパケットを送信する送信側の通信装置と、パケットを受信する受信側の通信装置とで構成される。受信側の通信装置は、受信部と、判定部とを備えている。受信部は、複数のプロセスを用いて、パケットを受信する。判定部は、シーケンス番号に基づき、受信部におけるパケットの内のいずれか一つのパケットの受信欠落を検出する。この場合、判定部は、各プロセスの使用状況に基づき、送信側の通信装置におけるDTX→ACK誤認に伴って当該一のパケットが欠落したか否かを判定する。
 また、特許文献2には、DTX対ACKエラーの確率を許容可能レベルに制限することができる技術が開示されている。特許文献2に開示されている基地局は、インターフェイスとプロセッサとを有する。インターフェイスは、アップリンク制御チャネルにおいて肯定応答/否定応答(ACK/NACK)リソースに含まれ、生成されたバンドル化されたACK/NACK値及びユーザ装置の受信帯域幅内の検出されたダウンリンクグラントの数に関する情報を受信するように構成されている。プロセッサは、受信された情報に基づいてACK/NACK/DTX(断続的送信)検出を実行し、このACK/NACK/DTX検出に基づいて、検出したACK/NACK状態が正しいACK/NACKを表すかどうかを判定するように構成される。
 特許文献3には、送信側装置においてHARQフィードバック物理チャネルを介して送信される送達確認情報を誤検出した場合に、パケットの欠落を最小限に留めることができる再送制御方法及び受信側装置が開示されている。特許文献3に開示されている送信側装置は、MAC多重部と、MACヘッダ付与部と、共有物理制御チャネル受信部とを備える。受信側装置は、共有物理制御チャネル送信部を備える。
 MACヘッダ付与部は、MAC多重部から送信されたユーザデータに対して、MACヘッダ及び誤り訂正符号(CRC等)を付与することによって、共有物理データチャネルに多重されるトランスポートチャネル上で送信されるプロトコルデータユニット(パケット)を生成する。共有物理制御チャネル受信部は、共有物理制御チャネル(HARQフィードバック物理チャネル)を介してACK/NACKといった送達確認情報を受信して、該当するHARQプロセスに通知する。共有物理制御チャネル受信部は、所定期間内に、各パケットに対する送達確認情報を受信しない場合、DTX状態であると判断する。共有物理制御チャネル送信部は、各HARQプロセスから通知された送達確認情報(ACK/NACK)を、共有物理制御チャネル(HARQフィードバック物理チャネル)を介して送信する。
 特許文献4には、LTEの下りリンクと上りリンクとにおいて、適切にスケジューリング処理やHARQの処理を行うことのできる基地局装置及び通信制御方法が開示されている。特許文献4に開示されている、基地局装置はベースバンド信号処理部を含み、ベースバンド信号処理部はレイヤー1処理部を含む。
 レイヤー1処理部は、上りリンクで送信される上りリンク制御チャネルにマッピングされるCQIや送達確認情報の復調及び復号を行う。レイヤー1処理部は、当該サブフレームにおいて、上りリンクにおいてユーザデータを受信しない移動局に関する送達確認情報またはCQIを受信する場合に、システム帯域の両側に位置する物理上りリンク制御チャネル(PUCCH)にマッピングされた送達確認情報またはCQIの受信処理を行う。そして、レイヤー1処理部は、上記送達確認情報またはCQIの受信結果をMAC処理部に通知する。
 上記送達確認情報は、ACK、NACKまたはDTXのいずれかであり、上記DTXは、「移動局は実際には送達確認情報を送達しなかった」、ということを意味する。‘DTX’であると判定された場合には、基地局装置は、下りリンクの共有チャネルを再送する。なお、スケジューリング処理とは、当該サブフレームの下りリンクにおいて共有チャネルを用いてユーザデータの受信を行う移動局を選別する処理のことを指す。
 特許文献5には、悪い伝送特性を有する応答信号(ACK/NACK信号、「A/N」)の特性を改善することができる端末装置及び再送制御方法が開示されている。特許文献5に開示されている基地局は、データ送信制御部と、変調部と、PUCCH抽出部と、再送制御信号生成部とを含む。
 データ送信制御部は、再送制御信号生成部から或る下り単位バンドで送信した下り回線データに対するNACK又はDTXを受け取ると、この下り単位バンドに対応する保持データを変調部へ出力する。データ送信制御部は、再送制御信号生成部から或る下り単位バンドで送信した下り回線に対するACKを受け取ると、この下り単位バンドに対応する保持データを削除する。
 PUCCH抽出部は、受信信号に含まれるPUCCH信号から、予め端末に通知してある束ACK/NACKリソースに対応するPUCCH領域の信号を抽出する。また、PUCCH抽出部は、受信信号に含まれるPUCCH信号から、下り割当制御情報(DCI)の送信に用いられたDPCCHが占有していたCCE(Control Channel Element)に対応付けられているA/Nリソース及び予め端末に通知してある複数のA/Nリソースに対応する複数のPUCCH領域を抽出する。
特開2011-061667号公報 特表2012-517164号公報 国際公開第2008/096877号 国際公開第2008/105421号 国際公開第2012/035712号
 基地局が端末に、PDSCHとアップリンク制御情報(Uplink Grant)のためのPDCCHとを送信した場合に、「DTX-ACK」エラー及び「DTX-NACK」エラーが発生する場合がある。
 ここで、「DTX-ACK」エラー及び「DTX-NACK」エラーとは、端末がPDCCHを未検出のためにPDSCHのデコード状況をDTXと判断したときに、基地局がPDSCHのデコード状況をACKまたはNACKと誤検出してしまうことを意味する。詳述すると、基地局はPDSCHを送信したにもかかわらず、端末がダウンリンクでPDSCHのデコード状況をDTXと判断したとする。このとき、基地局はPUSCHのHARQ情報をデコードする。このため、DTXの場合においては、基地局はPUSCHのパケットデータをHARQ情報としてデコードし、PDSCHのデコード状況をACKまたはNACKと誤検出してしまう。
 また、一般的に、アップリンクのHARQ再送制御において、基地局がPUSCHのCRCチェック結果をNACKと判定した場合、基地局は、「端末がPDCCHを受信した」と判断する。このため、基地局は、Non-adaptive再送と呼ばれるPDCCHを送信せずに、PHICHでHARQ情報だけを端末に送信し、再送をスケジューリングすることができる。
 しかしながら、このような一般的な構成において、「DTX-ACK」エラー及び「DTX-NACK」エラーが発生することがある。
 例えば、基地局が端末に、PDSCHとアップリンク制御情報のためのPDCCHとを送信した場合、端末がPDSCHをACKと判断したが、アップリンク制御情報を受信できなかったとする。この場合、端末はHARQ情報をPUCCHで送信するが、基地局はPUSCHをデコードしてHARQ情報を判断しようとするため、「DTX-ACK」エラーまたは「DTX-NACK」エラーが発生する可能性がある。
 特許文献1には、単に、各プロセスの使用状況に基づき、パケットが送信側の通信装置におけるDTX→ACK誤認に伴って欠落したか否かを判定する、技術的思想が開示されているに過ぎない。
 特許文献2には、単に、アップリンク制御チャネルにおける肯定応答/否定応答(ACK/NACK)リソースに含まれ、生成されたバンドル化されたACK/NACK値及びユーザ装置の受信帯域幅内の検出されたダウンリンクグラントの数に関する情報を受信し、受信された情報に基づいてACK/NACK/DTX(断続的送信)検出を実行し、このACK/NACK/DTX検出に基づいて、検出されたACK/NACK状態が正しいACK/NACKを表すかどうかを判定する、技術的思想が開示されているに過ぎない。
 特許文献3には、単に、所定期間内に、各パケットに対する送達確認情報を受信しない場合、DTX状態であると判断する、技術的思想が開示されているに過ぎない。
 特許文献4には、単に、サブフレームにおいて、上りリンクにおいてユーザデータを受信しない移動局に関する送達確認情報またはCQIを受信する場合に、システム帯域の両側に位置する物理上りリンク制御チャネル(PUCCH)にマッピングされた送達確認情報またはCQIの受信処理を行う、技術的思想が開示されているに過ぎない。
