WO2015186181A1 - Control device for refrigerating and air conditioning devices - Google Patents

Control device for refrigerating and air conditioning devices Download PDF

Info

Publication number
WO2015186181A1
WO2015186181A1 PCT/JP2014/064651 JP2014064651W WO2015186181A1 WO 2015186181 A1 WO2015186181 A1 WO 2015186181A1 JP 2014064651 W JP2014064651 W JP 2014064651W WO 2015186181 A1 WO2015186181 A1 WO 2015186181A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating capacity
total operating
control
demand
upper limit
Prior art date
Application number
PCT/JP2014/064651
Other languages
French (fr)
Japanese (ja)
Inventor
光晃 松尾
拓也 伊藤
寛也 石原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/064651 priority Critical patent/WO2015186181A1/en
Publication of WO2015186181A1 publication Critical patent/WO2015186181A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators

Definitions

  • the present invention relates to a control device for a refrigeration air conditioner that controls the refrigeration air conditioner.
  • the present invention relates to an apparatus that performs control to achieve both demand suppression and energy saving operation.
  • Demand control using a demand control device is generally performed when the power demand (supplied power) is to be controlled below the target demand (contract power or lower than the contract power). For example, the demand control device calculates a predicted value that predicts the transition of the power demand, and compares the predicted value with the target demand. If the predicted value exceeds the target demand, control is performed to avoid excess power by issuing an alarm, cutting off the load and reducing power consumption (suppressing power supply), etc. (for example, patent document) 1).
  • an air conditioner As the load to be cut off, an air conditioner, a refrigeration unit, or the like is often selected.
  • the main reason is that the power consumption in these devices is relatively large compared to other devices.
  • COP Coefficient Of Performance
  • the coefficient of performance of the plurality of refrigeration air conditioners is maximized (maximum).
  • a heat pump device is disclosed (for example, see Patent Document 2).
  • the above-described demand control technology of the conventional demand control device and the optimal number control technology of the conventional heat pump device are functions that function independently, and the two controls are not coordinated at the same time. For this reason, for example, while suppressing the power demand, both the demand control and the energy saving performance such that the number of operating units is optimally controlled so as to maximize the COP of the entire refrigerating and air-conditioning apparatus as much as possible within the power demand limit. In order to realize advanced control, it is necessary to devise control of the refrigeration air conditioner.
  • an object of the present invention is to obtain a control device for a refrigerating and air-conditioning apparatus that can perform demand control and optimal number control while coordinating. .
  • a control apparatus for a refrigeration air conditioner is a control apparatus for a refrigeration air conditioner capable of controlling a plurality of refrigeration air conditioners, and is a demand level for determining a demand level that is a relationship between a transition of power demand and a target demand A determination unit, a total operation capacity calculation unit that calculates a total operation capacity that is the sum of the operation capacities of the plurality of refrigeration air conditioners for each first control cycle, and a plurality of refrigeration air conditioners for each second control cycle Based on the upper and lower limit values of the operating capacity, the total operating capacity, and the demand level, the total operating capacity upper limit setting unit that sets the upper limit value of the total operating capacity, and the total operating capacity and the upper limit value for each second control cycle.
  • the cooperative control unit that determines the temporary total operating capacity at which the total operating capacity is equal to or less than the upper limit, and the relationship between the operating capacity and the coefficient of performance of the plurality of refrigeration air conditioners, the total operating capacity and the temporary operating capacity for each first control cycle.
  • Total luck Based on the capacity, the number of operating units and the operating capacity of the refrigerating and air-conditioning devices are determined so that the coefficient of performance of the plurality of refrigerating and air-conditioning devices is maximized as a whole, and an optimal number control unit that controls the refrigerating air-conditioning devices is provided .
  • the total operating capacity upper limit value is set according to the demand level, the total operating capacity of the refrigeration air conditioner can be suppressed to the total operating capacity upper limit value or less, and the power consumption can be reduced.
  • Optimal number control can be realized within the range below the total operating capacity upper limit.
  • FIG. 1 and the following drawings the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below.
  • the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
  • the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment.
  • the branch numbers may be omitted.
  • the size relationship of each component may be different from the actual one.
  • the operating capacity of the refrigeration air conditioner is shown as a percentage (%) with respect to the rated operating capacity.
  • the present invention is not limited to this and may be displayed using other units.
  • the display is in units of Hz.
  • the cooling capacity (kW) is regarded as the operating capacity, the display is in units of kW.
  • COP is expressed as a ratio (%) to the rated COP, it is not limited to this expression. The contents according to the present invention can be similarly executed by any expression.
  • FIG. 1 is a diagram showing an entire system including a control device for a refrigeration air conditioner according to Embodiment 1 of the present invention.
  • the configuration of the entire system will be described with reference to FIG.
  • the system of the present embodiment uses a set of a refrigerator 22 and a cooler 23 connected by a refrigerant pipe as a refrigeration air conditioner, and has a plurality of (three in FIG. 1) refrigeration air conditioners. Cooling in the space).
  • a plurality of refrigeration air conditioners (the refrigerator 22 and the cooler 23) and a plurality of unit controllers 24 that control operation / stop of each refrigeration air conditioner constitute a refrigeration apparatus group.
  • the refrigerator control device 100 is provided as a control device for the refrigeration air conditioner.
  • the refrigerator 22-1 serving as a master unit has the refrigerator control device 100.
  • the system according to the present embodiment includes an external demand controller (DC) 21 as a device that performs control such as determination regarding power demand (hereinafter referred to as demand).
  • the external demand controller 21 determines the demand level based on the relationship between the transition of the power demand and the target demand.
  • the external demand controller 21 and the refrigerator control device 100 are connected by a signal line 29.
  • the configuration of the system of the present embodiment is an example of the configuration of a system to which the control device for a refrigeration air conditioner according to the present invention is applied, and is not limited to this configuration.
  • the refrigerator 22 has a compressor, a condenser, and the like. In the present embodiment, it is assumed that each refrigerator 22 has the same capacity (horsepower).
  • the refrigerator 22 of the present embodiment includes the refrigerator control device 100, and includes a refrigerator 22-1 serving as a master unit that performs overall control of the refrigeration apparatus group, and refrigerators 22-2 and 22 serving as slave units. -3.
  • each refrigerator 22 and each unit controller 24 are connected by a communication line 27.
  • the refrigerator 22 and the unit controller 24 have a communication function, and can exchange data by communication.
  • the unit controller (UC) 24 includes a temperature sensor (temperature detection device) 26.
  • the temperature sensor 26 detects the temperature of the air in the freezer warehouse 11.
  • Each unit controller 24 is connected to a remote controller (RC, hereinafter referred to as a remote controller) 25 through a remote control line 28 and can communicate.
  • the unit controller 24 sends a signal including data such as the internal temperature detected by the temperature sensor 26 and the control state of the refrigerator 22 to the remote controller 25.
  • the remote controller 25 performs display based on data sent to display means (not shown). Further, the remote controller 25 sends a signal including data related to various settings (for example, set temperature) set / changed by the user from the input means of the remote controller 25 to the unit controller 24.
  • the unit controller 24 stores in a storage device (not shown).
  • the unit controller 24 compares the set temperature set by the user via the remote controller 25 with the temperature (detected temperature) detected by the temperature sensor 26, and determines whether the refrigerator 22 and the cooler 23 are operated or stopped. Has the function of When the unit controller 24 determines that the detected temperature is higher than the thermo return temperature slightly higher than the set temperature, the unit controller 24 operates the refrigerator 22 and the cooler 23 (sets the thermo ON state). On the other hand, when it is determined that the detected temperature is lower than the thermo stop temperature slightly lower than the set temperature, the unit controller 24 stops the refrigerator 22 and the cooler 23 (sets the thermo OFF state). Thereby, the internal temperature of the freezer warehouse 11 can be maintained near the set temperature, and for example, the internal load can be stored in a cold state.
  • the operation or stop of the cooler 23 mainly means drive or stop of a blower (not shown) provided in the cooler 23.
  • the refrigerator control device 100 included in the refrigerator 22-1 serving as a master unit has a function of executing demand control and optimum number control. For example, processing such as determination of a demand level transmitted through the signal line 29 from the external demand controller 21 and determination of the number of operating refrigerators 22 (coolers 23) is performed.
  • FIG. 2 is a diagram showing a schematic configuration of the refrigerator control device 100 according to Embodiment 1 of the present invention.
  • the refrigerator control device 100 according to Embodiment 1 of the present invention includes a control set value holding unit 110, a model information holding unit 120, a demand level determination unit 130, a total operating capacity calculation unit 140, and a total operation.
  • the capacity upper limit setting unit 150, the cooperative control unit 160, the optimum number control unit 170, and the time measuring unit 180 are included as components.
  • each part is comprised based on the content of the process which the refrigerator control apparatus 100 performs.
  • the control set value holding unit 110 performs processing for holding (recording) control set values and the like necessary for controlling the refrigerator 22 and executing the contents of the present invention.
  • the control setting value can be set and changed by the user using, for example, a setting operation device (not shown) provided in the remote controller 25 and the refrigerator 22.
  • the model information holding unit 120 performs processing for holding model information data in a signal sent from the refrigerator 22.
  • the demand level determination unit 130 performs processing for determining a demand level based on data from the external demand controller 21.
  • the total operating capacity calculation unit 140 performs processing for calculating the total operating capacity of each refrigerator 22.
  • the total operating capacity upper limit setting unit 150 performs processing for setting an upper limit value (total operating capacity upper limit value) of the total operating capacity based on the demand level.
  • the cooperative control unit 160 determines a temporary total operation capacity based on the total operation capacity and the total operation capacity upper limit value.
  • the optimal number control unit 170 performs processing for determining the number of operating refrigerators 22 based on the provisional total operating capacity.
  • the timekeeping unit 180 has timekeeping means such as a timer, and performs timekeeping (counting up). In this embodiment, it has a first control cycle timer and a second control cycle timer, whether or not the first control cycle timer is equal to or greater than a preset first control cycle, and the second control cycle timer is preset. It is determined whether or not the second control cycle is exceeded.
  • the refrigerator control device 100 can also be configured by each of different dedicated devices (hardware), but here, for example, a microcomputer having a control arithmetic processing device such as a CPU (Central Processing Unit) is used. Constitute. In addition, it has a storage device (not shown), and has data in which a processing procedure related to control and the like is a program. And a control arithmetic processing apparatus performs the process of each part based on the data of a program, and implement
  • a control arithmetic processing apparatus performs the process of each part based on the data of a program, and implement
  • FIG. 3 is a diagram showing a flowchart of the entire control operation of the refrigerator control device 100 according to Embodiment 1 of the present invention.
  • the overall control operation performed by the refrigerator control device 100 will be described based on FIG. 3, and then the processing of each unit will be described in detail.
  • the model information holding unit 120 performs a process of acquiring and holding (storing) model information data based on a signal sent from each refrigerator 22.
  • the timer 180 counts up the first control cycle timer and the second control cycle timer.
  • step S13 the demand level determination unit 130 determines the demand level based on the signal sent from the external demand controller 21 (the contact opening / closing state becomes a signal) and the set value data held by the control set value holding unit 110. Demand level determination processing is performed.
  • step S14 the time measuring unit 180 determines whether or not the count value of the first control cycle timer is equal to or greater than a preset first control cycle. If it is determined that it is longer than the first control cycle, the process proceeds to step S15, and if it is determined that it is less than the first control period, the process proceeds to step S16.
  • step S15 the total operating capacity calculation unit 140 acquires data of each operating capacity of the refrigerator 22 that is currently operating, and performs a total operating capacity calculation process for calculating the total operating capacity by adding the data.
  • step S16 the timer 180 determines whether or not the count value of the second control cycle timer is equal to or greater than a preset second control cycle. If it is determined that it is longer than the second control cycle, the process proceeds to step S17, and if it is determined that it is less than the second control period, the process proceeds to step S20.
  • step S17 the total operating capacity upper limit setting unit 150 is based on the model information held by the model information holding unit 120, the demand level determined by the demand level determining unit 130, and the total operating capacity calculated by the total operating capacity calculating unit 140. Then, a total operating capacity upper limit setting process for calculating an upper limit (total operating capacity upper limit) for limiting the total operating capacity is performed.
  • step S18 the cooperative control unit 160 calculates a temporary total operating capacity based on the total operating capacity calculated by the total operating capacity calculating unit 140 and the total operating capacity upper limit calculated by the total operating capacity upper limit setting unit 150. To perform cooperative control processing.
  • step S19 the timer 180 resets the second control cycle timer and starts counting again.
  • step S20 the timing unit 180 determines whether or not the count value of the first control cycle timer is equal to or greater than the first control cycle. If it is determined that it is longer than the first control cycle, the process proceeds to step S21, and if it is determined that it is less than the first control period, the process proceeds to step S12.
  • step S21 the optimal number control unit 170 stores the model information held by the model information holding unit 120, the total operating capacity calculated by the total operating capacity calculation unit 140 in step S15, and the provisional total calculated by the cooperative control unit 160 in step S18. Based on the operation capacity, the optimum operation number is calculated, and the optimum number control process for adjusting the operation number of the refrigerators 22 is performed.
  • step S22 the timer unit 180 resets the first control cycle timer, proceeds to step S12, and starts counting again.
  • the control operation of the refrigerator control device 100 according to Embodiment 1 can be realized.
  • the first control cycle is a cycle equal to or shorter than the second control cycle in order to reflect the effect at an early stage and change the operating number and operating capacity of the refrigerator 22. It is good to set to.
  • FIG. 4 is a flowchart of the model information holding process performed by the model information holding unit 120 when the refrigerator control device 100 is started (when the power is turned on).
  • step S31 after the power is turned on and the initialization (start-up process) of the refrigerator control device 100 is completed, the communication from the refrigerator 22 (22-1, 22-2 and 22-3) is performed via the communication line 27.
  • the model information data is acquired based on the signal.
  • step S32 the acquired model information data of the refrigerator 22 is held.
  • the model information is the relationship between the upper and lower limits of the operating capacity of the refrigerator 22 and the operating capacity and the COP.
  • FIG. 5 is a diagram showing a relationship (COP curve) between the total operating capacity and the COP according to the first embodiment of the present invention.
  • the horizontal axis represents the total operating capacity
  • the vertical axis represents COP.
  • a COP curve is drawn for each operating number.
  • Embodiment 1 since there are three refrigerators 22, three COP curves are drawn (one unit operation, two unit operation, and three unit operation).
  • Patent Document 2 described above, the COP curve is changed depending on the evaporation temperature and the condensation temperature of the refrigeration equipment, but here, the same COP curve is simplified regardless of the evaporation temperature and the condensation temperature. We will use it. However, this simplification does not limit the present invention.
  • adjacent COP curves have intersections (portions indicated by arrows in FIG. 5, hereinafter referred to as switching capacities).
  • switching capacities portions indicated by arrows in FIG. 5, hereinafter referred to as switching capacities.
  • FIG. 6 is a flowchart of processing performed by the model information holding unit 120 when a data request is received. For example, when the model information holding unit 120 receives a request for model information data from the total operating capacity upper limit setting unit 150 or the optimum number control unit 170 in step S33, the model information data is read from the storage device in step S34. I do. In step S35, the model information data is returned (output).
  • FIG. 7 is a flowchart of the demand level determination process performed by the demand level determination unit 130.
  • the demand level determination unit 130 performs level determination based on the demand level signal output (contact opening / closing signal) of the external demand controller 21.
  • the external demand controller 21 can transmit the demand level by communication, but here, the demand level is transmitted by three contact opening / closing signals.
  • the external demand controller 21 outputs the degree of danger for the demand over step by step according to the relationship (excess amount, tolerance) between the demand and the target demand.
  • the slight excess amount is level 1 (contact A is closed, not shown).
  • the level is 2 (contact B is closed, not shown).
  • level 3 contact C is closed, not shown). If there is no risk, the level is 0 (contacts A, B, and C are open, not shown).
  • step S42 the setting value data relating to the demand level determination held from the control setting value holding unit 110 is read.
  • the set value data is data on the reduction rate (%) of the power consumption of the refrigerator group corresponding to the three demand levels on a one-to-one basis. For example, when the demand level obtained from the external demand controller 21 is level 1, it is set to 5%. At level 2, it is 10%. Furthermore, at level 3, it is set to 100%. When the level is 0, -5% is set.
  • the set value can be changed by the remote controller 25, for example. When changing, a large set value is assigned to a high level (a large excess amount).
  • step S43 the demand level (%) is determined by associating the demand level (level 0 to 3) with the set value. For example, when the demand level output from the external demand controller 21 is level 0, it is -5%, when it is level 1, it is 5%, when it is level 2, it is 10%, and when it is level 3, it is 100%.
  • step S44 the demand level (%) determined in step S43 is output.
  • FIG. 8 is a diagram showing a flowchart of the total operation capacity calculation process performed by the total operation capacity calculation unit 140.
  • the total operating capacity calculation unit 140 acquires the current operating capacity of the refrigerators 22-1, 22-2, and 22-3 through the communication line 27.
  • step S53 the total operating capacity calculated in step S52 is output.
  • FIG. 9 is a flowchart of the total operating capacity upper limit setting process performed by the total operating capacity upper limit setting unit 150.
  • step S61 the total operating capacity calculated by the total operating capacity calculator 140 is acquired.
  • step S62 model information (upper and lower limit values of the operating capacity) held by the model information holding unit 120 is acquired.
  • step S63 the demand level (%) determined by the demand level determination unit 130 is acquired.
  • step S64 the total operating capacity upper limit value is calculated by the following equation (1).
  • the upper limit value of the total operating capacity is determined according to the demand level (%). For example, when the demand level is level 1 to level 3, the upper limit value is lowered, and when the demand level is level 0, the upper limit value is raised. For this reason, the operating capacity of the refrigerator group can be adjusted and the demand can be controlled.
