WO2015182924A1 - Apparatus and method for aligning landing position of unmanned aerial vehicle and ground system including same apparatus - Google Patents

Apparatus and method for aligning landing position of unmanned aerial vehicle and ground system including same apparatus Download PDF

Info

Publication number
WO2015182924A1
WO2015182924A1 PCT/KR2015/005127 KR2015005127W WO2015182924A1 WO 2015182924 A1 WO2015182924 A1 WO 2015182924A1 KR 2015005127 W KR2015005127 W KR 2015005127W WO 2015182924 A1 WO2015182924 A1 WO 2015182924A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
land
landing position
position alignment
slide grooves
Prior art date
Application number
PCT/KR2015/005127
Other languages
French (fr)
Korean (ko)
Inventor
강동우
정환호
이석태
Original Assignee
퍼스텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퍼스텍 주식회사 filed Critical 퍼스텍 주식회사
Publication of WO2015182924A1 publication Critical patent/WO2015182924A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for

Definitions

  • Embodiments of the present invention relate to a drone landing position alignment device and method. More specifically, the present invention relates to an apparatus and method for accurately aligning a drone in the center of a land on which the drone lands, and to a ground system of a drone including the apparatus.
  • Unmanned Aerial Vehicles are remote pilots or autonomous flight controls without pilots, and are difficult or impossible for humans to perform such tasks as reconnaissance, bombing, cargo transportation, forest fire surveillance, and radiological surveillance. Means a plane performing dangerous missions.
  • Landing-related navigation systems of drones are implemented in various ways for each drone type.
  • GPS and inertial guidance systems are mainly used for drone navigation or landing guidance.
  • GPS tends to be preferred because chipset price is low and size is small.
  • a drone such as a predator, which is a kind of drone
  • a manual steering landing is possible by using a precision approach radar and a video camera.
  • Korean Patent No. 125784 discloses a technique for positioning a helicopter landing in a docking station in a horizontal and vertical direction as an example of a drone.
  • This patent includes a pair of longitudinal alignment bars 120 'and a pair of horizontal alignment bars 130' as shown in FIG.
  • the vertical alignment bar 120 ′ includes a fixing block 121 ′ and a guide rod 123 ′ connected to the support through the fixing block 121 ′. Push the support linearly to adjust the helicopter's longitudinal position.
  • the fixed block 121 'does not move.
  • the support consists of a base 122b 'with a rubber band attached to the skid of the helicopter and a partition 122a'.
  • the horizontal alignment bar 130 ′ includes a fixing block 131 ′ and a guide rod 133 ′ connected to the support 132 ′ through the fixing block 131 ′.
  • this patent assumes that a pair of longitudinal alignment bars 120 'travel the same distance towards the center, taking into account only when the skid is in the center of the helicopter fuselage. Furthermore, this patent does not disclose a method of setting a position correction amount of a helicopter and a lifting structure of a docking station. In addition, it does not mention how to deal with the type of drone, skid arrangement, shape, size, and the like. In addition, there is a problem that can not guarantee that the support rod is exactly linear movement because the structure of the guide rod pushes the support.
  • a ground system of a drone comprising a device and method for accurately aligning the drone to the center of the land, and a mounting apparatus mounted to the elevating adjustable device To provide.
  • Embodiments of the present invention to achieve the above object, land landed by the drone; A pair of left and right transport bars installed along the left and right sides of the land; Linear left and right slide grooves installed on the land to move the left and right transport bars and extending toward the center of the land; A pair of forward and backward transfer bars installed along the front and rear sides of the land; And a linear front and rear slide grooves installed on the lands to move the front and rear conveyance bars, respectively, and extending toward the center of the lands.
  • the drone includes a reference member that is a target for position alignment during landing.
  • Each of the extension lines of the front and rear slide grooves intersect with each other to form a landing position alignment device of the drone to form an alignment area in which the reference member of the drone is aligned and seated.
  • the embodiment of the present invention (1) a pair of left and right transport bars provided along the left and right sides of the land on which the drone lands, is installed in the land so that each of the left and right transport bars moves, and the center of the land is moved. Aligning the left and right positions of the drone by moving along the linear left and right slide grooves extending to face each other; (2) A linear forward and backward slide groove which is installed on the land so that each forward and backward transport bar moves along the front and rear sides of the land on which the drone lands, and extends toward the center of the land.
  • each of the extension lines of the left and right slide grooves and the front and rear slide grooves cross each other to form an alignment area in which the drone is aligned and seated,
  • the pair of left and right transfer bars and the pair of forward and backward transfer bars moved by the process of (2) disclose a landing position alignment method of the drone arranged in alignment with the alignment area.
  • an embodiment of the present invention the drone landing position alignment device described above; And a mounting apparatus equipped with a landing position alignment device.
  • the drone can be accurately aligned with the land around the alignment area.
  • the present embodiment even if there is a change in the type of the drone and the reference member attached to the drone, such as a skid, it is possible to respond accurately and efficiently.
  • a drone landing position alignment device may be mounted and a mounting apparatus capable of raising and lowering the drone may easily automate loading, carrying and manipulating the drone.
  • FIG. 1 is a view showing a landing position adjusting device of the drone according to the prior art.
  • FIG. 2 is a schematic diagram of a ground system of a drone according to an embodiment of the present invention.
  • FIG 3 is a side view of a drone according to an exemplary embodiment of the present invention.
  • FIG. 4 is a plan view of a drone landing position alignment device according to an embodiment of the present invention.
  • FIG. 5 is a view showing a position alignment method using the drone landing position alignment apparatus according to an embodiment of the present invention in the order of operation.
  • FIG. 6 is a perspective view of a docking trailer having a drone landing position alignment device according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of a docking trailer showing a state in which the drone landing position alignment device is lifted according to an embodiment of the present invention.
  • FIG. 2 is a ground system including a docking trailer 12 having a drone (F) landing position alignment device 100 and a control vehicle 11 for towing the docking trailer 12 according to an embodiment of the present invention.
  • (10) is a figure which shows.
  • the specially manufactured control vehicle 11 is equipped with a ground control station (GCS).
  • GCS ground control station
  • the control vehicle 11 includes a drone landing guidance system, a vehicle control and monitoring equipment (VCME), a mission planning and control equipment (MPCE), a mission equipment control system ( PCME: Payload Control and Monitoring Equipment, External Pilot Control Unit, Network Equipment, etc.
  • the information transmitted from the docking station is connected to the ground control equipment by TCP / IP and transmits the information to the vehicle through the ground data terminal (GDT).
  • FIG 3 shows a side view of a drone F according to an embodiment of the present invention.
  • the skid s is not located at the center of the drone F body, but is located in front of the skid s so that the distance L 2 from the midpoint of the skid s to the stern is longer than the distance L 1 from the head. Therefore, when defining the lateral direction of the fuselage in the front-rear direction, the transporting distance (stroke) of the front-rear direction adjusting member should vary according to the nose direction after landing.
  • the tilt duct type vertical takeoff and landing type drone is used as an example, but is not limited thereto.
  • the reference member serving to balance the ground is not necessarily limited to the skid s.
  • the landing position alignment device 100 is mounted to a docking station provided in the docking trailer 12, for example.
  • the landing position alignment device 100 includes a flat rectangular land 110, and on the land 110, a pair of left and right transport bars 101a and 101b and a pair of forward and backward transport bars 103a and 103b are mounted. do.
  • the left and right direction transfer bars 101a and 101b are installed along the left and right sides of the land 110.
  • the land 110 is provided with left and right slide grooves 102a and 102b to which the left and right direction transfer bars 101a and 101b respectively move.
  • the slide groove 102a extends linearly from the position biased in the center of the transfer bar 101a-the left in the figure-to the vicinity of the center of the land 110 in a long groove shape.
  • the slide groove 102b extends linearly from the position biased in the center of the transfer bar 101b-the right side in the figure-to the vicinity of the center of the land 110 in a long groove shape.
  • Each slide groove 102a, 102b shown in the figure is composed of two rows of grooves, but may be composed of one or three or more grooves.
  • the front and rear direction transfer bars 103a and 103b are installed along the front and rear sides of the land 110.
  • the length of the front and rear direction transfer bars 103a and 103b is a length capable of supporting the skid s, and may be shorter than the length of the left and right direction transfer bars 101a and 101b.
  • the land 110 is provided with front and rear slide grooves 104a and 104b in which the front and rear conveyance bars 103a and 103b respectively move.
  • the slide groove 104a extends linearly from the position biased in the center of the transfer bar 103a-the upper side in the figure-to the vicinity of the center of the land 110 in a long groove shape.
  • the slide groove 102b extends linearly from the position biased in the center of the transfer bar 103b-down in the figure-to the vicinity of the center of the land 110 in a long groove shape.
