WO2015183041A1 - 포도상구균 감염 질환의 예방 또는 치료용 조성물 - Google Patents

포도상구균 감염 질환의 예방 또는 치료용 조성물 Download PDF

Info

Publication number
WO2015183041A1
WO2015183041A1 PCT/KR2015/005431 KR2015005431W WO2015183041A1 WO 2015183041 A1 WO2015183041 A1 WO 2015183041A1 KR 2015005431 W KR2015005431 W KR 2015005431W WO 2015183041 A1 WO2015183041 A1 WO 2015183041A1
Authority
WO
WIPO (PCT)
Prior art keywords
wta
pgn
cells
infection
composition
Prior art date
Application number
PCT/KR2015/005431
Other languages
English (en)
French (fr)
Inventor
이복률
이민자
이종호
성민영
안동호
타카하시카즈에
쿠로카와켄지
Original Assignee
주식회사 녹십자
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 녹십자, 부산대학교 산학협력단 filed Critical 주식회사 녹십자
Priority to KR1020167034875A priority Critical patent/KR20170005852A/ko
Priority to US15/314,324 priority patent/US20170189473A1/en
Priority to CN201580028333.8A priority patent/CN106413737A/zh
Priority to JP2017515649A priority patent/JP2017518373A/ja
Priority to EP15800382.2A priority patent/EP3150217A1/en
Publication of WO2015183041A1 publication Critical patent/WO2015183041A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins

Definitions

  • compositions for the Prevention or Treatment of Staphylococcal Infectious Diseases Field of the Invention relate to a composition for the prevention or treatment of Staphylococcal infection diseases, and more particularly, to D. teicosan-attached peptidoglycan (WTA-PGN).
  • WTA-PGN D. teicosan-attached peptidoglycan
  • a composition comprising as an active ingredient, a method for preventing or treating staphylococcal infection disease using the composition, and a method for producing a soluble WTA-PGN that can be used as an active ingredient in the composition.
  • St aphyl ococcus aureus can cause severe infections in human skin, soft tissues and bloodstream (Lowy FD, The New England journal of medicine, 339: 520—532, 1998).
  • Staphylococcus aureus can be transformed into a methicillin-resistant strain (MRSA) that is resistant to beta-lactam antibiotic methicillin for various reasons. Difficult to treat and poor prognosis has become a major social problem.
  • MRSA methicillin-resistant strain
  • CA-MRSA co-unity-associated MRSAs
  • H-MRSA conventional hospital-associated strains
  • USA300 MRSA strains are spreading in the United States causing serious diseases in children or people with reduced immune function, it is required to develop a new vaccine or treatment that has a prophylactic and therapeutic effect against MRSA infection.
  • researchers who tried to develop staphylococcal vaccine candidates had a good prognosis in clinical trials. Because of the failure, staphylococcal vaccines that have been clinically useful until recently have not been developed.
  • T cell-mediated IL-17A is required to generate both neutrophil recruitment and cellular i ⁇ unity to promote phagocytosis, and phagocytic cell effector by T cell activation. It has been suggested that it can play a protective role against staphylococcal infections by promoting the function. In addition, studies have shown that staphylococcal infections have a protective effect against infection by increasing the number of memory ⁇ ⁇ - ⁇ cells in mouse models (J. Immunol., 192 (8): 3697-). 708, 2014).
  • ligand material of bacteria recognized by biodefense proteins is not clearly identified, it is difficult to treat and prevent infectious diseases caused by pathogens.
  • ligands such as cell wall components of staphylococci, ⁇ , LTA, PGN, CP, and lipoproteins, are mainly glycopolymers, and their structure is very complicated and purified together with other substances. Difficult to do
  • various cell wall components are exposed to the outside, it is difficult to identify which component acts as a ligand of the host's biological defense protein.
  • WTA-PGN WTA-attached PGN
  • WTA-PGN WTA-attached PGN
  • Another object of the present invention to provide a method for preventing or treating staphylococcal infection disease using the composition.
  • the present invention provides a composition for the prevention or treatment of staphylococcal infection disease, including peptidoglycan (WTA-PGN) attached to the wall teicosane.
  • WTA-PGN peptidoglycan
  • the present invention provides a method for preventing or treating Staphylococcal infection disease, comprising administering the above-described composition to a subject.
  • the present invention comprises the steps of (1) obtaining a double mutant strain deleted / ⁇ (l ipoprotein di acylglycerol transferase) and oatAiO-acetyl transferase) gene from wild type staphylococci; (2) disrupting said double mutant strain and obtaining insoluble WTA-PGN from the resulting lysate; (3) treating the insoluble WTA-PGN with ⁇ -lyt ic enzyme; (4) obtaining a soluble WTA-PGN containing fraction from the enzyme treatment of step (3); (5) treating the soluble WTA-PGN containing fractions with lysozyme or mutanolysine; And (6) obtaining soluble WTA-PGN from the enzymatic treatment of step (5), providing a method for preparing soluble
  • Figure 4 shows the result of quantifying the elution pattern (A), gel mobility (B), and the amount of IL-17A produced when injected into the mouse intraperitoneally separated WTA-PGN by Sephacryl S-200 HR column (C).
  • FIG. 5 shows the elution pattern 5A separating the WTA-PGN with the first C18 reversed phase column, gel mobility 5B, the elution pattern 5C separated with the second C18 reversed phase column, gel mobility 5D and FIG. 5A.
  • the quantification results (5E) of the amount of IL-7A induced by mouse injection of A, B, C,! And E fractions are shown.
  • Figure 6 shows the elution pattern (A) and gel mobility (B) separated by HiTrap-Q column after TCA treatment to insoluble WTA PGN.
  • Figure 7 shows the elution pattern of soluble PGN separated by Hitrap-Q column.
  • Figure 8 shows the elution pattern of soluble PGN separated in a Toyopearl HW 55 S column.
  • FIG. 9 shows 27% PAGE and silver nitrate staining (A), silica gel thin layer chromatography (B) and amounts of phosphate and GlcNAc residues (C) for WTA-PGN and WTA.
  • FIG. 10 shows time schedules for three-time immunization of WTA, PGN and WTA-PGN intraperitoneally and MRSA JSA300) infections to observe ⁇ cell induced early cellular and memory immunity.
  • FIG. 11 shows the production of IL-17A (11A) and IL-1] 3 (11B) by intraperitoneal administration to mice of PBS, WTA-PGN and a combination of WTA and PGN at various concentrations and times.
  • Figure 13 shows the results of analysis of the distribution ratio of ⁇ ⁇ T cells producing IL-17A after injection of PBS and WTA-PGN using flow cytometry.
  • FIG. 14 shows CD4 + and CD8 + T cell mediated IL-17A production following injection of PBS and WTA-PGN.
  • FIG. 15 shows the production amount of IL-17A (15A) and the production amount of IL- ⁇ (15B) by PBS, WTA-PGN, and a combination of WTA and PGN in wild-type and VY 2/4 — / _ mice.
  • Figure 16 shows IL-17A (16A), IL-1P (16B), IL-23 (16C), IFNy (16D) induced by infection of the USA300 strain in each mouse pretreated with PBS, WTA, PGN and WTA-PGN. ) And IL-10 16E).
  • FIG. 17 Memory ⁇ ⁇ in ⁇ ⁇ T cells of mice pretreated with WTA-PGN Expression levels of CD44 and CD27, markers of T cells ( ⁇ 7 ⁇ ), and expression levels of IL-17A in these memory ⁇ ⁇ ⁇ cells (17B) are shown.
  • Fig. 18 shows the IL-17A expression level in memory ⁇ ⁇ ⁇ cells in each mouse pretreated with PBS, WTA-PGN, PGN and ⁇ , and the intracellular IL-17A production amount by FACS (18A); (B) Extracellular IL-17A production amount (18B) by ELISA is shown.
  • 21 shows IL-23 expression levels in dendritic cells in mice pretreated with WTA-PGN and mice not pretreated.
  • FIG. 22 is a photograph showing the organ shape and abscess formation in the abdominal cavity of mice infected with USA300 strain after pretreatment with PBS, WTA, PGN and WTA—PGN.
  • Figure 23 shows survival results for USA300 infection in mice immunized with WTA-PGN induced memory Y S ⁇ cells.
  • FIG. 24 shows abscess morphology (24A) and abscess volume ( 24B) in mice infected with methicillin-sensitive staphylococcus (MSSA 5. aureus NRS184 strain) after immunization with WTA-PGN.
  • MSSA methicillin-sensitive staphylococcus
  • 25 shows whether skin abscess formation (25A), area of skin necrosis area (25B) and abscess volume (25C) in NZW rabbits infected with MRSA after WTA-PGN immunization . Quantification results are shown.
  • FIG. 26 shows the results of quantification of skin abscess formation, area of skin necrosis area and abscess volume in NZW rabbits (A) and junior pigs (B) after WTA-PGN immunization.
  • Figure 27 is a photograph observing the abscess and hemolysis in the abdominal cavity after infection with MRSA of the guinea pig immunized with WTA-PGN.
  • Figure 28 shows the results of measuring the production of IL-17A (28A) and IL- ⁇ (28B) in wild-type, TLR-9-gene-deficient and Caspase-1-gene-deficient mice immunized with WTA-PGN.
  • 29 shows expression levels of IL-17A (29A), IL- ⁇ (29B), IL-23C29C) and IFNy (29D) in macrophages, dendritic cells and ⁇ ⁇ T cells of mice obtained after pretreatment with WTA-PGN. Is the result of measuring.
  • FIG. 30 shows gene expression patterns (30A-30J) induced upon WTA-PGN injection in wild type and NLRP3 gene deficient mice.
  • FIG. 31 shows the time schedule of experiments in which MRSA USA 300 was infected with tail vein in each mouse immunized subcutaneously with WTA, PGN and WTA-PGN to observe humoral immune response by anti-IgG production. ⁇
  • FIG. 33 shows the weight change of mice one week after USA300 cell infection in mice immunized with WTA, PGN and WTA-PGN.
  • FIG. 34 shows kidney images and bacterial loads (CFUs) of mice immunized with WTA, PGN and WTA-PGN, showing (i) PBS, (ii) WTA and (iii) WTA—attached PGN.
  • FIG. 35 shows histopathological images in mouse kidney after MRSA USA300) infection with bloodstream after immunization with ⁇ , PGN and WTA-PGN.
  • wall teichoic acid refers to Staphylococcus aureus (5. As one of the cell wall components of glycerol phosphate repeat unit and ribi phosphate repeat unit (N-acetylmannosamine)-
  • ept idoglycan refers to a repeat glycopolymer of N-acetylmuramate (MurNAc) and N-acetylglucosamine (GlcNAc) linked by stem-peptide linkages.
  • wall teichoic acid (TA) -attached peptidoglycan (PGN) refers to a structure in which the wall teichoic acid and peptidoglycan are covalently bonded and interchanged with ⁇ -PGN 'herein. Used as an enemy.
  • the present invention provides a composition for the prevention or treatment of Staphylococcal infection disease, which comprises a wall teichoic acid (WTA) -attached peptidoglycan (PGN) as an active ingredient.
  • WTA wall teichoic acid
  • PPN peptidoglycan
  • the wall teichoic acid-attached peptidoglycan (WTA-PGN) may be represented by the following general formula (1).
  • the wall teichoic acid-attached peptidoglycan may be represented by Formula 1, wherein n is an integer of 10 to 50; m is an integer from 1 to 3; A is N-acetylmannosamine (ManNAc); B is
  • N ⁇ acetylglucosamine (GlcNAc); 0 and P are each independently an integer from 0 to 5; 3 ⁇ 4 to 3 ⁇ 4 are each independently hydroxy, tetrapeptide or pentapeptide; R 4 is hydroxy or N—acetylmuramic acid (MurNAc);
  • the wall teichoic acid-attached peptidoglycan may be represented by Formula 1, wherein ⁇ is an integer from 35 to 45; m is 3; A is N-acetylmannosamine (ManNAc); B is N-acetylglucosamine (GlcNAc); 0 and P are each independently an integer from 0 to 3; 3 ⁇ 4 to R 3 are each independently hydroxy, tetrapeptide or meptamide; 3 ⁇ 4 is hydroxy or N-acetylmuramic acid (Mur NAc).
  • is an integer from 35 to 45; m is 3; A is N-acetylmannosamine (ManNAc); B is N-acetylglucosamine (GlcNAc); 0 and P are each independently an integer from 0 to 3; 3 ⁇ 4 to R 3 are each independently hydroxy, tetrapeptide or meptamide; 3 ⁇ 4 is hydroxy or N-acetylmuramic acid (Mur NAc).
  • the wall teichoic acid-attached peptidoglycan may be represented by Formula 1, wherein n is 40; m is 3; A is N ⁇ acetylmannosamine (ManNAc); B is N-acetylglucosamine (GlcNAc);
  • 0 and P are each independently an integer from 0 to 5; And 3 ⁇ 4 is tetrapeptide;
  • R 3 is hydroxy, tetrapeptide or pentapeptide; Is hydroxy or
  • the wall teichoic acid-attached peptidoglycan may be represented by Formula 1, wherein n is 40; m is 3; A is N-acetylmannosamine (ManNAc); B is N-acetylglucosamine (GlcNAc);
  • Ri and 3 ⁇ 4 are tetrapeptides; Is hydroxy, tetrapeptide or pentapeptide;
  • the tetrapeptide is -ArAa-As—A4, where is Ala or Gly, A 2 is Glu or Asp, A 3 is Lys, Arg or His, A 4 is Ala or Gly, and R4 is hydroxy or N-acetylmuramic acid (MurNAc).
  • the wall teichoic acid-attached peptidoglycan may be represented by Formula 1, wherein n is 40; m is
  • Ri and R 2 are tetrapeptides
  • R 3 is hydroxy, tetrapeptide or pentapeptide; Said tetrapeptide is-(L-Ala)-(D-Glu)-(L-Lys)-(D-Ala); 3 ⁇ 4 is hydroxy or
  • any one of 3 ⁇ 4 to 3 ⁇ 4 of the wall teichoic acid-attached peptidoglycan may form a crosslink with any one of 3 ⁇ 4 to 3 ⁇ 4 of the other FTA-PGN. Accordingly, the WTA-PGN may also exist in the form of a dimer in which two WTA-PGNs are combined.
  • composition according to the present invention can be used for the prophylaxis or treatment of staphylococcal infection disease, the staphylococcus causing the staphylococcal infection disease is methicillin-resistant staphylococcus aureus (MRSA), methicillin -Method ⁇ -sensitive 5 «3 ⁇ 43 ⁇ 43 ⁇ 4 ⁇ / ⁇ : ⁇ 7 ⁇ 5 awre s (MSSA) or pathogenic staphylococci.
  • MRSA methicillin-resistant staphylococcus aureus
  • MSSA methicillin -Method ⁇ -sensitive 5 «3 ⁇ 43 ⁇ 43 ⁇ 4 ⁇ / ⁇ : ⁇ 7 ⁇ 5 awre s
  • staphylococcal infections include soft tissue infections, purulent arthritis, purulent osteomyelitis, otitis media, pneumonia, sepsis, acute respiratory tract infection, infections caused by the use of catheters, postoperative wound infections, bacteremia, endocarditis or Food poisoning, but is not limited thereto.
  • composition according to the present invention may further comprise a pharmaceutically acceptable carrier, diluent and / or adjuvant in addition to the WTA-PGN.
  • Carriers used in the compositions according to the invention include methods and routes of administration, and Selected based on standard drug compositions, for example, carrier proteins (ie, bovine serum albumin (BSA), egg white albumin (OVA), human serum albumin (HSA) and keyhole limpet hemocyanin (KLH)), solubilizers ( Ethane, polysorbate and Cremophor EL TM, isotonic agents, preservatives, antioxidants, excipients (ie, lactose, starch, crystalline salose, manni, maltose, calcium hydrogen phosphate, light anhydrous silicic acid and Carbon carbonate), binders (i.e.
  • carrier proteins ie, bovine serum albumin (BSA), egg white albumin (OVA), human serum albumin (HSA) and keyhole limpet hemocyanin (KLH)
  • solubilizers Ethane, polysorbate and Cremophor EL TM, isotonic agents, preservative
  • the vaccine composition according to the present invention may be combined with a known KLH solution (Calbiotec, 50% glycerol dissolving 125 mg per 1 ml of solution) as a carrier protein to enhance antigenicity.
  • Diluents used in the compositions according to the invention may be selected based on the method and route of administration and the actual standard drug composition.
  • examples of diluents include water, saline, phosphate buffered saline and bicarbonate solutions.
  • Adjuvants used in the compositions according to the invention are selected based on the method and route of administration and the actual standard drug composition.
  • adjuvant include cholera toxin, dimeric enterotoxin of Escherichia coli (LT), liposomes and immune stimulatory complex (ISC0M).
  • the route of administration may vary depending on the age, body weight, sex and general health of the subject with the risk of staphylococcal infection, but administration may be oral and parenteral (eg intravenous, arterial and topical). It can be administered by any of the routes. Especially, parenteral administration is preferable.
  • Formulations for oral and parenteral administration and methods for their preparation are known to those skilled in the art.
  • Formulations for oral administration and parenteral administration may be prepared by conventional procedures, for example, in combination with the aforementioned pharmaceutically acceptable carriers.
  • Examples of formulations for oral administration include solids such as solvents, tablets, granules, powdered medicines or capsules. Or liquid formulations.
  • Examples of formulations for parenteral administration include solvents, suspensions, ointments, creams, suppositories, eye drops and ear drops.
  • biodegradable plymers e.g., ply-D, L-lactide-co-glycoside or polyglycoside
  • buck base e.g., US patents
  • 5,417,986, 4, 675, 381 and 4,450, 150 e.g., ply-D, L-lactide-co-glycoside or polyglycoside
  • flavors and colorings may be added.
  • Suitable pharmaceutical carriers, diluents and pharmaceutically necessary substances for their use are described in Remington's Pharmaceutical Sciences.
  • the dosage of the composition according to the present invention is determined based on the type of adjuvant, the method and frequency of administration, and the desired effect and may generally be between 1 ig and 100 mg of WTA for single adult administration.
  • the dosage may generally be from WTA-PGN l g to lmg in a single adult dose.
  • the administration can be administered several times if necessary.
  • the composition may be administered again by supplementing three times after the composition is initially administered at regular intervals.
  • the compositions for the first and second reinforcement may be administered 8-12 weeks and 16-20 weeks after the first administration using the same formulation, respectively.
  • the present invention also provides a method for preventing or treating a staphylococcal infection disease in a subject, comprising administering the above-described composition to a subject in need thereof.
  • composition according to the present invention By administering the composition according to the present invention as described above it is possible to prevent or treat staphylococcal infection disease by simultaneously inducing oxokinetic action ( opS o ⁇ hagocytosi s) and phagocytosis (phagocytosi s).
  • the method of the present invention increases the ⁇ ⁇ - ⁇ cell number, IL-17A production and IL- ⁇ production within 24 hours after administration of the composition in a subject.
  • the methods of the present invention increase IL-10 production 12 hours after administration of the composition in the subject.
  • the invention provides a soluble wall teicosic acid-attached method comprising the following steps: Provided are methods for preparing peptidoglycan (WTA-PGN):
  • step (5) obtaining soluble WTA-PGNol from the enzyme treatment of step (5).
  • WTA-PGN soluble wall teicosic acid-attached peptidoglycan
  • step (1) obtains a double mutant strain from the wild type Staphylococcus aureus / / (lipoprotein diacylglycerol transferase) and oatA (0 ⁇ acety ⁇ transferase) gene deletion.
  • the double mutant strain (/ g oatA), which lacks the / ⁇ (lipoprotein diacylglycerol transferase) and os O-acetyl transferase genes obtained in step (1), has no possibility of lipoprotein contamination due to the deletion of the lgt gene. Pure WTA-PGN can be easily obtained, and the double mutant strain used in step 1 has no acetyl group at MurNAc residue of PGN due to deletion of oat A gene. It can be readily degraded by pins or ⁇ -lytic enzymes.
  • Such double mutant strains may be obtained by conventional mutation methods known from wild-type staphylococci, for example methicillin-resistant staphylococci (MRSA), methicillin-sensitive staphylococcus (MSSA) or pathogenic staphylococci.
  • MRSA methicillin-resistant staphylococci
  • MSSA methicillin-sensitive staphylococcus
  • pathogenic staphylococci for example, the double mutant strain is resistant to phleomycin. Resistant to erythromycin and the T363 strain (Lakayama M et al., Journal of Immunology 189: 5903-591, 2012), which lacks the lipoprotein di cylglycerol transferase (IGT) gene.
  • ITT lipoprotein di cylglycerol transferase
  • 0-acetyl transferase (0-acetyl transferase, T0003 strain lacking the oat gene (Park KH et al., Journal of Biological Chemistry 285, 27167-27175, 2010) was prepared by transducing via phage 80
  • step (2) the double mutant strain is disrupted and an insoluble WTA-PGN is obtained from the resulting lysate.
  • Step (2) is described by Park KH et al., Journal of Biological Chemistry 285.
  • step (2) may comprise culturing the double mutant strain obtained in step (1), crushing cells, and obtaining insoluble WTA-PGN therefrom.
  • step (3) the insoluble WTA-PGN is treated with ⁇ -lytic enzyme.
  • the ⁇ -lytic enzyme plays a role in degrading pentaglycine ((Gly) 5 ) linkages linking the stem peptides present at the MurNAc residue of the insoluble FTA-PGN obtained in step (2) to insoluble WTA-PGNol soluble WTA. Change to PGN.
  • Such ⁇ -lytic enzymes are commercially available or described in Li et al. It can be isolated and purified according to the methods described in Journal of Biochemitry 122, 772-778, 199. Examples of commercially available ⁇ -lytic enzymes include, but are not limited to, lysostaphin.
  • Step (3) may be carried out by suspending the insoluble WTA-PGN obtained in step (2) in a buffer and then adding ⁇ -lytic enzyme and reacting at 30 to 40 ° C. for 10 to 14 hours with stirring.
  • step (4) a soluble WTA-PGN containing fraction is obtained from the enzyme treatment of step (3).
  • the ⁇ -lytic enzyme treatment is passed through HPLC to obtain a fraction, and then the fraction containing soluble WTA-PGN is selected from the fraction.
  • the soluble WTA-PGN containing fractions can be obtained by passing the enzyme treatment of step (3) through high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the fraction containing WTA-PGN in the fractions passed through the HPLC can be identified by PAGE or silver nitric acid stain.
  • the column used in the HPLC purification may include Hi Tr ap-Q (GE Heal thcare), which is an anion exchange resin that binds to the anion of WTA's revitalized phosphate, but is not limited thereto.
  • Hi Tr ap-Q GE Heal thcare
  • the soluble WTA-PGN containing fractions are treated with lysozyme or mutanolysin.
  • the lysozyme or mutanolysine used above converts the polymeric PGN to an oligomeric PGN by breaking down the bond between MurNAc and Gl cNAc of PGN in WTA-PGN.
  • Step (5) may be carried out by suspending the soluble WTA-PGN obtained in step (3) in a complete solution, and then adding lysozyme or mutanolysine and reacting with stirring at 30 to 4C for 10 to 14 hours.
  • step (6) soluble WTA-PGN is obtained from the enzyme treatment of step (5).
  • the soluble WTA-PGN can be obtained by passing the enzyme treatment of step (5) through high performance liquid chromatography (HPLC).
  • a lysozyme or mutanolysine enzyme treatment is passed through HPLC to obtain a fraction, and then the fraction containing soluble WTA-PGN is selected from the fraction.
  • the selection of the fractions can be performed based on the amount of IL-17A produced after injection of each fraction into the mouse abdominal cavity.
  • the column used in the HPLC purification may include HiTrap-Q (GE Heal thcare), but is not limited thereto.
  • the method for preparing soluble wall teichoic acid-attached peptidoglycan (WTA-PGN) according to the present invention may further comprise the step of further purifying the WTA-PGN after step (6).
  • WTA-PGN Further purification of the WTA-PGN can be performed by gel filtration chromatography or reverse phase liquid chromatography.
  • the soluble WTA-PGN prepared in step (6) is subjected to gel filtration chromatography with Sephacryl S-200 HR columnol or reversed phase liquid chromatography with Symmetry Shiel d TM RP18 column. Can be further purified.
  • the soluble WTA-PGN prepared in step (6) was subjected to gel filtration chromatography using Sephacryl S-200 HR column and reverse phase liquid chromatography using two Symmetry Shiel TM RP18 columns. After further purification.
  • lipoprotein diacylglycerol t ransferase is lipoprotein diacylglycerol transferase.
  • Defective T363 strain (Nakayama M et al., Journal of Immunology 189: 5903-591, 2012) and 0-acetyl transferase (oat A) gene resistant to erythromycin 5.
  • Aureus T384 strain was prepared by transducing the T0003 strain (Park KH et al., Journal of Biological Chemistry 285, 27167-27175, 2010) via phage 80.
  • the strain can be used to isolate WTA-PGN and PGN without lipoprotein contamination due to the deficiency of the lgt gene, as well as the isolated PGN due to the lack of the oatA gene because there is no acetyl group in the PGN MurNac residue 6 position oxygen. It can be easily disassembled.
  • Example 2 Isolation and Purification of Soluble WTA-PGN Insoluble WTA-PGN was obtained from the gtl AoatA variant strain prepared in Example 1, after which soluble WTAol was isolated and purified (see FIG. 2).
  • Insoluble WTA-PGN is described by Park KH et al. , Journal of Biological Chemistry 285, 27167-27175, 2010; Jung D J et al. , Journal of I'un logy 2012, 189: 4951-4959, 2012] was isolated and purified.
  • Dispense 6 stainless steel disruption bottles The crush bottles were washed with 20 mM citrate complete solution (pH 4/7) with lMNaCl added to reach a total volume of 20 ml for each bottle. In order to prevent overheating, the crush bottle was kept on ice, and the bacteria were crushed for 2 minutes with a bead beater, and the process of keeping the ice for 2 minutes was repeated 7 times. The crushed bacteria were transferred to a new 50 ml tube and centrifuged at 3,000 rpm for 4 minutes at 4 ° C. for 15 minutes. The supernatant was then transferred to a 50 ml conical tube and centrifuged at 15,000 rpm, 4 ° C for 10 minutes using a high-speed centrifuge.
  • the pellet is suspended in 10 ml of 20 mM citrate complete solution (pH 4.7), then 10 ml of 20 mM citrate buffer (pH 4.7) containing 1% sodium dodecyl sulfate (SDS) is added to bring the final SDS concentration to 0.5%. Fit.
  • SDS sodium dodecyl sulfate
  • the supernatant was removed by centrifugation at rpm, 20 ° C for 5 minutes.
  • the pellet was washed twice with 30 ml of 20 mM citrate buffer (pH 4.7) containing 1 M NaCl, and the pellet was suspended with water for injection warmed to 30 ° C for complete removal of the remaining SDS at 15,000 rpm, 20 ° C. Centrifuge for 5 minutes. When the water for injection into the pellet was shaken, the washing was repeated until no foam came out, and the pellet without the foam was suspended in 10 ml of water for injection and stored at room temperature for 10 minutes.
  • the concentrated sample was subjected to size exclusion chromatography on a Sephacryl S-100 column (1.6 cm X 87 cm) with 10 mM sodium citrate complete solution containing 200 mM NaCl (pH 6.0).
  • the absorbance of the filtrate was measured at 280 nm, and the filtrates were concentrated by collecting the compartments showing the increased compartment absorbing activity. Based on the results of (1997), the ⁇ -lytic enzyme compartment was selected.
  • size exclusion chromatography was carried out in Superdex -75 (1 cm X 30 cm) with 10 mM sodium citrate (pH 6.0) containing 200 mM NaCl to obtain -lytic enzyme.
  • the obtained ⁇ -lytic enzyme was confirmed lytic activity or lytic activity in the culture of PLO suspension and column fractions derived from microlocus luteus (ATCC 9341) or insoluble staphylococcus aureus, Procise® Protein sequencer (Cat. # 491- 0, Applied Biosystems, Stafford, TX, USA), the N-terminal sequence was analyzed by SPNGLLQFPF. The N-terminal sequence was analyzed by SPNGLLQFPF, and the result of electrophoresis was found to be a single band having a molecular weight of about 25 kDa. It was identified as a -lytic enzyme.
  • Tris-HCKpH 7.0 Tris-HCKpH 7.0
  • insoluble WTA—PGN was added with 350 ⁇ -lytic enzyme 350 quantified by Bradford method per 100 mg and reacted for 12 hours in a stirred incubator at 37 ° C, 180 rpm.
  • the reaction solution was deactivated by placing the reaction solution in a 60 ° C constant temperature water bath for 10 minutes, the supernatant was obtained by centrifugation at 15,000 rpm, 4 ° C for 10 minutes.
  • lyophilized soluble WTA-PGN 100 mg was dissolved in 10 ml of 20 mM Tris-HCKpH 7.0) and lysozyme (Cat. # 62970, Sigma-Aldr ich Co. LLC., Saint Louis, MO USA) was added 1.25 mg. After reaction at 37 ° C, 180 rpm for 12 hours in a stirred incubator. After the reaction solution was deactivated by leaving the reaction solution in a 60 ° C constant temperature water bath for 10 minutes, the supernatant was obtained by centrifugation at 15,000 rpm, 4 ° C for 10 minutes.
  • a Sephacryl S-200 HR column was used.
  • the HPLC apparatus (805 MANOMETRIC MODULE, 811C DYNAMIC MIXER, 305 PUMP, 306 PUMP, 151 UV / VIS Detector, Gi l son, USA) used the product of Gi lson, Sephacryl S-200 HR, 25 ⁇ -75 ym (Cat. # 17-0584 ⁇ 01 , GE Healthcare Li Sciences, England) columns were used by GE Healthcare Li Sciences.
  • Soluble WTA-PGN (53.5 mg), previously isolated, was dissolved in 400 ⁇ l of distilled water and injected into an HPLC injector.
  • the HPLC apparatus (805 MANOMETRIC MODULE, 811C DYNAMIC MIXER, 305 PUMP, 306 PUMP, 151 UV / VIS Detector, Gi lson, USA) used a product of Gi lson, Symmetry Shield TM RP18 (5 um, 4.6x250 mm) column (Cat 186000112, Waters, Ireland) used Waters, MF TM Membrane Filters 0.45 ura (Cat JHAWP04700, Merck, Germany) used Merck products. In addition, Speed Vac (Cat. # CVE-100, EYELA, Japan), Evaporator (Cat. # CCA-1110, EYELA, Japan), and lyophilizer (Cat.
  • insoluble WTA—PGN was suspended in 19 ml of 20 mM citrate complete solution (pH 4.5), followed by 1 ml of trichloroacetic acid (100 mg / ral) to a final concentration of 5 mg / ml. To be.
  • the suspension was reacted in a stirred incubator at 3 (C, 180 rpm for 12 hours and then centrifuged for 10 minutes at 10,000 rpm and 4 ° C.
  • the supernatant was transferred to a 50 ml tube and subjected to acetone precipitation for 1 hour, then 15,000 rpm , Centrifuged for 25 min at 4 ° C. Transfer the pellet to a 1.5 ml microcentrifuge tube to acetone. It was removed and suspended in 1 ml of 20 mM Tris-HCKpH 7.0) buffer.
  • HPLC HPLC was performed using a Hitrap-Q column. All lines and columns were washed with A complete solution of 20 mM Tris-HCl (pH 7.0), and the sensitivity of the UV detector was set to 1 and the absorbance was set to 220 nm.
  • the sample to be loaded was filtered through a 0.45 um filter and then loaded.
  • the flow rate was set at 0.5 ml / min to allow the sample to bind to the Hitrap-Q column, and the impurities were removed by washing the Hitrap-Q column while maintaining the existing flow rate until equilibrium.
  • WTA was removed by TCA to obtain PGN from lyophilized insoluble WTA-PGN.
  • TCA-treated insoluble FTA-PGN was resuspended in 19 ml '20 mM citrate complete solution (pH 4.5) to obtain WTA and 1 ml trichloroacetic acid (100 mg / ml) added to a final concentration of 5 mg / ml. It was made to be. 30 ° C, stirred at 180 rpm After reacting for 12 hours in the incubator, it was centrifuged for 10 minutes at 10,000 rpm, 4 ° C.
  • the pellet was suspended in 30 ml of sterile distilled water, centrifuged at 10, 000 rpm, 4 ° C for 10 minutes and washed five times to remove TCA completely. It was suspended in 15 ml of water for injection and then lyophilized to obtain insoluble PGN.
  • ⁇ 4-2> Treatment of ⁇ -lytic enzyme to purify soluble PGN into soluble PGN 100 mg of lyophilized insoluble PGN was suspended in 10 ml of 20 mM Tri s-HCKpH 7.0 to a concentration of 10 mg / ml. After centrifugation at 15,000 rpm, 4 ° C. for 10 minutes, and washed three times with 20 ml 20 mM Tri s-HCKpH 7.0). The washed insoluble PGN was suspended in 20 ml of 20 mM Tri s-HCKpH 7.0) and purified per OO mg of insoluble PGN — 350 lytic enzyme 350, pH 7.0, and stirred at 37 ° C, 180 rpm. Reaction for hours.
  • a gradient was set for 30 minutes from 0> to 100% with water for injection containing 1 M NaCl, a B complete layer.
  • the elution results are shown in FIG. 7.
  • the pass-through solution (A fraction) was assumed to be a fraction containing soluble PGN from which WTA was removed, and the fraction eluted by B complete solution containing 1M NaCl (B fraction) was not removed. Since it was estimated to be WTA-PGN or WTA, only A fraction was collected and lyophilized.
  • the lyophilisate was dissolved in water for injection at a concentration of 20 mg / ml, and then injected into a Toyopear l HW 55 S (Cat. # 14686, TOSSO Bioscience, Japan) column to perform gel filtration.
  • Gel filtration conditions were equilibrated with water for injection, flow rate 0.5 / min, absorbance 215 nm, sensitivity 1, operating time was 50 minutes.
  • the elution pattern by the gel filtration is shown in FIG. As shown in FIG. 8, two peaks were observed upon gel filtration.
  • Example 4 Characterization of Biochemical Properties of WTA-PGN and WTA Isolation and Purification of Biochemical Properties of Purified WTA-PGN and WTA, 27% PAGE and silver nitrate staining were performed. Analysis by chromatography and the amount of phosphate and GlcNAc residues present in WTA was quantified by known assay methods.
  • the experimental animals were purchased at 5 weeks of age from 15 ⁇ 0.5 g of specific pathogen-free (57) SPF (specific pathogen-free) C57BL / 6J female mice from the Biomedical Mouse Center of the Korea Research Institute of Bioscience and Biotechnology (Ochang Campus, Chungcheongbuk-do, Korea). Animal laboratory environment (Cat. # AAAC2051, ⁇ Jeiotech, Gene Deletion rea) for 1 week while feeding commercial solid feed (Cat. # 5L79, Orient Bio, Gene Deletion rea); 20-25 ° C, 55% humidity).
  • SPF specific pathogen-free
  • the diet was completely divided into each group by the randomized design, and 6-12 animals in each group and 6 animals in each group were provided in the feeding cages to provide diet and drinking water by the ad libitum.
  • the weight and dietary intake of each experimental animal were measured once daily, and the lighting was turned on and off every 12 hours.
  • MRSA to be used for in vivo infection studies. aureus USA30Q strain) and MSSA (5. aureus NRS184 strain) preparation
  • the amount of IL-17A was measured.
  • MRSA ⁇ . aureus USA300 strain 1 ⁇ 10 8 CFU / 100 ⁇ 1 PBS was injected by ip injection. Mice in the control group were used by ip injection of 100 ⁇ l of PBS, and naive mice were used as the control group. Mice were regenerated at 0, 3, 6, 9, 12, 24, 48 and 72 hours after bacterial challenge to assess systemic infection levels and immune response.
  • MRSA S. aureus USA300 strain
  • MSSA 5. aureus RS184 strain
  • Mouse abdominal leachate was in 2 ml PBSCCat. # 17-516Q, BioWhittaker®, LONZA, USA), followed by centrifugation at 2,000 rpm for 10 minutes to store the supernatant at -80 ° C for analysis of cytokines using ELISA.
  • Resuspend in 1640 medium cRPMI; RPMI 1640: Gibco®; 10% FBS: Gibco®; 100 mM L-glutamine: Gibco®; and 100 mg / ml penicillin / Streptomycin: Gibco®).
  • Erythrocytes were lysed using RBC lysate complete solution (Cat. # 420301, Bio legend, San Diego, Calif., USA) for red blood cell removal and cells were resuspended again with cRPMI.
  • IL-17A, IL-23, IL- ⁇ , IL-10 and IFNy are available from R &D's Duoset® ELISA kit (R & D Systems Inc., Minneapolis, USA, USA) and ELISA Ready-SET-Go!
  • the kit (eBioscience, San Diego, Calif., USA) was used to measure the supernatant of the intraperitoneal leachate. ELISA kit information for each cytokine is shown below.
  • the microplate reader Cat. # 51119000, Thermo Fisher Scientific Inc., The absorbance values measured at 450 nm using Waltham, MA, USA) were corrected to 550 nm values.
  • PECs from mice immunized with Naive mice and WTA derivatives were isolated as described above and transferred to PE-96 platelets (2-3X10 5 cells / well) in a 1.5-well cRPMI medium to attach macrophages and dendritic cells. Incubated under 37 ° C., 5% CO 2 conditions (Cat. # MC0-17A, SANYO, Japan) for hours. The medium was then aspirated off and replaced with RPMI without antibiotics.
  • Macrophages and dendritic cells were cultured using murine and Pan T cell isolation kit II (Cat. # 130-095-130, Miltenyi Biotec, Bergisch Gladbach, Germany).
  • Pan T cell isolation kit II Cat. # 130-095-130, Miltenyi Biotec, Bergisch Gladbach, Germany.
  • ⁇ ⁇ ⁇ cells were subjected to FACS isolation using ⁇ ⁇ TCR specific Abs as follows.
  • Stained cells were pressurized through isometric bottom tubes (Cat. # 352235, Tewksbury, MA, USA) with cell strainer snap caps and flow cytometry (MoFlo® Astrios TM cell sorter, Beckman Coulter, Inc., South Kraemer Boulevard Brea) , CA, USA). Purity of the isolated cells was greater than 95%.
  • RNA isolation was performed according to the manufacturer's protocol, and mRNA was synthesized for cDNA synthesis using oligo (dT) primers (Cat. 1101, Pr omega Corpor at i on, Madison, WI, USA) and Improm-II system (Cat. # A3800). , Pr omega Corporation, Madison, Wis., USA), reverse transcription into cDNA on an RT—PCR instrument (C1000 Touch TM Thermal Cycler, Bio-Rad, Hercules, Calif., USA) at a volume of 20 ⁇ 1. Transcribed cDNA was amplified using a qRT-PCR instrument (Cat.
  • CD121a (IL-lRa) PE Bio legend JAMA- 147
  • TLR3 F 5 '-TAA AGC GAG TTT CAC ITT CAG G-3' (SEQ ID NO: 21)
  • the experimental animals were purchased from Orient Bio (Gyeonggi-do, South Korea) with a NZW rabbit (Yac; NZW (KBL), female) weighing 2 ⁇ 0.1 kg in weight, and commercially available solid feed before starting the experiment : ⁇ . # 38302- ⁇ , 0 ⁇ ⁇ 1 ⁇ 1 1 ⁇ 113 , Inc. Feeding the gene-deficient rea, it was adapted to the animal laboratory environment (rabbit cage (Cat. # DJ117, Daejong Machinery Industry, South Korea); 20-25 ° C, 55% humidity) for 1 week. One experimental animal was placed in a breeding cage to provide diet and drinking water by free feeding. The weight and dietary intake of each experimental animal were measured once daily and the lights were turned on and off at 12 hour intervals.
  • Zoletil® 50 (Bakbark Korea, Korea) and Xylazine hydrochloride (Cat. # 1251, Sigma ⁇ Aldrich Co. LLC., Saint Louis, M0, USA) for animal anesthesia are 30 mg each. /0.6 ml / 2 kg and 9.328 mg / 0.4 ml / 2 kg Mix in concentration and inject with im.
  • the animals were purchased from Orient Bio Co., Ltd. (Crl0ri; HA, Female) with a weight of 250 ⁇ 10 g. 1 week animal lab environment (Cat. # AAAC2051, Jeiotech, South Korea) while feeding commercial solid feed (Cat. # 5026, Orient Bio, Korea); 20 ⁇ 25 ° C, humidity 55%).
  • One experimental animal was placed in a breeding cage to provide diet and drinking water by free feeding. The weight and dietary intake of each experimental animal were measured once daily, and the lighting was turned on and off every 12 hours.
  • zoletil ® 50 (Burke Korea, Gene Deletion Rea) and xylazine hydrochloride (Cat. # 1251, Sigraa-Aldrich Co. LLC., Saint Louis, M0 USA)
  • the mixture was injected into im with 3 mg / 0.06 ml / 100 g and 0.9328 mg / 0.04 ml / 100 g, respectively.
  • the shaved area was divided in half (horizontal (3 cm) x vertical (6 cm)) and sectioned, PBS (100 ⁇ ) as a control on the left side and WTA-PGN (20 ug / 100 ⁇ ) on the right side were immunized with id. .
  • Intradermal immunization and MRSA (USA300) infections of 0 WTA, PGN, and WTA-PGN derivatives were performed on days 0, 14, 28, 42, and 56, respectively, in PBS (Cat. # R7-516Q, Lonza Walkersville, Inc.). , MD, USA) and 20 WTA, PGN derivatives were immunized a total of 5 times by id injection of 50 ⁇ l, 7, 21, 35, 49, 63, 7 days before the start of immunization and 7 days after each immunization.
  • Kidney tissues with abscess formation were observed as a solution containing 10 ml of 10 mM EDTA (Ethylenediarainetetra acetic acid; Cat # .EDT001.500, Bioshop, Canada) and 0.9% NaCl (Cat. # 14002, Sino Pharmaceutical, Korea). After homogenization, the homogenates were serially diluted and spread 50 ⁇ l in sheep blood agar plates (Cat. # AM601-01, Asan Pharmaceutical Co., Ltd., gene deletion rea), followed by 37 ° C. incubator (Cat. # SB_9, EYELA, Japan) and the number of colonies after counting for 24 hours.
  • 10 mM EDTA Ethylenediarainetetra acetic acid
  • Cat. # 14002 Sino Pharmaceutical, Korea
  • H & E Hematoxylin-eosifi
  • the collected tissue was subjected to a 10% formalin solution (Cat. # HT501128, Sigma-Aldr ich Co.
  • Example 6 ⁇ ⁇ T Cell Mediation in Human Body by Purified WTA-PGN Derivatives Protective effect against IL-17A secretion and MRSA infection
  • the purified purified WTA-PGN derivatives were prepared at different concentrations (0, 50, 100, 200 ug / 100 ⁇ 1 in PBS).
  • the results of observing IL-17A and IL- ⁇ production in the abdominal cavity according to the present invention are shown in FIGS. 11A and 11B, respectively.
  • the time dynamics for cytokine expression such as IL-17A and IL- ⁇ were observed by ELISA.
  • IL-17A was induced at 6 hours after increasing expression from 3 hours after WTA-PGN injection, and then decreased rapidly after 24 hours, and was not expressed at 24 hours, and all time periods when injection of the same amount of the combination of WTA and PGN were injected.
  • IL- ⁇ expression was also highest at 3-6 hours after WTA-PGN derivative injection and decreased to control level at 24 hours.
  • the WTA and PGN complex showed the maximum IL-I ⁇ expression at 3 hours, but rapidly decreased at 6 hours.
  • the expression level of IL-1 ⁇ was found to increase in concentration-dependent manner as in IL-17A (FIG. 11B).
  • Thl7 cells T cells capable of producing IL-17A in the body are known as Thl7 cells.However, if IL-17A is continuously secreted by Thl7 cells, the neutrophils may be excessively collected at specific sites or in host tissues. Since it has been reported to cause autoimmune diseases such as lupus and rheumatoid arthritis by destroying organs, it has been suggested that the inflammation that induces Thl7 cell mediated IL-17A expression is not useful as a useful vaccine or immunomodulator.
  • IL-17A production increased from 3 hours after injection of WTA-PGN derivatives, peaked at 6 hours, decreased after 9 hours, and was not produced at 12 hours.
  • IL- ⁇ was similar to the expression pattern of IL-17A. It showed a tendency, but after peaking at 6 hours, it began to decrease, and maintained at a relatively high level until 12 hours, but was not expressed after 24 hours.
  • IL-10 production gradually increased from 3 hours to maximum at 12 hours, decreased from 24 hours, but remained high until 48 hours, but rapidly decreased from thereafter to almost no production after 72 hours. Did you know that it's a weird thing
  • IL-17A derived from ⁇ ⁇ was produced by the WTA-PGN derivative.
  • Fig. 13 shows the results of experiments demonstrating that IL-17A generated at the time of WTA-PGN injection is IL-17A derived from ⁇ ⁇ ⁇ cells using flow cytometry. After WTA-PGN injection, cells intraperitoneally were collected over time, and only CD3 + T cells were collected first, then ⁇ cells with ⁇ ⁇ ⁇ cell receptor ⁇ T cel l receptor ( ⁇ ⁇ TCR) were collected to determine the percentage of these total ⁇ cells.
  • WTA-PGN is a novel immune modulator (i ⁇ une modulator) capable of inducing selective ⁇ ⁇ ⁇ cell mediated IL-17A expression.
  • IL-17A production from CD4 + and CD8 + T cells was not observed. This fact suggests that WTA-PGN derivatives are not involved in adaptive immune responses derived from CD4 + and CD8 + T cells, and produce only IL-17A from ⁇ ⁇ ⁇ cells to regulate cellular immune response by neutrophils. new It was found to be an immunomodulatory substance.
  • WTA derivatives produced ⁇ ⁇ ⁇ cell-derived IL-17A, resulting in VY 2/4 _ / lacking the VY 2/4 gene, a major subset of ⁇ ⁇ TCR, using WTA using mice and wild-type mice (wi ld-type).
  • IL-17A and IL- ⁇ were expressed as expected in the wild-type mouse group injected with WTA-PGN, as shown in FIGS. 15A and 15B, whereas the VY 2/4 — / _ mouse group did not produce such cytokines.
  • WTA-PGN is the main subgroup of TCR.
  • mice were pretreated with WTA-PGN, WTA and PGN derivatives. Investigation of changes in inflammatory and anti-inflammatory cytokines by re-infection showed that IL-17A production was expressed at 6 hours after infection with the USA300 strain, and then decreased to levels similar to controls at 24 hours (Figure 16A). .
  • IL-17A was expressed in mice pretreated with WTA and PGN three times, but its expression was about half that of WTA-PGN, and the specificity was that IL-17A was expressed after three times pretreatment. It can be seen that the amount is about 10 times higher expression.
  • IL- ⁇ ⁇ production was highest at 6 hours after USA300 infection, and significantly decreased at 24 hours.
  • the expression of IL- ⁇ ⁇ in WTA and PGN pretreatment groups was nearly identical to that of WTA-PGN at 6 hours. This fact indicates that IL- ⁇ ⁇ production was similar to that of WTA-PGN by re-infection of USA300 strain in mice pretreated with ⁇ 'PGN 3 (Fig. 16B).
  • IL-23 production was interestingly expressed only in the WTA-PGN group at 6 hours after reinfection of the USA300 strain, but not at 24 hours later. These results can be expected that IL-23 production is closely related to memory ⁇ ⁇ ⁇ cell mediated IL-17A production (FIG. 16C).
  • IFN Y after infection with the USA300 strain, showed maximum expression at 6 hours in mice pretreated with WTA and PGN, and significantly decreased at 24 hours thereafter.
  • IFN Y expression in mice pretreated with WTA-PGN showed the lowest expression in WTA-PGN group, as opposed to IL-17A expression.
  • IL-10 an anti-inflammatory cytokine
  • the expression of IL-10 increased to 3 hours after infection with the USA300 strain, and slightly decreased to 12 hours, but decreased to 48 and 72 hours after peaking again at 24 hours.
  • the production of IL-10 was maximal at 24 hours when the expression of the inflammatory cytokines IL-17A, IL- ⁇ ⁇ and IL-23 was completely inhibited. It can be seen that IL-10 effectively inhibits the expression of IL-17A (FIG. 16E).
  • mice pretreated with LP WTA-PGN 3 generated memorable ⁇ ⁇ T cells with a CD44 high / CD27 100 W marker.
  • ⁇ ⁇ T cells of mice pretreated with WTA-PGN were collected 3 hours after USA300 infection, and the expression of CD44 high / CD27 l0W ⁇ ⁇ ⁇ cells, markers of memory ⁇ ⁇ ⁇ cells, was examined.
  • the expression of IL-17A was higher than that of the control group, whereas IL-17A expression was not observed in CD27 + ⁇ ⁇ ⁇ cells (Figs. 17A and ⁇ 7 ⁇ ).
  • Vy4 + cells were reported to be more and more involved in the successive 5. aureus infections and memory reactions, and to be directly involved in the production of IL-17A. 3) ALI I unol 2014; 192: 3697 -3708). vi) IL-23 expression in dendritic cells
  • mice were immunized three times with abdominal cavity (i.p) with WTA-PGN and then infected with USA300 strains of 1 ⁇ 10 8 cells on day 35 and observed organ formation and abscess formation in the abdominal cavity 72 hours later. It was. The results are shown in FIG.
  • mice immunized with WTA-PGN could effectively protect the living body even at high concentrations of MRSA infection caused by early cellular and memory immune responses.
  • WTA-PGN which protects against MRSA infection
  • NZW rabbits and guinea pig models were immunized subcutaneously with WTA-PGN (20 ⁇ xg WTA-PGN / 100 ⁇ 1 PBS), and 6 hours later, MRSA (USA300 of 5X10 8 CFU) was injected subcutaneously for protection. was observed.
  • the size of the abscess was significantly smaller in the animals immunized with WTA-PGN (20 ug WTA-PGN / 100 ⁇ 1 PBS) compared to the control group immunized with PBSU00 ⁇ ) in both NZW rabbits and guinea pigs. And it can be observed that the rapture quickly (Figs. 26A and 26B). This confirms the fact that WTA-PGN is responsible for MRSA infections in the guinea pig, which is believed to have the most similar immune system to NZW rabbits and humans. Proved effective protection.
  • Wild-type, TLR-9-gene and Caspase-1-gene-deficient mice were injected with WTA-PGN isolated from l oa ⁇ l / and WTA-PGN isolated from wild type bacteria, and 6 hours later in intraperitoneal leachate.
  • IL-17A production was measured in IL-17A and IL- ⁇ expression only in wild-type mice injected with WTA-PGN isolated from Zl o ⁇ zl /, whereas TLR-9-gene deletion, Caspase- It was shown that these cytokines are not produced in 1-gene deficient mice (FIGS. 28A and 28B).
  • Macrophages, dendritic cells and ⁇ ⁇ ⁇ cells were isolated from mouse peritoneal leaching cells (PEC) to understand the higher signaling pathways required for ⁇ ⁇ ⁇ cell-dependent IL-17A secretion and the biological function and mechanism of WTA-PGN. Cytokines derived from cells were examined (FIG. 29).
  • IL-17A was in ⁇ ⁇ ⁇ cells
  • IL- ⁇ was in dendritic cells and ⁇ ⁇ ⁇ cells
  • IL-12 p40 (IL-23) was in dendritic cells
  • IFN Y was ⁇ . It was revealed that each is expressed in ⁇ T cells.
  • IL-23 and IL- ⁇ expression in dendritic cells plays an important role in the production of IL-17A in non-classical ⁇ cells, ie ⁇ ⁇ ⁇ cells, WTA-PGN It was deemed necessary to study more specifically how these cytokines recognize ligands and interact with each other during immunization.
  • wild-type and NLRP3-gene deficient mice were used to immunize WTA-PGN, isolate macrophages, dendritic cells, and ⁇ ⁇ T cells, and express the gene expression status up to NLRP3, cytokines and TLR1 9 in qRT-PCR.
  • NLRP3 was produced mainly in dendritic cells and ⁇ ⁇ T cells, and was higher in the control group treated with nothing in wild-type mice.
  • Wild-type mouse group showed higher expression than NLRP3 gene deficient mouse group (FIG. 30).
  • NLRP3 is expressed in dendritic and intracellular inflamasomes
  • the expression of IL- ⁇ was high in both dendritic cells and ⁇ ⁇ T cells, and the NLRP3 gene expression in NLRP3-gene-deficient mice in this experiment was shown to affect dendritic cells and ⁇ ⁇ ⁇ . It was thought that the same plaques of NLRP3 could also be present in ⁇ ⁇ ⁇ cells, which appeared almost identically in cells, suggesting a new fact that has not been reported so far (FIG. 30A).
  • IL-17A The expression of IL-17A was not expressed at all in the control group, whereas, when immunized with WTA-PGN, the expression level increased only in ⁇ ⁇ ⁇ cells obtained from the wild-type mouse group and the NLRP3 gene-deficient mouse group. It was higher than the expression level in the NLRP3-gene deficient mouse group. This is presumed to be the result of decreased expression of IL-17A in NLRP3—gene deficient mice, in which the IL-I ⁇ production is inhibited in the inflamasome of dendritic cells, which does not stimulate ⁇ cells (FIG. 30B).
  • IL-23 is a heterodimer form consisting of IL-12p40 and IL-23pl9.
  • IL-12p40 was found in dendritic cells of wild-type and NLRP3 gene-deficient mice immunized with WTA-PGN. Highly expressed in macrophages and dendritic cells of the gene-deficient mouse, but the expression is insignificant compared to IL-12p40 (Fig. 30C & 30D).
  • IL- ⁇ was not expressed at all in the control group, but when immunized with WTA-PGN, dendritic cells> ⁇ ⁇ ⁇ cells> macrophages in the wild-type mouse group, and ⁇ ⁇ ⁇ cells in the NLRP3-gene deficient mice. > Macrophages (Fig. 30E), IFN Y expression was significantly suppressed in wild-type mouse group immunized with WTA-PGN and high in ⁇ ⁇ ⁇ cells of control and NLRP3 gene deficient mouse groups ( Figure 30F).
  • Anti-WTA-IgG was generated upon subcutaneous immunization of WTA and WTA-PGN in the mouse model.
  • the control group injected with PBS lost more than 15% of body weight on the 2nd day after infection, and continued to maintain low weight, while the WTA and PGN groups had lower weight loss than the PBS group, and the WTA-PGN group had about 5% weight loss. After losing weight, he returned to his original weight six days after bacterial infection.
  • WTA, PGN, and WTA-PGN derivatives isolated from staphylococcal cell walls were immunized with subcutaneous injection in mice. On the 70th day, USA300 strains were injected intravenously and infected. The results of investigating whether the strain forms CFU and abscess are shown in FIGS. 34A and 34B.
  • Necrosis of glomeruli in the cortex and immune cell leaching and abscesses including polymorphonuclear leukocytes, macrophages and lymphocytes were identified in the medulla.
  • the medulla In the cortex, In the mice immunized with WTA-PGN, the ' morphology of glomerular sac similar to the mouse control group was maintained, but the necrosis of glomerular sac was found in the mice immunized with PBS and PGN.
  • a few immune cell leachates were found in the mice immunized with WTA-PGN and showed a similar pattern to the control mice. Abscess was not found at all, showing a pattern close to normal tissue.
  • the PBS group and the PGN group large abscesses were found, and in the cortex medulla, kidney damage was the lowest in the order of WTA-PGN>WTA>PGN> PBS group.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