  • step S65 the minimum operating capacity of the refrigerator 22 which is the model information acquired in step S62 is compared with the total operating capacity upper limit value. If it is determined that the total operating capacity upper limit value is greater than or equal to the minimum operating capacity, the process proceeds to step S66. If it is determined that the total operating capacity upper limit value is less than the minimum operating capacity, the process proceeds to step S67.
  • step S67 0% is set (assigned) to the total operating capacity upper limit value.
  • step S66 the calculated total operating capacity upper limit value is output.
  • FIG. 10 is a diagram illustrating a flowchart of the cooperative control process performed by the cooperative controller 160.
  • step S71 the total operating capacity calculated by the total operating capacity calculator 140 is acquired.
  • step S72 the total operating capacity upper limit calculated by the total operating capacity upper limit setting unit 150 is acquired.
  • step S73 the total operating capacity is compared with the total operating capacity upper limit value. When it is determined that the total operating capacity is equal to or greater than the total operating capacity upper limit value, the process proceeds to step S76, and the total operating capacity is less than the total operating capacity upper limit value. If it judges, it will progress to step S74.
  • step S74 the total operating capacity is set as a temporary total operating capacity.
  • step S76 the total operating capacity upper limit value is set as a temporary total operating capacity (this can suppress the power consumption of the refrigerator group).
  • step S75 the temporary total operating capacity is output.
  • FIG. 11 is a flowchart of the optimum number control process performed by the optimum number control unit 170.
  • the optimal number control unit 170 acquires model information (COP curve) held by the model information holding unit 120.
  • the total operating capacity calculated by the total operating capacity calculator 140 is acquired.
  • the provisional total operating capacity calculated by the cooperative control unit 160 is acquired.
  • step S84 the optimum number of operating units is determined based on the COP curve data, which is the model information acquired in step S81, the total operating capacity acquired in step S82, and the temporary total operating capacity acquired in step S83. Specifically, when there is a switching capacity (see FIG. 5) between the current total operating capacity and the provisional total operating capacity, a determination is made to change (increase or decrease) the number of operating units. If not, a decision is made to maintain the current operating number.
  • step S85 it is determined whether or not the number of operating units calculated in step S84 changes. If the number of operating units changes, the process proceeds to step S86, and if the number of operating units does not change, the process proceeds to step S87.
  • step S86 the changed number of operating units and operating capacity are notified to the refrigerator 22 through the communication line 27 so that each refrigerator 22 and the cooler 23 are operated. For example, the operating capacity after the update is equally allocated by dividing the temporary total operating capacity by the number of operating units after the change.
  • step S87 the current operating number is maintained without changing the operating number.
  • the number of units to be increased at a time be a certain number or less.
  • the control device for a refrigeration air conditioner of Embodiment 1 the upper and lower limit values of each operating capacity and the demand level determination in the plurality of refrigeration air conditioners (refrigerators 22) held by the model information holding unit 120
  • the cooperative control unit 160 Based on the demand level determined by the unit 130 and the total operating capacity calculated by the total operating capacity calculating unit 140, the cooperative control unit 160 temporarily determines the upper limit value of the total operating capacity set by the total operating capacity upper limit setting unit 150.
  • the total operating capacity is determined, and the optimum number control unit 170 maximizes the COP of the refrigerator group as a whole based on the COP curve, total operating capacity, and provisional total operating capacity held by the model information holding unit 120.
  • the demand suppression control and the optimal number control are coordinated to realize more energy saving. Door can be.
  • the total operating capacity upper limit value is changed by setting the first control cycle to a cycle equal to or less than the second control cycle for the first control cycle and the second control cycle timed by the timer unit 180. The effect can be reflected at an early stage, and the number of operating units and the operating capacity of the refrigerators 22 can be changed.
  • FIG. FIG. 12 is a diagram showing the entire system including the control device for the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the same reference numerals as those in FIG. 1 and so on perform the same operations and the like as described in the first embodiment.
  • the refrigeration air conditioner has a plurality (six in FIG. 12) of chillers 32 having the same capacity (horsepower).
  • the centralized controller 101 (a control apparatus separate from the control apparatus of each chiller 32) as a control apparatus for refrigeration air conditioners.
  • the present invention is not limited to this configuration.
  • the centralized controller 101 determines the demand level that the external demand controller 21 has performed, but is not limited to this configuration.
  • the air conditioning system has a plurality of chillers 32, a plurality of pumps 33, and a centralized controller 101 that executes demand control and number control of the chillers 32.
  • the chiller 32 includes a chiller 32-1 that has a control device that controls a plurality of chillers 32, and a chiller that has a control device that receives instructions from the control device of the chiller 32-1. 32-2 to 32-6.
  • the master unit, the slave unit, and the centralized controller 101 of the chiller 32 are connected by a communication line 27 so that data can be transmitted and received in both directions.
  • the centralized controller 101 is connected to the remote controller 25 via the remote control line 28 and to the watt hour meter 41 via the signal line 29.
  • the pump 33 Since the control of the pump 33 is not related to the essence of the present invention, for the sake of simplicity, the pump 33 is controlled by a local control device and is rotating at a constant rotational speed (constant power consumption). And
  • the chiller 32 is automatically controlled by a control device (not shown), and the operating capacity is adjusted according to the temperature of cold water (or hot water).
  • the compressor (not shown) of the chiller 32 is stopped, and when the temperature is outside the target temperature, the compressor is restarted.
  • water temperature is adjusted in response to load fluctuations.
  • the watt-hour meter 41 is a device that measures the amount of power used in the entire area including the area where the load is installed and the business office.
  • the watt-hour meter 41 is connected to an electric wire (not shown) to be measured. Further, it is connected to the centralized controller 101 via a contact.
  • the watt-hour meter 41 converts the amount of power used into a pulse and transmits it to the centralized controller 101 by opening and closing the contacts.
  • the centralized controller 101 counts the number of output pulses of the watt hour meter 41 and multiplies it by a multiplication factor (kWh / pulse) to convert it into an electric energy (kWh).
  • the multiplication factor must be set according to the pulse unit setting (kWh / pulse) of the watt-hour meter 41 to be used, and the user sets the centralized controller 101 by operating the remote controller 25.
  • the centralized controller 101 holds the electric energy (kWh) measured by the electric energy meter 41 as an accumulated value. And a demand level determination process is performed based on the accumulated value of electric energy.
  • the centralized controller 101 can record the temperature of cold water or hot water, the operating state of the chiller 32 (temperature, pressure, operating capacity, etc.), operation history, and the like. Further, when the remote controller 25 is operated, the recorded data is sent to the centralized controller 101 so that it can be displayed on a display unit (not shown) of the remote controller 25.
  • the centralized controller 101 of this embodiment has functions of demand control and control of the number of operating chillers 32.
  • FIG. 13 is a diagram showing a schematic configuration of the centralized controller 101 according to the second embodiment of the present invention.
  • the components denoted by the same reference numerals as those in FIG. 2 perform basically the same operations as those in the first embodiment.
  • the model information holding unit 120 acquires and holds model information data based on a signal from the chiller 32 instead of the refrigerator 22.
  • the demand level determination unit 130 is different from the first embodiment in that the demand level determination unit 130 performs a demand level determination process based on a signal from the watt-hour meter 41 instead of the external demand controller 21.
  • Time count unit 180 has a third control cycle timer, and differs from the first embodiment in that it determines whether or not the third control cycle timer is equal to or greater than a preset third control cycle.
  • the third control cycle may be the first control cycle or the second control cycle described in the first embodiment.
  • FIG. 14 is a diagram showing a flowchart of the entire control operation of the centralized controller 101 according to the second embodiment of the present invention.
  • the overall control operation performed by the centralized controller 101 will be described based on FIG. 14, and then the processing of each unit will be described in detail.
  • the model information holding unit 120 performs a process of acquiring and holding (storing) model information data based on a signal transmitted from each chiller 32.
  • the timer 180 counts up the third control cycle timer.
  • step S113 the timer 180 determines whether or not the count value of the third control cycle timer is equal to or greater than a preset third control cycle. If it is determined that it is longer than the third control cycle, the process proceeds to step S114, and if it is determined that it is less than the third control period, the process proceeds to step S112.
  • step S114 the demand level determination unit 130 performs a demand level determination process for determining the demand level based on the signal sent from the watt-hour meter 41 and the set value data held by the control set value holding unit 110.
  • step S115 the total operation capacity calculation unit 140 acquires data of each operation capacity of the chiller 32 currently operating, and performs a total operation capacity calculation process for calculating the total operation capacity by adding the data.
  • step S116 the total operating capacity upper limit setting unit 150 is based on the model information held by the model information holding unit 120, the demand level determined by the demand level determining unit 130, and the total operating capacity calculated by the total operating capacity calculating unit 140. Then, a total operating capacity upper limit setting process for calculating an upper limit (total operating capacity upper limit) for limiting the total operating capacity is performed.
  • step S117 the cooperative control unit 160 calculates a temporary total operating capacity based on the total operating capacity calculated by the total operating capacity calculating unit 140 and the total operating capacity upper limit calculated by the total operating capacity upper limit setting unit 150. To perform cooperative control processing.
  • step S118 the optimal number control unit 170 stores the model information held by the model information holding unit 120, the total operating capacity calculated by the total operating capacity calculation unit 140 in step S115, and the provisional total calculated by the cooperative control unit 160 in step S117. Based on the operation capacity, the optimum operation number is calculated, and the optimum number control process for adjusting the operation number of the chiller 32 is performed.
  • step S119 the timer 180 resets the third control cycle timer and starts counting again.
  • the model information holding process performed by the model information holding unit 120 when the centralized controller 101 is activated is substantially the same as the flowchart of FIG. 4 described in the first embodiment.
  • step S31 after the power is turned on and the initialization (start-up process) of the centralized controller 101 is completed, the chillers 32 (32-1, 32-2, 32-3, 32-4) are connected via the communication line 27. , 32-5 and 32-6), the model information data is acquired.
  • step S32 the acquired model information data of the chiller 32 is held.
  • the model information in the present embodiment includes the upper and lower limit values of the operating capacity of each chiller 32, the relationship between the operating capacity and COP (COP curve), and the relationship between the operating capacity and power consumption (P curve). It is. The COP curve and P curve will be described later.
  • the processing when the model information holding unit 120 of the centralized controller 101 receives a data request is substantially the same as the flowchart of FIG. 6 described in the first embodiment.
  • the model information holding unit 120 receives a request for model information data from the total operating capacity upper limit setting unit 150 or the optimum number control unit 170 in step S33
  • the model information data is read from the storage device in step S34. I do.
  • the model information data is returned (output).
  • FIG. 15 is a diagram illustrating a flowchart of the demand level determination process performed by the demand level determination unit 130 according to Embodiment 2 of the present invention.
  • the demand level is determined based on the amount of power acquired from the watt-hour meter 41, the target demand acquired from the control set value holding unit 110, and the like.
  • the demand level is an excess amount (or tolerance) of the demand predicted value with respect to the target demand, and the unit is kW.
  • the demand level (kW) of the present embodiment takes a positive or negative value, and becomes a positive value when the demand predicted value exceeds the target demand.
  • a demand level (kW) calculation method any one of various conventional methods may be used.
  • the demand level (kW) determined in step S45 is output.
  • FIG. 16 is a diagram showing a relationship (COP curve) between the total operating capacity of the chiller 32 and the COP according to the second embodiment of the present invention.
  • the horizontal axis represents the total operating capacity
  • the vertical axis represents COP.
  • a COP curve is drawn for each operating unit.
  • the COP of the present embodiment includes the power consumption of the pump 33.
  • six chillers 32 are provided, six COP curves are drawn.
  • the COP curve is changed depending on the evaporation temperature and the condensation temperature of the refrigeration equipment, but here, the same COP curve is simplified regardless of the evaporation temperature and the condensation temperature. We will use it. However, this simplification does not limit the present invention.
  • the total operation capacity calculation process performed by the total operation capacity calculation unit 140 is substantially the same as the flowchart of FIG. 8 described in the first embodiment.
  • step S 51 the total operating capacity calculation unit 140 acquires the current operating capacity of the chillers 32-1 to 32-6 through the communication line 27.
  • step S52 the obtained operating capacities are added together to calculate the total operating capacity.
  • step S53 the total operating capacity calculated in step S52 is output.
  • the total operating capacity upper limit setting process performed by the total operating capacity upper limit setting unit 150 of the centralized controller 101 is substantially the same as the flowchart of FIG. 9 described in the first embodiment, except for the method of calculating the total operating capacity upper limit. is there.
  • step S61 the total operating capacity calculated by the total operating capacity calculator 140 is acquired.
  • step S62 the model information held by the model information holding unit 120 (relationship between operating capacity and power consumption and upper and lower limit values of the operating capacity) is acquired.
  • the demand level (kW) determined by the demand level determination unit 130 is acquired.
  • FIG. 17 is a diagram showing a relationship (P curve) between the operating capacity and the power consumption according to Embodiment 2 of the present invention.
  • P curve a relationship between the operating capacity and the power consumption according to Embodiment 2 of the present invention.
  • the relationship between the operating capacity and the power consumption can be approximated by a quadratic function. Practically, it is possible to use linear approximation. Therefore, in this embodiment, for the sake of simplicity, a linear approximation is used. Therefore, the operating capacity and the power consumption are directly proportional.
  • step S64 the demand level (kW) calculated by the demand level determining unit 130, the total operating capacity calculated by the total operating capacity calculating unit 140, and the model held by the model information holding unit 120 Based on the information P curve, the amount of change in the total operating capacity corresponding to the demand level (kW) is calculated. And what subtracted the variation
  • dP / dF in Equation (3) is the slope of the P curve.
  • the current total operating capacity is 150%
  • the power consumption at that time is 75 kW
  • the slope of the P curve is 0.5
  • the demand level (kW) is +25 kW.
  • the chiller 32 can be obtained by lowering the total operating capacity upper limit value when the demand level is high, and conversely increasing the total operating capacity upper limit value when the demand level is low. Power consumption can be adjusted according to demand.
  • step S65 the minimum operating capacity of the chiller 32, which is the model information acquired in step S62, is compared with the total operating capacity upper limit value. If it is determined that the total operating capacity upper limit value is greater than or equal to the minimum operating capacity, the process proceeds to step S66. If it is determined that the total operating capacity upper limit value is less than the minimum operating capacity, the process proceeds to step S67.
  • step S67 0% is set (assigned) to the total operating capacity upper limit value.
  • step S66 the calculated total operating capacity upper limit value is output.
  • step S71 the total operating capacity calculated by the total operating capacity calculator 140 is acquired.
  • step S72 the total operating capacity upper limit calculated by the total operating capacity upper limit setting unit 150 is acquired.
  • step S73 the total operating capacity is compared with the total operating capacity upper limit value. When it is determined that the total operating capacity is equal to or greater than the total operating capacity upper limit value, the process proceeds to step S76, and the total operating capacity is less than the total operating capacity upper limit value. If it judges, it will progress to step S74.
  • step S74 the total operating capacity is set as a temporary total operating capacity.
  • step S76 the total operating capacity upper limit value is set as the provisional total operating capacity (this can suppress the power consumption of the chiller 32).
  • step S75 the temporary total operating capacity is output.
  • step S81 the model information (COP curve) held by the model information holding unit 120 is acquired.
  • step S82 the total operating capacity calculated by the total operating capacity calculator 140 is acquired.
  • step S83 the provisional total operating capacity calculated by the cooperative control unit 160 is acquired.
  • step S84 the optimum number of operating units is determined based on the COP curve data, which is the model information acquired in step S81, the total operating capacity acquired in step S82, and the temporary total operating capacity acquired in step S83. Specifically, when there is a switching capacity (see FIG. 16) between the current total operating capacity and the provisional total operating capacity, a determination is made to change (increase or decrease) the number of operating units. If not, a decision is made to maintain the current operating number.
  • step S85 it is determined whether or not the number of operating units calculated in step S84 changes. If the number of operating units changes, the process proceeds to step S86, and if the number of operating units does not change, the process proceeds to step S87.
  • step S86 the changed number of operating units and operating capacity are notified to the chiller 32 through the communication line 27, and the chiller 32 is operated. For example, the operating capacity after the update is equally allocated by dividing the temporary total operating capacity by the number of operating units after the change.
  • step S87 the current operating number is maintained without changing the operating number.
  • the number of units to be increased at a time be a certain number or less. Further, when adding a plurality of chillers 32, it is better to start one at a certain time interval.
  • the COP has a total operating capacity equal to or less than the upper limit value of the total operating capacity of the chiller 32 determined by the demand level. Since the number of operating units and the operating capacity of the chiller 32 are determined so as to be the maximum as a whole, it is possible to perform advanced operation control that achieves both demand suppression and energy saving operation. Further, in the present embodiment, the centralized controller 101 determines the demand level from the watt-hour meter 41, so that management related to demand can be performed.
  • the refrigeration apparatus has been described as an example of the refrigeration air conditioning apparatus, but the present invention is not limited to this.
  • the present invention can also be applied to other refrigeration cycle devices (heat pump devices) such as an air conditioner, a hot water supply device, and a refrigeration device.
  • freezer warehouse 21 external demand controller, 22 refrigerator, 23 cooler, 24 unit controller, 25 remote controller, 26 temperature sensor, 27 communication line, 28 remote control line, 29 signal line, 32 chiller, 33 pump, 41 watt hour meter, 100 chiller control device, 101 centralized controller, 110 control set value holding unit, 120 model information holding unit, 130 demand level determining unit, 140 total operating capacity calculating unit, 150 total operating capacity upper limit setting unit, 160 cooperative control unit, 170 Optimal number control unit, 180 timing unit.