 特許文献5には、単に、受信信号に含まれるPUCCH信号から、予め端末に通知してある束ACK/NACKリソースに対応するPUCCH領域の信号を抽出するPUCCH抽出部を備えた、基地局が開示されているに過ぎない。
 そこで、本発明の目的は、上記課題を考慮し、HARQによりパケットの再送制御、端末での受信確認判断が行われる無線通信システムにおいて、アップリンク制御情報を端末が受信できなかった場合でも、「DTX-ACK」エラーまたは「DTX-NACK」エラーを回避する技術を提供することにある。
 本発明の1つの態様は、HARQ(Hybrid Automatic Repeat reQuest)によりパケットの再送制御が行われる無線通信システムにおける基地局であって、端末から受信したHARQ情報と前記端末から送信されるPUSCH(Physical Uplink Shared CHannel)の送信タイミングとが重なったときに、前記PUSCHから前記HARQ情報の受信を行うと共に、前記PUSCHに含まれるパケットデータのCRC(cyclic redundancy check)チェック判定を行うPUSCH受信処理部と、前記PUSCH受信処理部で判定した前記HARQ情報と前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行うHARQ情報判定部と、を備える。
 本発明によれば、アップリンク制御情報を端末が受信できなかった場合でも、「DTX-ACK」エラーまたは「DTX-NACK」エラーを回避することができる。
本発明が適用される移動通信システムの方式の1つである、関連技術のLTE (Long Term Evolution)方式の構成を示すブロック図である。 関連技術のLTE方式において、端末が基地局から信号を受信する際の端末の動作を説明するためのフローチャートである。 関連技術のLTE方式において、端末が基地局から信号を受信する際の基地局の動作を説明するためのフローチャートである。 関連技術のLTE方式において、端末が基地局に信号を送信する際の端末の動作を説明するためのフローチャートである。 関連技術のLTE方式において、端末が基地局に信号を送信する際の基地局の動作を説明するためのフローチャートである。 本発明の第1の具体例に係る無線通信システムの基地局の構成を表したブロック図である。 本発明の第1の具体例に係る無線通信システムの基地局におけるダウンリンクに関するHARQ判定動作及びDRX Inactivity Timer起動判定動作を表したフローチャートである。 本発明の第1の具体例に係る無線通信システムの基地局におけるアップリンクに関するHARQ判定動作及びDRX Inactivity Timer起動判定動作を表したフローチャートである。 本発明の第2の具体例の無線通信システムの基地局におけるアップリンクに関するHARQ判定動作及びCQI受信判定動作を表したフローチャートである。
[関連技術]
 本発明の理解を容易にするために、まず、関連技術について説明する。
 図1は、本発明が適用される移動通信システムの方式の1つである、関連技術のLTE (Long Term Evolution)方式の構成を示すブロック図である。
 図1に示されるように、LTE方式は、移動局である端末10と、基地局20とを有する。なお、図1では、端末10および基地局20は、説明の便宜のためにそれぞれ1つだけ図示されているが、実際にはそれぞれ複数設けられている。
 端末10と基地局20との間には無線回線(物理チャネル)が設定される。無線回線(物理チャネル)において、端末10から基地局20への回線は上り回線(アップリンク)と呼ばれ、基地局20から端末10への回線は下り回線(ダウンリンク)と呼ばれる。
 LTE方式で用いられる物理チャネルは、基地局20から端末10に送信されるダウンリンクの物理チャネルとして、次に述べる5つの物理チャネルが規定されている。
 すなわち、ダウンリンクの5つの物理チャネルは、PBCH(Physical Broadcast CHannel)、PDCCH(Physical Downlink Control CHannel)、PCFICH(Physical Control Format Indicator CHannel)、PDSCH(Physical Downlink Shared CHannel)、およびPHICH(Physical Hybrid-arq Indicator CHannel)から成る。
 PBCHは、報知情報を送信するためのチャネルである。PDCCHは、ダウンリンクのパケットデータをデコードするための情報を送信するためのチャネルである。PCFICHは、PDCCHをデコードするための情報を送信するためのチャネルである。PDSCHは、ダウンリンクのパケットデータを送信するためのチャネルである。PHICHは、後述するPUSCH(Physical Uplink Shared CHannel)のCRCチェックの結果を送信するためのチャネルである。
 また、LTE方式では、端末10から基地局20に送信されるアップリンクの物理チャネルとして、次に述べる3つの物理チャネルが規定されている。
 すなわち、アップリンクの3つの物理チャネルは、PRACH(Physical Random Access CHannel)、PUCCH(Physical Uplink Control CHannel)、およびPUSCHから成る。
 PRACHは、アップリンクと同期を取り、電力制御を行うために送るためのチャネルである。PUCCHは、後述するHARQ情報や受信品質を示すCQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)やRI(Rank Indicator)を送信するためのチャネルである。HARQ情報は、PDSCHのデコード状況をACK(ACKnowledment)/NACK(Negative ACKnowledment)/DTX(Discontinuous Transmission)として通知する情報である。PUSCHは、PUCCHに含まれる情報に加え、アップリンクのパケットデータを送信するためのチャネルである。なお、PUCCHとPUSCHとは、アップリンクのパケットデータの有無により、どちらか一方が送信される。
 次に、図2および図3を参照して、関連技術のLTE方式において、端末10が基地局20から信号を受信する際の動作について説明する。
 図3に示されるように、基地局20は、PBCHを送信し(ステップS201)、その後にPCFICHを送信する(ステップS202)。
 一方、図2に示されるように、端末10は、先ず、基地局20から送信されるPBCHを受信した(ステップS101)後に、PCFICHを受信する(ステップS102)。
 図3に示されるように、基地局20は、PDCCHを送信し(ステップS203)、PDSCHを送信する(ステップS204)。
 図2に示されるように、引き続いて、端末10は、PCFICHから検出したCFI値(CFI:Control Format Indicator)に基づいて、PDCCHがマッピングされているOFDM(Orthogonal Frequency Division Multiplex)シンボル数を確認することにより、自身向けのPDCCHの検出を行う(ステップS103)。そして、端末10は、自身向けのPDCCHが検出できたら(ステップS103のYES)、検出したダウンリンク制御情報によりPDSCHの受信を開始する(ステップS104)。
 次に、図4および図5を参照して、関連技術のLTE方式において、端末10が基地局20に信号を送信する際の動作について説明する。
 図5に示されるように、基地局20はPDCCHを送信する(ステップS203)。
 図4を参照して、端末10は、基地局20から送信される自身向けのPDCCHが検出されなかった場合(ステップS103のNO)、PUCCHを送信する(ステップS105)。
 一方、自身向けのPDCCHが検出された場合(ステップS103のYES)、端末10は、検出したアップリンク制御情報によりPUSCHの送信を開始する(ステップS106)。