본 발명은 벽테이코산(WTA)-부착된 펩티도글리칸(PGN)을 유효성분으로 포함하는 조성물, 상기 조성물을 이용한 포도상구균 감염 질환의 예방 또는 치료방법 및 상기 조성물에서 유효성분으로 사용될 수 있는 가용성 벽테이코산-부착된 펩티도글리칸(WTA-PGN)을 제조하는 방법에 관한 것으로서, 본 발명의 조성물은 항원-항체 반응에 의한 옵소닌 식세포 작용(opsonophagocytosis) 및 감염 초기에 T 세포 활성화에 의한 호중구 매개의 식세포 작용 (phagocytosis)에 의해 포도상구균 감염 질환을 예방 또는 치료하는데 유용하게 사용될 수 있다.

Description

명세서
포도상구균 감염 질환의 예방또는 치료용조성물 발명의 분야 본 발명은 포도상구균 감염 질환의 예방 또는 치료용 조성물에 관한 것으로서, 보다 상세하게는 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)을 유효성분으로 포함하는 조성물, 상기 조성물을 이용한 포도상구균 감염 질환의 예방 또는 치료방법 및 상기 조성물에서 유효성분으로 사용될 수 있는 가용성 WTA— PGN을 제조하는 방법에 관한 것이다. 발명의 배경 또도^구균 St aphyl ococcus aureus)은: 인간의 피부, 연조직 (soft tissue) 및 혈류에서 중증 감염을 야기할 수 있다 (Lowy FD, The New England journal of medicine, 339:520—532, 1998) . 또한, 포도상구균은 여러 가지 원인에 의하여 베타 -락탐 계열의 항생제인 메티실린에 대해 내성을 갖는 메티실린 -내성 균주 (methicill in-resistant S. aureus; MRSA)로 변형될 수 있는데, 이러한 MRSA 감염은 치료가 어렵고 예후가 좋지 않아사회적으로 큰 문제가 되고 있다. 특히, 병원에 입원한 적이 없는 어린이 둥에게 지역사회 관련 MRSA 균주 (co隱 unity-associated MRSA; CA-MRSA)가 출현하여 종래의 병원 관련 균주 (hospital-associated MRSA; HA-MRSA)와 함께 그 치료 어려움을 더욱 가중시키고 있다. 최근 미국에서 확산되고 있는 USA300 MRSA 균주는 어린이나 면역 기능이 저하된 사람들에게 심각한 질환을 유발하고 있는바, MRSA 감염에 대해 예방 및 치료 효과를 갖는 새로운 백신이나 치료법의 개발이 요구된다. 종래 국외 연구진들이 포도상구균 백신 후보 물질들로 개발하려던 물질들은 임상 실험에서 좋은 예후를 보였음에도 불구하고, 임상 단계에서 모두 실패하였기에, 최근까지도 임상적으로 유용하게 사용될 수 있는 포도상구균 백신은 개발되지 않고 있는 실정이다.
최근 연구들에 따르면, 포도상구균 백신으로서 기능하기 위해서는 특정 백신 후보 물질에 대한 특이적인 혈청 항체를 생성하여 옵소닌식균작용 (opsonophagocytosis)을 촉진하는 체액성 면역 (humoral i画 unity)과 MRSA 감염 초기 단계에 T 세포ᅳ매개 IL-17A를 생성하여 호중구 동원 및 식균작용 (phagocytosis)을 촉진하는 세포성 면역 (cellular i隱 unity)이 모두 필요하다는 것과, T 세포 활성화에 의한 식균세포 작용기능 (phagocytic cell effector function)을 촉진함으로써 포도상구균 감염에 대해 보호 역할을 할 수 있다는 사실이 제안되었다. 또한, 마우스 모델에서 포도상구균 감염이 기억 γ δ-Τ 세포의 수를 증가시켜 감염에 대해 보호효과를 나타낸다는 연구결과가 국외 연구진에 의해 발표되었다 (J. Immunol. , 192(8) :3697-708, 2014). 이 연구결과는 포도상구균에 노출시 γ δ-Τ세포 기억 반응이 α β Τ 세포와유사한 방식으로 유도되며, IL-17A를 생산하는 기억 γ δ-Τ세포의 유도가 포도상구균에 대해 강력한 숙주 보호 효과를 나타낼 수 있음을 시사한다. 그러나, 현재까지 포도상구균의 어떤 물질이 이러한 효과를 나타내는지에 대해선 전혀 밝혀진 바 없다. 그람 음성 박테리아와 달리, 포도상구균과 같은 그람 양성 박테리아의 세포벽은 크게 펩티도글리칸 (PGN), 벽테이코산 (WTA), 리포테이코산 (LTA) 및 협막 다당류 (CP)를 포함하는 4종의 성분으로 구성된다.
외부에서 침입한 병원균을 숙주의 생체 방어 단백질이 신속히 인식한 후 보체계 (complement system) 등의 선천성 면역 (innate immunity) 반웅을 선택적으로 활성화시켜 박테리아를 체내로부터 신속히 제거하는 반응이 매우 중요하나, 숙주의 생체방어 단백질들이 인식하는 박테리아의 리간드 물질이 명확히 규명되지 않아 병원균에 의한 감염증의 치료 및 예방에 어려움을 겪고 있다. 특히, 포도상구균의 세포벽 성분인 ΨΐΑ, LTA, PGN, CP 및 지질단백 등의 리간드는 주로 당고분자 (glycopolymer )로서 그 구조가 매우 복잡하고 다른 물질과 함께 정제되기 때문에 각각을 단일 물질로서 분리 및 정제하기 어렵다. 또한 여러 종류의 세포벽 성분이 외부에 노출되어 있기에 어떤 성분이 숙주의 생체 방어 단백질의 리간드로 작용하는지를 규명하기 쉽지 않은 실정이다. 본 발명자들은 특정 포도상구균 돌연변이 균주로부터 WTA-부착된 PGN(WTA-PGN)을 분리하였고, 장기 WTA-PGN이 포도상구균의 감염증에 대한 초기 생체 면역 반웅을 유도할 수 있는 생체 방어 단백질의 리간드로서 기능함으로써 포도상구균 감염 질환의 예방 또는 치료에 유용하다는 것을 확인하였다. 발명의 요약 따라서, 본 발명의 목적은 포도상구균 감염 질환의 예방 또는 치료용 조성물을 제공하는 것이다 .
본 발명의 다른 목적은 상기 조성물을 이용한 포도상구균 감염 질환의 예방 또는 치료방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물에서 유효성분으로 사용될 수 있는 가용성 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)을 제조하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 벽테이코산ᅳ부착된 펩티도글리칸 (WTA-PGN)을 유효성분으로 포함하는, 포도상구균 감염 질환의 예방 또는 치료용 조성물을 제공한다.
상기 다른 목적을 달성하기 위하여, 본 발명은 전술한 조성물을 대상체에 투여하는 단계를 포함하는, 포도상구균 감염 질환의 예방 또는 치료방법을 제공한다. 상기 또 다른 목적을 달성하기 위하여, 본 발명은 ( 1) 야생형 포도상구균으로부터 /^( l ipoprotein di acylglycerol transferase) 및 oatAiO-acetyl transferase) 유전자가 결실된 이중 돌연변이 균주를 수득하는 단계; (2) 상기 이중 돌연변이 균주를 파쇄하고, 얻어진 파쇄물로부터 불용성 WTA-PGN을 수득하는 단계; (3) 상기 불용성 WTA-PGN에 β -lyt i c 효소를 처리하는 단계; (4) 상기 단계 (3)의 효소 처리물로부터 가용성 WTA-PGN 함유 분획을 수득하는 단계; (5) 상기 가용성 WTA-PGN 함유 분획에 라이소자임 ( lysozyme) 또는 뮤타노라이신 (mutanolys in)을 처리하는 단계; 및 (6) 상기 단계 (5)의 효소 처리물로부터 가용성 WTA-PGN을 수득하는 단계를 포함하는, 가용성 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)을 제조하는 방법을 제공한다. 도면의 간단한 설명 도 1은 포도상구균의 세포벽 구조를 나타낸 모식도이다.
도 2는 N4220 Δ lgt/Δ oat 돌연변이 균주로부터 가용성 WTA-PGN, 가용성
WTA 및 가용성 PGN을 각각 수득하는 과정을 나타낸 흐름도이다.
도 3은 불용성 WTA-PGN에 β -Lyt i c 효소를 처리한 후, HiTrap Q 컬럼으로 분리한 용출 패턴 (A) 및 상기 용출 분획의 겔 이동성 (B)과 β -Lyt i c 효소를 처리한 WTA-PGN에 라이소자임 처리 후, HiTrap-Q 컬럼으로 분리한 용출 패턴 (C) 및 겔 이동성 (D)을 나타낸 것이다.
도 4는 WTA-PGN을 세파크릴 S-200 HR 컬럼으로 분리한 용출 패턴 (A) , 겔 이동성 (B) 및 마우스 복강내에 주사시 IL-17A의 생산량을 정량한 결과 (C)를 나타낸 것이다.
도 5는 WTA-PGN을 첫 번째 C18 역상 컬럼으로 분리한 용출 패턴 (5A) , 겔 이동성 (5B) , 두 번째 C18 역상 컬럼으로 분리한 용출 패턴 (5C) , 겔 이동성 (5D) 및 도 5A의 A , B , C, !) 및 E 분획의 마우스 주사시 유도되는 IL-7A 양의 정량 결과 (5E)를 나타낸 것이다. 도 6은 불용성 WTA PGN에 TCA를 처리한 후 HiTrap-Q 컬럼으로 분리한 용출 패턴 (A) 및 겔 이동성 (B)을 나타낸 것이다.
도 7은 가용성 PGN을 Hitrap-Q 컬럼으로 분리한 용출 패턴을 나타낸 것이다.
도 8은 가용성 PGN을 Toyopearl HW 55 S 컬럼으로 분리한 용출 패턴을 나타낸 것이다.
도 9는 WTA-PGN 및 WTA을 대상으로 27% PAGE 및 질산은 염색 (A), 실리카겔 박층 크로마토그래피 (B) 및 포스페이트 및 GlcNAc 잔기의 양 (C)을 나타낸 것이다.
도 10은 Τ 세포 유도 초기 면역반웅 (cellular immunity) 및 기억성 면역반웅을 관찰하기 위해 WTA, PGN 및 WTA-PGN을 복강 내로 3회 면역화 및 MRSA JSA300) 감염을 위한 시간 스케줄을 나타낸 것이다.
도 11은 다양한 농도 및 시간에 따른 PBS, WTA-PGN 및 WTA와 PGN의 흔합물의 마우스에의 복강 투여에 의한 IL-17A(11A) 및 IL-1]3(11B) 생성량을 나타낸 것이다.
도 12는 WTA-PGN의 주사후 시간별 IL-17A, IL-Ιβ 및 IL-10 생성량을 나타낸 것이다.
도 13은 PBS 및 WTA-PGN의 주사 후 IL-17A를 생산하는 γ δ T 세포의 분포 비율을 유세포분석법을 이용하여 분석한 결과를 나타낸 것이다.
도 14는 PBS 및 WTA-PGN의 주사 후에 CD4+ 및 CD8+ T 세포 매개의 IL-17A 생성량을 나타낸 것이다.
도 15는 야생형 및 VY 2/4— /_마우스에서의 PBS, WTA-PGN 및 WTA와 PGN의 흔합물에 의한 IL-17A의 생성량 (15A) 및 IL-Ιβ의 생성량 (15B)을 나타낸 것이다. 도 16은 PBS, WTA, PGN 및 WTA-PGN로 전처리한 각각의 마우스에서 USA300 균주의 감염으로 유도되는 IL-17A(16A), IL-1P(16B), IL-23(16C), IFNy (16D) 및 IL-10 16E)의 생성량을 나타낸 것이다.
도 17은 WTA-PGN으로 전처리한 마우스의 γ δ T 세포에서의 기억성 γ δ T 세포의 마커인 CD44 및 CD27의 발현량 ( Γ7Α) , 및 이들 기억성 γ δ Τ 세포에서의 IL-17A의 발현량 ( 17B)을 나타낸 것이다.
도 18은 PBS , WTA-PGN, PGN 및 ΠΑ로 전처리한 각각의 마우스에서 기억상 γ δ Τ 세포에서의 IL-17A 발현량을 나타낸 것으로서, FACS에 의한 세포내 IL-17A 생성량 ( 18A) ; (B) ELISA에 의한 세포외 IL— 17A 생성량 ( 18B)을 나타낸 것이다.
도 19는 WTA-PGN 전처리 후 CD4+ , CD8+ 및 γ δ Τ 세포에서의 IL-17A 발현량을 나타낸 것이다.
도 20은 기억성 γ δ Τ 세포 생성시에 γ δ TCR 하부집단의 분화 결과를 나타낸 것이다.
도 21은 WTA-PGN로 전처리한 마우스와 전처리하지 않은 마우스에서 수지상 세포에서의 IL-23 발현량을 나타낸 것이다
도 22는 PBS , WTA, PGN 및 WTA—PGN으로 전처리한 후, USA300 균주를 감염시킨 마우스의 복강내의 장기 형상 및 농양 생성 여부를보여주는사진이다. 도 23은 WTA-PGN으로 면역화하여 기억 Y S Τ 세포가 유도된 마우스에서의 USA300 감염에 대한 생존 결과를 나타낸 것이다.
도 24는 WTA-PGN으로 면역화 후, 메티실린 민감성 포도상구균 (MSSA 5. aureus NRS184 균주)을 감염시킨 마우스에서의 농양 형태 (24A) 및 농양 부피 (24B)를 나타낸 것이다.
도 25는 WTA-PGN 면역화 후 MRSA를 감염시킨 NZW 토끼에서의 피부 농양 형성 여부 (25A) , 피부 괴사 영역의 면적 (25B) 및 농양 부피 (25C)를. 정량화한 결과를 나타낸 것이다.
도 26은 WTA-PGN 면역화 후 NZW 토끼 (A) 및 기니어 피그 (B)에서 피부 농양 형성 여부 및 피부 괴사 영역의 면적과 농양 부피를 정량화한 결과를 나타낸 것이다.
도 27은 WTA-PGN으로 면역화된 기니어 피그를 MRSA로 감염시킨 후 복강에서의 농양 및 용혈 현상을 관찰한사진이다. 도 28은 WTA-PGN으로 면역화된 야생형, TLR-9-유전자 결손 및 Caspase-1-유전자 결손 마우스에서의 IL-17A(28A) 및 IL-Ιβ의 생성량 (28B)을 측정한 결과를 나타낸 것이다.
도 29는 WTA-PGN를 전처리한 후 얻어진 마우스의 대식세포, 수지상 세포 및 γ δ T 세포에서 IL-17A(29A), IL-Ιβ (29B), IL-23C29C) 및 IFNy(29D)의 발현량을 측정한 결과이다.
도 30은 야생형 및 NLRP3 유전자 결손 마우스에서의 WTA-PGN 주사시 유도되는 유전자 발현 양상 (30A내지 30J)을 나타낸 것이다.
도 31은 항 -IgG 생성에 의한 체액성 면역반웅을 관찰하기 위해, WTA, PGN 및 WTA-PGN으로 피하로 면역화한 각각의 마우스에 꼬리 정맥으로 MRSA USA 300을 감염 시킨 실험의 시간 스케줄을 나타낸 것이다 ··
도 32는 WTA 및 WTA-PGN으로 면역된 마우스에서의 항 -IgG 생성량을 나타낸 것이다.
도 33은 WTA, PGN및 WTA-PGN으로 면역화된 마우스에서, USA300 세포 감염 후 일주일 간 마우스의 체중 변화를 나타낸 것이다.
도 34는 WTA, PGN 및 WTA-PGN으로 면역화된 마우스의 신장 이미지 및 박테리아 로드 (CFU)를 나타낸 것으로서, (i) PBS, (ii) WTA 및 (iii) WTA—부착된 PGN으로 면역화된 마우스의 신장을 관찰한 이미지 (34A); 및 (i) PBS, (; Π) WTA및 (iii) WTA-부착된 PGN으로 면역화된 마우스에서 신장 내에 존재하는 MRSA균주의 CFU (신장의 CFU/g)(34B)를 나타낸 것이다.
도 35는 ΨΐΑ, PGN 및 WTA-PGN으로 면역화 후에 MRSA USA300)를 혈류로 감염시킨 후 마우스 신장에서의 조직병리학 영상을 나타낸 것이다. 발명의 상세한 설명 이하, 본 발명에 사용된 용어를 정의한다.
본원에 사용된 용어 "벽테이코산 (wall teichoic acid)" 는 포도상구균 (5. 의 세포벽 성분 중 하나로서 글리세를 포스페이트 반복 단위 및 리비를 포스페이트 반복 단위와 함께 (N-아세틸만노사민) -
( β -1 , 3)-(Ν-아세틸글루코사민)으로 구성된 당중합체를 지칭한다.
본원에 사용된 용어 "펩티도글리칸 (pept idoglycan) " 은 스템 펩타이드간 결합에 의해 연결된 N-아세틸뮤라메이트 (MurNAc)와 N-아세틸글루코사민 (GlcNAc)의 반복 당중합체를 지칭한다.
본원에 사용된 용어 "벽테이코산 ( TA)-부착된 펩티도글리칸 (PGN) " 은 벽테이코산과 펩티도글리칸이 공유결합된 구조를 지칭하며, 본원에서 ΓΑ-PGN' 과 상호교환적으로 사용된다.
본 발명은 벽테이코산 (WTA)-부착된 펩티도글리칸 (PGN)을 유효성분으로 포함하는, 포도상구균 감염 질환의 예방 또는 치료용 조성물을 제공한다.
본 발명의 하나의 구현예에서, 상기 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)은 하기 일반식 1로 표시될 수 있다.
〈 1>
Figure imgf000010_0001
상기 일반식 1에서, n은 10 내지 50의 정수이고; m은 1 내지 3의 정수이며 ; A는 N-아세틸만노사민 (ManNAc)이고; B는 N-아세틸글루코사민 (GlcNAc)이며; 0 및 P는 각각 독립적으로 0 내지 5의 정수이고; ^ 내지 ¾은 각각 독립적으로 하이드록시, 테트라펩타이드 또는 펜타펩타이드이며; 는 하이드록시 또는
N-아세틸뮤람산 (Mur NAc )이다.
본 발명의 다른 구현예에서, 상기 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)은 일반식 1로 표시될 수 있고, 여기서 n은 10 내지 50의 정수이고; m은 1 내지 3의 정수이며; A는 N-아세틸만노사민 (ManNAc)이고; B는
Nᅳ아세틸글루코사민 (GlcNAc)이며; 0 및 P는 각각 독립적으로 0 내지 5의 정수이고; ¾ 내지 ¾은 각각 독립적으로 하이드록시, 테트라펩타이드 또는 펜타펩타이드이며; R4는 하이드록시 또는 N—아세틸뮤람산 (MurNAc)이고; 상기 A와
B는 서로 β -위치로 연결된다. '
본 발명의 다른 구현예에서, 상기 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)은 일반식 1로 표시될 수 있고, 여기서 η은 35 내지 45의 정수이고; m은 3이며; A는 N-아세틸만노사민 (ManNAc)이고; B는 N-아세틸글루코사민 (GlcNAc)이며; 0 및 P는 각각 독립적으로 0 내지 3의 정수이고; ¾ 내지 R3은 각각 독립적으로 하이드록시, 테트라펩타이드 또는 應타^타이드이며 ; ¾는 하이드록시 또는 N-아세틸뮤람산 (Mur NAc)이다.
본 발명의 다른 구현예에서, 상기 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)은 일반식 1로 표시될 수 있고, 여기서 n은 40이고; m은 3이며; A는 Nᅳ아세틸만노사민 (ManNAc)이고; B는 N-아세틸글루코사민 (GlcNAc)이며;
0 및 P는 각각 독립적으로 0 내지 5의 정수이고; 및 ¾는 테트라펩타이드이며;
R3은 하이드록시, 테트라펩타이드 또는 펜타펩타이드이고; 는 하이드록시 또는
N-아세틸뮤람산 (MurNAc)이다.
본 발명의 다른 구현예에서, 상기 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)은 일반식 1로 표시될 수 있고, 여기서 n은 40이고; m은 3 이며; A는 N-아세틸만노사민 (ManNAc)이고; B는 N-아세틸글루코사민 (GlcNAc)이며;
0 및 P는 각각 독립적으로 0 내지 5의 정수이고; Ri 및 ¾는 테트라펩타이드이며 ; 은 하이드록시, 테트라펩타이드 또는 펜타펩타이드이고; 상기 테트라펩타이드는 -ArAa-As— A4이며, 여기서 은 Ala 또는 Gly이고, A2는 Glu 또는 Asp이며, A3는 Lys, Arg 또는 His이고, A4는 Ala 또는 Gly이며, R4는 하이드록시 또는 N-아세틸뮤람산 (MurNAc)이다.
본 발명의 다른 구현예에서, 상기 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)은 일반식 1로 표시될 수 있고, 여기서 n은 40이고; m은
3이며 ; A는 N-아세틸만노사민 (ManNAc)이고; B는 N-아세틸글루코사민 (GlcNAc)이며 ;
0 및 P는 각각 독립적으로 0 내지 5의 정수이고; Ri 및 R2는 테트라펩타이드이며;
R3은 하이드록시, 테트라펩타이드 또는 펜타펩타이드이고; 상기 테트라펩타이드는 -(L-Ala)-(D-Glu)-(L-Lys)-(D-Ala)이며; ¾는 하이드록시 또는
Nᅳ아세틸뮤람산 (MurNAc )이다.
본 발명의 다른 구현예에서, 상기 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)의 ¾ 내지 ¾ 중 어느 하나는 다른 FTA-PGN의 내지 ¾ 중 어느 하나와 서로 교차결합을 형성할 수 있으며, 이에 따라 WTA-PGN은 2개의 WTA-PGN이 결합된 다이머 (dimer) 형태로도 존재할 수 있다. 본 발명에 따른 조성물은 포도상구균 감염 질환의 예방 또는 치료 용도로 사용될 수 있으며, 상기 포도상구균 감염 질환을 유발하는 포도상구균은 메티실린-내성 포도상구균 (methicil Πηᅳ resistant Staphylococcus aureus, MRSA) , 메티실린-민감성 포도상구균 (methicil Πη-sensitive 5 «¾¾¾κ/ ί:ο 7ίΛ5 awre s, MSSA) 또는 병원성 포도상구균일 수 있다.
상기 포도상구균 감염 질환의 예는 연부조직 감염, 화농성 관절염, 화농성 골수염, 중이염, 폐렴, 패혈증, 급성 호흡기 감염 (acute respiratory tract infection), 카테터의 사용으로 인한 감염, 수술 후 창상 감염, 균혈증, 심내막염 또는 식중독을 들 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 조성물은 상기 WTA-PGN 외에 약학적으로 허용가능한 담체, 희석제 및 /또는 보강제를 추가로 포함할 수 있다.
본 발명에 따른 조성물에 사용되는 담체는 투여 방법 및 경로, 그리고 표준 약물 조성물을 기초로 선택되고, 예를 들면, 담체 단백질 (즉, 소혈청 알부민 (BSA) , 난백 알부민 (OVA) , 인간혈청 알부민 (HSA) 및 키홀 림펫 헤모시아닌 (KLH) ) , 용해제 (즉, 에탄을, 폴리솔베이트 및 Cremophor EL™) , 등장화제, 보존제, 항산화제, 부형제 (즉, 락토스, 전분, 결정성 샐를로오스, 만니를, 말토스, 인산 수소 칼슘, 경무수 규산 및 탄산칼슴) , 결합제 (즉, 전분, 폴리비닐피로리돈, 히드록시프로필샐를로오스, 에틸샐롤로오스, 카복시메틸셀를로오스 및 아라비아검), 윤활제 (즉, 스테아린산 마그네슴, 탈크, 및 경화유 등) 및 안정화제 (즉, 락토스, 만니를, 말토스, 폴리솔베이트, 마크로졸, 폴리옥시에틸렌 경화 피마자유)일 수 있다. 필요에 따라, 글리세린, 디메틸아세트아미드, 젖산 나트륨, 계면활성제 또는 염기성 물질 (즉, 수산화 나트륨, 에틸렌디아민, 에탄올 아민, 중탄산나트륨, 알기닌, 메글루민 또는 트리스아미노메탄) 등을 포함할 수 있다. 구체적으로, 본 발명에 따른 백신 조성물은 항원성을 강화하기 위하여, 담체 단백질로서 공지의 KLH 용액 (Calbiotec , 50% 글리세를 용액 1ml 당 125 mg를 용해시킴)과 결합될 수 있다,
본 발명에 따른 조성물에 사용되는 희석제는 투여 방법 및 경로, 그리고 실제 표준 약물 조성물을 기초로 하여 선택될 수 있다. 회석제의 예시는 물, 생리식염수, 인산염 완충 생리식염수 및 중탄산염 용액을 포함한다.
본 발명에 따른 조성물에 사용되는 보강제는 투여 방법 및 경로, 그리고 실제 표준 약물 조성물을 기초로 선택된다. 보강제의 예시는 콜레라 독소, 대장균의 이열성 장독소 (LT) , 리포좀 및 면역 자극성 복합체 ( ISC0M)를 포함한다. 투여 경로는 포도상구균 감염의 염려가 있는 투여대상의 연령, 체중, 성별 및 일반적인 건강상태에 따라 다를 수 있으나, 투여는 경구투여 및 비경구 투여 (예를 들면, 정맥 투여, 동맥 투여 및 국소 투여) 경로 중 어느 것으로도 투여될 수 있다. 그 중에서도, 비경구 투여가 바람직하다.
경구 투여 및 비경구 투여용 제형 및 그것의 제조방법은 당업자에게 공지되어 있다. 경구 투여 및 비경구투여용 제형은 통상적인 공정, 예를 들면, 앞서 언급한 약학적으로 허용가능한 담체와 흔합하여 제조될 수 있다. 경구 투여용 제형의 예시는 용제, 정제, 과립제, 가루약 또는 캡슐제와 같은 고체 또는 액체 제형을 포함한다. 비경구 투여용 제형의 예시는 용제, 현탁제, 연고제, 크림, 좌제, 안제 점비제 및 점이제를 포함한다. 본 제제의 서방을 원하면, 생물 분해성 플리머 (예를 들면, 플리 -D ,L-락티드-코 -그리코시드 또는 폴리글리코시드)를 버크 기제에 첨가할 수 있다 (예를 들면, 미국특허 제 5,417,986호, 제 4, 675 , 381호 및 제 4,450 , 150호 참조) . 경구 투여의 경우, 풍미제 및 착색료가 첨가될 수 있다. 적절한 약제학적 담체, 희석제와 그것의 사용을 위한 약제학적 필요한 물질은 문헌 [Remington ' s Pharmaceut ical Sciences]에 기재되어 있다.