Abstract

This control device (100) for refrigerating and air conditioning devices comprises: a demand level determining unit (130) for determining the demand level; a total operating capacity calculating unit (140) that calculates, during each first control cycle, the total operating capacity, which is the total of the operating capacities for each of a plurality of refrigerating and air conditioning devices; a total operating capacity upper limit setting unit (150) that sets, during each second control cycle, an upper limit for the total operating capacity on the basis of the upper and lower limits for the operating capacities of the plurality of refrigerating and air conditioning devices, the total operating capacity, and the demand level; a cooperative controlling unit (160) that determines, during each second control cycle and on the basis of the total operating capacity and the upper limit, a provisional total operating capacity, wherein the total operating capacity is no more than the upper limit; and an optimized number of units controlling unit (170) that determines, during each first control cycle, the number of refrigerating and air conditioning devices in operation and the operating capacity on the basis of the total operating capacity, the provisional total operating capacity, and the relationship between the operating capacity and the coefficient of performance, such that the overall coefficient of performance for the plurality of refrigerating and air conditioning devices is a maximum.

Description

冷凍空調装置用制御装置Control device for refrigeration and air-conditioning equipment
 本発明は、冷凍空調装置を制御する冷凍空調装置用制御装置に関するものである。特に、デマンド抑制と省エネルギー運転とを両立させる制御を行う装置に係るものである。 The present invention relates to a control device for a refrigeration air conditioner that controls the refrigeration air conditioner. In particular, the present invention relates to an apparatus that performs control to achieve both demand suppression and energy saving operation.
 電力デマンド(供給電力)を目標デマンド(契約電力か契約電力より低い電力)以下に制御しようとする場合、一般にデマンド制御装置を用いたデマンド制御を行う。例えば、デマンド制御装置は、電力デマンドの推移を予測した予測値を算出し、予測値と目標デマンドとを比較する。予測値が目標デマンドを超えていれば、警報を発する、負荷を遮断して消費電力を低減させる(供給電力を抑える)等して、電力超過を回避する制御を行っている(例えば、特許文献1参照)。 Demand control using a demand control device is generally performed when the power demand (supplied power) is to be controlled below the target demand (contract power or lower than the contract power). For example, the demand control device calculates a predicted value that predicts the transition of the power demand, and compares the predicted value with the target demand. If the predicted value exceeds the target demand, control is performed to avoid excess power by issuing an alarm, cutting off the load and reducing power consumption (suppressing power supply), etc. (for example, patent document) 1).
 ここで、遮断する負荷としては、空気調和装置、冷凍装置等が選ばれることが多い。これらの装置における消費電力が他の機器に比べて比較的大きいことが主たる理由である。 Here, as the load to be cut off, an air conditioner, a refrigeration unit, or the like is often selected. The main reason is that the power consumption in these devices is relatively large compared to other devices.
 一方、例えば同一負荷に対して複数の冷凍空調装置で熱供給を行う場合に、複数の冷凍空調装置全体の成績係数(以下、COP(Coefficient Of Performance)と表記する)が極大化する(最大となる)ように、冷凍空調装置の台数制御を行って、省エネルギー性を向上させる技術がある。例えば、複数の冷凍機器の運転容量とCOPとの関係に基づき、最適な運転台数を決定し、決定した運転台数で運転制御を行う最適台数制御を行い、冷凍機器全体としてのCOPを極大化するヒートポンプ装置が開示されている(例えば、特許文献2参照)。 On the other hand, for example, when heat is supplied from a plurality of refrigeration air conditioners to the same load, the coefficient of performance (hereinafter referred to as COP (Coefficient Of Performance)) of the plurality of refrigeration air conditioners is maximized (maximum). There is a technology for improving the energy saving performance by controlling the number of refrigeration air conditioners. For example, based on the relationship between the operating capacities of a plurality of refrigeration equipments and COPs, the optimum number of operating units is determined, and the optimal numbering control is performed to control the operation with the determined number of operating units, thereby maximizing the COP for the entire refrigeration unit. A heat pump device is disclosed (for example, see Patent Document 2).
特公昭63-26614号公報Japanese Examined Patent Publication No. 63-26614 特開2013-231542号公報JP 2013-231542 A
 しかしながら、上記した従来のデマンド制御装置のデマンド制御技術と従来のヒートポンプ装置の最適台数制御技術とは、それぞれ単独で機能している制御であり、両制御を同時に協調させるものではなかった。このため、例えば、電力デマンドを抑制しつつ、電力デマンド制限内において、極力、冷凍空調装置全体のCOPが極大化するように運転台数を最適に制御する、といったデマンド抑制と省エネルギー性とを両立する高度な制御を実現するには、冷凍空調装置の制御を工夫する必要がある。 However, the above-described demand control technology of the conventional demand control device and the optimal number control technology of the conventional heat pump device are functions that function independently, and the two controls are not coordinated at the same time. For this reason, for example, while suppressing the power demand, both the demand control and the energy saving performance such that the number of operating units is optimally controlled so as to maximize the COP of the entire refrigerating and air-conditioning apparatus as much as possible within the power demand limit. In order to realize advanced control, it is necessary to devise control of the refrigeration air conditioner.
 本発明は、上記のような課題を解決するためになされたものであり、例えば、デマンド制御と最適台数制御とを協調しながら行うことができる冷凍空調装置用制御装置を得ることを目的とする。 The present invention has been made to solve the above-described problems. For example, an object of the present invention is to obtain a control device for a refrigerating and air-conditioning apparatus that can perform demand control and optimal number control while coordinating. .
 本発明に係る冷凍空調装置用制御装置は、複数の冷凍空調装置を制御可能な冷凍空調装置用制御装置であって、電力デマンドの推移と目標デマンドとの関係であるデマンドレベルを判定するデマンドレベル判定部と、第一制御周期毎に、複数の冷凍空調装置の各運転容量の合計である合計運転容量を演算する合計運転容量演算部と、第二制御周期毎に、複数の冷凍空調装置の運転容量の上下限値、合計運転容量及びデマンドレベルに基づいて、合計運転容量の上限値を設定する合計運転容量上限値設定部と、第二制御周期毎に、合計運転容量と上限値とに基づいて、合計運転容量が上限値以下となる仮合計運転容量を決定する協調制御部と、第一制御周期毎に、複数の冷凍空調装置の運転容量と成績係数の関係、合計運転容量及び仮合計運転容量に基づいて、複数の冷凍空調装置の成績係数が全体として極大となるような冷凍空調装置の運転台数及び運転容量を決定し、冷凍空調装置を制御する最適台数制御部とを備えるものである。 A control apparatus for a refrigeration air conditioner according to the present invention is a control apparatus for a refrigeration air conditioner capable of controlling a plurality of refrigeration air conditioners, and is a demand level for determining a demand level that is a relationship between a transition of power demand and a target demand A determination unit, a total operation capacity calculation unit that calculates a total operation capacity that is the sum of the operation capacities of the plurality of refrigeration air conditioners for each first control cycle, and a plurality of refrigeration air conditioners for each second control cycle Based on the upper and lower limit values of the operating capacity, the total operating capacity, and the demand level, the total operating capacity upper limit setting unit that sets the upper limit value of the total operating capacity, and the total operating capacity and the upper limit value for each second control cycle. Based on the cooperative control unit that determines the temporary total operating capacity at which the total operating capacity is equal to or less than the upper limit, and the relationship between the operating capacity and the coefficient of performance of the plurality of refrigeration air conditioners, the total operating capacity and the temporary operating capacity for each first control cycle. Total luck Based on the capacity, the number of operating units and the operating capacity of the refrigerating and air-conditioning devices are determined so that the coefficient of performance of the plurality of refrigerating and air-conditioning devices is maximized as a whole, and an optimal number control unit that controls the refrigerating air-conditioning devices is provided .
 本発明によれば、デマンドレベルに応じて合計運転容量上限値を設定する構成としたので、冷凍空調装置の合計運転容量を合計運転容量上限値以下に抑えて消費電力を低減することができ、合計運転容量上限値以下の範囲内において最適台数制御を実現することが可能となる。これにより、電力デマンド制御と最適台数制御とを協調して制御を行う装置を得ることができる。 According to the present invention, since the total operating capacity upper limit value is set according to the demand level, the total operating capacity of the refrigeration air conditioner can be suppressed to the total operating capacity upper limit value or less, and the power consumption can be reduced. Optimal number control can be realized within the range below the total operating capacity upper limit. Thereby, the apparatus which controls electric power demand control and optimal number control in cooperation can be obtained.
本発明の実施の形態1の冷凍空調装置用制御装置を含むシステム全体を示す図である。It is a figure which shows the whole system containing the control apparatus for refrigeration air conditioners of Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍機制御装置100の概略構成を示す図である。It is a figure which shows schematic structure of the refrigerator control apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍機制御装置100の制御動作全体のフローチャートを示す図である。It is a figure which shows the flowchart of the whole control operation | movement of the refrigerator control apparatus 100 which concerns on Embodiment 1 of this invention. 冷凍機制御装置100の起動時(電源投入時)において機種情報保持部120が行う機種情報保持処理のフローチャートを示す図である。It is a figure which shows the flowchart of the model information holding | maintenance process which the model information holding | maintenance part 120 performs at the time of starting of the refrigerator control apparatus 100 (at the time of power activation). 本発明の実施の形態1に係る合計運転容量とCOPとの関係(COPカーブ)を示す図である。It is a figure which shows the relationship (COP curve) of the total operation capacity | capacitance and COP which concern on Embodiment 1 of this invention. データの要求を受けたときの機種情報保持部120が行う処理のフローチャートを示す図である。It is a figure which shows the flowchart of the process which the model information holding | maintenance part 120 performs when the request | requirement of data is received. デマンドレベル判定部130が行うデマンドレベル判定処理のフローチャートを示す図である。It is a figure which shows the flowchart of the demand level determination process which the demand level determination part 130 performs. 合計運転容量演算部140が行う合計運転容量演算処理のフローチャートを示す図である。It is a figure which shows the flowchart of the total operation capacity calculation process which the total operation capacity calculation part 140 performs. 合計運転容量上限値設定部150が行う合計運転容量上限値設定処理のフローチャートを示す図である。It is a figure which shows the flowchart of the total operation capacity upper limit setting process which the total operation capacity upper limit setting part 150 performs. 協調制御部160が行う協調制御処理のフローチャートを示す図である。It is a figure which shows the flowchart of the cooperative control process which the cooperative control part 160 performs. 最適台数制御部170が行う最適台数制御処理のフローチャートを示す図である。It is a figure which shows the flowchart of the optimal number control process which the optimal number control part 170 performs. 本発明の実施の形態2の冷凍空調装置用制御装置を含むシステム全体を示す図である。It is a figure which shows the whole system containing the control apparatus for refrigeration air conditioners of Embodiment 2 of this invention. 本発明の実施の形態2に係る集中コントローラ101の概略構成を示す図である。It is a figure which shows schematic structure of the centralized controller 101 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る集中コントローラ101の制御動作全体のフローチャートを示す図である。It is a figure which shows the flowchart of the whole control operation of the centralized controller 101 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るデマンドレベル判定部130が行うデマンドレベル判定処理のフローチャートを示す図である。It is a figure which shows the flowchart of the demand level determination process which the demand level determination part 130 which concerns on Embodiment 2 of this invention performs. 本発明の実施の形態2に係るチラー32の合計運転容量とCOPとの関係(COPカーブ)を示す図である。It is a figure which shows the relationship (COP curve) of the total operation capacity | capacitance and COP of the chiller 32 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る運転容量と消費電力との関係(Pカーブ)を示す図である。It is a figure which shows the relationship (P curve) between the operating capacity and power consumption which concerns on Embodiment 2 of this invention.
 以下、発明の実施の形態に係る冷凍空調装置用制御装置について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。さらに、枝番号等で区別している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、枝番号等を省略して記載する場合がある。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, a control device for a refrigerating and air-conditioning apparatus according to an embodiment of the invention will be described with reference to the drawings. Here, in FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In particular, the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment. Furthermore, when there is no need to particularly distinguish or identify a plurality of similar devices that are distinguished by branch numbers, the branch numbers may be omitted. In the drawings, the size relationship of each component may be different from the actual one.
 さらに、以下においては、冷凍空調装置の運転容量を、定格運転容量に対する割合(%)で示すが、これに限らず他の単位を用いて表示してもよい。例えば、圧縮機回転数(Hz)を運転容量とみなす場合はHzを単位とする表示となる。また、冷却能力(kW)を運転容量とみなす場合はkWを単位とする表示となる。また、COPについても、定格COPに対する割合(%)で表現しているが、この表現には限らない。いずれの表現でも同様に本発明に係る内容を実行することが可能である。 Furthermore, in the following, the operating capacity of the refrigeration air conditioner is shown as a percentage (%) with respect to the rated operating capacity. However, the present invention is not limited to this and may be displayed using other units. For example, when the compressor rotation speed (Hz) is regarded as the operation capacity, the display is in units of Hz. When the cooling capacity (kW) is regarded as the operating capacity, the display is in units of kW. Moreover, although COP is expressed as a ratio (%) to the rated COP, it is not limited to this expression. The contents according to the present invention can be similarly executed by any expression.
実施の形態1.
 図1は本発明の実施の形態1の冷凍空調装置用制御装置を含むシステム全体を示す図である。図1を用いてシステム全体の構成について説明する。本実施の形態のシステムは、冷媒配管で接続した冷凍機22とクーラ23との組を冷凍空調装置とし、複数台(図1では3台)の冷凍空調装置を有し、冷凍倉庫11(同一空間)内の冷却を行っている。そして、本実施の形態では、複数の冷凍空調装置(冷凍機22及びクーラ23)と、各冷凍空調装置の運転・停止を制御する複数のユニットコントローラ24で冷凍装置群を構成している。
Embodiment 1 FIG.
FIG. 1 is a diagram showing an entire system including a control device for a refrigeration air conditioner according to Embodiment 1 of the present invention. The configuration of the entire system will be described with reference to FIG. The system of the present embodiment uses a set of a refrigerator 22 and a cooler 23 connected by a refrigerant pipe as a refrigeration air conditioner, and has a plurality of (three in FIG. 1) refrigeration air conditioners. Cooling in the space). In this embodiment, a plurality of refrigeration air conditioners (the refrigerator 22 and the cooler 23) and a plurality of unit controllers 24 that control operation / stop of each refrigeration air conditioner constitute a refrigeration apparatus group.
 また、冷凍空調装置用制御装置として冷凍機制御装置100を有している。本実施の形態では、後述するように親機となる冷凍機22-1が冷凍機制御装置100を有している。また、本実施の形態のシステムは、電力デマンド(以下、デマンドという)に関する判断等の制御を行う装置として、外部デマンドコントローラ(DC)21を有している。外部デマンドコントローラ21は、電力デマンドの推移と目標デマンドとの関係に基づき、デマンドレベルを決定する。外部デマンドコントローラ21と冷凍機制御装置100とは、信号線29で接続されている。ここで、本実施の形態のシステムの構成は、本発明に係る冷凍空調装置用制御装置を適用するシステムの構成の一例であって、この構成に限定されるものではない。 Moreover, the refrigerator control device 100 is provided as a control device for the refrigeration air conditioner. In the present embodiment, as will be described later, the refrigerator 22-1 serving as a master unit has the refrigerator control device 100. In addition, the system according to the present embodiment includes an external demand controller (DC) 21 as a device that performs control such as determination regarding power demand (hereinafter referred to as demand). The external demand controller 21 determines the demand level based on the relationship between the transition of the power demand and the target demand. The external demand controller 21 and the refrigerator control device 100 are connected by a signal line 29. Here, the configuration of the system of the present embodiment is an example of the configuration of a system to which the control device for a refrigeration air conditioner according to the present invention is applied, and is not limited to this configuration.
 冷凍機22は、圧縮機、凝縮器等を有している。本実施の形態では、各冷凍機22は同一容量(馬力)であるものとする。ここで、本実施の形態の冷凍機22は、冷凍機制御装置100を有し、冷凍装置群を統括制御する親機となる冷凍機22-1と子機となる冷凍機22-2及び22-3とに別れている。また、各冷凍機22と各ユニットコントローラ24とが通信線27により接続されている。ここで、冷凍機22及びユニットコントローラ24は通信機能を有しており、通信によりデータの授受が可能である。 The refrigerator 22 has a compressor, a condenser, and the like. In the present embodiment, it is assumed that each refrigerator 22 has the same capacity (horsepower). Here, the refrigerator 22 of the present embodiment includes the refrigerator control device 100, and includes a refrigerator 22-1 serving as a master unit that performs overall control of the refrigeration apparatus group, and refrigerators 22-2 and 22 serving as slave units. -3. In addition, each refrigerator 22 and each unit controller 24 are connected by a communication line 27. Here, the refrigerator 22 and the unit controller 24 have a communication function, and can exchange data by communication.
 ユニットコントローラ(UC)24は温度センサ(温度検出装置)26を備えている。温度センサ26は、冷凍倉庫11内の空気の温度を検出する。また、各ユニットコントローラ24は、リモコン線28によりリモートコントローラ(RC。以下、リモコンと表記する)25と接続され、通信を行うことができる。例えば、ユニットコントローラ24からリモコン25に対しては、温度センサ26が検出した庫内温度、冷凍機22の制御状態等のデータを含む信号を送る。リモコン25は、表示手段(図示しない)に送られたデータに基づく表示を行う。また、リモコン25からユニットコントローラ24に対しては、使用者がリモコン25の入力手段から設定・変更した各種設定(例えば、設定温度)に係るデータを含む信号を送る。ユニットコントローラ24は、記憶装置(図示しない)に記憶する。 The unit controller (UC) 24 includes a temperature sensor (temperature detection device) 26. The temperature sensor 26 detects the temperature of the air in the freezer warehouse 11. Each unit controller 24 is connected to a remote controller (RC, hereinafter referred to as a remote controller) 25 through a remote control line 28 and can communicate. For example, the unit controller 24 sends a signal including data such as the internal temperature detected by the temperature sensor 26 and the control state of the refrigerator 22 to the remote controller 25. The remote controller 25 performs display based on data sent to display means (not shown). Further, the remote controller 25 sends a signal including data related to various settings (for example, set temperature) set / changed by the user from the input means of the remote controller 25 to the unit controller 24. The unit controller 24 stores in a storage device (not shown).