 また、この場合、図5に示されるように、基地局20は、PUSCHを受信し(ステップS205)、受信したPUSCHに対してCRC(cyclic redundancy check)チェックを行い(ステップS206)、その結果をPHICHで端末10に送信する(ステップS207)。
 図4に戻って、端末10は、基地局からPHICHを受信し(ステップS107)、PHICHのCRCチェックを行い(ステップS108)、そのCRC結果を基に、アップリンクのパケットデータの再送制御を行う(ステップS109)。
 LTE方式において、端末10の省電力を目的としてDRX機能が採用されている。DRX機能とは、特定の状態で端末10を休眠させ、PDCCHのモニタリングを停止させることで、端末10の電力消費を低減させる機能をいう。
 具体的には、送受信するデータがないために、ActiveとなるOnDuration区間でPDCCHを端末10が受信しなかったとする。この場合、DRX機能を有する端末10は、スケジューリングのために基地局20が送信するPDCCHを、次のOnDuration区間においてしかデコードしない。端末10がPDCCHをデコードしない区間を「DRX区間」と呼ぶ。
 一方、ActiveとなるOnDuration区間でPDCCHを端末10が受信した場合、端末10は、当該端末10のDRX Inactivity Timerを起動し(ActiveとなるOnDuration区間を延長し)、データ通信を継続できる。尚、このとき、基地局20も、当該基地局20のDRX Inactivity Timerを起動する(ActiveとなるOnDuration区間を延長する)。
 無線上でのエラー等により、基地局20が端末10に対してPDCCHを送信した(図5のステップS203参照)にも関わらず、端末10がPDCCHを受信できなかったとする(図4のステップS103のNO)。この場合に、基地局20のみActiveとなるOnDuration区間を延長してしまうと、基地局20がスケジューリングを継続し、PDCCHを送信しても、端末10はDRX区間のため、無線リソースが無駄となる。
 そこで、特願2013-055039号には、基地局20が端末10に、PDSCHとアップリンク制御情報(Uplink Grant)のためのPDCCHとを送信した場合に、「DTX-ACK」エラー及び「DTX-NACK」エラーを回避する手法が記載されている。
 ここで、「DTX-ACK」エラー及び「DTX-NACK」エラーとは、端末10がPDSCHのデコード状況をDTXと判断したにも拘わらず、基地局20がACKまたはNACKと誤検出してしまうことを意味する。詳述すると、基地局20はPDSCHを送信したにもかかわらず、端末10がダウンリンクでPDSCHのデコード状況がDTXであると判断したとする。このとき、基地局20は、PUCCHでなく、PUSCHのHARQ情報をデコードする。このため、PDSCHのデコード状況がDTXの場合においては、基地局20は、PUSCHのパケットデータをHARQ情報としてデコードし、PDSCHのデコード状況をACKまたはNACKと誤検出してしまう。
 また、一般的に、アップリンクのHARQ再送制御において、基地局20がPUSCHのCRCチェック結果(図5のステップS206参照)でNACKと判定した場合、基地局20は、「端末10がPDCCHを受信した」(図4のステップS103のYES参照)、と判断する。このため、基地局20は、Non-adaptive再送と呼ばれるPDCCHを送信せずに、PHICHでHARQ情報だけを端末10に送信し(図5のステップS207参照)、再送をスケジューリングすることができる。しかしながら、このように制御した場合においても「DTX-ACK」エラー及び「DTX-NACK」エラーが発生することがある。
 上記特願2013-055039号に記載されている手法は、アップリンク制御情報を端末10が受信できた場合(図4のステップS103のYES)に解決する手段となりうるが、アップリンク制御情報を端末10が受信できなかった場合(図4のステップS103のNO)の解決手段とはならない。
 例えば、基地局20が端末10に、PDSCHとアップリンク制御情報のためのPDCCHとを送信した場合(図3のステップS203およびS204参照)において、端末10がPDSCHをACKと判断したが、アップリンク制御情報を受信できなかったとする(図4のステップS103のNO参照)。この場合、端末10は、HARQ情報をPUSCHでなくPUCCHで送信する(図4のステップS105参照)。しかしながら、基地局20はPUSCHをデコードしてHARQ情報を判断しようとする(図5のステップS205およびS206参照)。このため、「DTX-ACK」エラーまたは「DTX-NACK」エラーが発生する可能性がある。
 そこで、本発明の目的は、上記課題を考慮し、HARQによりパケットの再送制御、端末での受信確認判断が行われる無線通信システムにおいて、アップリンク制御情報を端末が受信できなかった場合でも、「DTX-ACK」エラーまたは「DTX-NACK」エラーを回避する技術を提供することにある。
[実施形態]
 本発明の実施形態は、HARQによりパケットの再送制御が行われる無線通信システムにおいて、PUSCH受信処理部と、PUCCH受信処理部と、HARQ情報判定部とを備える基地局である。
 PUSCH受信処理部は、PUSCHに含まれるパケットデータのCRCチェック判定を行う。HARQ情報とPUSCHとの送信タイミングが重なったときに、PUSCH受信処理部は、PUSCHからHARQ情報の受信を行う。
 PUCCH受信処理部は、HARQ情報とPUSCHとの送信タイミングが重なっていないときに、PUCCHからHARQ情報の受信を行う。
 HARQ情報判定部は、PUSCH受信処理部及びPUCCH受信処理部で判定したHARQ情報とCRCチェック結果とを受信することで、HARQによる端末での受信確認を行う。
 基地局がアップリンク制御情報のみのPDCCHを端末に送信したとする。この場合、PUSCH受信処理部は、CRCチェック判定を行い、HARQ情報判定部は、CRCチェック結果がOKのときに限り、端末がPUSCHを送信したと判断して、DRX Inactivity Timerを起動する。これは、端末がPDCCHを受信できていなかった場合に、PUSCH受信判定時における「DTX-ACK」エラーまたは「DTX-NACK」エラーを回避するためである。
 基地局が端末に、PDSCHとアップリンク制御情報のためのPDCCHとを送信したとする。この場合、アップリンクについては、PUSCH受信処理部は、CRCチェック判定を行い、HARQ情報判定部は、CRCチェック結果がOKのときに限り、端末がPUSCHを送信したと判断して、DRX Inactivity Timerを起動する。ダウンリンクについては、PUSCH受信処理部は、CRCチェック判定を行い、HARQ情報判定部は、CRCチェック結果がOKで、かつ、端末から受信したHARQ情報をACKまたはNACKと判断した場合に限り、DRX Inactivity Timerを起動する。
 また、PUSCHのCRCチェック判定がNGの場合においても、端末はPDCCHを受信し、当該端末のDRX Inactivity Timerを起動している場合もある。このため、基地局は、再送時に、当該基地局のDRX Inactivity Timerを起動しないことで、DRX状態の不一致により端末に無駄なリソースを割り当てることを避けることができる。
 本発明の実施形態により、PUSCH及びPDSCHに関する、「DTX-ACK」エラー及び「DTX-NACK」エラーを回避することができる。
 なお、上記実施形態の基地局を方法に置き換えて表現したもの、該基地局に対応する端末及び該端末により実行される方法、該基地局と端末を備えた無線通信システム、これらの方法をコンピュータに実行せしめるプログラム、これらのプログラムが記録された記録媒体なども、本発明の実施形態としては有効である。
 以下、本発明の具体例について説明する。しかしながら、本発明は、異なる形態で実施されることが可能であり、具体例に限定されてはならない。
[具体例1]
 図6は、本発明の第1の具体例に係る無線通信システムの基地局20の構成を表したブロック図である。