  • Each slide groove 104a, 104b shown in the figure is composed of two rows of grooves, but may be composed of one or three or more grooves.
  • the left and right transfer bars 101a, 101b, 103a, and 103b are connected to an arm or a link of a robot operated by an actuator driven by the motors M1, M2, M3, and M4 mounted at the positions shown by the dotted lines. Linear movement along the respective slide grooves (102a, 102b, 104a, 104b).
  • the motor may be constituted by a pair of motors that control the left and right and the front and rear.
  • a drive unit such as a motor or an actuator may be disposed in the housing 11a (see FIG. 6) extending continuously under the land 11.
  • the left and right direction transfer bars 101a and 101b are lifted by an arm or a link, and are positioned at an altitude higher than the forward and backward direction transfer bars 103a and 103b so as to prevent mutual jamming during linear movement of the transfer bar.
  • the front and rear conveyance bars 103a and 103b may be supported by an arm or a link so as to be located at a higher altitude than the horizontal conveyance bars 101a and 101b.
  • the central portion of the land 110 where the slide grooves 102a, 102b, 104a, and 104b converges forms a rectangular alignment area A.
  • the alignment area A coincides with the rectangular intersection area formed by the extension lines when the four slide grooves 102a, 102b, 104a, and 104b virtually extend.
  • the alignment area A constitutes an area for supporting the skid s of the drone F about the center of the land 110.
  • the alignment area A corresponds to a quadrangle formed by a pair of skids s. (See FIG. 5 (c)).
  • the slide groove when there is a change in the size or shape of the unmanned aerial vehicle or the arrangement position or size of the skid (s), the slide groove so that the alignment area (A) is formed corresponding to the square formed by the skid (s)
  • the driving unit is a pulse or step motor, for example, the rotation of the motor corresponding to the size and position of the changed slide grooves 102a, 102b, 104a, 104b.
  • the number can be preset so that various models can be efficiently changed.
  • the movement distance change control of the transfer unit is simpler than the prior art coping with the change of the model, and the movement distance error width can be reduced.
  • cameras c 1 ,..., C 5 for photographing the drone F on the land 110 of the drone landing position alignment device 100 are provided. It is installed.
  • the cameras c 1 , c 2 , and c 3 arranged in a triangle are for photographing a long distance and can detect the position of the drone F in real time based on information transmitted by the three cameras.
  • the cameras c4 and c5 disposed in the center of the alignment area A are mounted to calculate the correct position and guide the docking when the drone F vertically descends, for example, as a helicopter.
  • the camera c5 may be used for short distances of 3 m or less
  • the camera c4 may be used for long distances of more than 3 m to 7 m or less.
  • the landing guide and control method of the drone F may follow the method of Patent Application 2013-71561.
  • the patent application obtains first position information related to the position of the drone, calculates the current coordinates of the drone, transmits the current coordinates to the ground system, and lands including the relative position and attitude information of the drone from the ground system. Receiving the information, and using the landing destination coordinates and the current coordinates to move the drone in the landing destination coordinate direction, and then hovering the drone with reference to the landing information to control the proximity to the landing point.
  • the image sensor captures a drone flying over the ground system under the control of the imaging controller, and the image sensor is installed at the point where the drone is seated in the landing zone 260 or adjacent to the landing zone. .
  • the camera may include any image acquisition device having a lens or sensor as long as it can coordinate the position of the unmanned aerial vehicle.
  • the imaging controller determines the position of the drone based on the x and y coordinates of the alignment area. Adding steps to track and guide the landing can more accurately guide the drone's landing.
  • FIG 5 is a view showing the operation of the landing position alignment device 100 according to an embodiment of the present invention.
  • the left and right transfer bars 101a and 101b are driven in the direction of the arrow along the slide grooves 102a and 102b by the driving of the control unit. Move linearly by distance.
  • the left and right direction transfer bars 101a and 101b are in contact with the skid s of the drone F and push the fuselage to achieve a left and right alignment as shown in FIG. 5 (b).
  • the left and right transport bars 101a and 101b do not interfere with other parts of the drone F, and thus, the skid ( It should be noted that s) acts as an equilibrium movement and center of gravity.
  • the front and rear direction transfer bars 103a and 103b linearly move in the direction of the arrow along the slide grooves 104a and 104b. Since the forward and backward transfer bars 103a and 103b are higher (or lower) than the left and right direction transfer bars 101a and 101b, one side of the left and right skids s moves and slides on the left and right direction transfer bar without interference. Push the end to adjust the forward and backward position of the drone (F). When the drone F is deflected above the land 110 as shown in FIG. 5 (b), the transfer bar 103a substantially pushes the skid s, thus the drone F, and the transfer bar.
  • the transfer bar 103b serves to wait for the drone F carried by the transfer bar 103a.
  • the transfer bar 103b pushes the drone F and the transfer bar 103a serves to wait for the drone F. Will be.
  • 5C shows the drone F having completed the position adjustment.
  • the total moving distance l 1 of the transfer bar 103a is smaller than the total moving distance l 2 of the transfer bar 103b.
  • the four transfer bar is aligned along each of the four sides of the alignment area (A) while forming the above-described alignment area (A) around the skid (s).
  • each conveying part can be freely changed to correspond to a drone such as a symmetrical type and a disc type, which are not dependent on the existing appearance according to the use of various drones.
  • forward and backward transport bars 103a and 103b may be changed to push and move the drone before the left and right transport bars 101a and 101b.
  • FIG. 6 shows a docking trailer 12 as a mounting apparatus including a drone landing position alignment device 100 according to an embodiment of the present invention.
  • the docking trailer 12 includes a base 600 having a flat housing formed outside, a first box 604 having a half box shape provided at the left side of the upper surface of the base 600, and a base 600. It includes a second box 606 of the half-box provided on the right side of the upper surface.
  • the base 600 is provided with a control unit such as a controller, a drive unit such as a motor, an actuator, and the like, and a control panel 607 for manual operation or remote control by an operator is provided on the side.
  • a control unit such as a controller
  • a drive unit such as a motor, an actuator, and the like
  • a control panel 607 for manual operation or remote control by an operator is provided on the side.
  • the first cover 604 and the second cover 606 abut each other to form a space, as shown.
  • the size of the space should be large enough to accommodate the landing position alignment device 100 including the drone F.
  • the panel 620 provided on the base 600 inside the space is equipped with a drive unit such as an actuator 608 as shown in FIG.
  • the four corners of the land 110 of the landing position alignment device 100 are supported by the support rod 610 which is lifted up and down by the actuator 608.
  • the first cover 604 and the second cover 606 are mutually spaced apart along the groove formed at the side end of the base 600.
  • the docking station including the landing position aligning device 100 is exposed to the outside by linearly moving in the direction. And automatically or continuously or when the operator subsequently manipulates the panel, the landing position alignment device 100 lifted to the support rod 610 by the operation of the actuator 608 is shown in Figure 7 Ascend to one position.
  • the landing position alignment device 100 preferably rises by a height that forms a plane with the top surfaces of the first cover 604 and the second cover 606.
  • the actuator 608 may utilize a linear actuator as well as a ball screw type, and by using a ferromagnetic material such as nedium on the fixed shaft, a large torque can be generated to smoothly move the heavy drone (F).
  • the motor (not shown) is provided separately from the actuator 608 and connected via a coupling, but an actuator built-in type in which the shaft of the motor and the ball screw of the actuator are integrated may be used.
  • the driving unit such as the actuator 608 is illustrated from the outside for the purpose of description, but the driving unit such as the actuator 608 may be appropriately disposed as necessary, such as being installed inside the base 600 instead of the panel 620. have.
  • One embodiment of the present invention is described as being connected to the arm or link of the robot operating as an actuator driven by the motor (M1, M2, M3, M4) to the left and right transfer bars (101a, 101b, 103a, 103b)
  • the grooves corresponding to the four slide grooves 102a, 102b, 104a, and 104b are installed in the panel 620 so that the four support rods serve as arms or links. After lifting the rod, it can be changed to move the support rod along this groove.
  • the drone When the predetermined operation is completed by taking off the drone in the state of FIG. 7, the drone is landed and the positions are aligned in the manner described above. Then, in the reverse process, the operator operates the control panel 607 or the remote control to lower the support rod 610 to return the docking station and close the first cover 604 and the second cover 606. .
  • the drone landing position alignment device 100 may be installed on any mounting means such as the control vehicle 11, not the docking trailer 12, and manufactured and transported in a separate module unit. And can be used.
  • the present invention can accurately align the drone to the land centered on the alignment area, and can cope accurately and efficiently even if there is a change in the type of the drone or a reference member attached to the drone such as a skid.
  • it is an industrially useful invention that can automate the loading, transport and control of the drone by implementing a mounting device that can be mounted and lifted up and down the drone landing position alignment device.