 また、ユニットコントローラ24は、リモコン25を介して使用者が設定した設定温度と温度センサ26が検出した温度(検出温度)とを比較し、冷凍機22及びクーラ23の運転、停止等に係る判断をする機能を有する。ユニットコントローラ24は、検出温度が、設定温度より僅かに高いサーモ復帰温度よりも高いと判断すると、冷凍機22及びクーラ23を運転させる(サーモON状態にする)。一方、検出温度が設定温度より僅かに低いサーモ停止温度よりも低いと判断すると、ユニットコントローラ24は冷凍機22及びクーラ23を停止させる(サーモOFF状態にする)。これにより、冷凍倉庫11の庫内温度を設定温度付近に維持することができ、例えば庫内の荷を冷却保存可能となる。ここで、クーラ23の運転又は停止とは、主として、クーラ23が具備する送風機(図示しない)の駆動又は停止を意味する。 Further, the unit controller 24 compares the set temperature set by the user via the remote controller 25 with the temperature (detected temperature) detected by the temperature sensor 26, and determines whether the refrigerator 22 and the cooler 23 are operated or stopped. Has the function of When the unit controller 24 determines that the detected temperature is higher than the thermo return temperature slightly higher than the set temperature, the unit controller 24 operates the refrigerator 22 and the cooler 23 (sets the thermo ON state). On the other hand, when it is determined that the detected temperature is lower than the thermo stop temperature slightly lower than the set temperature, the unit controller 24 stops the refrigerator 22 and the cooler 23 (sets the thermo OFF state). Thereby, the internal temperature of the freezer warehouse 11 can be maintained near the set temperature, and for example, the internal load can be stored in a cold state. Here, the operation or stop of the cooler 23 mainly means drive or stop of a blower (not shown) provided in the cooler 23.
 親機となる冷凍機22-1が有する冷凍機制御装置100は、デマンド制御及び最適台数制御を実行する機能を有する。例えば、外部デマンドコントローラ21から信号線29を通じて送信されるデマンドレベルの判定、冷凍機22(クーラ23)の運転台数の決定等の処理を行う。 The refrigerator control device 100 included in the refrigerator 22-1 serving as a master unit has a function of executing demand control and optimum number control. For example, processing such as determination of a demand level transmitted through the signal line 29 from the external demand controller 21 and determination of the number of operating refrigerators 22 (coolers 23) is performed.
 図2は本発明の実施の形態1に係る冷凍機制御装置100の概略構成を示す図である。図2に示すように、本発明の実施の形態1の冷凍機制御装置100は、制御設定値保持部110、機種情報保持部120、デマンドレベル判定部130、合計運転容量演算部140、合計運転容量上限値設定部150、協調制御部160、最適台数制御部170及び計時部180を構成要素として有している。本実施の形態では、冷凍機制御装置100が行う処理の内容に基づいて各部を構成している。 FIG. 2 is a diagram showing a schematic configuration of the refrigerator control device 100 according to Embodiment 1 of the present invention. As shown in FIG. 2, the refrigerator control device 100 according to Embodiment 1 of the present invention includes a control set value holding unit 110, a model information holding unit 120, a demand level determination unit 130, a total operating capacity calculation unit 140, and a total operation. The capacity upper limit setting unit 150, the cooperative control unit 160, the optimum number control unit 170, and the time measuring unit 180 are included as components. In this Embodiment, each part is comprised based on the content of the process which the refrigerator control apparatus 100 performs.
 制御設定値保持部110は冷凍機22の制御、本発明の内容を実行する際に必要な制御設定値等を保持(記録)する処理を行う。制御設定値は、例えば、リモコン25、冷凍機22に具備する設定操作器(図示しない)等により使用者が設定変更することができる。機種情報保持部120は、後述するように、冷凍機22から送られる信号中の機種情報のデータを保持する処理を行う。デマンドレベル判定部130は、外部デマンドコントローラ21からのデータに基づいてデマンドレベルを判定する処理を行う。合計運転容量演算部140は、各冷凍機22の合計運転容量を演算する処理を行う。合計運転容量上限値設定部150は、デマンドレベルに基づいて、合計運転容量の上限値(合計運転容量上限値)を設定する処理を行う。 The control set value holding unit 110 performs processing for holding (recording) control set values and the like necessary for controlling the refrigerator 22 and executing the contents of the present invention. The control setting value can be set and changed by the user using, for example, a setting operation device (not shown) provided in the remote controller 25 and the refrigerator 22. As will be described later, the model information holding unit 120 performs processing for holding model information data in a signal sent from the refrigerator 22. The demand level determination unit 130 performs processing for determining a demand level based on data from the external demand controller 21. The total operating capacity calculation unit 140 performs processing for calculating the total operating capacity of each refrigerator 22. The total operating capacity upper limit setting unit 150 performs processing for setting an upper limit value (total operating capacity upper limit value) of the total operating capacity based on the demand level.
 協調制御部160は、合計運転容量と合計運転容量上限値とに基づいて、仮合計運転容量を決定する。最適台数制御部170は、仮合計運転容量に基づいて冷凍機22の運転台数を決定する処理を行う。計時部180は、タイマ等の計時手段を有し、計時(カウントアップ)を行う。本実施の形態では、第一制御周期タイマ及び第二制御周期タイマを有し、第一制御周期タイマがあらかじめ設定した第一制御周期以上であるか否か及び第二制御周期タイマがあらかじめ設定した第二制御周期以上であるか否かを判断する。 The cooperative control unit 160 determines a temporary total operation capacity based on the total operation capacity and the total operation capacity upper limit value. The optimal number control unit 170 performs processing for determining the number of operating refrigerators 22 based on the provisional total operating capacity. The timekeeping unit 180 has timekeeping means such as a timer, and performs timekeeping (counting up). In this embodiment, it has a first control cycle timer and a second control cycle timer, whether or not the first control cycle timer is equal to or greater than a preset first control cycle, and the second control cycle timer is preset. It is determined whether or not the second control cycle is exceeded.
 ここで、冷凍機制御装置100は、それぞれ異なる専用機器(ハードウェア)で各部構成することもできるが、ここでは、例えば、CPU(Central Processing Unit )等の制御演算処理装置を有するマイクロコンピュータ等で構成する。また、記憶装置(図示しない)を有しており、制御等に係る処理手順をプログラムとしたデータを有している。そして、制御演算処理装置がプログラムのデータに基づいて各部の処理を実行して制御を実現する。 Here, the refrigerator control device 100 can also be configured by each of different dedicated devices (hardware), but here, for example, a microcomputer having a control arithmetic processing device such as a CPU (Central Processing Unit) is used. Constitute. In addition, it has a storage device (not shown), and has data in which a processing procedure related to control and the like is a program. And a control arithmetic processing apparatus performs the process of each part based on the data of a program, and implement | achieves control.
 図3は本発明の実施の形態1に係る冷凍機制御装置100の制御動作全体のフローチャートを示す図である。図3に基づいて、冷凍機制御装置100が行う全体の制御動作について説明した後、各部の処理について詳述する。まず、ステップS11では、機種情報保持部120が、各冷凍機22から送られる信号に基づいて機種情報のデータを取得し、保持する(記憶する)処理を行う。ステップS12では、計時部180が、第一制御周期タイマ及び第二制御周期タイマをそれぞれカウントアップする。 FIG. 3 is a diagram showing a flowchart of the entire control operation of the refrigerator control device 100 according to Embodiment 1 of the present invention. The overall control operation performed by the refrigerator control device 100 will be described based on FIG. 3, and then the processing of each unit will be described in detail. First, in step S <b> 11, the model information holding unit 120 performs a process of acquiring and holding (storing) model information data based on a signal sent from each refrigerator 22. In step S12, the timer 180 counts up the first control cycle timer and the second control cycle timer.
 ステップS13では、デマンドレベル判定部130が、外部デマンドコントローラ21から送られる信号(接点の開閉状態が信号となる)と制御設定値保持部110が保持する設定値のデータとに基づいて、デマンドレベルを判定するデマンドレベル判定処理を行う。ステップS14では、計時部180が第一制御周期タイマのカウント値が予め設定された第一制御周期以上であるか否かを判断する。第一制御周期以上であると判断するとステップS15に進み、第一制御周期未満であると判断するとステップS16へ進む。 In step S13, the demand level determination unit 130 determines the demand level based on the signal sent from the external demand controller 21 (the contact opening / closing state becomes a signal) and the set value data held by the control set value holding unit 110. Demand level determination processing is performed. In step S14, the time measuring unit 180 determines whether or not the count value of the first control cycle timer is equal to or greater than a preset first control cycle. If it is determined that it is longer than the first control cycle, the process proceeds to step S15, and if it is determined that it is less than the first control period, the process proceeds to step S16.
 ステップS15では、合計運転容量演算部140が、現在運転している冷凍機22の各運転容量のデータを取得し、合算して合計運転容量を演算する合計運転容量演算処理を行う。ステップS16では、計時部180が第二制御周期タイマのカウント値が予め設定された第二制御周期以上であるか否かを判断する。第二制御周期以上であると判断するとステップS17に進み、第二制御周期未満であると判断するとステップS20へ進む。 In step S15, the total operating capacity calculation unit 140 acquires data of each operating capacity of the refrigerator 22 that is currently operating, and performs a total operating capacity calculation process for calculating the total operating capacity by adding the data. In step S16, the timer 180 determines whether or not the count value of the second control cycle timer is equal to or greater than a preset second control cycle. If it is determined that it is longer than the second control cycle, the process proceeds to step S17, and if it is determined that it is less than the second control period, the process proceeds to step S20.
 ステップS17では、合計運転容量上限値設定部150が、機種情報保持部120が保持する機種情報、デマンドレベル判定部130が判断したデマンドレベル及び合計運転容量演算部140が演算した合計運転容量に基づいて、合計運転容量を制限する上限値(合計運転容量上限値)を演算する合計運転容量上限値設定処理を行う。ステップS18では、協調制御部160が、合計運転容量演算部140が演算した合計運転容量と合計運転容量上限値設定部150が演算した合計運転容量上限値とに基づいて、仮合計運転容量を演算する協調制御処理を行う。ステップS19では、計時部180が第二制御周期タイマをリセットして再度計時を開始する。 In step S17, the total operating capacity upper limit setting unit 150 is based on the model information held by the model information holding unit 120, the demand level determined by the demand level determining unit 130, and the total operating capacity calculated by the total operating capacity calculating unit 140. Then, a total operating capacity upper limit setting process for calculating an upper limit (total operating capacity upper limit) for limiting the total operating capacity is performed. In step S18, the cooperative control unit 160 calculates a temporary total operating capacity based on the total operating capacity calculated by the total operating capacity calculating unit 140 and the total operating capacity upper limit calculated by the total operating capacity upper limit setting unit 150. To perform cooperative control processing. In step S19, the timer 180 resets the second control cycle timer and starts counting again.
 ステップS20では、計時部180が第一制御周期タイマのカウント値が第一制御周期以上であるか否かを判断する。第一制御周期以上であると判断するとステップS21に進み、第一制御周期未満であると判断するとステップS12へ進む。 In step S20, the timing unit 180 determines whether or not the count value of the first control cycle timer is equal to or greater than the first control cycle. If it is determined that it is longer than the first control cycle, the process proceeds to step S21, and if it is determined that it is less than the first control period, the process proceeds to step S12.
 ステップS21では、最適台数制御部170が、機種情報保持部120が保持する機種情報、ステップS15において合計運転容量演算部140が演算した合計運転容量及びステップS18において協調制御部160が演算した仮合計運転容量に基づいて、最適運転台数を演算し、冷凍機22の運転台数を調整する最適台数制御処理を行う。ステップS22では、計時部180が第一制御周期タイマをリセットしてステップS12へ進み、再度計時を開始する。 In step S21, the optimal number control unit 170 stores the model information held by the model information holding unit 120, the total operating capacity calculated by the total operating capacity calculation unit 140 in step S15, and the provisional total calculated by the cooperative control unit 160 in step S18. Based on the operation capacity, the optimum operation number is calculated, and the optimum number control process for adjusting the operation number of the refrigerators 22 is performed. In step S22, the timer unit 180 resets the first control cycle timer, proceeds to step S12, and starts counting again.
 以上の処理を第一制御周期及び第二制御周期の時間間隔で繰り返すことで、実施の形態1に係る冷凍機制御装置100の制御動作を実現することができる。ここで、合計運転容量上限値が変更された場合に、その効果を早期に反映し、冷凍機22の運転台数と運転容量を変更させるために、第一制御周期は第二制御周期以下の周期に設定するとよい。次に、上述した各処理の詳細な制御動作について説明する。 By repeating the above processing at time intervals of the first control cycle and the second control cycle, the control operation of the refrigerator control device 100 according to Embodiment 1 can be realized. Here, when the total operating capacity upper limit value is changed, the first control cycle is a cycle equal to or shorter than the second control cycle in order to reflect the effect at an early stage and change the operating number and operating capacity of the refrigerator 22. It is good to set to. Next, a detailed control operation of each process described above will be described.
 図4は冷凍機制御装置100の起動時(電源投入時)において機種情報保持部120が行う機種情報保持処理のフローチャートを示す図である。ステップS31では、電源投入後、冷凍機制御装置100のイニシャライズ(立ち上げ処理)が完了した後、通信線27を介して、冷凍機22(22-1、22-2及び22-3)からの信号に基づいて機種情報のデータを取得する。ステップS32では、取得した冷凍機22の機種情報のデータを保持する。ここで、機種情報とは、冷凍機22の運転容量の上下限値及び運転容量とCOPとの関係である。 FIG. 4 is a flowchart of the model information holding process performed by the model information holding unit 120 when the refrigerator control device 100 is started (when the power is turned on). In step S31, after the power is turned on and the initialization (start-up process) of the refrigerator control device 100 is completed, the communication from the refrigerator 22 (22-1, 22-2 and 22-3) is performed via the communication line 27. The model information data is acquired based on the signal. In step S32, the acquired model information data of the refrigerator 22 is held. Here, the model information is the relationship between the upper and lower limits of the operating capacity of the refrigerator 22 and the operating capacity and the COP.
 図5は本発明の実施の形態1に係る合計運転容量とCOPとの関係(COPカーブ)を示す図である。図5において、横軸は合計運転容量を表し、縦軸はCOPを表す。そして、運転台数毎にCOPカーブが描かれている。実施の形態1においては、冷凍機22は3台のため、COPカーブは3本(1台運転、2台運転、3台運転)描かれている。ここで、上述した特許文献2では、冷熱機器の蒸発温度と凝縮温度とによってCOPカーブを変更しているが、ここでは、簡略化して蒸発温度と凝縮温度とによらず、同一のCOPカーブを用いることとする。ただし、この簡略化は本発明を限定するものではない。 FIG. 5 is a diagram showing a relationship (COP curve) between the total operating capacity and the COP according to the first embodiment of the present invention. In FIG. 5, the horizontal axis represents the total operating capacity, and the vertical axis represents COP. A COP curve is drawn for each operating number. In Embodiment 1, since there are three refrigerators 22, three COP curves are drawn (one unit operation, two unit operation, and three unit operation). Here, in Patent Document 2 described above, the COP curve is changed depending on the evaporation temperature and the condensation temperature of the refrigeration equipment, but here, the same COP curve is simplified regardless of the evaporation temperature and the condensation temperature. We will use it. However, this simplification does not limit the present invention.
 図5に示すように、隣り合うCOPカーブが交点(図5の矢印で示した部分。以下、切換容量と称する)をもっている。負荷に追従した温度調整を行うと、各冷凍機22の運転容量が時々刻々変化し、合計運転容量も変化する。ここで、切換容量を境として、そのままの運転台数で運転容量を増加又は減少させるよりも、運転台数を変更した方が、冷凍装置群全体としてのCOPが向上する。 As shown in FIG. 5, adjacent COP curves have intersections (portions indicated by arrows in FIG. 5, hereinafter referred to as switching capacities). When the temperature adjustment following the load is performed, the operation capacity of each refrigerator 22 changes from moment to moment, and the total operation capacity also changes. Here, the COP as the entire refrigeration apparatus group is improved by changing the number of operating units rather than increasing or decreasing the operating capacity with the number of operating units as it is, with the switching capacity as a boundary.
 図6はデータの要求を受けたときの機種情報保持部120が行う処理のフローチャートを示す図である。例えばステップS33において、機種情報保持部120は、合計運転容量上限値設定部150又は最適台数制御部170から機種情報のデータを要求を受けると、ステップS34において、記憶装置より機種情報のデータの読み出しを行う。そして、ステップS35において、機種情報のデータを応答(出力)する。 FIG. 6 is a flowchart of processing performed by the model information holding unit 120 when a data request is received. For example, when the model information holding unit 120 receives a request for model information data from the total operating capacity upper limit setting unit 150 or the optimum number control unit 170 in step S33, the model information data is read from the storage device in step S34. I do. In step S35, the model information data is returned (output).
 図7はデマンドレベル判定部130が行うデマンドレベル判定処理のフローチャートを示す図である。ステップS41において、デマンドレベル判定部130は、外部デマンドコントローラ21のデマンドレベル信号出力(接点開閉信号)に基づいて、レベル判定を行う。外部デマンドコントローラ21は通信でもデマンドレベルを送信可能だが、ここでは、3点の接点開閉信号によってデマンドレベルを送信する構成としている。外部デマンドコントローラ21は、デマンドと目標デマンドの関係(超過量、裕度)に応じて、デマンドオーバーに対する危険度を段階的に出力する。ここでは、軽度の超過量のときをレベル1(接点Aが閉、図示しない)とする。また、中程度の超過量のときをレベル2(接点Bが閉、図示しない)とする。さらに重度の超過量のときレベル3(接点Cが閉、図示しない)とする。そして、いずれの危険度もない場合は、レベル0とする(接点A、B、Cが開、図示しない)。 FIG. 7 is a flowchart of the demand level determination process performed by the demand level determination unit 130. In step S <b> 41, the demand level determination unit 130 performs level determination based on the demand level signal output (contact opening / closing signal) of the external demand controller 21. The external demand controller 21 can transmit the demand level by communication, but here, the demand level is transmitted by three contact opening / closing signals. The external demand controller 21 outputs the degree of danger for the demand over step by step according to the relationship (excess amount, tolerance) between the demand and the target demand. Here, it is assumed that the slight excess amount is level 1 (contact A is closed, not shown). Further, when the amount is moderate, the level is 2 (contact B is closed, not shown). Further, when the amount is excessive, level 3 (contact C is closed, not shown). If there is no risk, the level is 0 (contacts A, B, and C are open, not shown).
 次に、ステップS42では、制御設定値保持部110から保持するデマンドレベル判定に係る設定値のデータを読み込む。設定値のデータとは、3つのデマンドレベルに1対1に対応する、冷凍機群の消費電力の低減割合(%)のデータである。例えば、外部デマンドコントローラ21から得られたデマンドレベルがレベル1のときは5%とする。また、レベル2のときは10%とする。さらにレベル3のときは100%とする。そして、レベル0のときは-5%とする。ここで、設定値は、例えばリモコン25によって変更が可能である。変更する際はレベルが高い(超過量が大きい)ものには大きな設定値を割り当てる。 Next, in step S42, the setting value data relating to the demand level determination held from the control setting value holding unit 110 is read. The set value data is data on the reduction rate (%) of the power consumption of the refrigerator group corresponding to the three demand levels on a one-to-one basis. For example, when the demand level obtained from the external demand controller 21 is level 1, it is set to 5%. At level 2, it is 10%. Furthermore, at level 3, it is set to 100%. When the level is 0, -5% is set. Here, the set value can be changed by the remote controller 25, for example. When changing, a large set value is assigned to a high level (a large excess amount).
 ステップS43では、デマンドレベル(レベル0~3)と設定値とを対応してデマンドレベル(%)を判定する。例えば、外部デマンドコントローラ21が出力するデマンドレベルがレベル0のときは-5%、レベル1のときは5%、レベル2のときは10%、レベル3のときは100%となる。ステップS44では、ステップS43で判定したデマンドレベル(%)を出力する。 In step S43, the demand level (%) is determined by associating the demand level (level 0 to 3) with the set value. For example, when the demand level output from the external demand controller 21 is level 0, it is -5%, when it is level 1, it is 5%, when it is level 2, it is 10%, and when it is level 3, it is 100%. In step S44, the demand level (%) determined in step S43 is output.