 図6を参照すると、基地局20は、アンテナ部101と、信号受信部102と、PUCCH受信処理部103と、PUSCH受信処理部104と、スケジューリング処理部106と、HARQ情報判定部105と、送信パケットデータ処理部107と、PDSCH送信データ生成部108と、信号送信部109と、を備える。
 信号受信部102は、各移動局(端末)10に対応する第1乃至第Nの受信処理部102-1~102-N(Nは正の整数)を備える。第1乃至第Nの受信処理部102-1~102-Nは、アンテナ部101で受信された移動局10からの上り信号を、移動局10毎の受信信号に分離し、それぞれベースバンド信号に変換する。そして、第1乃至第Nの受信処理部102-1~102-Nは、変換したベースバンド信号を、PUCCH受信処理部103及びPUSCH受信処理部104へ送出する。
 PUCCH受信処理部103は、入力されたベースバンド信号から、下り受信信号品質(CQI)、HARQ受信情報及び上りデータ送信要求を抽出する。そして、PUCCH受信処理部103は、HARQ情報判定部105にHARQ受信情報を送出する。
 PUCCH受信処理部103は、端末10から受信したHARQ情報と端末10から送信されたPUSCHとの送信タイミングが重なっていないときに、端末10から送信されたPUCCHからHARQ情報の受信を行う。
 PUSCH受信処理部104は、移動局10からの上りデータパケット、下り受信信号品質(CQI)、HARQ受信情報を抽出する。そして、PUSCH受信部104は、HARQ情報判定部105にHARQ受信情報を送出する。また、PUSCH受信処理部104は、移動局10から受信した上りデータパケットのCRCチェックを行い、HARQ情報判定部105にCRCチェック結果を送出する。
 PUSCH受信処理部104は、端末10から受信したHARQ情報と端末10から送信されたPUSCHとの送信タイミングが重なったときに、PUSCHからHARQ情報の受信を行うと共に、PUSCHに含まれるパケットデータのCRCチェック判定を行う。
 HARQ情報判定部105は、PUCCH受信処理部103及びPUSCH受信処理部104から受信したPDSCHに対するHARQ受信情報を保持する。また、HARQ情報判定部105は、PUSCH受信処理部104から受信したPUSCHのCRCチェック結果を保持する。すなわち、HARQ情報判定部105は、HARQ受信情報とCRCチェック結果とを保持する保持手段として動作する。さらに、HARQ情報判定部105は、受信(保持)した情報から管理する各移動局10との間のダウンリンク、アップリンクそれぞれのHARQ受信結果を判断する。そして、HARQ情報判定部105は、HARQ受信結果をスケジューリング処理部106に送出する。
 スケジューリング処理部106は、HARQ情報判定部105から入力されたHARQ受信結果に基づいて、パケットデータの再送制御やDRX状態を判断する。特に、スケジューリング処理部106は、判断したDRX状態に基づいて、ダウンリンク、アップリンクどちらにおいてもOn DurationやInactivity Timer起動中の場合にスケジューリングを実施し、無線リソースを割り当てる。
 スケジューリング処理部106は、上記リソース割当の結果を、PUCCH受信処理部103、PUSCH受信処理部104、PDSCH送信データ生成部108、及び信号送信部109に送出する。
 PUCCH受信処理部103、PUSCH受信処理部104は、入力されたリソース割り当て結果に基づいて、データ受信処理を実施する。PDSCH送信データ生成部108は、入力されたリソース割り当て結果に基づいて、データ送信処理を実施する。
 送信パケットデータ処理部107は、移動局10毎の送信データ(下りデータ)をPDSCH送信データ生成部108に送出する。
 PDSCH送信データ生成部108は、選択された移動局10に対して、送信パケットデータ処理部107で生成されたパケットデータを送信する。
 信号送信部109は、スケジューリング処理部106及びPDSCH送信データ生成部108から入力された情報に基づいて、選択された移動局10に対して、PDCCHを生成し、送信する。また、信号送信部109は、送信パケットデータ処理部108で生成されたパケットデータをPDSCHとして送信する。
 次に、本第1の具体例の基地局20の動作について、図面を参照して詳細に説明する。
 図7はHARQ情報判定部105及びスケジューリング処理部106でのダウンリンクに関するHARQ判定動作及びDRX Inactivity Timer起動判定動作を表したフローチャートである。
 図7には、基地局20がPDSCHとPUSCHのスケジューリングを同時に行い、HARQ情報とPUSCHの送信タイミングとが重なるため、基地局20はPDSCHに対するHARQ情報をPUSCHから受信するケースでの、本第1の実施形態におけるDRX Inactivity Timer起動判定手順が示されている。
 図7を参照すると、まず、スケジューリング処理部106は、スケジューリングしたPDSCHが当該HARQプロセスにおいて、初送か再送かを判断する(ステップS301)。
 次に、ステップS301でPDSCHが初送であると判断された場合、HARQ情報判定部105は、PUSCH受信処理部104から入力されたPUSCHのCRCチェック結果から、CRCがOKか否かを判断する(ステップS302)。
 次に、ステップS302でCRCチェック結果がOK(YES)の場合、HARQ情報判定部105は、PUSCH受信処理部104から入力されたPUSCHと同時にスケジューリングされたPDSCHに対するHARQ情報を判定する(ステップS303)。
 次に、ステップS303でHARQ情報がACKまたはNACKと判断された場合、HARQ情報判定部105は、PDSCHリソース割り当てするためのPDCCHが端末10で受信できたと判断して、DRX Inactivity Timerを起動する(ステップS304)。
 一方、ステップS301でPDSCHが再送であると判断された場合、HARQ情報判定部105は、DRX Inactivity Timerを起動しない(ステップS305)。その理由は、PDSCHリソース割り当てするためのPDCCHが端末10で初送時に受信できてしまっていることがあるため、基地局20だけDRX Inactivity Timerを起動してしまうことを避けるためである。
 また、ステップS302でCRCチェック結果がNG(NO)の場合、HARQ情報判定部105は、DRX Inactivity Timerを起動しない(ステップS305)。その理由は、PDSCHリソース割り当てするためのPDCCHが端末10で受信できたと正確に判断できないため、基地局20だけDRX Inactivity Timerを起動してしまうことを避けるためである。
 また、ステップS303でHARD情報がDTXと判断した場合、HARQ情報判定部105は、PDSCHリソース割り当てするためのPDCCHが端末10で受信できていないと判断し、DRX Inactivity Timerを起動しない(ステップS305)。
 図8は、HARQ情報判定部105及びスケジューリング処理部106でのアップリンクに関するHARQ判定動作及びDRX Inactivity Timer起動判定動作を表したフローチャートである。
 図8には、基地局20がPUSCHのスケジューリングを行い、基地局20はPUSCHを受信するケースでの、本第1の実施形態におけるDRX Inactivity Timer起動判定手順が示されている。
 図8を参照すると、まず、スケジューリング処理部106は、当該HARQプロセスにおいて、スケジューリングしたPUSCHが、初送か再送かを判断する(ステップS401)。
 次に、ステップS401でPUSCHが初送であると判断された場合、HARQ情報判定部105は、PUSCH受信処理部104から入力されたPUSCHのDTX判定結果を判断する(ステップS402)。
 次に、ステップS402でDTX判定結果がDTXで無いと判断された場合、HARQ情報判定部105は、PUSCH受信処理部104から入力されたPUSCHのCRCチェック結果から、CRCがOKか否かを判断する(ステップS403)。
