WO2015184713A1 - 透反式液晶显示装置及其驱动方法 - Google Patents

透反式液晶显示装置及其驱动方法 Download PDF

Info

Publication number
WO2015184713A1
WO2015184713A1 PCT/CN2014/087900 CN2014087900W WO2015184713A1 WO 2015184713 A1 WO2015184713 A1 WO 2015184713A1 CN 2014087900 W CN2014087900 W CN 2014087900W WO 2015184713 A1 WO2015184713 A1 WO 2015184713A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
pixel electrode
electrode
surface electrode
voltage difference
Prior art date
Application number
PCT/CN2014/087900
Other languages
English (en)
French (fr)
Inventor
谷耀辉
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/443,519 priority Critical patent/US9995984B2/en
Priority to EP14861109.8A priority patent/EP3153918A4/en
Publication of WO2015184713A1 publication Critical patent/WO2015184713A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13731Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective

Definitions

  • Embodiments of the present invention relate to a transflective liquid crystal display device and a driving method thereof.
  • liquid crystal display devices In the field of current flat panel display technology, liquid crystal display devices occupy a leading position with the advantages of small size, low power consumption, and no radiation.
  • liquid crystal display devices can be classified into three types: transmissive, reflective, and transflective.
  • the transflective liquid crystal display device can utilize the internal backlight light and the external ambient light when performing screen display, and has the advantages of good visibility of the transmissive display device and low energy consumption of the reflective display device. It meets the needs of external light (such as outdoor) and insufficient (such as indoor), and has been widely used in portable mobile electronic devices.
  • each pixel unit of the transflective liquid crystal display device includes a transmissive region and a reflective region, and a reflective structure for reflecting light is disposed in the reflective region.
  • the light emitted by the backlight can pass through the transmissive area, and the ambient light enters the inside of the liquid crystal display device, and is reflected by the reflective structure located in the reflective area, so that the user can see the content displayed on the screen.
  • the light emitted from the transmissive region passes through the liquid crystal molecular layer only once, and the light emitted from the reflective region passes through the liquid crystal molecular layer twice.
  • the optical path of the reflective region is twice the optical path of the transmissive region, resulting in The optical path difference causes the phase delay of the light emitted from the transmissive area and the reflective area to be mismatched, which seriously affects the display effect.
  • the solution to the above problem is generally to adopt a double-box thick structure to adjust the thickness of the liquid crystal layer in the transmissive region to twice the reflection region, and to achieve the consistency of the phase retardation amount of the transmissive region and the reflective region.
  • a double-cassette structure it is necessary to prepare an organic insulating layer in the reflective region to raise the liquid crystal layer in the region, and the subsequent rubbing process of forming the alignment layer may become very difficult due to the high and low fluctuation of the surface of the substrate, resulting in a transflective liquid crystal display. The process of the device is more difficult.
  • a transflective liquid crystal display device includes a plurality of pixel units, each of which includes a transmissive area and a reflective area, and the transflective liquid crystal display device package a first substrate and a second substrate disposed opposite to each other, and a liquid crystal layer therebetween, wherein the transmissive liquid crystal display device and the reflective region have the same thickness; the transflective liquid crystal display device further includes: a first surface electrode, a first pixel electrode, a second surface electrode, and a second pixel electrode in the transmissive region, wherein the first surface electrode and the first pixel electrode are located on the first substrate and the liquid crystal layer Between the second surface electrode and the second pixel electrode being located between the second substrate and the liquid crystal layer; a third surface electrode, a reflective layer and a third pixel electrode located in the reflective region, The third surface electrode, the reflective layer and the third pixel electrode are located between the first substrate and the liquid crystal layer.
  • the first pixel electrode, the second pixel electrode, and the third pixel electrode are strip electrodes.
  • the first pixel electrode is located between the first surface electrode and the liquid crystal layer
  • the second pixel electrode is located between the second surface electrode and the liquid crystal layer
  • the reflection The layer is located between the third surface electrode and the liquid crystal layer
  • the third pixel electrode is located between the reflective layer and the liquid crystal layer.
  • the first face electrode and the third face electrode are in communication with each other.
  • the first surface electrode and the third surface electrode are made of the same material and formed on the same film layer.
  • the first surface electrode is electrically connected to the second surface electrode, and the first pixel electrode is electrically connected to the second pixel electrode.
  • the third surface electrode is electrically connected to the first surface electrode, and the third pixel electrode is electrically connected to the first pixel electrode.
  • the liquid crystal within the liquid crystal layer is a blue phase liquid crystal.
  • first face electrode and the first pixel electrode are configured to form a first horizontal electric field
  • second face electrode and the second pixel electrode are configured to form a second horizontal electric field
  • third face The electrode and the third pixel electrode are configured to form a third horizontal electric field.
  • a method for driving the transflective liquid crystal display device comprising: the first surface electrode, the first pixel electrode, the second surface electrode, the Applying a driving voltage to the second pixel electrode, the third surface electrode, and the third pixel electrode to generate a first voltage difference between the first surface electrode and the first pixel electrode, the second surface electrode Generating a second voltage difference with the second pixel electrode, generating a third voltage difference between the third surface electrode and the third pixel electrode, and controlling the first voltage difference and the second voltage
  • the sum of the differences is equal to The second voltage difference is twice, the phase retardation amount of the transmissive region and the reflective region is the same, or the sum of the first voltage difference and the second voltage difference is controlled to be the third voltage
  • the difference of the difference of the difference is within the allowable range of the error of the voltage difference, so that the difference of the phase delay amounts of the transmission region and the reflection region is within the error tolerance of the phase delay amount.
  • controlling the sum of the first voltage difference and the second voltage difference to be two times the third voltage difference comprises: controlling the first voltage difference, the second voltage difference, and The third voltage difference is the same.
  • FIG. 1 is a structural diagram of a transflective liquid crystal display device without a voltage applied according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a transflective liquid crystal display device when a voltage is applied according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of another transflective liquid crystal display device according to an embodiment of the present invention when no voltage is applied;
  • FIG. 4 is a structural diagram of another transflective liquid crystal display device according to an embodiment of the present invention when a voltage is applied.
  • Embodiments of the present invention provide a transflective liquid crystal display device including a plurality of pixel units. As shown in FIG. 1, each pixel unit includes a transmissive area A and a reflective area B.
  • the transflective liquid crystal display device includes a first substrate 102 and a second substrate 114 disposed opposite to each other, and a liquid crystal layer 110 interposed therebetween.
  • the thickness of the liquid crystal layer in the transmissive area A and the reflective area B is equal.
  • the transflective liquid crystal display device further includes: a first surface electrode 103, a first pixel electrode 107, a second surface electrode 113, and a second pixel electrode 112 located in the transmissive area A, wherein the first surface electrode 103 and the first surface
  • the pixel electrode 107 is located between the first substrate 102 and the liquid crystal layer 110
  • the second surface electrode 113 and the second pixel electrode 112 are located between the second substrate 114 and the liquid crystal layer 110
  • the third surface electrode 104 located in the reflective region B,
  • the reflective layer 105 and the third pixel electrode 108 wherein the third surface electrode 104, the reflective layer 105, and the third pixel electrode 108 are located between the first substrate 102 and the liquid crystal layer 110.
  • the thickness of the liquid crystal layer of the transmissive area A and the reflective area B is the same; the side of the liquid crystal layer of the transmissive area A close to the first substrate 102 has the first surface electrode 103 and the first
  • the pixel electrode 107 which constitutes an ADS (Advanced Dimension Switch) mode, can form a horizontal electric field parallel to the first substrate 102, and the electric field controls the liquid crystal layer of the transmissive area A to be close to the liquid crystal of the first substrate 102.
  • the liquid crystal layer of the transmissive region A has a second surface electrode 113 and a second pixel electrode 112 on a side close to the second substrate 114, which also constitute an ADS mode, and can form a horizontal electric field parallel to the second substrate 114.
  • the electric field controls the liquid crystal layer of the transmissive region A to rotate toward the liquid crystal molecules of the second substrate 114; the side of the liquid crystal layer of the reflective region B adjacent to the first substrate 102 has the third surface electrode 104 and the third pixel electrode 108, which also constitute The ADS mode forms a horizontal electric field parallel to the first substrate 104, which controls the rotation of the liquid crystal molecules of the reflective region B.
  • the transmission area can be made by controlling the voltage applied to each of the surface electrodes and the pixel electrodes
  • the total birefringence difference of A is twice that of the reflection area B. Since the light passes through the transmission area A once and passes through the reflection area B twice, the optical path of the transmission area A is half of the reflection area B, so that the phase delay amount of the transmission area A is the same as that of the reflection area B, which satisfies the requirement for display effect. .
  • the first substrate and/or the second substrate in the reflective region are avoided in order to make the transmissive region and the reflective region have the same phase retardation.
  • a process step of forming an organic insulating layer having a certain thickness to reduce the thickness of the liquid crystal layer in the reflective region, and the surface layer of the first substrate 102 and the second substrate 114 of the transflective liquid crystal display device provided in the embodiment It is very flat, thereby avoiding the problem that the surface of the first substrate and/or the second substrate caused by the presence of the organic insulating layer is uneven, and the difficulty of the rubbing process of the alignment layer is increased, thereby ensuring the phase retardation amount of the transmissive area A and the reflective area B. Under the same premise, the process difficulty of the transflective liquid crystal display device is greatly reduced, and the process efficiency is improved.