 図8は合計運転容量演算部140が行う合計運転容量演算処理のフローチャートを示す図である。ステップS51では、合計運転容量演算部140は、通信線27を通じて冷凍機22-1、22-2、22-3の現在の運転容量を取得する。ステップS52にて、取得した各運転容量を合算し、合計運転容量を演算する。例えば、冷凍機22-1が運転容量50%、冷凍機22-2が運転容量80%、冷凍機22-3が運転容量0%(停止)の場合、合計運転容量は、50+80+0=130%となる。ステップS53では、ステップS52で演算した合計運転容量を出力する。 FIG. 8 is a diagram showing a flowchart of the total operation capacity calculation process performed by the total operation capacity calculation unit 140. In step S51, the total operating capacity calculation unit 140 acquires the current operating capacity of the refrigerators 22-1, 22-2, and 22-3 through the communication line 27. In step S52, the obtained operating capacities are added together to calculate the total operating capacity. For example, when the refrigerator 22-1 has an operating capacity of 50%, the refrigerator 22-2 has an operating capacity of 80%, and the refrigerator 22-3 has an operating capacity of 0% (stopped), the total operating capacity is 50 + 80 + 0 = 130%. Become. In step S53, the total operating capacity calculated in step S52 is output.
 図9は合計運転容量上限値設定部150が行う合計運転容量上限値設定処理のフローチャートを示す図である。ステップS61では、合計運転容量演算部140が演算した合計運転容量を取得する。ステップS62では、機種情報保持部120が保持する機種情報(運転容量の上下限値)を取得する。ステップS63ではデマンドレベル判定部130が判断したデマンドレベル(%)を取得する。ステップS64では合計運転容量上限値を次式(1)により演算する。 FIG. 9 is a flowchart of the total operating capacity upper limit setting process performed by the total operating capacity upper limit setting unit 150. In step S61, the total operating capacity calculated by the total operating capacity calculator 140 is acquired. In step S62, model information (upper and lower limit values of the operating capacity) held by the model information holding unit 120 is acquired. In step S63, the demand level (%) determined by the demand level determination unit 130 is acquired. In step S64, the total operating capacity upper limit value is calculated by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第一制御周期毎に、デマンドレベル(%)に応じて、合計運転容量の上限値を決定する。例えばデマンドレベルがレベル1~レベル3の場合は上限値が引き下げられ、レベル0の場合は上限値が引き上げられる。このため、冷凍機群の運転容量を調整し、デマンドを制御することができる。 上限 For each first control cycle, the upper limit value of the total operating capacity is determined according to the demand level (%). For example, when the demand level is level 1 to level 3, the upper limit value is lowered, and when the demand level is level 0, the upper limit value is raised. For this reason, the operating capacity of the refrigerator group can be adjusted and the demand can be controlled.
 ステップS65ではステップS62で取得した機種情報である冷凍機22の最小運転容量と合計運転容量上限値とを比較する。合計運転容量上限値が最小運転容量以上であると判断すると、ステップS66へ進む。合計運転容量上限値が最小運転容量未満であると判断するとステップS67へ進む。 In step S65, the minimum operating capacity of the refrigerator 22 which is the model information acquired in step S62 is compared with the total operating capacity upper limit value. If it is determined that the total operating capacity upper limit value is greater than or equal to the minimum operating capacity, the process proceeds to step S66. If it is determined that the total operating capacity upper limit value is less than the minimum operating capacity, the process proceeds to step S67.
 ステップS67では、合計運転容量上限値に0%をセット(代入)する。そして、ステップS66では、演算した合計運転容量上限値を出力する。 In step S67, 0% is set (assigned) to the total operating capacity upper limit value. In step S66, the calculated total operating capacity upper limit value is output.
 図10は協調制御部160が行う協調制御処理のフローチャートを示す図である。ステップS71では、合計運転容量演算部140で演算した合計運転容量を取得する。また、ステップS72では、合計運転容量上限値設定部150で演算した合計運転容量上限値を取得する。 FIG. 10 is a diagram illustrating a flowchart of the cooperative control process performed by the cooperative controller 160. In step S71, the total operating capacity calculated by the total operating capacity calculator 140 is acquired. In step S72, the total operating capacity upper limit calculated by the total operating capacity upper limit setting unit 150 is acquired.
 ステップS73では、合計運転容量と合計運転容量上限値とを比較し、合計運転容量が合計運転容量上限値以上であると判断するとステップS76へ進み、合計運転容量が合計運転容量上限値未満であると判断するとステップS74へ進む。 In step S73, the total operating capacity is compared with the total operating capacity upper limit value. When it is determined that the total operating capacity is equal to or greater than the total operating capacity upper limit value, the process proceeds to step S76, and the total operating capacity is less than the total operating capacity upper limit value. If it judges, it will progress to step S74.
 ステップS74では、合計運転容量を仮合計運転容量とする。ステップS76では、合計運転容量上限値を仮合計運転容量とする(これにより冷凍機群の消費電力を抑制することができる)。ステップS75では仮合計運転容量を出力する。 In step S74, the total operating capacity is set as a temporary total operating capacity. In step S76, the total operating capacity upper limit value is set as a temporary total operating capacity (this can suppress the power consumption of the refrigerator group). In step S75, the temporary total operating capacity is output.
 図11は最適台数制御部170が行う最適台数制御処理のフローチャートを示す図である。最適台数制御部170は、ステップS81では、機種情報保持部120が保持する機種情報(COPカーブ)を取得する。ステップS82では、合計運転容量演算部140が演算した合計運転容量を取得する。ステップS83では、協調制御部160が演算した仮合計運転容量を取得する。 FIG. 11 is a flowchart of the optimum number control process performed by the optimum number control unit 170. In step S81, the optimal number control unit 170 acquires model information (COP curve) held by the model information holding unit 120. In step S82, the total operating capacity calculated by the total operating capacity calculator 140 is acquired. In step S83, the provisional total operating capacity calculated by the cooperative control unit 160 is acquired.
 ステップS84では、ステップS81で取得した機種情報である、COPカーブのデータ、ステップS82で取得した合計運転容量及びステップS83で取得した仮合計運転容量に基づき、最適運転台数を決定する。具体的には、現在の合計運転容量と仮合計運転容量との間に切換容量(図5参照)が存在する場合に運転台数を変化(増台又は減台)させる決定を行う。そうでない場合は、現在の運転台数を維持する決定を行う。 In step S84, the optimum number of operating units is determined based on the COP curve data, which is the model information acquired in step S81, the total operating capacity acquired in step S82, and the temporary total operating capacity acquired in step S83. Specifically, when there is a switching capacity (see FIG. 5) between the current total operating capacity and the provisional total operating capacity, a determination is made to change (increase or decrease) the number of operating units. If not, a decision is made to maintain the current operating number.
 ステップS85では、ステップS84で演算した運転台数が変化するか否かを判断する。運転台数が変化する場合はステップS86へ進み、運転台数が変化しない場合はステップS87へ進む。ステップS86では、冷凍機22へ通信線27を通じて、変化した後の運転台数及び運転容量を通知し、各冷凍機22及びクーラ23を運転させるようにする。更新後の運転容量は、例えば、仮合計運転容量を変化後の運転台数で除すことで、運転容量を均等に割り当てる。ステップS87では、運転台数を変更せず現在の運転台数を維持する。 In step S85, it is determined whether or not the number of operating units calculated in step S84 changes. If the number of operating units changes, the process proceeds to step S86, and if the number of operating units does not change, the process proceeds to step S87. In step S86, the changed number of operating units and operating capacity are notified to the refrigerator 22 through the communication line 27 so that each refrigerator 22 and the cooler 23 are operated. For example, the operating capacity after the update is equally allocated by dividing the temporary total operating capacity by the number of operating units after the change. In step S87, the current operating number is maintained without changing the operating number.
 ここで、台数を増やしたときにデマンドの急激な増加を回避するために、一度に増台する台数を一定台数以下とすることが望ましい。さらに、複数の冷凍機22を増台する場合は、ある一定の時間間隔毎に1台ずつ起動させるとなおよい。このように構成することで、デマンドが急激に増加し、デマンドレベルが急上昇して、一旦、合計運転容量上限値を引き上げたにもかかわらず、早期に再度引き下げなければならなくなる状況を回避することができる。 Here, in order to avoid a sudden increase in demand when the number of units is increased, it is desirable that the number of units to be increased at a time be a certain number or less. Further, when adding a plurality of refrigerators 22, it is better to start up one unit at a certain time interval. By configuring in this way, avoiding a situation where the demand increases rapidly, the demand level rapidly increases, and the total operating capacity upper limit value is once increased, but it must be reduced again at an early stage Can do.
 以上のように、実施の形態1の冷凍空調装置用制御装置によれば、機種情報保持部120が保持する複数の冷凍空調装置(冷凍機22)における各運転容量の上下限値、デマンドレベル判定部130が判定したデマンドレベル及び合計運転容量演算部140が演算した合計運転容量に基づいて合計運転容量上限値設定部150が設定した合計運転容量の上限値に基づいて、協調制御部160が仮合計運転容量を決定し、最適台数制御部170が、機種情報保持部120が保持するCOPカーブ、合計運転容量及び仮合計運転容量に基づいて、冷凍機群のCOPが全体として最大となるような冷凍空調装置の運転台数及び運転容量を決定するようにしたので、デマンド抑制制御と最適台数制御とを協調して行い、より省エネルギーを実現することができる。このとき、計時部180が計時する第一制御周期と第二制御周期とについて、第一制御周期は第二制御周期以下の周期に設定することで、合計運転容量上限値が変更された場合に、その効果を早期に反映し、冷凍機22の運転台数と運転容量を変更させることができる。 As described above, according to the control device for a refrigeration air conditioner of Embodiment 1, the upper and lower limit values of each operating capacity and the demand level determination in the plurality of refrigeration air conditioners (refrigerators 22) held by the model information holding unit 120 Based on the demand level determined by the unit 130 and the total operating capacity calculated by the total operating capacity calculating unit 140, the cooperative control unit 160 temporarily determines the upper limit value of the total operating capacity set by the total operating capacity upper limit setting unit 150. The total operating capacity is determined, and the optimum number control unit 170 maximizes the COP of the refrigerator group as a whole based on the COP curve, total operating capacity, and provisional total operating capacity held by the model information holding unit 120. Since the number of operating units and operating capacity of the refrigeration air conditioners are determined, the demand suppression control and the optimal number control are coordinated to realize more energy saving. Door can be. At this time, when the total operating capacity upper limit value is changed by setting the first control cycle to a cycle equal to or less than the second control cycle for the first control cycle and the second control cycle timed by the timer unit 180. The effect can be reflected at an early stage, and the number of operating units and the operating capacity of the refrigerators 22 can be changed.
実施の形態2.
 図12は本発明の実施の形態2の冷凍空調装置用制御装置を含むシステム全体を示す図である。図12において、図1等と同じ符号を付している機器等については、実施の形態1で説明したことと同様の動作等を行う。本実施の形態では、冷凍空調装置として同一容量(馬力)のチラー32を複数(図12では6台)有している。また、冷凍空調装置用制御装置として集中コントローラ101(各チラー32の制御装置とは別個の制御装置)を有している。ただし、この構成に限定するものではない。ここで、本実施の形態では、集中コントローラ101は、外部デマンドコントローラ21が行っていたデマンドレベルの決定を行うが、この構成に限定するものではない。
Embodiment 2. FIG.
FIG. 12 is a diagram showing the entire system including the control device for the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention. In FIG. 12, the same reference numerals as those in FIG. 1 and so on perform the same operations and the like as described in the first embodiment. In the present embodiment, the refrigeration air conditioner has a plurality (six in FIG. 12) of chillers 32 having the same capacity (horsepower). Moreover, it has the centralized controller 101 (a control apparatus separate from the control apparatus of each chiller 32) as a control apparatus for refrigeration air conditioners. However, the present invention is not limited to this configuration. Here, in the present embodiment, the centralized controller 101 determines the demand level that the external demand controller 21 has performed, but is not limited to this configuration.
 本実施の形態では、同一の負荷(冷水又は温水)に対し、複数のチラー32と複数のポンプ33と、デマンド制御とチラー32の台数制御とを実行する集中コントローラ101を有し、空気調和システムを構成する。ここで、本実施の形態のチラー32は、複数のチラー32を統括する制御装置を有する親機のチラー32-1とチラー32-1の制御装置の指示を受ける制御装置を有する子機のチラー32-2~32-6とで構成する。チラー32の親機と子機及び集中コントローラ101は通信線27で接続され、双方向にデータの送受信が可能となっている。また、集中コントローラ101は、リモコン25とリモコン線28を介して、また電力量計41と信号線29を介して接続されている。 In the present embodiment, for the same load (cold water or hot water), the air conditioning system has a plurality of chillers 32, a plurality of pumps 33, and a centralized controller 101 that executes demand control and number control of the chillers 32. Configure. Here, the chiller 32 according to the present embodiment includes a chiller 32-1 that has a control device that controls a plurality of chillers 32, and a chiller that has a control device that receives instructions from the control device of the chiller 32-1. 32-2 to 32-6. The master unit, the slave unit, and the centralized controller 101 of the chiller 32 are connected by a communication line 27 so that data can be transmitted and received in both directions. The centralized controller 101 is connected to the remote controller 25 via the remote control line 28 and to the watt hour meter 41 via the signal line 29.
 ポンプ33の制御は本願発明の本質部分とは関係ないので、ここでは簡単のために、ポンプ33は現地側の制御機器にて制御され、定回転数(消費電力一定)で回転しているものとする。 Since the control of the pump 33 is not related to the essence of the present invention, for the sake of simplicity, the pump 33 is controlled by a local control device and is rotating at a constant rotational speed (constant power consumption). And
 チラー32は具備する制御装置(図示しない)によって自動制御されており、冷水(又は温水)の温度に応じて、運転容量が調整される。冷水(又は温水)が目標温度に到達したらチラー32の圧縮機(図示しない)は停止し、目標温度を外れたら圧縮機は再始動する。この発停と運転容量の調整により、負荷変動に対応して水の温度調整を実現している。 The chiller 32 is automatically controlled by a control device (not shown), and the operating capacity is adjusted according to the temperature of cold water (or hot water). When the cold water (or hot water) reaches the target temperature, the compressor (not shown) of the chiller 32 is stopped, and when the temperature is outside the target temperature, the compressor is restarted. By adjusting the start / stop and operating capacity, water temperature is adjusted in response to load fluctuations.
 電力量計41は、負荷が設置されている区域、当該区域を含む事業所等全体の使用電力量を計量する機器である。電力量計41は計量対象の電線(図示しない)と接続している。さらに集中コントローラ101と接点を介して接続している。電力量計41は使用電力量をパルスに変換し、集中コントローラ101へ接点開閉により伝達する。集中コントローラ101が電力量計41の出力パルス数を計数し、乗率(kWh/パルス)を乗じて電力量(kWh)へ換算する。乗率は、使用する電力量計41のパルス単位設定(kWh/パルス)に応じて設定する必要があり、使用者がリモコン25を操作して集中コントローラ101に対して設定する。集中コントローラ101は、電力量計41が計量した電力量(kWh)を累算値として保持する。そして、電力量の累算値に基づいてデマンドレベル判定処理を行う。 The watt-hour meter 41 is a device that measures the amount of power used in the entire area including the area where the load is installed and the business office. The watt-hour meter 41 is connected to an electric wire (not shown) to be measured. Further, it is connected to the centralized controller 101 via a contact. The watt-hour meter 41 converts the amount of power used into a pulse and transmits it to the centralized controller 101 by opening and closing the contacts. The centralized controller 101 counts the number of output pulses of the watt hour meter 41 and multiplies it by a multiplication factor (kWh / pulse) to convert it into an electric energy (kWh). The multiplication factor must be set according to the pulse unit setting (kWh / pulse) of the watt-hour meter 41 to be used, and the user sets the centralized controller 101 by operating the remote controller 25. The centralized controller 101 holds the electric energy (kWh) measured by the electric energy meter 41 as an accumulated value. And a demand level determination process is performed based on the accumulated value of electric energy.
 集中コントローラ101は、冷水又は温水の温度、チラー32の運転状態(温度、圧力、運転容量等)、操作履歴等を記録することができる。また、リモコン25を操作すると、集中コントローラ101に記録したデータを送ることで、リモコン25の表示部(図示しない)に表示させることが可能である。特に、本実施の形態の集中コントローラ101は、デマンド制御とチラー32の運転台数制御の機能を有している。 The centralized controller 101 can record the temperature of cold water or hot water, the operating state of the chiller 32 (temperature, pressure, operating capacity, etc.), operation history, and the like. Further, when the remote controller 25 is operated, the recorded data is sent to the centralized controller 101 so that it can be displayed on a display unit (not shown) of the remote controller 25. In particular, the centralized controller 101 of this embodiment has functions of demand control and control of the number of operating chillers 32.
 図13は本発明の実施の形態2に係る集中コントローラ101の概略構成を示す図である。図13において、図2と同じ符号を付している構成要素は、実施の形態1と基本的に同様の動作を行う。本実施の形態では、機種情報保持部120は、冷凍機22の代わりにチラー32からの信号に基づいて、機種情報のデータを取得し、保持する。また、デマンドレベル判定部130は、外部デマンドコントローラ21に代えて電力量計41からの信号に基づいてデマンドレベル判定処理を行う点で、実施の形態1とは異なる。そして、計時部180は、第三制御周期タイマを有し、第三制御周期タイマがあらかじめ設定した第三制御周期以上であるか否かを判断する点で実施の形態1とは異なる。ここで、第三制御周期は、実施の形態1で説明した第一制御周期又は第二制御周期であってもよい。 FIG. 13 is a diagram showing a schematic configuration of the centralized controller 101 according to the second embodiment of the present invention. In FIG. 13, the components denoted by the same reference numerals as those in FIG. 2 perform basically the same operations as those in the first embodiment. In the present embodiment, the model information holding unit 120 acquires and holds model information data based on a signal from the chiller 32 instead of the refrigerator 22. The demand level determination unit 130 is different from the first embodiment in that the demand level determination unit 130 performs a demand level determination process based on a signal from the watt-hour meter 41 instead of the external demand controller 21. Time count unit 180 has a third control cycle timer, and differs from the first embodiment in that it determines whether or not the third control cycle timer is equal to or greater than a preset third control cycle. Here, the third control cycle may be the first control cycle or the second control cycle described in the first embodiment.
 図14は本発明の実施の形態2に係る集中コントローラ101の制御動作全体のフローチャートを示す図である。図14に基づいて、集中コントローラ101が行う全体の制御動作について説明した後、各部の処理について詳述する。まず、ステップS111では、機種情報保持部120が、各チラー32から送られる信号に基づいて機種情報のデータを取得し、保持する(記憶する)処理を行う。ステップS112では、計時部180が、第三制御周期タイマをカウントアップする。 FIG. 14 is a diagram showing a flowchart of the entire control operation of the centralized controller 101 according to the second embodiment of the present invention. The overall control operation performed by the centralized controller 101 will be described based on FIG. 14, and then the processing of each unit will be described in detail. First, in step S111, the model information holding unit 120 performs a process of acquiring and holding (storing) model information data based on a signal transmitted from each chiller 32. In step S112, the timer 180 counts up the third control cycle timer.
 ステップS113では、計時部180が第三制御周期タイマのカウント値が予め設定された第三制御周期以上であるか否かを判断する。第三制御周期以上であると判断するとステップS114に進み、第三制御周期未満であると判断するとステップS112へ進む。 In step S113, the timer 180 determines whether or not the count value of the third control cycle timer is equal to or greater than a preset third control cycle. If it is determined that it is longer than the third control cycle, the process proceeds to step S114, and if it is determined that it is less than the third control period, the process proceeds to step S112.
 ステップS114では、デマンドレベル判定部130が、電力量計41から送られる信号と制御設定値保持部110が保持する設定値のデータとに基づいて、デマンドレベルを判定するデマンドレベル判定処理を行う。 In step S114, the demand level determination unit 130 performs a demand level determination process for determining the demand level based on the signal sent from the watt-hour meter 41 and the set value data held by the control set value holding unit 110.