Abstract

Disclosed is an apparatus and method for aligning a landing position of an unmanned aerial vehicle. The apparatus comprises: a land on which an unmanned aerial vehicle lands; a pair of left and right transfer bars installed along the left and right sides of the land; left and right linear slide grooves that are installed on the land to allow the left and right transfer bars to move, and extend toward the center of the land; a pair of front and rear transfer bars installed along the front and rear sides of the land; and front and rear linear slide grooves that are installed on the land to allow the front and rear transfer bars to move, respectively, and extend toward the center of the land, wherein the unmanned aerial vehicle includes a reference member subject to position alignment during landing, and extension lines of the left and right slide grooves and the front and rear slide grooves cross each other to form an alignment area where the reference member of the unmanned aerial vehicle is aligned and seated.

Description

무인비행기 착륙 위치 정렬 장치, 정렬 방법 및 상기 장치를 포함하는 지상상시스템Drone landing position alignment device, alignment method and ground system including the device
"무인비행기 착륙 유도 방법 및 장치"에 관한 본 출원인의 특허출원 2013-71561호는 여기서의 언급으로 본 출원의 내용에 통합된다.Applicant's patent application 2013-71561 on "Drone Landing Guidance Method and Apparatus" is incorporated herein by reference.
본 발명의 실시예는 무인비행기 착륙 위치 정렬 장치 및 방법에 관한 것이다. 더욱 상세하게는, 무인비행기가 착륙하는 랜드의 중앙에 무인비행기를 정확히 정렬시키기 위한 장치 및 방법과, 이 장치를 포함하는 무인비행기의 지상시스템에 관한 것이다.Embodiments of the present invention relate to a drone landing position alignment device and method. More specifically, the present invention relates to an apparatus and method for accurately aligning a drone in the center of a land on which the drone lands, and to a ground system of a drone including the apparatus.
이 부분에 기술된 내용은 단순히 본 발명의 실시예에 대한 배경 정보를 제공할 뿐 본 발명을 제한하거나 한정하는 것은 아니다.The contents described in this section merely provide background information on the embodiments of the present invention, but do not limit or limit the present invention.
무인비행기(UAV: Unmanned Aerial Vehicle)는 조종사가 탑승하지 않고 원격조종 또는 자율비행제어로 비행을 하여 정찰, 폭격, 화물 수송, 산불 감시, 방사능 감시 등 사람이 직접 수행하기가 힘들거나 직접 수행하기에 위험한 임무를 수행하는 비행기를 의미한다.Unmanned Aerial Vehicles (UAVs) are remote pilots or autonomous flight controls without pilots, and are difficult or impossible for humans to perform such tasks as reconnaissance, bombing, cargo transportation, forest fire surveillance, and radiological surveillance. Means a plane performing dangerous missions.
무인비행기는 임무수행이 끝난 후 원하는 지점에 안전하게 착륙시키는 일이 중요한데, 조종사가 탑승하여 조종하지 않기 때문에 지상 혹은 착륙대에 착륙하는 과정에서 추락하지 않도록 정밀하게 착륙을 제어할 필요가 있다.It is important that the drone safely lands at the desired point after the mission is completed. Since the pilot does not board and maneuver, it is necessary to precisely control the landing so as not to fall during the landing on the ground or landing pad.
무인비행기의 착륙관련 항행시스템은 무인비행기 기종마다 다양하게 구현되고 있다. 일반적으로 무인비행기의 항행 또는 착륙 유도에는 GPS와 관성유도장치가 주로 사용되는데, 그 중에서도 GPS가 칩셋 가격이 저렴하고 크기가 소형이기 때문에 선호되는 경향이 있다. 예컨대, 무인기의 일종인 프레데터(Predator)와 같은 무인기의 경우는 정밀접근 레이더 및 비디오 카메라 등을 이용하여 수동조종 착륙이 가능하도록 구현되어 있다.Landing-related navigation systems of drones are implemented in various ways for each drone type. In general, GPS and inertial guidance systems are mainly used for drone navigation or landing guidance. Among them, GPS tends to be preferred because chipset price is low and size is small. For example, in the case of a drone such as a predator, which is a kind of drone, a manual steering landing is possible by using a precision approach radar and a video camera.
무인비행기 착륙 위치 정렬 장치에 관한 기술로, 대한민국 특허 제1265784호는 무인비행기의 예로 도킹 스테이션에 착륙한 헬리콥터를 가로방향 및 세로방향으로 위치 이동시키는 기술을 개시하고 있다. 이 특허는 도 1에 도시한 것과 같이 한 쌍의 세로방향 정렬바(120')와 한 쌍의 가로방향 정렬바(130')를 포함한다. 세로방향 정렬바(120')는 고정 블록(121'), 고정블록(121')을 통해 지지대와 연결된 가이드봉(123')을 포함하며, 도시하지 않은 구동부의 작동으로 가이드봉(123')이 지지대를 밀며 선형 이동하여 헬리콥터의 세로위치를 맞춘다. 고정블록(121')은 이동하지 않는다. 지지대는 헬리콥터의 스키드(skid)와 맞닿도록 고무밴드가 부착된 베이스(122b')와 격벽(122a')으로 이루어져 있다. 가로방향 정렬바(130')는 고정 블록(131'), 고정블록(131')을 통해 지지대(132')와 연결된 가이드봉(133')을 포함하며, 도시하지 않은 구동부의 작동으로 가이드봉(133')이 지지대(132')을 밀며 선형 이동하여 헬리콥터의 가로위치를 맞춘다. As a technique for a drone landing position alignment device, Korean Patent No. 125784 discloses a technique for positioning a helicopter landing in a docking station in a horizontal and vertical direction as an example of a drone. This patent includes a pair of longitudinal alignment bars 120 'and a pair of horizontal alignment bars 130' as shown in FIG. The vertical alignment bar 120 ′ includes a fixing block 121 ′ and a guide rod 123 ′ connected to the support through the fixing block 121 ′. Push the support linearly to adjust the helicopter's longitudinal position. The fixed block 121 'does not move. The support consists of a base 122b 'with a rubber band attached to the skid of the helicopter and a partition 122a'. The horizontal alignment bar 130 ′ includes a fixing block 131 ′ and a guide rod 133 ′ connected to the support 132 ′ through the fixing block 131 ′. 133 'linearly moves the support 132' to align the helicopter's transverse position.
그러나, 이 특허는 스키드가 헬리콥터 동체의 정 중앙에 있는 경우만 고려하여 한 쌍의 세로방향 정렬바(120')가 중앙을 향하여 같은 거리 이동하는 것을 전제로 하고 있다. 나아가, 이 특허는 헬리콥터의 위치 보정량의 설정 방법과 도킹 스테이션의 승하강 구조에 대해서 개시하고 있지 않다. 또, 무인비행기의 종류, 스키드의 배열, 형상, 크기등이 변형되는 경우 그 대처 방법에 대해서도 언급하고 있지 않다. 또, 지지대를 가이드봉이 미는 구조이므로 지지봉이 정확히 선형이동 하는 것을 보증할 수 없는 문제가 있다.However, this patent assumes that a pair of longitudinal alignment bars 120 'travel the same distance towards the center, taking into account only when the skid is in the center of the helicopter fuselage. Furthermore, this patent does not disclose a method of setting a position correction amount of a helicopter and a lifting structure of a docking station. In addition, it does not mention how to deal with the type of drone, skid arrangement, shape, size, and the like. In addition, there is a problem that can not guarantee that the support rod is exactly linear movement because the structure of the guide rod pushes the support.
전술한 문제점을 해결하기 위해 본 발명의 실시예는, 무인비행기를 랜드의 중앙에 정확히 정렬시키기 위한 장치 및 방법과, 상기 장치를 승하강 조정 가능하게 탑재한 탑재장치를 포함하는 무인비행기의 지상시스템을 제공한다.In order to solve the above problems, an embodiment of the present invention, a ground system of a drone comprising a device and method for accurately aligning the drone to the center of the land, and a mounting apparatus mounted to the elevating adjustable device To provide.
전술한 목적을 달성하기 위해 본 발명의 실시예는, 무인비행기가 착륙하는 랜드; 랜드의 좌측 및 우측변을 따라 설치되는 한쌍의 좌우방향이송바; 좌우방향이송바 각각이 이동하도록 랜드에 설치되며 랜드의 중앙을 향하도록 연장된 선형의 좌우슬라이드홈; 랜드의 전방 및 후미변을 따라 설치되는 한쌍의 전후방향이송바; 전후방향이송바 각각이 이동하도록 랜드에 설치되며 랜드의 중앙을 향하도록 연장된 선형의 전후슬라이드홈;을 포함하며, 무인비행기는 착륙시 위치 정렬의 대상이 되는 기준부재를 구비하고, 좌우슬라이드홈과 전후슬라이드홈의 각각의 연장선은 서로 교차하여 무인비행기의 기준부재가 정렬되어 안착되는 정렬영역을 형성하는 무인비행기의 착륙 위치 정렬 장치를 개시한다.Embodiments of the present invention to achieve the above object, land landed by the drone; A pair of left and right transport bars installed along the left and right sides of the land; Linear left and right slide grooves installed on the land to move the left and right transport bars and extending toward the center of the land; A pair of forward and backward transfer bars installed along the front and rear sides of the land; And a linear front and rear slide grooves installed on the lands to move the front and rear conveyance bars, respectively, and extending toward the center of the lands. The drone includes a reference member that is a target for position alignment during landing. Each of the extension lines of the front and rear slide grooves intersect with each other to form a landing position alignment device of the drone to form an alignment area in which the reference member of the drone is aligned and seated.
또, 본 발명의 실시예는, (1) 무인비행기가 착륙하는 랜드의 좌측 및 우측변을 따라 설치되는 한쌍의 좌우방향이송바를, 좌우방향이송바 각각이 이동하도록 랜드에 설치되며 랜드의 중앙을 향하도록 연장된 선형의 좌우슬라이드홈을 따라 이동시켜 무인비행기의 좌우 위치를 정렬하는 과정; (2) 무인비행기가 착륙하는 랜드의 전방 및 후미변을 따라 설치되는 한쌍의 전후방향이송바를, 전후방향이송바 각각이 이동하도록 랜드에 설치되며 랜드의 중앙을 향하도록 연장된 선형의 전후슬라이드홈을 따라 이동시켜 무인비행기의 전후 위치를 정렬하는 과정;을 포함하며, 좌우슬라이드홈과 전후슬라이드홈의 각각의 연장선은 서로 교차하여 무인비행기가 정렬되어 안착되는 정렬영역을 형성함으로써, (1) 및 (2)의 과정에 의하여 이동한 한쌍의 좌우방향이송바와 한쌍의 전후방향이송바는 정렬영역에 맞추어 배열되는 무인비행기의 착륙 위치 정렬 방법을 개시한다.In addition, the embodiment of the present invention, (1) a pair of left and right transport bars provided along the left and right sides of the land on which the drone lands, is installed in the land so that each of the left and right transport bars moves, and the center of the land is moved. Aligning the left and right positions of the drone by moving along the linear left and right slide grooves extending to face each other; (2) A linear forward and backward slide groove which is installed on the land so that each forward and backward transport bar moves along the front and rear sides of the land on which the drone lands, and extends toward the center of the land. And moving along the align the front and rear positions of the drone; wherein each of the extension lines of the left and right slide grooves and the front and rear slide grooves cross each other to form an alignment area in which the drone is aligned and seated, (1) and The pair of left and right transfer bars and the pair of forward and backward transfer bars moved by the process of (2) disclose a landing position alignment method of the drone arranged in alignment with the alignment area.
또, 본 발명의 실시예는, 전술한 무인비행기 착륙 위치 정렬 장치; 및 착륙 위치 정렬 장치를 탑재한 탑재장치;를 포함하는 무인비행기의 지상시스템을 개시한다.In addition, an embodiment of the present invention, the drone landing position alignment device described above; And a mounting apparatus equipped with a landing position alignment device.
본 실시예의 개시에 의하면, 정렬영역을 중심으로 무인비행기를 정확하게 랜드에 정렬시킬 수 있다.According to the disclosure of the present embodiment, the drone can be accurately aligned with the land around the alignment area.
본 실시예의 개시에 의하면, 무인비행기의 종류, 스키드와 같은 무인비행기에 부착된 기준부재의 변경이 있어도 정확하고 효율적으로 대응할 수 있다.According to the present embodiment, even if there is a change in the type of the drone and the reference member attached to the drone, such as a skid, it is possible to respond accurately and efficiently.
본 실시예의 개시에 의하면, 무인비행기 착륙 위치 정렬 장치를 탑재하고 이를 승하강 시킬 수 있는 탑재장치를 구현하여 무인비행기의 적재, 운반 및 조종을 간편하게 자동화할 수 있다.According to the disclosure of the present embodiment, a drone landing position alignment device may be mounted and a mounting apparatus capable of raising and lowering the drone may easily automate loading, carrying and manipulating the drone.
이상의 본 발명의 효과는 예시적인 것이며, 본 발명의 효과는 이에 국한되지 않는다.The effects of the present invention described above are exemplary, and the effects of the present invention are not limited thereto.
도 1은 선행기술에 따른 무인비행기의 착륙 위치 조절 장치를 보인 도면이다.1 is a view showing a landing position adjusting device of the drone according to the prior art.
도 2는 본 발명의 실시예에 따른 무인비행기의 지상시스템의 개략도이다.2 is a schematic diagram of a ground system of a drone according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 무인비행기의 측면도이다.3 is a side view of a drone according to an exemplary embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 무인비행기 착륙 위치 정렬 장치의 평면도이다. 4 is a plan view of a drone landing position alignment device according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 무인비행기 착륙 위치 정렬 장치를 이용한 위치 정렬 방법을 작동 순서대로 도시한 도면이다.5 is a view showing a position alignment method using the drone landing position alignment apparatus according to an embodiment of the present invention in the order of operation.
도 6은 본 발명의 일 실시예에 따른 무인비행기 착륙 위치 정렬 장치를 구비한 도킹 트레일러의 사시도이다.6 is a perspective view of a docking trailer having a drone landing position alignment device according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 무인비행기 착륙 위치 정렬 장치가 승강된 상태를 도시한 도킹 트레일러의 사시도이다.7 is a perspective view of a docking trailer showing a state in which the drone landing position alignment device is lifted according to an embodiment of the present invention.
이하, 본 발명의 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the component of this invention, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be "connected", "coupled" or "connected".
도 2는 본 발명의 일 실시예에 따른 무인비행기(F) 착륙 위치 정렬 장치(100)를 구비한 도킹 트레일러(12)와, 도킹 트레일러(12)를 견인하는 통제차량(11)을 포함한 지상시스템(10)을 나타낸 도면이다. 특수 제작된 통제차량(11)에는 지상통제장비(GCS: Ground Control Station)가 장착된다. 또, 통제차량(11)은 무인비행기 착륙유도 장치를 포함하며, 비행통제감시장치(VCME: Vehicle Control and Monitoring Equipment), 임무계획통제장치(MPCE: Mission Planning and Control Equipment), 임무장비통제장치(PCME: Payload Control and Monitoring Equipment), 외부조종기(External Pilot Control Unit), 네트워크장치(NE: Network Equipment) 등 다양한 장비를 탑재할 수 있다. 도킹스테이션에서 전달되는 정보는 TCP/IP로 지상통제장비와 연결이 되며 지상통신장비(GDT : Ground Data Terminal)를 통해 비행체에 정보를 전달한다.2 is a ground system including a docking trailer 12 having a drone (F) landing position alignment device 100 and a control vehicle 11 for towing the docking trailer 12 according to an embodiment of the present invention. (10) is a figure which shows. The specially manufactured control vehicle 11 is equipped with a ground control station (GCS). In addition, the control vehicle 11 includes a drone landing guidance system, a vehicle control and monitoring equipment (VCME), a mission planning and control equipment (MPCE), a mission equipment control system ( PCME: Payload Control and Monitoring Equipment, External Pilot Control Unit, Network Equipment, etc. The information transmitted from the docking station is connected to the ground control equipment by TCP / IP and transmits the information to the vehicle through the ground data terminal (GDT).
도 3은 본 발명의 일 실시예에 따른 무인비행기(F)의 측면을 도시한다. 스키드(s)는 무인비행기(F) 동체의 중앙에 위치하지 않고 전방에 위치하여 스키드(s)의 중점에서 선미까지의 거리(L2)가 선두까지의 거리(L1)보다 길다. 따라서 동체의 측면 방향을 전후 방향으로 규정할 때, 착륙 후 기수 방향에 따라 전후 방향 조절 부재의 이송거리(스트로크)가 달라져야 한다. 3 shows a side view of a drone F according to an embodiment of the present invention. The skid s is not located at the center of the drone F body, but is located in front of the skid s so that the distance L 2 from the midpoint of the skid s to the stern is longer than the distance L 1 from the head. Therefore, when defining the lateral direction of the fuselage in the front-rear direction, the transporting distance (stroke) of the front-rear direction adjusting member should vary according to the nose direction after landing.
실시예에서는, 틸트덕트 형의 수직이착륙형 무인비행기를 사용하는 것을 예로 들었으나, 이에 한정되지 않는다. 무인비행기(F)의 착륙 시, 그라운드에 접하여 균형을 잡는 역할을 하는 기준부재이면, 반드시 스키드(s)에 한정되지 않는다.In the exemplary embodiment, the tilt duct type vertical takeoff and landing type drone is used as an example, but is not limited thereto. When the drone F lands, the reference member serving to balance the ground is not necessarily limited to the skid s.
도 4는 본 발명의 일 실시예에 따른 무인비행기 착륙 위치 정렬 장치(100)의 평면도이다. 착륙 위치 정렬 장치(100)는 가령, 도킹 트레일러(12)에 구비된 도킹 스테이션에 장착된다. 착륙 위치 정렬 장치(100)는 평판형의 장방형 랜드(110)를 포함하고, 랜드(110)상에는 한쌍의 좌우방향이송바(101a,101b)와 한쌍의 전후방향이송바(103a,103b)가 장착된다.4 is a plan view of the drone landing position alignment device 100 according to an embodiment of the present invention. The landing position alignment device 100 is mounted to a docking station provided in the docking trailer 12, for example. The landing position alignment device 100 includes a flat rectangular land 110, and on the land 110, a pair of left and right transport bars 101a and 101b and a pair of forward and backward transport bars 103a and 103b are mounted. do.
좌우방향이송바(101a,101b)는 랜드(110)의 좌측 및 우측변을 따라 길게 설치된다. 랜드(110)에는 좌우방향이송바(101a,101b)각각이 이동하는 좌우슬라이드홈(102a,102b)이 설치된다. 슬라이드홈(102a)은 이송바(101a)의 중앙에서 치우친 위치 - 도면에서는 좌측 - 로부터 긴 홈 형상으로 랜드(110)의 중앙부근까지 선형으로 연장된다. 슬라이드홈(102b)은 이송바(101b)의 중앙에서 치우친 위치 - 도면에서는 우측 - 로부터 긴 홈 형상으로 랜드(110)의 중앙부근까지 선형으로 연장된다. 도면에 도시한 각각의 슬라이드홈(102a,102b)은 2열의 홈으로 구성되나, 하나 또는 3개 이상의 홈으로 구성하여도 좋다.The left and right direction transfer bars 101a and 101b are installed along the left and right sides of the land 110. The land 110 is provided with left and right slide grooves 102a and 102b to which the left and right direction transfer bars 101a and 101b respectively move. The slide groove 102a extends linearly from the position biased in the center of the transfer bar 101a-the left in the figure-to the vicinity of the center of the land 110 in a long groove shape. The slide groove 102b extends linearly from the position biased in the center of the transfer bar 101b-the right side in the figure-to the vicinity of the center of the land 110 in a long groove shape. Each slide groove 102a, 102b shown in the figure is composed of two rows of grooves, but may be composed of one or three or more grooves.
전후방향이송바(103a,103b)는 랜드(110)의 전방 및 후미변을 따라 설치된다. 전후방향이송바(103a,103b)의 길이는 스키드(s)를 지지할 수 있는 길이로, 좌우방향이송바(101a,101b)의 길이보다 짧게 형성할 수 있다. 랜드(110)에는 전후방향이송바(103a,103b)각각이 이동하는 전후슬라이드홈(104a,104b)이 설치된다. 슬라이드홈(104a)은 이송바(103a)의 중앙에서 치우친 위치 - 도면에서는 윗쪽 -로부터 긴 홈 형상으로 랜드(110)의 중앙부근까지 선형으로 연장된다. 슬라이드홈(102b)은 이송바(103b)의 중앙에서 치우친 위치 - 도면에서는 아래쪽 -로부터 긴 홈 형상으로 랜드(110)의 중앙부근까지 선형으로 연장된다. 도면에 도시한 각각의 슬라이드홈(104a,104b)은 2열의 홈으로 구성되나, 하나 또는 3개 이상의 홈으로 구성하여도 좋다.The front and rear direction transfer bars 103a and 103b are installed along the front and rear sides of the land 110. The length of the front and rear direction transfer bars 103a and 103b is a length capable of supporting the skid s, and may be shorter than the length of the left and right direction transfer bars 101a and 101b. The land 110 is provided with front and rear slide grooves 104a and 104b in which the front and rear conveyance bars 103a and 103b respectively move. The slide groove 104a extends linearly from the position biased in the center of the transfer bar 103a-the upper side in the figure-to the vicinity of the center of the land 110 in a long groove shape. The slide groove 102b extends linearly from the position biased in the center of the transfer bar 103b-down in the figure-to the vicinity of the center of the land 110 in a long groove shape. Each slide groove 104a, 104b shown in the figure is composed of two rows of grooves, but may be composed of one or three or more grooves.
좌우 및 전후방향 이송바(101a,101b,103a,103b)는 점선으로 도시한 위치에 장착된 모터(M1,M2,M3,M4)에 의해 구동되는 액츄에이터로 작동하는 로봇의 아암 또는 링크에 연결되어 각각의 슬라이드홈(102a,102b,104a,104b)을 따라 선형 이동한다. 모터는 좌우 및 전후를 제어하는 한 쌍의 모터로 구성해도 좋다. 모터, 액츄에이터등의 구동부는 랜드(11)아래에 연속 연장된 하우징(11a: 도6 참조)내부에 배치할 수 있다. The left and right transfer bars 101a, 101b, 103a, and 103b are connected to an arm or a link of a robot operated by an actuator driven by the motors M1, M2, M3, and M4 mounted at the positions shown by the dotted lines. Linear movement along the respective slide grooves (102a, 102b, 104a, 104b). The motor may be constituted by a pair of motors that control the left and right and the front and rear. A drive unit such as a motor or an actuator may be disposed in the housing 11a (see FIG. 6) extending continuously under the land 11.
좌우방향이송바(101a,101b)는 아암 또는 링크에 의해 들려져, 전후방향이송바(103a,103b)보다 높은 고도에 위치하여 이송바의 선형 이동시 상호 걸림이 없도록 하고 있다. 이와 달리 전후방향이송바(103a,103b)가 좌우방향이송바(101a,101b)보다 높은 고도에 위치하도록 아암 또는 링크로 지지하여도 좋다.The left and right direction transfer bars 101a and 101b are lifted by an arm or a link, and are positioned at an altitude higher than the forward and backward direction transfer bars 103a and 103b so as to prevent mutual jamming during linear movement of the transfer bar. Alternatively, the front and rear conveyance bars 103a and 103b may be supported by an arm or a link so as to be located at a higher altitude than the horizontal conveyance bars 101a and 101b.
본 발명의 일 실시예에 따르면, 슬라이드홈(102a,102b,104a,104b)이 수렴하는 랜드(110)의 중앙부분은 직사각형의 정렬영역(A)을 이룬다. 정렬영역(A)은 각각의 4개의 슬라이드홈(102a,102b,104a,104b)을 가상 연장하는 경우 연장선들이 교차하여 이루는 사각형의 교차 영역과 일치한다. 정렬영역(A)은 무인비행기(F)의 스키드(s)를 랜드(110)중앙을 중심으로 지지하는 영역을 이루며, 본 발명의 실시예에서는, 한쌍의 스키드(s)가 이루는 사각형에 대응한다(도 5(c)참조). According to an embodiment of the present invention, the central portion of the land 110 where the slide grooves 102a, 102b, 104a, and 104b converges forms a rectangular alignment area A. The alignment area A coincides with the rectangular intersection area formed by the extension lines when the four slide grooves 102a, 102b, 104a, and 104b virtually extend. The alignment area A constitutes an area for supporting the skid s of the drone F about the center of the land 110. In an embodiment of the present invention, the alignment area A corresponds to a quadrangle formed by a pair of skids s. (See FIG. 5 (c)).
본 발명의 일 실시예에 따르면, 무인항공기의 크기나 형상 또는 스키드(s)의 배열 위치나 크기 변경이 있는 경우, 스키드(s)가 이루는 사각형에 대응하여 정렬영역(A)이 형성되도록 슬라이드홈(102a,102b,104a,104b)의 크기와 위치를 바꾸어 제작하고, 구동부가 가령 펄스 또는 스텝 모터인 경우, 변경된 슬라이드 홈(102a,102b,104a,104b)의 크기와 위치에 대응하여 모터의 회전수를 사전 셋팅할 수 있으므로 다양한 기종의 변경에 효율적으로 대응할 수 있다. 또, 실제의 물리적인 변경을 수반하는 것이므로 가령 이송부의 이동거리 변경 제어만으로 기종의 변화에 대처하는 선행기술보다 간편하며 이동거리 오차폭도 줄일 수 있다.According to one embodiment of the invention, when there is a change in the size or shape of the unmanned aerial vehicle or the arrangement position or size of the skid (s), the slide groove so that the alignment area (A) is formed corresponding to the square formed by the skid (s) When the size and position of the 102a, 102b, 104a, 104b are changed and the driving unit is a pulse or step motor, for example, the rotation of the motor corresponding to the size and position of the changed slide grooves 102a, 102b, 104a, 104b. The number can be preset so that various models can be efficiently changed. In addition, since it is accompanied by the actual physical change, for example, only the movement distance change control of the transfer unit is simpler than the prior art coping with the change of the model, and the movement distance error width can be reduced.
다시 도 4에서는, 본 발명의 일 실시예에 따른 무인비행기 착륙 위치 정렬 장치(100)의 랜드(110)위에 무인비행기(F)를 촬상하기 위한 카메라(c1,...,c5)가 설치되어 있다. 삼각형을 이루어 배치된 카메라(c1,c2,c3)는 원거리를 촬상하기 위한 것으로 3개의 카메라가 전송하는 정보에 의해 무인비행기(F)의 위치를 실시간으로 검출할 수 있다. 정렬영역(A)내부의 중앙에 배치된 카메라(c4,c5)는 무인비행기(F)가 가령 헬리콥터로서 호버링 동작으로 수직 하강하는 경우 정확한 위치를 산출하여 도킹을 유도하도록 장착된다. 가령 카메라(c5)는 3m이하의 근거리용, 카메라(c4)는 3m초과 ~ 7m이하의 원거리용으로 활용될 수 있다.In FIG. 4 again, cameras c 1 ,..., C 5 for photographing the drone F on the land 110 of the drone landing position alignment device 100 according to an embodiment of the present invention are provided. It is installed. The cameras c 1 , c 2 , and c 3 arranged in a triangle are for photographing a long distance and can detect the position of the drone F in real time based on information transmitted by the three cameras. The cameras c4 and c5 disposed in the center of the alignment area A are mounted to calculate the correct position and guide the docking when the drone F vertically descends, for example, as a helicopter. For example, the camera c5 may be used for short distances of 3 m or less, and the camera c4 may be used for long distances of more than 3 m to 7 m or less.
본 발명의 일 실시예에 따른 무인비행기(F)의 착륙 유도와 제어방법에 대해서는 특허출원 2013-71561호의 방법을 따를 수 있다. 상기 특허출원은 무인비행기의 위치와 관련된 제1 위치정보를 획득하여 무인비행기의 현재좌표를 계산하고, 현재좌표를 지상시스템에 전송하고, 지상시스템으로부터 무인비행기의 상대위치 및 자세정보를 포함하는 착륙정보를 수신하고, 착륙목적지 좌표 및 현재좌표를 이용하여 무인비행기를 착륙목적지 좌표 방향으로 이동시킨 후, 착륙정보를 참조하여 무인비행기를 호버링하면서 착륙지점에 근접시키도록 제어하는 단계를 개시한다.The landing guide and control method of the drone F according to an embodiment of the present invention may follow the method of Patent Application 2013-71561. The patent application obtains first position information related to the position of the drone, calculates the current coordinates of the drone, transmits the current coordinates to the ground system, and lands including the relative position and attitude information of the drone from the ground system. Receiving the information, and using the landing destination coordinates and the current coordinates to move the drone in the landing destination coordinate direction, and then hovering the drone with reference to the landing information to control the proximity to the landing point.
또, 영상센서가 촬상제어부의 제어에 의해 지상시스템 주변 상공을 비행하는 무인비행기를 촬상하고, 영상센서는 착륙대(260)에서 무인비행기가 안착하는 지점에 설치되거나 착륙대와 인접하여 설치된다고 개시하고 있다.In addition, it is disclosed that the image sensor captures a drone flying over the ground system under the control of the imaging controller, and the image sensor is installed at the point where the drone is seated in the landing zone 260 or adjacent to the landing zone. .
이에 따라 본 발명의 일 실시예는 전술한 것과 같이, 카메라(c1,...,c5)를 삼각형을 이루어 배치된 카메라(c1,c2,c3)와, 정렬영역(A)내부의 중앙에 배치된 카메라(c4,c5)로 구성하고 있다. 카메라는 무인비행체의 위치를 좌표화할 수 있는 한 렌즈 또는 센서를 구비한 어떤 영상 취득 장치도 포함할 수 있다. 정렬영역(A)내부에 배치된 카메라(c4,c5)중 근거리용 카메라가 수직으로 호버링 강하하는 무인비행기를 촬상할 때는, 촬상제어부가 정렬영역의 x,y좌표를 기준으로 무인비행기의 위치를 추적하고 착륙을 유도하는 단계를 추가하면 더욱 정확히 무인비행기의 착륙을 안내할 수 있다. Accordingly, one embodiment of the present invention, as described above, the camera (c 1 , ..., c 5 ) arranged in a triangle to the camera (c 1 , c 2 , c 3 ) and the alignment area (A) It consists of cameras c4 and c5 arrange | positioned at the center inside. The camera may include any image acquisition device having a lens or sensor as long as it can coordinate the position of the unmanned aerial vehicle. When the near camera is vertically hovered down among the cameras c4 and c5 arranged in the alignment area A, the imaging controller determines the position of the drone based on the x and y coordinates of the alignment area. Adding steps to track and guide the landing can more accurately guide the drone's landing.
도 5는 본 발명의 일 실시예에 따른 착륙 위치 정렬 장치(100)의 작동을 보이는 도면이다. 5 is a view showing the operation of the landing position alignment device 100 according to an embodiment of the present invention.
무인비행기(F)가 가령, 도 5(a)에 도시한 자세로 착륙한 상태에서, 제어부의 구동으로 좌우방향이송바(101a,101b)가 슬라이드홈(102a,102b)을 따라 화살표 방향으로 같은 거리 만큼 선형 이동한다. 좌우방향이송바(101a,101b)는 무인비행기(F)의 스키드(s)와 맞닿아 동체를 밀면서 도 5(b)에 도시한 것과 같은 좌우 정렬 상태를 이룬다. 통상, 무인비행기(F)의 하부면에는 스키드(s)외 다른 부품이 장착되지 않으므로, 좌우방향이송바(101a,101b)는 무인비행기(F)의 다른 부품과 간섭하지 않으며, 따라서, 스키드(s)가 평형 이동 및 무게 중심추로서의 역할을 하는 점에 주목해야 할 것이다.In the state where the drone F lands in the posture shown in FIG. 5 (a), for example, the left and right transfer bars 101a and 101b are driven in the direction of the arrow along the slide grooves 102a and 102b by the driving of the control unit. Move linearly by distance. The left and right direction transfer bars 101a and 101b are in contact with the skid s of the drone F and push the fuselage to achieve a left and right alignment as shown in FIG. 5 (b). In general, since parts other than the skid s are not mounted on the lower surface of the drone F, the left and right transport bars 101a and 101b do not interfere with other parts of the drone F, and thus, the skid ( It should be noted that s) acts as an equilibrium movement and center of gravity.
다음, 도 5(b)의 상태에서 전후방향이송바(103a,103b)가 슬라이드홈(104a,104b)을 따라 화살표 방향으로 선형 이동한다. 전후방향이송바(103a,103b)는 좌우방향이송바(101a,101b)보다 고도가 높으므로(또는 낮으므로) 좌우방향이송바 위를 활강하듯 이동하여 간섭하지 않으면서 좌우 스키드(s)의 한쪽 끝을 밀어 무인비행기(F)의 전후방향 위치를 조정한다. 도 5(b)와 같이 무인비행기(F)가 랜드(110)의 위쪽에 편향한 경우는, 실질적으로는 이송바(103a)가 스키드(s), 따라서 무인비행기(F)를 밀고, 이송바(103b)는 이송바(103a)에 의해 운반되는 무인비행기(F)를 대기하는 역할을 하게 된다. 반대로 무인비행기(F)가 랜드(110)의 아래쪽에 편향한 경우는, 이송바(103b)가 무인비행기(F)를 밀고, 이송바(103a)는 무인비행기(F)를 대기하는 역할을 하게 될 것이다.Next, in the state of FIG. 5 (b), the front and rear direction transfer bars 103a and 103b linearly move in the direction of the arrow along the slide grooves 104a and 104b. Since the forward and backward transfer bars 103a and 103b are higher (or lower) than the left and right direction transfer bars 101a and 101b, one side of the left and right skids s moves and slides on the left and right direction transfer bar without interference. Push the end to adjust the forward and backward position of the drone (F). When the drone F is deflected above the land 110 as shown in FIG. 5 (b), the transfer bar 103a substantially pushes the skid s, thus the drone F, and the transfer bar. 103b serves to wait for the drone F carried by the transfer bar 103a. On the contrary, when the drone F is deflected below the land 110, the transfer bar 103b pushes the drone F and the transfer bar 103a serves to wait for the drone F. Will be.
도 5(c)는 위치조정이 완료된 무인비행기(F)를 도시한다. 전술한 것과 같이 스키드(s)는 통상 무인비행기(F)의 전방에 치우쳐 배치되므로 이송바(103a)의 전체 이동거리(l1)는 이송바(103b)의 전체 이동거리(l2)보다 작다. 또, 네 개의 이송바는 스키드(s)를 중심으로 전술한 정렬영역(A)을 형성하면서 정렬영역(A)의 각각의 네 변을 따라 정렬하게 된다.5C shows the drone F having completed the position adjustment. As described above, since the skid s is normally disposed in front of the drone F, the total moving distance l 1 of the transfer bar 103a is smaller than the total moving distance l 2 of the transfer bar 103b. . In addition, the four transfer bar is aligned along each of the four sides of the alignment area (A) while forming the above-described alignment area (A) around the skid (s).
도 4 및 도 5에서는 좌우방향이송바(101a,101b)가 전후방향이송바(103a,103b)보다 길이가 긴 예를 도시하였는데, 이는 통상 무인비행기(F)의 전체 길이가 전체 폭보다 크므로, 측면에 해당하는 부분을 길이가 긴 이송부로 지지하는 것이 균형을 맞추는데 유리하기 때문이다. 그러나, 다양한 무인비행기의 용도에 따라 기존의 외관에 종속되지 않는 좌우 대칭형, 원반형등의 무인비행기에 대응하기 위해서 각각의 이송부의 크기와 위치는 자유로이 변경 가능함을 이해할 수 있을 것이다.4 and 5 illustrate an example in which the left and right transport bars 101a and 101b have a longer length than the forward and backward transport bars 103a and 103b, since the overall length of the drone F is larger than the overall width. For this reason, it is advantageous to balance the support of the part corresponding to the side with a long conveying part. However, it can be understood that the size and position of each conveying part can be freely changed to correspond to a drone such as a symmetrical type and a disc type, which are not dependent on the existing appearance according to the use of various drones.
마찬가지로, 좌우방향이송바(101a,101b)보다 전후방향이송바(103a,103b)가 먼저 무인비행기를 밀며 이동하도록 변경할 수 있다.Similarly, the forward and backward transport bars 103a and 103b may be changed to push and move the drone before the left and right transport bars 101a and 101b.
다음, 도 6은 본 발명의 일 실시예에 따른 무인비행기 착륙 위치 정렬 장치(100)를 포함한 탑재장치로서의 도킹 트레일러(12)를 도시한다. 도킹 트레일러(12)는 평판형의 하우징이 외곽을 이루어 형성된 베이스(600)와, 베이스(600)의 상면의 좌측에 설치된 반(半)상자형의 제1커버(604)와, 베이스(600)의 상면의 우측에 설치된 반상자형의 제2커버(606)를 포함한다. Next, FIG. 6 shows a docking trailer 12 as a mounting apparatus including a drone landing position alignment device 100 according to an embodiment of the present invention. The docking trailer 12 includes a base 600 having a flat housing formed outside, a first box 604 having a half box shape provided at the left side of the upper surface of the base 600, and a base 600. It includes a second box 606 of the half-box provided on the right side of the upper surface.
베이스(600)의 내부에는 컨트롤러와 같은 제어부와 모터, 액츄에이터등 구동부가 설치되고, 측면에는 작업자가 수동 조작 또는 리모트 컨트롤 할 수 있는 제어패널(607)이 설치되어 있다.The base 600 is provided with a control unit such as a controller, a drive unit such as a motor, an actuator, and the like, and a control panel 607 for manual operation or remote control by an operator is provided on the side.
도킹 트레일러의 폐쇄시, 제1커버(604)와 제2커버(606)는 도시한 것과 같이 서로 맞닿아 공간을 형성한다. 공간의 크기는 무인비행기(F)를 포함한 착륙 위치 정렬 장치(100)를 충분히 수용할 정도로 커야 한다. 공간의 내부에서 베이스(600)위에 설치된 패널(620)에는 도 7에 도시한 것과 같이 액츄에이터(608)등의 구동부가 장착되어 있다. 또, 착륙 위치 정렬 장치(100)의 랜드(110)는 액츄에이터(608)에 의하여 승하강되는 지지로드(610)에 의해 그 네 코너가 지지되고 있다.When the docking trailer is closed, the first cover 604 and the second cover 606 abut each other to form a space, as shown. The size of the space should be large enough to accommodate the landing position alignment device 100 including the drone F. The panel 620 provided on the base 600 inside the space is equipped with a drive unit such as an actuator 608 as shown in FIG. In addition, the four corners of the land 110 of the landing position alignment device 100 are supported by the support rod 610 which is lifted up and down by the actuator 608.
이 상태에서 무인비행기(F)를 운항하기 위하여 작업자가 제어패널(607)을 동작하면 제1커버(604) 및 제2커버(606)는 베이스(600)의 측단부에 형성된 홈을 따라상호 이격하는 방향으로 선형 이동함으로써 착륙 위치 정렬 장치(100)를 포함한 도킹 스테이션이 외부로 노출된다. 그리고 자동으로 연속하여 또는 작업자가 패널을 후속하여 조작하면, 액츄에이터(608)의 작동으로 지지로드(610)가 상승하여 지지로드(610)로 견인된 착륙 위치 정렬 장치(100)가 도 7에 도시한 위치까지 상승하게 된다. 착륙 위치 정렬 장치(100)는 제1커버(604) 및 제2커버(606)의 상면과 면일(面一)을 이루는 높이 만큼 상승하는 것이 바람직하다.In this state, when the operator operates the control panel 607 to operate the drone F, the first cover 604 and the second cover 606 are mutually spaced apart along the groove formed at the side end of the base 600. The docking station including the landing position aligning device 100 is exposed to the outside by linearly moving in the direction. And automatically or continuously or when the operator subsequently manipulates the panel, the landing position alignment device 100 lifted to the support rod 610 by the operation of the actuator 608 is shown in Figure 7 Ascend to one position. The landing position alignment device 100 preferably rises by a height that forms a plane with the top surfaces of the first cover 604 and the second cover 606.
액츄에이터(608)는 볼스크류 타잎은 물론 리니어 액츄에이터를 활용할 수 있으며, 고정축에 네어디움과 같은 강자성 물질을 이용하면 큰 토크를 발생시켜 육중한 무인비행기(F)도 원활히 이동시킬 수 있다. 도시하지 않은 모터는 액츄에이터(608)와 별도로 설치되어 커플링을 통해 연결되지만, 모터의 샤프트와 액츄에이터의 볼스크류를 일체화한 액츄에이터 내장형을 사용해도 좋다. 일 실시예에서는 설명을 위하여 액츄에이터(608)등의 구동부를 외부에서 도시하였으나, 액츄에이터(608)등의 구동부는 패널(620)이 아닌 베이스(600)내부에 설치되는 등 필요에 따라 적절히 배치될 수 있다.The actuator 608 may utilize a linear actuator as well as a ball screw type, and by using a ferromagnetic material such as nedium on the fixed shaft, a large torque can be generated to smoothly move the heavy drone (F). The motor (not shown) is provided separately from the actuator 608 and connected via a coupling, but an actuator built-in type in which the shaft of the motor and the ball screw of the actuator are integrated may be used. In one embodiment, the driving unit such as the actuator 608 is illustrated from the outside for the purpose of description, but the driving unit such as the actuator 608 may be appropriately disposed as necessary, such as being installed inside the base 600 instead of the panel 620. have.
본 발명의 일 실시예에서는 좌우 및 전후방향 이송바(101a,101b,103a,103b)를 모터(M1,M2,M3,M4)에 의해 구동되는 액츄에이터로 작동하는 로봇의 아암 또는 링크에 연결된 것으로 설명하였는데, 상술한 4개의 지지로드가 아암 또는 링크의 역할을 겸하도록 4개의 슬라이드홈(102a,102b,104a,104b)에 대응하는 홈을 패널(620)에 설치하고 각각의 구동모터가 각각의 지지로드를 승강시킨 후 이 홈을 따라 지지로드를 이동시키도록 변경할 수 있다.One embodiment of the present invention is described as being connected to the arm or link of the robot operating as an actuator driven by the motor (M1, M2, M3, M4) to the left and right transfer bars (101a, 101b, 103a, 103b) The grooves corresponding to the four slide grooves 102a, 102b, 104a, and 104b are installed in the panel 620 so that the four support rods serve as arms or links. After lifting the rod, it can be changed to move the support rod along this groove.
도 7의 상태에서 무인비행기를 이륙시켜 소정의 작업을 완료하면, 무인비행기를 착륙시키고 전술한 방법으로 위치를 정렬한다. 그리고, 앞서와 반대로 과정으로, 작업자가 제어패널(607) 또는 리모콘을 조작하여 지지로드(610)를 하강시켜 도킹 스테이션을 회귀시키고, 제1커버(604) 및 제2커버(606)를 폐쇄한다.When the predetermined operation is completed by taking off the drone in the state of FIG. 7, the drone is landed and the positions are aligned in the manner described above. Then, in the reverse process, the operator operates the control panel 607 or the remote control to lower the support rod 610 to return the docking station and close the first cover 604 and the second cover 606. .
본 발명의 일 실시예에 따른 무인비행기 착륙 위치 정렬 장치(100)는 도킹 트레일러(12)가 아닌 통제차량(11)등 어느 탑재수단에도 설치될 수 있으며, 별도의 독립한 모듈 단위로 제작, 운반 및 이용될 수 있다.The drone landing position alignment device 100 according to an embodiment of the present invention may be installed on any mounting means such as the control vehicle 11, not the docking trailer 12, and manufactured and transported in a separate module unit. And can be used.
이상 본 발명의 일 실시예에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.The terms "comprise", "comprise" or "have" described in the above embodiments of the present invention mean that the corresponding component may be included unless otherwise stated, and thus, other configurations It should be construed that it is possible to include other components rather than to exclude the elements. All terms, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms used generally, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be interpreted in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
이상에서 설명한 바와 같이, 본 발명은 정렬영역을 중심으로 무인비행기를 정확하게 랜드에 정렬시킬 수 있고, 무인비행기의 종류, 스키드와 같은 무인비행기에 부착된 기준부재의 변경이 있어도 정확하고 효율적으로 대응할 수 있으며, 무인비행기 착륙 위치 정렬 장치를 탑재하고 이를 승하강 시킬 수 있는 탑재장치를 구현하여 무인비행기의 적재, 운반 및 조종을 자동화할 수 있는 산업상 유용한 발명이다.As described above, the present invention can accurately align the drone to the land centered on the alignment area, and can cope accurately and efficiently even if there is a change in the type of the drone or a reference member attached to the drone such as a skid. In addition, it is an industrially useful invention that can automate the loading, transport and control of the drone by implementing a mounting device that can be mounted and lifted up and down the drone landing position alignment device.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2014년 05월 26일 한국에 출원한 특허출원번호 제 10-2014-0063312 호에 대해 미국 특허법 119(a)조(35 U.S.C 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority in accordance with US Patent Law Article 119 (a) (35 USC 119 (a)) to Patent Application No. 10-2014-0063312 filed with Korea on May 26, 2014. The contents are incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (12)

  1. 무인비행기의 착륙 위치 정렬 장치에 있어서,In the landing position alignment device of the drone,
    무인비행기가 착륙하는 랜드;Land where drones land;
    상기 랜드의 좌측 및 우측변을 따라 설치되는 한쌍의 좌우방향이송바;A pair of left and right transport bars installed along the left and right sides of the land;
    상기 좌우방향이송바 각각이 이동하도록 상기 랜드에 설치되며 상기 랜드의 중앙을 향하도록 연장된 선형의 좌우슬라이드홈;Linear left and right slide grooves installed on the lands to move the left and right transfer bars and extending toward the center of the lands;
    상기 랜드의 전방 및 후미변을 따라 설치되는 한쌍의 전후방향이송바;A pair of forward and backward transfer bars installed along the front and rear sides of the land;
    상기 전후방향이송바 각각이 이동하도록 상기 랜드에 설치되며 상기 랜드의 중앙을 향하도록 연장된 선형의 전후슬라이드홈;을 포함하며,And a linear front and rear slide groove installed in the land to move the front and rear direction transfer bars and extending toward the center of the land.
    상기 무인비행기는 착륙시 위치 정렬의 대상이 되는 기준부재를 구비하고,The drone is provided with a reference member that is the target of position alignment when landing,
    상기 좌우슬라이드홈과 상기 전후슬라이드홈의 각각의 연장선은 서로 교차하여 상기 무인비행기의 상기 기준부재가 정렬되어 안착되는 정렬영역을 형성하는 무인비행기의 착륙 위치 정렬 장치.And each extension line of the left and right slide grooves and the front and rear slide grooves cross each other to form an alignment area in which the reference member of the drone is aligned and seated.
  2. 제 1항에 있어서, 상기 무인비행기의 상기 기준부재는 스키드(skid)인 무인비행기의 착륙 위치 정렬 장치.The landing position alignment apparatus of claim 1, wherein the reference member of the drone is a skid.
  3. 제 2항에 있어서, 상기 정렬영역은 상기 스키드를 좌우 및 전후 방향에서 지지하는 사각형의 형상인 무인비행기의 착륙 위치 정렬 장치.The landing position alignment device of claim 2, wherein the alignment area has a quadrangular shape for supporting the skid in left, right, and front and rear directions.
  4. 제 1항에 있어서, 상기 전후슬라이드홈은 각각의 상기 전후방향이송바의 길이방향 중심에서 치우친 위치로부터 상기 랜드의 중앙을 향하도록 연장되고, 상기 좌우슬라이드홈은 각각의 상기 좌우방향이송바의 길이방향 중심에서 치우친 위치로부터 상기 랜드의 중앙을 향하도록 연장되는 무인비행기의 착륙 위치 정렬 장치.The longitudinal slide bar according to claim 1, wherein the front and rear slide grooves extend from the position centered in the longitudinal center of each of the front and rear conveying bars toward the center of the land, and the left and right slide grooves are the lengths of the respective horizontal conveying bars. Landing position alignment device for a drone extending from the centered in the direction toward the center of the land.
  5. 제 1항에 있어서, 상기 랜드는 무인비행체를 촬상하는 복수의 영상획득장치를 더 구비한 무인비행기의 착륙 위치 정렬 장치.The landing position alignment apparatus of claim 1, wherein the land further comprises a plurality of image acquisition devices for photographing an unmanned aerial vehicle.
  6. 제 5항에 있어서, 상기 복수의 영상획득장치는 삼각형을 이루도록 배치된 적어도 세 개의 영상획득장치 및 상기 정렬영역 안에 배치된 적어도 하나의 영상획득장치를 포함하며, 상기 영상획득장치는 카메라 또는 센서인 무인비행기의 착륙 위치 정렬 장치.6. The apparatus of claim 5, wherein the plurality of image acquisition devices comprises at least three image acquisition devices arranged in a triangle and at least one image acquisition device arranged in the alignment area, wherein the image acquisition device is a camera or a sensor. Landing position alignment device of drone.
  7. 무인비행기의 착륙 위치 정렬 방법에 있어서,In the landing position alignment method of the drone,
    (1) 상기 무인비행기가 착륙하는 랜드의 좌측 및 우측변을 따라 설치되는 한쌍의 좌우방향이송바를, 상기 좌우방향이송바 각각이 이동하도록 상기 랜드에 설치되며 상기 랜드의 중앙을 향하도록 연장된 선형의 좌우슬라이드홈을 따라 이동시켜 상기 무인비행기의 좌우 위치를 정렬하는 과정;(1) a pair of left and right transport bars provided along the left and right sides of the land on which the drone lands, linearly installed on the land so that the left and right transport bars move, and extending toward the center of the land; Moving along the left and right slide grooves to align the left and right positions of the drone;
    (2) 상기 무인비행기가 착륙하는 랜드의 전방 및 후미변을 따라 설치되는 한쌍의 전후방향이송바를, 상기 전후방향이송바 각각이 이동하도록 상기 랜드에 설치되며 상기 랜드의 중앙을 향하도록 연장된 선형의 전후슬라이드홈을 따라 이동시켜 상기 무인비행기의 전후 위치를 정렬하는 과정;을 포함하며, (2) a pair of forward and backward transfer bars installed along the front and rear sides of the land on which the drone lands, linearly installed on the land such that the forward and backward transfer bars move to the center of the land; And moving along the front and rear slide grooves to align the front and rear positions of the drone; and
    상기 좌우슬라이드홈과 상기 전후슬라이드홈의 각각의 연장선은 서로 교차하여 상기 무인비행기가 정렬되어 안착되는 정렬영역을 형성함으로써, 상기 (1) 및 (2)의 과정에 의하여 이동한 상기 한쌍의 좌우방향이송바와 상기 한쌍의 전후방향이송바는 상기 정렬영역에 맞추어 배열되는 무인비행기의 착륙 위치 정렬 방법.Each pair of extension lines of the left and right slide grooves and the front and rear slide grooves cross each other to form an alignment area in which the drone is aligned and seated, whereby the pair of left and right directions moved by the processes of (1) and (2) And a transfer bar and the pair of forward and backward transfer bars are arranged in alignment with the alignment area.
  8. 제 7항에 있어서, 상기 한쌍의 좌우방향이송바와 상기 한쌍의 전후방향이송바는 상기 무인비행기의 기준부재인 스키드를 좌우 및 전후에서 지지하도록 이동시켜 상기 정렬영역을 형성하는 무인비행기의 착륙 위치 정렬 방법. The landing position alignment of the drone according to claim 7, wherein the pair of left and right transfer bars and the pair of forward and backward transfer bars move the skid, which is a reference member of the drone, from left to right and back to form the alignment area. Way.
  9. 제 1항의 무인비행기 착륙 위치 정렬 장치;Claim 1 drone landing position alignment device;
    상기 착륙 위치 정렬 장치를 탑재한 탑재장치;를 포함하는 무인비행기의 지상시스템.And a landing apparatus equipped with the landing position alignment device.
  10. 제 9항에 있어서, 상기 탑재장치는 상기 착륙 위치 정렬 장치를 수용하는 공간을 형성하는 커버를 포함하고, 상기 착륙 위치 정렬 장치를 승강시키기 위해 상기 랜드에 연결된 지지로드와, 상기 지지로드를 승강시키는 구동부를 더 포함하는 무인비행기의 지상시스템.10. The system of claim 9, wherein the mounting apparatus includes a cover defining a space for receiving the landing position alignment device, the support rod connected to the land to lift the landing position alignment device, and the support rod for lifting the support rod. Ground system of the drone further comprising a driver.
  11. 제 10항에 있어서, 상기 탑재장치는 상기 커버 및 상기 지지로드를 작동시키기 위하여 작업자가 접근 가능한 제어패널을 더 포함하는 무인비행기의 지상시스템.11. The ground system of claim 10 wherein the mounting apparatus further comprises a control panel accessible by an operator to operate the cover and the support rod.
  12. 제 11항에 있어서, 상기 탑재장치는 통제차량 또는 상기 통제차량이 견인하는 도킹 트레일러인 무인비행기의 지상시스템.12. The ground system of claim 11 wherein the payload is a controlled vehicle or a docking trailer for towing the controlled vehicle.
PCT/KR2015/005127 2014-05-26 2015-05-26 Apparatus and method for aligning landing position of unmanned aerial vehicle and ground system including same apparatus WO2015182924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0063312 2014-05-26
KR1020140063312A KR101586188B1 (en) 2014-05-26 2014-05-26 Apparatus and Method for Arranging Landing Location of Unmanned Aerial Vehicle and Ground System incoporating same Apparatus

Publications (1)

Publication Number Publication Date
WO2015182924A1 true WO2015182924A1 (en) 2015-12-03

Family

ID=54699201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005127 WO2015182924A1 (en) 2014-05-26 2015-05-26 Apparatus and method for aligning landing position of unmanned aerial vehicle and ground system including same apparatus

Country Status (2)

Country Link
KR (1) KR101586188B1 (en)
WO (1) WO2015182924A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106864763A (en) * 2017-03-16 2017-06-20 山东大学 It is a kind of to aid in being accurately positioned and fixing device for unmanned plane landing
WO2018136790A1 (en) * 2017-01-19 2018-07-26 Vtrus, Inc. Automated battery servicing, including charging and replacement, for unmanned aerial vehicles, and associated systems and methods
US10649469B2 (en) 2017-01-19 2020-05-12 Vtrus Inc. Indoor mapping and modular control for UAVs and other autonomous vehicles, and associated systems and methods
CN114229023A (en) * 2021-12-07 2022-03-25 广州市赛皓达智能科技有限公司 Unmanned aerial vehicle machine nest
CN114229022A (en) * 2021-12-07 2022-03-25 广州市赛皓达智能科技有限公司 Oscillating bar device of unmanned aerial vehicle nest wing

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765038B1 (en) * 2016-01-09 2017-08-03 김성호 Battery auto change system for uav
KR101765040B1 (en) * 2016-02-13 2017-08-04 김성호 Auto change system for chemical container with battery built in the uav
KR101660456B1 (en) * 2016-06-08 2016-09-28 (주)대연씨앤아이 Monitoring apparatus for photovoltaic generating system
KR101701397B1 (en) 2016-07-29 2017-02-01 주식회사 넥스파시스템 vehicle control method using unmanned vehicle and system
KR101968834B1 (en) 2017-09-26 2019-04-12 홍익대학교 산학협력단 A Rendezvous Point Replacement Scheme for Efficient Drone-based Data Collection in Construction Sites
KR101961668B1 (en) * 2017-11-06 2019-03-26 대한민국 Dron storage device and method of driving the same
KR102184020B1 (en) * 2019-04-07 2020-11-30 주식회사 두드론 Active Guided Docking Station
KR102263893B1 (en) 2020-02-17 2021-06-15 한국철도기술연구원 Navigation positioning system using three dimensions magnetic field map for multicopter adjacent power rail, in geomagnetic disturbance situation, and control method
KR102263892B1 (en) 2020-02-17 2021-06-15 한국철도기술연구원 Navigation positioning system for multicopter adjacent power rail, in geomagnetic disturbance situation, and control method
KR102339589B1 (en) * 2020-03-24 2021-12-20 주식회사 상상제작소 Drone station with drone alignment funtion
KR102309610B1 (en) * 2020-03-24 2021-10-07 주식회사 상상제작소 Vehicle fixed drone station
KR102348289B1 (en) 2020-07-07 2022-01-10 한국철도기술연구원 System for inspecting a facility using drones and its control method
KR102348290B1 (en) 2020-07-21 2022-01-10 한국철도기술연구원 Crack detection system and control method using drones
KR102477408B1 (en) * 2021-06-01 2022-12-14 주식회사 담스테크 Drone takeoff and landing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130005503A (en) * 2011-07-06 2013-01-16 부산대학교 산학협력단 Helicopter landing apparatus
KR20130130498A (en) * 2012-05-22 2013-12-02 삼성중공업 주식회사 Helicopter landing assistant system and helicopter landing assistant method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130005503A (en) * 2011-07-06 2013-01-16 부산대학교 산학협력단 Helicopter landing apparatus
KR20130130498A (en) * 2012-05-22 2013-12-02 삼성중공업 주식회사 Helicopter landing assistant system and helicopter landing assistant method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018136790A1 (en) * 2017-01-19 2018-07-26 Vtrus, Inc. Automated battery servicing, including charging and replacement, for unmanned aerial vehicles, and associated systems and methods
US10649469B2 (en) 2017-01-19 2020-05-12 Vtrus Inc. Indoor mapping and modular control for UAVs and other autonomous vehicles, and associated systems and methods
CN106864763A (en) * 2017-03-16 2017-06-20 山东大学 It is a kind of to aid in being accurately positioned and fixing device for unmanned plane landing
CN114229023A (en) * 2021-12-07 2022-03-25 广州市赛皓达智能科技有限公司 Unmanned aerial vehicle machine nest
CN114229022A (en) * 2021-12-07 2022-03-25 广州市赛皓达智能科技有限公司 Oscillating bar device of unmanned aerial vehicle nest wing
CN114229023B (en) * 2021-12-07 2023-09-05 广州市赛皓达智能科技有限公司 Unmanned aerial vehicle nest

Also Published As

Publication number Publication date
KR20150136224A (en) 2015-12-07
KR101586188B1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
WO2015182924A1 (en) Apparatus and method for aligning landing position of unmanned aerial vehicle and ground system including same apparatus
US11312490B2 (en) Landing and payload loading structures
US11332033B2 (en) Systems and methods for UAV battery exchange
AU2019284269B2 (en) Loading structure with tether guide for unmanned aerial vehicle
US20210188434A1 (en) Methods and Systems for Self-Deployment of Operational Infrastructure by an Unmanned Aerial Vehicle (UAV)
KR20200013352A (en) The active guided docking station and a combined vehicle for automatically landing the drones at the docking station
US20090314883A1 (en) Uav launch and recovery system
KR20190125130A (en) The drone docking station vehicle configured to automatically take off, landing and charging the drones in the vehicle
CN111003183A (en) Ground operation for picking from autonomous objects
US11745899B2 (en) Adhoc geo-fiducial mats for landing UAVs
AU2019344664B2 (en) Unmanned aerial vehicle fleet management
KR102625240B1 (en) Autonomous vehicle for handling goods using marker and method thereof
WO2020212966A1 (en) A uav carrier
KR20230009618A (en) Logistics Linkage System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15798946

Country of ref document: EP

Kind code of ref document: A1