  • the first pixel electrode 107, the second pixel electrode 112, and the third pixel electrode 108 are strip electrodes to form an ADS mode with the first surface electrode 103, the second surface electrode 113, and the third surface electrode 104, respectively. .
  • the size and thickness of the first pixel electrode 107, the second pixel electrode 112, and the third pixel electrode 108 are the same as each other, so that the electrode structure of the ADS mode formed by the first pixel electrode 107 and the first surface electrode 103, and the second The electrode structure of the ADS mode formed by the pixel electrode 112 and the second surface electrode 113 and the electrode structure of the ADS mode constituted by the third pixel electrode 108 and the third surface electrode 104 are identical to each other to provide a structure for simplifying the driving method of the liquid crystal display device. On the basis.
  • the first pixel electrode 107 is located between the first surface electrode 103 and the liquid crystal layer 110
  • the second pixel electrode 112 is located between the second surface electrode 113 and the liquid crystal layer 110
  • the reflective layer 105 is located at the third surface electrode 104.
  • the third pixel electrode 108 is located between the reflective layer 108 and the liquid crystal layer 110 between the liquid crystal layer 110 and the liquid crystal layer 110.
  • the specific structure of the transflective liquid crystal display device is described by taking the relative positional relationship of each of the pixel electrodes, the surface electrodes, and the reflective layer as an example, and other embodiments of the present invention are described.
  • the relative positional relationship between the first pixel electrode 107 and the first surface electrode 103, the relative positional relationship between the second pixel electrode 112 and the second surface electrode 113, and the third surface electrode 104, the reflective layer 105 and the third pixel electrode 108 There may be other variations in the relative positional relationship.
  • the reflective layer 105 may be located between the third surface electrode 104 and the first substrate 102 or between the third pixel electrode 108 and the liquid crystal layer 110.
  • the material for forming each of the pixel electrodes and the surface electrodes is not limited. Specifically, an appropriate material may be selected according to actual conditions, for example, ITO (Indium tin oxide), IZO (Indium zinc oxide), and indium oxide. Transparent conductive material such as zinc) to enhance the electrical conductivity of each pixel electrode and each surface electrode.
  • the first face electrode 103 and the third face electrode 104 may be in communication with each other.
  • the materials of the first surface electrode 103 and the third surface electrode 104 are the same and are formed on the same film layer, that is, the first surface electrode 103 and the third surface electrode 104 are formed under the same process step, and are located on the same film. In the layer, the two are formed as a single surface electrode. This structure enables uniform control of both the first surface electrode 103 and the third surface electrode 104, simplifying the driving process of the liquid crystal display device.
  • the first surface electrode 103 and the second surface electrode 113 are electrically connected to uniformly drive the two; the first pixel electrode 107 It is electrically connected to the second pixel electrode 112 to realize uniform application of voltage or no voltage application or switching voltage.
  • the first surface electrode 103 and the second surface electrode 113 are electrically connected, and the first pixel electrode 107 and the second pixel electrode 112 are electrically connected to each other.
  • the first surface electrode 103 and the second surface electrode 113 are connected.
  • the driving leads of the first pixel electrode 107 and the second pixel electrode 112 are formed to the edges of the first substrate 102 and the second substrate 114, and then respectively connected by a COF (Chip On Film) having a double pin.
  • the third surface electrode 104 can be electrically connected to the first surface electrode 103, that is, the first surface electrode 103, the second surface electrode 113, and the third surface electrode 104 are connected to each other; the third pixel electrode 108 can be connected to the first One pixel electrode 107 is electrically connected, that is, the first pixel electrode 107, the second pixel electrode 108, and the third pixel electrode 108 are connected to each other, thereby realizing the pair of the first surface electrode 103, the second surface electrode 113, and the third surface electrode 104.
  • the unified control of the first pixel electrode 107, the second pixel electrode 108, and the third pixel electrode 108 further simplifies the driving design of the transflective liquid crystal display device provided by the embodiment.
  • the reflective layer 105 located in the reflective region B is formed of a material having a higher reflection coefficient, such as a metal such as aluminum or silver or a metal alloy or a metal oxide material.
  • the transflective liquid crystal display device may further include: formed between the first surface electrode 103 and the first pixel electrode 107, between the second surface electrode 113 and the second pixel electrode 112, and the third surface electrode 104 An insulating layer 106 between the third pixel electrode 108 and the third pixel electrode 108.
  • the material for forming the insulating layer 106 is, for example, a transparent insulating material such as a resin.
  • the insulating layer 106 fills a space between the first surface electrode 103 and the first pixel electrode 107, between the second surface electrode 113 and the second pixel electrode 112, and between the third surface electrode 104 and the third pixel electrode 108.
  • the first surface electrode 103 and the first pixel electrode 107, the second surface electrode 113 and the second pixel electrode 112, and the third surface electrode 104 and the third pixel electrode 108 constitute an electric field of an ADS mode having good electrical properties.
  • the transflective liquid crystal display device may further include: a first alignment layer 109 and a second alignment layer 111 located on both sides of the liquid crystal layer 110.
  • the first alignment layer 109 is located on a side of the liquid crystal layer 110 adjacent to the first substrate 102
  • the second alignment layer 111 is located on a side of the liquid crystal layer 110 adjacent to the second substrate 114.
  • the orientation direction and the second orientation of the first alignment layer 109 are The orientation directions of the layers 111 are perpendicular to each other to initially orient the liquid crystal molecules.
  • the transflective liquid crystal display device may further include: a first polarizer 101 superimposed on the first substrate 102, and a second polarizer 115 superposed on the second substrate 114, the first polarizer
  • the direction of the polarization axes of the second polarizer 115 and the second polarizer 115 are perpendicular to each other, so that the light enters the inside of the liquid crystal display device through the first polarizer 101 and becomes linearly polarized light, and then exits through the second polarizer 115 to become circularly polarized light.
  • the liquid crystal molecules in the liquid crystal layer 110 may be blue phase liquid crystals, and in this case, it is not necessary to form an alignment layer on both sides of the liquid crystal layer 110.
  • the transflective liquid crystal display device using blue phase liquid crystal does not have the first alignment layer 109 and the second alignment layer 111 shown in FIG. 1, and the structures of the other portions are the same as those in FIG. The corresponding parts have the same structure and will not be described in detail here.
  • the response time of the blue phase liquid crystal is sub-millisecond, which makes the transflective liquid crystal display device have a very fast response speed; the blue phase liquid crystal is optically isotropic, so that no orientation layer is required for orientation, thereby The fabrication process of the liquid crystal display device is further simplified; and since the blue phase liquid crystal is optically isotropic in the dark field, the liquid crystal display device has very good wide viewing angle performance and is very symmetrical.
  • the first substrate 102 of the transflective liquid crystal display device is an array substrate
  • the second substrate 114 is a color filter substrate
  • the first substrate 102 is a color filter substrate
  • the second substrate is an array substrate. board.
  • the array substrate includes, for example, a plurality of data lines along a first direction and a plurality of gate lines along a second direction, the first direction and the second direction are perpendicular to each other, and the data lines and the gate lines are staggered into a grid structure.
  • a thin film transistor is disposed at an intersection of the plurality of data lines and the plurality of gate lines, the gate of the thin film transistor is connected to the gate line, and the source is The data lines are connected, and the drain is connected to the pixel electrode in the pixel unit in which it is located, and is used to control the opening and closing of the pixel unit in which it is located.
  • the structure of the color film substrate includes, for example, a black matrix having a grid shape, and the grid defined by the black matrix corresponds to the grid formed by the data lines on the array substrate and the grid lines, and is used to block the array substrate.
  • Lead wires such as thin film transistors, gate lines, and data lines.
  • Each of the grids defined by the black matrix is filled with color resists, and the color resists are in one-to-one correspondence with the pixel electrodes on the array substrate.
  • the color resist is, for example, at least one of a red color resist, a blue color resist, and a green color resist, for causing light passing through the liquid crystal layer 110 of the liquid crystal display device to pass through the color resist to display a different color.
  • the embodiment of the present invention further provides a driving method of a transflective liquid crystal display device, which is used in the transflective liquid crystal display device described above, the driving method includes: first surface electrode 103, first pixel A driving voltage is applied to the electrode 107, the second surface electrode 113, the second pixel electrode 112, the third surface electrode 104, and the third pixel electrode 108 to generate a first voltage difference between the first surface electrode 103 and the first pixel electrode 107.
  • a second voltage difference is generated between the second surface electrode 113 and the second pixel electrode 112, a third voltage difference is generated between the third surface electrode 104 and the third pixel electrode 108, and the first voltage difference and the second voltage difference are controlled.
  • the phase delay amount of the transmissive area A and the reflection area B is the same, or the difference between the sum of the first voltage difference and the second voltage difference and the third voltage difference is controlled at Within the allowable range of the error of the voltage difference, the difference in the phase delay amounts of the transmissive area A and the reflective area B is within the error tolerance of the phase delay amount.
  • the first voltage difference, the second voltage difference, and the third voltage difference respectively rotate the liquid crystal molecules to generate different birefringence differences, and the magnitude of the voltage difference is linear with the birefringence difference. Since the sum of the control first voltage difference and the second voltage difference is equal to twice or approximately twice the third voltage difference, the birefringence difference of the transmission region A is twice or approximately two of the birefringence difference of the reflection region B.
  • the path of the light propagating in the transmissive area A is: from the first substrate 102 into the liquid crystal display device, through the liquid crystal layer 110, and from the second substrate 114, the path of the light propagating in the reflective area B is: It is incident from the second substrate 114, penetrates the liquid crystal layer 110, is reflected by the reflective layer 105, and penetrates again.
  • the liquid crystal layer 110 is emitted from the second substrate 114, so the optical path of the light in the transmissive area A is twice the optical path in the reflective area B (as shown in FIG. 2); the difference in the phase retardation is equal to the birefringence difference.
  • the product of the optical path and thus the phase retardation of the transmissive area A and the reflective area B are the same or approximately the same, improving the display effect.
  • the film layers formed on the first substrate 104 and the second substrate 114 (specifically, the film layer that passes through the light propagation process, such as the insulating layer 106, the first surface electrode 103, and the first pixel)
  • the thickness of the electrode 107, the first alignment layer 109, the second alignment layer 111, the second pixel electrode 112, the second surface electrode 113, and the third pixel electrode 108) is extremely small with respect to the thickness of the liquid crystal layer 110, and thus The distance of light propagation in the film layer on the substrate is negligible.
  • the optical path of the light in the transmission region A mentioned in this embodiment can be approximated as the thickness of the liquid crystal layer 110, and the light is reflected in the reflection region B.
  • the process can be approximated as twice the thickness of the liquid crystal layer 110.
  • the following is for controlling the sum of the first voltage difference and the second voltage difference to be equal to twice the third voltage difference, so that the phase delay amounts of the transmissive area A and the reflection area B are the same, and controlling the sum of the first voltage difference and the second voltage difference
  • the difference between the two times the difference of the third voltage difference is within the allowable range of the error of the voltage difference, and the difference between the phase delay amounts of the transmission area A and the reflection area B is within the error tolerance range of the phase delay amount, respectively.
  • the first voltage difference, the second voltage difference, and the third voltage difference may be controlled to be the same, thereby
  • the electric field intensity and distribution around the pixel electrode (the first pixel electrode 107, the second pixel electrode 112, and the third pixel electrode 108) are uniform, and the liquid crystal rotation degree and the birefringence difference caused by the Kerr effect are the same, as shown in FIG. (For a transflective liquid crystal display device using a blue phase liquid crystal, the electric field intensity and distribution around the pixel electrode, the degree of liquid crystal rotation, and the birefringence difference are also uniform when driven by the above method, as shown in FIG. 4).
  • the difference of the liquid crystal birefringence caused by each pixel electrode be ⁇ n
  • the thickness of the liquid crystal layer affected by each pixel electrode is d
  • the phase retardation amount is ⁇
  • ⁇ n ⁇ d
  • the driving voltages of the first surface electrode 103 and the second surface electrode 113 may be the same, and the driving voltages of the first pixel electrode 107 and the second pixel electrode 112 are the same, such that the first voltage difference is the same as the second voltage difference; Structurally, the first surface electrode 103 and the second surface electrode 113 can be connected, voltage control is uniformly applied, and the first pixel electrode 107 and the second pixel electrode 112 are connected to each other. Voltage control is added to facilitate the drive control of the electrode and reduce the difficulty of driving design.
  • the driving voltages of the first surface electrode 103 and the third surface electrode 104 may be the same, and the driving voltages of the first pixel electrode 107 and the third pixel electrode 108 are the same, so that the third voltage difference is the same as the first voltage difference.
  • the first, second, and third voltage differences are the same; structurally, the first surface electrode 103, the second surface electrode 113, and the third surface electrode 104 are connected, and voltage control is uniformly applied to the first pixel electrode. 107.
  • the second pixel electrode 112 and the third pixel electrode 108 are connected, and voltage control is uniformly applied, thereby further facilitating driving control of the electrode and reducing the difficulty of driving design.
  • an electric field of the ADS mode is formed in the reflection area B, such that the first surface electrode 103 and the second surface electrode 104 of the transmissive area A are reflected and reflected.
  • the third surface electrode 104 of the region B is uniformly controlled, and the first pixel electrode 107 and the second pixel electrode 112 of the transmission region A and the third pixel electrode 108 of the reflection region B are collectively controlled to realize the transmission region A and the reflection.
  • the driving method controls the driving voltages of the transmissive region and the reflective region, respectively, so that the transflective liquid crystal display device having the same transmissive region and the reflective region liquid crystal layer has the same phase retardation amount.
  • the driving method has the advantage that the drive design is simpler.
  • the first surface electrode 103 and the third surface electrode 108 are formed, a whole piece of communicating electrodes may be directly formed, that is, the first surface electrode 103 and the third surface electrode 108 are formed in an integrated structure, thereby saving the pair.
  • the step of patterning the electrode layers to form the first face electrode 103 and the third face electrode 108 further simplifies the fabrication process.
  • the first voltage difference and the second voltage may be controlled.
  • the difference is the same, and the difference between the first voltage difference and the third voltage difference is controlled within an error tolerance range of the voltage difference.
  • the difference between the third voltage difference and the first voltage difference (second voltage difference) is extremely small.
  • the difference in phase retardation between the transmissive area A and the reflective area B is extremely small, approximately equal, and the adverse effect on the display effect is extremely small, which is visually imperceptible to the user.
  • the error allowable range of the phase delay amount refers to a specific range determined according to the degree of influence of the difference in the phase delay amount of the transmissive area A and the reflection area B on the display effect, in which the transmission is transmitted.
  • the light transmittance of the area A and the reflection area B is the same or almost the same,
  • the relationship between the transmittance of the transmissive area A and the reflection area B as a function of the voltage difference is measured in advance, and the relationship between the transmittance of the transmissive area A and the reflection area B as a function of the voltage difference is within the allowable range of the error of the phase delay amount.
  • the curves coincide or almost coincide, and the display effect of the device is the same as the display effect when the phase retardation amounts of the transmissive area A and the reflection area B are the same.
  • the error allowable range of the voltage difference means one of the difference between the sum of the first voltage difference and the second voltage difference and the second voltage difference corresponding to the error allowable range of the phase delay amount determined above.
  • the range when the difference between the sum of the first voltage difference and the second voltage difference and the second voltage difference is controlled within the range, the phase delay amount of the transmission area A and the reflection area B is approximately the same.
  • a scheme for driving the liquid crystal display device within a tolerance range of the voltage difference by controlling the difference between the first voltage difference and the second voltage difference and controlling the difference between the first voltage difference and the third voltage difference in implementation, The driving voltages of the first surface electrode 103 and the second surface electrode 113 are the same, and the driving voltages of the first pixel electrode 107 and the second pixel electrode 112 are the same, so that the first voltage difference is the same as the second voltage difference; structurally, The first surface electrode 103 and the second surface electrode 113 can be connected, voltage control is uniformly applied, the first pixel electrode 107 and the second pixel electrode 112 are connected, and voltage control is uniformly applied, thereby facilitating driving control of the electrode and reducing the driving design. Difficulty.
  • the driving voltages of the first surface electrode 103 (second surface electrode 113) and the third surface electrode 104 may be controlled to be the same, and the driving voltages of the first pixel electrode 107 (second pixel electrode 112) and the third pixel electrode 108 may be controlled.
  • the difference is within the allowable range of the error of the voltage difference; structurally, the first surface electrode 103, the second surface electrode 113, and the third surface electrode 104 may be connected to uniformly apply voltage control, and the first pixel electrode 107 and the first The two pixel electrodes 112 are connected, the voltage control is uniformly applied, and the voltage is separately applied to the third pixel electrode 108, thereby further increasing the third pixel electrode on the basis of further facilitating the driving control of the electrode and reducing the driving design difficulty.
  • the first surface electrode 103 and the third surface electrode 108 are formed, a whole piece of communicating electrodes may be directly formed, that is, the first surface electrode 103 and the third surface electrode 108 are formed in an integrated structure, thereby saving the pair.
  • the step of patterning the electrode layers to form the first face electrode 103 and the third face electrode 108 further simplifies the fabrication process.
  • Transflective liquid crystal display device and driving method thereof provided by embodiments of the present invention, transmissive area and anti-
  • the liquid crystal layer of the shot region has the same thickness, and both sides of the liquid crystal layer of the transmissive region have one electrode and one pixel electrode, so that an electric field parallel to the substrate is formed on both sides of the liquid crystal layer in the transmissive region, and one side of the liquid crystal layer of the reflective region has one side.
  • the electrode and a pixel electrode form an electric field parallel to the substrate only on one side of the liquid crystal layer of the reflective region.
  • the voltage difference between the pixel electrode and the surface electrode of the transmissive region and the reflective region can be made uniform or substantially uniform, so that the difference in liquid crystal birefringence caused by each electric field is consistent with the thickness of the liquid crystal affected or Basically consistent. Since the transmission region has two electric fields parallel to the substrate, the light passes only through the transmission region once, and the reflection region has an electric field parallel to the substrate, and the light passes through the reflection region twice, so that the phase retardation of the light finally emerging from the transmission region and the reflection region The same or basically the same, the requirements for the display effect are satisfied.
  • the surface of the substrate is relatively flat, thereby avoiding the process of forming an organic insulating layer required for forming a double-cassette structure, thereby avoiding the existence of the organic insulating layer.
  • the unevenness of the surface of the substrate leads to the difficulty of the friction process of the alignment layer, so that the process difficulty of the transflective liquid crystal display device is greatly reduced under the premise that the phase retardation of the transmissive region and the reflective region are the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

公开了一种透反式液晶显示装置及其驱动方法。透反式液晶显示装置包括:位于透射区(A)内的第一面电极(103)、第一像素电极(107)、第二面电极(113)和第二像素电极(112),第一面电极(103)和第一像素电极(107)位于第一基板(102)与液晶层(110)之间,第二面电极(113)和第二像素电极(112)位于第二基板(104)与液晶层(110)之间;位于反射区(B)内的第三面电极(104)、反射层(105)和第三像素电极(108),第三面电极(104)、反射层(105)和第三像素电极(108)位于第一基板(102)与液晶层(110)之间,显示装置的透射区(A)和反射区(B)内的液晶层(110)厚度相等,从而能够在保证透射区(A)与反射区(B)相位延迟量相同的前提下,极大地降低装置的工艺难度。

Description

透反式液晶显示装置及其驱动方法 技术领域
本发明实施例涉及一种透反式液晶显示装置及其驱动方法。
背景技术
在当前的平板显示技术领域中,液晶显示装置以体积小、功耗低、无辐射等优点占据了主导的地位。根据所使用光源(内部光源、外部光源)类型的不同,液晶显示装置可分为透射式、反射式和透反式三种。
其中,透反式液晶显示装置在进行画面显示时,既可以利用内部背光源光线,又可以利用外部环境光线,兼具透射式显示装置画面可见度好和反射式显示装置能耗低的优点,能够满足外界光线充足(如:室外)和不足(如:室内)等情况下的使用需求,在便携式移动电子设备中得到了广泛的应用。
通常透反式液晶显示装置的每一个像素单元包括透射区和反射区两部分,反射区内设置有用于反射光线的反射结构。背光源发出的光线可穿过透射区出射,外界环境光线进入液晶显示装置内部后,会被位于反射区的反射结构反射出屏幕,从而使用户能够看清屏幕上显示的内容。但是,透射区出射的光线只经过一次液晶分子层,反射区出射的光线则两次经过液晶分子层,当液晶层厚度相同时,反射区的光程是透射区光程的两倍,产生了光程差,导致透射区和反射区出射的光线相位延迟不匹配,严重影响显示效果。
已知解决上述问题的办法通常是是采用双盒厚结构,使透射区液晶层厚度调整为反射区的两倍,实现透射区和反射区的相位延迟量的一致性。但是形成双盒厚结构,需要在反射区制备有机绝缘层以垫高该区域液晶层,并且后续形成取向层的摩擦工艺也会由于基板表面高低起伏而变得十分困难,造成透反式液晶显示装置的工艺难度较高。
发明内容
根据本发明的第一方面,提供一种透反式液晶显示装置,包括多个像素单元,每个所述像素单元包括透射区和反射区,所述透反式液晶显示装置包 括相对设置的第一基板和第二基板,及位于二者之间的液晶层,所述透射区和所述反射区内的液晶层厚度相等;所述透反式液晶显示装置还包括:位于所述透射区内的第一面电极、第一像素电极、第二面电极和第二像素电极,所述第一面电极和所述第一像素电极位于所述第一基板与所述液晶层之间,所述第二面电极和所述第二像素电极位于所述第二基板与所述液晶层之间;位于所述反射区内的第三面电极、反射层和第三像素电极,所述第三面电极、所述反射层和所述第三像素电极位于所述第一基板与所述液晶层之间。
在一个示例中,所述第一像素电极、所述第二像素电极和所述第三像素电极为条形电极。
在一个示例中,所述第一像素电极位于所述第一面电极与所述液晶层之间,所述第二像素电极位于所述第二面电极与所述液晶层之间,所述反射层位于所述第三面电极与所述液晶层之间,所述第三像素电极位于所述反射层与所述液晶层之间。
在一个示例中,所述第一面电极和所述第三面电极相互连通。
在一个示例中,所述第一面电极和所述第三面电极的材料相同,且形成于同一膜层。
在一个示例中,所述第一面电极与所述第二面电极电性相连,所述第一像素电极与所述第二像素电极电性相连。
在一个示例中,所述第三面电极与所述第一面电极电性相连,所述第三像素电极与所述第一像素电极电性相连。
在一个示例中,所述液晶层内的液晶为蓝相液晶。
在一个示例中,所述第一面电极和第一像素电极构造为形成一第一水平电场,所述第二面电极和第二像素电极构造为形成一第二水平电场,所述第三面电极和第三像素电极构造为形成一第三水平电场。
根据本发明的第二方面,提供一种用于驱动上述透反式液晶显示装置的方法,包括:向所述第一面电极、所述第一像素电极、所述第二面电极、所述第二像素电极、所述第三面电极和所述第三像素电极施加驱动电压,使所述第一面电极与所述第一像素电极之间产生第一电压差,所述第二面电极与所述第二像素电极之间产生第二电压差,所述第三面电极与所述第三像素电极之间产生第三电压差,并控制所述第一电压差与所述第二电压差之和等于 所述第三电压差的二倍,使所述透射区和所述反射区的相位延迟量相同,或者,控制所述第一电压差与所述第二电压差之和与所述第三电压差的二倍的差值在电压差的误差允许范围内,使所述透射区和所述反射区的相位延迟量的差值在相位延迟量的误差允许范围内。
在一个示例中,所述控制所述第一电压差与所述第二电压差之和为所述第三电压差的二倍包括:控制所述第一电压差、所述第二电压差和所述第三电压差相同。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例所提供的一种透反式液晶显示装置未加电压时的结构图;
图2为本发明实施例所提供的一种透反式液晶显示装置加电压时的结构图;
图3为本发明实施例所提供的另一种透反式液晶显示装置未加电压时的结构图;
图4为本发明实施例所提供的另一种透反式液晶显示装置加电压时的结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数 量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本发明实施例提供了一种透反式液晶显示装置,包括多个像素单元,如图1所示,每个像素单元包括透射区A和反射区B。
上述透反式液晶显示装置包括相对设置的第一基板102和第二基板114,及位于二者之间的液晶层110。
透射区A和反射区B内的液晶层厚度相等。
上述透反式液晶显示装置还包括:位于透射区A内的第一面电极103、第一像素电极107、第二面电极113和第二像素电极112,其中,第一面电极103和第一像素电极107位于第一基板102与液晶层110之间,第二面电极113和第二像素电极112位于第二基板114与液晶层110之间;位于反射区B内的第三面电极104、反射层105和第三像素电极108,其中,第三面电极104、反射层105和第三像素电极108位于第一基板102与液晶层110之间。
本实施例所提供的透反式液晶显示装置中,透射区A与反射区B的液晶层厚度相同;透射区A的液晶层靠近第一基板102的一侧具有第一面电极103和第一像素电极107,二者构成ADS(Advanced Dimension Switch,高级超维场转换)模式,能够形成一平行于第一基板102的水平电场,该电场控制透射区A的液晶层靠近第一基板102的液晶分子旋转;透射区A的液晶层靠近第二基板114的一侧具有第二面电极113和第二像素电极112,二者也构成ADS模式,能形成一平行于第二基板114的水平电场,该电场控制透射区A的液晶层靠近第二基板114的液晶分子旋转;反射区B的液晶层靠近第一基板102的一侧具有第三面电极104和第三像素电极108,二者也构成ADS模式,形成一平行于第一基板104的水平电场,该电场控制反射区B的液晶分子旋转。通过控制施加在各个面电极和像素电极上的电压,能够使透射区 A总的双折射差值为反射区B的2倍。由于光线通过透射区A一次,通过反射区B两次,因此透射区A的光程为反射区B的一半,从而透射区A的相位延迟量与反射区B相同,满足了对显示效果的要求。
由于上述透反式液晶显示装置透射区A与反射区B的液晶层厚度相同,避免了为使透射区与反射区相位延迟相同,而在位于反射区内的第一基板和/或第二基板上形成具有一定厚度的有机绝缘层,以减小反射区液晶层的厚度的工艺步骤,使本实施例所提供的透反式液晶显示装置的第一基板102和第二基板114的表面膜层十分平坦,进而避免了有机绝缘层的存在引起的第一基板和/或第二基板表面高低不平而导致取向层摩擦工艺难度加大的问题,从而在保证透射区A与反射区B相位延迟量相同的前提下,极大地降低了透反式液晶显示装置的工艺难度,提高了工艺效率。
在一个示例中,第一像素电极107、第二像素电极112和第三像素电极108为条形电极,以分别与第一面电极103、第二面电极113和第三面电极104构成ADS模式。例如,第一像素电极107、第二像素电极112和第三像素电极108的大小和厚度彼此相同,从而使第一像素电极107与第一面电极103所构成的ADS模式的电极结构、第二像素电极112与第二面电极113所构成的ADS模式的电极结构和第三像素电极108与第三面电极104所构成的ADS模式的电极结构彼此相同,以为简化液晶显示装置的驱动方法提供结构上的基础。
本实施例中,第一像素电极107位于第一面电极103与液晶层110之间,第二像素电极112位于第二面电极113与液晶层110之间,反射层105位于第三面电极104与液晶层110之间,第三像素电极108位于反射层108与液晶层110之间。
需要说明的是,本实施例仅以上述各像素电极、各面电极和反射层的相对位置关系为例对所提供的透反式液晶显示装置的具体结构进行说明,在本发明的其它实施例中,第一像素电极107与第一面电极103的相对位置关系,第二像素电极112与第二面电极113的相对位置关系,和第三面电极104、反射层105与第三像素电极108的相对位置关系均还可以有其它的变形,如:反射层105还可以位于第三面电极104与第一基板102之间,或者,位于第三像素电极108与液晶层110之间。
本实施例对上述各像素电极、各面电极的形成材料并不限定,具体可根据实际情况选择适当的材料,例如选用ITO(Indium tin oxide,氧化铟锡)、IZO(Indium zinc oxide,氧化铟锌)等透明导电材料,以增强各像素电极、各面电极的导电性能。
在一个示例中,第一面电极103和第三面电极104可相互连通。在另一个示例中,第一面电极103和第三面电极104的材料相同,且形成于同一膜层,即第一面电极103和第三面电极104形成于同一工艺步骤下,位于同一膜层中,二者形成为一体的面电极,这种结构使得在驱动第一面电极103和第三面电极104时,可对二者进行统一的控制,简化液晶显示装置的驱动过程。
为简化对像素电极和面电极的驱动电压的控制过程,在一个示例中,使第一面电极103与第二面电极113电性相连,以对二者的进行统一驱动;第一像素电极107与第二像素电极112电性相连,实现统一施加电压或不施加电压或切换电压。
例如,电性连接第一面电极103与第二面电极113、以及电性连接第一像素电极107与第二像素电极112的方式可为:将连接第一面电极103、第二面电极113、第一像素电极107和第二像素电极112的各驱动引线制作至第一基板102和第二基板114的边缘,然后利用具有双引脚的COF(Chip On Film,覆晶薄膜)分别连接第一基板102和第二基板114上所要连接的电极,从而在结构牢固、外观美观的基础上,实现了第一面电极103与第二面电极113和/或第一像素电极107与第二像素电极112的电连接。
在一个示例中,第三面电极104可与第一面电极103电性相连,即第一面电极103、第二面电极113和第三面电极104彼此连接;第三像素电极108可与第一像素电极107电性相连,即第一像素电极107、第二像素电极108和第三像素电极108彼此连接,从而实现了对第一面电极103、第二面电极113和第三面电极104的统一控制,对第一像素电极107、第二像素电极108和第三像素电极108的统一控制,进一步简化了本实施例所提供的透反式液晶显示装置的驱动设计。
在一个示例中,位于反射区B的反射层105采用反射系数较高的材料形成,如:铝、银等金属或者金属合金或者金属氧化物材料等。
在一个示例中,透反式液晶显示装置还可包括:形成于第一面电极103与第一像素电极107之间、第二面电极113与第二像素电极112之间、第三面电极104与第三像素电极108之间的绝缘层106。绝缘层106的形成材料例如为树脂等透明绝缘材料。绝缘层106布满第一面电极103与第一像素电极107之间、第二面电极113与第二像素电极112之间、第三面电极104与第三像素电极108之间的空间,使第一面电极103与第一像素电极107、第二面电极113与第二像素电极112和第三面电极104与第三像素电极108构成电性能良好的ADS模式的电场。
在一个示例中,在液晶层采用普通的液晶分子形成时,本实施例所提供的透反式液晶显示装置还可包括:位于液晶层110两侧的第一取向层109和第二取向层111。其中,第一取向层109位于液晶层110靠近第一基板102的一侧,第二取向层111位于液晶层110靠近第二基板114的一侧,第一取向层109的取向方向和第二取向层111的取向方向相互垂直,以对液晶分子进行初始定向。
此外,在一个示例中,透反式液晶显示装置还可包括:叠加于第一基板102上的第一偏光片101,和叠加于第二基板114上的第二偏光片115,第一偏光片114与第二偏光片115的偏光轴方向相互垂直,以使光线通过第一偏光片101进入液晶显示装置内部后成为线偏振光,再经第二偏光片115出射后成为圆偏振光。
在一个示例中,液晶层110内的液晶分子可为蓝相液晶,此时,无需在液晶层110的两侧形成定向层。例如,如图3所示,采用蓝相液晶的透反式液晶显示装置中不具有图1中所示出的第一取向层109和第二取向层111,其它各部分的结构与图1中相对应的各部分的结构相同,在此不再一一详述。
相对于普通液晶,蓝相液晶的响应时间在亚毫秒级,这使得透反式液晶显示装置的响应速度非常快;蓝相液晶在光学上是各向同性的,因此无需定向层进行定向,从而进一步简化了液晶显示装置的制作工艺;并且,由于蓝相液晶在暗场时光学上是各向同性的,因而使得液晶显示装置的具有非常好的宽视角性能,并且非常对称。
在一个示例中,透反式液晶显示装置的第一基板102为阵列基板,第二基板114为彩膜基板,或者,第一基板102为彩膜基板,第二基板为阵列基 板。
阵列基板例如包括:具有多条沿第一方向的数据线和多条沿第二方向的栅极线,第一方向与第二方向相互垂直,数据线与栅极线交错成网格状结构,以定义出阵列式排布的多个像素单元区域;在多条数据线与多条栅极线的相交处均至少设置有一薄膜晶体管,该薄膜晶体管的栅极与栅极线相连,源极与数据线相连,漏极与其所在的像素单元内的像素电极相连,用于控制其所在的像素单元的开启与关闭。
彩膜基板的结构例如包括:具有网格状的黑色矩阵,黑色矩阵所确定的网格与阵列基板上的数据线与栅极线所形成的网格一一对应,用于遮挡阵列基板上的薄膜晶体管、栅极线、数据线等引线。黑色矩阵所确定的每个网格内填充有彩色色阻,彩色色阻与阵列基板上的像素电极一一对应。该彩色色阻例如至少包括红色色阻、蓝色色阻和绿色色阻中的任一种,用于使经过液晶显示装置的液晶层110的光线穿透彩色色阻后显示不同的颜色。
本发明实施例还提供了一种透反式液晶显示装置的驱动方法,该驱动方法用于以上所述的透反式液晶显示装置,该驱动方法包括:向第一面电极103、第一像素电极107、第二面电极113、第二像素电极112、第三面电极104和第三像素电极108施加驱动电压,使第一面电极103与第一像素电极107之间产生第一电压差,第二面电极113与第二像素电极112之间产生第二电压差,第三面电极104与第三像素电极108之间产生第三电压差,并控制第一电压差与第二电压差之和等于第三电压差的二倍,使透射区A和反射区B的相位延迟量相同,或者,控制第一电压差与第二电压差之和与第三电压差的二倍的差值在电压差的误差允许范围内,使透射区A和反射区B的相位延迟量的差值在相位延迟量的误差允许范围内。
上述驱动方法中,第一电压差、第二电压差和第三电压差分别使液晶分子旋转,产生不同的双折射差值,电压差的大小与双折射差值成线性关系。由于控制第一电压差与第二电压差之和等于第三电压差的二倍或近似二倍,因此透射区A的双折射差值是反射区B的双折射差值的二倍或近似二倍;又由于光线在透射区A内传播的路径为:从第一基板102进入液晶显示装置内部,穿透液晶层110,从第二基板114出射,光线在反射区B内传播的路径为:从第二基板114入射,穿透液晶层110,被反射层105反射,再次穿透 液晶层110,从第二基板114出射,因此光线在透射区A内的光程为在反射区B内的光程的二倍(如图2所示);根据相位延迟量等于双折射差值与光程的乘积,因此透射区A与反射区B的相位延迟量相同或近似相同,改善了显示效果。
需要说明的是,由于形成于第一基板104和第二基板114上的各膜层(特指光线传播过程中所经过的膜层,如:绝缘层106、第一面电极103、第一像素电极107、第一取向层109、第二取向层111、第二像素电极112、第二面电极113和第三像素电极108)的厚度相对于液晶层110的厚度来说是极小的,因此光线在基板上的膜层中传播的距离可忽略不计,本实施例中所提到的光线在透射区A内的光程可近似认为是液晶层110的厚度,光线在反射区B内的光程可近似认为是液晶层110的厚度的二倍。
下面针对控制第一电压差与第二电压差之和等于第三电压差的二倍,使透射区A和反射区B的相位延迟量相同,和控制第一电压差与第二电压差之和与第三电压差的二倍的差值在电压差的误差允许范围内,使透射区A和反射区B的相位延迟量的差值在相位延迟量的误差允许范围内这两种驱动方式分别提供一个示例。
在一个示例中,若要控制第一电压差与第二电压差之和等于第三电压差的二倍,则可控制第一电压差、第二电压差和第三电压差相同,从而所有的像素电极(第一像素电极107、第二像素电极112和第三像素电极108)周边的电场强度和分布一致,克尔效应所引起的液晶旋转程度和双折射差值一致,如图2所示(对于采用蓝相液晶的透反式液晶显示装置,采用上述方法驱动时每个像素电极周边的电场强度和分布、液晶旋转程度和双折射差值也是一致的,如图4所示)。设每个像素电极导致的液晶双折射差值为Δn,每个像素电极影响到的液晶层厚度为d,相位延迟量为δ,则δ=Δn×d,则透射区A的透射光的相位延迟量为:δT=2Δn×d,反射区B的反射光的相位延迟量为:δF=Δn×2d,因此δT=δF,即透射区A与反射区B的相位延迟量相同。
例如,可使第一面电极103和第二面电极113的驱动电压相同,且第一像素电极107和第二像素电极112的驱动电压相同,从而使得第一电压差与第二电压差相同;在结构上,可将第一面电极103和第二面电极113连接,统一施加电压控制,将第一像素电极107和第二像素电极112连接,统一施 加电压控制,从而方便对电极的驱动控制,降低驱动设计难度。
进一步的,可使第一面电极103和第三面电极104的驱动电压相同,且第一像素电极107和第三像素电极108的驱动电压相同,从而使得第三电压差与第一电压差相同,进而使第一、第二和第三电压差相同;在结构上,可将第一面电极103、第二面电极113和第三面电极104连接,统一施加电压控制,将第一像素电极107、第二像素电极112和第三像素电极108连接,统一施加电压控制,从而达到进一步的方便对电极的驱动控制,降低驱动设计难度的目的。由于透射区A内形成有两个相同的ADS模式的电场,反射区B内形成有一个ADS模式的电场,这种结构使得对透射区A的第一面电极103和第二面电极104与反射区B的第三面电极104进行统一控制,对透射区A的第一像素电极107和第二像素电极112与反射区B的第三像素电极108进行统一控制即可实现使透射区A与反射区B的相位延迟量相同的目的,该驱动方法相对于分别对透射区和反射区的驱动电压进行控制以使透射区与反射区液晶层厚度相同的透反式液晶显示装置的相位延迟量相同的驱动方法,具有驱动设计更为简单的优点。
例如,在形成第一面电极103与第三面电极108时,可直接形成一整片连通的电极即可,即第一面电极103和第三面电极108形成为一体结构,从而节省了对图案化电极层以形成第一面电极103和第三面电极108的步骤,进一步简化了制作工艺。
在一个示例中,若要控制第一电压差与第二电压差之和与第三电压差的二倍的差值在电压差的误差允许范围内,则可控制第一电压差和第二电压差相同,并控制第一电压差与第三电压差的差值在电压差的误差允许范围内,此时,第三电压差与第一电压差(第二电压差)的差值极小,近似相等,则透射区A与反射区B的相位延迟量的差值极小,近似相等,这对显示效果的不良影响是极小的,使用者从视觉上是无法觉察出来的。
需要说明的是,所谓相位延迟量的误差允许范围是指:根据透射区A与反射区B的相位延迟量的差值对显示效果的影响程度所确定的一个特定范围,在该范围内,透射区A与反射区B的光线透射率相同或几乎近似相同, 预先测量出反映透射区A和反射区B的透射率随电压差变化的关系曲线,则在该相位延迟量的误差允许范围内,透射区A与反射区B的透射率随电压差变化的关系曲线重合或几乎重合,装置的显示效果从视觉上和透射区A与反射区B的相位延迟量相同时的显示效果是相同的。
所谓电压差的误差允许范围是指:与上面所确定的相位延迟量的误差允许范围相对应的、第一电压差和第二电压差之和与第三电压差的二倍的差值的一个范围,控制第一电压差和第二电压差之和与第三电压差的二倍的差值在该范围内变化时,透射区A与反射区B的相位延迟量近似相同。
基于可控制第一电压差和第二电压差相同,并控制第一电压差与第三电压差的差值在电压差的误差允许范围内对液晶显示装置进行驱动的方案,实施中,可使第一面电极103和第二面电极113的驱动电压相同,且第一像素电极107和第二像素电极112的驱动电压相同,从而使得第一电压差与第二电压差相同;在结构上,可将第一面电极103和第二面电极113连接,统一施加电压控制,将第一像素电极107和第二像素电极112连接,统一施加电压控制,从而方便对电极的驱动控制,降低驱动设计难度。
进一步的,可控制第一面电极103(第二面电极113)和第三面电极104的驱动电压相同,且第一像素电极107(第二像素电极112)和第三像素电极108的驱动电压的差值在电压差的误差允许范围内;在结构上,可将第一面电极103、第二面电极113和第三面电极104连接,统一施加电压控制,将第一像素电极107和第二像素电极112连接,统一施加电压控制,对第三像素电极108单独施加电压进行控制,从而在进一步的方便对电极的驱动控制,降低驱动设计难度的基础上,增大了对第三像素电极108的驱动电压和第一像素电极107(第二像素电极112)的驱动电压的控制范围。
例如,在形成第一面电极103与第三面电极108时,可直接形成一整片连通的电极即可,即第一面电极103和第三面电极108形成为一体结构,从而节省了对图案化电极层以形成第一面电极103和第三面电极108的步骤,进一步简化了制作工艺。
本发明实施例所提供的透反式液晶显示装置及其驱动方法,透射区与反 射区的液晶层厚度相同,透射区液晶层的两侧均具有一面电极和一像素电极,从而在透射区液晶层的两侧均形成平行于基板的电场,反射区液晶层的一侧具有一面电极和一像素电极,从而仅在反射区液晶层的一侧形成平行于基板的电场。通过施加适当的驱动电压,能够使透射区和反射区的像素电极与面电极之间的电压差一致或基本一致,从而使每个电场导致的液晶双折射差值和影响到的液晶厚度一致或基本一致。由于透射区具有两个平行于基板的电场,光线仅通过透射区一次,反射区具有一个平行于基板的电场,光线通过反射区两次,因此最终从透射区与反射区出射的光线相位延迟量相同或基本相同,满足了对显示效果的要求。由于上述透反式液晶显示装置透射区与反射区的液晶层厚度相同,基板表面较平坦,因此避免了形成双盒厚结构所需的有机绝缘层工艺,进而避免了有机绝缘层的存在引起的基板表面高低不平导致取向层摩擦工艺难度加大的问题,从而在保证透射区与反射区相位延迟量相同的前提下,极大地降低了透反式液晶显示装置的工艺难度。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请基于并且要求于2014年6月4日递交的中国专利申请第201410246005.2号的优先权,在此全文引用上述中国专利申请公开的内容。

Claims (11)

  1. 一种透反式液晶显示装置,包括多个像素单元,每个所述像素单元包括透射区和反射区,所述透反式液晶显示装置包括相对设置的第一基板和第二基板,及位于二者之间的液晶层,其中所述透射区和所述反射区内的液晶层厚度相等;
    所述透反式液晶显示装置还包括:
    位于所述透射区内的第一面电极、第一像素电极、第二面电极和第二像素电极,所述第一面电极和所述第一像素电极位于所述第一基板与所述液晶层之间,所述第二面电极和所述第二像素电极位于所述第二基板与所述液晶层之间;
    位于所述反射区内的第三面电极、反射层和第三像素电极,所述第三面电极、所述反射层和所述第三像素电极位于所述第一基板与所述液晶层之间。
  2. 根据权利要求1所述的透反式液晶显示装置,其中所述第一像素电极、所述第二像素电极和所述第三像素电极为条形电极。
  3. 根据权利要求1或2所述的透反式液晶显示装置,其中所述第一像素电极位于所述第一面电极与所述液晶层之间,所述第二像素电极位于所述第二面电极与所述液晶层之间,所述反射层位于所述第三面电极与所述液晶层之间,且所述第三像素电极位于所述反射层与所述液晶层之间。
  4. 根据权利要求1所述的透反式液晶显示装置,其中所述第一面电极和所述第三面电极相互连通。
  5. 根据权利要求4所述的透反式液晶显示装置,其中所述第一面电极和所述第三面电极的材料相同,且形成于同一膜层。
  6. 根据权利要求1所述的透反式液晶显示装置,其中所述第一面电极与所述第二面电极电性相连,所述第一像素电极与所述第二像素电极电性相连。
  7. 根据权利要求6所述的透反式液晶显示装置,其中所述第三面电极与所述第一面电极电性相连,所述第三像素电极与所述第一像素电极电性相连。
  8. 根据权利要求1~7任一项所述的透反式液晶显示装置,其中所述液晶层内的液晶为蓝相液晶。
  9. 根据权利要求1~7任一项所述的透反式液晶显示装置,其中所述第 一面电极和第一像素电极构造为形成一第一水平电场,所述第二面电极和第二像素电极构造为形成一第二水平电场,所述第三面电极和第三像素电极构造为形成一第三水平电场。
  10. 一种用于驱动权利要求1~9任一项所述的透反式液晶显示装置的方法,包括:
    向所述第一面电极、所述第一像素电极、所述第二面电极、所述第二像素电极、所述第三面电极和所述第三像素电极施加驱动电压,使所述第一面电极与所述第一像素电极之间产生第一电压差,所述第二面电极与所述第二像素电极之间产生第二电压差,所述第三面电极与所述第三像素电极之间产生第三电压差,并控制所述第一电压差与所述第二电压差之和等于所述第三电压差的二倍,使所述透射区和所述反射区的相位延迟量相同,或者,控制所述第一电压差与所述第二电压差之和与所述第三电压差的二倍的差值在电压差的误差允许范围内,使所述透射区和所述反射区的相位延迟量的差值在相位延迟量的误差允许范围内。
  11. 根据权利要求10所述的透反式液晶显示装置的驱动方法,其中所述控制所述第一电压差与所述第二电压差之和为所述第三电压差的二倍包括:
    控制所述第一电压差、所述第二电压差和所述第三电压差相同。
PCT/CN2014/087900 2014-06-04 2014-09-30 透反式液晶显示装置及其驱动方法 WO2015184713A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/443,519 US9995984B2 (en) 2014-06-04 2014-09-30 Transflective liquid crystal display device and driving method thereof
EP14861109.8A EP3153918A4 (en) 2014-06-04 2014-09-30 Transflective type liquid crystal display device and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410246005.2A CN104020616B (zh) 2014-06-04 2014-06-04 透反式液晶显示装置及其驱动方法
CN201410246005.2 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015184713A1 true WO2015184713A1 (zh) 2015-12-10