 ステップS115では、合計運転容量演算部140が、現在運転しているチラー32の各運転容量のデータを取得し、合算して合計運転容量を演算する合計運転容量演算処理を行う。ステップS116では、合計運転容量上限値設定部150が、機種情報保持部120が保持する機種情報、デマンドレベル判定部130が判断したデマンドレベル及び合計運転容量演算部140が演算した合計運転容量に基づいて、合計運転容量を制限する上限値(合計運転容量上限値)を演算する合計運転容量上限値設定処理を行う。ステップS117では、協調制御部160が、合計運転容量演算部140が演算した合計運転容量と合計運転容量上限値設定部150が演算した合計運転容量上限値とに基づいて、仮合計運転容量を演算する協調制御処理を行う。 In step S115, the total operation capacity calculation unit 140 acquires data of each operation capacity of the chiller 32 currently operating, and performs a total operation capacity calculation process for calculating the total operation capacity by adding the data. In step S116, the total operating capacity upper limit setting unit 150 is based on the model information held by the model information holding unit 120, the demand level determined by the demand level determining unit 130, and the total operating capacity calculated by the total operating capacity calculating unit 140. Then, a total operating capacity upper limit setting process for calculating an upper limit (total operating capacity upper limit) for limiting the total operating capacity is performed. In step S117, the cooperative control unit 160 calculates a temporary total operating capacity based on the total operating capacity calculated by the total operating capacity calculating unit 140 and the total operating capacity upper limit calculated by the total operating capacity upper limit setting unit 150. To perform cooperative control processing.
 ステップS118では、最適台数制御部170が、機種情報保持部120が保持する機種情報、ステップS115において合計運転容量演算部140が演算した合計運転容量及びステップS117において協調制御部160が演算した仮合計運転容量に基づいて、最適運転台数を演算し、チラー32の運転台数を調整する最適台数制御処理を行う。ステップS119では、計時部180が第三制御周期タイマをリセットして再度計時を開始する。以上の処理を第三制御周期の時間間隔で繰り返すことで、本発明の実施の形態2の制御動作を実現することができる。 In step S118, the optimal number control unit 170 stores the model information held by the model information holding unit 120, the total operating capacity calculated by the total operating capacity calculation unit 140 in step S115, and the provisional total calculated by the cooperative control unit 160 in step S117. Based on the operation capacity, the optimum operation number is calculated, and the optimum number control process for adjusting the operation number of the chiller 32 is performed. In step S119, the timer 180 resets the third control cycle timer and starts counting again. By repeating the above processing at time intervals of the third control cycle, the control operation of the second embodiment of the present invention can be realized.
 集中コントローラ101の起動時(電源投入時)において機種情報保持部120が行う機種情報保持処理は、実施の形態1において説明した、図4のフローチャートとほぼ同じである。例えば、ステップS31では、電源投入後、集中コントローラ101のイニシャライズ(立ち上げ処理)が完了した後、通信線27を介して、チラー32(32-1、32-2、32-3、32-4、32-5及び32-6)からの信号に基づいて機種情報のデータを取得する。ステップS32では、取得したチラー32の機種情報のデータを保持する。ここで、本実施の形態における機種情報とは、各チラー32の運転容量の上下限値、運転容量とCOPとの関係(COPカーブ)及び運転容量と消費電力との関係(Pカーブ)のデータである。COPカーブ及びPカーブについては後述する。 The model information holding process performed by the model information holding unit 120 when the centralized controller 101 is activated (when the power is turned on) is substantially the same as the flowchart of FIG. 4 described in the first embodiment. For example, in step S31, after the power is turned on and the initialization (start-up process) of the centralized controller 101 is completed, the chillers 32 (32-1, 32-2, 32-3, 32-4) are connected via the communication line 27. , 32-5 and 32-6), the model information data is acquired. In step S32, the acquired model information data of the chiller 32 is held. Here, the model information in the present embodiment includes the upper and lower limit values of the operating capacity of each chiller 32, the relationship between the operating capacity and COP (COP curve), and the relationship between the operating capacity and power consumption (P curve). It is. The COP curve and P curve will be described later.
 一方、集中コントローラ101の機種情報保持部120において、データの要求を受けたときの処理は、実施の形態1において説明した、図6のフローチャートとほぼ同じである。例えばステップS33において、機種情報保持部120は、合計運転容量上限値設定部150又は最適台数制御部170から機種情報のデータを要求を受けると、ステップS34において、記憶装置より機種情報のデータの読み出しを行う。そして、対象のステップS35において、機種情報のデータを応答(出力)する。 On the other hand, the processing when the model information holding unit 120 of the centralized controller 101 receives a data request is substantially the same as the flowchart of FIG. 6 described in the first embodiment. For example, when the model information holding unit 120 receives a request for model information data from the total operating capacity upper limit setting unit 150 or the optimum number control unit 170 in step S33, the model information data is read from the storage device in step S34. I do. In step S35, the model information data is returned (output).
 図15は本発明の実施の形態2に係るデマンドレベル判定部130が行うデマンドレベル判定処理のフローチャートを示す図である。ステップS45において、電力量計41から取得した電力量や、制御設定値保持部110より取得した目標デマンド等に基づきデマンドレベルを判定する。ここで、デマンドレベルはデマンド予測値の目標デマンドに対する超過量(又は裕度)とし、単位はkWである。ここで、本実施の形態のデマンドレベル(kW)は正負の値をとるものであり、デマンド予測値が目標デマンドを超過しているときには正の値となる。また、デマンドレベル(kW)の演算手法については、従来からある種々の方法のうち、いずれの手法を用いてもよい。ステップS46では、ステップS45で判定したデマンドレベル(kW)を出力する。 FIG. 15 is a diagram illustrating a flowchart of the demand level determination process performed by the demand level determination unit 130 according to Embodiment 2 of the present invention. In step S45, the demand level is determined based on the amount of power acquired from the watt-hour meter 41, the target demand acquired from the control set value holding unit 110, and the like. Here, the demand level is an excess amount (or tolerance) of the demand predicted value with respect to the target demand, and the unit is kW. Here, the demand level (kW) of the present embodiment takes a positive or negative value, and becomes a positive value when the demand predicted value exceeds the target demand. As a demand level (kW) calculation method, any one of various conventional methods may be used. In step S46, the demand level (kW) determined in step S45 is output.
 図16は本発明の実施の形態2に係るチラー32の合計運転容量とCOPとの関係(COPカーブ)を示す図である。図16において、横軸は合計運転容量を表し、縦軸はCOPを表す。運転台数毎にCOPカーブが描かれている。本実施の形態のCOPは、ポンプ33の消費電力含むものである。実施の形態2においては、チラー32を6台有しているため、COPカーブは6本描かれている。ここで、上述した特許文献2では、冷熱機器の蒸発温度と凝縮温度とによってCOPカーブを変更しているが、ここでは、簡略化して蒸発温度と凝縮温度とによらず、同一のCOPカーブを用いることとする。ただし、この簡略化は本発明を限定するものではない。 FIG. 16 is a diagram showing a relationship (COP curve) between the total operating capacity of the chiller 32 and the COP according to the second embodiment of the present invention. In FIG. 16, the horizontal axis represents the total operating capacity, and the vertical axis represents COP. A COP curve is drawn for each operating unit. The COP of the present embodiment includes the power consumption of the pump 33. In the second embodiment, since six chillers 32 are provided, six COP curves are drawn. Here, in Patent Document 2 described above, the COP curve is changed depending on the evaporation temperature and the condensation temperature of the refrigeration equipment, but here, the same COP curve is simplified regardless of the evaporation temperature and the condensation temperature. We will use it. However, this simplification does not limit the present invention.
 合計運転容量演算部140が行う合計運転容量演算処理は、実施の形態1において説明した、図8のフローチャートとほぼ同じである。ステップS51では、合計運転容量演算部140は、通信線27を通じてチラー32-1~32-6の現在の運転容量を取得する。ステップS52にて、取得した各運転容量を合算し、合計運転容量を演算する。ステップS53では、ステップS52で演算した合計運転容量を出力する。 The total operation capacity calculation process performed by the total operation capacity calculation unit 140 is substantially the same as the flowchart of FIG. 8 described in the first embodiment. In step S 51, the total operating capacity calculation unit 140 acquires the current operating capacity of the chillers 32-1 to 32-6 through the communication line 27. In step S52, the obtained operating capacities are added together to calculate the total operating capacity. In step S53, the total operating capacity calculated in step S52 is output.
 集中コントローラ101の合計運転容量上限値設定部150が行う合計運転容量上限値設定処理は、合計運転容量上限値の演算方法以外は、実施の形態1において説明した、図9のフローチャートとほぼ同じである。ステップS61では、合計運転容量演算部140が演算した合計運転容量を取得する。ステップS62では、機種情報保持部120が保持する機種情報(運転容量と消費電力の関係及び運転容量の上下限値)を取得する。ステップS63ではデマンドレベル判定部130が判断したデマンドレベル(kW)を取得する。 The total operating capacity upper limit setting process performed by the total operating capacity upper limit setting unit 150 of the centralized controller 101 is substantially the same as the flowchart of FIG. 9 described in the first embodiment, except for the method of calculating the total operating capacity upper limit. is there. In step S61, the total operating capacity calculated by the total operating capacity calculator 140 is acquired. In step S62, the model information held by the model information holding unit 120 (relationship between operating capacity and power consumption and upper and lower limit values of the operating capacity) is acquired. In step S63, the demand level (kW) determined by the demand level determination unit 130 is acquired.
 図17は本発明の実施の形態2に係る運転容量と消費電力との関係(Pカーブ)を示す図である。図17から分かるように、運転容量と消費電力との関係を2次関数で近似することができる。実用的には直線近似とすることも可能である。そこで、本実施の形態では、簡単のため、直線近似とする。したがって、運転容量と消費電力とは正比例の関係となる。 FIG. 17 is a diagram showing a relationship (P curve) between the operating capacity and the power consumption according to Embodiment 2 of the present invention. As can be seen from FIG. 17, the relationship between the operating capacity and the power consumption can be approximated by a quadratic function. Practically, it is possible to use linear approximation. Therefore, in this embodiment, for the sake of simplicity, a linear approximation is used. Therefore, the operating capacity and the power consumption are directly proportional.
 図9のフローチャートに示すように、ステップS64ではデマンドレベル判定部130が演算したデマンドレベル(kW)と、合計運転容量演算部140が演算した合計運転容量と、機種情報保持部120が保持する機種情報であるPカーブに基づき、デマンドレベル(kW)に相当する合計運転容量の変化量を演算する。そして、現在の合計運転容量に対して変化量を減算したものを、合計運転容量上限値とする。ここで、式(3)におけるdP/dFは、Pカーブの傾きである。 As shown in the flowchart of FIG. 9, in step S64, the demand level (kW) calculated by the demand level determining unit 130, the total operating capacity calculated by the total operating capacity calculating unit 140, and the model held by the model information holding unit 120 Based on the information P curve, the amount of change in the total operating capacity corresponding to the demand level (kW) is calculated. And what subtracted the variation | change_quantity with respect to the present total operation capacity is made into a total operation capacity upper limit. Here, dP / dF in Equation (3) is the slope of the P curve.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 数値を用いて具体的に説明する。例えば、現在の合計運転容量が150%であり、そのときの消費電力が75kW、Pカーブの傾きが0.5、デマンドレベル(kW)が+25kWとする。このとき、変化量=2×25=50(%)、合計運転容量上限値=150-50=100(%)となる。 Specific explanation using numerical values. For example, the current total operating capacity is 150%, the power consumption at that time is 75 kW, the slope of the P curve is 0.5, and the demand level (kW) is +25 kW. At this time, the change amount = 2 × 25 = 50 (%) and the total operating capacity upper limit value = 150−50 = 100 (%).
 また、デマンドレベル(kW)が-25kWである条件では、変化量=2×(-25)=-50(%)、合計運転容量上限値=150-(-50)=200(%)となる。 On the condition that the demand level (kW) is −25 kW, the change amount = 2 × (−25) = − 50 (%) and the total operating capacity upper limit value = 150 − (− 50) = 200 (%). .
 このように、本発明の実施の形態1の場合と同様に、デマンドレベルが高ければ合計運転容量上限値を引き下げ、逆にデマンドレベルが低くなれば合計運転容量上限値を引き上げることで、チラー32の消費電力をデマンドに応じて調整することが可能となる。 Thus, as in the case of the first embodiment of the present invention, the chiller 32 can be obtained by lowering the total operating capacity upper limit value when the demand level is high, and conversely increasing the total operating capacity upper limit value when the demand level is low. Power consumption can be adjusted according to demand.
 ステップS65ではステップS62で取得した機種情報であるチラー32の最小運転容量と合計運転容量上限値とを比較する。合計運転容量上限値が最小運転容量以上であると判断すると、ステップS66へ進む。合計運転容量上限値が最小運転容量未満であると判断するとステップS67へ進む。 In step S65, the minimum operating capacity of the chiller 32, which is the model information acquired in step S62, is compared with the total operating capacity upper limit value. If it is determined that the total operating capacity upper limit value is greater than or equal to the minimum operating capacity, the process proceeds to step S66. If it is determined that the total operating capacity upper limit value is less than the minimum operating capacity, the process proceeds to step S67.
 ステップS67では、合計運転容量上限値に0%をセット(代入)する。そして、ステップS66では、演算した合計運転容量上限値を出力する。 In step S67, 0% is set (assigned) to the total operating capacity upper limit value. In step S66, the calculated total operating capacity upper limit value is output.
 協調制御部160が行う協調制御処理は、実施の形態1において説明した、図10のフローチャートとほぼ同じである。ステップS71では、合計運転容量演算部140で演算した合計運転容量を取得する。また、ステップS72では、合計運転容量上限値設定部150で演算した合計運転容量上限値を取得する。 The cooperative control process performed by the cooperative controller 160 is almost the same as the flowchart of FIG. 10 described in the first embodiment. In step S71, the total operating capacity calculated by the total operating capacity calculator 140 is acquired. In step S72, the total operating capacity upper limit calculated by the total operating capacity upper limit setting unit 150 is acquired.
 ステップS73では、合計運転容量と合計運転容量上限値とを比較し、合計運転容量が合計運転容量上限値以上であると判断するとステップS76へ進み、合計運転容量が合計運転容量上限値未満であると判断するとステップS74へ進む。 In step S73, the total operating capacity is compared with the total operating capacity upper limit value. When it is determined that the total operating capacity is equal to or greater than the total operating capacity upper limit value, the process proceeds to step S76, and the total operating capacity is less than the total operating capacity upper limit value. If it judges, it will progress to step S74.
 ステップS74では、合計運転容量を仮合計運転容量とする。ステップS76では、合計運転容量上限値を仮合計運転容量とする(これによりチラー32の消費電力を抑制することができる)。ステップS75では仮合計運転容量を出力する。 In step S74, the total operating capacity is set as a temporary total operating capacity. In step S76, the total operating capacity upper limit value is set as the provisional total operating capacity (this can suppress the power consumption of the chiller 32). In step S75, the temporary total operating capacity is output.
 最適台数制御部170が行う最適台数制御処理は、実施の形態1において説明した、図11のフローチャートとほぼ同じである。ステップS81では、機種情報保持部120が保持する機種情報(COPカーブ)を取得する。ステップS82では、合計運転容量演算部140が演算した合計運転容量を取得する。ステップS83では、協調制御部160が演算した仮合計運転容量を取得する。 The optimum number control process performed by the optimum number control unit 170 is almost the same as the flowchart of FIG. 11 described in the first embodiment. In step S81, the model information (COP curve) held by the model information holding unit 120 is acquired. In step S82, the total operating capacity calculated by the total operating capacity calculator 140 is acquired. In step S83, the provisional total operating capacity calculated by the cooperative control unit 160 is acquired.
 ステップS84では、ステップS81で取得した機種情報である、COPカーブのデータ、ステップS82で取得した合計運転容量及びステップS83で取得した仮合計運転容量に基づき、最適運転台数を決定する。具体的には、現在の合計運転容量と仮合計運転容量との間に切換容量(図16参照)が存在する場合に運転台数を変化(増台又は減台)させる決定を行う。そうでない場合は、現在の運転台数を維持する決定を行う。 In step S84, the optimum number of operating units is determined based on the COP curve data, which is the model information acquired in step S81, the total operating capacity acquired in step S82, and the temporary total operating capacity acquired in step S83. Specifically, when there is a switching capacity (see FIG. 16) between the current total operating capacity and the provisional total operating capacity, a determination is made to change (increase or decrease) the number of operating units. If not, a decision is made to maintain the current operating number.
 ステップS85では、ステップS84で演算した運転台数が変化するか否かを判断する。運転台数が変化する場合はステップS86へ進み、運転台数が変化しない場合はステップS87へ進む。ステップS86では、チラー32へ通信線27を通じて、変化した後の運転台数及び運転容量を通知し、チラー32を運転させるようにする。更新後の運転容量は、例えば、仮合計運転容量を変化後の運転台数で除すことで、運転容量を均等に割り当てる。ステップS87では、運転台数を変更せず現在の運転台数を維持する。 In step S85, it is determined whether or not the number of operating units calculated in step S84 changes. If the number of operating units changes, the process proceeds to step S86, and if the number of operating units does not change, the process proceeds to step S87. In step S86, the changed number of operating units and operating capacity are notified to the chiller 32 through the communication line 27, and the chiller 32 is operated. For example, the operating capacity after the update is equally allocated by dividing the temporary total operating capacity by the number of operating units after the change. In step S87, the current operating number is maintained without changing the operating number.
 ここで、台数を増やしたときにデマンドの急激な増加を回避するために、一度に増台する台数を一定台数以下とすることが望ましい。さらに、複数のチラー32を増台する場合は、ある一定の時間間隔毎に1台ずつ起動させるとなおよい。 Here, in order to avoid a sudden increase in demand when the number of units is increased, it is desirable that the number of units to be increased at a time be a certain number or less. Further, when adding a plurality of chillers 32, it is better to start one at a certain time interval.
 以上のように、実施の形態1の冷凍空調装置用制御装置によれば、実施の形態1と同様に、デマンドレベルにより定めたチラー32の合計運転容量の上限値以下の合計運転容量で、COPが全体として最大となるようなチラー32の運転台数及び運転容量を決定するようにしたので、デマンド抑制と省エネルギー運転とを両立する高度な運転制御を行うことができる。さらに、本実施の形態では、集中コントローラ101が電力量計41からデマンドレベルの決定を行うことで、デマンドに係る管理も行うことができる。 As described above, according to the control device for a refrigerating and air-conditioning apparatus of the first embodiment, as in the first embodiment, the COP has a total operating capacity equal to or less than the upper limit value of the total operating capacity of the chiller 32 determined by the demand level. Since the number of operating units and the operating capacity of the chiller 32 are determined so as to be the maximum as a whole, it is possible to perform advanced operation control that achieves both demand suppression and energy saving operation. Further, in the present embodiment, the centralized controller 101 determines the demand level from the watt-hour meter 41, so that management related to demand can be performed.
 上述の実施の形態では、冷凍空調装置の例として冷凍装置について説明したが、これに限定するものではない。例えば空気調和装置、給湯装置、冷蔵装置等、他の冷凍サイクル装置(ヒートポンプ装置)にも適用することができる。 In the above-described embodiment, the refrigeration apparatus has been described as an example of the refrigeration air conditioning apparatus, but the present invention is not limited to this. For example, the present invention can also be applied to other refrigeration cycle devices (heat pump devices) such as an air conditioner, a hot water supply device, and a refrigeration device.
 11 冷凍倉庫、21 外部デマンドコントローラ、22 冷凍機、23 クーラ、24 ユニットコントローラ、25 リモコン、26 温度センサ、27 通信線、28 リモコン線、29 信号線、32 チラー、33 ポンプ、41 電力量計、100 冷凍機制御装置、101 集中コントローラ、110 制御設定値保持部、120 機種情報保持部、130 デマンドレベル判定部、140 合計運転容量演算部、150 合計運転容量上限値設定部、160 協調制御部、170 最適台数制御部、180 計時部。 11 freezer warehouse, 21 external demand controller, 22 refrigerator, 23 cooler, 24 unit controller, 25 remote controller, 26 temperature sensor, 27 communication line, 28 remote control line, 29 signal line, 32 chiller, 33 pump, 41 watt hour meter, 100 chiller control device, 101 centralized controller, 110 control set value holding unit, 120 model information holding unit, 130 demand level determining unit, 140 total operating capacity calculating unit, 150 total operating capacity upper limit setting unit, 160 cooperative control unit, 170 Optimal number control unit, 180 timing unit.

Claims (7)

  1.  複数の冷凍空調装置を制御可能な冷凍空調装置用制御装置であって、
     電力デマンドの推移と目標デマンドとの関係であるデマンドレベルを判定するデマンドレベル判定部と、
     第一制御周期毎に、前記複数の冷凍空調装置の各運転容量の合計である合計運転容量を演算する合計運転容量演算部と、
     第二制御周期毎に、前記複数の冷凍空調装置の運転容量の上下限値、前記合計運転容量及び前記デマンドレベルに基づいて、前記合計運転容量の上限値を設定する合計運転容量上限値設定部と、
     前記第二制御周期毎に、前記合計運転容量と前記上限値とに基づいて、前記合計運転容量が前記上限値以下となる仮合計運転容量を決定する協調制御部と、
     前記第一制御周期毎に、前記複数の冷凍空調装置の運転容量と成績係数の関係、前記合計運転容量及び前記仮合計運転容量に基づいて、前記複数の冷凍空調装置の成績係数が全体として極大となるような前記冷凍空調装置の運転台数及び運転容量を決定し、前記冷凍空調装置を制御する最適台数制御部と
    を備える冷凍空調装置用制御装置。
    A control device for a refrigeration air conditioner capable of controlling a plurality of refrigeration air conditioners,
    A demand level determination unit that determines a demand level that is a relationship between the transition of the power demand and the target demand;
    For each first control cycle, a total operating capacity calculation unit that calculates a total operating capacity that is the sum of the operating capacities of the plurality of refrigeration air conditioners;
    A total operating capacity upper limit setting unit that sets an upper limit value of the total operating capacity based on upper and lower limits of operating capacity of the plurality of refrigeration air conditioners, the total operating capacity, and the demand level for each second control cycle. When,
    A cooperative control unit that determines a temporary total operating capacity at which the total operating capacity is equal to or lower than the upper limit value, based on the total operating capacity and the upper limit value, for each second control cycle;
    Based on the relationship between the operating capacity and the coefficient of performance of the plurality of refrigeration air conditioners, the total operating capacity, and the temporary total operating capacity for each first control cycle, the coefficient of performance of the plurality of refrigeration air conditioners as a whole is a maximum. The control apparatus for refrigeration air conditioners provided with the optimal number control part which determines the operation | movement number and operation capacity of the said refrigeration air conditioners which become and controls the said refrigeration air conditioner.
  2.  前記合計運転容量上限値設定部は、前記電力デマンドの前記目標デマンドに対する超過量が大きいと前記上限値を小さく設定し、前記超過量が小さいと前記上限値を大きく設定する請求項1に記載の冷凍空調装置用制御装置。 The total operating capacity upper limit setting unit according to claim 1, wherein when the excess amount of the power demand with respect to the target demand is large, the upper limit value is set small, and when the excess amount is small, the upper limit value is set large. Control device for refrigeration air conditioner.
  3.  前記最適台数制御部は、運転台数を増台する場合の、増台数を一定台数以下とする請求項1又は請求項2に記載の冷凍空調装置用制御装置。 The control unit for a refrigerating and air-conditioning apparatus according to claim 1 or 2, wherein the optimum number control unit sets the increase in the number of operating units to a certain number or less.
  4.  前記最適台数制御部は、運転台数を2台以上増台する場合には、一定の時間間隔で1台ずつ増台する請求項1から請求項3のいずれか一項に記載の冷凍空調装置用制御装置。 The said optimal number control part is for the refrigeration air conditioner as described in any one of Claim 1 to 3 which increases one by one at a fixed time interval, when increasing the number of operation | movement number two or more. Control device.
  5.  前記第一制御周期を前記第二制御周期以下の周期とする請求項1~請求項4のいずれか一項に記載の冷凍空調装置用制御装置。 The control device for a refrigerating and air-conditioning apparatus according to any one of claims 1 to 4, wherein the first control cycle is a cycle equal to or shorter than the second control cycle.
  6.  前記デマンドレベル判定部は、外部から送られる信号に基づいて、前記デマンドレベルを判定する請求項1~請求項5のいずれか一項に記載の冷凍空調装置用制御装置。 The control device for a refrigeration air conditioner according to any one of claims 1 to 5, wherein the demand level determination unit determines the demand level based on a signal sent from outside.
  7.  前記デマンドレベル判定部は、電力量に基づいて前記電力デマンドを予測し、予測した前記電力デマンドに基づいて前記デマンドレベルを判定する請求項1~請求項5のいずれか一項に記載の冷凍空調装置用制御装置。 The refrigerating and air-conditioning according to any one of claims 1 to 5, wherein the demand level determination unit predicts the power demand based on a power amount, and determines the demand level based on the predicted power demand. Control device for equipment.
PCT/JP2014/064651 2014-06-02 2014-06-02 Control device for refrigerating and air conditioning devices WO2015186181A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064651 WO2015186181A1 (en) 2014-06-02 2014-06-02 Control device for refrigerating and air conditioning devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064651 WO2015186181A1 (en) 2014-06-02 2014-06-02 Control device for refrigerating and air conditioning devices

Publications (1)

Publication Number Publication Date
WO2015186181A1 true WO2015186181A1 (en) 2015-12-10

Family

ID=54766283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064651 WO2015186181A1 (en) 2014-06-02 2014-06-02 Control device for refrigerating and air conditioning devices

Country Status (1)

Country Link
WO (1) WO2015186181A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060556A (en) * 2017-09-27 2019-04-18 東芝キヤリア株式会社 Heat source device
US20220003447A1 (en) * 2020-07-01 2022-01-06 Haier Us Appliance Solutions, Inc. Air conditioning system with improved coordination between a plurality of units

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176838A (en) * 1984-08-20 1986-04-19 Fujitsu General Ltd Start control circuit of air conditioner
JPH07198185A (en) * 1993-12-28 1995-08-01 Sanyo Electric Co Ltd Air conditioner
JP2002247757A (en) * 2001-02-16 2002-08-30 Mitsubishi Electric Corp Demand monitor control system
JP2013231533A (en) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp Refrigerating system
JP2014062667A (en) * 2012-09-20 2014-04-10 Daikin Ind Ltd Heat source control device
JP2014062668A (en) * 2012-09-20 2014-04-10 Daikin Ind Ltd Demand control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176838A (en) * 1984-08-20 1986-04-19 Fujitsu General Ltd Start control circuit of air conditioner
JPH07198185A (en) * 1993-12-28 1995-08-01 Sanyo Electric Co Ltd Air conditioner
JP2002247757A (en) * 2001-02-16 2002-08-30 Mitsubishi Electric Corp Demand monitor control system
JP2013231533A (en) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp Refrigerating system
JP2014062667A (en) * 2012-09-20 2014-04-10 Daikin Ind Ltd Heat source control device
JP2014062668A (en) * 2012-09-20 2014-04-10 Daikin Ind Ltd Demand control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060556A (en) * 2017-09-27 2019-04-18 東芝キヤリア株式会社 Heat source device
US20220003447A1 (en) * 2020-07-01 2022-01-06 Haier Us Appliance Solutions, Inc. Air conditioning system with improved coordination between a plurality of units
CN114341554A (en) * 2020-07-01 2022-04-12 青岛海尔空调器有限总公司 Air conditioner system with improved coordination between multiple units

Similar Documents

Publication Publication Date Title
EP3194865B1 (en) Method and apparatus for optimizing control variables to minimize power consumption of cooling systems
JP5914595B2 (en) Power saving system and method
US10181725B2 (en) Method for operating at least one distributed energy resource comprising a refrigeration system
CN109253534A (en) A kind of outer blower method for controlling number of revolution, equipment and computer can storage mediums
CN108253603B (en) Air conditioner control method, device and system and air conditioner
US20130197708A1 (en) Method and apparatus for managing energy by analyzing energy usage pattern of electric device
CN108278729B (en) Air conditioner control method and device and air conditioner
WO2015186181A1 (en) Control device for refrigerating and air conditioning devices
EP3299734B1 (en) System for air-conditioning and hot-water supply
CN110186162A (en) A kind of air conditioning control method and device
CN108954653A (en) A kind of control method of rotation speed of fan, device and computer readable storage medium
CN112944593B (en) Air conditioner and defrosting control method thereof
CN113432156B (en) Refrigeration control method and device, integrated cooker and storage medium
WO2018179366A1 (en) Refrigeration cycle system and communication traffic adjustment method
KR101172054B1 (en) method for operating refrigerator having a inverter compressor
CN112050414A (en) Heat storage control method of air conditioner
CN112032945B (en) Air conditioner heat storage control method
CN112032951B (en) Air conditioner heat storage control method
CN112032944B (en) Air conditioner heat storage control method
CN112032942B (en) Air conditioner heat storage control method
CN112032952B (en) Air conditioner heat storage control method
CN112032950B (en) Air conditioner heat storage control method
CN112032946B (en) Air conditioner heat storage control method
CN112032956B (en) Air conditioner heat storage control method
CN112050402B (en) Heat storage control method of air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP