WO2015185969A1 - Procedimiento de fabricación de materiales avanzados por concentración de corriente eléctrica - Google Patents
Procedimiento de fabricación de materiales avanzados por concentración de corriente eléctrica Download PDFInfo
- Publication number
- WO2015185969A1 WO2015185969A1 PCT/IB2015/000592 IB2015000592W WO2015185969A1 WO 2015185969 A1 WO2015185969 A1 WO 2015185969A1 IB 2015000592 W IB2015000592 W IB 2015000592W WO 2015185969 A1 WO2015185969 A1 WO 2015185969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flexible
- electric current
- sample
- graphite
- pistons
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 43
- 239000010439 graphite Substances 0.000 claims abstract description 43
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 41
- 239000000835 fiber Substances 0.000 claims description 11
- 238000000280 densification Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 6
- 229910052582 BN Inorganic materials 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 16
- 239000004020 conductor Substances 0.000 abstract description 6
- 239000000615 nonconductor Substances 0.000 abstract description 6
- 238000010292 electrical insulation Methods 0.000 abstract description 3
- 238000009877 rendering Methods 0.000 abstract 1
- 238000002490 spark plasma sintering Methods 0.000 description 31
- 238000001816 cooling Methods 0.000 description 7
- 229910010293 ceramic material Inorganic materials 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001272 pressureless sintering Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910016006 MoSi Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009708 electric discharge sintering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 239000011215 ultra-high-temperature ceramic Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
Definitions
- the present invention aims at obtaining advanced materials, either conductive or electrical insulators from the electrical insulation of a conductive mold, preferably graphite, using a flexible electrical insulating sheet, preferably alumina fibers, by concentrating electrical current , reaching heating speeds above 2000 ° C / min, with the consequent energy and time savings, so it is of high industrial and commercial interest for all sectors related to advanced materials, whether they are manufacturers or consumers.
- SPS spark plasma sintering
- RS is also a technique commonly used for the manufacture of all types of metallic materials [Orru R, Licheri R, Locci AM, Cincotti A, Cao , G. Consolidation / synthesis of materials by electric current activated / assisted. Mat. Sci. Eng. R 2009; 63: 127-287.].
- EDS electric discharge sintering
- a high-voltage electrical discharge (up to 30 kV) from a battery of Capacitors produce the densification of a metallic material, which is found in the tube of an insulating material [Williams DJ, Clyens S. Metall. Mat. Form 1977, 44: 125.
- Advanced material means a ceramic material or a metallic material with a high melting point, greater than 600 ° C.
- An SPS furnace works in a vacuum or inert atmosphere according to the diagram presented in Figure 1.
- the sample of powder-shaped material (1) is placed inside a graphite mold (3), while a uniaxial load (6) with graphite pistons (2) is applied.
- a DC electric pulse (9) is applied, which is heated by Joule effect, causing the heating of the sample contained inside and, consequently, producing the complete densification of the material if certain temperature conditions and mechanical load are Applied Since its discovery, research on the manufacture of ceramic materials has not stopped growing, leading to the publication of thousands of research articles and an intensification in its commercial exploitation today, in applications as varied as aerospace, storage of energy, thermal barriers, structural at high temperature, electrical insulation, high temperature conductors ...
- Flash sintering this technique is capable of manufacturing ceramic materials in a matter of seconds by applying powers of -100 W, which are either ionic or semiconductor conductors, such as zircona doped with ytria (YTZP) [Cologna M, Rashkova B, Raj R. Flash sintering of nanograin zirconia in ⁇ 5s at 850 ° C. J. Am. Ceram. Soc. 2010; 93: 3557-9] or SiC [Zapata-Solvas E, Bonilla S, Wilshaw PR, Todd R.l. Prelyminary investigation of flash sintering of SiC. J. Europ. Ceram Soc. 2013; 33: 2811-6], respectively.
- a preheating of the material is necessary, either by means of "pressureless sintering" or "hot press", which makes overall its energy efficiency less and the time consumption greater than that of the SPS.
- the object of the present invention constitutes a process for manufacturing advanced materials by concentration of electric current, which comprises the following steps:
- the advanced material is introduced as a powder or, alternatively, as a preform from powder.
- the number of flexible electric conductive sheets (10) is between 1 and 10, their thickness varying between 10 "4 and 2 mm. In a particularly preferred embodiment of the invention there is one or two flexible electric conductive sheets (10) with a thickness between 0.05 and 0.3 mm.
- the number of flexible electrical insulating sheets (1 1) it is comprised between 1 and 10, varying in thickness between 10 "4 and 2 mm.
- the mold (3) is made of graphite
- the electric insulating flexible sheets (1 1) are made of alumina fibers
- the flexible conductive sheets (10) are made of graphite.
- the applied electric current may be DC direct current, DC direct current pulse or AC alternating current, it being especially preferred to apply a DC direct current pulse with intensity between 0.1 and 100 A / mm 2 for a period of time between 1 and 1200 s.
- the stage of the procedure that takes place in the vacuum chamber can be done:
- the procedure can be performed in the presence of mechanical loading with a mechanical tension between 1 Pa and 10 GPa, preferably between 1 Pa and 250 MPa.
- a conductive flexible sheet (10) is placed between the sample (1) and the pistons (2), followed by another electrical insulating flexible sheet (1 1) and followed by another flexible conductive sheet (10)
- the graphite pistons are treated with a composition comprising hexagonal boron nitride.
- the treatment of the graphite pistons is carried out by spraying the composition comprising hexagonal boron nitride.
- Mode I central column consisting of (1), (2) and (10).
- Figure 4.- Graphs of the manufacture of ZrB 2 by concentration (mode I) where a) Temperature and power consumed versus time are represented,
- Mode II central column consisting of (1), (2), (10) and (1 1).
- the sample of powder-shaped material (1) is placed inside a mold (3), preferably of graphite, electrically insulated by a flexible electrical insulating sheet (1 1), preferably of alumina fibers.
- a uniaxial contact load (6) is applied with pistons (2), preferably graphite.
- a DC electric pulse (9) is applied according to figure 3.
- a flexible conductive sheet (10), preferably graphite is placed between the sample (1) and the electrical insulating flexible sheet ( 1 1), preferably alumina fibers, and between the sample (1) and the pistons (2), preferably of graphite, in order to avoid reactions between the sample (1) and the flexible electrical insulating sheet (1 1), preferably of alumina fibers, and to avoid the wear of the pistons (2) for continued use.
- ZrB 2 was chosen as the model material since the electrical conductivity of ZrB 2 (10 7 S / m) is comparable to that of many metals, such as copper. Although the melting point of ZrB 2 is 3280 ° C by 1083 ° C of copper.
- Al 2 0 3 it is one of the best electrical insulators known at low and high temperature, with electric breakage fields of the order of 10 MV / cm at room temperature and also has a melting point of 2072 ° C.
- These properties make Al 2 0 3 a preferred material as an electrical insulator for the presented invention, because it is also a thermal insulator commonly used in high temperature furnaces in industry and laboratories, which minimizes energy losses during the process and increases the energy efficiency of the invention presented.
- any other flexible sheet of a material with an electrical insulating behavior it could have been possible to carry out the invention, only that the flexible sheet based on Al 2 0 3 fibers was considered to be the one that offers the best performance and properties on a daily basis. today for its use in large-scale industry.
- compositions were also manufactured in less than one minute with the mode I configuration; (i) MoS ⁇ 2 , (ii) ZrB 2 -20 vol. % MoS ⁇ 2 , (iii) AI 2 O 3 -20 vol. % nano-C, (iv) AI 2 O 3 -10 vol. % nano-C, (v) AI 2 0 3 -3 vol. % nano-C and (vi) Al 2 0 3 .
- the electric current is concentrated on the flexible conductive sheet (10), preferably graphite.
- the heating rate must have a value that does not compromise the structural stability of the mold (3) and the pistons (2), preferably of graphite.
- graphite In studies of the graphite melting point through the application of electric current, graphite has been melted in 10 "6 s and recorded heating rates exceeding 10 9 ° C / sec [Asinovsky E, Kirillin AV, Kostanovskii AV. Melting point of graphite and liquid carbon Physics-Uspekhy 46; 1295: 2003]
- high voltage of up to 20 kV is used [Pottlacher G, Hixson RS, Meinitzky S, Kaschnitz E, Winkier MA, Jager H.
- the sample of powder-shaped material (1) is placed inside a mold (3), preferably of graphite, electrically insulated by a flexible electrical insulating sheet (1 1), preferably of alumina fibers.
- a uniaxial contact load (6) is applied with pistons (2), preferably graphite.
- pistons (2) preferably graphite.
- an electric pulse of DC current (9) according to Figure 3a and 3b.
- a flexible conductive sheet (10), preferably of graphite, is placed between the sample (1) and the flexible electrical insulating sheet (1 1), preferably of alumina fibers.
- an electrically conductive flexible sheet (2) is placed, preferably graphite, followed by an electrically insulating flexible sheet (11), preferably alumina fibers, followed by an electrically conductive flexible sheet (10), preferably graphite, between the sample (1) and the pistons (2), as seen in Figure 5a.
- the electric current is located on the graphite sheet, which acts as a resistive element and produces the complete densification of the material if conditions of electric current and pressure are applied.
- This configuration is for manufacturing advanced conductive materials or for manufacturing advanced electrical materials, in both cases with thermal insulation, so that cooling is less violent.
- the configuration shown in Figure 3a and 3b can be used, but it is then recommended to control the cooling to avoid structural damage of the material manufactured by thermal shock or too severe cooling.
- This temperature is approximately the same as that reached during the manufacture of ZrB 2 , so the internal temperature is higher than 2000 ° C.
- the thickness of the flexible electrically conductive sheet preferably of graphite (10)
- Al 2 0 3 is also a thermal insulator, so when used as an electrical insulator, the external temperature readings are very different from the internal temperature and the rates of increase of the electric current are proportional to the heating rates. It is estimated that said difference may be of the order of at least 500-600 ° C.
- the experiment in which alumina was molten is illustrated in Figure 6a, 6b and 6c, and the moment of the passage from solid to liquid is indicated by an arrow, characterized by a peak in the power consumed, voltage or vacuum loss.
- a violent change in displacement is observed as a result of the extrusion suffered by AI2O3 in a liquid state, all in less than 1 minute.
- the expected compaction to produce a dense material was obtained at approximately 40 seconds.
- Mode II has another advantage over mode I, which is to produce larger samples with superior energy efficiency. This can lead to a great revolution in the advanced materials industry, since the powers for manufacturing large samples using SPS are very high, which limits the maximum size of the materials that can be manufactured today.
- ZrB 2 is a material very resistant to thermal shock and is not damaged when doing this.
- cooling is controlled so as not to cause the material to fracture due to thermal expansion of the different phases, so that proportionally the entire intensity is reduced between 0 and 20 minutes, depending on the manufacturing and material temperature.
- the external temperature of the mold, the power consumed, voltage, electric current and densification during manufacturing by SES are illustrated in Figure 4 a), b) and c), respectively. From the experimental conditions, it can be deduced that the experiment is easily reproducible.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Insulating Bodies (AREA)
- Inorganic Insulating Materials (AREA)
- Organic Insulating Materials (AREA)
- Ceramic Products (AREA)
Abstract
La presente invención tiene por objeto la obtención de materiales avanzados, ya sean conductores o aislantes eléctricos a partir del aislamiento eléctrico de un molde conductor, preferentemente grafito, usando una lámina flexible aislante eléctrica, preferentemente de fibras de alúmina, mediante la concentración de corriente eléctrica, alcanzando velocidades de calentamiento superiores a 2000°C/min, con el consiguiente ahorro energético y de tiempo por lo que es de un elevado interés industrial y comercial para todos los sectores relacionados con los materiales avanzados, ya sean manufacturadores o consumidores.
Description
PROCEDIMIENTO DE FABRICACIÓN DE MATERIALES AVANZADOS POR CONCENTRACIÓN DE CORRIENTE ELÉCTRICA OBJETO DE LA INVENCIÓN
La presente invención tiene por objeto la obtención de materiales avanzados, ya sean conductores o aislantes eléctricos a partir del aislamiento eléctrico de un molde conductor, preferentemente grafito, usando una lámina flexible aislante eléctrica, preferentemente de fibras de alúmina, mediante la concentración de corriente eléctrica, alcanzando velocidades de calentamiento superiores a 2000°C/min, con el consiguiente ahorro energético y de tiempo por lo que es de un elevado interés industrial y comercial para todos los sectores relacionados con los materiales avanzados, ya sean manufacturadores o consumidores.
ESTADO DE LA TÉCNICA
Más del 50% de los hornos de "spark plasma sintering" (SPS) instalados en el mundo han sido fabricados por Sumitomo Coal Mining Co Ltd y desarrollados durante el final de los años 80, cuyo diseño está basado en patentes que datan de los años 60, cuando se patentó la fabricación de materiales a partir del calor suministrado por disipación eléctrica ("resistive sintering" o RS) [Inoue K, US patent, n°3 241 956, 1966; , Inoue K, US patent, n°3 250 892, 1966.]. Dicha técnica se basa en la aplicación de una intensidad de corriente elevada a bajos voltajes durante un determinado intervalo de tiempo, produciendo un calentamiento local y suficientemente intenso para la densificación del material. De hecho, RS es también una técnica comúnmente utilizada para la fabricación de todo tipo de materiales metálicos [Orru R, Licheri R, Locci AM, Cincotti A, Cao , G. Consolidation/synthesis of materíals by electric current activated/assisted. Mat. Sci. Eng. R 2009;63:127-287.]. Además, existe otro método para la fabricación de materiales metálicos en tiempos tan cortos como 10"5 segundos denominado "electric discharge sintering" (EDS), en el que una descarga eléctrica a alto voltaje (hasta 30 kV) procedente de una batería de
condensadores producen la densificación de un material metálico, que se encuentra en el tubo de un material aislante [Williams DJ, Clyens S. Metall. Mat. Form 1977, 44:125 . Con este método se consiguen densidades de corriente de hasta 2800 A/mm2 (La densidad de corriente por unidad superficial, se corresponde con la intensidad de corriente por unidad de superficie de la sección perpendicular al paso de la corriente del material a fabricar). Sin embargo, en la actualidad más del 95% de la producción científica está realizada mediante RS, que ha sido denominado de otras muchas formas aunque la más popular y usada por la comunidad científica es la de SPS [Orru R, Licheri R, Locci AM, Cincotti A, Cao G. Consolidation/synthesis of materials by electric current activated/assisted. Mat. Sci. Eng. R 2009;63:127-287.]. Además, las altas temperaturas requeridas para la fabricación de materiales cerámicos o su poca conductividad eléctrica, en comparación con la mayoría de metales, dificultaron la implementación de esta técnica para su uso en materiales cerámicos y, no fue hasta los años 90 cuando se empezaron a comercializar unidades SPS capaces de confinar un material avanzado y producir su sinterización hasta obtener un material denso [Tokita M. Trends in Advanced SPS Spark Plasma Sintering System and Technology. J. Soc. Powder Technol. Jpn. 1993;30[11]:790-804]. El nombre de la técnica es debido a la especulación sobre la formación de partículas de plasma sobre la superficie, acelerando así su cinética de densificación [Khor KA, Yu LG, Andersen O, Stephani G. Mater. Sci. Eng. A 2003;356:130]. Por material avanzado se entiende un material cerámico o un material metálico con un punto elevado de fusión, superior a 600 °C.
Un horno de SPS trabaja en vacío o atmósfera inerte acorde al diagrama presentado en la figura 1 . La muestra de material en forma de polvos (1 ) es colocada en el interior de un molde de grafito (3), a la vez que se le aplica una carga uniaxial (6) con unos pistones de grafito (2). Sobre dicho sistema, se aplica un pulso eléctrico de corriente continua DC (9) que se calienta mediante efecto Joule, produciendo el calentamiento de la muestra contenida en el interior y por consiguiente, produciendo la densificación completa del material si unas determinadas condiciones de temperatura y carga mecánica son
aplicadas. Desde su descubrimiento, la investigación sobre la fabricación de materiales cerámicos no ha parado de crecer, dando lugar a la publicación de miles de artículos de investigación y produciéndose una intensificación en su explotación comercial en la actualidad, en aplicaciones tan variadas como aeroespaciales, almacenamiento de energía, barreras térmicas, estructurales a alta temperatura, aislamiento eléctrico, conductores de alta temperatura...
En España acaba de instalarse en el parque tecnológico de Asturias, un horno para la fabricación de muestras cerámicas de grandes dimensiones, para la fabricación de piezas de satélites, por ejemplo. En lo referente a muestras a escala de laboratorio, se cuenta con 3 unidades de SPS en España. En Reino Unido existe una empresa que basa toda su actividad productiva en un SPS (Nanoforce Ltd., Queen Mary College, London). Por otro lado, en Japón se cuentan las unidades de SPS por cientos, lo que enaltece el beneficio producido por el desarrollo tecnológico del SPS en la comunidad japonesa, encontrándose allí la sede de la principal empresa suministradora de hornos SPS (Dr. Sinter, Sumitomo Coal Mining Co Ltd, Japón). Además, -50% de la producción científica internacional en el campo de SPS proviene de Japón. En cuanto a sus características principales, son las siguientes; i) Altas velocidades de enfriamiento y calentamiento de hasta 600 °C/min. i¡) Temperaturas de sinterízación inferiores a las de otras técnicas y tiempos más cortos de fabricación (20-30 minutos en lugar de varias horas). iii) Temperatura máxima de trabajo de -2000-2200 °C. iv) Se aplica una carga uniaxial sobre la muestra, lo que mejora la cinética de densificación. v) El calentamiento es producido directamente sobre el contenedor de la muestra, en lugar de como en otras técnicas calentar una región más amplia, lo que le otorga una mayor eficiencia energética en la
producción de materiales cerámicos. Para muestras a escala de laboratorio el consumo energético es del orden de 5 kW.
Otras técnicas son: i) "Pressureless sintering": dicha técnica consiste en la fabricación de una preforma cerámica mediante el calentamiento de una cavidad aislada térmicamente y equipada con resistencias eléctricas que producen el calor necesario mediante efecto Joule para fabricar el material. Las velocidades de calentamiento son aproximadamente de 10 °C/min y su consumo energético de 5 kW. ii) "Hot press" (HP): es similar al SPS, solo que la corriente es inducida mediante unas bobinas que rodean al molde de grafito por las que circula una corriente alterna AC. Las velocidades de calentamiento pueden ser de hasta 100 °C/min y tienen un consumo energético entre 10-20 kW.
¡ii) "Flash sintering": esta técnica es capaz de fabricar materiales cerámicos en cuestión de segundos aplicando potencias de -100 W, que sean o bien conductores iónicos o semiconductores, como la zircona dopada con ytria (YTZP) [Cologna M, Rashkova B, Raj R. Flash sintering of nanograin zirconia in <5s at 850 °C. J. Am. Ceram. Soc. 2010;93:3557-9] o SiC [Zapata-Solvas E, Bonilla S, Wilshaw PR, Todd R.l. Prelyminary investigation of flash sintering of SiC. J. Europ. Ceram. Soc. 2013;33:2811-6], respectivamente. Sin embargo, para obtener este comportamiento es necesario un precalentamiento del material, bien mediante "pressureless sintering" o "hot press", lo que hace que en cómputo global su eficiencia energética sea menor y el consumo de tiempo mayor que la del SPS.
Con todo esto, se puede concluir que SPS es la técnica con mayor eficiencia energética y menor consumo de tiempo del mercado en la actualidad. A modo de ejemplo, se ilustra en la figura 2 a), b) y c) todos los parámetros relativos a temperatura, consumo de potencia, voltaje, intensidad de corriente y desplazamiento durante el proceso de fabricación mediante SPS del ZrB2. En
la figura 2 c) se puede observar el periodo de calentamiento y enfriamiento separados por una línea discontinua vertical. Este material es elegido como modelo, debido a que se fabrica a temperaturas cercanas a la temperatura límite del SPS (2000 °C) [Zapata-Solvas E, Jayaseelan DD, Brown P, Lee WE. Mechanical properties of ZrB2- and HfB2-based ultra-high temperatura ceramics fabricated by spark plasma sintering. J. Europ. Ceram. Soc. 2013;33:1373-86], con aplicaciones en el sector aeroespacial. Además, será usado para la comparación directa con la invención presentada.
Sin embargo, mediante esta técnica SPS la corriente eléctrica fluye por todo el conjunto del molde de grafito por lo que el consumo energético podría mejorarse si se concentra la corriente eléctrica en el interior del molde colocando una lámina de un material aislante eléctrico, como se describe en la presente invención. EXPLICACION DE LA INVENCION
Constituye el objeto de la presente invención un procedimiento de fabricación de materiales avanzados por concentración de corriente eléctrica, que comprende las siguientes etapas:
a) Introducción de una muestra (1 ) de material avanzado en el interior de un molde (3) aislado eléctricamente mediante al menos una lámina flexible aislante eléctrica (1 1 ).
b) colocación de al menos una lámina flexible conductora (10) entre la muestra (1 ) y la lámina flexible aislante eléctrica (1 1 ), y entre la muestra (1 ) y los pistones (2), para evitar reacciones entre la muestra (1 ) y la lámina flexible aislante eléctrica (1 1 ) y el desgaste de los pistones (2).
c) aplicación de presión en una cámara de vacío en un rango comprendido entre 10"8 y 105 Pa
d) aplicación de una carga uniaxial (6) de contacto con los pistones (2) sobre la muestra en unas condiciones de aplicación de corriente eléctrica con intensidad comprendida entre 10"2 y 104 A/mm2 concentrando toda la corriente eléctrica sobre la columna central (12) y produciendo la
densificación completa del material en un espacio de tiempo comprendido entre 10"3 segundos y 7 horas.
En diferentes modos de realización de la invención, el material avanzado se introduce en forma de polvo o, alternativamente, como preforma a partir de polvo.
El número de láminas flexibles conductoras eléctricas (10) está comprendido entre 1 y 10, variando su espesor entre 10"4 y 2 mm. En un modo especialmente preferido de realización de la invención hay una o dos láminas flexibles conductoras eléctricas (10) con un espesor comprendido entre 0.05 y 0.3 mm.
En cuanto al número de láminas flexibles aislantes eléctricas (1 1 ) está comprendido entre 1 y 10 variando su espesor entre 10"4 y 2 mm. Preferentemente, hay una o dos láminas flexibles aislantes eléctricas con un espesor comprendido entre 0.05 y 1 .1 mm.
En modos particulares de realización de la invención, el molde (3) es de grafito, las láminas flexibles aislantes eléctricas (1 1 ) son de fibras de alúmina y las láminas flexibles conductoras (10) son de grafito.
La corriente eléctrica aplicada puede ser corriente continua DC, pulso de corriente continua DC o corriente alterna AC, siendo especialmente preferido aplicar un pulso de corriente continua DC con intensidad comprendida entre 0.1 y 100 A/mm2 durante un periodo de tiempo comprendido entre 1 y 1200 s.
La etapa del procedimiento que tiene lugar en la cámara de vacío puede hacerse:
- en atmósfera de Ar o N, en un rango de presiones comprendido entre 10"6 y 105 Pa
- en atmósfera de aire o 02 en un rango de presiones comprendido entre 10"8 y 1000 Pa.
Opcionalmente, el procedimiento puede realizarse en presencia de carga mecánica con una tensión mecánica comprendida entre 1 Pa y 10 GPa, preferentemente entre 1 Pa y 250 MPa.
En un modo particular de realización de la invención, entre la muestra (1 ) y los pistones (2) se coloca una lámina flexible conductora (10), seguida de otra lámina flexible aislante eléctrica (1 1 ) y seguida de otra lámina flexible conductora (10).
En un modo de realización preferente, antes de la introducción de la muestra, se tratan los pistones de grafito con una composición que comprende nitruro de boro hexagonal. El tratamiento de los pistones de grafito se realiza mediante pulverización de la composción que comprende nitruro de boro hexagonal.
DESCRIPCIÓN DE LAS FIGURAS
Figura 1.- Esquema del funcionamiento de un SPS.
(1 ) Muestra
(2) Pistón grafito
(3) Molde grafito
(4) Cilindros grafito
(5) Pistón metálico
(6) Carga uniaxial
(7) Cámara de vacío
(8) Pirómetro óptico
(9) Pulso de corriente continua DC
Figura 2.- Gráficas de la fabricación de ZrB2 mediante SPS bajo una tensión mecánica de 80 MPa, donde se representa
a) Temperatura y potencia consumida frente al tiempo
b) Corriente eléctrica y voltaje frente al tiempo
c) Desplazamiento frente al tiempo
Figura 3.- Esquema para la fabricación de materiales avanzados por concentración de corriente eléctrica (modo I) en un molde cilindrico
a) Vista transversal
(10) Lámina flexible conductora eléctrica, preferentemente de grafito
(1 1 ) Lámina flexible aislante eléctrica, preferentemente de fibras de Al203
b) Vista aérea
(12) Columna central modo I, formada por (1 ), (2) y (10).
Figura 4.- Gráficas de la fabricación de ZrB2 mediante concentración (modo I) donde se representa a) Temperatura y potencia consumida frente al tiempo,
b) Corriente eléctrica y voltaje frente al tiempo
c) Desplazamiento frente al tiempo
Figura 5.- Esquema para la fabricación de materiales avanzados por localización de corriente eléctrica (modo II) en un molde cilindrico
a) Vista transversal
b) Vista aérea
(13) Columna central modo II, formada por (1 ), (2), (10) y (1 1 ).
Figura 6.- Gráficas de la fabricación de AI2O3 mediante localización (modo II) donde se representa
a) Temperatura y potencia consumida frente al tiempo,
b) Corriente eléctrica y voltaje frente al tiempo y
c) Desplazamiento y nivel de vacío frente al tiempo
indicándose con una flecha el instante de tiempo donde se fundió el material.
DESCRIPCIÓN DE LA INVENCIÓN
Modo I o fabricación de materiales avanzados por concentración de corriente eléctrica.
La muestra de material en forma de polvo (1 ) es colocada en el interior de un molde (3), preferentemente de grafito, aislada eléctricamente mediante una lámina flexible aislante eléctrica (1 1 ), preferentemente de fibras de alúmina. Se aplica una carga uniaxial (6) de contacto con unos pistones (2), preferentemente de grafito. Sobre dicho sistema, se aplica un pulso eléctrico de corriente continua DC (9) de acuerdo con la figura 3. Una lámina flexible conductora (10), preferentemente de grafito, es colocada entre la muestra (1 ) y la lámina flexible aislante eléctrica (1 1 ), preferentemente de fibras de alúmina, y
entre la muestra (1 ) y los pistones (2), preferentemente de grafito, con objeto de evitar reacciones entre la muestra (1 ) y la lámina flexible aislante eléctrica (1 1 ), preferentemente de fibras de alúmina, y evitar el desgaste de los pistones (2) por un uso continuado. De este modo se concentra toda la corriente eléctrica sobre la columna central (12) y es posible producir la densificación completa de un material avanzado, si unas condiciones de corriente eléctrica y presión son aplicadas, en un espacio de tiempo que puede llegar a ser muy inferior al necesario mediante SPS, desde una fracción de segundo (0.1 s) a 2 horas, preferentemente de 10 a 600 segundos. Se eligió como material modelo el ZrB2 dado que la conductividad eléctrica del ZrB2 (107 S/m) es comparable a la de muchos metales, como por ejemplo el cobre. Aunque el punto de fusión del ZrB2 es de 3280 °C por los 1083 °C del cobre. Al203 es uno de los mejores aislantes eléctricos conocido a baja y alta temperatura, con campos eléctricos de rotura del orden de 10 MV/cm a temperatura ambiente y además tiene un punto de fusión de 2072 °C. Estas propiedades hacen de la Al203 un material preferente como aislante eléctrico para la invención presentada, porque además es aislante térmico utilizado comúnmente en hornos de alta temperatura en la industria y laboratorios, lo que minimiza las pérdidas energéticas durante el proceso y aumenta la eficiencia energética de la invención presentada. Con cualquier otra lámina flexible de un material con un comportamiento aislante eléctrico podría haber sido posible la realización de la invención, sólo que se consideró que la lámina flexible a base de fibras de Al203 era el que mejor rendimiento y propiedades ofrece a día de hoy por su uso en la industria a gran escala. Con este procedimiento se ha conseguido fabricar ZrB2 denso en menos de un minuto tal y como se puede observar en las figuras 4a, 4b y 4c, necesitando intensidades de corriente ligeramente inferiores a las utilizadas mediante SPS. A dicha técnica se la ha catalogado como fabricación por concentración de corriente eléctrica. Las principales características de esta técnica son; i) Velocidades de calentamiento superiores a 2000 °C/min ii) Consumo energético inferior al 10% del consumo mediante SPS
¡i¡) Consumo de tiempo inferior al 5% del consumo mediante SPS
Además de ZrB2, también fueron fabricados en menos de un minuto las siguientes composiciones con la configuración del modo I; (i) MoS¡2, (ii) ZrB2-20 vol. % MoS¡2, (iii) AI2O3-20 vol. % nano-C, (iv) AI2O3-10 vol. % nano-C, (v) AI203-3 vol. % nano-C y (vi) Al203. En el caso de las composiciones (v) y (vi), al no ser conductoras eléctricas, la corriente eléctrica se concentra sobre la lámina flexible conductora (10), preferentemente de grafito.
Una limitación de la invención es que la velocidad de calentamiento debe tener un valor que no comprometa la estabilidad estructural del molde (3) y los pistones (2), preferentemente de grafito. En estudios del punto de fusión de grafito mediante la aplicación de corriente eléctrica, se ha llegado a fundir grafito en 10"6 s y registrado velocidades de calentamiento superiores a 109 °C/seg [Asinovsky E, Kirillin AV, Kostanovskii AV. Melting point of graphite and liquid carbón. Physics-Uspekhy 46;1295:2003]. Para fundir grafito en pocos microsegundos, se utiliza alto voltaje de hasta 20 kV [Pottlacher G, Hixson RS, Meinitzky S, Kaschnitz E, Winkier MA, Jager H. Thermophysical properties of POCO AXF-5Q graphite up to melting. Thermochimica Acta 218; 183:1993]. Acorde a los valores de resistividad del grafito, intensidades del orden de 106 A/mm2 son requeridas para un voltaje de 20 kV, por lo que el molde de grafito está preparado para aguantar intensidades de hasta 106 A/mm2 por un corto periodo de tiempo. Las unidades comerciales con mayor potencia a día de hoy suministran una intensidad máxima de 68 kA, por lo que intensidades del orden de 104 A/mm2 podrían utilizarse sin comprometer la estabilidad estructural del molde (3) y los pistones (2), preferentemente de grafito. Modo II o localización de la corriente eléctrica, aplicable para todo tipo de materiales.
La muestra de material en forma de polvo (1 ) es colocada en el interior de un molde (3), preferentemente de grafito, aislada eléctricamente mediante una lámina flexible aislante eléctrica (1 1 ), preferentemente de fibras de alúmina. Se aplica una carga uniaxial (6) de contacto con unos pistones (2), preferentemente de grafito. Sobre dicho sistema, se aplica un pulso eléctrico de
corriente continua DC (9) de acuerdo con la figura 3a y 3b. Una lámina flexible conductora (10), preferentemente de grafito, es colocada entre la muestra (1 ) y la lámina flexible aislante eléctrica (1 1 ), preferentemente de fibras de alúmina. Además, se coloca una lámina flexible conductora eléctrica (2), preferentemente de grafito, seguida de una lámina flexible aislante eléctrica (1 1 ), preferentemente de fibras de alúmina, seguida de una lámina flexible conductora eléctrica (10), preferentemente de grafito, entre la muestra (1 ) y los pistones (2), tal y como se observa en la figura 5a. De este modo, la corriente eléctrica es localizada sobre la lámina de grafito, que actúa de elemento resistivo y produce la densificación completa del material si unas condiciones de corriente eléctrica y presión son aplicadas. Esta configuración es para fabricar materiales avanzados conductores o para fabricar materiales avanzados eléctricos, en ambos casos con un aislamiento térmico, de modo que el enfriamiento es menos violento. Para materiales avanzados aislantes se puede utilizar la configuración mostrada en la figura 3a y 3b, pero se recomienda entonces controlar el enfriamiento para evitar daños estructurales del material fabricado por choque térmico o un enfriamiento demasiado severo.
En modo II, se fabricaron las siguientes composiciones: (i) MoS¡2, (ii) AI203-3 vol. % nano-C y (iii) Al203. Todos los materiales son aislantes eléctricos salvo el MoSi2 que es conductor eléctrico y demuestra que el modo II es aplicable a todo tipo de materiales. Al concentrarse toda la corriente sobre la lámina flexible conductora eléctrica (10), preferentemente de grafito, con intensidades de 350 A se fundió Al203 en menos de un minuto y calentó el molde de grafito a unos -1600 °C tal y como puede observarse en la figura 6a, 6b y 6c. En la figura 6 c) se puede observar el periodo de calentamiento y enfriamiento separados por una línea discontinua vertical. Dicha temperatura es aproximadamente la misma que la alcanzada durante la fabricación de ZrB2, por lo que la temperatura interna es superior a los 2000 °C. Dado que el espesor de la lámina flexible conductora eléctrica, preferentemente de grafito (10), tiene un espesor en el rango 10"4 y 2 mm, preferentemente entre 5x10"2 y 0.3 mm, y actúa como un elemento altamente resistivo, generando la misma temperatura para intensidades de corriente más pequeñas, comparadas con en
el modo I. Esto supone un ahorro extra de energía, ya que se consume aproximadamente una cuarta parte de la energía consumida en el modo I o menos del 5% si se compara con SPS. Cuanto más delgada sea la lámina menor sería el gasto energético. La Al203 es un aislante térmico también, por lo que al usarla como aislante eléctrico, las lecturas de temperatura externas son muy diferentes a la temperatura interna y las velocidades de incremento de la corriente eléctrica son proporcionales a las velocidades de calentamiento. Se estima que dicha diferencia puede ser del orden de al menos 500-600 °C. En la figura 6a, 6b y 6c se ilustra el experimento en el que se fundió alúmina, y se indica mediante una flecha el momento del paso de sólido a líquido, caracterizado por un pico en la potencia consumida, voltaje o pérdida de vacío. Además, se observa un cambio violento en el desplazamiento a consecuencia de la extrusión sufrida por la AI2O3 en estado líquido, todo ello en menos de 1 minuto. De hecho, la compactación esperada para producir un material denso se obtuvo a los 40 segundos aproximadamente.
El modo II presenta otra ventaja respecto al modo I, que es la de producir muestras de mayores dimensiones con una eficiencia energética superior. Esto puede conllevar una gran revolución en la industria de materiales avanzados, pues las potencias para la fabricación de muestras de grandes dimensiones mediante SPS son muy elevadas, lo cual limita el tamaño máximo de los materiales que se pueden fabricar en la actualidad.
MODO DE REALIZACIÓN DE LA INVENCIÓN A modo de ejemplo y para que se pueda realizar una comparación directa con SPS, se ilustrará la fabricación de ZrB2 mediante la técnica descrita aquí utilizando una unidad de SPS Dr. Sinter 2050 (Sumitomo Coal Mining Co Ltd., Japón). Para ello se utilizaron polvos de ZrB2 grado B (H.C. Starck, Alemania) con un tamaño de partícula de ~3 μιη. Se prepara el sistema acorde con la figura 3a y 3b, y se le aplica una corriente equivalente al 85% de la potencia total del horno SPS, lo que corresponde a una corriente eléctrica de -1 170 A s
(equivalente a 6,6 A/mm2) durante 60 segundos para luego apagar el equipo directamente. El ZrB2 es un material muy resistente al choque térmico y no sufre daño al realizar esto. Cuando se fabrica un material compuesto o que no es conductor eléctrico se controla el enfriamiento para no provocar la fractura del material por dilatación térmica de las diferentes fases, de modo que de forma proporcional se reduzca toda la intensidad entre 0 y 20 minutos, dependiendo de la temperatura de fabricación y del material. La temperatura externa del molde, la potencia consumida, voltaje, corriente eléctrica y densificación durante la fabricación mediante SES se ilustran en la figura 4 a), b) y c), respectivamente. De las condiciones experimentales, se puede deducir que el experimento es fácilmente reproducible.
Tras la fabricación del material, se encontraron restos de la lámina flexible aislante eléctrica (1 1 ) de Al203 fundidos sobre el molde de grafito (3), lo que indica que la temperatura máxima alcanzada fue superior a 2000 °C. Estos restos son fácilmente retirados, por lo que permite la reutilización del molde de grafito (3) una y otra vez. La densidad relativa medida tras la fabricación fue del 96%, similar a la obtenida mediante SPS. La densidad no es superior debido a que el material presenta 1 % en peso de impurezas de oxígeno, lo que conlleva a la formación de Zr02 durante su fabricación y que no se alcance una densidad mayor. Sin embargo, la caracterización microestructural mediante microscopía electrónica de transmisión reveló la inexistencia de poros. Densidades superiores al 98% han sido medidas en otros materiales avanzados fabricados por esta técnica. En la actualidad, un material avanzado con una densidad relativa a su densidad teórica superior al 95% es considerado denso por la comunidad internacional e industria.
Claims
1. - Procedimiento de fabricación de materiales avanzados por concentración de corriente eléctrica, caracterizado porque comprende las siguientes etapas:
a) introducción de una muestra (1 ) de material avanzado en el interior de un molde (3) aislado eléctricamente mediante al menos una lámina flexible aislante eléctrica (1 1 ).
b) colocación de al menos una lámina flexible conductora (10) entre la muestra (1 ) y la lámina flexible aislante eléctrica (1 1 ), y entre la muestra (1 ) y los pistones (2), para evitar reacciones entre la muestra (1 ) y la lámina flexible aislante eléctrica (1 1 ) y el desgaste de los pistones (2).
c) aplicación de presión en una cámara de vacío en un rango comprendido entre 10"8 y 105 Pa.
d) aplicación de una carga uniaxial (6) de contacto con los pistones (2) sobre la muestra en unas condiciones de aplicación de corriente eléctrica con intensidad comprendida entre 10"2 y 104 A/mm2 concentrando toda la corriente eléctrica sobre la columna central (12) y produciendo la densificación completa del material en un espacio de tiempo comprendido entre 1 CT3 segundos y 7 horas.
2. - Procedimiento según la reivindicación 1 , caracterizado porque el material avanzado se introduce en forma de polvo
3. - Procedimiento según la reivindicación 1 , caracterizado porque el material avanzado se introduce como preforma a partir de polvo.
4. - Procedimiento según una cualquiera de las reivindicaciones 1 a 3, caracterizado porque el número de láminas flexibles conductoras eléctricas (10) está comprendido entre 1 y 10, variando su espesor entre 10"4 y 2 mm.
5.- Procedimiento según la reivindicación 4, caracterizado porque el número de láminas flexibles conductoras eléctricas (10) es 1 o 2 con un espesor comprendido entre 0.05 y 0.3 mm.
6.- Procedimiento según una cualquiera de las reivindicaciones 1 a 5, caracterizado porque el número de láminas flexibles aislantes eléctricas (1 1 ) está comprendido entre 1 y 10 variando su espesor entre 10"4 y 2 mm.
7. - Procedimiento según la reivindicación 6, caracterizado porque el número de láminas flexibles aislantes eléctricas ( 1 ) es 1 o 2 con un espesor comprendido entre 0.05 y 1 .1 mm.
8. - Procedimiento según una cualquiera de las reivindicaciones 1 a 7, caracterizado porque el molde (3) es de grafito, las láminas flexibles aislantes eléctricas (1 1 ) son de fibras de alúmina y las láminas flexibles conductoras (10) son de grafito.
9. - Procedimiento según una cualquiera de las reivindicaciones 1 a 8, caracterizado porque la corriente eléctrica aplicada es corriente continua DC, pulso de corriente continua DC o corriente alterna AC.
10. - Procedimiento según la reivindicación 9, caracterizado porque la corriente eléctrica aplicada es un pulso de corriente continua DC con intensidad comprendida entre 0.1 y 100 A/mm2 durante un periodo de tiempo comprendido entre 1 y 1200 s.
11. - Procedimiento según una cualquiera de las reivindicaciones 1 a 10, caracterizado porque la presión en la cámara de vacío se aplica en atmósfera de Ar o N, en un rango de presiones comprendido entre 10"6 y 105 Pa.
12.- Procedimiento según una cualquiera de las reivindicaciones 1 a 10, caracterizado porque la presión en la cámara de vacío se aplica en atmósfera de aire en un rango de presiones comprendido entre 10"8 y 1000 Pa.
13.- Procedimiento según una cualquiera de las reivindicaciones 1 a 12, caracterizado porque se realiza en presencia de carga mecánica con una tensión mecánica comprendida entre 1 Pa y 10 GPa.
14. - Procedimiento según la reivindicación 13, caracterizado porque la tensión mecánica está comprendida entre 1 Pa y 250 MPa.
15. - Procedimiento según una cualquiera de las reivindicaciones 1 a 14, caracterizado porque se coloca entre la muestra (1 ) y los pistones (2) una lámina flexible conductora (10), seguida de otra lámina flexible aislante eléctrica (1 1 ), seguida de otra lámina flexible conductora (10).
16. - Procedimiento según una cualquiera de las reivindicaciones 1 a 15, caracterizado porque antes de la introducción de la muestra, se tratan los pistones de grafito con una composición que comprende nitruro de boro hexagonal.
17. - Procedimiento según la reivindicación 16, caracterizado porque el tratamiento de los pistones de grafito se realiza mediante pulverización de la composción que comprende nitruro de boro hexagonal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201400347A ES2551980B1 (es) | 2014-04-24 | 2014-04-24 | Procedimiento de fabricación de materiales avanzados por concentración de corriente eléctrica. |
ESP201400347 | 2014-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015185969A1 true WO2015185969A1 (es) | 2015-12-10 |
Family
ID=54544829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2015/000592 WO2015185969A1 (es) | 2014-04-24 | 2015-04-28 | Procedimiento de fabricación de materiales avanzados por concentración de corriente eléctrica |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2551980B1 (es) |
WO (1) | WO2015185969A1 (es) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024035606A1 (en) * | 2022-08-10 | 2024-02-15 | Heraeus Conamic North America Llc | A sintering device having a die lining of increased thickness |
EP4360837A1 (en) * | 2022-10-31 | 2024-05-01 | Heraeus Conamic North America LLC | A sintering device having a die lining of increased thickness |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106312067B (zh) * | 2016-10-11 | 2018-03-20 | 河海大学 | 用于放电等离子体无压烧结的石墨模具 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008085947A1 (en) * | 2007-01-05 | 2008-07-17 | The University Of Houston System | Minimizing heat losses and leakage currents in spark plasma sintering |
WO2012128708A1 (en) * | 2011-03-22 | 2012-09-27 | Diamorph Ab | Method of preparation of a metal/cemented carbide functionally graded material |
-
2014
- 2014-04-24 ES ES201400347A patent/ES2551980B1/es active Active
-
2015
- 2015-04-28 WO PCT/IB2015/000592 patent/WO2015185969A1/es active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008085947A1 (en) * | 2007-01-05 | 2008-07-17 | The University Of Houston System | Minimizing heat losses and leakage currents in spark plasma sintering |
WO2012128708A1 (en) * | 2011-03-22 | 2012-09-27 | Diamorph Ab | Method of preparation of a metal/cemented carbide functionally graded material |
Non-Patent Citations (2)
Title |
---|
MINIER ET AL., JOURNAL OF ALLOYS AND COMPOUNDS, vol. 508, 2010, pages 412 a 418, XP027409559 * |
VANMEENSEEL ET AL.: "Modelling of the temperature distribution during field assisted sintering.", ACTA MATERIALIA, vol. 53, 2005, pages 4379 a 4388, XP025398156 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024035606A1 (en) * | 2022-08-10 | 2024-02-15 | Heraeus Conamic North America Llc | A sintering device having a die lining of increased thickness |
EP4360837A1 (en) * | 2022-10-31 | 2024-05-01 | Heraeus Conamic North America LLC | A sintering device having a die lining of increased thickness |
Also Published As
Publication number | Publication date |
---|---|
ES2551980B1 (es) | 2016-11-03 |
ES2551980A2 (es) | 2015-11-24 |
ES2551980R2 (es) | 2016-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yoshida et al. | Flash‐sintering of magnesium aluminate spinel (MgAl2O4) ceramics | |
Zapata-Solvas et al. | Preliminary investigation of flash sintering of SiC | |
Zhang et al. | Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes | |
CN110577399B (zh) | 基于感应加热的多场耦合闪速烧结系统 | |
CN112390629B (zh) | 一种快速烧结陶瓷装置及方法 | |
Bodhak et al. | Densification Study and Mechanical Properties of Microwave‐Sintered Mullite and Mullite–Zirconia Composites | |
Kermani et al. | Flash cold sintering: Combining water and electricity | |
WO2015185969A1 (es) | Procedimiento de fabricación de materiales avanzados por concentración de corriente eléctrica | |
Wang et al. | Synthesis of Na-β ″-Al2O3 electrolytes by microwave sintering precursors derived from the sol–gel method | |
Subasri et al. | Microwave processing of sodium beta alumina | |
ES2322325T3 (es) | Metodo para la produccion de ceramica eutectica. | |
Liang et al. | Ultrafast high-temperature heating in air | |
TWI546253B (zh) | A method for the preparation of carbonaceous materials | |
KR101151209B1 (ko) | 머시너블 흑색 세라믹 복합체 및 그 제조방법 | |
CN102557595A (zh) | 激光立体成形氧化铝基共晶自生复合陶瓷的方法 | |
CN106187151A (zh) | 一种铝钇掺杂氧化锌陶瓷靶材及其制备方法 | |
CN108178632B (zh) | 具有定向层片组织的ZrB2-SiC共晶陶瓷制备方法 | |
CN105294079A (zh) | 一种高导热陶瓷材料及其制造方法 | |
CN207815967U (zh) | 双管浸泡横插式电磁感应保温炉 | |
Singh et al. | Effect of partial substitution of Sn4+ by M4+ (M= Si, Ti, and Ce) on sinterability and ionic conductivity of SnP2O7 | |
Biesuz et al. | Field Assisted Sintering of Silicate Glass‐Containing Alumina | |
CN105254286A (zh) | 一种高导热陶瓷材料及其制造方法 | |
Lim et al. | Microstructures and Thermoelectric Properties of Spark Plasma Sintered In 4 Se 3 | |
KR100399758B1 (ko) | 알칼리 금속 열전발전용 베타투프라임-알루미나 분말 및고체전해질 제조방법 | |
KR101290123B1 (ko) | 플루오린이 치환된 마이에나이트형 전자화물의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803045 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15803045 Country of ref document: EP Kind code of ref document: A1 |