Family

ID=51437449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087900 WO2015184713A1 (zh) 2014-06-04 2014-09-30 透反式液晶显示装置及其驱动方法

Country Status (4)

Country Link
US (1) US9995984B2 (zh)
EP (1) EP3153918A4 (zh)
CN (1) CN104020616B (zh)
WO (1) WO2015184713A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020616B (zh) * 2014-06-04 2016-08-24 京东方科技集团股份有限公司 透反式液晶显示装置及其驱动方法
CN105204209B (zh) * 2015-10-23 2019-03-15 武汉华星光电技术有限公司 一种蓝相液晶显示面板
KR102542844B1 (ko) * 2016-04-07 2023-06-12 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 표시 장치 및 이의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544978A (zh) * 2003-11-14 2004-11-10 友达光电股份有限公司 半穿透反射式液晶显示面板的画素结构
CN1841135A (zh) * 2005-03-28 2006-10-04 三洋爱普生映像元器件有限公司 液晶装置及电子设备
US20100044716A1 (en) * 2008-08-19 2010-02-25 Au Optronics Corporation Pixel structure and liquid crystal display panel
CN102809843A (zh) * 2012-08-07 2012-12-05 京东方科技集团股份有限公司 液晶面板以及透反式液晶显示器
CN102981325A (zh) * 2012-12-11 2013-03-20 京东方科技集团股份有限公司 一种半透半反液晶显示面板及液晶显示装置
CN104020616A (zh) * 2014-06-04 2014-09-03 京东方科技集团股份有限公司 透反式液晶显示装置及其驱动方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698047B1 (ko) * 2003-04-19 2007-03-23 엘지.필립스 엘시디 주식회사 횡전계형 액정 표시 장치 및 그 제조 방법
US20070085958A1 (en) * 2005-10-13 2007-04-19 Innolux Display Corp. Liquid crystal display having common and pixel electrodes on both of substrates thereof
US20090201449A1 (en) * 2006-06-26 2009-08-13 Kenji Nishida Display device
WO2008004353A1 (fr) * 2006-07-07 2008-01-10 Sharp Kabushiki Kaisha Dispositif d'affichage
JP2008020669A (ja) * 2006-07-13 2008-01-31 Hitachi Displays Ltd 半透過型液晶表示装置
TW200811508A (en) * 2006-08-21 2008-03-01 Ind Tech Res Inst Transflective display unit
CN101149505B (zh) * 2006-09-22 2010-04-07 株式会社日立显示器 液晶显示装置及其制造方法
JP5057324B2 (ja) * 2007-04-19 2012-10-24 株式会社ジャパンディスプレイウェスト 液晶装置、及び電子機器
US8698716B2 (en) * 2010-05-18 2014-04-15 Pixel Qi Corporation Low power consumption transflective liquid crystal displays
WO2012073798A1 (en) * 2010-11-30 2012-06-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
CN102544025A (zh) * 2010-12-31 2012-07-04 京东方科技集团股份有限公司 半透半反式薄膜晶体管阵列基板及其制造方法
CN102122101B (zh) * 2011-03-28 2012-02-29 四川大学 一种透反蓝相液晶显示器
US9557620B2 (en) * 2011-11-15 2017-01-31 Boe Technology Group Co., Ltd. TFT array substrate and display device with tilt angle between strip-like pixel electrodes and direction of initial alignment of liquid crystals
CN102879957B (zh) * 2012-09-18 2015-01-07 京东方科技集团股份有限公司 一种液晶显示面板和显示装置
CN202748579U (zh) * 2012-09-18 2013-02-20 京东方科技集团股份有限公司 一种液晶显示面板和显示装置
CN103278975B (zh) * 2013-05-27 2016-04-06 京东方科技集团股份有限公司 半透半反式液晶面板、阵列基板、彩膜基板及制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544978A (zh) * 2003-11-14 2004-11-10 友达光电股份有限公司 半穿透反射式液晶显示面板的画素结构
CN1841135A (zh) * 2005-03-28 2006-10-04 三洋爱普生映像元器件有限公司 液晶装置及电子设备
US20100044716A1 (en) * 2008-08-19 2010-02-25 Au Optronics Corporation Pixel structure and liquid crystal display panel
CN102809843A (zh) * 2012-08-07 2012-12-05 京东方科技集团股份有限公司 液晶面板以及透反式液晶显示器
CN102981325A (zh) * 2012-12-11 2013-03-20 京东方科技集团股份有限公司 一种半透半反液晶显示面板及液晶显示装置
CN104020616A (zh) * 2014-06-04 2014-09-03 京东方科技集团股份有限公司 透反式液晶显示装置及其驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153918A4 *

Also Published As

Publication number Publication date
US20150370117A1 (en) 2015-12-24
CN104020616B (zh) 2016-08-24
US9995984B2 (en) 2018-06-12
CN104020616A (zh) 2014-09-03
EP3153918A4 (en) 2018-02-28
EP3153918A1 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
CN112379550B (zh) 显示面板及驱动方法和显示装置
US8018553B2 (en) Liquid crystal display device that includes both a transmissive portion and a reflective portion
JP2002365657A (ja) 液晶装置、投射型表示装置および電子機器
US20160291406A1 (en) Reflective type display device
US20150177565A1 (en) Transflective display panel, method for fabricating the same and display device
WO2015123914A1 (zh) 阵列基板及其制备方法、液晶显示面板
US20180210293A1 (en) Liquid crystal panels, liquid crystal alignment methods thereof and liquid crystal displays
KR20140070375A (ko) 투명 디스플레이
CN103293791B (zh) 一种可实现视角可控及透反显示的蓝相液晶显示装置
WO2015158123A1 (zh) 柔性显示面板和柔性显示器
WO2016074253A1 (zh) 液晶显示装置及其液晶显示面板
WO2016090751A1 (zh) 液晶显示面板
WO2014153885A1 (zh) 半透半反液晶显示面板以及液晶显示装置
JPWO2007046209A1 (ja) 液晶表示装置
WO2015184713A1 (zh) 透反式液晶显示装置及其驱动方法
CN105259708A (zh) 透明显示器
WO2016090716A1 (zh) 透反式液晶面板以及液晶显示器
TWI226950B (en) Transflective liquid crystal display device capable of balancing color difference between reflective and transmissive regions
CN105204246A (zh) 半透半反式液晶显示面板
US20190049801A1 (en) Transflective liquid crystal display device
WO2018176601A1 (zh) 透反式液晶显示装置
WO2014153874A1 (zh) 半透半反液晶显示面板及液晶显示装置
WO2016031638A1 (ja) 液晶表示装置
CN203287662U (zh) 一种可实现视角可控及透反显示的蓝相液晶显示装置
KR101790489B1 (ko) 액정표시장치의 제조방법

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014861109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014861109

Country of ref document: EP

Ref document number: 14443519

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE