WO2015185299A1 - Vertikale windkraftanlage sowie verfahren zum betrieb einer solchen anlage - Google Patents

Vertikale windkraftanlage sowie verfahren zum betrieb einer solchen anlage Download PDF

Info

Publication number
WO2015185299A1
WO2015185299A1 PCT/EP2015/059392 EP2015059392W WO2015185299A1 WO 2015185299 A1 WO2015185299 A1 WO 2015185299A1 EP 2015059392 W EP2015059392 W EP 2015059392W WO 2015185299 A1 WO2015185299 A1 WO 2015185299A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
wings
vertical
axis
speed
Prior art date
Application number
PCT/EP2015/059392
Other languages
English (en)
French (fr)
Inventor
Karl Bahnmüller
Hans Thomas Hug
Original Assignee
Agile Wind Power Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agile Wind Power Ag filed Critical Agile Wind Power Ag
Priority to CN201580030216.5A priority Critical patent/CN107041149B/zh
Priority to EP21177639.8A priority patent/EP3892852B1/de
Priority to EP21177636.4A priority patent/EP3896278B1/de
Priority to EP15720327.4A priority patent/EP3152437B1/de
Priority to US15/316,650 priority patent/US10132293B2/en
Publication of WO2015185299A1 publication Critical patent/WO2015185299A1/de
Priority to US16/165,605 priority patent/US10871143B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • F03D3/068Cyclic movements mechanically controlled by the rotor structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/503Kinematic linkage, i.e. transmission of position using gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/503Kinematic linkage, i.e. transmission of position using gears
    • F05B2260/5032Kinematic linkage, i.e. transmission of position using gears of the bevel or angled type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/505Kinematic linkage, i.e. transmission of position using chains and sprockets; using toothed belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/507Kinematic linkage, i.e. transmission of position using servos, independent actuators, etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/71Adjusting of angle of incidence or attack of rotating blades as a function of flow velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/72Adjusting of angle of incidence or attack of rotating blades by turning around an axis parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/326Rotor angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/808Strain gauges; Load cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to the field of wind turbines. It relates to a vertical wind turbine according to the preamble of claim 1. It further relates to a method for operating such a system.
  • the document US 3, 902, 072 A discloses a wind power generator with a horizontal rotating platform, on the outer periphery a plurality of vertical wings angeord net, all of which rotate coaxially about a central axis and each about its own axis.
  • the rotation of the vertical wings is governed by changes in wind direction and wind speed, and the rotation of each wing is controlled to draw power from the wind on% of the orbit of the platform, while for the remainder of the way the wings are set, that they offer minimal resistance to the wind.
  • the wings are controlled by a central gear mechanism with a common servomotor.
  • the document US 4, 41 0, 806 A describes a vertical wind turbine with a rotating structure comprising a series of rotary vertical wings whose positions are controlled so as to give a constant speed for the rotating structure, if a sufficient Windgeschwind ability is present.
  • a microprocessor controller processes the wind speed, wind direction, and rotational speed information of the rotating structure and generates an electrical signal to adjust the vane position.
  • the control of the system includes electric wing actuators, with the aid of which the wings of the rotating structure are modulated.
  • the wing modulation controls the angle of attack, which in turn determines the speed of the rotor.
  • a wind speed meter outputs data for start and stop of the plant, while a wind direction gauge is used to keep the wings turning at 90 ° and 270 ° relative to the wind direction.
  • the controller is designed to maintain a constant speed at wind speeds between 1 9 and 40 miles / h.
  • the document US 4 494 007 A discloses a vertical wind turbine in which the orientation of the vanes rotating about a common central axis is controlled by a wind vane via a common mechanism during its orbit about the central axis such that when the wind speed changes, the rotational position of the wings is changed in a compensating direction.
  • the document US 4, 609, 827 A describes a vertical wind turbine with blades with wing profile.
  • a positive and synchronous wing orientation system is controlled by a mechanism located outside the rotor.
  • Two novel devices improve aerodynamic efficiency and increase rotational forces.
  • the wind turbine disclosed in the document US Pat. No. 6,379,115 B1 comprises a three rotating axis of rotation and a plurality of rotating support arms mounted on the axis, between which blades for supporting the wind force are rotatably mounted.
  • An anemometer measures wind direction and speed.
  • Servo motors on the wings control the position of the blades according to the measured wind data. Different methods of control are specified.
  • the document US 20081 75709 A1 describes a turbine with high efficiency for generating energy from a wind or water flow.
  • the turbine has a central axis with a plurality of vanes that are rotatable about the axis in the manner of a paddle wheel.
  • Each wing has a wing axis parallel to the wing longitudinal direction and the central axis and is rotatable about the wing axis.
  • each vane assumes an angle of incidence to the flow direction that is dynamically controlled as the vane rotates about the central axis to maximize the wing's torque about the axis.
  • the document WO 2009086648 A2 shows a wind power plant with at least one rotor which can be rotated about a vertical axis and which has a plurality of bearing areas distributed between two horizontal spaced-apart storage levels, each about a vertical pivot axis pivotable rotor blades comprises whose pivoting range is bounded on both sides by a stop, wherein the width of the rotor blades is less than about 1/3 of the wheel ius of the circumferential circle.
  • rotor blades can be arranged one above the other in several planes.
  • the known vertical wind turbines are designed for ground-level winds and therefore have a comparatively low overall height. Will such a facility however, designed for altitudes comparable to the heights of today's horizontal wind turbines, it is necessary to consider a height dependence of the wind speed and possibly even wind direction in the consideration of the most efficient generation of energy possible.
  • the wind turbine according to the invention comprises two or more cells arranged one above the other along a vertical machine axis, each of the cells comprising a plurality of vertical vanes distributed within the cell on a concentric circle around the machine axis and movable together on that circle rotatably connected to a main shaft, and wherein the wings in the cell are each mounted individually rotatable about a, in particular extending through its interior, vertical axis of rotation. It is distinguished by the fact that each of the blades is assigned with which the blade can be brought independently of the other blades into a predetermined and always changeable rotational position about its axis of rotation during the rotation around the machine axis.
  • each cell comprises a first and second ring arranged concentrically with the machine axis, which rings bound the cell above and below, and between which the wings of the cell are arranged rotatable through 360 °.
  • the wings of a cell are rotatably mounted at their ends on the first and second ring by 360 °.
  • adjacent cells each have a ring in common.
  • the means for changing the rotational position of the wings on the rings are angeord net.
  • the means for varying the rotational position of the vanes include an electrically or hydraulically driven engine.
  • the rotational movement of the electrically or hyd raulisch driven motor can be transmitted to the electrically driven motor via gears or hydraulically driven motor directly to the associated wing.
  • the electrically or hydraulically driven motor is disposed with the motor axis lying in the ring plane, and the rotational movement between the gears is transmitted by means of a toothed belt during electric drive.
  • the hydraulic motor is direct, i. without gear, connected with the wing axis.
  • the electrically or hydraulically driven motor is arranged with the motor axis perpendicular to the ring plane, and that for transmitting the rotational movement in the electric drive, an angle gear is interposed.
  • the bottom of the cells has a predetermined distance from the ground, and that the main shaft is rotatably supported between the bottom cell and a near-ground angeord Neten machine house and at their ends.
  • the main shaft is composed of a plurality of sections arranged one behind the other in the axial direction, and the sections are connected to one another via flanges.
  • the main shaft comprises a lower cylindric portion, a central, conically upwardly flared portion and an upper cylindrical portion having a larger outer diameter than the lower cylindric portion.
  • a bearing pin is provided for rotatably supporting the main shaft at the lower end of the main shaft and a support roller track at the upper end.
  • the trunnion is equipped with a thrust bearing that takes over the lower vertical gravitational forces of the rotor, and a radial bearing that absorbs the horizontal lower reaction wind forces of the main shaft.
  • the upper bearing of the main shaft which is designed as a support roller bearing and receives the vertical upper reaction wind forces of the main shaft, be supported by an obliquely downwardly extending support frame arranged on outside the machine axis foundations, the lower axial and radial bearings of the Main shaft are housed in the generator housing, which is mounted within the hanging in the support frame arranged machine house on the upper struts.
  • a wind measuring device for measuring wind direction and wind speed is at each of the cells above and below angeord net, which preferably comprises an ultrasonic anemometer. This makes it possible to determine the local wind action on each wing with good accuracy.
  • a force measuring device for radial and tangential force direction can be provided on each of the cells above and / or below the wing bearing to determine the forces occurring at the wings and to take into account.
  • the inventive method for operating a vertical wind turbine according to the invention is characterized dad urch that the rotational position of the individual blades of the wind turbine independent of each other about their axis of rotation according to measurements of wind speed, the wind direction, the speed of the wind turbine and the position of the wing is actively controlled on its revolution around the machine axis.
  • An embodiment of the method according to the invention is characterized in that virtual cams are provided for the vane angle, which describes the deflection of a vane from a basic position tangentially to the circulating circle about the machine axis, which curves in each case show the course of the vane angle over the position of the vane on the vane Determine the circulation circle, and that the active control of the individual wings takes place in accordance with the virtual cam discs.
  • the high speed number ⁇ of the wind turbine is continuously determined, where the high speed number ⁇ indicates the ratio of the peripheral speed of the blades to the wind speed, and according to the determined high speed number ⁇ , that for the active control the vane used virtual cam selected or changed between different virtual cams.
  • the virtual cams are related to a zero position of the wind turbine, and the zero position is dependent on the wind direction.
  • each of the cells is determined to have its own wind speed dependent on the altitude above the ground, and the rotational position of the individual wings of the cell about its axis of rotation is actively controlled in accordance with the wind speed determined for the cell.
  • Fig. 1 in a simplified side view of an embodiment of the vertical
  • Fig. 2-4 in the plan view (a) and in the side view (b) of the three rings for the mounting of the wings in the system of Fig. 1;
  • FIG. 5 shows a side view of the main shaft of the systems according to FIG. 1
  • FIG. Fig. 6 is a side view of a wing with upper and lower bearings of the systems according to FIG. 1 ;
  • FIG. 7 in a fragmentary perspective view of two different
  • Fig. 8 is another view of a horizontal lower ring mounted electric motor for wing adjustment, which is protected by a cover;
  • FIG. 9 shows the calculated optimum position of the wing over a 360 ° rotation of the installation at a speed of 0, 4 in the diagram (a) and in the axial plan view (b);
  • FIG. 9 shows the calculated optimum position of the wing over a 360 ° rotation of the installation at a speed of 0, 4 in the diagram (a) and in the axial plan view (b);
  • FIG. 10 shows disarmed wing control curves, which take into account the technical limits of the drive means
  • Fig. 1 1 is a block diagram of the electro-mechanical control of the sash position according to an embodiment of the invention.
  • Fig. 1 2 is a block diagram of the electro-hydraulic control of the sash position according to another embodiment of the invention.
  • FIG. 1 an embodiment of the vertical wind turbine according to the invention is shown in a simplified side view.
  • the wind turbine 1 0 of FIG. 1 comprises two cells Z1 and Z2, which are arranged one above the other along a vertical machine axis MA.
  • Each of the cells Z1, Z2 has two horizontal, concentric with the machine axis MA positioned rings 1 1, 1 6 and 1 6, 1 9, between which a plurality (in Example 3) of vertical wings 1 3 each about its own axis of rotation are rotatably mounted.
  • the middle ring 1 6 is assigned to both cells Z1 and Z2 equal.
  • Each of the rings 1 1, 1 6 and 1 9 is formed as an equilateral triangle or regular polygon, in whose corners the wings. 1 3 are mounted by means of a corresponding bearing support 38 (see also Fig. 7).
  • the circumference is formed by rods 33 which are connected to a central vertical tube 35 by radially extending rods 31 and tubes 32.
  • On the U nterseite of the rings are flat iron 34 Anlagenabstrebung.
  • radial ribs 37 are arranged, which at the same time support flanges 36 formed at the ends of the tube 35.
  • the cells Z1, Z2 with their wings 1 3 are rotatably connected via central tubes 1 5 and 1 8 with a rotatably mounted below the cells vertical main axis 20 so that they can rotate together with the main axis 20 about the machine axis MA.
  • the main axis 20 is rotatably mounted at the upper end in a bearing holder 23 with support rollers, which is supported by a frame of obliquely downwardly spread tubes 24 on outlying foundations 29.
  • the lower vertical and radial bearings are housed in the generator housing, which is fixed in the machine house 26, which is net angeord hanging on the frame 24. In this way, more weight can be introduced into the outer foundations 29, which increases the stance moment of the overall construction.
  • the height H1 may be, for example, 75 m or more (eg over 200 m).
  • the main axis 20 in the example according to FIG. 5 consists of a lower cylindric portion 45 of smaller diameter, a middle, upwardly to conically widening portion 43 and an upper cylindrical portion 41 of larger diameter.
  • the sections 41, 43 and 45 are fixedly connected to each other by flanges 42 and 44.
  • a support roller track 40 is attached, at the lower end of the lower cylindric portion 45, a lower bearing pin 46.
  • the sections have the lengths h1, h2 and h3 of e.g. 4 m, 1 1 m and 0, 5 m.
  • the lower cylindrical portion 45 carries the rotor 22 of a generator and a brake 21, both housed in the machine house 26.
  • Cells Z1 and Z2 together with the main axis form the rotor of the wind turbine rotating about the machine axis MA.
  • Fig. 2 (a) the position of one of the actuators 38 assigned to each vane 13 is shown by way of example.
  • the actuator 39 is arranged in this case parallel to the rod 33 of the ring 1 9 lying in the immediate vicinity of the bearing support 38 of the corresponding wing. This is even clearer in the enlarged section of FIG. 7 to recognize where the one of the two drawn actuators, actuator 39a, this parallel position to the rod 33 occupies.
  • the relevant wing 1 3 is provided at its axis of rotation above the bearing support 38 with a first gear 49.
  • the actuator 39a in this case an electric servomotor, acts via a bevel gear 52 on a second gear 50, which is located at the same height as the first gear 49 and with this over a toothed belt (not shown) is drivingly connected. If the attachment of an angular gear is to be avoided, the actuator (39 b) can also be installed vertically, but then generates more flow resistance.
  • the horizontally arranged actuator 39a can according to FIG. 8 are provided in a simple manner with a cover 51 to protect it from the weather.
  • the actuators 39 and 39a, b are supplied via corresponding leads from a central supply unit with energy and controlled by control signals according to the specifications of a control. If used instead of the electric hydraulic actuators (motors), the supply takes place by appropriate hydraulic lines from a central hydraulic unit.
  • FIG. 1 An overview of the concept of active wing control is given in the block diagram of FIG. 1 1.
  • the wings 1 3 and F1 - F6 of the cells Z1 and Z2 are actively rotated by means of actuators 39a (via angle gear 52) or 39 b (directly) about their longitudinal axis. Any wing angle (angle between tangents to the circle of rotation of the rotor and tendon line of the wing) can be adjusted individually for each wing at each position on the U mlaufnik.
  • the task of the active wing control is to use all (in the example 1 2) wings 1 3 or F1-F6 in both cells to drive a wing angle varying with the rotor position.
  • a different course of the blade angle is moved over the rotor position.
  • various virtual cams are generated and stored in a memory.
  • the wing angle then follows the edge course of the selected virtual cam.
  • the zero point of the rotor position is depending on the wind direction. Wind direction and wind speed are measured by a Windgeschwind techniksaufexcellent 67 and a Windraumsauf productivity 68.
  • a vertical wind turbine 1 0 of the type shown in Fig. 1 has over the entire effective height of the rotor uniformly shaped wings 1 3, which can be optimally controlled individually during each rotor rotation.
  • the angle of attack of the wing 1 3 to the relative Windanströmung should be able to be controlled at any time of the rotor rotation.
  • the blades "fly" at rotor rotation quasi on a circular path, with the rotor radius, around the center of the rotor or the machine axis MA and thereby generate a buoyancy in the radial direction and a propulsion in the tangential direction. that the turbine 10 experiences a maximum drive.
  • the rotor is divided above the effective height into one to four cells (two cells Z1 and Z2 in the example of FIG. 1).
  • a cell Z1, Z2 each contains three wings 1 3, the rotatably mounted at the bottom and top of the end of a radial arm and are so firmly connected to the center of the rotor.
  • the three arms each form a fictitious ring at the top and bottom of each cell.
  • wind measuring device W1-W3 (FIG. 1) per ring to the outside of a respective ring arm.
  • the wind measuring device W1 -W3 will now determine the exact relative Windanströmung in the direction and speed relative to the arm and thus also on the wing at each time of rotor rotation.
  • the wind measuring device should preferably contain no mechanical dynamic components such as wind vane and wind turbine, but should measure wind direction and wind speed by means of ultrasound (ultrasonic anemometer), since mechanical components could show erroneous results due to centrifugal acceleration on the rotor.
  • the wind gauge W1 -W3 must be at a sufficient distance to the arm end so as not to be influenced by the air vortex area of the arm end.
  • the radial force signal together with the tangential force signal to constantly monitor the load profile of the wing. This measurement can be used to determine the accumulation and intensity of the wing loading and thus also the remaining service life of the wings.
  • a strain gauge could also be used in the middle of the wing on the surface.
  • strip for example for a wing 1 3: DM in Fig. 1 are mounted, which measures the accumulation and intensity of the bending stresses in the wing 1 3 together with a measuring system. From these measurements, the residual life of the wings 1 3 could then be determined.
  • the method may be complicated in that the measurement signal has to be transmitted from the rotating vane to the ring arm.
  • the strain gauge device should only be used to measure the wing load, not to optimize the wing propulsion.
  • FIG. 1 1 The basic concept of active wing control is the block diagram in FIG. 1 1 to take.
  • the components, which are framed with a dashed line (rotor block 53 in Fig. 1 1) are mounted in a cabinet on the rotor.
  • the communication with the controller on the tower and the data acquisition are via a Wi-Fi connection to corresponding Wi-Fi transmitters 57 and 66.
  • the power supply from a three-phase power supply 71 (3x400VAC, 1 xN neutral and 1 x ground) is running via a slip ring 62.
  • the function blocks located on the rotor are supplied via a 24VDC voltage supply 56.
  • An analogue 24VDC power supply 65 is also provided outside the rotor.
  • the virtual cams (different vane angle curves with the rotor position) are stored on the rotor (motion controller 58). However, they can be changed during operation via the Wi-Fi connection. Wind speed, wind direction and rotational speed of the rotor are processed on the tower (non-rotating) via the I / O of a memory programmer (PLC) 64 cooperating with a computer 70. Which virtual cam has to be taken is transmitted via the Wi-Fi connection to the motion controller 58 on the rotor. I / O is available on the rotor as well as on the tower.
  • the 6 actuators 39a and 39b follow in the simplest case the same cam, but with an angular displacement of 1 20 ° (for example, 3 wings per cell).
  • the zero value of the rotor position depends on the wind direction. If, at higher installations and / or more than two cells, the wind speeds for the cells differ considerably from each other, a separate virtual cam is selected for each of the cells according to the associated wind speed.
  • a separate wind speed (v w ) which depends on the height above the ground, is determined, and the rotational position of the individual wings 1 3, F 1 - F 6 of the cell in accordance with the wind speed determined for the cell ( v w actively controlled. Since the Abh briefly- accuracy of the wind speed on the level follows on the bottom of a standard curve, it is sufficient that wind speed accuracy to measure at a level to determine therefrom the values for other heights. All cells have about the same speed The machine axis MA, but because of the different altitude different wind speeds.Thus result in different high speed numbers, which are then averaged over the entire system to ensure maximum energy production.
  • the control cabinet with the motion controller 58 is located on the rotor.
  • the rotor position should also be gripped on the rotor.
  • a corresponding rotary encoder can be used.
  • an encoder for the zero position 54 is present instead.
  • the rotor speed is determined on the tower.
  • the resulting step pulses are read in via PLC 64 and transmitted via the Wi-Fi connection to the motion controller 58 on the rotor.
  • the active wing control receives several input signals directly from a measuring system that includes the Windgeschwind techniksetz discipline 67, the Windianosetz discipline 68 and possibly a Rotordrehmomentetzêt 69. In addition, pulses 63 are injected for the speed. Based on these input signals, the wing control 64 determines How to control each wing (which cam is used, where is the zero point of the rotor position).
  • the control signals from the motion controller 58 go via a power module 59 to an outlet module 60 and from there via a distribution box 55 to the individual actuators 39a and 39b.
  • the wing angle curve is periodically re-selected (different cams).
  • the wind direction determines the zero position of the rotor position.
  • the average is calculated over a certain period of time. Both the refresh time and the time window for the mitigation of the control parameters should be freely selectable.
  • a special controller 61 may give commands for the shutdown of the system or the Reduction of the speed.
  • the max. Number of different wing angle curves (virtual cams), which can be defined, is limited by the motion controller 58 and can be 99, for example. Which wing angle curve is used depends on the operating condition and the high-speed number ⁇ of the turbine. The high-speed number is calculated in a manner known per se from the wind speed v w and the rotor speed (or rotor peripheral speed).
  • the theoretically optimal wing angle curve for a wing 1 3 was calculated by means of an analytical model for different high speed numbers.
  • An example of a high speed number of 0, 4 (a) along with a sketch of the physical positions of the blades every 30 ° (b) is shown in FIG.
  • the wings are positioned according to a virtual master axis.
  • the master axis is determined by a NU LL pulse (zero position 54) and the speed.
  • the SPS 64 stores at a predetermined frequency the current wind speed, the rotor speed and the wind direction. Periodically, the median is calculated from the wind speed and rotor speed. From this, the averaged fast-running speed ⁇ is calculated over the last time window and the cam is selected. The median of the wind direction is also calculated periodically. From this, the NU LL position of the cam is determined.
  • the wing control When shutting down the wind turbine is braked by the generator to bring the speed to zero.
  • the wing control receives from the control 61 of the system a signal that the operating state shutdown has been reached and the wing drives 39a and 39 b are de-energized or released hydraulic drive hydraulic motors.
  • the rotor speed is 0 and the brakes of the wind turbine are closed.
  • the wing control is not switched off, so this does not lose the rotor position.
  • the motors are de-energized or the hydraulic motors oil pressure free.
  • the wings 1 3 align themselves with the wind.
  • the wind turbine is braked as fast as possible with the brake 21.
  • the wings 1 3 are made physically de-energized or oil pressure free upon actuation of the emergency stop.
  • FIG. 1 2 An analogous to Fig. 1 1 block diagram for the electro-hydraulic control of the wings in the cells is shown in FIG. 1 2 reproduced.
  • the hydraulic actuators HA1 1 - HA1 n and HA21 - HA23, which are provided with the necessary valves and an activation, are provided by one (or more) central (in the center) hydraulic lines laid in the cells arranged the rotor) hydraulic unit (s) 73 supplied with oil jolt.
  • the hydraulic units or units 73 receive their operating current from their own voltage supply 72, which is connected to the power transmission line (slip ring 62).
  • the hydraulic actuators HA1 1 - HA1 n and HA21 - HA23 can be made particularly compact and deliver high actuating forces. In addition, it is very easy to ensure the necessary freewheel of the wings by opening the appropriate valves.
  • Bearings e.g., spherical roller bearings or self-aligning ball bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

Eine vertikale Windkraftanlage (10), umfasst zwei oder mehr längs einer vertikalen Maschinenachse (MA) übereinander angeordnete Zellen (Z1, Z2), wobei jede der Zellen (Z1, Z2) eine Mehrzahl von vertikalen Flügeln (13) umfasst, die innerhalb der Zelle (Z1, Z2) auf einem konzentrischen Kreis um die Maschinenachse (MA) herum verteilt angeordnet und gemeinsam auf diesem Kreis bewegbar und drehfest mit einer Hauptwelle (20) verbunden sind, und wobei die Flügel (13) in der Zelle (Z1, Z2) jeweils einzeln um eine, insbesondere durch ihr Inneres verlaufende, vertikale Drehachse (12) drehbar gelagert sind. Eine grosse Effizienz wird dadurch erreicht, dass jedem der Flügel (13) Mittel zugeordnet sind, mit welchen der Flügel (13) während des Umlaufens um die Maschinenachse (MA) unabhängig von den anderen Flügeln in eine vorbestimmte und jederzeit änderbare Drehstellung um seine Drehachse (12) gebracht werden kann.

Description

Vertikale Windkraftanlage sowie Verfahren zum Betrieb einer solchen Anlage
TECH N ISCHES GEBIET
Die vorliegende Erfindung bezieht sich auf das Gebiet der Windkraftanlagen . Sie betrifft eine vertikale Windkraftanlage gemäss dem Oberbeg riff des Anspruchs 1 . Sie betrifft weiterhin ein Verfahren zum Betrieb einer solchen Anlage.
STAN D DER TECHN I K
Neben den üblichen, meist mit drei Flügeln ausgestatteten horizontalen Windkraftanlagen, die kommerziell in grosser Zahl hergestellt und eingesetzt werden und Leistungen im MW- Bereich abgeben , werden auch immer wieder vertikale Windkraftanlagen vorgeschlagen, die nach unterschiedlichen Prinzipien arbeiten können.
Die Druckschrift US 3 ,902 ,072 A offenbart einen Windkraftgenerator mit einer horizontalen rotierenden Plattform, auf der am Aussenumfang eine Vielzahl von vertikalen Flügeln angeord net ist, die alle koaxial um eine zentrale Achse und jeweils um eine eigene Achse rotieren . Die Drehung der vertikalen Flügel richtet sich nach Änderungen in der Windrichtung und Windgeschwindigkeit und die Drehung jedes einzelnen Flügels ist so gesteuert, dass auf % des Umlaufsweges der Plattform aus dem Wind Leistung entnommen wird, während auf dem Rest des Weges die Flügel so gestellt sind, dass sie dem Wind minimalen Widerstand bieten . Die Steuerung der Flügel erfolgt über eine zentrale Getriebe- Mechanik mit einem gemeinsamen Servomotor. Die Druckschrift US 4 ,41 0 ,806 A beschreibt eine vertikale Windkraftanlage mit einer rotierenden Struktur, die eine Serie von drehbeweglichen vertikalen Flügeln umfasst, deren Stellungen so gesteuert werden , dass sich ein konstante Drehzahl für die rotierende Struktur ergibt, sofern eine ausreichende Windgeschwind igkeit vorliegt. Eine M ikroprozessor- Steuerung verarbeitet die Informationen über Windgeschwindigkeit, Windrichtung und Drehzahl der rotierenden Struktur und erzeugt ein elektrisches Signal zum Einstellen der Flügelposition . Die Steuerung der Anlage umfasst elektrische Flügel- Aktuatoren, mit deren Hilfe die Flügel der rotierenden Struktur moduliert werden. Die Flügelmodulation steuert den Anstellwinkel , der seinerseits die Drehzahl des Rotors bestimmt. Ein Windgeschwind igkeitsmesser gibt Daten für Start und Stopp der Anlage aus, während ein Windrichtungsmesser eingesetzt wird , um das Umschlagen der Flügel bei 90 ° und 270 ° relativ zur Windrichtung zu halten . Die Steuerung ist so ausgelegt, dass bei Windgeschwindigkeiten zwischen 1 9 und 40 Meilen/ h eine konstante Drehzahl aufrechterhalten wird .
Die Druckschrift US 4 ,494 ,007 A offenbart eine vertikale Windkraftanlage, bei der die Orientierung der um eine gemeinsame zentrale Achse rotierenden Flügel von einer Windfahne über eine gemeinsame Mechanik während ihres Umlaufs um die zentrale Achse so gesteuert wird, dass, wenn sich die Windgeschwind igkeit ändert, die Drehstellung der Flügel in einer kompensierenden Richtung verändert wird .
Die Druckschrift US 4 , 609 ,827 A beschreibt eine vertikale Windkraftanlage mit Blättern mit Flügelprofil. En positives und synchrones Flügel- Orientierungssystem wird durch einen ausserhalb des Rotors angeord neten Mechanismus gesteuert. Zwei neuartige Einrichtungen verbessern die aerodynamische Effizienz und erhöhen die Rotationskräfte. Die in der Druckschrift US 6 ,379 , 1 1 5 B1 offenbarte Windkraftanlage umfasst eine drei rotierende Drehachse sowie eine Mehrzahl von an der Achse angebrachten , drehenden Stützarmen , zwischen denen Flügel zur Aufnahme der Windkraft drehbar gelagert sind . Ein Windmesser misst Windrichtung und -geschwindigkeit. Servomotoren an den Flü- geln steuern die Stellung der Flügel nach Massgabe der gemessenen Winddaten. Ver- schieden Methoden der Steuerung werden dazu angegeben .
Die Druckschrift US 20081 75709 A1 beschreibt eine Turbine mit hohem Wirkungsgrad zur Energieerzeugung aus einer Wind- oder Wasserströmung . Die Turbine hat eine zent- rale Achse mit einer Mehrzahl von Flügeln, die um die Achse herum nach Art eines Schaufelrades drehbar sind . Jeder Flügel hat eine Flügelachse parallel zur Flügellängsrichtung und zur zentralen Achse und ist um die Flügelachse drehbar. Während des Betriebs der Turbine nimmt jeder Flügel einen Anstellwinkel zur Strömungsrichtung an, der dynamisch gesteuert wird, wenn sich der Flügel um die zentrale Achse dreht, um das Drehmoment des Flügels um die Achse zu maximieren .
Die Druckschrift WO 2009086648 A2 schliesslich zeigt eine Windkraftanlage mit we- nigstens einem um eine vertikale Achse drehbaren Rotor, welcher zwischen zwei hori- zontalen , mit Abstand übereinander liegenden Lagerebenen eine Mehrzahl von auf ei- nem U mfangskreis verteilt angeordneten, jeweils um eine vertikale Schwenkachse schwenkbaren Rotorblättern umfasst, deren Schwenkbereich beidseitig durch einen An- schlag beg renzt ist, wobei die Breite der Rotorblätter kleiner als ungefähr 1 / 3 des Rad ius des Umfangskreises ist. Insbesondere können dabei Rotorblätter in mehreren Ebenen übereinander angeordnet sein .
Die bekannten vertikalen Windkraftanlagen sind für bodennahe Winde ausgelegt und weisen daher eine vergleichsweise geringe Gesamthöhe auf. Wird eine solche Anlage jedoch für Höhen ausgelegt, die den Höhen der heutigen horizontalen Windkraftanlagen vergleichbar sind, muss eine Höhenabhängigkeit der Windgeschwindigkeit und ggf. sogar Windrichtung in die Ü berlegungen zu einer möglichst effizienten Energieerzeugung mit einbezogen werden .
DARSTELLU NG DER ERFIN DU NG
Es ist daher eine Aufgabe der Erfindung, eine vertikale Windkraftanlage zu schaffen , die auch auf grössere Gesamthöhen hin skalierbar ist und zugleich einen hohen Wirkungsgrad bei gleichzeitig einfachem und funktionssicherem Aufbau ermöglicht.
Es ist weiterhin eine Aufgabe der Erfindung, ein Verfahren zum Betrieb einer solchen Anlage anzugeben .
Diese und andere Aufgaben werden durch die Merkmale der Ansprüche 1 und 1 8 gelöst.
Die erfind ungsgemäss vertikale Windkraftanlage umfasst zwei oder mehr längs einer vertikalen Maschinenachse übereinander angeord nete Zellen , wobei jede der Zellen eine Mehrzahl von vertikalen Flügeln umfasst, die innerhalb der Zelle auf einem konzentrischen Kreis um die Maschinenachse herum verteilt angeordnet und gemeinsam auf diesem Kreis bewegbar und drehfest mit einer Hauptwelle verbunden sind, und wobei die Flügel in der Zelle jeweils einzeln um eine, insbesondere durch ihr Inneres verlaufende, vertikale Drehachse drehbar gelagert sind. Sie zeichnet sich dadurch aus, dass jedem der Flügel M ittel zugeordnet sind, mit welchen der Flügel während des Umlaufens um die Maschinenachse unabhäng ig von den anderen Flügeln in eine vorbestimmte und jederzeit änderbare Drehstellung um seine Drehachse gebracht werden kann. Bne Ausgestaltung der vertikalen Windkraftanlage nach der .Erfindung ist dadurch gekennzeichnet, dass jede Zelle einen konzentrisch zur Maschinenachse angeordneten ersten und zweiten Ring umfasst, welche Ringe die Zelle oben und unten begrenzen , und zwischen denen die Flügel der Zelle um 360 ° drehbar angeordnet sind .
Insbesondere sind die Flügel einer Zelle an ihren Enden auf dem ersten und zweiten Ring um 360° drehbar gelagert.
Insbesondere haben benachbarte Zellen jeweils einen Ring gemeinsam .
Insbesondere sind aber auch die M ittel zum Verändern der Drehstellung der Flügel auf den Ringen angeord net.
Speziell umfassen die M ittel zum Verändern der Drehstellung der Flügel einen elektrisch oder hydraulisch angetriebenen Motor.
Die Drehbewegung des elektrisch oder hyd raulisch angetriebenen Motors kann dabei beim elektrisch angetriebenen Motor über Zahnräder oder beim hydraulisch angetriebenen Motor direkt auf den zugehörigen Flügel übertragen werden .
Speziell ist der elektrisch oder hydraulisch angetriebene Motor mit der Motorachse in der Ringebene liegend angeordnet, und die Drehbewegung zwischen den Zahnrädern wird beim elektrischen Antrieb mittels eines Zahnriemens übertragen. Bei der Hydraulikvariante ist der Hydraulikmotor direkt, d.h. ohne Getriebe, mit der Flügeldrehachse verbunden.
F_s ist aber auch den kbar, dass der elektrisch oder hyd raulisch angetriebene Motor mit der Motorachse senkrecht zur Ringebene angeordnet ist, und dass zur Übertragung der Drehbewegung beim elektrischen Antrieb ein Winkelgetriebe zwischengeschaltet ist. Bne andere Ausgestaltung der vertikalen Windkraftanlage nach der Erfindung ist dadurch gekennzeichnet, dass die unterste der Zellen einen vorbestimmten Abstand zum Boden aufweist, und dass die Hauptwelle zwischen der untersten Zelle und einem in Bodennähe angeord neten Maschinenhaus und an ihren Enden drehbar gelagert ist.
Speziell ist die Hauptwelle aus mehreren in axialer Richtung hintereinander angeordneten Abschnitten zusammengesetzt, und die Abschnitte sind untereinander über Flansche verbunden.
Insbesondere umfasst die Hauptwelle einen unteren zylind rischen Abschnitt, einen mittleren, sich nach oben konisch erweiternden Abschnitt und einen oberen zylindrischen Abschnitt, der einen grösseren Aussendurchmesser aufweist als der untere zylind rische Abschnitt.
Auf dem unteren zylind rischen Abschnitt ist vorzugsweise der Rotor eines elektrische Energie erzeugenden Generators drehfest angebracht.
Speziell ist zur drehbaren Lagerung der Hauptwelle am unteren Ende der Hauptwelle ein Lagerzapfen und am oberen Ende eine Stützrollenlaufbahn vorgesehen . Der Lagerzapfen ist mit einem Drucklager ausgestattet, das die unteren vertikalen Gravitationskräfte des Rotors übernimmt, und mit einem Radiallager, das die horizontalen unteren Reaktionswindkräfte der Hauptwelle aufnimmt.
Schliesslich kann das obere Lager der Hauptwelle, das als Stützrollenlager ausgebildet ist und die vertikalen oberen Reaktionswindkräfte der Hauptwelle aufnimmt, durch ein sich schräg nach unten erweiterndes Stützgestell auf ausserhalb der Maschinenachse angeordneten Fundamenten abgestützt sein , wobei die unteren Axial- und Radiallager der Hauptwelle im Generatorgehäuse untergebracht sind, welches innerhalb des im Stützgestell hängend angeordneten Maschinenhauses an den oberen Streben befestigt ist.
Gemäss einer weiteren Ausgestaltung der Erfindung ist an jeder der Zellen oben und unten jeweils eine Windmesseinrichtung zur Messung von Windrichtung und Windgeschwindigkeit angeord net ist, welche vorzugsweise ein Ultraschall-Anemometer umfasst. Hiermit ist es möglich , die lokale Windeinwirkung auf jeden Flügel mit guter Genauigkeit zu bestimmen .
Weiterhin kann an jeder der Zellen oben und/ oder unten beim Flügellager eine Kraftmesseinrichtung für radiale und tangentiale Kraftrichtung vorgesehen sein, um die auftretenden Kräfte an den Flügeln zu bestimmen und mit zu berücksichtigen .
Das erfind ungsgemässe Verfahren zum Betrieb einer vertikalen Windkraftanlage nach der Erfindung ist dad urch gekennzeichnet, dass die Drehstellung der einzelnen Flügel der Windkraftanlage um ihre Drehachse unabhäng ig voneinander nach Massgabe von Messwerten der Windgeschwindigkeit, der Windrichtung , der Drehzahl der Windkraftanlage und der Position der Flügel auf ihrem Umlauf um die Maschinenachse aktiv gesteuert wird .
Ene Ausgestaltung des erfind ungsgemässen Verfahrens ist dad urch gekennzeichnet, dass für den Flügelwinkel, der die Auslenkung eines Flügels aus einer Grundposition tangential zum Umlaufkreis um die Maschinenachse beschreibt, virtuelle Kurvenscheiben bereitgestellt werden, welche jeweils den Verlauf des Flügelwinkels über der Position des Flügels auf dem Umlaufkreis festlegen , und dass die aktive Steuerung der einzelnen Flügel nach Massgabe der virtuellen Kurvenscheiben erfolgt. Insbesondere wird zur Auswahl der für die aktive Steuerung der Flügel verwendeten virtuellen Kurvenscheiben fortlaufend die Schnelllaufzahl λ der Windkraftanlage bestimmt, wobei die Schnelllaufzahl λ das Verhältnis der Umfangsgeschwindigkeit der Flügel zur Windgeschwindigkeit angibt, und es wird nach Massgabe der bestimmten Schnelllaufzahl λ die für die aktive Steuerung der Flügel verwendete virtuelle Kurvenscheibe ausgewählt bzw. zwischen verschiedenen virtuellen Kurvenscheiben gewechselt.
Speziell sind die virtuellen Kurvenscheiben auf eine Nullposition der Windkraftanlage bezogen, und die Nullposition ist von der Windrichtung abhängig.
Insbesondere wird für jede der Zellen eine eigene, von der Höhe über dem Boden abhängige Windgeschwindigkeit bestimmt, und die Drehstellung der einzelnen Flügel der Zelle um ihre Drehachse wird nach Massgabe der für die Zelle ermittelten Windgeschwindigkeit aktiv gesteuert.
KU RZE ERLÄUTERU NG DER FIGU REN
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen :
Fig. 1 in einer vereinfachten Seitenansicht ein Ausführungsbeispiel der vertikalen
Windkraftanlage nach der Erfindung mit zwei Zellen und der unteren Lagerung der Hauptwelle in einem hängend angebrachten Maschinenhaus ;
Fig. 2-4 in der Draufsicht ( a) und in der Seitenansicht ( b) die drei Ringe für die Lagerung der Flügel in der Anlage nach Fig. 1 ;
Fig. 5 in einer Seitenansicht die Hauptwelle der Anlagen nach Fig. 1 ; Fig. 6 eine Seitenansicht eines Flügels mit oberem und unterem Lager der Anlagen gemäss Fig . 1 ;
Fig. 7 in einer ausschnittweisen perspektivischen Darstellung zwei verschiedene
Arten der Montage eines Elektromotors zur Flügelverstellung an dem die Flügel tragenden unteren Ring ;
Fig. 8 eine andere Ansicht eines horizontal unteren Ring montierten Elektromotors zur Flügelverstellung , der durch eine Abdeckung geschützt ist;
Fig. 9 die berechnete optimale Flügelstellung über eine 360 °- Drehung der Anlage bei einer Schnelllaufzahl von 0 ,4 im Diagramm ( a) und in der axialen Draufsicht ( b) ;
Fig. 1 0 entschärfte Flügelsteuerungskurven , die den technischen Grenzen der Antriebsmittel Rechnung tragen ;
Fig. 1 1 ein Blockschema der elektromechanischen Steuerung der Flügelstellung gemäss einen Ausführungsbeispiel der Erfindung ; und
Fig. 1 2 ein Blockschema der elektrohydraulischen Steuerung der Flügelstellung gemäss einen anderen Ausführungsbeispiel der Erfindung.
WEGE ZU R AUSFÜ H RU NG DER ERFI N DU NG
In Fig. 1 ist in einer vereinfachten Seitenansicht ein Ausführungsbeispiel der vertikalen Windkraftanlage nach der Erfindung wiedergegeben. Die Windkraftanlage 1 0 der Fig . 1 umfasst zwei Zellen Z1 und Z2 , die entlang einer vertikalen Maschinenachse MA übereinander angeordnet sind . Jede der Zellen Z1 , Z2 hat zwei horizontale, konzentrisch zur Maschinenachse MA positionierte Ringe 1 1 , 1 6 bzw. 1 6 , 1 9 , zwischen denen eine Mehrzahl ( im Beispiel 3) von vertikalen Flügeln 1 3 jeweils um eine eigene Drehachse 1 2 drehbar gelagert sind . Der mittlere Ring 1 6 ist dabei beiden Zellen Z1 und Z2 gleichermassen zugeordnet.
Der Aufbau der Ringe 1 1 , 1 6 und 1 9 ergibt sich aus den Fig. 2 , 3 und 4. Jeder der Ringe 1 1 , 1 6 und 1 9 ist als gleichseitiges Dreieck oder regelmässiges Vieleck ausgebildet, in dessen Ecken die Flügel 1 3 mittels eines entsprechenden Lagersupports 38 gelagert sind ( siehe auch Fig. 7) . Der Umfang wird aus Stangen 33 gebildet, die mit einem im Zentrum befindlichen vertikalen Rohr 35 durch radial verlaufende Stangen 31 und Rohre 32 verbunden sind. Auf der U nterseite der Ringe dienen Flacheisen 34 der Zugabstrebung. U m das zentrale Rohr 35 herum sind radiale Rippen 37 angeordnet, die zugleich an den Enden des Rohres 35 ausgebildete Flansche 36 stützen .
Die Zellen Z1 , Z2 mit ihren Flügeln 1 3 sind über zentrale Rohre 1 5 und 1 8 mit einer unterhalb der Zellen drehbar gelagerten vertikalen Hauptachse 20 drehfest verbunden, so dass sie zusammen mit der Hauptachse 20 um die Maschinenachse MA rotieren können. Die Hauptachse 20 ist am oberen Ende in einem Lagerhalter 23 mit Stützrollen drehbar gelagert, der über ein Gestell von schräg nach unten gespreizten Rohren 24 auf aussen liegenden Fundamenten 29 abgestützt ist. Im Ausführungsbeispiel der Fig. 1 sind die unteren Vertikal- und Radiallager im Generatorgehäuse untergebracht, welches im Maschinenhaus 26 befestigt ist, das am Gestell 24 hängend angeord net ist. Auf diese Weise kann mehr Gewicht in die aussen liegenden Fundamente 29 eingeleitet werden, wodurch sich das Standmoment der Gesamtkonstruktion erhöht. Die Höhe H1 kann beispielsweise 75 m oder auch mehr ( z.B. über 200 m) betragen. Der Durchmesser d1 des Kreises, auf dem sich die Flügel 1 3 mit ihren Drehachsen 1 2 bewegen, beträgt beispielsweise 20 m. Jede der Zellen Z1 , Z2 sieht aufgrund der unterschiedlichen Höhe eine eigene Windgeschwindigkeit vw 1 und vw 2.
Die Hauptachse 20 besteht im Beispiel gemäss Fig. 5 aus einem unteren zylind rischen Abschnitt 45 kleineren Durchmessers, einem mittleren , sich nach oben zu konisch erweiternden Abschnitt 43 und einem oberen zylindrischen Abschnitt 41 grösseren Durchmessers. Die Abschnitte 41 , 43 und 45 sind durch Flansche 42 und 44 fest miteinander verbunden. Am oberen Ende des oberen zylind rischen Abschnitts 41 ist eine Stützrollenlaufbahn 40 angebracht, am unteren Ende des unteren zylind rischen Abschnitts 45 ein unterer Lagerzapfen 46. Die Abschnitte haben die Längen h1 , h2 und h3 von z.B. 4 m, 1 1 m und 0 ,5 m.
Wie in Fig . 1 zu erkennen ist, trägt der untere zylindrische Abschnitt 45 den Rotor 22 eines Generators sowie eine Bremse 21 , die beide im Maschinenhaus 26 untergebracht sind . Zellen Z1 und Z2 zusammen mit der Hauptachse bilden den um die Maschinenachse MA drehenden Rotor der Windkraftanlage.
In Fig . 2 ( a) ist beispielhaft die Lage eines der jedem Flügel 1 3 zugeordneten Aktuatoren 38 eingezeichnet. Der Aktuator 39 ist in diesem Fall parallel zur Stange 33 des Ringes 1 9 liegend in unmittelbarer Nähe des Lagersupports 38 des entsprechenden Flügels angeordnet. Dies ist noch deutlicher im vergrösserten Ausschnitt der Fig . 7 zu erkennen , wo der eine der beiden eingezeichneten Aktuatoren , Aktuator 39a, diese parallele Lage zur Stange 33 einnimmt. Der betreffende Flügel 1 3 ist an seiner Drehachse oberhalb des Lagersupports 38 mit einem ersten Zahnrad 49 versehen . Der Aktuator 39a, in diesem Fall ein elektrischer Servomotor, wirkt über eine Winkelgetriebe 52 auf ein zweites Zahnrad 50 , das sich auf derselben Höhe befindet wie das erste Zahnrad 49 und mit diesem über einen ( nicht dargestellten) Zahnriemen antriebsmässig verbunden ist. Soll der Bnsatz eines Winkelgetriebes vermieden werden, kann der Aktuator ( 39 b) auch vertikal eingebaut werden, erzeugt dann allerdings mehr Strömungswiderstand . Der liegend angeordnete Aktuator 39a kann gemäss Fig . 8 auf einfache Weise mit einer Abdeckung 51 versehen werden, um ihn vor Witterungseinflüssen zu schützen .
Die Aktuatoren 39 bzw. 39a, b werden über entsprechende Zuleitungen von einer zentralen Versorgungseinheit mit Energie versorgt und über Steuersignale entsprechend den Vorgaben einer Steuerung angesteuert. Werden anstelle der elektrischen hydraulische Aktuatoren ( Motore) eingesetzt, erfolgt die Versorg ung durch entsprechende Hydraulikleitungen aus einer zentralen Hydraulikeinheit.
Bnen Ü berblick über das Konzept der aktiven Flügelsteuerung gibt das Blockschaltbild auf Fig . 1 1 .
Die Flügel 1 3 bzw. F1 - F6 der Zellen Z1 und Z2 werden aktiv mittels Aktuatoren 39a ( über Winkelgetriebe 52) oder 39 b ( direkt) um ihre Längsachse gedreht. Jeder beliebige Flügelwinkel (Winkel zwischen Tangentiale am Umlaufkreis des Rotors und Sehnen linie des Flügels) kann für jeden Flügel an jeder Position auf dem U mlaufkreis individuell eingestellt werden.
Aufgabe der aktiven Flügelsteuerung ist es, mit allen ( im Beispiel 1 2) Flügeln 1 3 bzw. F1 - F6 in beiden Zellen einen mit der Rotorposition variierenden Flügelwinkel zu fahren. Je nach Windgeschwindigkeit und Drehzahl des Rotors wird ein anderer Verlauf des Flügelwinkels über der Rotorposition gefahren. Hierzu werden verschiedene virtuelle Kurvenscheiben erzeugt und in einem Speicher abgelegt. Der Flügelwinkel folgt dann dem Randverlauf der ausgewählten virtuellen Kurvenscheibe. Der Nullpunkt der Rotorposition ist dabei abhängig von der Windrichtung . Windrichtung und Windgeschwindigkeit werden von einem Windgeschwind igkeitsaufnehmer 67 und einem Windrichtungsaufnehmer 68 gemessen .
Der Windmessung kommt bei der vorliegenden Anlage gemäss Fig. 1 eine besondere Bedeutung zu. Eine vertikale Windturbine 1 0 der in Fig. 1 gezeigten Art hat über der ganzen Wirkhöhe des Rotors gleichförmig gestaltete Flügel 1 3 , die während jeder Rotorumdrehung individuell optimal gesteuert werden können . Der Anstellwinkel des Flügels 1 3 zur relativen Windanströmung soll in jedem Zeitpunkt der Rotorumdrehung gesteuert werden können. Die Flügel„fliegen" bei Rotordrehung quasi auf einer kreisförmigen Bahn , mit dem Rotorradius, ums Zentrum des Rotors bzw. die Maschinenachse MA und erzeugen dabei einen Auftrieb in radialer Richtung und einen Vortrieb in tangentialer Richtung. Der Vortrieb soll jederzeit so optimiert werden können, dass die Turbine 1 0 einen maximalen Antrieb erfährt.
Aus Gründen der statischen und dynamischen Flügelbelastung ist der Rotor über der Wirkhöhe je nach Grösse der Windturbine in ein bis vier Zellen ( zwei Zellen Z1 und Z2 im Beispiel der Fig . 1 ) aufgeteilt. Eine Zelle Z1 , Z2 enthält je drei Flügel 1 3 , die unten und oben jeweils drehbar am Ende eines radialen Arms gelagert und so fest mit dem Zentrum des Rotors verbunden sind . Die drei Arme bilden je einen fiktiven Ring oben und unten an jeder Zelle.
Da alle Rotorzellen mit dem Rotor fest verbunden sind , drehen sie auch immer gleichschnell wie der Rotor. Die Windrichtung und die Windgeschwindigkeit können sich aber über der Wirkhöhe des Rotors stark ändern, besonders bei grossen ( hohen) Turbinen. Um eine optimale Vortriebssteuerung zu gewährleisten , müsste man in jedem Zeitpunkt der Rotorumdrehung die Geschwindigkeit und Richtung der relativen Windanströmung jedes Flügels genau kennen. M it einer statischen Windmessung könnte vertikal und mit Abstand zum Rotor die Windgeschwindigkeit und die Windrichtung über der Höhe gemessen werden ( Windmessmast) . Da der Windmessmast fest und in einigem Abstand zur Turbine steht, würde er bei ungünstiger Windrichtung im Windschatten der Turbine stehen und auch wegen des Abstands ungenaue und nicht der Realität an den Flügeln entsprechende Messergebnisse liefern .
F_s wird deshalb vorgeschlagen , je eine Windmesseinrichtung W1 -W3 ( Fig . 1 ) pro Ring aussen an je einem Ringarm zu befestigen . Die Windmesseinrichtung W1 -W3 wird nun in jedem Zeitpunkt der Rotordrehung die genaue relative Windanströmung in Richtung und Geschwindigkeit bezogen auf den Arm und somit auch auf den Flügel bestimmen . Die Windmesseinrichtung sollte vorzugsweise keine mechanisch- dynamischen Messkomponenten enthalten wie Windfahne und Windrad, sondern soll Windrichtung und Windgeschwindigkeit mittels Ultraschall messen ( Ultraschall-Anemometer) , da mechanische Messkomponenten durch die Zentrifugalbeschleunigung am Rotor Fehlresultate zeigen könnten . Die Windmesseinrichtung W1 -W3 muss einen gen ügenden Abstand zum Armende haben, um nicht vom Luftwirbelbereich des Armendes beeinflusst zu sein .
F_s ist bekannt, dass die Windrichtung und die Windgeschwindigkeit über der Wirkhöhe eines Rotors stark variieren können (Windscherungen und Turbulenzen) . Falls solche Phänomene nicht örtlich und zeitlich genau genug gemessen werden können , um die Flügel 1 3 optimal zu steuern , wird die Turbine einen erheblich geringeren aerodynamischen Wirkungsgrad aufweisen . Wenn die Messung nun bei jeder Zelle Z1 , Z2 oben und unten am U mfang dynamisch und zeitnah erfolgt, kann auch jeder Flügel immer auf den optimalen Relativanstellwinkel gesteuert werden. U m die Windverhältnisse in der M ittelhöhe des Flügels zu bestimmen , sind die jeweiligen Windmessungen oben und unten am Flügel zu mittein , um daraus das Flügelsteuersignal zu bilden. Aus der Messung der Rela- tivanströmung kann über die Rotorumfangsgeschwindigkeit jederzeit auch die absolute Windgeschwindigkeit und Windrichtung trigonometrisch berechnet werden. Anhand dieser Messungen können sehr zeitnah die optimale Schnelllaufzahl der Turbine und der optimale dazu passende Flügelanstellwinkel bestimmt werden.
M it der Messeinrichtung können auch kurzzeitig hohe örtliche Turbulenzen festgestellt werden, die zu einer Flügel- und Turbinen- Ü berlastung führen könnten. Daraus kann dann auch eine allfällige entlastende Flügelverstellung oder vollständige Flügelabschaltung ( Freigabe) erfolgen . Die Messungen mit den Windmesseinrichtungen W1 -W3 an je einem Arm pro Ring erlauben es, die Zellen mit deren Flügeln unabhäng ig voneinander individuell zu steuern.
Es wird weiter vorgeschlagen, an jeder Zelle Z1 , Z2 am unteren oder oberen Ring an je einem Arm beim Flügellager eine Kraftmesseinrichtung K1 - K3 für radiale und tangentiale Kraftrichtung zu installieren . M it der Tangentialkraftmessung kann zusammen mit der Windmesseinrichtung W1 -W3 der Flügelvortrieb und somit der Turbinenwirkungsgrad optimiert werden . Die Signale dieser beiden Messeinrichtungen W1 -W3 und K1 - K3 sollen mittels eines selbstlernenden Steuerungsprogramms ständig den Wirkungsg rad der Turbine adaptiv verbessern .
Das radiale Kraftmesssignal soll zusammen mit dem tangentialen Kraftmesssignal ständig den Belastungsverlauf des Flügels überwachen. M it dieser Messung kann die Häufung und Intensität der Flügelbeanspruchung und damit auch die Restlebensdauer der Flügel bestimmt werden .
Als Alternative oder Ergänzung der vorbeschriebenen Kraftmessung zur Bestimmung der Flügelbeanspruchung könnte auch in der Flügelmitte auf der Oberfläche ein Dehnmess- streifen ( beispielhaft für einen Flügel 1 3 : DM in Fig . 1 ) angebracht werden, der zusammen mit einem Messsystem die Häufung und Intensität der Biegespannungen im Flügel 1 3 misst. Aus diesen Messungen könnte dann die Restlebensdauer der Flügel 1 3 bestimmt werden. Das Verfahren kann insofern kompliziert sein , als das Messsignal vom rotierenden Flügel an den Ringarm übertragen werden muss. Die Dehnmessstreifen- F nrichtung soll aber ausschliesslich nur zur Messung der Flügelbeanspruchung, nicht aber zur Optimierung des Flügelvortriebs verwendet werden .
Das Grund konzept der aktiven Flügelsteuerung ist dem Blockschaltbild in Fig . 1 1 zu entnehmen . Die Komponenten, welche mit einer gestrichelten Linie umrahmt sind ( Rotorblock 53 in Fig . 1 1 ) , werden in einem Schaltschrank auf dem Rotor montiert. Die Kommunikation mit der Steuerung auf dem Turm und die Datenerfassung laufen über eine Wi- Fi- Verbind ung mit entsprechenden Wi- Fi-Transmittern 57 und 66. Die Leistungsversorgung aus einer Drehstrom-Spannungsversorgung 71 (3x400VAC, 1 xN ullleiter und 1 xErdung) läuft über einen Schleifring 62. Die auf dem Rotor befindlichen Funktionsblöcke werden über eine 24VDC-Spannungsversorg ung 56 versorgt. F ne analoge 24VDC- Spannungsversorgung 65 ist auch ausserhalb des Rotors vorgesehen .
Die virtuellen Kurvenscheiben ( verschiedene Flügelwinkelverläufe mit der Rotorposition) werden auf dem Rotor ( Motioncontroller 58) abgelegt. Sie können jedoch im Betrieb über die Wi- Fi- Verbindung abgeändert werden . Windgeschwindigkeit, Windrichtung und Drehzahl des Rotors werden auf dem Turm ( nicht drehend) über die I/ O einer mit einem Computer 70 zusammenarbeitenden Speicherprog rammierbaren Steuerung ( SPS) 64 verarbeitet. Welche virtuelle Kurvenscheibe genommen werden muss, wird über die Wi- Fi-Verbindung an den Motioncontroller 58 auf dem Rotor übertragen. Auf dem Rotor sowie auch auf dem Turm sind I/ O verfügbar. Die 6 Aktuatoren 39a bzw. 39 b folgen im einfachsten Fall der gleichen Kurvenscheibe, jedoch mit einem Winkelversatz von 1 20° ( bei z.B. 3 Flügeln pro Zelle) . Der Nullwert der Rotorposition ist abhängig von der Windrichtung . Unterscheiden sich bei höheren Anlagen und/ oder mehr als zwei Zellen die Windgeschwindigkeiten für die Zellen erheblich voneinander, wird für jede der Zellen nach Massgabe der zugehörigen Windgeschwindigkeit eine eigene virtuelle Kurvenscheibe ausgewählt. Es wird also für jede der Zellen Z1 , Z2 eine eigene, von der Höhe über dem Boden abhängige Windgeschwind igkeit ( vw bestimmt, und die Drehstellung der einzelnen Flügel 1 3 , F1 - F6 der Zelle nach Massgabe der für die Zelle ermittelten Windgeschwindigkeit (vw aktiv gesteuert. Da die Abhäng igkeit der Windgeschwindigkeit von der Höhe über dem Boden einer Standardkurve folgt, reicht es aus, die Windgeschwind igkeit in einer Höhe zu messen , um daraus die Werte für andere Höhen zu bestimmen . Alle Zellen haben dieselbe Drehzahl um die Maschinenachse MA, aber wegen der unterschiedlichen Höhe unterschiedliche Windgeschwindigkeiten . Entsprechend ergeben sich unterschiedliche Schnelllaufzahlen , die dann über die gesamte Anlage gemittelt eine maximale Energieerzeugung gewährleisten sollen .
Der Schaltschrank mit dem Motioncontroller 58 befindet sich auf dem Rotor. Die Rotorposition sollte auch auf dem Rotor abgeg riffen werden . Hierzu kann ein entsprechender Drehgeber eingesetzt werden. Im Beispiel der Fig. 1 1 ist stattdessen jedoch ein Geber für die Nullposition 54 vorhanden. Die Rotordrehzahl wird auf dem Turm ermittelt. Die daraus resultierenden Schrittimpulse werden über SPS 64 eingelesen und über die Wi- Fi- Verbind ung an den Motioncontroller 58 auf dem Rotor übermittelt.
Die aktive Flügelsteuerung erhält mehrere Eingangssignale direkt von einem Messsystem, das den Windgeschwind igkeitsaufnehmer 67 , den Windrichtungsaufnehmer 68 und ggf. einen Rotordrehmomentaufnehmer 69 umfasst. Zusätzlich werden Impulse 63 für die Drehzahl eingespiesen . Anhand dieser Eingangssignale bestimmt die Flügelsteuerung 64 , wie die einzelnen Flügel gesteuert werden müssen (welche Kurvenscheibe wird verwendet, wo ist der Null- Punkt der Rotorposition) . Die Steuersignale aus dem Motioncontroller 58 gehen über eine Powermodul 59 an ein Abgangsmodul 60 und von dort über eine Verteilbox 55 an die einzelnen Aktuatoren 39a bzw. 39 b.
Der Flügelwinkelverlauf wird periodisch neu ausgewählt ( verschiedene Kurvenscheiben) . Die Windrichtung legt die Nullposition der Rotorposition fest. Von den für die Regelung benötigten Eingangssignalen wird jeweils der Med ian über eine bestimmte Zeit berechnet. Sowohl die Refresh-Zeit als auch das Zeitfenster für die M ittelung der Regelparameter sollten frei wählbar sein . Eine spezielle Steuerung 61 kann Befehle für die Abschaltung der Anlage bzw. die Red uktion der Drehzahl geben.
Die max. Anzahl der verschiedenen Flügelwinkelverläufe (virtuelle Kurvenscheiben) , welche definiert werden können , ist durch den Motioncontroller 58 begrenzt und kann z.B. 99 betragen. Welcher Flügelwinkelverlauf verwendet wird , ist abhängig vom Betriebszustand und der Schnelllaufzahl λ der Turbine. Die Schnelllaufzahl wird in an sich bekannter Weise berechnet aus der Windgeschwindigkeit vw und der Rotordrehzahl ( bzw. Rotorumfangsgeschwindigkeit) .
Der theoretisch optimale Flügelwinkelverlauf für einen Flügel 1 3 wurde mithilfe eines analytischen Modells für verschiedene Schnelllaufzahlen berechnet. En Beispiel für eine Schnelllaufzahl von 0 ,4 ( a) zusammen mit einer Skizze der physikalischen Positionen der Blätter jede 30 ° ( b) ist in Fig. 9 gezeigt.
Es ist zu beachten, dass die maximalen Beschleunigungen aus Fig. 9 in der Realität nicht erreicht werden können. Die optimalen Flügelwinkelverläufe werden deshalb entschärft und die resultierenden Charakteristiken mit typischen Egenschaften verfügbarer An- triebsmotoren verglichen. Ein Beispiel für zwei unterschiedliche Entschärfungen zeigt Fig . 1 0.
Die Flügel werden einer virtuellen Leitachse entsprechend positioniert. Die Leitachse wird durch einen NU LL- Impuls ( Null- Position 54) und die Drehzahl bestimmt. Die SPS 64 speichert mit einer vorbestimmten Frequenz die aktuelle Windgeschwindigkeit, die Rotordrehzahl und die Windrichtung . Periodisch wird der Median von der Windgeschwindigkeit und Rotordrehzahl berechnet. Daraus wird die gemittelte Schnelllaufzahl λ über das letzte Zeitfenster berechnet und die Kurvenscheibe ausgewählt. Der Median der Windrichtung wird ebenfalls periodisch berechnet. Daraus wird die NU LL- Position der Kurvenscheibe bestimmt.
Ist die Schnelllaufzahl der Turbine < 0 ,4 wird ein konstanter Flügelwinkelverlauf verwendet, um die Drehzahl zu erhöhen. Sobald die Schnelllaufzahl > 0 ,4 ist, befindet sich die Turbine im Betrieb.
Beim Herunterfahren wird die Windturbine vom Generator gebremst, um die Drehzahl auf 0 zu bringen. Die Flügelsteuerung erhält von der Steuerung 61 der Anlage ein Signal, dass der Betriebszustand Herunterfahren erreicht wurde und die Flügelantriebe 39a bzw. 39 b werden stromlos gemacht oder bei hydraulischem Antrieb die Hydraulikmotoren freigeschaltet.
Die Rotordrehzahl ist 0 und die Bremsen der Windturbine sind geschlossen . Die Flügelsteuerung wird nicht ausgeschaltet, damit verliert diese auch die Rotorposition nicht. Die Motoren sind stromlos oder die Hydraulikmotore öldruckfrei. Damit richten die Flügel 1 3 sich mit dem Wind aus. Die Windturbine wird mit der Bremse 21 so schnell wie möglich abgebremst. Die Flügel 1 3 werden bei Betätigung des Not-Aus physikalisch stromlos bzw. öldruckfrei gemacht.
Ein zu Fig. 1 1 analoges Blockschaltbild für die elektrohydraulische Steuerung der Flügel in den Zellen ist in Fig . 1 2 wiedergegeben. Die zur Betätigung der einzelnen Flügel vorgese- henen Hydraulik-Aktuatoren HA1 1 - HA1 n und HA21 - HA23 , die mit den notwendigen Ventilen und einer Freischaltung ausgestattet sind, werden über in den Zellen verlegte Hydraulikleitungen von einem ( oder mehreren) zentralen ( im Zentrum des Rotors angeordneten) Hydraulik-Aggregat( en) 73 mit Öld ruck versorgt. Das oder die Hydraulik- Aggregate 73 erhalten ihren Betriebsstrom von einer eigenen Spannungsversorg ung 72 , die an die Energieü bertrag ung ( Schleifring 62 ) angeschlossen ist.
Die Hydraulik-Aktuatoren HA1 1 - HA1 n und HA21 - HA23 können besonders kompakt ausgeführt sein und hohe Stellkräfte abgeben. Darüber hinaus lässt sich sehr leicht durch Öffnen der entsprechenden Ventile der notwendige Freilauf der Flügel sicherstellen .
Bezugszeichenliste
10 Windkraftanlage (vertikal)
11 oberer Ring
12 Drehachse
13 Flügel
14,17 Stange
15,18 Rohr
16 mittlerer Ring
19 unterer Ring
20 Hauptwelle
21 Bremse
22 Rotor (Generator)
23 Lagerhalter
24 Rohr
25 Stange
26 Maschinenhaus
29 Fundament
31 ,33 Stange
32 Rohr
34 Flach
35 Rohr
36 Flansch
37 Rippe
38 Lagersupport
39 Aktuator (Flügel) 39a, b Servomotor
40 Stützrollenlaufbahn
41 oberer Abschnitt ( zylindrisch)
42 ,44 Flansch
43 mittlerer Abschnitt ( konisch)
45 unterer Abschnitt ( zylindrisch)
46 unterer Lagerzapfen
47 ,48 Lager ( z.B. Pendelrollen- oder Pendelkugellager
49 ,50 Zahnrad
51 Abdeckung
52 Winkelgetriebe
53 Rotorblock
54 Null- Position
55 Verteilbox
56 24VDC- Spannungsversorgung
57 Wi- Fi-Transmitter
58 Motioncontroller
59 Powermodul
60 Abgangsmodul
61 Steuerung
62 Schleifring
63 Impuls für Drehzahl
64 SPS
65 24VDC- Spannungsversorgung
66 WiFi-Transmitter 67 Windgeschwindigkeitsaufnehmer
68 Windrichtungsaufnehmer
69 Rotordrehmomentaufnehmer
70 Computer
71,72 Drehstrom-Spannungsversorgung
73 Hydraulik-Aggregat
d1 Durchmesser
DM Dehnungsmessstreifen
FP Flügelprofil
F1-F6 Flügel
HA11-
HA1 n Hydraulik- Aktuator (integriert mit Ventilen und Freischaltung) HA21-
HA23 Hydraulik- Aktuator ( integriert mit Ventilen und Freischaltung) H1 Gesamthöhe
h1-h3 Höhe
K1-K3 Kraftmesseinrichtung
MA Maschinenachse
W1-W3 Windmesseinrichtung
Z1.Z2 Zelle

Claims

Patentansprüche
1. Vertikale Windkraftanlage (10), umfassend zwei oder mehr längs einer vertikalen Maschinenachse ( MA) übereinander angeordnete Zellen (Z1 , Z2) , wobei jede der Zellen (Z1, Z2) eine Mehrzahl von vertikalen Flügeln (13; F1-F6) umfasst, die innerhalb der Zelle (Z1 , Z2) auf einem konzentrischen Kreis um die Maschinenachse (MA) herum verteilt angeordnet und gemeinsam auf diesem Kreis bewegbar und drehfest mit einer Hauptwelle (20) verbunden sind, und wobei die Flügel (13; F1 - F6) in der Zelle (Z1, Z2) jeweils einzeln um eine, insbesondere durch ihr Inneres verlaufende, vertikale Drehachse (12) drehbar gelagert sind, dadurch gekennzeichnet, dass jedem der Flügel (13; F1-F6) Mittel (39; 39a, b; 49, 50; 52) zugeordnet sind, mit welchen der Flügel (13; F1-F6) während des Umlaufens um die Maschinenachse (MA) unabhängig von den anderen Flügeln in eine vorbestimmte und jederzeit änderbare Drehstellung um seine Drehachse (12) gebracht werden kann.
2. Vertikale Windkraftanlage nach Anspruch 1 , dadurch gekennzeichnet, dass jede Zelle (Z1 , Z2) einen konzentrisch zur Maschinenachse (MA) angeordneten ersten und zweiten Ring (11, 16, 19) umfasst, welche Ringe die Zelle (Z1 , Z2) oben und unten begrenzen, und zwischen denen die Flügel (13, F1-F6) der Zelle um 360° drehbar angeordnet sind.
3. Vertikale Windkraftanlage nach Anspruch 2, dadurch gekennzeichnet, dass die Flügel (13, F1 -F6) einer Zelle (Z1 , Z2) an ihren Enden auf dem ersten und zweiten Ring (11, 16, 19) um 360° drehbar gelagert sind.
4. Vertikale Windkraftanlage nach Anspruch 2, dadurch gekennzeichnet, dass benachbarte Zellen (Z1 , Z2) jeweils einen Ring (16) gemeinsam haben.
5. Vertikale Windkraftanlage nach Anspruch 2, dadurch gekennzeichnet, dass die Mittel (39; 39a, b; 49, 50; 52) zum Verändern der Drehstellung der Flügel (13, F1 - F6) auf den Ringen (11, 16, 19) angeordnet sind.
6. Vertikale Windkraftanlage nach Anspruch 5, dadurch gekennzeichnet, dass die Mittel (39; 39a, b; 49, 50; 52) zum Verändern der Drehstellung der Flügel (13, F1 - F6) einen elektrisch oder hydraulisch angetriebenen Motor (39a, b) umfassen.
7. Vertikale Windkraftanlage nach Anspruch 6, dadurch gekennzeichnet, dass die Drehbewegung des elektrisch oder hydraulisch angetriebenen Motors (39a, b) beim elektrisch angetriebenen Motor über Zahnräder (49, 50) oder beim hydraulisch angetriebenen Motor direkt auf den zugehörigen Flügel (13, F1-F6) übertragen wird.
8. Vertikale Windkraftanlage nach Anspruch 7, dadurch gekennzeichnet, dass der elektrisch oder hydraulisch angetriebene Motor (39a, b) mit der Motorachse in der Ringebene liegend angeordnet ist, und dass die Drehbewegung beim elektrischen Antrieb zwischen den Zahnrädern (49, 50) mittels eines Zahnriemens übertragen wird.
9. Vertikale Windkraftanlage nach Anspruch 7, dadurch gekennzeichnet, dass der elektrisch oder hydraulisch angetriebene Motor (39a, b) mit der Motorachse senkrecht zur Ringebene angeordnet ist, und dass zur Übertragung der Drehbewegung beim elektrischen Antrieb ein Winkelgetriebe (52) zwischengeschaltet ist.
10. Vertikale Windkraftanlage nach Anspruch 1, dadurch gekennzeichnet, dass die unterste der Zellen (Z1, Z2) einen vorbestimmten Abstand zum Boden aufweist, und dass die Hauptwelle (20) zwischen der untersten Zelle (Z1) und dem in Bodennähe angeordneten Maschinenhaus und an ihren Enden drehbar gelagert ist.
11. Vertikale Windkraftanlage nach Anspruch 10, dadurch gekennzeichnet, dass die Hauptwelle (20) aus mehreren in axialer Richtung hintereinander angeordneten Abschnitten (41 , 43, 45) zusammengesetzt ist, und dass die Abschnitte (41 , 43, 45) untereinander über Flansche verbunden sind.
12. Vertikale Windkraftanlage nach Anspruch 11 , dadurch gekennzeichnet, dass die Hauptwelle einen unteren zylindrischen Abschnitt (45), einen mittleren, sich nach oben konisch erweiternden Abschnitt (43) und einen oberen zylindrischen Abschnitt (41 ) umfasst, der einen grösseren Aussendurchmesser aufweist als der untere zylindrische Abschnitt (45).
13. Vertikale Windkraftanlage nach Anspruch 12, dadurch gekennzeichnet, dass auf dem unteren zylindrischen Abschnitt (45) der Rotor (22) eines elektrische Energie erzeugenden Generators drehfest angebracht ist.
14. Vertikale Windkraftanlage nach Anspruch 10, dadurch gekennzeichnet, dass zur drehbaren Lagerung der Hauptwelle (20) am unteren Ende der Hauptwelle (20) ein Lagerzapfen (46) und am oberen Ende eine Stützrollenlaufbahn (40) vorgesehen ist.
15. Vertikale Windkraftanlage nach Anspruch 10, dadurch gekennzeichnet, dass das obere Lager (23, 40) der Hauptwelle (20), das als Stützrollenlager ausgebildet ist und die vertikalen oberen Reaktionswindkräfte der Hauptwelle aufnimmt, durch ein sich schräg nach unten erweiterndes Stützgestell (24, 25) auf ausserhalb der Maschinenachse (MA) angeordneten Fundamenten (29) abgestützt ist, wobei die unteren Axial- und Radiallager der Hauptwelle (20) im Generatorgehäuse untergebracht sind, welches innerhalb des im Stützgestell (24, 25) hängend angeordneten Maschinenhauses (26) an den oberen Streben befestigt ist.
16. Vertikale Windkraftanlage nach Anspruch 1, dadurch gekennzeichnet, dass an jeder der Zellen (Z1 , Z2) oben und unten jeweils eine Windmesseinrichtung (W1 - W3) zur Messung von Windrichtung und Windgeschwindigkeit angeordnet ist, welche vorzugsweise ein Ultraschall-Anemometer umfasst.
17. Vertikale Windkraftanlage nach Anspruch 1, dadurch gekennzeichnet, dass an jeder der Zellen (Z1 , Z2) oben und/ oder unten beim Flügellager eine Kraftmesseinrichtung ( K1 - K3) für radiale und tangentiale Kraftrichtung vorgesehen ist.
18. Verfahren zum Betrieb einer vertikalen Windkraftanlage (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Drehstellung der einzelnen Flügel (13, F1-F6) der Windkraftanlage um ihre Drehachse (12) unabhängig voneinander nach Massgabe von Messwerten der Windgeschwindigkeit ( vw , der Windrichtung, der Drehzahl der Windkraftanlage (10) und der Position der Flügel auf ihrem Umlauf um die Maschinenachse ( MA) aktiv gesteuert wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass für den Flügelwinkel, der die Auslenkung eines Flügels (13, F1-F6) aus einer Grundposition tangential zum Umlaufkreis um die Maschinenachse (MA) beschreibt, virtuelle Kurvenscheiben bereitgestellt werden, welche jeweils den Verlauf des Flügelwinkels über der Position des Flügels (13, F1 -F6) auf dem Umlaufkreis festlegen, und dass die aktive Steuerung der einzelnen Flügel (13, F1-F6) nach Massgabe der virtuellen Kurvenscheiben erfolgt.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass zur Auswahl der für die aktive Steuerung der Flügel (13, F1-F6) verwendeten virtuellen Kurvenscheiben fortlaufend die Schnelllaufzahl λder Windkraftanlage (10) bestimmt wird, wobei die Schnelllaufzahl das Verhältnis der Umfangsgeschwindigkeit der Flügel (13, F1 - F6) zur Windgeschwindigkeit ( vw angibt, und dass nach Massgabe der bestimmten Schnelllaufzahl λ die für die aktive Steuerung der Flügel (13, F1 -F6) verwendete virtuelle Kurvenscheibe ausgewählt bzw. zwischen verschiedenen virtuellen Kurvenscheiben gewechselt wird.
21. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die virtuellen Kurvenscheiben auf eine Nullposition der Windkraftanlage (10) bezogen sind, und dass die Nullposition von der Windrichtung abhängig ist.
22. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass für jede der Zellen (Z1 , Z2) eine eigene, von der Höhe über dem Boden abhängige Windgeschwindigkeit ( vw bestimmt wird, und dass die Drehstellung der einzelnen Flügel (13, F1 -F6) der Zelle um ihre Drehachse (12) nach Massgabe der für die Zelle ermittelten Windgeschwindigkeit ( vw aktiv gesteuert wird.
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000039_0001
PCT/EP2015/059392 2014-06-06 2015-04-29 Vertikale windkraftanlage sowie verfahren zum betrieb einer solchen anlage WO2015185299A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580030216.5A CN107041149B (zh) 2014-06-06 2015-04-29 竖向风电设备以及操作这种设备的方法
EP21177639.8A EP3892852B1 (de) 2014-06-06 2015-04-29 Vertikale windkraftanlage sowie verfahren zum betrieb einer solchen anlage
EP21177636.4A EP3896278B1 (de) 2014-06-06 2015-04-29 Vertikale windkraftanlage sowie verfahren zum betrieb einer solchen anlage
EP15720327.4A EP3152437B1 (de) 2014-06-06 2015-04-29 Vertikale windkraftanlage sowie verfahren zum betrieb einer solchen anlage
US15/316,650 US10132293B2 (en) 2014-06-06 2015-04-29 Vertical axis wind turbine and method for operating such a turbine
US16/165,605 US10871143B2 (en) 2014-06-06 2018-10-19 Vertical axis wind turbine and method for operating such a turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00868/14A CH709743A2 (de) 2014-06-06 2014-06-06 Vertikale Windkraftanlage sowie Verfahren zum Betrieb einer solchen Anlage.
CH00868/14 2014-06-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/316,650 A-371-Of-International US10132293B2 (en) 2014-06-06 2015-04-29 Vertical axis wind turbine and method for operating such a turbine
US16/165,605 Continuation US10871143B2 (en) 2014-06-06 2018-10-19 Vertical axis wind turbine and method for operating such a turbine

Publications (1)

Publication Number Publication Date
WO2015185299A1 true WO2015185299A1 (de) 2015-12-10

Family

ID=53051820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/059392 WO2015185299A1 (de) 2014-06-06 2015-04-29 Vertikale windkraftanlage sowie verfahren zum betrieb einer solchen anlage

Country Status (5)

Country Link
US (2) US10132293B2 (de)
EP (3) EP3896278B1 (de)
CN (1) CN107041149B (de)
CH (1) CH709743A2 (de)
WO (1) WO2015185299A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019002549A1 (de) 2017-06-30 2019-01-03 Agile Wind Power Ag Vertikalwindkraftanlage mit rotorblatttragendem pitchmotor sowie bausatz für selbige und verfahren für ihren betrieb
WO2019002923A1 (de) 2017-06-30 2019-01-03 Agile Wind Power Ag Vertikalwindkraftanlage mit koaxialem pitchmotor sowie bausatz für selbige und verfahren für ihren betrieb
WO2019002922A1 (de) 2017-06-30 2019-01-03 Agile Wind Power Ag Vertikalwindkraftanlage mit geregeltem schnelllaufverhalten sowie bausatz für selbige und verfahren für ihren betrieb

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054107B2 (en) * 2016-06-06 2018-08-21 Bowie State University Omni-directional shaftless wind turbine
US10804768B2 (en) 2016-12-15 2020-10-13 West Virginia University Wind turbine having releasable vanes
US10648882B2 (en) * 2018-01-31 2020-05-12 Government Of The United States, As Represented By The Secretary Of The Air Force Wind tunnel wake generator
CN110457815B (zh) * 2019-08-09 2022-07-12 吉林大学 基于保角变换的液力变矩器三维叶型改型设计的方法
US11965481B2 (en) * 2019-11-26 2024-04-23 Cafe24 Corp. Wind power system
US12021404B2 (en) * 2021-09-23 2024-06-25 Der-X Energy Llc Mobile generator charging system and method
NO347701B1 (en) * 2022-03-15 2024-02-26 Norestraen Ind As Vertical axis wind turbine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2000556A (en) * 1977-06-20 1979-01-10 Lagarde J De Flexible blades and windmills having a vertical axis and comprising said blades
US4410806A (en) * 1981-09-03 1983-10-18 Brulle Robert V Control system for a vertical axis windmill
US4530642A (en) * 1983-11-17 1985-07-23 Yang Wei H Windmill mechanism
WO1994025750A1 (en) * 1993-05-03 1994-11-10 Nonox Engineering Ab Windmill
WO2007143918A1 (fr) * 2006-06-07 2007-12-21 Qiang Yan Système de commande automatique d'angle de rotation de pale pour un générateur éolien à axe vertical
CN201943888U (zh) * 2010-06-12 2011-08-24 张晓鹤 一种风帆式发电机
WO2014056875A1 (fr) * 2012-10-10 2014-04-17 Pierre Armand Thomas Éolienne à axe vertical

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038467A (en) * 1934-08-30 1936-04-21 Zanoski Leon Windmill
US3902072A (en) 1974-02-19 1975-08-26 Paul J Quinn Wind turbine
US4494007A (en) 1982-09-02 1985-01-15 Gaston Manufacturing, Inc. Wind machine
US4609827A (en) 1984-10-09 1986-09-02 Nepple Richard E Synchro-vane vertical axis wind powered generator
US4618312A (en) * 1985-01-28 1986-10-21 Williams Robert A Wind operated apparatus
US4832569A (en) * 1986-04-11 1989-05-23 Eirik Samuelsen Governed vane wind turbine
US5503525A (en) * 1992-08-12 1996-04-02 The University Of Melbourne Pitch-regulated vertical access wind turbine
US6379115B1 (en) * 1999-08-02 2002-04-30 Tetsuo Hirai Windmill and windmill control method
CA2403257A1 (en) * 2000-03-21 2001-09-27 Alan John Rogan Wind turbine
US6688842B2 (en) * 2002-06-24 2004-02-10 Bruce E. Boatner Vertical axis wind engine
US6926491B2 (en) * 2003-05-12 2005-08-09 Bernard Migler Vertical axis wind turbine with controlled gybing
US20070243066A1 (en) * 2006-04-17 2007-10-18 Richard Baron Vertical axis wind turbine
US7550865B2 (en) * 2006-06-27 2009-06-23 Jonsson Stanley C Wind turbine having variable pitch airfoils that close when moving against the direction of the wind
US7385302B2 (en) * 2006-06-27 2008-06-10 Jonsson Stanley C Wind turbine having variable pitch airfoils
US7918646B2 (en) 2007-01-22 2011-04-05 Lonestar Inventions LLP High efficiency turbine with variable attack angle foils
US7726934B2 (en) * 2007-02-06 2010-06-01 Preferred Energy, L.L.C. Vertical axis wind turbine
CH700332B1 (de) * 2008-01-04 2010-08-13 Patrick Richter Windkraftanlage.
US8410622B1 (en) * 2008-08-06 2013-04-02 Christopher S. Wallach Vertical axis wind turbine with computer controlled wings
US8004101B2 (en) * 2008-10-11 2011-08-23 Michael Scott Aaron Vertical axis variable geometry wind energy collection system
US20110133460A1 (en) * 2009-11-20 2011-06-09 Cucci Peter J Control system and method for wind power generation plant
GB201006477D0 (en) * 2010-04-19 2010-06-02 Wesby Philip System and method for a vertical axis wind turbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2000556A (en) * 1977-06-20 1979-01-10 Lagarde J De Flexible blades and windmills having a vertical axis and comprising said blades
US4410806A (en) * 1981-09-03 1983-10-18 Brulle Robert V Control system for a vertical axis windmill
US4530642A (en) * 1983-11-17 1985-07-23 Yang Wei H Windmill mechanism
WO1994025750A1 (en) * 1993-05-03 1994-11-10 Nonox Engineering Ab Windmill
WO2007143918A1 (fr) * 2006-06-07 2007-12-21 Qiang Yan Système de commande automatique d'angle de rotation de pale pour un générateur éolien à axe vertical
CN201943888U (zh) * 2010-06-12 2011-08-24 张晓鹤 一种风帆式发电机
WO2014056875A1 (fr) * 2012-10-10 2014-04-17 Pierre Armand Thomas Éolienne à axe vertical

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019002549A1 (de) 2017-06-30 2019-01-03 Agile Wind Power Ag Vertikalwindkraftanlage mit rotorblatttragendem pitchmotor sowie bausatz für selbige und verfahren für ihren betrieb
WO2019002923A1 (de) 2017-06-30 2019-01-03 Agile Wind Power Ag Vertikalwindkraftanlage mit koaxialem pitchmotor sowie bausatz für selbige und verfahren für ihren betrieb
WO2019002922A1 (de) 2017-06-30 2019-01-03 Agile Wind Power Ag Vertikalwindkraftanlage mit geregeltem schnelllaufverhalten sowie bausatz für selbige und verfahren für ihren betrieb
US11434869B2 (en) 2017-06-30 2022-09-06 Agile Wind Power Ag Vertical wind turbine with controlled tip-speed ratio behavior, kit for same, and method for operating same
US11519385B2 (en) 2017-06-30 2022-12-06 Agile Wind Power Ag Vertical wind turbine comprising a coaxial pitch motor, kit for same, and method for operating same
US11519387B2 (en) 2017-06-30 2022-12-06 Agile Wind Power Ag Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same
US20230332574A1 (en) * 2017-06-30 2023-10-19 Agile Wind Power Ag Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same
US11982257B2 (en) 2017-06-30 2024-05-14 Agile Wind Power Ag Vertical wind turbine with controlled tip-speed ratio behavior, kit for same, and method for operating same
US12085059B2 (en) 2017-06-30 2024-09-10 Agile Wind Power Ag Vertical wind turbine comprising a coaxial pitch motor, kit for same, and method for operating same

Also Published As

Publication number Publication date
EP3152437B1 (de) 2021-06-09
EP3892852A1 (de) 2021-10-13
EP3892852C0 (de) 2024-07-10
US10871143B2 (en) 2020-12-22
CH709743A2 (de) 2015-12-15
US10132293B2 (en) 2018-11-20
US20190186461A1 (en) 2019-06-20
CN107041149A (zh) 2017-08-11
EP3892852B1 (de) 2024-07-10
US20170138345A1 (en) 2017-05-18
CN107041149B (zh) 2020-09-18
EP3896278C0 (de) 2024-07-10
EP3896278A1 (de) 2021-10-20
EP3896278B1 (de) 2024-07-10
EP3152437A1 (de) 2017-04-12

Similar Documents

Publication Publication Date Title
EP3152437B1 (de) Vertikale windkraftanlage sowie verfahren zum betrieb einer solchen anlage
DE2506160C3 (de) Windkraftwerk
DE102011056704A1 (de) Modulares rotorblatt und verfahren zum aufbauen einer windturbine
EP1910670A1 (de) Windenergieanlage mit einzelpitcheinrichtungen
DE102008037609A1 (de) Rotorflügel mit mehreren Abschnitten für Windkraftanlagen und Windkraftanlagen mit diesen
EP2235365A2 (de) Windkraftanlage
DE102010031081A1 (de) Windenergieanlage
DE2825061C2 (de) Windrad
EP2914844B1 (de) Verfahren zum betreiben einer windenergieanlage, windenergieanlage und steuerungseinrichtung für eine windenergieanlage
EP4374064A1 (de) Strömungskraftanlage mit schwenkflügeln
EP2389509B1 (de) Stationäre energiegewinnungsanlage mit einer abbremsvorrichtung
DE102013100515A1 (de) Verfahren zum Steuern einer Windenergieanlage oder eines Windparks
EP2677167A2 (de) Pitchantrieb für Windenergieanlage
EP2570655B1 (de) Vorrichtung zum aktiven Verstellen eines Blattes einer (Klein) windenergieanlage
EP3491238B1 (de) Maschinenhaus für eine windenergieanlage sowie verfahren
EP2707597B1 (de) Strömungskraftwerk und verfahren für dessen betrieb
WO2012007111A2 (de) Verfahren und vorrichtung zur bereitstellung eines anstellwinkel-korrektursignals für ein vorbestimmtes rotorblatt einer windkraftanlage
DE102009059668A1 (de) Windenergieanlage und Verfahren zum Steuern einer solchen
EP3242013A1 (de) Windenergieanlage mit einer vorrichtung zum drehen einer gondel der windenergieanlage und verfahren zur montage einer vorrichtung zum drehen einer gondel
DE3713024A1 (de) Stroemungsmaschine zur energiegewinnung
DE102018125659B4 (de) Strömungsmaschine und Verfahren zum Betrieb einer Strömungsmaschine
EP3404256A1 (de) Vorrichtung zur verstellung der rotorblätter einer strömungskraftanlage
DE3918184A1 (de) Windrad
DE202017004995U1 (de) Azimutverstelleinrichtung sowie Turmkopfadapter und Windenergieanlage mit einer solchen Azimutverstelleinrichtung
WO2013149615A1 (de) Windkraftanlage mit zwei rotoren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15720327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15316650

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015720327

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015720327

Country of ref document: EP