본 발명에 따른 조성물의 투여량은 보강제의 종류, 투여 방법 및 빈도, 및 원하는 효과를 기초로 결정되며 일반적으로 성인 1회 투여시 WTA 1 ig 내지 lOOmg일 수 있다. 본 발명의 조성물에 보강제가 첨가되는 경우, 투여량은 일반적으로 성인 1회 투여시 WTA-PGN l g 내지 lmg일 수 있다. 상기 투여는 필요한 경우 수회 투여될 수 있다. 예를 들면, 일정 간격으로 초기에 조성물이 투여된 후 3회 보강하여 조성물이 다시 투여될 수 있다. 선택적으로, 첫 번째 및 두 번째 보강을 위한 조성물은 각각 동일한 제제를 사용하여 최초 투여 후 8 내지 12번째 주 및 16 내지 20번째 주에 투여될 수 있다. 또한, 본 발명은 전술한 조성물을 이를 필요로 하는 대상체에 투여하는 단계를 포함하는, 대상체에서의 포도상구균 감염 질환의 예방 또는 치료방법을 제공한다.
상기와 같이 본 발명에 따른 조성물을 투여함으로써 대상체에서 읍소닌식균작용 (opSo卿 hagocytosi s) 및 식균작용 (phagocytosi s)을 동시에 유도함으로써 포도상구균 감염 질환을 예방 또는 치료할 수 있다.
본 발명의 방법은 대상체 내에서 상기 조성물의 투여 후 24시간 이내에 γ δ -Τ 세포수, IL-17A 생성량 및 IL-Ιβ 생성량을 증가시킨다. 또한, 본 발명의 방법은 상기 대상체 내에서 상기 조성물의 투여 후 12시간 이후에 IL-10 생성량을 증가시킨다. 발명은 하기의 단계를 포함하는 가용성 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)을 제조하는 방법을 제공한다:
(1) 야생형 포도상구균으로부터 ( lipoprotein diacylglycerol transferase) 및 03 (0— acetyl transferase) 유전자가 결실된 이중 돌연변이 균주를 수득하는 단계 ;
(2) 상기 이중 돌연변이 균주를 파쇄하고, 얻어진 파쇄물로부터 불용성
WTA-PGN을 수득하는 단계 ;
(3) 상기 불용성 WTA-PGN에 β -lytic효소를 처리하는 단계;
(4) 상기 단계 (3)의 효소 처리물로부터 가용성 WTA-PGN 함유 분획을 수득하는 단계 ;
(5) 상기 가용성 WTA-PGN 함유 분획에 라이소자임 (lysozyme) 또는 뮤타노라이신 (mutanolysin)을 처리하는 단계; 및
(6) 상기 단계 (5)의 효소 처리물로부터 가용성 WTA-PGN올 수득하는 단계. 이하, 본 발명에 따른 가용성 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)을 제조하는 방법을 상세히 설명한다 .
본 발명의 방법에서, 단계 (1)에서는 야생형 포도상구균으로부터 /^(lipoprotein diacylglycerol transferase) 및 oatA(0~acety\ transferase) 유전자가 결실된 이중돌연변이 균주를 수득한다.
상기 단계 (1)에서 수득되는 /^(lipoprotein diacylglycerol transferase) 및 os O-acetyl transferase) 유전자가 결실된 이중 돌연변이 균주 (/ g oatA는 lgt 유전자의 결실로 인해 지질단백 오염 가능성이 없어, 이로부터 보다 순수한 WTA-PGN을 간편하게 얻을 수 있다. 또한, 상기 단계 1에서 사용되는 이중 돌연변이 균주는 oat A유전자의 결실로 인해 PGN의 MurNAc 잔기에 아세틸기가 없어 상기 생성된 WTA-PGN은 단계 2의 라이소스타핀 또는 β-lytic 효소에 의해 쉽게 분해될 수 있다.
상기 이중 돌연변이 균주는 야생형 포도상구균, 예를 들면 메티실린 -내성 포도상구균 (MRSA), 메티실린-민감성 포도상구균 (MSSA) 또는 병원성 포도상구균으로부터 종래 알려진 통상적인 돌연변이 방법에 의해 수득될 수 있다. 예를 들면 상기 이중 돌연변이 균주는 플레오마이신 (phleomycin)에 내성을 가지면서 지질단백 디아실글리세를 트랜스퍼라아제 (lipoprotein di cylglycerol transferase, Igt) 유전자가 결손된 T363 균주 (Nakayama M et al . , Journal of Immunology 189 :5903-591, 2012)와 에리트로마이신에 내성을 가지면서 0-아세틸 트랜스퍼라아제 (0-acetyl transferase, oat 유전자가 결손된 T0003 균주 (Park KH et al. , Journal of Biological Chemistry 285, 27167-27175, 2010)를 파아지 80을 매개로 하여 형질도입하여 제조될 수 있다. 본 발명의 방법에서, 단계 (2)에서는 상기 이중 돌연변이 균주를 파쇄하고 얻어진 파쇄물로부터 불용성 WTA-PGN을 수득한다.
상기 단계 (2)는 문헌 [ParkKHet al ·, Journal of Biological Chemistry 285,
27167-27175, 2010; Jung DJ et al . , Journal of Immunology 2012, 189: 4951-4959, 2012]에 기재된 방법을 참조하여 수행될 수 있다.
예를 들면, 상기 단계 (2)는 단계 (1)에서 수득한 이중 돌연변이 균주를 배양하고, 세포를 파쇄하고, 이로부터 불용성 WTA-PGN을 수득하는 단계를 포함할 수 있다. 본 발명의 방법에서, 단계 (3)에서는 상기 불용성 WTA-PGN에 β -lytic 효소를 처리한다.
상기 β -lytic 효소는 단계 (2)에서 수득한 불용성 FTA-PGN의 MurNAc 잔기에 존재하는 스템펩타이드를 연결하는 펜타글리신 ((Gly)5) 결합을 분해하는 역할을 함으로써 불용성 WTA-PGN올 가용성 WTA-PGN으로 변화시킨다.
상기 β-lytic 효소는 상업적으로 이용가능하거나 문헌 [Li et al, . Journal of Biochemitry 122, 772-778, 199기에 기재된 방법에 따라 분리 및 정제될 수 있다. 상업적으로 이용가능한 β-lytic 효소의 예로는 라이소스타핀 (lysostaphin)을 들 수 있으나, 이에 제한되지 않는다.
상기 단계 (3)은 단계 (2)에서 수득한 불용성 WTA-PGN을 완충액에 현탁시킨 뒤, β-lytic 효소를 가하여 30 내지 40°C에서 10 내지 14시간 동안 교반하면서 반응시킴으로써 수행될 수 있다. 본 발명의 방법에서, 단계 (4)에서는 상기 단계 (3)의 효소 처리물로부터 가용성 WTA-PGN 함유 분획을 수득한다.
상기 단계에서는 β -lyt ic 효소 처리물을 HPLC에 통과시켜 분획을 얻은 후, 상기 분획에서 가용성 WTA-PGN이 함유된 분획을선택한다.
상기 가용성 WTA-PGN 함유 분획은 단계 (3)의 효소 처리물을 고성능 액체 크로마토그래피 (HPLC)에 통과시킴으로써 수득될 수 있다. 상기 HPLC를 통과한 분획 중 WTA-PGN이 함유된 분획은 PAGE 또는 질산은 (si lver ni trate) 염색에 의해 확인될 수 있다.
상기 HPLC 정제에 사용되는 컬럼으로는 WTA의 리비틀 포스페이트의 음이온과 결합하는 음이온 교환수지인 Hi Tr ap-Q (GE Heal thcare)를 들 수 있으나, 이에 제한되지 않는다. 본 발명의 방법에서, 단계 (5)에서는 상기 가용성 WTA-PGN 함유 분획에 라이소자임 ( lysozyme) 또는 뮤타노라이신 (mutanolysin)을 처리한다.
상기 사용되는 라이소자임 또는 뮤타노라이신은 WTA-PGN 중 PGN의 MurNAc 및 Gl cNAc 사이의 결합을 분해함으로써, 중합체성 PGN을 을리고머성 PGN으로 변화시킨다.
상기 단계 (5)는 단계 (3)에서 수득한 가용성 WTA-PGN을 완층액에 현탁시킨 뒤, 라이소자임 또는 뮤타노라이신을 가하여 30 내지 4C C에서 10 내지 14시간 동안 교반하면서 반웅시킴으로써 수행될 수 있다. 본 발명의 방법에서, 단계 (6)에서는 상기 단계 (5)의 효소 처리물로부터 가용성 WTA-PGN을 수득한다.
상기 가용성 WTA-PGN은 단계 (5)의 효소 처리물을 고성능 액체 크로마토그래피 (HPLC)에 통과시킴으로써 수득될 수 있다.
상기 단계에서는 라이소자임 또는 뮤타노라이신 효소 처리물을 HPLC에 통과시켜 분획을 얻은 후, 상기 분획에서 가용성 WTA-PGN이 함유된 분획을 선택한다. 상기 분획의 선택은 각 분획을 마우스 복강에 주사한 후 생산되는 IL-17A 생성량에 기초하여 수행될 수 있다. 상기 HPLC 정제에 사용되는 컬럼으로는 HiTrap-Q(GE Heal thcare)를 들 수 있으나, 이에 제한되지 않는다. 본 발명에 따른 가용성 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)을 제조하는 방법은 단계 (6) 이후에 WTA-PGN을 추가 정제하는 단계를 더 포함할 수 있다.
상기 WTA-PGN의 추가 정제는 겔 여과 크로마토그래피 또는 역상 (reverse phase) 액체 크로마토그래피에 의해 수행될 수 있다.
본 발명의 하나의 구현예에서, 단계 (6)에서 제조된 가용성 WTA-PGN은 세파크릴 S-200 HR 컬럼올 이용한 겔 여과 크로마토그래피 또는 Symmet ry Shi el d™ RP18 컬럼을 이용한 역상 액체 크로마토그래피를 거쳐 추가 정제될 수 있다.
본 발명의 다른 구현예에서, 단계 (6)에서 제조된 가용성 WTA-PGN은 세파크릴 S-200 HR 컬럼을 이용한 겔 여과 크로마토그래피와 2회의 Symmetry Shi el d™ RP18 컬럼을 이용한 역상 액체 크로마토그래피를 거쳐 추가 정제될 수 다.
상기 크로마토그래피에서 얻어진 각 분획을 마우스 복강에 주사한 후 생산되는 IL-17A 생성량에 기초하여 활성 분획올 선택할 수 있다. 이하 본 발명을 실시예를 들어 상세히 설명하지만, 이는 본 발명을 예시하는 것일 뿐, 이로써 본 발명의 권리범위가 제한되는 것은 아니다. 실시예 1 : WTA유도체를 획득하기 위한 균주의 제조
WTA-PGN을 분리하기 위해, 문헌 [Kazue Takahashi et al . , Plos One 8: e69739 , 2013]에 기재된 방법에 따라, aureus T384 균주 (R 220 Δ Igt Δ oat A doubl e mutant )를 제조하였다.
요약하면, 플레오마이신 (phl eomycin)에 내성을 가지면서 지질단백 디아실글리세롤 트랜스퍼라아제 (Ll ipoprotein di acylglycerol t ransferase , Igt) 유전자가 결손된 T363 균주 (Nakayama M et al . , Journal of Immunology 189:5903-591, 2012)와 에리트로마이신에 내성을 가지면서 0-아세틸 트랜스퍼라아제 (0-acetyl transferase, oat A) 유전자가 결손된 T0003 균주 (Park KH et al. , Journal of Biological Chemistry 285, 27167-27175, 2010)를 파아지 80을 매개로 하여 형질도입하여 5. aureus T384 균주를 제조하였다. 상기 균주는 lgt 유전자의 결손으로 인해 지질단백 오염 없이 WTA-PGN 및 PGN을 분리하는데 사용될 수 있을 뿐만 아니라, oatA 유전자의 결손으로 인해 PGN MurNac 잔기 6 위치 산소에 아세틸기가 없으므로 분리된 PGN이 라이소자임에 의해 쉽게 분해될 수 있다. 실시예 2: 가용성 WTA-PGN의 분리 및 정제 실시예 1에서 제조된 gtl AoatA 변이 균주로부터 불용성 WTA-PGN을 수득한 다음, 이로부터 가용성 WTA올 분리 및 정제하였다 (도 2 참조).
<2-1> 불용성 WTA-PGN유도체의 분리 및 정제
불용성 WTA-PGN는 문헌 [Park KH et al . , Journal of Biological Chemistry 285, 27167-27175, 2010; Jung D J et al. , Journal of I瞧 uno logy 2012, 189: 4951- 4959, 2012]의 방법올 변형하여 분리 및 정제하였다.
구체적으로, 실시예 1의 Δ lgt Δ oat A 변이 균주를 배양기를 이용하여 배양한 후 박테리아 세포를 회수하였다. 상기 회수된 박테리아 세포 10 ml을 30 ml의 20 mM 시트레이트 완충액 (pH 4.5)에 현탁하고, 이 중 50 μ 1를 20 mM 시트레이트 완층액으로 400배 회석하여 분광광도계로 0D600nm=0.8이 되도록 조정하였다. 이후, 20 mM 시트레이트 완층액 (pH 4.7)을 제거하기 위해 고속원심분리기로 10,000rpm, 4°C에서 5분간 원심분리하여 상등액을 제거하였다. 그리고 나서, 1 M NaCl이 첨가된 20 mM 시트레이트 완층액 (pH 4.5) 30 ml로 박테리아 펠렛을 현탁하였다. 상기 현탁액을 12g의 글래스 비드가 들어있는
6개의 스테인레스강 파쇄 병 (stainless steel disruption bottle)에 분주하고, 20 ml의 lMNaCl이 첨가된 20 mM 시트레이트 완층액 (pH 4/7)으로 파쇄 병을 세척하여 각 병 당 총 부피가 20 ml이 되도톡 하였다. 과열을 방지하기 위해 얼음 상에서 파쇄 병을 보관하며 비드 비이터 (bead beater)로 2분간 박테리아를 파쇄하고, 2분간 얼음에 보관하는 과정을 7회 반복하였다. 파쇄된 박테리아를 새로운 50 ml 튜브에 옮겨 담고 원심분리기를 이용하여 3,000rpm으로 4°C , 15분간 원심분리하였다. 이후 상등액을 50 ml 코니컬 튜브에 옮겨 담아 고속원심분리기로 15,000rpm, 4°C에서 10분간 원심분리하였다. 펠렛을 10ml의 20 mM 시트레이트 완층액 (pH 4.7)에 현탁한 후, 1% SDS( sodium dodecyl sulfate)가 들어있는 20 mM시트레이트 완충액 (pH 4.7) 10 ml을 넣어 최종 SDS 농도를 0.5%로 맞추었다. 이를 60°C 항온 수조에서 30분간 열처리하고 15,000rpm, 4°C에서 5분간 원심분리 후 상등액을 제거하였다. 음이온 계면활성제로서 SDS를 처리한 후, 펠렛의 색이 하얗게 변하는 현상을 관찰할 수 있으며, SDS를 제거하기 위해 20 ml의 20 mM 시트레이트 완충액 (pH 4.7)으로 현탁한 뒤, 고속원심분리기로 15,000rpm, 20°C에서 5분간 원심분리하여 상등액을 제거하였다. 펠렛을 1 M NaCl이 함유된 20 mM 시트레이트 완충액 (pH 4.7) 30 ml로 2회 세척하고, 남은 SDS의 완벽한 제거를 위해 30°C로 데워진 주사용수로 펠렛을 현탁하여 15,000rpm, 20°C에서 5분간 원심분리하였다. 펠렛에 주사용수를 넣고 흔들었을 때, 거품이 나오지 않을 때까지 세척을 반복하였고, 거품이 나오지 않은 상태의 펠렛을 주사용수 10 ml에 현탁시킨 후 10분간 실온에서 보관하였다. 가라앉은 글래스 비드가 딸려오지 않도록 상층액을 새로운 50 ml 류브에 옮긴 후 15,000rpm, 20°C에서 5분간 원심분리하여 펠렛으로 만들었다. 동결건조를 위해 주사용수 15 ml로 펠렛을 현탁하여 -80°C에 얼린 후 동결건조하여 불용성 WTA-PGN을 수득하였다. <2-2> β -lytic 효소의 준바
불용성 WTA-PGN으로부터 가용성 WTA-PGN을 제조시 사용되는 β -lytic 효소를 제조하기 위해, 문헌 [Li et al, . Journal of Biochemitry 122, 772-778, 199기의 방법을 참조하였다.
먼저 5 g의 조 아크로모펩티다아제 (Crude Achromopept idase)를 총 500 ml의 10 mM 소디움 시트레이트 완층액 (pH 6.0)에 녹인 후, 15,000 rpm, 4 °C에서 15분간 원심분리 하였다. 상등액을 10 mM 소디움 시트레이트 완층액 (pH 6.0)으로 평형화시킨 다음, CM-세파로스 패스트 플로우 컬럼 (3 cm X 18 cm)에 로딩하고, 0.5 M의 NaCl의 농도까지 선형 구배를 수행하여 용출하였다. 용출된 용액을 280 nm에서 흡광도를 측정하고, 용균활성을 나타내는 구획을 모아 농축하였다. 농축된 시료를 세파크릴 S-100 컬럼 (1.6 cm X 87 cm)에서 200 mM의 NaCl이 포함된 10 mM 소디움 시트레이트 완층액 (pH 6.0)으로 크기 배제 크로마토그래피를 실시하였다. 여과액을 280 nm에서 흡광도를 측정하고, 흡광도가 높게 나타난 구획 증 용균 활성을 나타내는 구획을 모아 농축을 실시하였으며, 각 구획 중 Li et al. (1997)의 결과를 바탕으로 β-lytic 효소 구획을 선택하였다. 그 후 수퍼덱스 -75(1 cm X 30 cm)에서 200 mM의 NaCl이 포함된 10 mM 소디움 시트레이트 (pH 6.0)로 크기 배제 크로마토그래피를 실시하여 -lytic 효소를 수득하였다.
상기 수득한 β-lytic 효소는 마이크로로커스 루테우스 (ATCC 9341)나 불용성의 포도상 구균 유래의 PGN 현탁액과 컬럼 분획을 배양시 용균 활성이나 용해 활성을 확인하였고, Procise® Protein sequencer (Cat .#491-0, Applied Biosystems, Stafford, TX, USA)에 의해 N-말단서열을 분석한 결과 , N-말단 서열이 S-P-N-G-L-L-Q-F-P-F로 분석되었고, 전기 영동 분석 결과는 25 kDa 정도의 분자량을 가지는 단일 밴드로 관찰되어 β-lytic 효소로 확인되었다.
<2-3> 가용성의 WTA-PGN의 정제
① β -Lytic 효소 처리 및 HPLC
실시예 <2-1>에서 동결건조된 불용성 WTA-PGN을 100 mg 당 10 ml의 20 mM
Tris-HCKpH 7.0) 완충액에 현탁시킨 후, 원심분리하여 상등액을 제거하는 과정을 3회 반복하여 상등액의 pH가 7.0이 된 것을 확인하였다. 이후, 불용성 WTA— PGN에 100 mg 당 브래드포드법으로 정량된 β -lytic 효소 350 을 넣은 후 37 °C, 180rpm으로 교반 배양기에서 12시간 동안 반웅시켰다. 이후 반웅액을 60°C 항온수조에 10분간 둠으로써 효소를 비활성화시킨 뒤 15,000 rpm, 4 °C에서 10분간 원심분리 하여 상등액을 얻었다. 이를 0.45 urn 필터에 통과시칸 다음, 여과액을 20 mM Tris-HCKpH 7.0)로 평형화시킨 HiTrap Q 컬럼에 주입하여 1 M NaCl이 포함된 20 mM Tris-HCKpH 7.0)까지 선형 구배에 의해 용출시켰다. 상기 용출 결과, 도 3A에서 보는 바와 같이 총 3개의 피크를 얻었다. 각각의 피크를 A, B 및 C로 명명한 후 27% PAGE를 실시하였고 (도 3B), 이들 중 전기영동 상에서 질산은 염색이 되는 1번 분획을 아세톤으로 침전시킨 후, 동결건조하여 가용성 WTA-PGN을 얻었다.
② 라이소자임 처리 및 HPLC
상기 동결건조된 가용성 WTA-PGN 100 mg을 10 ml의 20 mM Tris-HCKpH 7.0) 에 녹이고, 라이소자임 (Cat. #62970, Sigma-Aldr ich Co. LLC. , Saint Louis, MO USA) 1.25 mg을 넣은 후 37°C, 180 rpm으로 교반 배양기 에서 12시간 동안 반웅시켰다. 이후 반웅액을 60 °C 항온수조에 10분간 둠으로써 효소를 비활성화시킨 뒤 15,000 rpm, 4°C에서 10분간 원심분리하여 상등액을 얻었다. 상등액을 0.45μπι 필터에 통과시키고, 여과액을 20 mM Tris-HCl(pH 7.0)로 평형화시킨 HiTrap Q에 주입하였 다. 이후 1 M NaCl이 포함된 20 mM Tris-HCKpH 7.0)로 선형 구배에 의해 용출시 켰다. 상기 용출 결과, 도 3C에서 보는 바와 같이 총 4개의 피크를 얻었다. 이들 을 아세톤으로 침전시킨 후 전기영동올 실시하였고 (도 3D), 이들 중 전기영동 상 에서 질산은으로 염색이 되는 3번 및 4번 분획을 모았다. 상기 모아진 분획을 아 세톤으로 침전시킨 후, 동결건조하여 가용성 FTA-PGN을 얻었다. ③ 세파크릴 S-200 HR 컬럼을 이용한 WTA-PGN의 정제
상기 분리된 WTA-PGN을 더 정제하기 위하여, 세파크릴 S-200 HR 컬럼을 이용하였다. 본 단계에서ᅳ HPLC 장치 (805 MANOMETRIC MODULE, 811C DYNAMIC MIXER, 305 PUMP, 306 PUMP, 151 UV/VIS Detector , Gi l son, USA)는 Gi lson사의 제품을 이 용하였고, 세파크릴 S-200 HR, 25 μπι-75 ym(Cat .#17-0584ᅳ 01, GE Healthcare Li fe Sciences , England) 컬럼은 GE Healthcare Li fe Sciences사의 것을사용하였다. 앞서 분리한 가용성 WTA-PGN(53.5mg)을 증류수 400 μ 1로 녹여 HPLC 주입 기에 주입하였다. 시료를 용출받기 전 세파크릴 S-200 HR 컬럼을 연결하여 증류 수로 세척하고 평형화 상태를 만들어주었고, 실험할 때 불순물 유입에 따른 오차 가 없도톡 유속 0.3 ml/분, 민감도 2, 피크폭 10.0 초 및 UV 흡광도 220nm의 조 건으로 UV 검출기가 안정화될 때까지 용매를 홀려주었다. UV 값이 안정화되었을 때 주입기를 로드 상태로 변환하여 시료를 천천히 주입하고 용출을 시작할 때 주 입으로 변환하여 컬럼에 홀려주어 용출액을 받았으며, 조건은 평형화 조건과 동 일하게 진행하였다.
상기 용출 결과, 도 4A에서 보는 바와 같이, 총 4개의 피크 (A, Bᅳ C 및 D) 가 확인되었다. 상기 피크에 대해 PAGE 분석을 실시한 결과, 도 4B에서 보는 바 와 같이 피크 B, C 및 D에서 가용성 WTA-PGN아 존재함을 확인할 수 있었다.
얻어진 4개의 피크를 각각 동결건조하여 마우스 복강에 주사한 후 생산되 는 IL-17A 생성량올 비교하였을 때, B 피크에서 활성이 가장 높게 나타나는 것으 로 확인되어 (도 ) , B 피크를 이후 실험에 사용하였다.
④ C18 역상 컬럼을 이용한 WTA-PGN의 정제
상기 분리된 WTA-PGN을 더 정제하기 위하여, C18 역상 컬럼을 이용하였다.
HPLC 장치 (805 MANOMETRIC MODULE, 811C DYNAMIC MIXER, 305 PUMP, 306 PUMP, 151 UV/VIS Detector , Gi lson, USA)는 Gi lson사의 제품을 이용하였고, Symmetry Shield™ RP18(5 um, 4.6x250 mm) 컬럼 (Cat 186000112, Waters , Ireland)은 Waters , MF™ Membrane f i lters 0.45 ura(Cat JHAWP04700, Merck, Germany)는 Merck사의 제 품을 사용하였다. 또한 Speed Vac (Cat .#CVE-100, EYELA, Japan) , Evaporator (Cat .#CCA-1110 , EYELA, Japan) , 동결건조기 (Cat .#FDU-2200, EYELA, Japan)는 EYELA사의 제품을 이용하였다. C18 역상 컬럼을 이용하여 WTA-PGN을 정제하기 위해, Sephacryl S-200 컬 럼으로 분리한 B 분획 (도 4 참조) 3 mg을 트리플루오로아세트산 (TFA)이 0.05% 함 유된 고정상 용매 200 ul에 녹여서 샘플로 사용하였다. 유속은 1 ml/분, UV 홉광 도는 202nm에서 측정하였고, 민감도는 1, 컬럼 온도는 40°C 조건 하에서 로딩하 였다. 이동상의 농도 구배는 0%로 10분, 41.7%까지 구배로 25분, 10W까지 구배로 2분, 100¾>로 10분간 용출시켰다. 상기 용출 결과, 도 5A에서 보는 바와 같이, A~F 까지 총 6개의 피크가 분리되었다. 상기 피크에 대해 PAGE 분석을 수행하여 그 결과를 도 5B에 나타내었다. 용출된 각 피크를 1 M Tris-HCl로 pH를 약 6.5~7.5 로 중성으로 만들어 준 다음 증발기를 통해 300 ul까지 농축시키고, 여기에 900 ul의 차가운 아세톤을 첨가하여 얼음 상에서 1시간 동안 침전시켰다. 그 다음 4°C, 15,000rpm에서 25분간 원심분리하여 펠렛올 회수하고, 스피드 백 (speed vac) 을 통해 남은 아세톤을 건조시켜 증류수 20 ul에 녹인 다음 동결건조하였다.
각 분획을 2 mg씩 다시 C18 컬럼에 로딩하여 재분리함으로써 더 정제된 A, B, C, D, E 분획을 얻을 수 있었다 (도 5C) 상기 피크에 대해 PAGE 분석을 수행하 여 그 결과를 도 5D에 나타내었다. 또한, 상기 A, B, C, D, E 분획을 200 ug씩 마 우스 복강에 주사한 후 6시간 후에 유도된 IL-17A 량을 ELISA로 정량한 결과를 도 5E에 나타내었다. 도 5E에서 보는 바와 같이, 분획 C가 IL-17A량이 가장 많은 것으로 확인되머 분획 C를 이후 실험에 사용하였다. 실시예 3: 가용성 WTA의 정제
WTA를 정제하기 위해 불용성 WTA— PGN 80 mg을 19 ml의 20 mM 시트레이트 완층액 (pH 4.5)에 현탁한 후, 1 ml의 트리클로로아세트산 (100 mg/ral )을 넣어 최종 농도가 5mg/ml이 되게 하였다. 상기 현탁액을 3( C, 180rpm으로 교반 배양기에서 12시간 동안 반응시킨 후, 10,000rpm, 4°C에서 10분간 원심분리하였다. 상등액을 50 ml 튜브에 옮겨 1시간 동안 아세톤 침전을 실시한 후, 15,000rpm, 4°C에서 25분간 원심분리하였다. 펠렛을 1.5 ml 마이크로원심분리 튜브에 옮겨 아세톤을 제거하고 20 mM Tris-HCKpH 7.0) 완충액 1 ml에 현탁하였다.
이후, Hitrap-Q 컬럼을 이용하여 HPLC를 수행하였다. 20 mM Tris-HCl (pH 7.0)인 A 완층액으로 모든 라인과 컬럼을 세척하고, UV 검출기의 민감도를 1, 흡광도를 220nm로 하여 검출할 수 있거) 설정한 후 평형 상태를 만들었다. 로딩할 샘플을 0.45 um 필터로 여과한 뒤, 로딩하였다. 유속은 0.5 ml/분으로 설정하여 샘플이 Hitrap-Q 컬럼에 결합할 수 있도록 하였으며, 평형 상태가 될 때까지 기존의 유속을 유지한 채 Hitrap-Q 컬럼을 세척하여 불순물을 제거하였다. 20 mM Tris-HCl 및 1 M NaCKpH 7.0)로 구성된 B 완층액이 0-100%가 되는 시간을 50분으로 설정하여 구배를 걸었고, Hitrap-Q 컬럼에 붙어 있던 WTA가 용출되면, 각 피크별로 샘플을 회수하였다. 상기 용출 결과, 도 6의 (A)에서 보는 바와 같이 2개의 피크 (1 및 2)를 얻을 수 있었다. 상기 용출물올 50 ml 코니컬 튜브에 10 ml 미만이 되도록 나누어 담고 1시간 동안 차가운 아세톤을 이용하여 침전시켰다. 아세톤 침전시 피크 1의 경우 15 mg의 수율로 얻어졌고, 피크 2의 경우 0.88 mg의 수율로 얻어졌다. 상기 용출물을 15,000rpm에서 25분간 원심 분리하여 펠렛을 회수하고, 증발에 의해 아세톤올 모두 제거한 뒤, 주사용수로 펠렛을 녹인 후, 동결 건조하였다. 상기 동결건조물을 10 mg/ml의 stock으로 만들어 20 ug씩 2 k PAGE로 분리한 후 질산은 염색한 결과 피크 1이 피크 2보다 리비를 수가 더 많은 것으로 추정되었고 수득양도 더 많았으므로 (도 6의 (B)), 피크 1을 가용성 WTA로서 사용하였다. 실시예 4: 가용성 PGN의 정제
<4-1> WTA의 제거를 위한 TCA 처리
동결건조된 불용성 WTA-PGN으로부터 PGN을 얻기 위해 WTA를 TCA로 제거하였다. WTA를 얻기 위해 TCA 처리한 불용성 FTA-PGN을 19 ml의' 20mM 시트레이트 완층액 (pH 4.5)에 재현탁하고 1 ml의 트리클로로아세트산 (100 mg/ml)을 넣어 최종 농도가 5 mg/ml이 되도록 하였다. 30°C, 180rpm으로 교반 배양기에서 12시간 동안 반웅시킨 후, 10, 000rpm, 4°C에서 10분간 원심분리하였다. 펠렛을 30 ml의 멸균 증류수에 현탁시킨 후, 10, 000rpm, 4°C에서 10분간 원심분리하고 이를 5회 반복하여 TCA가 완전히 제거되도록 세척하였다. 이를 15 ml의 주사용수에 현탁한 후, 동결건조하여 불용성 PGN을 얻었다.
<4-2>블용성 PGN을 가용성 PGN으로 정제하기 위한 β -lyt ic 효소의 처리 동결건조된 불용성 PGN 100 mg을 10 ml의 20 mM Tri s-HCKpH 7.0)에 10 mg/ml 농도가 되도록 현탁시킨 후에 15,000rpm, 4°C에서 10분간 원심분리하고, 20 ml의 20 mM Tri s-HCKpH 7.0)을 이용하여 3회 세척하였다. 세척된 불용성 PGN을 20 ml의 20 mM Tri s-HCKpH 7.0)에 현탁하여 불용성 PGN lOO mg 당 정제한 — lyt ic 효소 350 을 넣고 pH가 7.0이 되도록 하여, 37°C , 180rpm으로 교반 배양기에서 12시간 동안 반웅시켰다. 이후, 불활성화를 위해 10CTC에서 10분간 열처리하고 실온에서 10분 이상 넁각시킨 후, 15,000rpm, 4°C에서 10분간 원심분리하였다. 상등액을 0.45 u m 필터로 여과한 후 동결건조하였다.
<4-3> 가용성 PGN의 정제를 위한 겔 여과 크로마토그래피에 의한 정제 동결건조된 가용화된 PGN을 주사용수를 이용하여 20 mg/ml 농도로 용해시킨 다음, 미량으로 함유된 WTA 및 WTA-PGN를 제거하기 위하여 이온 교환 컬럼인 HiTrap Q에 로딩하였다. HPIX 조건은 A 완층액인 주사용수로 평형상태를 맞춘 후, 20 mg/ml을 주입하였고, 유속 1 ml/분, 흡광도 220nm, 민감도 1, 구배는
B 완층액인 1 M NaCl이 함유된 주사용수로 0 >에서 100%까지 30분간 구배를 설정하였다.
상기 용출 결과를 도 7에 나타내었다. 도 7에서 보는 바와 같이, 통과 용액 (A 분획)은 WTA가 제거된 가용성 PGN을 포함하고 있는 분획으로 추정되었고, 1M NaCl을 포함하는 B 완층액에 의하여 용출되는 분획 (B 분획)은 제거되지 않은 WTA-PGN 혹은 WTA 로 추정되었기에, A 분획만을 모아 동결건조시켰다.
이후, 일정 글리칸 길이를 가진 가용성 PGN을 정제하기 위하여, 상기 동결건조물을 주사용수에 20mg/ml의 농도로 용해시킨 뒤, Toyopear l HW 55 S (Cat . #14686 , T0S0H Biosci ence , Japan) 컬럼에 주입하여 겔 여과를 수행하였다. 겔 여과 조건은 주사용수로 평형상태를 맞추었고, 유속 0.5 /분, 흡광도 215nm , 민감도 1, 작동 시간은 50분으로 진행하였다. 상기 겔 여과에 의한 용출 패턴을 도 8에 나타내었다. 도 8에서 보는 바와 같이 겔 여과시 2개의 피크가 확인되었다. 상기 피크 중 피크 B가 가용성 PGN임을 확인하기 위해 Tenebrio molitor곤충의 프로-페놀옥시다아제 시스템을 이용하였다. 피크를 106까지 연속 희석하였고, 양성 대조군으로 β -1 ,3 글루칸을 사용하였으며, 음성 대조군의 0D 값을 기준선으로 맞추어 비교하였을 때, 피크 Α와 Β 모두에서 활성이 나타남을 확인할 수 있었다 (도 8) . Toyopear l HW 55 S 컬럼 특성상 저분자 물질이 뒤에 나오므로, 피크 B가 피크 A에 비해 분자량이 작은, 즉, 당의 개수가 작은 가용성 PGN임올 알 수 있다. 상기 피크 B를 분리하여 동결 건조 후, 이후 실험에 사용하였다. 실시예 4 : WTA-PGN 및 WTA의 생화학적 특성 규명 분리 ·정제한 WTA-PGN 및 WTA의 생화학적 특성을 규명하기 위하여, 27% PAGE 및 질산은 염색을 수행하였고, D-Ala 존재 유무는 실리카겔 박층 크로마토그래피에 의해 분석하였고, WTA에 존재하는 포스페이트 및 GlcNAc 잔기의 양은 이미 알려진 분석 방법으로 정량하였다.
구체적으로, D-Al a의 존재 유무를 확인하기 위해, 마이크로원심분리 류브에 확인하고자 하는 샘플 ( 10 mg/ml ) 2 μ 1와 1 M NaOH 0.2 μ 1를 넣고, 교반 배양기에서 180rpm , 37°C에서 2시간 동안 배양하였다. 박층 크로마토그래피 막을 가로 5cm X 세로 10cm로 잘라 TLC 용액이 직접적으로 닿지 않도록 2 cm 정도 위에서 2 μ ΐ의 샘플을 로딩하고, 1시간 30분간 전개하였다. 이후 박층 크로마토그래피 막을 완전히 건조시켜, 닌하이드린 스프레이 시약 1 ml을 분사하여 보라색-붉은색의 스팟이 나타날 때까지 히트블록 (heatblock)에서 열처리 하였다.
또한, 포스페이트 정량을 위해, 유리 튜브에 2~4 μ ΐ의 샘플과 100 μ ΐ의 증류수 및 175 μ ΐ의 소화 시약 (digestion reagent)을 넣고 볼텍싱한 후, 외부에서 튜브를 가열한 뒤, 샘플의 색이 진한 노란색으로 변하는 것을 확인한 후 다시 색이 열어질 때까지 가열하였다. 이를 실온에서 10분간 냉각한 후, 125 μ ΐ의 증류수와 1 ml의 1% 암모늄 몰리브데이트를 첨가하여 교반하였다. 이후, 환원제 50 μ ΐ를 넣아 10CTC 항온 수조에서 10분간 가열하고, 분광광도계로 750nm에서 0D값을 측정하였다. 표준물질로서 포스페이트를 사용하였다.
또한, GlcNAc의 정량을 위해, 마이크로원심분리 샘플, 증류수, 6.45 N HC1을 총 100 μ 17} 되게 하여 볼텍싱한 후 작은 유리 튜브 (직경 0.5 cmX높이 5 cm)에 옮기고, 진공 펌프 장치를 사용하여 샘플에 들어있는 기포를 모두 제거하였다. 이를 locrc 오본에서 3시간 동안 열처리 후, 실온에서 넁각하였다. 이후, 파스퇴르 피펫을 이용하여 큰 유리 류브 (직경 1.8 cm X 높이 18 cm)로 옮기고 진공을 걸어 진공상태를 만드는 동시에 열올 가하여 샘플을 건조시켰다. 이후 각 튜브당 에탄을 : 증류수 : 트리메틸렌아민 = 2 : 2 : 1 용액을 50 μ ΐ씩 넣고 2회 건조시켰다. 이러한 방법으로 샘폴에 들어있던 HCI올 모두 제거하고, 증류수 100 μ ΐ, 아세트산무수물 용액 20 μ ΐ, 보레이트 완층액 100 μ 1를 넣어 흔합한 뒤, 95°C 항온 수조에 8분간 끓여 실온에서 넁각하였다. 여기에 ^디메틸아미노벤즈알데하이드 시약 750 μ ΐ와 2-에특시에탄올 50 μ 1를 넣고, 20 °C 항온 수조에서 15분간 배양한 다음 분광광도계를 사용하여 585nm에서 0D값을 측정하였다. 표준물질로서 Nᅳ아세틸글루코사민을 이용하였다. 그 결과, 도 9A에서 보는 바와 같이, 정제된 WTA의 겔 이동이 정제된 WTA-PGN에 비해 빠른 것으로 나타났는데, 이는 WTA가 PGN이 제거됨으로써 WTA-PGN보다 분자량이 더 작다는 것을 보여준다. 또한, 도 9B에서 보는 바와 같이, D-Ala 잔기는 WTA-PGN 및 WTA 모두에 결합되어 있는 것으로 나타났다. 또한 도 9C에서 보는 바와 같이, 포스페이트 함량은 WTA-PGN에서 1.5 nmol ig이었고, WTA에서는 1.8 nmol/yg이었으며, GlcNAc 함량은 WTA-PGN에서 2.5 nmol/yg이었고, WTA에서는 2.2 nmol/ug 이었다. 실시예 5: WTA-PGN의 효과 분석을 위한실험 방법
<5-1> 마우스 실험 디자인 및 사육
실험동물은 생후 5주령, 체중 15±0.5 g의 SPF(specific pathogen-free) C57BL/6J 암컷 마우스를 한국생명공학연구원 의생명마우스센터 (오창캠퍼스, 충청북도, 유전자 결손 rea)로부터 구입하여 실험 시작하기 전 시판 고형사료 (Cat.#5L79, 오리엔트바이오, 유전자 결손 rea)를 먹이면서 1주간 동물실험실 환경 (항온항습동물용 우리 (Cat.#AAAC2051, < 제이오텍, 유전자 결손 rea); 20-25 °C, 습도 55%)에 적웅시켰다. 체중에 따른 난괴법 (completely randomized design)으로 각각의 그룹으로 나누어 각 그룹 당 6~12마리씩, 각 그룹 별로 6마리씩 사육용 우리에 넣어 자유급식방법 (ad libitum)으로 식이 및 식수를 제공하였다. 각 실험동물의 체중 및 식이섭취량은 매일 1회 측정하였으며, 12시간 간격으로 조명을 점등 및 소등하였다.
<5-2> 생체내 감염 연구에 사용될 MRSA . aureus USA30Q strain) 및 MSSA(5. aureus NRS184 strain) 준비
MRSAC5. aureus USA300 strain) 및 MSSA(5. aureus NRS184 strain)는 독일
Tubingen 대학으로부터 제공받았다. 글리세롤 스록 상태로 —80°C에 보관된 균주를 LB Broth LENN0X(Cat ..#LBL405.1, Bioshop, Canada)에 도말한 후 37°C 배양기에서 최소 12시간 동안 배양하였다. 이후 배양된 플레이트를 4°C에서 보관하였다가 균주를 사용하기 하루 전에 14 ml 등근 바닥 튜브에 Bacto™ Tryptic Soy Broth Soybean-Casein Digest Medium (Cat .# 211825, BD, USA New Jersey) 2 ml을 넣고, 콜로니 하나를 접종하여 37°C 교반 배양기에서 최소 12시간 배양하였다. 이후, 동물에 감염시키기 3시간 전에 TSB 20 ml에 37°C에서 12시간 동안 배양한 균액 400 μ ΐ를 넣어 37°C 교반 배양기에서 중간 로그 단계 (mid log phase)가 되도록 배양하였다. 배양이 끝난 균액은 세포 증식을 방지하기 위해 얼음에 보관하면서 다음 과정을 진행하였다. 먼저 4°C , 3 ,000rpm에서 10분간 원심분리하여 상층액을 제거하고 PBS로 현탁한 후 4°C , 15,000rpm에서 1분간 원심분리하였다. 원심분리 후, 상층액을 제거하고 PBS 1 ml로 재현탁한 다음 분광광도계 (Cat .#206-25400— 58 SHIMADZU, Japan)를 이용하여 600nm에서 흡광도를 측정하였다. 각각의 동물 모델 및 감염 방법에 따라, 필요한 세포수를 고려하여 회석 후, 실험에 이용하였다.
<5-3> 열-사멸된 (heat-ki l led) 박테리아의 제조
열처리하여 사멸시킨 하기 표 1에 열거한 5. aureus 균주를 이용하여
IL-17A의 양을 측정하였다.
<표 1>
본 연구에 사용한 5. aureus균주
Figure imgf000030_0001
0— acetyl transferase,
T899 Δ oatA/Δ lgtA tarM: :PhleO,Erm LI ipoprotein and β -GlcNAc (7) of WTA depleted
0-acetyl transferase,
T901 Δ oatA/Δ lgt/Δ tarS: :PhleO,Km LI ipoprotein and a -GlcNAc (7) of WTA depleted
0-acetyl transferase,
T878 Δ oatA, Δ lgt, Δ tarM, Δ tarS: :PhleO,Erm,Km LI ipoprotein and (7)
, β -GlcNAc of WTA depleted
(1) Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S. (1993) Synthesis of Staphylococcal Virulence Factors Is Control led by a Regulatory Rna Molecule. EMBO J. 12(10) :3967-75.
(2) From Cellular and Molecular Microbiology Division, Interfaculty
Institute of Microbiology and Infect ion Medicine, University of Tiibingen, Germany
(3) Kurokawa K, Kim MS, Ichikawa R, Ryu KH, Dohmae N, Nakayama H, Lee BL. (2012) Environment—mediated accumulat ion of diacyl lipoproteins over their triacyl counterparts in Staphylococcus aureus . J Bacteriol . 194(13) :3299—306.
(4) Park KH, Kurokawa K, , Zheng L, Jung DJ, Tateishi K, Jin JO, Ha NC, Kang HJ, Matsushita M, Kwak JY, Takahashi K, Lee BL. (2010) Human serum mannose-binding lect in senses wal 1 teichoic acid Glycopolymer of Staphylococcus aureus, which is restricted in infancy. J Biol Chem 285(35) :27167-75.
(5) Nakayama M, Kurokawa K, Nakamura K, Lee BL, Sekimizu K, Kubagawa H,
Hiramatsu K, Yagita H, Okumura K, Takai T, Under hi 11 DM, Aderem A, Ogasawara K. (2012) Inhibitory receptor paired Igᅳ like receptor B is exploited by Staphylococcus aureus for virulence. J Immunol. 189(12) :5903—11.
(6) Kaito C, Sekimizu K. (2007) Colony spreading in Staphylococcus aureus. J Bacteriol. 189(6) :2553-7.
(7) Takahashi K, Kurokawa K, Moyo P, Jung DJ, An JH, Chigweshe L, Paul E, Lee BL. (2013) PLoS One. 8(8): e69739. 상기 표에 언급된 균주를 사용하여 2 ml LB10 브로쓰 배지에 각 균주에 따라 항생제를 첨가해주었다. 유전형에서, Era은 에리트로마이신 (Cat.#E6376, Sigma-Aldrich Co. LLC. , Saint Louis, MO, USA), Km은 카나마이신 (Cat .#17924, USB®, OH, USA)을 나타내며, 농도는 각각 10 ug/ml, 50 yg/ml로 사용하였다. Phl.eO는 플레오마이신 (Cat.#P9564, Sigma-Aldrich Co. LLC. , Saint Louis, M0, USA)이며, 균주의 제조시에는 각 돌연변이형을 구분 및 확인하기 위해 10 lig/ml의 농도로 사용하지만, 박테리아 배양 시에는 사용하지 않았다. 각 균주의 콜로니를 접종하여 12시간 동안 배양하고, 500 ml 삼각 플라스크에 LB10 100 ml을 만들어 서브배양한 각 균주의 균액을 1 ml씩 넣어 균주에 따른 생장온도에 맞게 180rpm으로 진탕배양하였다.
0D600nm에서 1.2까지 배양하여, 10,000rpm, 4°C, 10분간 원심분리하여 박테리아 펠렛을 생리식염수 (0.9% NaCl) 30ml에 현탁하고, 10,000rpm, 4°C, 10분간 원심분리하여 상등액을 제거하였으며, 생리식염수로 2회 세척 후, 10 ml의 염수로 재현탁하였다. 0D600nm=0.3이 되도록 생리식염수로 50 ml 튜브에 희석하고 60°C 항온수조에 넣어 30분간 열처리하였다. 열처리된 박테리아를 상온에서 10분 이상 층분히 식힌 후, lOOOOrpm, 4°C에서 10분간 원심분리 하여 상등액을 제거하고 주사용수 30 ml로 현탁하는 과정을 반복, 주사용수로 '2회 세척하였다. 2 ml의 주사용수로 펠렛을 현탁하여 동결건조 후 무게를 측정하였다. 이후 이를 이용하여 200 iig/ml의 농도로 마우스 복강에 주사하였다.
<5-4>마우스 모델에서 WTA-PGN 유도 세포성 면역
(i) WTA, PGN 및 WTA-PGN유도 복막염 및 세포성 면역, 기억 반웅의 유도 마우스는 50, 100, 200 의 열-사멸된 박테리아 또는 WTA 유도체를 100 μ 1 PBS(Cat.#17-516Q, BioWhittaker®, L0NZA, MD, USA)에 현탁하여 i.p.로 주사함으로써 복막염을 유발 또는 면역화하였고, 으 3, 6, 9, 12, 24, 48, 72시간 중 각각의 실험에 필요한 샘플링 시점에 마우스를 희생하여 실험에 이용하였다. 반복적인 복막염 유발 및 기억 반응을 위한 실험 모델은 도 10에 나타난 바와 같이 0, 7, 14일에 100 ug WTA, PGN 및 WTA-PGN/100 μ 1 PBS로 i.p. 주사하고, 21일 간 회복기를 거친 뒤, 35일째 MRSA ^. aureus USA300 strain, 1X108 CFU/100 μ 1 PBS)를 i.p. 주사하여 감염시켰다. 대조군의 마우스는 100 μ 1의 PBS를 i.p. 주사 하여 사용하였고, naive 마우스는 대조군으로 사용하였다. 박테리아의 challenge 후, 0, 3, 6, 9, 12, 24, 48, 72시간에 마우스를 회생하여 전신성 감염 수준 및 면역 반웅을 평가하였다. 한편, MRSA (S. aureus USA300 strain) 및 MSSA (5. aureus RS184 strain) 생존 그룹은 5X108 CFU/100 μ 1 PBS의 세포수로 i.p. 주사 하였다. '
(ii) 복강 침출액 및 복강 침출 세포 (PEC) 분리
마우스 복강 침출액은 2 ml의 PBSCCat. #17-516Q, BioWhittaker® , LONZA, USA)로 복강을 씻어낸 후, 2,000 rpm에서 10분간 원심분리하여 상등액을 - 80°C에서 보관하며 ELISA를 이용한 사이토카인 분석에 이용하였고, 펠렛은 complete RPMI 1640 배지 (cRPMI; RPMI 1640: Gibco®; 10% FBS: Gibco®; 100 mM L-글루타민: Gibco®; 및 100 mg/ml 페니실린 /스트렙토마이신: Gibco®)에 재현탁하였다. 적혈구 제거를 위해 RBC 용해 완층액 (Cat. #420301, Bio legend, San Diego, CA, USA)을 이용하여 적혈구를 용해시켰고 세포는 다시 cRPMI로 재현탁하였다.
(iii) ELISA를 이용한 사이토카인 분석
IL-17A, IL-23, IL-Ιβ , IL-10 및 IFNy는 R&D사의 Duoset® ELISA 키트 (R&D Systems Inc. , Minneapolis, 薩, USA) 및 eBioscience사의 ELISA Ready-SET-Go! 키트 (eBioscience, San Diego, CA, USA)를 이용하여 복강 침출액의 상등액에서 측정하였다. 각각의 사이토카인에 대한 ELISA 키트 정보는 아래에 나타내었다. 최종적으로 마이크로플레이트 리더 (Cat. #51119000, Thermo Fisher Scientific Inc. , Waltham, MA, USA)를 이용하여 450 nm에서 측정한 흡광도 값을 550 nm 값으로 보정하였다.
(iv) 유세포 분석 (FACS)
표면 염색을 위해 세포를 멸균 PBS로 씻고 유세포분석법 Ab를 이용하여 염색하였다. 또한 세포내 염색을 위해 세포를 수확하기 전, CRPMI1640 배지 하에서 단백질 전달 억제제인 GolgistopCCat. #554724, BD Bioscience, San Jose, CA, USA)으로 재-자극시켰다. 수확한 세포를 PBS로 세척한 후, 100 μΐ의 intracellular (IC) 고정화 완충액 (Cat .#00-8222-49, eBioscience, San Diego, CA, USA)으로 실온에서 30분간 고정한 다음, 투과 완층액 (Cat. #00-8333-56, ebioscience, San Diego, CA, USA)을 이용하여 세척하였다. 그리고 나서, 세포를 100 μΐ의 투과 완층액으로 재현탁하고, 세포내 염색 Ab를 이용하여 실온에서 20분간 배양하였다. 이후 세포를 각각의 단계별로 투과 완층액 및 PBS로 세척한 후, PBS로 재현탁하였다. 세포는 유세포분석법 (BDFACS Canto II, BD Biosciences, San Jose, CA, USA)으로 검출하였고, FlowJo software vX 0.7(FlowJo LLC. , Ashland, OR, USA)을 이용하여 분석하였다. 각각 표면 분자 및 세포내 분자에 대한 구체적인 항체 정보는 표 2와 같다.
(V) 세포 분리 (Cell sorting) 및 WTA 유도체를 면역화한 대식세포, 수지상 세포와 정제된 γ δ Τ세포의 시험관내 공동—배양
Naive 마우스 및 WTA 유도체가 면역화된 마우스의 PEC는 위에서 언급한 바와 같이 분리하였고 PEC를 96-웰 평바닥 플레이트 (2-3X105 세포 /웰)에 옮겨, 대식세포와 수지상 세포가 부착하도록 cRPMI 배지에서 1.5시간 동안 37° C, 5% C02 조건 (Cat.#MC0-17A, SANYO, Japan) 하에서 배양하였다. 이후에 배지를 흡입하여 제거하고 항생제가 없는 RPMI로 교체하였다.
대식세포와 수지상 세포는 쥣과 Pan T 세포 분리 키트 II (Cat .#130-095-130, Miltenyi Biotec, Bergisch Gladbach, Germany)를 이용하여, CD3+ T 세포의 음성 선별을 통해, γ δ Τ 세포는 γ δ TCR특이적 Ab를 이용하여 아래와 같이 FACS 분리를 수행하였다.
염색된 세포는 세포 스트레이너 스냅 캡이 달린 등근바닥 튜브 (Cat. #352235, Tewksbury, MA, USA)를 통해 가압하였고, 유세포 분리기 (MoFlo® Astrios™ cell sorter , Beckman Coulter , Inc. , South Kraemer Boulevard Brea, CA, USA)를 이용하여 분리 (sorting)하였다. 분리된 세포의 순도는 95% 이상이었다.
(vi) RNA 분리, cDNA 합성 및 정량적 실시간 PCR(qRT-PCR)
총 RNA는 TRI Reagent® (Cat. #TR 118, Molecular Research Center, Inc. ,
Cincinnati, OH, USA)를 이용하여 분리하였다. RNA 분리는 제조사의 프로토콜에 따라 수행하였으며, cDNA 합성을 위해 mRNA는 oligo (dT) 프라이머 (Cat . 1101, Pr omega Corpor at i on , Madison, WI , USA)와 Improm- Π system (Cat.#A3800, Pr omega Corporation, Madison, WI, USA), 총 20 μ 1의 부피로 RT—PCR 기기 (C1000 Touch™ Thermal Cycler, Bio-Rad, Hercules, CA, USA)에서 cDNA로 역전사하였다. 전사된 cDNA는 RT-PCR 프라이머와 함께 qRT-PCR 기기 (Cat .#9001870, Rotor-Gene Q, QIAGEN Inc., Valencia, CA, USA)를 이용하여 증폭하였고, 데이터는 각 조건에 대해 하이포잔틴-구아닌 포스포리보실 트랜스퍼라아제 (HPRT)로 정규화하였다. 각 유전자별 프라이머 정보는 표 3과 같다.
〈표 2>
FACS 항체 정보
Figure imgf000035_0001
Ly-6G (Gr-1) APC TONBO RB6-8C5
CD121a(IL-lRa) PE Bio legend JAMA- 147
CDllb PerCP/Cy5.5 TONBO Ml/70
CD44 PE-Cy7 TONBO IM7
CD27 PE Bio legend LG.3A10
CD3 FITC TONBO 17A2
CD8Q PerCP/Cy5.5 TONBO 53-6.7
CDllc Brilliant Violet 421 Bio legend N418
MHCII FITC TONBO M5/114.15.2
F4/80 PE Bio legend BM8
CD40 APC Bio legend 3/23
CD80 PE Bio legend 16-10A1
CD86 APC Biolegend GL-1 eBioscience,
IFN-Y PE, PE/Cy7 XMG1.2
Biolegend
IL-17A APC, PE/Cy7 Biolegend TC11-18H10.1
<표 10>
프라이머 정보
유전자 프라이머 서열
F 5' -TTA TGG ACA GGA CTG AM GAC-3' (서열번호 1)
HPRT
R 5' -GCT TTA ATG TAA TCC AGC AGG T-3' (서열번호 2)
F 5' -GAG CCA GAT TAT CTC ΊΤΤ CTA CC-3' (서열번호 3)
IFN-γ
R 5' -GTT GTT GAC CTC AAA CTT GG-3' (서열번호 4)
F 5' —ATA ACT GCA CCC ACT TCC CA-3' (서열번호 5).
IL-10
R 5' -TCA Ί Τ CCG ATA AGG CTT GG-3' (서열번호 6)
F 5' 一 TTT AAC TCC CTT GGC GCA AAA-3' (서열번호 7)
IL-17A
R 5' -CTT TCC CTC CGC ATT GAC AC-3' (서열번호 8)
F 5' -CM CCA ACA GAT ATT CTC C-3' (서열번호 9)
IL-Ιβ
R 5' -TGC CGT CTT TCA TTA CAC AG-3' (서열번호 10)
F 5' -GGA ACG ACG GCA GCA GAA TA-3' (서열번호 11)
IL-12 P40
R 5' -AAC TTG AGG GAG AAG TAG GAA TGG-3' (서열번호 12)
F 5' -TGG CAT CGA GAA ACT GTG AGA-3' (서열번호 13)
IL-23 pl9
R 5' -TCA GTT CGT ATT GGT AGT (XT GTT A-3' (서열번호 14)
F 5' -AGC CTT CCA GGA TCC TCT T03' (서열번호 15)
NLRP3
R 5' -CTT GGG CAG CAG TTT CTT TC—3' (서열번호 16)
F 5' -CCC TAC AGA AAC GTC CTA TAC C-3' (서열번호 17)
TLR1
R 5' -ATG ATA AGC TCA CAT TCC TCA G-3' (서열번호 18)
F 5' -GAC AAA GCG TCA AAT CTC AG-3' (서열번호 19)
TLR2
R 5' -CCA GAA GCA TCA CAT GAC AG-3' (서열번호 20)
TLR3 F 5' -TAA AGC GAG TTT CAC ITT CAG G-3' (서열번호 21) R: 5' -GCA GTT TAA CTT CCC AGA TAG AG— 3' (서열번호 22)
F 5' -CCC TGC ATA GAG GTA GTT CC-3' (서열번호 23)
TLR4
R 5' _GTT TGA GAG GTG GTG TAA GC-3' (서열번호 24)
F 5' -CAG GAT GTT GGC TGG TTT CT一 3' (서열번호 25)
TLR5
R 5' -CGG ATA AAG CGT GGA. GAG ΊΤ-3' (서열번호 26)
F 5' -TGC TGG AAA TAG AGC TTG GA-3' (서열번호 27)
TLR6
R 5' -GGA CAT GAG TAA GGT TCC TG-3' (서열번호 28)
F 5' -C GAA AGA TGT CCT TGG CTC-3' (서열번호 29)
TLR7
R 5' -CCA TCG AAA CCC AAA GAC TC—3' (서열번호 30)
F 5' -TTG CCA AAG TCT GCT CTC TG-3' (서열번호 31)
TLR8
R 5' -CAT TTG GGT GCT GTT GTT TG-3' (서열번호 32)
F 5' -CCC AAC ATG GTT CTC CGT C-3' (서열번호 33)
TLR9
R 5' 一 GGG TAC AGA CTT CAG GAA CAG-3' (서열번호 34)
<5-5> NZW토끼 및 기니어 피그 모델에서 WTA-PGN유도 세포성 면역
(i) NZW 토끼 피부에서 WTA-PGN 면역화에 의한 MRSA 감염에 대한 보호효과 측정
실험동물은 체증 2±0.1 kg의 NZW 토끼 (Yac; NZW (KBL), 암컷)을 ) 오리엔트 바이오 (경기도, 대한민국)로부터 구입하여 실험 시작하기 전 시판 고형사료 :^.#38302-丽, 0^^1^^ 1 1^113, Inc. , 유전자 결손 rea)를 먹이면서 1주간 동물실험실 환경 (토끼용 cage (Cat.#DJ117, (주)대종기기산업, 대한민국); 20-25 °C , 습도 55%)에 적응시켰다. 실험동물 1마리씩 사육용 우리에 넣어 자유급식방법으로 식이 및 식수를 제공하였다. 각 실험동물의 체중 및 식이섭취량은 매일 1회 측정하였으며, 12시간 간격으로 조명을 점등 및 소둥하였다.
NZW 토끼의 피부에 WTA-PGN 면역화 및 MRSA JSA300)을 감염시키기 전에 등을 가로 (15cm)X세로 (10cm) 크기로 전기면도기 (Cat .#ER806, Panasonic Corporation, Japan)로 제모하고, 면도 부위를 멸균된 알콜솜 및 포비돈-요오드 용액 (Cat. # P698900, TRC, CANADA)으로 소독한 뒤, 실험에 이용하였다.
동물의 마취를 위해 Zoletil® 50((주) 버박코리아, 대한민국) 및 Xylazine hydrochloride (Cat. #1251, Sigmaᅳ Aldrich Co. LLC. , Saint Louis, M0, USA)를 동물와 체중을 고려하여 각각 30 mg/0.6 ml/2 kg 및 9.328 mg/0.4 ml/2 kg 농도로 섞어 i.m.으로 주사하였다.
면도된 부위를 반 (가로 (7.5cm)X세로 (10cm))으로 나누어 구획을 긋고, 왼쪽에는 대조군으로서 PBS 100 μ ΐ)를, 오른쪽에는 WTA-PGN (20 ug/100 μ ΐ)을 i.d.로 면역화하였다. 각각의 토끼 중 1마리에는 3시간 후에, 1X108 CFU의 USA300을, 다른 1마리에는 6시간 후에 1X108 CFU의 USA300을 i.d.로 감염시켜 이후 7일간 피부 농양 병변의 크기를 너비 (w) 및 길이 (1)로 측정하였고, 피부 괴사 영역 (cm2) 및 농양 부피 (cm3)를 정량화 하였다. 농양 부피 (cm3)는 타원체 구면 (spherical ellipsoid)에 대한 공식 [ν=( π /6) X 1 X w2] 으로 계산하였다. (ii) 기니어 피그 피부에서 WTA-PGN 면역화에 의한 MRSA 감염에 대한 보호효과 측정
실험동물은 체중 250±10 g의 기니어 피그 (Crl0ri;HA, Female)를 (주) 오리엔트 바이오 (경기도, 대한민국)로부터 구입하여 실험 시작하기 전. 시판 고형사료 (Cat. #5026, (주) 오리엔트 바이오, 대한민국)를 먹이면서 1주간 동물실험실 환경 (항온항습동물용 cage (Cat.#AAAC2051, 제이오텍, 대한민국); 20~25°C, 습도 55%)에 적웅시켰다. 실험동물 1마리씩 사육용 우리에 넣어 자유급식방법으로 식이 및 식수를 제공하였다. 각 실험동물의 체중 및 식이섭취량은 매일 1회 측정하였으며, 12시간 간격으로 조명을 점등 및 소등하였다.
기니어 피그의 피부에 WTA-PGN 면역화 및 MRSA JSA300)를 감염시키기 전에 둥을 가로 (6cm)X세로 (6cm) 크기로 전기 면도기 (Cat .#ER806, Panasonic Corporation, Japan)로 제모하고, 면도 부위를 멸균된 알콜솜 및 포비돈-요오드 용액 (Cat. # P698900, TRC, CANADA)으로 소독한 뒤, 실험에 이용하였다.
동물의 마취를 위해 졸레틸 ® 50((주) 버박코리아, 유전자 결손 rea) 및 자일라진 하이드로클로라이드 (Cat .#1251, Sigraa-Aldrich Co. LLC., Saint Louis, M0 USA)를 동물의 체중을 고려하여 각각 3 mg/0.06 ml/100 g 및 0.9328 mg/0.04 ml/100 g농도로 섞어 i.m.으로 주사하였다. 면도된 부위를 반 (가로 (3cm)X세로 (6cm))으로 나누어 구획을 긋고, 왼쪽에는 대조군으로서 PBS(100 μΐ)를, 오른쪽에는 WTA-PGN(20 ug/100 μΐ)을 i.d.로 면역화하였다. 6시간 후에 5X108 CFU의 USA300을 i.d.로 감염시켜 이후 7일 간 피부 농양 병변의 크기를 너비 (w) 및 길이 (1)로 측정하였고, 피부괴사 영역 (cm2) 및 농양 부피 (cm3)를 정량화 하였다. 농양 부피 (cm3)는 타원체 구면 (spherical ellipsoid)에 대한 공식 [ν=( π/6) X 1 X w2] 으로 계산하였다.
(iii) 기니어 피그 복강에서 WTA-PGN 면역화에 의한 MRSA 감염에 대한 보호효과 측정
실험동물의 사육은 Π.5.2)와 동일하게 수행하였다. 기니어 피그를 이용하여 대조군 (n=2)에는 PBS (100 μΐ)를, WTA—PGN그룹 (η=2)에는 WTA-PGN (200 Ug/100 μΐ)을 i.p.로 면역화하였다.3시간 후에 1.5X109CFU의 USA300을 i.p.로 감염시켜 이후 7일 간 체중 및 식이섭취량, 움직임 등을 모니터링한 후, 해부하여 농양의 유무 및 크기, 장기 상태 등을 관찰하였다. . _
<5-6> WTA-PGN유도 체액성 면역
(0 WTA, PGN, WTA-PGN유도체의 피부내 면역화 및 MRSA (USA300) 감염 실험동물들은 0, 14, 28, 42, 56 일 째, 각각 PBS(Cat .#r7-516Q, Lonza Walkersville, Inc. , MD, USA) 및 20 의 WTA, PGN 유도체를 50 μ 1씩 i.d. 주사를 통해 총 5회 면역화하였다. 면역화 시작 전과 각각의 면역화 후, 7일 뒤인 7, 21, 35, 49, 63일 째, 꼬리 절단을 통해 20 μΐ의 혈액을 채취하였다. 5번째 면역화 후 14일 후인 70일 째, USA300(1X107CFU/100 μ 1 PBS)을 i.v. 주사를 통해 '감염 시키고, 7일 후인 77일째 마우스를 희생시켰으며, 실험에 이용된 시간 스케줄을 도식화하여 도 31에 나타내었다. 마우스는 회생 전 12시간 절식시킨 후 0.9% NaCl (Cat.#S 3014, Sigma-AIdrich Co. LLC. , Saint Louis, M0, USA) 용액에 100 mg의 2,2,2-트리브로모에탄올 :31;.#丁48402, Sigma-AIdrich Co. LLC. , Saint Louis, MO, USA) 및 200 μ 1의 t_아밀 알콜 (Cat .#152463, Sigma-Aldr ich Co. LLC. , Saint Louis, MO, USA)을 첨가한 마취제 (1 μ 1/g ΒΟ를 이용하여 마취하였고, 헤파린 처리된 멸균주사기를 이용하여 심장에서 혈액을 채취한 후, 10°C에서 8,000rpm으로 10분간 원심분리하여 얻은 혈장을 시료로 사용하였다. 간, 비장, 신장, 심장 및 폐 등의 조직을 적출하여 중량올 측정한 뒤, 신장 조직^ CFU 측정에 이용하였고 나머지 조직은 액체질소에 담근 후 -80°C에서 넁동보관하면서 시료로 사용하였다.
(ii) ELISA에 의한 WTA유도체 면역된 혈장에서의 항원-특이적 항체의 정량 96-웰 마이크로플레이트의 각 웰에 50 μΐ의 5 nmol WTA-PGN을 처리한 후
4°C에서 밤새 코팅하였고, STD로 1:500 희석한 염소 항 마우스 IgG-FC(Cat.#G-202-C, R&D systems Inc. , Minneapolis, 顧, USA)를 이용하여 코팅하였다.200 μ 1의 블로킹 완층액 (1%BSA (Cat.#A2153, Sigma-Aldr ich Co. LLC., Saint Louis, M0, USA)이 함유된 TBS 완층액 (10 mM Tris-HCl (Cat.#T3253( Sigma-Aldr ich Co. LLC. , Saint Louis, M0, USA), 140 mM NaCl ((Cat .#S0D001.1, Bioshop, Canada) , pH7.4)을 첨가하여 실온에서 2시간 동안 블로킹한 뒤, 200 μΐ의 세척 완층액 (o.05¾ Tween20 (Cat.#P9416, Sigma-Aldr ich Co. LLC. , Saint Louis, M0, USA)이 함유된 TBS buffer)로 실온에서 5회 세척하였다. 연속 희석한 WTA, WTA-PGN 및 PBS-면역된 혈장을 50 μ 1 첨가하여 실온에서 2시간 동안 배양하였고, STD로는 마우스 참고 혈청 (Cat RSlO-lOL Bethyl Laboratories, Inc., Montgomery, TX, USA)을 이용하였다. 200 μ 1의 세척 완층액으로 실온에서 5회 세척하고, 호스래디쉬 퍼옥시다아제에 접합된 1:2500 희석한 염소 항-마우스- IgG(Catᅳ鼎 4()21, Promega Corporation, Madison, WI , USA)를 50 μ 1 처리 후, 실온에서 1시간 동안 배양하였다. 이를 다시 200 μΐ의 세척 완층액으로 5회 세척 후, 100 μΐ의 기질로
3,3' ,5,5' -테트라메틸벤지딘 (Cat.#T0440, Sigma-Aldr ich Co. LLC. , Saint Louis, M0, USA)을 첨가하여 실온에서 10분간 배양하였고, 50 μΐ의 2 Ν H2S04(Cat. #258105, Sigma-Aldr ich Co. LLC. , Saint Louis, MO, USA)의 정지 완충액 (Stop buffer)을 처리하고 마이크로플레이트 리더 (Cat .#51119000, Thermo Fisher Scientific Inc. , Waltham, MA, USA)를 이용하여 450nm에서 측정한 흡광도 값을 550nm 값으로 보정하였다.
(iii) 신장 조직에서의 박테리아 부담 (bacterial burden) 정량
농양 형성이 관찰된 신장 조직을 10 ml의 10 mM EDTA(Ethylenediarainetetra acetic acid; Cat #.EDT001.500, Bioshop, Canada) 및 0.9%NaCl (Cat. #14002, 중외제약, 대한민국)을 함유하는 용액으로 균질화한 다음, 균질액을 연속희석하고, 양 혈액 한천 플레이트 (Cat.#AM601-01, 아산제약 (주), 유전자 결손 rea)에 50 μ 1를 스프레딩한 뒤, 37°C 배양기 (Cat .#SB_9, EYELA, Japan)에서 24시간 배양한 후 콜로니의 수를 계수하였다.
(iv) 신장 조직의 병리학적 관찰
실험에 사용된 마우스의 산장 조직 중 피질과 수질 일부를 채취하였다. 피질에서 사구체낭의 괴사를, 수질에서 다형핵성 백혈구 (polymorphonuclear leukocyte), 대식세포, 림프구를 포함하는 면역 세포 침윤물 및 농양을 확인하기 위해, 조직절편에 헤마록실린—에오신 (Hematoxylin-eosifi, H&E) 염색을 수행하였다.
즉, 채취한 조직을 10% 포르말린 용액 (Cat.#HT501128, Sigma-Aldr ich Co.
LLC, Saint Louis, M0, USA)에 24시간 이상 고정시킨 후, 파라핀 블록을 제작하였다. 이를 3 μηι의 절편으로 만든 후, 슬라이드 글래스에 올려 60~70°C 오븐에 1시간 동안 건조시키고, H&E 염색을 수행하였다. 완성된 슬라이드 글래스는 광학 현미경을 이용하여 200배 시야에서 조직병리학적 변화를 관찰하였다. 실시예 6: 정제한 WTA-PGN 유도체에 의한 쌩체내에서 γ δ T 세포 매개 IL-17A분비 및 MRSA감염에 대한 보호효과
<6-1> WTA-PGN유도체에 의한 세포성 면역 반웅 유도
(6-1-1) 정제한 WTA-PGN, WTA, PGN을 마우스 복강에 주사시 12시간 이내에 IL-17A 및 IL-Ι β를 분비하였다.
정제한 WTA-PGN 유도체의 생리활성을 보다 면밀히 조사하기 위하여 분리 정제한 WTA-PGN유도체를 농도별 (0, 50, 100, 200 u g/100 μ 1 in PBS)로 마우스 복강에 주사시 시간 변화에 따른 복강 내의 IL-17A 및 IL-Ιβ 생성량을 관찰한 결과를 각각 도 11A 및 11B에 나타내었다. IL-17A 및 IL-Ιβ와 같은 사이토카인 발현에 대한 시간 역학을 ELISA로 관찰하였다.
IL-17A는 WTA-PGN 주사 후 3시간부터 발현이 증가하여 6시간에 최대 유도되었고, 그 이후로 급격히 감소하여 24시간에는 발현되지 않았고, WTA 및 PGN의 흔합물 동일량을 주사시에는 모든 시간대에서 IL-17A가 생성되지 않는 사실로 IL-17A 유도를 위해서는 WTA와 PGN이 공유 결합으로 결합된 WTA PGN 구조가 필요한 사실을 알 수 있었다. 또한 IL-17A의 발현은 농도 의존적으로 증가하는 사실을 알 수 있었다 (도 11A) .
IL-Ιβ 발현량도 WTA-PGN 유도체 주사 후, 3~6시간에 가장 높게 나타났고, 24시간에는 대조군 수준으로 감소하였다. 한편, WTA와 PGN 흔합물은 3시간 째 IL-Ιβ 발현량이 최대치를 나타내었으나, 6시간째는 급격히 감소되었다. IL— 1β의 발현량은 IL-17A와 마찬가지로 농도 의존적으로 증가하는 사실을 알 수 있었다 (도 11B) .
포도상구균이 숙주의 특정 부위에 감염되고 나면, 독소를 분비하거나 biof i lm을 형성하여 호중구 (neutrophi le) 매개의 식균 작용 (phagocytosi s)을 억제하는 사실이 잘 알려져 있기에 감염 초기 단계에 호중구를 모을 수 있는 사이토카인이 분비되어 포도상구균이 감염 정착 단계를 완성하기 전에 호중구에 의한 식균 작용으로 이를 제거하는 것이 바람직한 것으로 제안되고 있으나, 최근까지도 감염 초기에 선택적으로 IL-17A 분비를 유도할 수 있는 면역 조절 물질은 동정되지 않고 있는 실정이다.
최근까지의 기초 연구 결과 체내에서 IL-17A를 생산할 수 있는 T 세포는 Thl7 세포가 알려져 있으나, Thl7 세포에 의해 IL-17A가 지속적으로 분비될 경우, 호중구가 과도하게 특정 부위에 모여 숙주의 조직이나 장기를 파괴하여 루프스, 류마티스관절염 등의 자가 면역 질환을 유발하는 사실이 보고되고 있으므로, Thl7 세포 매개 IL-17A 발현을 유도하는 불질은 유용한 백신이나 면역 조절 물질로 활용 없음이 제시되고 있다.
(6-1-2) WTA-PGN 유도체에 의한 초기 단계의 IL-17A 및 IL-1 β 유도는 항염증 사이토카인인 IL-10에 의하여 조절되었다.
WTA-PGN을 주사한 마우스에서 12시간 이후에 IL-17A, IL-Ιβ가 분비되지 않는 이유를 규명하기 위하여 본 발명자들은 항염증 사이토카인인 IL-10에 의하여 이들 염증 사이토카인이 조절될 것이라는 가설 하에, 분리 정제한 WTA-PGN유도체 (200 u g/100 μ ΐ )를 마우스 복강에 주사 후, 시간별 (0. 3, 6, 9, 24, 48, 72 , 96시간)로 복강 침출액을 모아 IL-17A, IL-Ιβ 및 IL—10 량을 분석하였다 (도 12) .
IL-17A 생성은 WTA-PGN 유도체 주사 후 3시간부터 증가하여, 6시간에 최대치를 보이고 9시간 이후부터 감소하여 12시간째에는 전혀 생성되지 않았고, IL-Ιβ는 IL-17A의 발현 패턴과 유사한 경향을 나타내었으나, 6시간에 최대치를 보인 후 감소하기 시작하여 12시간까지는 비교적 높은 수준을 유지하다가 24시간 이후에는 발현되지 않았다. 그러나 WTA-PGN 유도체 주사 후 IL—10 생성은 3시간부터 서서히 증가하여 12시간에 최대치를 보이고, 24시간부터 감소하나 48시간까지는 높은 수준을 유지하다가 이후부터 급격히 감소하여 72 시간이후에는 거의 생성되지 않는 홍미로운 사실을 알 수 있었다.
이러한 사실은 포도상 구균에서 정제된 WTA-PGN 유도체를 마우스 복강내에 주사하면 3시간부터 6시간이라는 짧은 시간에 IL-17A, IL-Ιβ와 같은 염증성 사이토카인을 분비하여 호중구를 모아 감염 부위의 포도상 구균을 식균 작용으로 제거할 수 있을 것으로 기대되었고, 12시간 이후에는 WTA-PGN에 의한 IL-17A 분비가 IL-10에 의하여 제어됨으로써 과잉의 IL-17A 분비에 의한 숙주에서의 자가 면역 반웅으로 인한 조직이나 장기 손실을 유도하지 않는 새로운 면역 조절 물질임을 확인할 수 있었다.
(6-1-3) WTA-PGN 유도체에 의하여 γ δ Τ유래의 IL-17A이 생성되었다. WTA-PGN 주사시에 생성되는 IL-17A가 γ δ Τ 세포 유래의 IL-17A 임을 유세포분석법을 이용하여 증명한 실험 결과를 도 13에 나타내고 있다. WTA-PGN 주사후에 시간 별로 복강내의 세포들을 모아 먼저 CD3+ T 세포만을 모은 후, 다시 γ δ Τ 세포 수용체 δ T cel l receptor , γ δ TCR)를 가지는 Τ 세포들을 모아 이들 전체 Τ 세포중의 비율을 조사한 결과 WTA-PGN 주사 후 6시간 째, PBS군에 비하여 12.2%까지 증가하였고, γ δ Τ 세포내에 생산되는 IL-17A를 단일 항체를 이용하여 정량한 결과 3시간 후에 복강내에 모인 γ δ Τ 세포 증 56%가 IL-17A를 생산하는 세포이고, 6시간 후에는 복강내에 모인 γ δ Τ 세포의 78%가 IL-17A를 생산하는 세포임을 알 수 있었다.
이러한 사실은 WTA-PGN은 선택적 γ δ Τ 세포 매개의 IL-17A 발현을 유도할 수 있는 새로운 면역 조절 물질 ( i隱 une modulator) 임을 알 수 있었다.
(6-1-4) WTA-PGN 유도체는 CD4+, CD8+ T 세포 유래의 IL-17A 생성은 유도하지 않았다.
WTA-PGN 유도체 주사에 의하여 CD4+, CD8+ T 세포 유래의 IL-17A 생성 여부를 알아 보기 위하여 유세포분석법으로 CD4+, CD8+ T 세포를 분리 (sort ing) 한 후 이들 세포가 분비하는 1L-17A 량을 정량한 결과를 도 14에 나타내고 있다.
WTA-PGN 주사 후, 3시간, 6시간 째, CD4+, CD8+ T 세포 유래의 IL-17A 생성은 관찰되지 않았다. 이러한 사실은 WTA-PGN 유도체는 CD4+ , CD8+ T 세포 유래의 후천성 면역 반웅 (adapt ive immuni ty)에는 관여되지 않고, γ δ Τ 세포 유래의 IL-17A만을 생산하여 호중구에 의한 세포성 면역 반웅 조절하는 새로운 면역 조절 물질임을 알 수 있었다.
(6-1-5) γ δ TCR 결손 마우스에서는 WTA-PGN 주사에 의한 IL-17A 및 IL-Ι β 생성은 유도되지 않았다.
WTA 유도체가 γ δ Τ 세포 유래 IL-17A을 생성하였기에 γ δ TCR의 주된 subset인 V Y 2/4 유전자가 결손된 V Y 2/4_/— 마우스와 야생형 마우스 (wi ld-type) 를 이용하여 WTA-PGN 이 γ δ T 세포 유래 IL-17A 및 IL-Ι 발현 유도를 하는 지를 조사하였다.
그 결과, 도 15A 및 15B에서 보듯이 WTA-PGN을 주사한 야생형 마우스군에서는 예상대로 IL-17A 및 IL-Ιβ가 발현되는 반면, V Y 2/4—/_ 마우스군에서는 이러한 사이토카인을 생성하지 않았고, WTA 및 PGN의 흔합물 주사시에는 야생형 및 V Y 2/4+ 마우스군 모두에서 IL-17A 및 IL-Ι β 발현을 관찰할 수 없었다. 이상의 결과로부터, WTA-PGN이 TCR의 주요 하부집단인
V Y 2/4의 활성화를 통하여 IL-17A의 생성을 유도한다는 사실을 다시 확인할 수 있었다.
(6-1-6) WTA-PGN 전처리에 의한 기억성 (memory) γ δ T 세포의 생성 및 관련 사이토카인의 발현 양상
i ) WTA-PGN 유도체 3회 전처리후에 MRSA 균 재감염후의 사이토카인의 발현 패턴 조사 결과
새로운 포도상 구균 감염에 대한 새로운 백신 후보물질이나 면역 조절 물질을 임상적으로 유용하게 활용하기 위해서는 포도상 구균의 재감염에 대한 기억성 Υ δ Τ 세포 생성이 필수 요건이기에 본 발명자들은 WTA-PGN 유도체를 일주일 간격으로 3번 마우스에 주사 후, 21일 경과 후 M SA 균주인 USA300 균주를 마우스 복강에 재감염시에 기억성 Υ δ τ 세포 생성하는지를 조사하였다 (도 16) .
먼저 3번 WTA-PGN , WTA , PGN 유도체를 전처리한 마우스에 USA300 균주의 재감염으로 염증성 및 항염증 사이토카인의 변화를 조사한 결과 IL-17A의 생성은 USA300 균주 감염 후, 6시간에 최대치의 발현량을 보였고 이후 24시간에는 발현량이 대조군과 유사한 수준으로 감소하였다 (도 16A) . WTA , PGN을 3번 전처리한 마우스에서 IL- 17A가 발현되었지만, WTA-PGN에 비해서는 그 발현량이 1/2 정도이었고, 특이한 사항은 3회 전처리 시에는 1회 전처리시보다 IL- 17A의 발현량이 약 10배 정도 높게 발현되는 사실을 알 수 있었다.
IL-Ι β 생성량은 USA300 감염 후, 6시간에 최대치의 발현량을 보였고 이후 24시간에는 발현량이 유의적으로 감소하였다. WTA , PGN 전처리군의 IL-Ι β의 발현은 6시간에 WTA-PGN 과 거의 비슷한 정도의 발현량을 보였다. 이와 같은 사실은 ΨΐΑ ' PGN 3번 전처리한 마우스에 USA300 균주의 재감염으로 IL-Ι β 생성량은 WTA-PGN과 비슷한 수준의 발현량을 나타낸다는 것을 알 수 있었다 (도 16B) .
IL-23 생성은 흥미롭게도 USA300 균주의 재감염 후, 6시간에 WTA-PGN군에서만 단독으로 발현되었고, 이후 24시간에는 발현되지 않았다. 이러한 결과는 IL-23 생성이 기억성 γ δ Τ 세포 매개 IL-17A 생성과 깊은 관련이 있음을 예상할 수 있었다 (도 16C) .
IFN Y의 생성은, USA300 균주 감염 후, WTA 및 PGN을 전처리한마우스에서 6시간에 최대치의 발현량을 보였고 이후 24시간에는 발현량이 유의적으로 감소하였다. WTA-PGN을 전처리한 마우스에서 IFN Y 발현은 IL-17A의 발현과는 반대로, WTA-PGN군에서 가장 낮은 발현량을 보였다. 이상의 결과는 IFN Y 생성이 기억성 γ δ T 세포 매개 IL-17A 생산과는 관련이 없음을 뒷받침하는 결과로 추정할 수 있었다 (도 16D) .
한편, 항염증성 사이토카인인 IL-10의 발현은 USA300 균주 감염 후, 3시간에 높이 증가했다가, 12시간까지 약간 감소하였으나, 24시간에 다시 최대치를 나타낸 후ᅳ 48, 72시간에는 약간 감소하였으나, 여전히 높은 수준을 유지하였다. 앞에서 관찰한 바와 같이 염증성 사이토카인인 IL-17A , IL-Ι β 및 IL-23의 발현이 완전히 억제되는 24시간에 IL-10의 생성이 최대치를 보이는 것으로 보아, IL-10은 IL-17A의 발현을 효과적으로 억제함을 알 수 있었다 (도 16E) .
LP WTA-PGN 3번 전처리한마우스는 CD44high/CD27l0W마커를 가지는기억성 γ δ T 세포를 생성하였다.
WTA-PGN을 3회 전처리한 마우스 복강에 기억성 γ δ Τ 세포의. 생성을 알아보기 위하여 USA300 감염 3시간 후에 WTA-PGN을 전처리한 마우스의 γ δ T 세포를 모아, 기억성 γ δ Τ 세포의 마커인 CD44high/CD27l0W γ δ Τ세포의 발현을 조사한 결과, 전처리 하지 않은 군에 비하여 높게 나타났고, 이들 기억성 γ δ Τ 세포가 대조군에 비하여 IL-17A 발현이 높게 나타난 반면, CD27+ γ δ Τ 세포에서는 IL-17A 발현은 관찰되지 않았다 (도 17A 및 Γ7Β) . i i i ) CD3+ V δ T 세포에서의 IL-17A 생성
WTA-PGN을 3회 전처리 하여 기억성 γ δ Τ 세포를 생성한 마우스에 USA300 균주를 감염시켰올 때, CD3+ γ δ Τ 세포의 세포내 및 세포외 IL-17A의 발현을 각각 FACS 및 ELISA로 관찰한 결과, WTA— PGN을 전처리한 마우스에서 3 ~9시간 동안에 IL-17A의 발현이 높게 나타났다 (도 18A 및 18B) . 이상의 결과는 WTA-PGN이 기억성 γ δ T 세포를 효과적으로 유도할 수 있으며, 유도된 기억성 γ δ Τ세포는 IL-17A의 주요 생산 세포로 작용할 수 있음을 보여주는 자료이다. iv) CD4+ , CD8+ T 세포에서의 IL-17A 생성
WTA-PGN 전처리후의 ILᅳ Γ7Α 생성의 주 생성 세포가 세포성 면역 반응을 유도하는 γ δ T 세포라는 앞선 결과를 재확인하기 위해, 후천성 면역 반응에 관여하는 CD4+ , CD8+ T 세포 유래 IL-17A의 발현을 조사하였다 (도 19) . CD3+ γ δ Τ 세포 유래 IL-17A가 90% 이상 생성되었으나, WTA-PGN 를 전처리한 마우스로부터 CD4+ , CD8+ T 세포를 분리하여 IL-17A의 발현을 조사하였으나 관찰되지 않았다. 이상와 결과로부터 WTA-PGN을 3회 전처리후에, MRSA균을 감염시켰을 때, 감염 초기에는 CD4+, CD8+ T세포과 같은 후천성 면역 반웅 관련 세포가 아닌 γ δ T 세포에 의한 세포성 면역만이 유도된다는 사실을 재확인 할 수 있었다. V) WTA-PGN전처리에 의하여 분화되는 、 δ TCR하부집단 규명
WTA-PGN유도체를 3번 전처리하여 기억성 γ δ T 세포가 생성된 마우스에 USA300균주를 감염시킬 때 어떤 γ δ TCR하부집단의 수가 증가하는지를 확인한 결과, vY4 하부집단이 가장 높게 발현되는 사실을 확인하였다 (도 20). 현재 시판되는 하부집단 중에는 항 _VY4-Ab가 없으므로, VYI.1 및 VY2의 이중 음성 집단 영역을 게이팅 (gating)하여 VY4 집단으로 확인하였다. 최근의 연구 결과 USA300 균주 감염 시, 초기에는 VY 1.1+ 및 VY2+의 빠른 유입이 관찰되고, 이후 VY1.1+ 및 Vy4+ Υ δ Τ 세포로의 γ δ TCR 하부집단의 이동 (shifting)이 일어나는 것으로 알려져 있다 (//扁 WW/ 2014; 192:3697-3708). 또한 Vy4+cell은 연속적인 5. aureus 감염 및 기억 반웅이 유도되었을 때, 그 집단이 더욱 더 증가하며, IL-17A 생성에 직접적으로 관여하는 것으로 보고되고 3)ALI I國 unol 2014; 192:3697-3708). vi) 수지상 세포에서의 IL-23 발현
앞에서 WTA-PGN 재처리에 의하여 발현되는 IL-23이 어떤 세포에서 발현되는지를 조사하기 위하여 본 발명자들은 수지상 세포의 가능성에 초점을 두고 조사하였다 (도 21). WTA-PGN을 3회 전처리한 후, USA300 균주를 감염시칸 다음, 수지상 세포내의 IL-23 발현을 FACS로 확인하였다. 그 결과 감염 3시간 후, WTA-PGN을 전처리한 그룹은 전처리하지 않은 그룹에 비해 IL-23의 발현이 증가되었지만 24시간이 되면 거의 발현되지 않는 양상을 보였다. 이러한 결과로부터 MRSA 감염 초기에 수지상 세포에서 IL-23가 생성되어 γ δ Τ 세포를 자극함으로써 IL-17A발현을 유도할 가능성을 관찰하였다. <6-2> WTA-PGN 면역화에 의하여 유도된 기억 반웅에 의한 생체내에서의 MRSAC 5. aureus USA30Q strain) 및 MSSACS. aureus NRS184 strain) 감염에 대한 보호효과
마우스를 WTA-PGN으로 복강 ( i .p)으로 3회 면역화한 후, 35일 째 1X108 세포의 USA300 균주를 감염시켜, 72시간 후, 복강 내에 생성되는 장기 형상 및 농양 (abscess) 생성을 관찰하였다. 상기 결과가 도 22에 나타나 있다.
대조군에서는 복강 내에 농양이 관찰되었으나, WTA-PGN 군에서는 농양이 전혀 관찰되지 않아, γ δ Τ 세포 매개 IL-17A 생성에 의해 호중구가 모여 식균 작용이 증가되어 USA300 감염에 대해 숙주를 효과적으¾ 보호한 것으로 사료되었다. 한편, WTA을 전처리한 군은 농양은 관찰되지 않았으나, 간 조직 이상 소견이 나타났고, PGN 전처리한 군은 대조군보다는 양호하나 농양이 관찰되었다. 또한 WTA-PGN 면역화하여 기억 반응이 유도된 마우스에 USA300 균주를 감염시킨 생존 비율을 조사하기 위하여, WTA-PGN으로 i .p로 3회 면역화한 후, 35일째 5X108 세포의 USA300 균주를 감염시켜, 9일 간 모니터링하였다. 상기 결과를 도 23에 나타내었다. WTA-PGN으로 면역화된 그룹의 마우스는 모두 생존한 반면, 대조군인 PBS 그룹은 8일째에 모든 마우스가 사망하였다. 이러한 결과로부터 WTA-PGN으로 면역화한 마우스에서는 초기 단계의 세포성 면역 및 기억성 면역 반웅에 의한 고농도 MRSA 감염에도 효과적으로 생체를 방어할 수 있을 것으로 추정되었다. 한편, MRSA 감염에 대해 보호효과를 나타내는 WTA-PGN이 MSSA 감염에 대해서도 보호효과를 나타내는지 알아보기 위해, 마우스를 WTA-PGN으로 i . p로 3회 면역화한 후, 35일째 5X108 세포의 5. aureus NRS184 균주를 감염시킨 다음, 7일째에 복강 내의 농양을 관찰하였다 (도 24A 및 24B) . 도 24에서 보는 바와 같이 PBS 대조군에서는 복강 내 농양이 관찰되었으나, WTA-PGN 전처리한 군에서는 농양이 전혀 관찰되지 않아, WTA-PGN이 MRSA 뿐만 아니라, MSSA 균주 감염에 대해서도 강력한 보호효과를 나타내는 것으로 나타났다.
<6-3> NZW 토끼 및 기니어 피그에서 WTA-PGN 면역화 후에 MRSA 감염에 대한 숙주의 보호효과
마우스 실험 모델에서 WTA-PGN 면역화에 의한 기억 γ δ Τ 세포의 생성 및 服 SA 감염에 대한 보호효과를 확인하였기에 WTA-PGN을 마우스 모델이 아닌 NZW 토끼 및 기니어 피그와 같은 대동물 모델에서 WTA-PGN 면역화 후에 MRSA 감염에 대해 보호효과를 나타내는지 확인하였다.
먼저, 20 의 WTA— PGN을 NZW 토끼 피부에 피하 주사로 면역화한 후,
3시간 뒤에 MRSA( 1X108 CFU of USA300)를 피하 주사로 감염시켜 보호효과가 있는지 관찰하였다. 상기 결과를 도 25A 내지 25C에 나타내었다.
그 결과, PBS ( 100 μ ΐ )로 면역화한 대조군과 비교하여, WTA-PGN(20 u g WP/100 μ 1 PBS)으로 면역화한 토끼의 피부 괴사 영역 및 농양 부피의 크기가 현저히 작았으며, 빠르게 회복되어 6일째가 되면 농양 조직이 거의 관찰되지 않았다. 이를 통해 WTA-PGN이 마우스 모델뿐만 아니라 NZW 토끼에서도 세포성 면역을 유도하여 MRSA 감염에 대해 보호효과를 가진다는 것을 알 수 있었다. 또한 NZW 토끼와 기니어 피그 모델을 WTA-PGN(20 \x g WTA-PGN/100 μ 1 PBS)으로 피하 주사하여 면역화하고 6시간 후에 MRSA (5X108 CFU의 USA300)를 피하 주사로 감염시켜 보호효과가 있는지 관찰하였다.
그 결과, NZW 토끼와 기니어 피그 모두에서 PBSU00 μ ΐ )를 면역화한 대조군과 비교하여 WTA-PGN(20 u g WTA-PGN/100 μ 1 PBS)을 면역화한 동물에서는 농양의 크기가 현저히 작게 나타났으며, 빠르게 화복되는 것을 관찰할 수 있었다 (도 26A 및 26B) . 이로써 NZW 토끼 및 인간과 가장 비슷한 면역계를 가진 것으로 추정되는 기니어 피그에서도 WTA-PGN이 MRSA 감염에 대하여 사실을 확인하였고, 이를 통해 WTA-PGN를 전처리함으로써 MRSA 감염으로부터 숙주를 효과적으로 보호할 수 있다는 사실을 입증하였다. 기니어 피그 복강 내 WTA-PGN을 주사한 후, MRSA 감염 시 숙주에 대한 보호효과를 관찰하기 위해 PBS와 200 ug의 WTA-PGN을 i .p .로 각각 면역화하고, 3시간 후에 1.5X109 CFU의 SA300을 감염시켜, 7일 후 해부하여 조직을 관찰한 결과, PBS를 면역화한 대조군에 비하여 WTA-PGN을 면역화한 동물에서 농양의 크기가 많이 감소하였고, MRSA에 의한 용혈 현상 (hemolysi s)이 거의 일어나지 않는 것을 볼 수 있었다 (도 27) .
이상의 결과로부터 마우스 복강에 WTA-PGN을 전처리함으로써 MRSA 감염에 대해 보호효과를 나타낸 WTA-PGN은 기니어 피그 복강을 이용한 모델 시스템에서도 MRSA 감염으로부터 숙주를 보호하는 효과를 가진다는 것을 알 수 있었다.
<6-4> WTA-PGN 면역화에 의한 야생형, TLR-9-유전자 결손 및 Caspase-1-유전자 결손 마우스에서의 IL-17A 및 IL-1 β 생성
WTA-PGN이 어떻게 γ δ Τ 세포 유래 IL-17A을 생성하는지에 관한 신호 전달 메커니즘 연구를 위해, 수지상 세포에서 각각 IL-23 및 IL-Ιβ 발현 유도메 관여하는 것으로 알려져 있는 를ᅳ유사 수용체 (TLR) 경로 및 인플라마좀( 01 3圆33011½ ) 경로에 관한 연구를 수행하였다.
야생형, TLR-9-유전자 결손 및 Caspase-1-유전자 결손 마우스를 이용하여 , l oa^ l / 로부터 분리한 WTA- PGN 및 야생형 박테리아로부터 분리한 WTA-PGN을 주사하고, 6시간 뒤 복강 침출액에서의 IL-17A 생성을 측정한 결과, Zl o ^zl / 로부터 분리한 WTA-PGN을 주사한 야생형 마우스군에서만 IL— 17A 및 IL-Ι β가 발현되는 반면, TLR-9-유전자 결손, Caspase-1-유전자 결손 마우스에서는 이러한 사이토카인이 생성되지 않는 것으로 나타났다 (도 28A 및 28B) .
이상의 결과는 Zk¾^z §f로부터 분리한 WTA-PGN이 γ δ T cel l 유래 IL-17A을 생성하는데, TLR-9 경로 및 인플라마좀 경로가 관여할 가능성을 시사하는 결과를 얻었다.
<6-5> 대식세포, 수지상 세포 및 γ δ Τ 세포에서의 WTA-PGN 전처리후에 유도되는 사이토카인 및 케모카인의 발현 양상 비교
γ δ Τ 세포 의존적 IL-17A 분비에 필요한 상위 신호 전달체계 및 WTA-PGN의 생물학적 기능 및 기전을 이해하기 위해 마우스 복막 침출 세포 (PEC)로부터 대식세포, 수지상 세포 및 γ δ Τ 세포를 분리하여 이들 세포들로부터 유도되는 사이토카인들을 조사하였다 (도 29) .
그 결과, WTA-PGN 면역화시, IL-17A는 γ δ Τ 세포에서, IL-Ιβ는 수지상 세포와 γ δ Τ 세포에서, IL-12 p40( IL-23)는 수지상 세포에서, IFN Y는 γ δ T 세포에서 각각 발현되는 사실을 밝혔다.
최근 들어, 비-고전적인 Τ 세포, 즉, γ δ Τ 세포에서의 IL— 17A의 생성에 수지상 세포에서의 IL— 23 및 IL-Ιβ 발현이 중요한 역할을 하는 보고들이 증가하고 있어, WTA-PGN 면역화시 이들 사이토카인들이 어떻게 리간드를 인식하고 서로 어떻게 상호 작용하는지에 관해서는 보다 구체적으로 연구할 필요성이 있는 것으로 판단되었다. 또한 야생형 및 NLRP3-유전자 결손 마우스를 이용하여, WTA-PGN을 면역화한 후, 대식세포, 수지상 세포 및 γ δ T 세포를 분리하고, NLRP3, 사이토카인 및 TLR1 9까지의 유전자 발현 상태를 qRT-PCR로 살펴본 결과, NLRP3는 수지상 세포와 γ δ T 세포에서 주로 생성되었고, 야생형 마우스에 아무것도 처리하지 않은 대조군에서 높게 나타났으며, WTA-PGN을 면역화한 야생형 마우스와 NLRP3-유전자 결손 마우스에서는 다소 감소하였으나, 야생형 마우스 그룹에서 NLRP3 유전자 결손 마우스 그룹보다는 높은 발현량을 보였다 (도 30) .
일반적으로 NLRP3는 수지상, 세포 내 인플라마좀에서 발현되어 IL-Ιβ의 생성에 영향을 미치는 것으로 알려져 있는데, 앞선 실험에서 IL-Ιβ의 발현이 수지상 세포와 γ δ T 세포 모두에서 높게 나타난 결과와 본 실험에서 NLRP3-유전자 결손 마우스에서 NLRP3 유전자 발현이 수지상 세포와 γ δ Τ 세포 에서 거의 동일하게 나타난 것으로 보아, NLRP3가 관여하는 인플라마좀이 γ δ Τ 세포 내에도 존재할 가능성이 있는 것으로 사료되었으며, 이러한 점은 지금까지 보고된 바 없는 새로운 사실로 추정된다 (도 30Α) .
IL-17A의 발현은 대조군에서는 전혀 발현되지 않은 반면, WTA-PGN을 면역화하였을 때, 야생형 마우스 그룹 및 NLRP3 유전자 결손 마우스 그룹에서 얻어진 γ δ Τ 세포 에서만 발현량이 증가하였고, 야생형 마우스 그룹에서의 발현량이 NLRP3-유전자 결손 마우스 그룹에서의 발현량보다 높았다. 이는 NLRP3—유전자 결손 마우스의 경우, 수지상 세포의 인플라마좀 내에서, IL-Ιβ 생성이 저해되어 Τ 세포를 자극하지 못함으로써, IL-17A의 발현이 감소한 결과로 짐작된다 (도 30Β) .
IL-23는 IL-12p40 및 IL— 23pl9로 구성된 헤테로다이머 형태로써 이들의 유전자 발현을 살펴본 결과, IL— 12p40은 WTA-PGN을 면역화한 야생형 및 NLRP3 유전자 결손 마우스의 수지상 세포에서, IL-23pl9는 유전자 결손 마우스의 대식세포와 수지상 세포에서 높게 발현되었으나, IL-12p40에 비해 발현량이 미미하였다 (도 30C & 30D) .
IL-Ιβ는 대조군에서는 전혀 발현되지 않았으나, WTA-PGN을 면역화하였을 때, 야생형 마우스 그룹에서는 수지상 세포〉 γ δ Τ 세포 > 대식세포의 순으로, NLRP3-유전자 결손 마우스에서는 γ δ Τ 세포 〉 수지상 세포 > 대식세포의 순으로 높게 나타났고 (도 30Ε) , IFN Y의 발현은 WTA-PGN을 면역화한 야생형 마우스 그룹에서 현저히 억제되었고, 대조군 및 NLRP3 유전자 결손 마우스 그룹의 γ δ Τ세포 에서 높게 발현되었다 (도 30F) .
이상의 결과로부터, γ S Τ 세포에서의 IL-17A, 수지상 세포에서의 IL-23 발현은 서로 깊은 연관 관계가 있을 것이 예상되었고, γ δ Τ 세포에서의 IFN Y 발현과 IL-17A 발현은 서로 상반되는 연관 관계가 있음을 알수 있었다. 또한 WTA-PGN에 의한 γ δ Τ 세포 의존적 IL-17A 분비에 필요한 상위 신호 전달체계를 이해하기 위해, TLR1 9까지의 유전자 발현을 확인하였다. TLR3 , 4 , 5, 6 유전자는 확인되지 않았으며, TLR1 , 2, 7, 9의 경우에도 대조군, WTA-PGN을 면역화한 야생형 및 NLRP3-유전자 결손 마우스 그룹 간의 유의적인 차이는 찾을 수 없었다 (도 30G-J) . 특히, 본 실험에서 사용한 A oatA/ gt 돌연변이로부터 분리한 WTA-PGN의 경우, 엔도좀에 존재하는 TLR9에 의해 인식되어 IL-23를 분비할 것으로 기대되었으나, 상기 도면에서 보는 바와 같이 야생형 마우스에 WTA-PGN 면역화시 TLR9 유전자가 거의 나타나지 않아, 또 다른 상위 신호 전달체계가존재할 것으로 판단되었다. 실시예 7 : WTA-PGN유도체에 의한 체액성 면역
<7-1> 마우스 모델에서 WTA 및 WTA-PGN을 피하 면역화시에 항 -WTA-IgG가 생성되었다.
TA 및 WTA-PGN을 면역화한 후, 각각의 항원에 특이적인 항체의 생성올 확인하기 위해 96-웰 플레이트에 WTA 및 WTA-PGN을 코팅하여, WTA 및 WTA-PGN로 면역화한 마우스의 혈청을 이용하여 항 -WTA-IgG 및 항 -WTA-PGN- IgG의 생성량을 적정하였다 (도 32) .
그 결과, WTA의 경우, 5회 면역화하면 혈중 항 -WTA-IgG 량이 3배가량 증가한 반면, WTA-PGN의 경우, 3회 면역화하면 항 -WTA-PGN-IgG 량이 5배 가량 현저히 증가하였다 (도 32) ·
이상의 결과는 WTA-PGN 유도체를 면역화하면 생성된 항체가 항원-특이적인 항체를 생성하여 고전적 보체계 (Cl ass i cal compl ement pathway)를 활성화시켜, 옵소닌식균작용 (opsonophagocytos i s)을 유도함으로써 숙주에 대해 보호효과를 낼 것이라 기대하고, WTA 및 WTA-PGN으로 5번 면역화 한 마우스에 MRSA균을 꼬리 정맥으로 감염시켜 숙주의 보호 효과를 조사하였다. <7-2> WTA-PGN 유도체를 피하 주사로 면역화 후에 MRSA 감염에 의한 체중 변화량
WTA-PGN 유도체를 5회 면역화한 후, 70일째, 1X107 CF J의 USA300 균주를 감염시켜, 일주일 간의 체중 변화를 모니터링한 결과를 도 33에 나타내고 있다.
PBS 주사한 대조군은 감염 후, 2일째 체중이 15% 이상 감소하여, 계속 낮은 체중을 유지한 반면, WTA 및 PGN군은 PBS군에 비해 체중 감소율이 낮았으며, WTA-PGN 군은 5% 정도의 체중 감소율을 보이다가 박테리아 감염 후 6일 째, 다시 원래의 체중으로 회복되었다.
이상의 결과로부터, WTA-PGN을 면역화한 동물에서는 MRSA 감염시 항원-특이적인 항체 생성에 의한 옵소닌식균작용이 유도되고, 초기 감염 시에 박테리아를 제거함으로써 마우스 보호효과를 나타낸 것으로 사료된다.
<7-3> WTA-PGN 면역화 에 의한 숙주의 MRSA보호효과
포도상구균 세포벽으로부터 분리한 WTA , PGN , WTA-PGN 유도체를 마우스에 피하주사로 면역화 한 후, 70일째 되는 날 USA300 균주를 정맥내로 주사하여 감염 시킨 후 77일째 신장을 분리하여 이들 신장에 존재하는 USA300 균주의 CFU와 농양 형성 여부를 조사한 결과를 도 34A 및 34B에 나타내었다.
마우스 신장의 농양 생성 여부를 관찰한 결과, 도 34A에 나타난 바와 같이 WTA-PGN군에서 PBS 대조군에 비해 농양 생성이 현저히 억제되었고, 신장을 분쇄하여 신장 내에 존재하는 MRSA 균주의 CFU를 계산한 결과 (도 34B) , 예상대로 WTA-PGN군에서 PBS 대조군에 비하여 CFU가 유의적으로 감소되는 사실로부터 WTA-PGN은 MRSA 감염으로부터 마우스를 보호하는 효과를 가지는 항원으로 작용하는 물질로 추정되었다. 한편, 마우스 신장의 조직병리학적 현상을 관찰한 결과는 아래 도 35와 같다. 피질에서는 사구체낭의 괴사를, 수질에서는 다형핵 백혈구, 대식세포, 림프구를 포함하는 면역 세포 침출물 및 농양을 확인하였다. 피질의 경우, WTA-PGN을 면역화한 그룹의 마우스에서는 마우스 대조군과 유사한 사구체낭의 '형태가 유지되었으나, PBS 및 PGN으로 면역화된 그룹의 마우스에서는 사구체낭의 괴사가 발견되었다. 수질의 경우, WTA-PGN으로 면역화된 그룹의 마우스에서는 약간의 면역 세포 침출물이 발견되었고 대조군 마우스와 거의 유사한 양상을 나타내었으며, 농양은 전혀 발견되지 않아 정상조직에 가까운 패턴을 보였다. 한편, PBS 그룹과 PGN 그룹의 경우, 큰 농양이 발견되었고, 피질 수질 모두에서 WTA-PGN> WTA> PGN> PBS 그룹의 순으로 신장의 손상이 적은 것으로 나타났다.

Claims

허청구범위 청구항 1. 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)을 유효성분으로 포함하는, 포도상구균 감염 질환의 예방 또는 치료용 조성물. 청구항 2. 제 1 항에 있어서, 상기 벽테이코산-부착된 펩티도글리칸이 하기 일반식 1로 표시되는 것을 특징으로 하는 조성물: < > 상기 일반식 1에서, n은 10 내지 50의 정수이고; m은 1 내지 3의 정수이며; A는 N-아세틸만노사민 (Man Ac)이고; B는 N-아세틸글루코사민 (GlcNAc)이며; 0 및 P는 각각 독립적으로 0 내지 5의 정수이고; ¾ 내지 ¾은 각각 독립적으로 하이드록시 테트라펩타이드 또는 펜타펩타이드이며; 는 하이드록시 또는 N-아세틸뮤람산 (MurNAc)이다. 청구항 3. 제 2 항에 있어서, 상기 일반식 1에서 A 및 B는 서로 β -위치로 면결된 것을 특징으로 하는 조성물. 청구항 4. 제 2 항에 있어서, 상기 일반식 1에서 η은 35 내지 45의 정수이고; m은 3이며; A는 N-아세틸만노사민 (ManNAc)이고; B는 N-아세틸글루코사민 (Gl cNAc)이며 ; 0 및 P는 각각 독립적으로 0 내지 5의 정수이고; ¾ 내지 은 각각 독립적으로 하이드록시, 테트라펩타이드 또는 펜타펩타이드이며; 는 하이드록시 또는 N-아세탈뮤람산 (MurNAc)인 것을 특징으로 하는 조성물. 청구항 5. 제 4 항에 있어서, 상기 일반식 1에서 n은 40이고; m은 3이며; A는 N-아세틸만노사민 (ManNAc)이고; B는 N-아세틸글루코사민 (Gl cNAc)이며; 0 및 P는 각각 독립적으로 0 내지 5의 정수이고; Ri 및 ¾는 테트라펩타이드이며; ¾은 하이드록시, 테트라펩타이드 또는 펜타펩타이드이고; 는 하이드록시 또는 N-아세틸뮤람산 (MurNAc )인 것을 특징으로 하는 조성물. 청구항 6. 제 5 항에 있어서, 상기 테트라펩타이드는 -Ai-A^As- 이고, 여기서 은 Al a 또는 Gly이며, A2는 Glu또는 Asp이고, A3는 Lys , Arg또는 Hi s이며, A4는 Al a 또는 Gly인 것을 특징으로 하는 조성물. 청구항 Ί . 제 5 항에 있어서, 상기 테트라펩타이드는 - (L-Al a)-(D-Glu)-(L- Lys )-(D-Al a)인 것을 특징으로 하는 조성물. 청구항 8. 제 1 항에 있어서, 상기 포도상구균은 메티실린 -내성 포도상구균 (methi c i 1 1 in— res i stant Staphylococcus aureus, MRSA), 메티실린―민 ¾"성 포도상구균 (methi c i. l 1 in一 sens i t ive Staphylococcus aureus, MSSA) 또는 병원성 포도상구균인 것을 특징으로 하는 조성물. 청구항 9. 제 1 항에 있어서, 상기 포도상구균 감염 질환은 연부조직 감염, 화농성 관절염, 화농성 골수염, 중이염, 폐렴, 패혈증, 급성 호흡기 감염 (acute respiratory tract infection), 카테터의 사용으로 인한 감염, 수술 후 창상 감염, 균혈증, 심내막염 및 식중독으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물. 청구항 10. 제 1 항 내지 제 9 항 중 어느 한 항의 조성물을 이를 필요로 하는 대상체에 투여하는 단계를 포함하는, 대상체에서의 포도상구균 감염 질환의 예방 또는 치료방법 . 청구항 11. 제 10 항에 있어서, 상기 방법은 옵소닌식균작용 (opsonophagocytosis) 및 식균작용 (phagocytosis)을 동시에 유도하는 것을 특징으로 하는 방법. 청구항 12. 제 10 항에 있어서, 상기 방법은 상기 대상체 내에서 상기 조성물의 투여 후 24시간 이내에 γ δ-Τ 세포수, IL-17A 생성량 및 IL-Ιβ 생성량올 증가시키는 것을 특징으로 하는 방법. 청구항 13· 제 10 항에 있어서, 상기 방법은 상기 대상체 내에서 상기 조성물의 투여 후 12시간 이후에 IL-10 생성량을 증가시키는 것을 특징으로 하는 방법. 청구항 14. 다음의 단계를 포함하는 가용성 벽테이코산-부착된 펩티도글리칸 (WTA-PGN)을 제조하는 방법 :
(1) 야생형 포도상구균으로부터 /^(li oprotein diacylglycerol transferase) 및 oatA( -acety\ transferase) 유전자가 결실된 이중 돌연변이 균주를 수득하는 단계;
(2) 상기 이중 돌연변이 균주를 파쇄하고, 얻어진 파쇄물로부터 불용성 WTA-PGN을 수득하는 단계;
(3) 상기 불용성 WTA-PGN에 β -lyt ic 효소를 처리하는 단계;
(4) 상기 단계 (3)의 효소 처리물로부터 가용성 WTA-PGN 함유 분획을 수득하는 단계;
(5) 상기 가용성 WTA-PGN 함유 분획에 라이소자임 ( lysozyme) 또는 뮤타노라이신 (mutanolysin)을 처리하는 단계; 및
(6) 상기 단계 (5)의 효소 처리물로부터 가용성 WTA-PGN을 수득하는 단계 . 청구항 15. 제 14 항에 있어서, 단계 (6) 이후에 가용성 WTA-PGN을 추가 정제하는 단계를 포함하는 것을 특징으로 하는 방법.
PCT/KR2015/005431 2014-05-29 2015-05-29 포도상구균 감염 질환의 예방 또는 치료용 조성물 WO2015183041A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167034875A KR20170005852A (ko) 2014-05-29 2015-05-29 포도상구균 감염 질환의 예방 또는 치료용 조성물
US15/314,324 US20170189473A1 (en) 2014-05-29 2015-05-29 Composition for preventing or treating staphylococcus aureus infection
CN201580028333.8A CN106413737A (zh) 2014-05-29 2015-05-29 用于预防或治疗金黄色葡萄球菌感染的组合物
JP2017515649A JP2017518373A (ja) 2014-05-29 2015-05-29 スタフィロコッカス・アウレウス感染疾患の予防または治療用組成物
EP15800382.2A EP3150217A1 (en) 2014-05-29 2015-05-29 Composition for preventing or treating staphylococcus aureus infection

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201462004564P 2014-05-29 2014-05-29
US62/004,564 2014-05-29
US201462040452P 2014-08-22 2014-08-22
US62/040,452 2014-08-22
US201462044196P 2014-08-30 2014-08-30
US62/044,196 2014-08-30

Publications (1)

Publication Number Publication Date
WO2015183041A1 true WO2015183041A1 (ko) 2015-12-03

Family

ID=54699299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005431 WO2015183041A1 (ko) 2014-05-29 2015-05-29 포도상구균 감염 질환의 예방 또는 치료용 조성물

Country Status (6)

Country Link
US (1) US20170189473A1 (ko)
EP (1) EP3150217A1 (ko)
JP (1) JP2017518373A (ko)
KR (1) KR20170005852A (ko)
CN (1) CN106413737A (ko)
WO (1) WO2015183041A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106749652A (zh) * 2017-03-14 2017-05-31 天津喜诺生物医药有限公司 一种金黄色葡萄球菌肽聚糖的多克隆抗体
CN107596342B (zh) * 2017-08-29 2021-08-31 苏州大学附属第一医院 产丙酮酸棒状杆菌肽聚糖、提取及抗感染应用
CN113425746A (zh) * 2021-06-25 2021-09-24 楚东开 一种治疗化脓性骨髓炎的组合物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040247605A1 (en) * 2002-12-02 2004-12-09 Kokai-Kun John Fitzgerald Wall teichoic acid as a target for anti-staphylococcal therapies and vaccines
KR20100056510A (ko) * 2007-09-11 2010-05-27 몬도바이오테크 래보래토리즈 아게 치료제로서의 유로딜라틴의 용도
KR101062525B1 (ko) * 2002-11-12 2011-09-06 더 브리검 앤드 우먼즈 하스피털, 인크. 포도상구균 감염에 대한 다당류 백신
KR20110124060A (ko) * 2010-05-10 2011-11-16 부산대학교 산학협력단 Wta를 유효성분으로 함유하는 백신 조성물
WO2013168965A2 (ko) * 2012-05-07 2013-11-14 목암생명공학연구소 포도상구균 감염 예방용 백신 조성물

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2525800B1 (en) * 2010-01-19 2018-07-04 Universitätsklinikum Freiburg Enterococcal cell wall components and antibacterial use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101062525B1 (ko) * 2002-11-12 2011-09-06 더 브리검 앤드 우먼즈 하스피털, 인크. 포도상구균 감염에 대한 다당류 백신
US20040247605A1 (en) * 2002-12-02 2004-12-09 Kokai-Kun John Fitzgerald Wall teichoic acid as a target for anti-staphylococcal therapies and vaccines
KR20100056510A (ko) * 2007-09-11 2010-05-27 몬도바이오테크 래보래토리즈 아게 치료제로서의 유로딜라틴의 용도
KR20110124060A (ko) * 2010-05-10 2011-11-16 부산대학교 산학협력단 Wta를 유효성분으로 함유하는 백신 조성물
WO2013168965A2 (ko) * 2012-05-07 2013-11-14 목암생명공학연구소 포도상구균 감염 예방용 백신 조성물

Also Published As

Publication number Publication date
KR20170005852A (ko) 2017-01-16
US20170189473A1 (en) 2017-07-06
JP2017518373A (ja) 2017-07-06
CN106413737A (zh) 2017-02-15
EP3150217A1 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
McLoughlin et al. IFN-γ regulated chemokine production determines the outcome of Staphylococcus aureus infection
Maisey et al. Recent advances in understanding the molecular basis of group B Streptococcus virulence
CA2597263C (en) Polypeptides from staphylococcus aureus and methods of use
JP5394233B2 (ja) 自然免疫機構を活性化/抑制する作用を有する物質の評価方法及びスクリーニング方法、並びに、自然免疫機構を活性化/抑制するための薬剤、食品及びそれらの製造方法
US8212007B2 (en) Expression and purification of HIP/PAP and uses therefor
US20180237481A1 (en) Polypeptides and immunizing compositions containing gram positive polypeptides and methods of use
Patel et al. Immunological outcomes of antibody binding to glycans shared between microorganisms and mammals
KR20150024315A (ko) 포도상구균 감염 예방용 백신 조성물
WO2015183041A1 (ko) 포도상구균 감염 질환의 예방 또는 치료용 조성물
Schechter et al. Host defenses to extracellular bacteria
JP2021000134A (ja) 免疫低下状態の宿主のためのワクチン
Furuta et al. CD1 and iNKT cells mediate immune responses against the GBS hemolytic lipid toxin induced by a non-toxic analog
Alshammari Identification of more potent and efficacious analogs of the novel host-derived immunostimulant EP67
Fong et al. Reemergence of established pathogens in the 21st century
Jeannin Introduction: historical background
Clarke Role of CD4+ T cells in the regulation of the immune response against encapsulated Group B Streptococcus
AU2015258239B2 (en) Polypeptides from staphylococcus aureus and methods of use
CN102448489B (zh) 多肽和含有革兰氏阳性多肽的免疫组合物及使用方法
de Jong GENERAL DISCUSSION–Expanding the staphylococcal evasion repertoire
Fournier et al. Staphylococcus aureus Recognition of
Bownik et al. Influence of staphylococcal leukocidins on phagocyte and lymphocyte activity-a comparative study.
Seo Investigation of lipoteichoic acid structure and function to establish its role in Gram-positive bacterial infections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515649

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15314324

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167034875

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015800382

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015800382

Country of ref document: EP