 次に、ステップS403でCRCチェック結果がOKと判断された場合、HARQ情報判定部105は、PUSCHリソース割り当てするためのPDCCHが端末10で受信できたと判断して、DRX Inactivity Timerを起動する(ステップS404)。
 一方、ステップS401でPUSCHが再送であると判断された場合、HARQ情報判定部105は、DRX Inactivity Timerを起動しない(ステップS405)。その理由は、PUSCHリソース割り当てするためのPDCCHが端末10で初送時に受信できてしまっていることがあるため、基地局20だけDRX Inactivity Timerを起動してしまうことを避けるためである。
 また、ステップS402でDTX判定結果がDTXと判断された場合、HARQ情報判定部105は、DRX Inactivity Timerを起動しない(ステップS405)。その理由は、PUSCHリソース割り当てするためのPDCCHが端末10で受信できなかったと判断し、基地局20だけDRX Inactivity Timerを起動してしまうことを避けるためである。
 また、ステップS403でCRCチェック結果がNG(NO)の場合、HARQ情報判定部105は、DRX Inactivity Timerを起動しない(ステップS405)。その理由は、PUSCHリソース割り当てするためのPDCCHが端末10で受信できたと正確に判断できないため、基地局20だけDRX Inactivity Timerを起動してしまうことを避けるためである。
 次に、本第1の具体例の効果について説明する。
 第1の効果は、無駄なリソースをスケジューリングしてしまう可能性を抑制することができることである。その理由は次の通りである。基地局20と端末10との間で「DTX-ACK」エラーおよび「DTX-NACK」エラーにより、基地局20が端末10でスケジューリングのために送信したPDCCHを端末10が受信できたと誤判断することにより、基地局20がDRX Inactivity Timerを起動するため、無駄なリソースをスケジューリングしてしまう可能性がある。それを抑制するために、ダウンリンクにおいては、PDSCHのスケジューリングと同時にスケジューリングしたPUSCHのCRCチェック結果と端末10が送信したHARQ情報とに基づいて、DRX Inactivity Timerの起動を判定することで、誤判断を抑制できるからである。
 第2の効果は、「DTX-NACK」エラーの誤判断を抑制できることである。その理由は、上記と同様に、アップリンクにおいては、PUSCHのCRCチェック結果に基づいて、DRX Inactivity Timerの起動を判定するからである。CRCが偶然OK判定になってしまう確率はかなり低いため、「DTX-ACK」エラーの発生を考慮する必要性は低い。
 第3の効果は、再送時に、無駄なリソース割り当てを抑制することができることである。その理由は、HARQ判定やPUSCHのCRCチェック結果によらず、DRX Inactivity Timerを起動しないことにより、端末10とのDRX Inactivity Timerの起動タイミングのずれを抑制するからである。
[具体例2]
 本発明の第2の具体例について図面を参照して詳細に説明する。本発明の第2の具体例の基本的構成は、上記本発明の第1の具体例と同様であるので、以下、相違点となる動作方法について説明する。
 図9は、本発明の第2の具体例の無線通信システムの基地局20におけるアップリンクに関するHARQ判定動作及びCQI受信判定動作を表したフローチャートである。
 図9には、HARQ情報判定部105及びスケジューリング処理部106でのアップリンクに関するCQI情報の受信判定動作を表したフローチャートが示されている。
 図9には、基地局20がperiodic CQI送信タイミングと重なるPUSCHのスケジューリングを行ったとき、基地局20がCQI情報をPUSCHで受信するケースにおける、CQI受信判定手順が示されている。
 図9を参照すると、まず、ステップS501で、HARQ情報判定部105は、PUSCH受信処理部104から入力されたPUSCHのCRCチェック結果から、CRCがOKか否かを判断する。
 次に、ステップS501でCRCチェック結果がOKと判断された場合、HARQ情報判定部105は、PUSCHリソース割り当てするためのPDCCHを端末10が受信できたと判断して、PUSCHに含まれるCQI情報を受信する(ステップS502)。
 一方、ステップS501でCRCチェック結果がNG(NO)の場合、HARQ情報判定部105は、CQI情報を受信しない(ステップS503)。その理由は、PUSCHリソース割り当てするためのPDCCHを端末10で受信できたと正確に判断できないため、CQIの誤検出を避けるためである。
 本発明の第2の具体例の効果は、CQI情報の誤検出を抑制することができることである。その理由は、次の通りである。LTE方式の無線通信システムにおいて、アップリンクには単一キャリア周波数分割多重接続(SC-FDMA(Single Carrier Frequency Division Multiple Access))が使用されている。そのため、通常PUCCHで送信されるperiodic CQIにおいて、同一タイミングでPUSCHのリソースが割り当てられた場合、periodic CQIをPUCCHではなく、PUSCHで送信する。そのため、端末10にて、PUSCHのスケジューリングのためのPDCCHを受信できない場合、基地局20にてCQI情報を誤検出する可能性があるからである。
 以上、本発明の具体例を説明したが、本発明は、上記した具体例に限定されるものではなく、本発明の基本的技術思考を逸脱しない範囲で、更なる変形・置換・調整を加えることが出来る。例えば、上記した具体例では、DRX状態の不一致回避やCQI情報の誤検出回避の例を挙げて説明したが、無線通信システムにおける基地局と端末における他の状態の不一致回避にも適用可能である。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 HARQ(Hybrid Automatic Repeat reQuest)によりパケットの再送制御が行われる無線通信システムにおける基地局であって、
 端末から受信したHARQ情報と前記端末から送信されるPUSCH(Physical Uplink Shared CHannel)の送信タイミングとが重なったときに、前記PUSCHから前記HARQ情報の受信を行うと共に、前記PUSCHに含まれるパケットデータのCRC(cyclic redundancy check)チェック判定を行うPUSCH受信処理部と、
 前記PUSCH受信処理部で判定した前記HARQ情報と前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行うHARQ情報判定部と、
を備える、基地局。
(付記2)
 前記基地局がアップリンク制御情報のみのPDCCH(Physical Downlink Control CHannel)を前記端末に送信した場合、
 前記HARQ情報判定部は、前記CRCチェック結果がOKのときに限り、前記端末が前記PUSCHを送信したと判断して、DRX Inactivity Timerを起動する、
付記1に記載の基地局。
(付記3)
 前記基地局が前記端末に、PDSCH(Physical Downlink Shared CHannel)とアップリンク制御情報のためのPDCCH(Physical Downlink Control CHannel)とを送信した場合、
 前記HARQ情報判定部は、アップリンクについて、前記CRCチェック結果がOKのときに限り、前記端末が前記PUSCHを送信したと判断して、DRX Inactivity Timerを起動する、
付記1に記載の基地局。
(付記4)
 前記基地局が前記端末に、PDSCH(Physical Downlink Shared CHannel)とアップリンク制御情報のためのPDCCH(Physical Downlink Control CHannel)とを送信した場合、
 前記HARQ情報判定部は、ダウンリンクについて、前記CRCチェック結果がOKで、かつ、前記端末から受信した前記HARQ情報をACKまたはNACKと判断した場合に限り、DRX Inactivity Timerを起動する、
付記1に記載の基地局。
(付記5)
 前記PDSCHの再送の場合、前記HARQ情報判定部は、前記DRX Inactivity Timerを起動しない、付記3又は4に記載の基地局。
(付記6)
 前記PUSCHのCRCチェック判定がNGの場合、前記HARQ情報判定部は、前記DRX Inactivity Timerを起動しない、付記2乃至4のいずれか1項に記載の基地局。
(付記7)
 前記HARQ情報と前記PUSCHの送信タイミングとが重なっていないときに、前記端末から送信されるPUCCH(Physical Uplink Control CHannel)から前記HARQ情報の受信を行うPUCCH受信処理部を更に含み、
 前記HARQ情報判定部は、前記PUSCH受信処理部及び前記PUCCH受信処理部で判定した前記HARQ情報と前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行う、
付記1乃至6のいずれか1項に記載の基地局。
(付記8)
 前記基地局がperiodic CQI(Channel Quality Indicator)送信タイミングと重なる前記PUSCHのスケジューリングを行ったとき、
 前記HARQ情報判定部は、前記CRCチェック結果がOKと判断した場合に限り、前記PUSCHに含まれるCQI情報を受信する、
付記1に記載の基地局。
(付記9)
 付記1乃至8のいずれか1項に記載の基地局と、該基地局と通信する端末と、を備えた移動通信システム。
(付記10)
 HARQ(Hybrid Automatic Repeat reQuest)によりパケットの再送制御が行われる無線通信システムにおける基地局の、端末での受信確認方法であって、
 前記端末から受信したHARQ情報と前記端末から送信されるPUSCH(Physical Uplink Shared CHannel)の送信タイミングとが重なったときに、前記PUSCHから前記HARQ情報の受信を行うと共に、前記PUSCHに含まれるパケットデータのCRC(cyclic redundancy check)チェック判定を行うPUSCH受信処理工程と、
 前記PUSCH受信処理工程で判定した前記HARQ情報と前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行うHARQ情報判定工程と、
を含む、受信確認方法。
(付記11)
 前記基地局がアップリンク制御情報のみのPDCCH(Physical Downlink Control CHannel)を前記端末に送信した場合、
 前記HARQ情報判定工程は、前記CRCチェック結果がOKのときに限り、前記端末が前記PUSCHを送信したと判断して、DRX Inactivity Timerを起動する、
付記10に記載の受信確認方法。
(付記12)
 前記基地局が前記端末に、PDSCH(Physical Downlink Shared CHannel)とアップリンク制御情報のためのPDCCH(Physical Downlink Control CHannel)とを送信した場合、
 前記HARQ情報判定工程は、アップリンクについて、前記CRCチェック結果がOKのときに限り、前記端末が前記PUSCHを送信したと判断して、DRX Inactivity Timerを起動する、
付記10に記載の受信確認方法。
(付記13)
 前記基地局が前記端末に、PDSCH(Physical Downlink Shared CHannel)とアップリンク制御情報のためのPDCCH(Physical Downlink Control CHannel)とを送信した場合、
 前記HARQ情報判定工程は、ダウンリンクについて、前記CRCチェック結果がOKで、かつ、前記端末から受信した前記HARQ情報をACKまたはNACKと判断した場合に限り、DRX Inactivity Timerを起動する、
付記10に記載の受信確認方法。
(付記14)
 前記PDSCHの再送の場合、前記HARQ情報判定工程は、前記DRX Inactivity Timerを起動しない、付記12又は13に記載の受信確認方法。
(付記15)
 前記PUSCHのCRCチェック判定がNGの場合、前記HARQ情報判定工程は、前記DRX Inactivity Timerを起動しない、付記11乃至14のいずれか1項に記載の受信確認方法。
(付記16)
 前記HARQ情報と前記PUSCHの送信タイミングとが重なっていないときに、前記端末から送信されるPUCCH(Physical Uplink Control CHannel)から前記HARQ情報の受信を行うPUCCH受信処理工程を更に含み、
 前記HARQ情報判定工程は、前記PUSCH受信処理工程及び前記PUSCCH受信処理工程で判定した前記HARQ情報と前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行う、
付記10乃至15のいずれか1項に記載の受信確認方法。
(付記17)
 前記基地局がperiodic CQI(Channel Quality Indicator)送信タイミングと重なる前記PUSCHのスケジューリングを行ったとき、
 前記HARQ情報判定工程は、前記CRCチェック結果がOKと判断した場合に限り、前記PUSCHに含まれるCQI情報を受信する、
付記10に記載の受信確認方法。
(付記18)
 HARQ(Hybrid Automatic Repeat reQuest)によりパケットの再送制御が行われる無線通信システムにおける基地局であるコンピュータに、端末での受信確認を行わせるプログラムであって、前記コンピュータに、
 前記端末から受信したHARQ情報と前記端末から送信されるPUSCH(Physical Uplink Shared CHannel)の送信タイミングとが重なったときに、前記PUSCHから前記HARQ情報の受信を行うと共に、前記PUSCHに含まれるパケットデータのCRC(cyclic redundancy check)チェック判定を行うPUSCH受信処理手順と、
 前記PUSCH受信処理手順で判定した前記HARQ情報と前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行うHARQ情報判定手順と、
を実行させる、受信確認プログラム。
(付記19)
 付記18に記載の受信確認プログラムを記録した記録媒体。
 以上、実施形態(及び具体例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び具体例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年6月4日に出願された日本出願特願2014-115581を基礎とする優先権を主張し、その開示の全てをここに取り込む。
  10  端末(移動局)
  20  基地局
  101 アンテナ部
  102 信号受信部
  102-1~102-N 受信処理部
  103 PUCCH受信処理部
  104 PUSCH受信処理部
  105 HARQ情報判定部
  106 スケジューリング処理部
  107 送信パケットデータ処理部
  108 PDSCH送信データ生成部
  109 信号送信部

Claims (10)

  1.  HARQ(Hybrid Automatic Repeat reQuest)によりパケットの再送制御が行われる無線通信システムにおける基地局であって、
     端末から受信したHARQ情報と前記端末から送信されるPUSCH(Physical Uplink Shared CHannel)の送信タイミングとが重なったときに、前記PUSCHから前記HARQ情報の受信を行うと共に、前記PUSCHに含まれるパケットデータのCRC(cyclic redundancy check)チェック判定を行うPUSCH受信処理手段と、
     前記PUSCH受信処理手段で判定した前記HARQ情報と前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行うHARQ情報判定手段と、
    を備える、基地局。
  2.  前記基地局がアップリンク制御情報のみのPDCCH(Physical Downlink Control CHannel)を前記端末に送信した場合、
     前記HARQ情報判定手段は、前記CRCチェック結果がOKのときに限り、前記端末が前記PUSCHを送信したと判断して、DRX Inactivity Timerを起動する、
    請求項1に記載の基地局。
  3.  前記基地局が前記端末に、PDSCH(Physical Downlink Shared CHannel)とアップリンク制御情報のためのPDCCH(Physical Downlink Control CHannel)とを送信した場合、
     前記HARQ情報判定手段は、アップリンクについて、前記CRCチェック結果がOKのときに限り、前記端末が前記PUSCHを送信したと判断して、DRX Inactivity Timerを起動する、
    請求項1に記載の基地局。
  4.  前記基地局が前記端末に、PDSCH(Physical Downlink Shared CHannel)とアップリンク制御情報のためのPDCCH(Physical Downlink Control CHannel)とを送信した場合、
     前記HARQ情報判定手段は、ダウンリンクについて、前記CRCチェック結果がOKで、かつ、前記端末から受信した前記HARQ情報をACKまたはNACKと判断した場合に限り、DRX Inactivity Timerを起動する、
    請求項1に記載の基地局。
  5.  前記HARQ情報と前記PUSCHの送信タイミングとが重なっていないときに、前記端末から送信されるPUCCH(Physical Uplink Control CHannel)から前記HARQ情報の受信を行うPUCCH受信処理手段を更に含み、
     前記HARQ情報判定手段は、前記PUSCH受信処理手段及び前記PUCCH受信処理手段で判定した前記HARQ情報と前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行う、
    請求項1乃至4のいずれか1項に記載の基地局。
  6.  前記基地局がperiodic CQI(Channel Quality Indicator)送信タイミングと重なる前記PUSCHのスケジューリングを行ったとき、
     前記HARQ情報判定手段は、前記CRCチェック結果がOKと判断した場合に限り、前記PUSCHに含まれるCQI情報を受信する、
    請求項1に記載の基地局。
  7.  請求項1乃至6のいずれか1項に記載の基地局と、該基地局と通信する端末と、を備えた移動通信システム。
  8.  HARQ(Hybrid Automatic Repeat reQuest)によりパケットの再送制御が行われる無線通信システムにおける基地局の、端末での受信確認方法であって、
     前記端末から受信したHARQ情報と前記端末から送信されるPUSCH(Physical Uplink Shared CHannel)の送信タイミングとが重なったときに、前記PUSCHから前記HARQ情報の受信を行うと共に、前記PUSCHに含まれるパケットデータのCRC(cyclic redundancy check)チェック判定を行い、
     前記CRCチェック判定で判定した前記HARQ情報と前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行う
    ことを特徴とする受信確認方法。
  9.  前記HARQ情報と前記PUSCHの送信タイミングとが重なっていないときに、前記端末から送信されるPUCCH(Physical Uplink Control CHannel)から前記HARQ情報の受信を行い、
     前記HARQによる前記端末での受信確認を行う場合に、前記受信した前記HARQ情報と前記CRCチェック判定による前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行う、
    請求項8に記載の受信確認方法。
  10.  HARQ(Hybrid Automatic Repeat reQuest)によりパケットの再送制御が行われる無線通信システムにおける基地局であるコンピュータに、端末での受信確認を行わせるプログラムが記憶された記憶媒体であって、前記コンピュータに、
     前記端末から受信したHARQ情報と前記端末から送信されるPUSCH(Physical Uplink Shared CHannel)の送信タイミングとが重なったときに、前記PUSCHから前記HARQ情報の受信を行うと共に、前記PUSCHに含まれるパケットデータのCRC(cyclic redundancy check)チェック判定を行うPUSCH受信処理手順と、
     前記PUSCH受信処理手順で判定した前記HARQ情報と前記CRCチェック結果とを受信することで、前記HARQによる前記端末での受信確認を行うHARQ情報判定手順と、
    を実行させる、受信確認プログラムが記憶された記憶媒体。
PCT/JP2015/002747 2014-06-04 2015-06-01 基地局、受信確認方法、およびプログラムが記憶された記憶媒体 WO2015186334A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016525691A JP6274311B2 (ja) 2014-06-04 2015-06-01 基地局、受信確認方法、およびプログラムが記憶された記憶媒体
US15/315,807 US10291361B2 (en) 2014-06-04 2015-06-01 Base station, reception confirmation method, and storage medium wherein program is stored

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014115581 2014-06-04
JP2014-115581 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015186334A1 true WO2015186334A1 (ja) 2015-12-10

Family

ID=54766419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002747 WO2015186334A1 (ja) 2014-06-04 2015-06-01 基地局、受信確認方法、およびプログラムが記憶された記憶媒体

Country Status (3)

Country Link
US (1) US10291361B2 (ja)
JP (1) JP6274311B2 (ja)
WO (1) WO2015186334A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020197217A1 (en) * 2019-03-28 2020-10-01 Lg Electronics Inc. Method and apparatus for performing downlink reception based on drx retransmission timer in wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289114A (ja) * 2007-02-02 2008-11-27 Ntt Docomo Inc 移動通信システム、基地局装置、ユーザ装置及び方法
WO2013027721A1 (ja) * 2011-08-24 2013-02-28 株式会社エヌ・ティ・ティ・ドコモ 基地局及び通信制御方法
JP2014511622A (ja) * 2011-02-28 2014-05-15 ▲ホア▼▲ウェイ▼技術有限公司 送信エラー情報の計測方法及びネットワーク装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027538A1 (en) 2007-02-09 2010-02-04 Ntt Docomo, Inc. Retransmission control method and receiving side apparatus
CN101675698B (zh) 2007-03-01 2013-06-05 株式会社Ntt都科摩 基站装置和通信控制方法
PL2394384T3 (pl) 2009-02-03 2019-06-28 Nokia Solutions And Networks Oy Urządzenia i sposoby łączenia ACK/NAK
KR20110009025A (ko) * 2009-07-20 2011-01-27 엘지전자 주식회사 상향링크 제어정보 전송 방법 및 장치
JP2011061667A (ja) 2009-09-14 2011-03-24 Nec Corp 通信装置、通信システム、並びにこれに用いるパケット欠落検出方法及びプログラム
SG188498A1 (en) 2010-09-16 2013-05-31 Panasonic Corp Terminal device and retransmission control method
JP2014183357A (ja) 2013-03-18 2014-09-29 Nec Corp 無線端末装置及び無線基地局並びに通信システム、通信方法、プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289114A (ja) * 2007-02-02 2008-11-27 Ntt Docomo Inc 移動通信システム、基地局装置、ユーザ装置及び方法
JP2014511622A (ja) * 2011-02-28 2014-05-15 ▲ホア▼▲ウェイ▼技術有限公司 送信エラー情報の計測方法及びネットワーク装置
WO2013027721A1 (ja) * 2011-08-24 2013-02-28 株式会社エヌ・ティ・ティ・ドコモ 基地局及び通信制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "ACK/NAK DTX Detection in the PUSCH", 3GPP TSG-RAN WG1#53 R1-081728, May 2008 (2008-05-01), XP050110121, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_53/Docs/R1-081728.zip> *

Also Published As

Publication number Publication date
JPWO2015186334A1 (ja) 2017-04-20
JP6274311B2 (ja) 2018-02-07
US10291361B2 (en) 2019-05-14
US20170104557A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
CN110036586B (zh) 用于处理时间缩减信令的系统和方法
US9954650B2 (en) Delayed and bundled retransmissions for low bandwidth applications
CN107210869B (zh) 用于在无线设备处进行通信的装备和方法
EP2880943B1 (en) Signaling and channel designs for d2d communications
US11019510B2 (en) Apparatus and method for radio resource management for high reliability and low latency traffic
CN107925543B (zh) 用于ecc中的多传输时间区间准予支持的重复下行链路准予设计
US9185690B2 (en) Allocating and determining resources for a device-to-device link
US9871645B2 (en) Method, apparatus, and system for transmitting data
US9112685B2 (en) Mechanisms for direct inter-device signaling
US9144066B2 (en) Method and system for hybrid automatic repeat request combining on an lte downlink control channel
US20170026940A1 (en) Control Messages in Wireless Communication
EP3248319B1 (en) Event triggered multi-link channel quality measurement and report for mission critical applications
AU2017291825A1 (en) Latency reduction techniques in wireless communications
US10075913B2 (en) Wireless communication system, mobile station, base station, and wireless communication system control method for reducing power consumption
US20130003678A1 (en) Scheduling request method, apparatus and system
US20140307567A1 (en) Method and device for transmitting uplink data in support of multi-subframe scheduling
EP3248314B1 (en) A network node, a wireless device and methods therein for handling automatic repeat requests (arq) feedback information
US9553685B2 (en) PHICH-less operation for uplink-downlink configuration zero
US20160337110A1 (en) Resource management method and device and computer storage medium
US20210377954A1 (en) Information sending method and apparatus
US20190296864A1 (en) Hybrid Automatic Repeat Request-Acknowledgement Information Feedback Method, Terminal Device, and Network Device
US20220217753A1 (en) User equipments, base stations and methods for monitoring a control channel for pusch transmission
JP6274311B2 (ja) 基地局、受信確認方法、およびプログラムが記憶された記憶媒体
US9768936B2 (en) Message transmission in an unlicensed spectrum
WO2017088920A1 (en) Error recovery mechanisms at lower layers of mobile communication systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525691

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15315807

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803730

Country of ref document: EP

Kind code of ref document: A1