WO2015182470A1 - 腸管における物質取り込み促進剤 - Google Patents

腸管における物質取り込み促進剤 Download PDF

Info

Publication number
WO2015182470A1
WO2015182470A1 PCT/JP2015/064573 JP2015064573W WO2015182470A1 WO 2015182470 A1 WO2015182470 A1 WO 2015182470A1 JP 2015064573 W JP2015064573 W JP 2015064573W WO 2015182470 A1 WO2015182470 A1 WO 2015182470A1
Authority
WO
WIPO (PCT)
Prior art keywords
val
thr
ala
ser
asn
Prior art date
Application number
PCT/JP2015/064573
Other languages
English (en)
French (fr)
Inventor
沙恵 百武
山本 直之
高史 金谷
辰彦 弘田
真嗣 福田
大野 博司
Original Assignee
カルピス株式会社
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルピス株式会社, 国立研究開発法人理化学研究所 filed Critical カルピス株式会社
Priority to JP2016523447A priority Critical patent/JP6376417B2/ja
Priority to US15/313,872 priority patent/US20170202908A1/en
Publication of WO2015182470A1 publication Critical patent/WO2015182470A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/113Acidophilus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/335Assays involving biological materials from specific organisms or of a specific nature from bacteria from Lactobacillus (G)

Definitions

  • the present invention relates to a substance uptake promoter in the intestinal tract, which contains a surface protein derived from lactic acid bacteria.
  • the immune system exists as a defense system against the entry of foreign objects from the outside world.
  • the intestinal tract immune system is the largest immune system, and is composed of 60% immune cells and antibodies of the entire immune system.
  • Intestinal tract includes Peyer's patch (PP), lamina intestinal (Lamina Propria, LP), lamina basement lymphocytes (LaminapriPropria Lymphocytes, LPL), intestinal interepithelial cell lymphocytes (Intraepithelial Lymphocytes, IEL), intestinal tract Intestinal lymphoid tissue (gut-associated lymphoid tissue, GALT) composed of epithelial cells (Intestinal Epithelial Cell, IEC), crypt patches (Cryptopatch, CP), etc.
  • M cells Macrofold cells
  • follicular epithelial cells Follicle Epithelium, FAE
  • pathogenic microorganisms such as dendritic cells
  • the subsequent immune response is induced by delivering the antigen to various immunocompetent cells. Therefore, it is expected to efficiently act on immune cells by targeting M cells that are the gate of antigen uptake.
  • Non-patent documents 1 to 3 Non-patent documents 1 to 3
  • ingredients derived from materials such as pathogens that have no food experience remain uneasy about safety and are inappropriate for incorporation into the body. Therefore, a delivery system targeting M cells using ingredients derived from highly safe ingredients with abundant dietary experience is desired.
  • Lactic acid bacteria are microbial cells (probiotics) that have the functions of adjusting the intestinal environment and acting on the intestinal tract immune system, and are used as functional components of foods that are ingested daily such as lactic acid bacteria beverages and yogurt.
  • Probiotic lactic acid bacteria are also taken into the intestinal tract by M cells on Peyer's patches, and Toll-like receptors (TLRs) and Nod-like receptors are present in dendritic cells below M cells (in Peyer's patches) By acting on (NLR), it is speculated that various immune responses such as T cell activation, intestinal epithelial cell proliferation, IgA production promotion and inflammation suppression occur. Accordingly, establishment of an efficient means for taking up the intestinal tract is essential even in the use of probiotic lactic acid bacteria.
  • an object of the present invention is to provide a means by which a substance useful for intestinal immunity induction such as lactic acid bacteria can be efficiently taken into the intestinal tract.
  • the present inventors have found that the surface protein (SlpA protein) of Lactobacillus acidophilus L-92 strain is expressed in uromodulin protein (Umodlin protein) It was found to be involved in the binding of the lactic acid bacterial strain to) and promotion of uptake from M cells.
  • uromodulin protein Umodlin protein
  • the present invention includes the following inventions.
  • a surface protein of a lactobacillus belonging to the genus Lactobacillus comprising at least one peptide motif consisting of an amino acid sequence represented by the following formulas (I) to (VI) and having binding activity to uromodulin (Umod) protein, A substance uptake promoter in the intestinal tract containing the fragment.
  • X1 represents Val or Ile
  • the surface protein may be Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus crispatus, Lactobacillus amylovorus, Lactobacillus amylovorus, or Lactobacillus amylovorus
  • the complex according to (6), wherein the intestinal uptake target substance is a food ingredient.
  • the complex according to (7), wherein the food ingredient is a lactic acid bacterium.
  • the complex according to (6), wherein the intestinal uptake target substance is a pharmaceutical ingredient.
  • the complex according to (9), wherein the pharmaceutical ingredient is a mucosal vaccine antigen.
  • a composition comprising the complex according to any one of (6) to (10).
  • X1 represents Val or Ile
  • the surface protein (S-layer protein) derived from lactic acid bacteria which is an active ingredient of the substance uptake promoter in the intestinal tract of the present invention has an activity of binding to intestinal M cells and an action of promoting uptake of substances from intestinal M cells. Therefore, the substance uptake promoter in the intestinal tract of the present invention can increase the amount of intestinal uptake of useful lactic acid bacteria, mucosal vaccine antigens, etc., and as a result, effectively and reliably act on intestinal immunity, thereby suppressing allergic symptoms. And mucosal infections such as influenza can be protected. Moreover, since the substance uptake
  • FIG. 1 shows the results of immunostaining of the test lactic acid strains (L-92 strain, CP23 strain, LiCl-L92 strain) (SlpA in which the white portion is stained).
  • FIG. 1 shows the results of immunostaining of the test lactic acid strains (L-92 strain, CP23 strain, LiCl-L92 strain) (SlpA in which the white portion is stained).
  • FIG. 6 shows the results of multiple alignment analysis of S-layer proteins of L. acidophilus, L. helveticus, and L. gasseri (motifs 1 to 6). : Lactobacillus acidophilus (L. acidophilus) and L. helveticus (L. helveticus) with high Umod binding are common, and conversely Lactobacillus gaseri (L. gasseri) with low Umod binding Not a peptide motif).
  • FIG. 7 shows structural formulas (I) to (I) of a peptide motif common to the surface protein (L-protein) of Lactobacillus genus Lactobacillus having binding activity to uromodulin (Umod) protein determined by multiple alignment analysis.
  • FIG. 8 shows a portion corresponding to the amino acid sequence of the peptide motif common to the surface protein (L-protein) of lactic acid bacteria belonging to the genus Lactobacillus having binding activity to uromodulin (Umod) protein. acidophilus), Lactobacillus helveticus (L. helveticus), Lactobacillus crispatus (L. crispatus), Lactobacillus amylovorus (L.
  • amylovorus showing the amino acid sequence of Lactobacillus galinalum (L. gallinarum) (formula ( The number above the amino acid sequence of I) to (VI) is 1: amino acid common to 5 species of L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, the number is 2: L Amino acid common to 3 bacterial species of .acidophilus, L.helveticus and L.crispatus, the number 3: amino acid common to 2 bacterial species of L. acidophilus and L.helveticus).
  • Substance uptake promoter in intestinal tract contains at least one peptide motif consisting of amino acid sequences represented by the following formulas (I) to (VI), and against uromodulin (Umod) protein.
  • a surface protein of lactic acid bacteria belonging to the genus Lactobacillus having a binding activity hereinafter referred to as “S-layer protein” or a fragment thereof.
  • Formula (II): Gly-X2-Leu-Thr-Gly-X3-Ile-Ser-Ala-Ser-Tyr-Asn-Gly-Lys-X4-Tyr-Thr-Ala Asn-Leu in formula (II)
  • X2 represents Asn or Ser
  • X3 represents Thr or Ser
  • X4 represents Thr or Ser
  • the peptide motif contained in S-layer protein may have a mutation as long as it has binding activity to uromodulin (Umod) protein.
  • Umod uromodulin
  • amino acid substitution is preferably a conservative amino acid substitution, and the conservative amino acid substitution means a substitution between amino acids having similar properties such as structural, electrical, polar or hydrophobic properties. Such properties can be classified by, for example, similarity of amino acid side chains.
  • amino acids having basic side chains lysine, arginine, histidine
  • amino acids having acidic side chains amino acids having acidic side chains (aspartic acid, glutamic acid)
  • amino acids having aliphatic side chains alanine, valine, leucine, isoleucine
  • hydroxyl-containing side examples include amino acids having a chain (serine, threonine, tyrosine) and amino acids having an amide-containing side chain (asparagine, glutamine).
  • S-layer protein used in the present invention examples include Lactobacillus us acidophilus, Lactobacillus helveticus, Lactobacillus crispatus, Lactobacillus cribuspatus, Lactobacillus lactovorus, -S-layer protein derived from Lactobacillus gallinarum is preferred.
  • S-layer protein AA (hereinafter referred to as “SlpA protein”) present on the surface of Lactobacillus acidophilus L-92 strain is more preferable.
  • the SlpA protein is a protein with a molecular weight of 43.6 kDa and an isoelectric point of 10.4, and has been known to have functions such as defense, cell character maintenance, molecular and ion adsorption and adhesion (FEMS Microbiol. Rev. 29 : 511-529).
  • the present invention relates to a uromodulin (Umod) protein (hereinafter simply referred to as “a protein expressed in M cells existing in the epithelial cell layer of the small intestine Peyer's patch), which is a function of the SlpA protein that has not been known so far.
  • Umod (which may be referred to as“ Umod ”) and substance uptake promotion activity from M cells.
  • NCFM Lactobacillus acidophilus
  • the SlpA protein is a protein consisting of the amino acid sequence shown in SEQ ID NO: 7, but may be a mutant protein as long as it has a binding activity to Umod and an activity of promoting substance uptake from M cells. It may be a protein (partial peptide) having a partial sequence of an amino acid sequence.
  • mutant protein examples include a protein consisting of an amino acid sequence in which one to several amino acids are deleted, substituted, or added in the amino acid sequence shown in SEQ ID NO: 7.
  • range of “1 to several” refers to a number that can be deleted, substituted, or added by a known mutant protein production method such as site-directed mutagenesis, as long as the activity is maintained. The number is not limited, but 1 to 30, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5.
  • examples of the amino acid substitution include the conservative amino acid substitution described above.
  • the mutant protein may be a protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 7.
  • identity preferably means 95% or more, more preferably 97% or more, and most preferably 98% or more sequence identity.
  • identity of amino acid sequences can be determined by FASTA search or BLAST search.
  • mutation here means a mutation artificially introduced mainly by a known mutant protein production method, but may be a similar naturally occurring mutation.
  • the SlpA protein used in the present invention may be prepared by a chemical synthesis method based on the amino acid sequence shown in SEQ ID NO: 7, or may be prepared by a gene recombination technique.
  • a genetic recombination technique for example, an expression vector containing a gene encoding the amino acid sequence shown in SEQ ID NO: 7 is prepared, and an appropriate host cell is transformed with this expression vector to obtain a transformant.
  • the transformant can be cultured, and the target protein can be mass-produced from the culture.
  • An expression vector can be prepared and introduced into a host cell according to a known method.
  • Either prokaryotic or eukaryotic cells can be used as host cells.
  • Examples of commonly used prokaryotic host cells include Escherichia coli and Bacillus subtilis.
  • Examples of eukaryotic cells include yeast cells.
  • An expression vector can be introduced into a host cell by a known method, and examples thereof include a calcium phosphate method, a liposome method, an electroporation method, and a particle gun method.
  • chromatographic methods such as ion exchange chromatography, affinity chromatography, high performance liquid chromatography, adsorption chromatography, gel filtration chromatography, etc., and salting out, ultrafiltration, gel filtration, dialysis, urea, etc.
  • chromatographic methods such as ion exchange chromatography, affinity chromatography, high performance liquid chromatography, adsorption chromatography, gel filtration chromatography, etc., and salting out, ultrafiltration, gel filtration, dialysis, urea, etc.
  • examples include a combination of a treatment with a denaturing agent or a surfactant, centrifugation, ultrasonic treatment, enzyme digestion and the like.
  • the surface protein fragment of lactic acid bacteria belonging to the genus Lactobacillus having binding activity to the uromodulin (Umod) protein of the present invention is a fragment of the “S-layer protein” defined above, which is the uromodulin (Umod) protein.
  • the length is not limited as long as it has binding activity. For example, at least 20 amino acids, preferably 50 or more, and more preferably 100 or more amino acids constituting the S-layer protein. Examples include fragments having a sequence.
  • the substance uptake promoter in intestinal tract of the present invention forms a complex with a substance targeted for intestinal uptake (hereinafter referred to as “target substance”).
  • target substance a substance targeted for intestinal uptake
  • the target substance can be efficiently taken into the intestinal tract.
  • a target substance what is necessary is just a substance which shows activity in the living body, when taken in from an intestinal tract, for example, a food ingredient, a pharmaceutical ingredient, etc. are mentioned.
  • food ingredients and pharmaceutical ingredients having an intestinal immunity induction effect are preferable, and examples thereof include lactic acid bacteria and mucosal vaccine antigens.
  • the lactic acid bacteria may be live or dead. In the case of dead bacteria, it may be crushed.
  • the disruption of the microbial cells can be performed by, for example, physical disruption, enzyme dissolution treatment, and the like using methods and equipment known in the art. Physical crushing may be carried out either wet (treated in the state of a cell suspension) or dry (treated in the state of a cell powder), using a homogenizer, ball mill, bead mill, dyno mill, planetary mill, etc. It can be carried out by stirring, by pressure using a jet mill, a French press, a cell crusher or the like, or by filter filtration.
  • an enzyme such as lysozyme can be used to destroy the cell walls of the cells.
  • the substance uptake promoter in the intestine may be in a state of being covalently bonded or non-covalently bonded to the target substance, and the binding means is not particularly limited.
  • the target substance when the target substance is a lactic acid bacterium that does not have S-layer protein on its surface, bind the substance uptake promoter in the intestinal tract directly or through an appropriate cross-linking agent (linker) to the surface of the lactic acid bacterium.
  • an appropriate cross-linking agent linker
  • a complex can be formed.
  • a method for forming a complex for example, targeting amino groups, carboxyl groups, sulfhydryl groups, preferably amino groups of proteins (such as sugar chain receptor proteins) present on the surface layer of lactic acid bacteria to be taken up, And a method using a protein cross-linking agent having a reactive functional group capable of binding to the above group.
  • the S-layer protein can be added to the surface of lactic acid bacteria by linking an anchor motif (eg, CWBD motif, LysM motif, GW motif) involved in noncovalent binding to the cell walls of lactic acid bacteria and S-layer protein.
  • an anchor motif eg, CWBD motif, LysM motif, GW motif
  • anchor expression for example LPXTG motif
  • a method of peptide-binding the protein and S-layer protein using a protein cross-linking enzyme transglutaminase
  • a complex can be formed by binding the substance uptake promoter in the intestinal tract to the mucosal vaccine antigen directly or via an appropriate carrier.
  • a method of creating a fusion protein of mucosal vaccine antigen to be taken up and S-layer protein a method of introducing a reactive group into a carrier encapsulating mucosal vaccine antigen, and binding S-layer protein can be used.
  • the carrier include liposomes, microspheres or nanospheres, biodegradable carriers such as PLGA (polylactic acid / glycolic acid), mucoadhesive carriers composed of hyaluronic acid, chitin and the like.
  • a fusion protein of S-layer protein and mucosal vaccine antigen can be produced by a known gene recombination technique.
  • a fusion gene in which a gene encoding S-layer protein and a gene encoding mucosal vaccine antigen protein are artificially linked is prepared, and the fusion gene is inserted downstream of the promoter of the expression vector. It can be obtained by introducing it into a cell and expressing it.
  • the binding order of S-layer protein and mucosal vaccine antigen is not limited.
  • the base sequence information of the gene encoding the mucosal vaccine antigen protein can be obtained from a known database (GenBank, etc.).
  • base sequence information can be obtained by cloning a target gene using a known method and performing base sequence analysis.
  • the lipid composition and size of the liposome and the S-layer protein binding method are not particularly limited.
  • the lipid composition and size of the liposome and the S-layer protein binding method are not particularly limited.
  • lipids having a lipid terminal carboxyl group or maleimide group for S-layer protein binding are used.
  • Encapsulation of the antigen in the liposome can be performed by a known freeze-thaw method, reverse phase evaporation method, hydration method, or the like.
  • S-layer protein is added to the prepared antigen-encapsulated liposome, and a conjugate of liposome and S-layer protein can be prepared by peptide condensation reaction or SH group reaction system.
  • Composition comprising a complex of a substance uptake promoter in the intestinal tract and a substance to be taken up by the intestine
  • the above complex can be blended with a suitable additive in a composition such as a food, drink, pharmaceutical or animal feed.
  • the drug includes not only human drugs but also veterinary drugs.
  • Animal feed includes feed for livestock (pigs, cattle, etc.) and pet food for pets (dogs, cats, etc.).
  • a complex whose intestinal uptake target substance is a lactic acid bacterium can be incorporated into food and drink.
  • the food / beverage product is used to mean including a health food, a functional food, a dietary supplement, or a food for specified health use.
  • dairy products such as yogurt, cheese, beverages containing lactic acid bacteria, and pickles are optimal.
  • the form of the food and drink may be any form suitable for food, for example, solid, liquid, granular, granular, powdery, capsule (hard capsule, soft capsule), cream, or paste.
  • shapes suitable for health foods and functional foods include tablet shapes, capsule shapes, granule shapes, and powder shapes.
  • a tablet-like health food is produced by compressing a formulation containing a lactic acid bacterium combined with a substance uptake promoter in the intestinal tract according to the present invention into a certain shape or water or alcohol.
  • the kneaded material moistened with a solvent such as the above can be formed into a fixed shape, or poured into a fixed mold and molded.
  • the complex whose intestinal uptake target substance is a mucosal vaccine antigen can be blended in a pharmaceutical, particularly a mucosal vaccine preparation.
  • a pharmaceutical particularly a mucosal vaccine preparation.
  • it may be formulated together with an adjuvant for enhancing the immune response.
  • adjuvants include aluminum hydroxide, BCG, aluminum phosphate, keyhole limpet hemocyanin, dinitrophenol, dextran, and TLR ligands (eg, lipopolysaccharide (LPS), CpG).
  • the mucosal vaccine antigen is not particularly limited as long as it can induce a mucosal immune response, but is typically an antigen derived from a pathogen of mucosal infection.
  • the pathogen of the mucosal infection may be a virus or a bacterium.
  • viruses include influenza virus, human immunodeficiency virus (HIV), varicella virus, measles virus, rubella virus, poliovirus, rotavirus, adenovirus, herpes virus, severe acute respiratory infection syndrome (SARS) virus, etc. Although not limited to these.
  • bacteria examples include, but are not limited to, Bordetella pertussis, Neisseria meningitidis, influenza b type bacteria, pneumococci, and tuberculosis bacteria.
  • pathogen-derived antigens may be derived from natural products, or may be artificially prepared by a technique such as gene recombination.
  • the vaccine antigens include allergens used for desensitization therapy.
  • An allergen vaccine is a type 1 helper T cell (Th1) that blocks allergen-specific IgE in vivo by producing IgG antibodies against the allergen by administering the allergen to the body. Is a vaccine to increase type 2 cells and decrease type 2 helper T cells (Th2 cells) involved in allergic symptoms. Allergic symptoms can be suppressed by desensitization.
  • allergens are not particularly limited, but food allergens (casein, lactalbumin, lactoglobulin, ovomucoid, ovalbumin, conalbumin etc.), house dust allergens (eg mite allergen etc.), pollen allergens (cedar pollen allergen, ragweed) Allergens such as allergens and hemlock allergens) and animal hairs.
  • food allergens casein, lactalbumin, lactoglobulin, ovomucoid, ovalbumin, conalbumin etc.
  • house dust allergens eg mite allergen etc.
  • pollen allergens cedar pollen allergen, ragweed
  • Allergens such as allergens and hemlock allergens
  • the present invention also relates to the expression level of S-layer protein in the surface layer of lactic acid bacteria of the test lactic acid bacteria based on the binding activity of SlpA protein to Umod and the substance uptake promoting activity from M cells And a method for screening lactic acid bacteria having a high ability to enter the intestinal tract.
  • the S-layer protein may be used as it is, but a protein labeled with any labeling substance can also be used.
  • labeling substances include fluorescent substances, radioisotopes (for example, 125 I, 3 H, 14 C, 35 S, etc.), chemiluminescent substances, biotin, marker proteins, peptide tags, and the like.
  • the marker protein include an antibody Fc region, alkaline phosphatase, HRP (Horse radish peroxidase), and the like.
  • the peptide tag include FLAG, 6 ⁇ His or 10 ⁇ His consisting of 6 or 10 His (histidine) residues, a fragment of influenza agglutinin (HA), and the like.
  • intestinal transit ability refers to the ability to adhere to intestinal M cells, migrate into M cells, reach the Peyer's patch via the basement membrane in M cells.
  • the expression level of S-layer protein in the surface layer of the test lactic acid bacterium may be measured by comparison with a standard sample, but the absolute amount of S-layer protein is not necessarily absolute. It is not necessary to measure the amount, and it is sufficient for evaluation if the relative relationship with S-layer protein in the surface layer of lactic acid bacteria as a control can be clarified.
  • the measurement of the expression level of S-layer protein can be performed according to a known protein expression analysis method.
  • a typical example is an immunoassay using an antibody against S-layer protein.
  • the immunological measurement method is not particularly limited, and conventionally known methods such as enzyme immunoassay (EIA method), latex agglutination method, immunochromatography method, Western blot method, radioimmunoassay method (RIA method), Fluorescence immunoassay (FIA method), luminescence immunoassay, spin immunoassay, turbidimetric method for measuring turbidity associated with antigen-antibody complex formation, potential change due to antigen binding using antibody solid phase membrane electrode An enzyme sensor electrode method, an immunoelectrophoresis method, and the like that detect the above can be employed.
  • EIA method or Western blot method is preferable.
  • the EIA method includes a competitive enzyme immunoassay method, a sandwich enzyme-linked immunosorbent solid phase assay method (sandwich ELISA method), and
  • the antibody against S-layer protein used in the above measurement can be obtained by a method well known to those skilled in the art.
  • the antibody may be a polyclonal antibody or a monoclonal antibody. Further, the antibody may be an active fragment of an antibody. Active fragments include F (ab ′) 2, Fab ′, Fab, Fv and the like.
  • a polyclonal antibody against S-layer protein blood is collected from a mammal (for example, rabbit, rat, mouse, etc.) sensitized with an antigen, and serum is separated from the blood by a known method.
  • serum containing the polyclonal antibody can be used as the polyclonal antibody.
  • antibody-producing cells spleen cells, lymph node cells, etc.
  • the thus obtained hybridoma can be cloned, and the antibody can be recovered from the culture to obtain a monoclonal antibody.
  • these antibodies may be labeled appropriately.
  • the labeling substance the aforementioned enzyme, radioisotope, or fluorescent dye can be used.
  • a substance that specifically binds to the antibody such as protein A or protein G, can be labeled and detected indirectly without labeling the antibody.
  • the lactic acid bacterium to be tested is any lactic acid strain belonging to the genus Lactobacillus, Lactococcus, Bifidobacterium, Leuconostoc, Streptococcus, Enterococcus, Pediococcus, Weisella, Oenococcus, etc. Also good.
  • Lactobacillus belonging to the genus Lactobacillus includes Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus delbrucchi, Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus kefir, Lactobacillus Paracasei, Lactobacillus plantarum, Lactobacillus bulgaricus, Lactobacillus rhamnosus, Lactobacillus salivarius, Lactobacillus johnsonii, Lactobacillus gasseri, Lactobacillus amylovorus, Lactobacillus crisptus, Lactobacillus gallinalum Is mentioned.
  • Lactococcus lactis examples include Lactococcus lactis, Lactococcus plantarum, Lactococcus raffinolactis and the like.
  • Lactic acid bacteria belonging to the genus Bifidobacterium include Bifidobacterium infantis, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium pseudolongum, Bifidobacterium bifidum, Examples include Bifidobacterium animalis, Bifidobacterium adrecentis, Bifidobacterium catenatum, Bifidobacterium pseudocatenatum, and the like.
  • Examples of lactic acid bacteria belonging to the genus Leuconostoc include Leuconostoc lactis and Leuconostoc mesenteroides.
  • Examples of lactic acid bacteria belonging to the genus Streptococcus include Streptococcus thermophilus and Streptococcus lactis.
  • Examples of lactic acid bacteria belonging to the genus Enterococcus include Enterococcus faecalis, Enterococcus dulans, Enterococcus faecium and the like.
  • Examples of lactic acid bacteria belonging to the genus Pediococcus include Pediococcus pentosaceus.
  • lactic acid bacteria belonging to the genus Weicella examples include Weicera tivaria, Weicera confuser, Weicera halotolerance and the like.
  • lactic acid bacteria belonging to the genus Oenococcus examples include Oenococcus oeni.
  • Example 1 SlpA quantification of lactic acid strain (1) Preparation of lactic acid strain Lactobacillus acidophilus L-92 strain and Lactobacillus acidophilus CP23 strain were used for the experiment. Each strain was incubated at 37 ° C. for 20 hours in an MRS medium (Difco), washed with PBS three times, and suspended in PBS.
  • MRS medium Difco
  • LiCl treatment of the L-92 strain was performed by washing the L-92 strain twice with PBS, removing the supernatant, and incubating at room temperature and standing for a certain period of time in a 5 M LiCl (Wako) solution. Was done. After incubation, the cells were again washed twice with PBS and then resuspended in PBS.
  • the L-92 strain had a cell surface covered with SlpA, whereas the CP23 strain showed less SlpA localized on the surface. Furthermore, it was shown that the SlpA on the surface of the L-92 strain treated with LiCl was almost removed (FIG. 1).
  • Example 2 Evaluation of Umod binding property of lactic acid strain (1) Preparation of Lactic Acid Bacteria L-92 strain, CP23 strain and LCl-treated L-92 strain prepared in the same manner as in Example 1 were used for the experiment.
  • the anti-SlpA antibody treatment of the L-92 strain was performed by suspending the L-92 strain in a PBS solution in which the anti-SlpA antibody was dissolved to a final concentration of 140 ⁇ g / ml, and gently shaking overnight at 4 ° C. went.
  • Forward primer 5′-CGCAGATCTACCATGGGGATCCCTTTGACC-3 ′ (SEQ ID NO: 10) and Reverse primer: 5′-CGCGTCGACCTTGGACACTGAGGCCTGG-3 ′ (SEQ ID NO: 11) as primers for amplifying the mUmod (mouse Umod) sequence (SEQ ID NO: 9) And cloned into pcDNA3 vector (invitrogen) inserted with Fc domain using restriction enzymes BglII and SalI.
  • the vector obtained by cloning Fc-mUmod was introduced into human fetal kidney cell-derived HEK293T cells and cultured for 7-10 days.
  • the Fc-mUmod protein secreted in the supernatant was recovered and purified using HiTrap® protein® AHP® affinity column (GE® Healthcare).
  • DNA was extracted from the cells bound to the plate using NucleoSpin TM Tissue (Takara). The method followed the attached protocol. Using the extracted DNA as a template, universal primers (F: 5'-AACTGGAGGAAGGTGGGGAT-3 '(SEQ ID NO: 12), R: 5'-AGGAGGTGATCCAACCGCA-3' (SEQ ID NO: 13)) targeting the 16S rRNA gene Real-time PCR was performed to quantify the number of bacteria bound to Fc-mUmod and hIgG. The method followed the protocol attached to SYBR TM Premix Ex Taq TM II (Tli RNaseH Plus) (Takara).
  • SYBR TM Premix Ex Taq TM II Tli RNaseH Plus
  • the value obtained by subtracting the number of bacteria bound to hIgG from the number of bacteria bound to Fc-mUmod was defined as the number of Umod bindings.
  • the number of Umod bindings of each strain was expressed as a ratio relative to the binding number of the L-92 strain as 100%. The results are shown in FIGS.
  • Example 3 Evaluation of uptake amount of Lactobacillus strains into M cells (1) Preparation of Lactic Acid Bacteria L-92 strain, CP23 strain and LCl-treated L-92 strain prepared in the same manner as in Example 1 were used for the experiment.
  • Rat anti-mouse GP2 IgG2a (clone 2F11-C3) (1.0 mg / ml) is incubated in a primary antibody solution diluted to 100-fold in blocking solution, washed well with washing solution, and then Alexa Fluor TM 488 Goat anti-rat IgG (H + L) (Invitrogen) (2.0 mg / ml) was incubated in a secondary antibody solution diluted to 200-fold in a blocking solution. Tissues that had been thoroughly washed with PBS were mounted in whole and used for observation.
  • the amount of each strain incorporated into the M cells was expressed as a ratio relative to the amount of L-92 strain incorporated as 100%.
  • the results are shown in FIG.
  • Example 4 Evaluation of the amount of SlpA binding carrier incorporated into M cells (1) Isolation and purification of SlpA Lactobacillus acidophilus L-92 strain was incubated in 5M LiCl for 30 minutes to extract SlpA. After centrifuging to remove the bacterial cells, dialysis was performed with a PBS solution using a dialysis tube (20/32 mm, Nippon Medical Science) to obtain SlpA. It was confirmed by SDS-PAGE and CBB staining that a single band was obtained.
  • Peyer's board incorporation amount Peyer's board was cut out and washed with 1xHBSS (GIBCO), and then a frozen block was prepared using OCTcompound (Sakura Fintek USA).
  • a cryostat LEICA CM1850 was used to prepare a frozen section having a thickness of 5 mm, and the number of beads incorporated into the Peyer plate was observed and measured with a fluorescence microscope. Six to 12 sections per mouse were observed and the average was determined.
  • Fig. 5 shows a comparison of the amount of fluorescent beads combined with SlpA and fluorescent beads combined with BSA into the Peyer plate. It was confirmed that the amount of uptake from M cells was promoted by binding SlpA.
  • Example 5 Evaluation of Umod binding property of various lactic acid strains (1) Preparation of test lactic acid bacteria About 20 lactic acid bacteria belonging to the genus Lactobacillus were used in the experiment. In the same manner as in Example 1, each strain was incubated at 37 ° C. for 20 hours in an MRS medium (Difco), washed with PBS three times, and suspended in PBS.
  • Table 1 shows the calculation results of the number of Umod bindings of the 14 lactic acid bacteria to be tested.
  • the value obtained by subtracting the number of bacteria bound to hIgG from the number of bacteria bound to Fc-mUmod was defined as the number of Umod bindings.
  • Example 6 Examination of the common sequence present in the amino acid sequence of S-layer protein on the surface of lactic acid bacteria Based on the results of Example 5, multiple alignment analysis of S-layer protein was performed using ClutalW (http: // clustalw. ddbj.nig.ac.jp/).
  • Lactobacillus acidophilus gi
  • Lactobacillus helveticus gi
  • Lactobacillus gasseri gi
  • Lactobacillus acidophilus and Lactobacillus helveticus with high Umod binding are commonly shared, and conversely, Lactobacillus gasseri with low Umod binding are not included in formulas (I) to (VI) (FIG. 7).
  • Lactobacillus acidophilus is considered to be a related species of Lactobacillus acidophilus ( gi
  • FIG. 8 shows amino acid sequences represented by the formulas (I) to (VI) and the corresponding portions of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus crispatas, Lactobacillus amyloborus, Lactobacillus gallinalum.
  • the amino acid sequence is shown (SEQ ID NOs: 14 to 43). Among these five species, it was found that formula (V) had the highest commonality and formula (VI) had the lowest commonality.
  • the present invention can be used in the field of producing pharmaceuticals such as probiotic foods and drinks and mucosal vaccines.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Animal Husbandry (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)

Abstract

 本発明は、乳酸菌などの腸管免疫誘導に有用な物質を効率的に腸管内に取り込むことのできる手段を提供することを課題とする。 本発明によれば、ラクトバチルス属乳酸菌に共通するペプチドモチーフを含む表層蛋白質(S-layer protein)を含む、腸管における物質取り込み促進剤、該取り込み促進剤と腸管取り込み対象物質との複合体、該複合体を含む飲食品または医薬品、ならびに被検乳酸菌の菌体表層におけるS-layer proteinの発現量を測定することを含む、腸管内移行能が高い乳酸菌のスクリーニング方法が提供される。

Description

腸管における物質取り込み促進剤
 本発明は、乳酸菌由来の表層タンパク質を含有する、腸管における物質取り込み促進剤に関する。
 外界からの異物の侵入に対する防御システムとして免疫系が存在している。その中でも腸管免疫系は最も大きな免疫系であり、免疫系全体の60%の免疫細胞や抗体から構成されている。腸管には、パイエル板(Payer's Patch; PP)、粘膜固有層(Lamina Propria, LP)、粘膜固有層リンパ球(Lamina Propria Lymphocytes, LPL)、腸管上皮間細胞リンパ球(Intraepithelial Lymphocytes, IEL)、腸管上皮細胞(Intestinal Epithelial Cell, IEC)、クリプトパッチ(Cryptopatch, CP)などで構成される腸管関連リンパ組織(gut-associated lymphoid tissue, GALT)が存在し、腸管は体内最大の免疫器官となっている。なかでもパイエル板の管腔側を覆う濾胞上皮細胞(Follicle Associated Epithelium, FAE)に存在するM細胞(Microfold cell)は、病原微生物を含む抗原取り込みに特化した細胞であり、樹状細胞などの各種免疫担当細胞に抗原を受け渡すことで、その後の免疫応答が誘導される。そのため、抗原取り込みの門戸であるM細胞を標的にすれば、効率良く免疫細胞に働きかけることが期待される。
 これまで、M細胞への効果的な抗原送達のために、Yersinia菌由来のinvasinやReovirusのσ1 proteinなどのように病原体がM細胞に侵入する際に働くリガンドを用いる方法が提案されている(非特許文献1~3)。しかしながら、病原体のような食経験のない材料由来の成分は安全性に不安が残り、体内へ取り込ませるには不適切であるという問題がある。そのため、食経験が豊富で安全性の高い材料由来の成分を用いたM細胞をターゲットとしたデリバリーシステムが望まれている。
 一方、乳酸菌は腸内環境を整えたり、腸管免疫系に働きかけたりする機能を有する微生物菌体(プロバイオティクス)であり、乳酸菌飲料やヨーグルトなどの日常的に摂取する食品の機能性成分として利用されている。プロバイオティクス乳酸菌もまた、パイエル板上のM細胞により腸管内に取り込まれ、M細胞の下部(パイエル板内)に存在する樹状細胞に存在するToll様受容体(TLR)やNod様受容体(NLR)に作用することによって、T細胞の活性化、腸管上皮細胞の増殖、IgA産生の促進、炎症の抑制など様々な免疫応答が起こることが推察されている。従って、プロバイオティクス乳酸菌の利用においてもその腸管への効率的な取り込み手段の確立が必須となる。
Hussan N., Florence A.T., Pharm. Res., 15, 153-156 (1998) Wu Y., Wang X., Csencsits K.L., Haddad A., Walters N., Pascual D.W., Proc. Natl. Acad. Sci. U.S.A., 98, 9318-9323 (2001) Wang X., Hone D.M., Haddad A., Shata M.T., Pascual D.W., J. immunol., 171, 4717-4725 (2003)
 従って、本発明は、乳酸菌などの腸管免疫誘導に有用な物質を効率的に腸管内に取り込むことのできる手段を提供することにある。
 本発明者らは上記課題を解決すべき鋭意研究を重ねた結果、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)L-92株の表層蛋白質(SlpA蛋白質)が、M細胞に発現しているウロモジュリン蛋白質(Umod)への当該乳酸菌株の結合とM細胞からの取り込み促進に関与することを見出した。また、SlpA蛋白質を結合させた蛍光ビーズのパイエル板内への取り込み量を調べた結果、有意にその取り込み量が増加することを確認し、SlpA蛋白質は腸管への新規なデリバリー分子として用いることができるという知見を得た。さらに、乳酸菌の菌体表層におけるSlpA蛋白質のアミノ酸配列に存在するラクトバチルス属乳酸菌に共通するペプチドモチーフを有する蛋白質の発現の有無を指標とすれば、腸管への取り込みに優れた乳酸菌をin vitroで簡易にスクリーニングできるという知見も得た。本発明はかかる知見により完成されたものである。
 即ち、本発明は以下の発明を包含する。
(1) 下記の式(I)~(VI)に示すアミノ酸配列からなるペプチドモチーフの少なくとも1種を含み、かつウロモジュリン(Umod)蛋白質に対して結合活性を有するラクトバチルス属の乳酸菌の表層蛋白質又はその断片を含有する、腸管における物質取り込み促進剤。
 式(I):Asn-Thr-Asn-Thr-Asn-Ala-Lys-Tyr-Asp-Val-Asp-Val-Thr-Pro-Ser-Val-Ser-Ala-X1-Ala (式(I)中、X1はValまたはIleを表す)
 式(II):Gly-X2-Leu-Thr-Gly-X3-Ile-Ser-Ala-Ser-Tyr-Asn-Gly-Lys-X4-Tyr-Thr-Ala Asn-Leu (式(II)中、X2はAsnまたはSerを表し、X3はThrまたはSerを表し、X4はThrまたはSerを表す)
 式(III):Tyr-Thr-Val-Thr-Val-X5-Asp-Val-Ser-Phe-Asn-Phe-Gly-Ser-Glu-Asn-Ala- Gly-Lys (式(III)中、X5はAsnまたはProを表す)
 式(IV):Val-Val-Ala-Ala-Ile-X6-Ser-Lys-Tyr-Phe-Ala-Ala-Gln-Tyr-Ala (式(IV)中、X6はAsnまたはThrを表す)
 式(V):His-Thr-Phe-Thr-Val-Asn-Val-Lys-Ala-Thr-Ser-Asn-X7-Asn-X8-Lys-Ser-Ala Thr-Leu-Pro-Val (式(V)中、X7はThrまたはValを表し、X8はGlyまたはSerを表す)
 式(VI):Val-Thr-Val-Pro-Asn-Val-Ala-Glu-Pro-Thr-Val-X9-Ser-Val-Ser-Lys (式(VI)中、X9はAlaまたはProを表す)
(2) 前記式(I)~(VI)で示されるアミノ酸配列において、1~10個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるペプチドモチーフの少なくとも1種を含み、かつウロモジュリン(Umod)蛋白質に対して結合活性を有するラクトバチルス属の乳酸菌の表層蛋白質を含有する、(1)に記載腸管における物質取り込み促進剤。
(3) 前記表層蛋白質が、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)、ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)、ラクトバチルス・クリスパタス(Lactobacillus crispatus)、ラクトバチルス・アミロボラス(Lactobacillus amylovorus)、またはラクトバチルス・ガリナルム(Lactobacillus gallinarum)由来のS-layer proteinである、(1)または(2)に記載の腸管における物質取り込み促進剤。
(4) 前記表層蛋白質がラクトバチルス・アシドフィルス由来のSlpA蛋白質である、(1)~(3)のいずれかに記載の腸管における物質取り込み促進剤。
(5) 前記ラクトバチルス・アシドフィルス由来のSlpA蛋白質が以下の(a)~(c)のいずれかの蛋白質である、(4)に記載の腸管における物質取り込み促進剤。
 (a) 配列番号7に示すアミノ酸配列からなる蛋白質
 (b) 配列番号7に示すアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質
 (c) 配列番号7に示すアミノ酸配列と90%以上の配列同一性を有する蛋白質
(6) (1)~(5)のいずれかに記載の腸管における物質取り込み促進剤と腸管取り込み対象物質との複合体。
(7) 前記腸管取り込み対象物質が食品成分である、(6)に記載の複合体。
(8) 前記食品成分が乳酸菌である、(7)に記載の複合体。
(9) 前記腸管取り込み対象物質が医薬品成分である、(6)に記載の複合体。
(10) 前記医薬品成分が粘膜ワクチン抗原である、(9)に記載の複合体。
(11) (6)~(10)のいずれかに記載の複合体を含む組成物。
(12) 飲食品、医薬品または動物用飼料である、(11)に記載の組成物。
(13) 被検乳酸菌の菌体表層における、下記式(I)~(VI)で示されるアミノ酸配列からなるペプチドモチーフの少なくとも1種を含む蛋白質の発現量を測定することを含む、腸管内移行能が高い乳酸菌のスクリーニング方法。
 式(I):Asn-Thr-Asn-Thr-Asn-Ala-Lys-Tyr-Asp-Val-Asp-Val-Thr-Pro-Ser-Val-Ser-Ala-X1-Ala (式(I)中、X1はValまたはIleを表す)
 式(II):Gly-X2-Leu-Thr-Gly-X3-Ile-Ser-Ala-Ser-Tyr-Asn-Gly-Lys-X4-Tyr-Thr-Ala Asn-Leu (式(II)中、X2はAsnまたはSerを表し、X3はThrまたはSerを表し、X4はThrまたはSerを表す)
 式(III):Tyr-Thr-Val-Thr-Val-X5-Asp-Val-Ser-Phe-Asn-Phe-Gly-Ser-Glu-Asn-Ala- Gly-Lys (式(III)中、X5はAsnまたはProを表す)
 式(IV):Val-Val-Ala-Ala-Ile-X6-Ser-Lys-Tyr-Phe-Ala-Ala-Gln-Tyr-Ala (式(IV)中、X6はAsnまたはThrを表す)
 式(V):His-Thr-Phe-Thr-Val-Asn-Val-Lys-Ala-Thr-Ser-Asn-X7-Asn-X8-Lys-Ser-Ala Thr-Leu-Pro-Val (式(V)中、X7はThrまたはValを表し、X8はGlyまたはSerを表す)
 式(VI):Val-Thr-Val-Pro-Asn-Val-Ala-Glu-Pro-Thr-Val-X9-Ser-Val-Ser-Lys (式(VI)中、X9はAlaまたはProを表す)
 本願は、2014年5月29日に出願された日本国特許出願2014-111681号の優先権を主張するものであり、該特許出願の明細書に記載される内容を包含する。
 本発明の腸管における物質取り込み促進剤の有効成分である乳酸菌由来の表層蛋白質(S-layer protein)は、腸管M細胞への結合活性および腸管M細胞からの物質取り込み促進活性を有する。従って、本発明の腸管における物質取り込み促進剤は、有用乳酸菌や粘膜ワクチン抗原などの腸管取り込み量を増加させることでき、その結果、効果的かつ確実に腸管免疫へと働きかけることで、アレルギー症状の抑制やインフルエンザなどの粘膜感染症防御が可能となる。また、本発明の腸管における物質取り込み促進剤は、乳酸菌由来の蛋白質を有効成分とするので、安全性が高い。
図1は、被検乳酸菌株(L-92株、CP23株、LiCl-L92株)の免疫染色結果を示す(白く見える部分が染色されたSlpA)。 図2は、被検乳酸菌株(L-92株、CP23株、LiCl-L92株)のUmod結合率を示す[Dunnet t-Test, L-92株(n=9), CP23株(n=12), LiCl-L92株(n=12), **: p<0.01]。 図3は、被検乳酸菌株(L-92株、抗SlpA抗体処理したL-92株)のUmod結合率を示す[Student t-Test (n=9), #: p<0.1]。 図4は、被検乳酸菌株(L-92株、CP23株、LiCl-L92株)のM細胞への取り込み量を示す[Mann-Whitney U test, L-92株 vs CP23株(n=3), L-92株 vs LiCl-L92株 (n=4), *: p<0.05, **: p<0.01]。 図5は、蛍光ビーズ(SlpA結合、BSA結合)のM細胞への取り込み量を示す[Student t-Test (n=4), *: p<0.05]。 図6は、ラクトバチルス・アシドフィルス(L.acidophilus)、ラクトバチルス・ヘルベティカス(L.helveticus)、ラクトバチルス・ガセリ(L.gasseri)のS-layer proteinのマルチプルアライメント解析結果を示す(モチーフ1~6:Umod結合性の高いラクトバチルス・アシドフィルス(L.acidophilus)、ラクトバチルス・ヘルベティカス(L.helveticus)が共通して保有し、逆にUmod結合性が低いラクトバチルス・ガセリ(L.gasseri)が保有しないペプチドモチーフ)。 図7は、マルチプルアライメント解析により決定されたウロモジュリン(Umod)蛋白質に対して結合活性を有するラクトバチルス属の乳酸菌の表層蛋白質(S-layer protein)に共通するペプチドモチーフの構造式(I)~(VI)を示す。 図8は、ウロモジュリン(Umod)蛋白質に対して結合活性を有するラクトバチルス属の乳酸菌の表層蛋白質(S-layer protein)に共通するペプチドモチーフのアミノ酸配列に対応する部分のラクトバチルス・アシドフィルス(L.acidophilus)、ラクトバチルス・ヘルベティカス(L.helveticus)、ラクトバチルス・クリスパタス(L.crispatus)、ラクトバチルス・アミロボラス(L.amylovorus)、ラクトバチルス・ガリナルム(L.gallinarum)のアミノ酸配列を示す(式(I)~(VI)のアミノ酸配列の上の数字が1:L.acidophilus、L.helveticus、L.crispatus、L.amylovorus、L.gallinarumの5菌種に共通するアミノ酸、当該数字が2:L.acidophilus、L.helveticus、L.crispatusの3菌種に共通するアミノ酸、当該数字が3: L.acidophilus、L.helveticusの2菌種に共通するアミノ酸を意味する)。
1.腸管における物質取り込み促進剤
 本発明の腸管における物質取り込み促進剤は、下記式(I)~(VI)で示されるアミノ酸配列からなるペプチドモチーフの少なくとも1種を含み、かつウロモジュリン(Umod)蛋白質に対して結合活性を有するラクトバチルス属の乳酸菌の表層蛋白質(以下、本表層蛋白質を「S-layer protein」と称する)又はその断片を含有する。
 式(I):Asn-Thr-Asn-Thr-Asn-Ala-Lys-Tyr-Asp-Val-Asp-Val-Thr-Pro-Ser-Val-Ser-Ala-X1-Ala(式(I)中、X1はValまたはIleを表す) (配列番号1)
 式(II):Gly-X2-Leu-Thr-Gly-X3-Ile-Ser-Ala-Ser-Tyr-Asn-Gly-Lys-X4-Tyr-Thr-Ala Asn-Leu(式(II)中、X2はAsnまたはSerを表し、X3はThrまたはSerを表し、X4はThrまたはSerを表す) (配列番号2)
 式(III):Tyr-Thr-Val-Thr-Val-X5-Asp-Val-Ser-Phe-Asn-Phe-Gly-Ser-Glu-Asn-Ala- Gly-Lys (式(III)中、X5はAsnまたはProを表す) (配列番号3)
 式(IV):Val-Val-Ala-Ala-Ile-X6-Ser-Lys-Tyr-Phe-Ala-Ala-Gln-Tyr-Ala (式(IV)中、X6はAsnまたはThrを表す) (配列番号4)
 式(V):His-Thr-Phe-Thr-Val-Asn-Val-Lys-Ala-Thr-Ser-Asn-X7-Asn-X8-Lys-Ser-Ala Thr-Leu-Pro-Val (式(V)中、X7はThrまたはValを表し、X8はGlyまたはSerを表す) (配列番号5)
 式(VI):Val-Thr-Val-Pro-Asn-Val-Ala-Glu-Pro-Thr-Val-X9-Ser-Val-Ser-Lys (式(VI)中、X9はAlaまたはProを表す) (配列番号6)
 また、S-layer proteinに含まれるペプチドモチーフは、ウロモジュリン(Umod)蛋白質に対する結合活性を有する限り変異を有していてもよく、例えば、前記式(I)~(VI)で示されるアミノ酸配列において、1~10個、好ましくは1~7個、より好ましくは1~5個、もっとも好ましくは1~3個のアミノ酸が欠失、置換若しくは付加されていてもよい。ここで、アミノ酸の置換としては、保存的アミノ酸置換が好ましく、保存的アミノ酸置換は、例えば構造的、電気的、極性もしくは疎水性などの性質が類似したアミノ酸間の置換を意味する。このような性質は、例えばアミノ酸側鎖の類似性で分類することも可能である。例えば、塩基性側鎖を有するアミノ酸(リシン、アルギニン、ヒスチジン)、酸性側鎖を有するアミノ酸(アスパラギン酸、グルタミン酸)、脂肪族側鎖を有するアミノ酸(アラニン、バリン、ロイシン、イソロイシン)、水酸基含有側鎖を有するアミノ酸(セリン、トレオニン、チロシン)、アミド含有側鎖を有するアミノ酸(アスパラギン、グルタミン)を挙げることができる。
 本発明において用いるS-layer proteinとしては、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)、ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)、ラクトバチルス・クリスパタス(Lactobacillus crispatus)、ラクトバチルス・アミロボラス(Lactobacillus amylovorus)、またはラクトバチルス・ガリナルム(Lactobacillus gallinarum)由来のS-layer proteinが好ましい。
 なかでもラクトバチルス・アシドフィルス(Lactobacillus acidophilus)L-92株の表層に存在するS-layer protein A (以下、「SlpA蛋白質」という)がより好ましい。SlpA蛋白質は、分子量43.6kDa、等電点が10.4の蛋白質で、これまで防御、細胞の形質維持、分子やイオン吸着や接着などの機能を有することが知られている(FEMS Microbiol. Rev. 29:511-529)。
 本発明は、これまで知られていないSlpA蛋白質の機能である、小腸パイエル板の上皮細胞層に存在するM細胞に発現している蛋白質の一つであるウロモジュリン(Umod)蛋白質(以下、単に「Umod」という記載する場合がある)への結合活性およびM細胞からの物質取り込み促進活性を利用するものである。これまで乳酸菌の表層蛋白質の物質結合性については、Lactobacillus acidophilus(NCFM)のSlpAがC型レクチンであるDC-SIGNに結合すること(Konstantinov SR et al., S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19474-9)、Lactobacillus crispatus (JCM 5810) のS-layer proteinであるCbsAがタイプI型、V型コラーゲンに結合すること(Sillanpaa J et al., Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus. J Bacteriol. 2000 Nov;182(22):6440-50)について報告があるが、腸管M細胞上の蛋白質に結合するという報告はない。
 SlpA蛋白質は、配列番号7に示すアミノ酸配列からなる蛋白質であるが、SlpA蛋白質が有するUmodへの結合活性およびM細胞からの物質取り込み促進活性を有する限り、その変異蛋白質であってもよく、上記アミノ酸配列の部分配列を有する蛋白質(部分ペプチド)であってもよい。
 変異蛋白質としては、例えば、配列番号7に示すアミノ酸配列において、1から数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなる蛋白質が挙げられる。ここで、「1から数個」の範囲は、部位特異的突然変異誘発法等の公知の変異蛋白質作製法により欠失、置換、若しくは付加できる程度の数をいい、前記の活性を保持する限り、その個数は制限されないが、1~30個、好ましくは1~20個、より好ましくは1~10個、最も好ましくは1~5個をいう。ここで、アミノ酸置換としては、前述の保存的アミノ酸置換が挙げられる。また、変異蛋白質としては、配列番号7に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列からなる蛋白質であってもよい。ここで、「90%以上の同一性」とは、好ましくは95%以上、より97%以上、最も好ましくは98%以上の配列の同一性をいう。アミノ酸配列の同一性は、FASTA検索やBLAST検索により決定することができる。また、ここにいう「変異」は、主には公知の変異蛋白質作製法により人為的に導入された変異を意味するが、天然に存在する同様の変異であってもよい。
 本発明に用いるSlpA蛋白質は、配列番号7に示すアミノ酸配列に基づいて化学合成する方法によって作成してもよく、また、遺伝子組換え技術により作成してもよい。遺伝子組換え技術による場合は、例えば、配列番号7に示すアミノ酸配列をコードする遺伝子を含む発現ベクターを作成し、この発現ベクターで適当な宿主細胞を形質転換することにより形質転換体を得、この形質転換体を培養し、その培養物から目的のタンパク質を大量生産することができる。発現ベクターの作製及び宿主細胞への導入は、公知の方法に従って行うことができる。
 宿主細胞には、原核生物及び真核生物のいずれの細胞も用いることができる。例えば、原核生物の宿主細胞として一般的に用いられるものとしては、大腸菌や枯草菌等が挙げられる。また真核生物の細胞としては、例えば、酵母細胞等を挙げることができる。
 宿主細胞への発現ベクターの導入は、公知の方法で行うことができ、たとえば、リン酸カルシウム法、リポソーム法、エレクトロポレーション法、パーティクルガン法等が挙げられる。
 形質転換細胞で発現させた蛋白質を単離精製するためには、公知の分離操作を組み合わせて行うことができる。例えば、イオン交換クロマトグラフィー、アフィニティ-クロマトグラフィー、高速液体クロマトグラフィー、吸着クロマトグラフィー、ゲルろ過クロマトグラフィー等の各種クロマトグラフィー法や、これらと塩析、限外ろ過、ゲルろ過、透析、尿素などの変性剤や界面活性剤による処理、遠心分離、超音波処理、酵素消化等を組み合わせた方法が挙げられる。
 本発明のウロモジュリン(Umod)蛋白質に対して結合活性を有するラクトバチルス属の乳酸菌の表層蛋白質の断片とは、上記で定義した「S-layer protein」の断片であって、ウロモジュリン(Umod)蛋白質に対して結合活性を有している限りその長さに限定はないが、例えば、S-layer proteinを構成するアミノ酸配列の少なくとも20個以上、好ましくは50個以上、より好ましくは100個以上のアミノ酸配列を有する断片が挙げられる。
2.腸管における物質取り込み促進剤と腸管取り込み対象物質との複合体
 本発明の腸管における物質取り込み促進剤は、腸管取り込み対象物質(以下、「対象物質」という)との複合体を形成させることにより、該対象物質を腸管内に効率的に取り込ませることができる。対象物質としては、腸管から取り込まれた場合に生体内で活性を示す物質であればよく、例えば、食品成分や医薬品成分などが挙げられる。特に、腸管免疫誘導効果を有する食品成分や医薬品成分が好ましく、例えば、乳酸菌や粘膜ワクチン抗原などが挙げられる。
 乳酸菌は、生菌であっても死菌であっても良い。また、死菌の場合は破砕されたものでもよい。菌体の破砕は、当技術分野で公知の方法及び機器を使用して、例えば物理的破砕、酵素溶解処理等によって行うことができる。物理的破砕は、湿式(菌体懸濁液の状態で処理)又は乾式(菌体粉末の状態で処理)のいずれで行ってもよく、ホモゲナイザー、ボールミル、ビーズミル、ダイノミル、遊星ミル等を使用した撹拌により、ジェットミル、フレンチプレス、細胞破砕機等を使用した圧力により、或いは、フィルター濾過により行うことができる。酵素溶解処理は、例えばリゾチームなどの酵素を用いて菌体の細胞壁を破壊することができる。
 本発明の複合体において、腸管における物質取り込み促進剤は対象物質に共有結合または非共有結合した状態であればよく、結合手段としては特に限定はされない。
 例えば、対象物質がS-layer proteinをその菌体表層に有さない乳酸菌の場合、上記腸管における物質取り込み促進剤を直接又は適当な架橋剤(リンカー)を介して該乳酸菌菌体の表層に結合させることにより複合体を形成させることができる。複合体の形成方法としては、例えば、取り込み対象となる乳酸菌菌体の表層に存在する蛋白質(糖鎖受容体蛋白質など)のアミノ基、カルボキシル基、スルフヒドリル基、好ましくはアミノ基を標的とし、これらの基と結合できる反応性官応基をもつ蛋白質架橋剤を用いる方法が挙げられる。蛋白質架橋剤は、グルタルアルデヒド、EDAC(1-Ethyl-3-(3-dimetylaminopropyl) carbodimide, hydrochloride)、DSP(Dithiobis(succinimidyl propionate))、DCC(N,N'-Dicyclohexylcarbodiimide)などの市販品を利用すればよい。
 あるいは、乳酸菌菌体の細胞壁への非共有結合に関与するアンカーモチーフ(例えばCWBDモチーフ、LysMモチーフ、GWモチーフ)とS-layer proteinとを連結させることにより乳酸菌菌体の表層にS-layer proteinを固定化させる方法、または乳酸菌菌体の細胞壁への共有結合に関与するアンカーモチーフ(例えばLPXTGモチーフ)をS-layer proteinと連結させて強制発現させる方法、乳酸菌菌体の表層に局在するいずれかのタンパク質とS-layer proteinを蛋白質架橋化酵素(トランスグルタミナーゼ)を用いてペプチド結合させる方法なども用いることができる。
 また、対象物質が粘膜ワクチン抗原である場合は、上記腸管における物質取り込み促進剤を直接又は適当なキャリアを介して粘膜ワクチン抗原に結合させることにより複合体を形成することができる。具体的には、取り込み対象となる粘膜ワクチン抗原とS-layer proteinとの融合蛋白質を作成する方法、粘膜ワクチン抗原を封入したキャリアに反応基を導入してS-layer proteinを結合させる方法などを用いることができる。キャリアとしては、例えば、リポソーム、マイクロスフェアーまたはナノスフェアー、PLGA(ポリ乳酸・グリコール酸)等の生分解性キャリア、ヒアルロン酸やキチン等からなる粘膜付着性キャリア等が挙げられる。
 S-layer proteinと粘膜ワクチン抗原との融合タンパク質は、公知の遺伝子組換え技術により製造することができる。例えば、S-layer proteinをコードする遺伝子と粘膜ワクチン抗原タンパク質をコードする遺伝子とを人工的に連結した融合遺伝子を作製し、当該融合遺伝子を、発現ベクターのプロモーターの下流に挿入し、適当な宿主細胞に導入して発現させることにより取得することができる。融合タンパク質において、S-layer proteinと粘膜ワクチン抗原との結合順序は限定されない。また、粘膜ワクチン抗原タンパク質をコードする遺伝子の塩基配列情報は、公知のデータベース(GenBank等)から取得することができる。また、公知の方法を用いて目的遺伝子をクローニングし、塩基配列解析を行うことで塩基配列情報を取得することができる。 
 また、上記キャリアとして例えばリポソームを用いる場合、そのリポソームの脂質組成やサイズ、およびS-layer proteinの結合方法は特に限定されない。リポソーム作製には、ホスファチジルコリン、コレステロール、ポリエチレングリコール結合脂質などに加え、S-layer protein結合用に脂質末端カルボキシル基もしくはマレイミド基を有する脂質を使用する。リポソーム内への抗原の封入は公知の凍結融解法、逆相蒸発法、水和法などにより行うことができる。作製した抗原内封リポソームにS-layer proteinを加え、ペプチド縮合反応もしくはSH基反応系によりリポソームとS-layer proteinとの結合体を作製することができる。
3.腸管における物質取り込み促進剤と腸管取り込み対象物質との複合体を含む組成物
 上記の複合体は、適当な添加物とともに飲食品、医薬品や動物用飼料などの組成物に配合することができる。ここで、医薬品には、ヒト用医薬品のみならず、動物用医薬品をも包含するものとする。また、動物用飼料には、家畜(ブタ、ウシ等)用の飼料、愛玩動物(犬、猫等)用のペットフードをも包含するものとする。
 腸管取り込み対象物質が乳酸菌である複合体は、飲食品に配合できる。本発明において、飲食品とは、健康食品、機能性食品、栄養補助食品、または特定保健用食品を含む意味で用いられる。飲食品の種類としては、例えば、ヨーグルトやチーズ、乳酸菌入り飲料などの乳製品、漬物などが最適である。飲食品の形態は、食用に適した形態、例えば、固形状、液状、顆粒状、粒状、粉末状、カプセル(硬カプセル、軟カプセル)状、クリーム状、ペースト状のいずれであってもよい。特に、健康食品および機能性食品に適した形状として、タブレット状、カプセル状、顆粒状、粉末状が例示できる。例えば、タブレット状の健康食品の製造は、上記のような手法にて本発明の腸管における物質取り込み促進剤を結合させた乳酸菌を配合した処方物を一定の形状に圧縮するか、または水もしくはアルコールのような溶媒で湿潤させた練合物を一定の形状にするか、あるいは、一定の型に流し込んで成型することにより行なうことができる。
 腸管取り込み対象物質が粘膜ワクチン抗原である複合体は、医薬品、特には、粘膜ワクチン製剤に配合することができる。この場合、免疫反応を増強するためのアジュバントと一緒に配合してもよい。アジュバンドとしては、例えば、水酸化アルミニウム、BCG、リン酸アルミニウム、キーホールリンペットヘモシアニン、ジニトロフェノール、デキストラン、TLRリガンド(例、リポ多糖(LPS)、CpG)が挙げられる。
 粘膜ワクチン抗原は、粘膜免疫応答を誘導しうる限り特に限定されないが、典型的には、粘膜感染症の病原体由来の抗原である。粘膜感染症の病原体はウイルスであってもよく細菌であってよい。ウイルスとしては、例えば、インフルエンザウイルス、ヒト免疫不全ウイルス(HIV)、水痘ウイルス、麻疹ウイルス、風疹ウイルス、ポリオウイルス、ロタウイルス、アデノウイルス、ヘルペスウイルス、重症急性呼吸器感染症候群(SARS)ウイルス等が挙げられるが、これらに限定はされない。また、細菌としては、例えば、百日咳菌、髄膜炎菌、インフルエンザb型菌、肺炎球菌、結核菌等が挙げられるが、これらに限定はされない。これらの病原体由来の抗原は、天然物由来であってもよいし、遺伝子組換等の手法により人為的に作製されたものであってもよい。
 また、上記ワクチン抗原には、減感作療法に用いるアレルゲンも含まれる。アレルゲンワクチンとは、生体にアレルゲンを投与することにより、アレルゲンに対するIgG抗体を生産させてアレルギーの原因となるIgEの作用をブロックし、あるいは生体内でアレルゲンに特異的な1型ヘルパーT細胞(Th1細胞)を増加させ、アレルギー症状に関与する2型ヘルパーT細胞(Th2細胞)を減少させるためのワクチンをいい、減感作によりアレルギー症状を抑制することができる。アレルゲンの種類は、特に限定はされないが、食物アレルゲン(カゼイン、ラクトアルブミン、ラクトグロブリン、オボムコイド、オボアルブミン、コンアルブミン等)、ハウスダストアレルゲン(ダニ類アレルゲン等)、花粉アレルゲン(スギ花粉アレルゲン、ブタクサアレルゲン、カモガヤアレルゲン等)、動物の体毛等のアレルゲンなどが挙げられる。
4.腸管内移行能が高い乳酸菌のスクリーニング方法
 本発明はまた、SlpA蛋白質のUmodへの結合活性およびM細胞からの物質取り込み促進活性に基づき、被検乳酸菌の菌体表層におけるS-layer proteinの発現量を測定することを含む、腸管内移行能が高い乳酸菌のスクリーニング方法を提供する。
 S-layer proteinは、そのままで用いてもよいが、任意の標識物質で標識されたものを用いることもできる。標識物質としては、蛍光物質、放射性同位体(例えば、125I、H、14C、35S等)、化学発光物質、ビオチン、マーカータンパク質、またはペプチドタグなどを例示することができる。マーカータンパク質としては、例えば、抗体のFc領域、アルカリフォスファターゼ、またはHRP(Horse radish peroxidase)などが挙げられる。またペプチドタグとしては、例えば、FLAG、6または10個のHis(ヒスチジン)残基からなる6×Hisまたは10×His、インフルエンザ凝集素(HA)の断片などが挙げられる。
 本発明において、「腸管内移行能」とは、腸管M細胞に接着し、M細胞内に移行し、M細胞内の基底膜を経てパイエル板内に到達する能力をいう。
 本発明のスクリーニング方法において、被検乳酸菌の菌体表層におけるS-layer proteinの発現量は、標準サンプルとの比較などにより絶対量を測定してもよいが、必ずしもS-layer proteinの絶対的な量を測定する必要はなく、対照となる乳酸菌の菌体表層におけるS-layer proteinとの相対的な関係を明らかにできれば評価としては十分である。
 S-layer proteinの発現量の測定は、公知の蛋白質発現解析方法に従って行うことができる。典型的には、S-layer proteinに対する抗体を用いた免疫学的測定法が挙げられる。免疫学的測定法としては、特に制限はなく、従来公知の方法、例えば酵素免疫測定法(EIA法)、ラテックス凝集法、免疫クロマトグラフィー法、ウエスタンブロット法、放射免疫測定法(RIA法)、蛍光免疫測定法(FIA法)、ルミネッセンス免疫測定法、スピン免疫測定法、抗原抗体複合体形成に伴う濁度を測定する比濁法、抗体固相膜電極を利用し抗原との結合による電位変化を検出する酵素センサー電極法、免疫電気泳動法などを採用することができる。これらの中でもEIA法またはウエスタンブロット法が好ましい。なお、EIA法には、競合的酵素免疫測定法や、サンドイッチ酵素結合免疫固相測定法(サンドイッチELISA法)等が包含される。 
 上記測定に用いられるS-layer proteinに対する抗体は、当業者に周知の方法を用いて得ることができる。抗体は、ポリクローナル抗体、あるいはモノクローナル抗体のいずれであってもよい。また、抗体としては、抗体の活性フラグメントであってもよい。活性フラグメントとしては、F(ab')2、Fab'、Fab、Fvなどが挙げられる。例えば、S-layer proteinに対するポリクローナル抗体は、抗原を感作した哺乳動物(例えば、ウサギ、ラット、マウスなど)から血液を採取し、この血液から公知の方法により血清を分離する。ポリクローナル抗体としては、ポリクローナル抗体を含む血清を使用することができる。また、モノクローナル抗体を得るには、上記抗原を感作した哺乳動物から抗体産生細胞(脾臓細胞、リンパ節細胞など)を取り出して骨髄腫細胞などと細胞融合させる。こうして得られたハイブリドーマをクローニングして、その培養物から抗体を回収しモノクローナル抗体とすることができる。
 S-layer proteinの検出には、これらの抗体を適宜標識すればよい。標識物質は、前記の酵素、放射性同位体、蛍光色素を使用することができる。また、抗体を標識せずに、該抗体に特異的に結合する物質、例えば、プロテインAやプロテインGを標識して間接的に検出することもできる。
 被検乳酸菌は、ラクトバチルス属、ラクトコッカス属、ビフィドバクテリウム属、ロイコノストック属、ストレプトコッカス属、エンテロコッカス属、ペディオコッカス属、ワイセラ属、オエノコッカス属等に属するいずれの乳酸菌株であってもよい。ラクトバチルス属に属する乳酸菌としては、ラクトバチルス・アシドフィルス、ラクトバチルス・ブレビス、ラクトバチルス・カゼイ、ラクトバチルス・デルブリュッキイ、ラクトバチルス・ファーメンタム、ラクトバチルス・ヘルベティカス、ラクトバチルス・ケフィア、ラクトバチルス・パラカゼイ、ラクトバチルス・プランタラム、ラクトバチルス・ブルガリカス、ラクトバチルス・ラムノーサス、ラクトバチルス・サリバリウス、ラクトバチルス・ジョンソニー、ラクトバチルス・ガセリ、ラクトバチルス・アミロボラス、ラクトバチルス・クリスパタス、ラクトバチルス・ガリナルム等が挙げられる。ラクトコッカス属に属する乳酸菌としては、ラクトコッカス・ラクティス、ラクトコッカス・プランタラム、ラクトコッカス・ラフィノラクティス等が挙げられる。ビフィドバクテリウム属に属する乳酸菌としては、ビフィドバクテリウム・インファンティス、ビフィドバクテリウム・ブレーベ、ビフィドバクテリウム・ロンガム、ビフィドバクテリウム・シュードロンガム、ビフィドバクテリウム・ビフィダム、ビフィドバクテリウム・アニマリス、ビフィドバクテリウム・アドレセンティス、ビフィドバクテリウム・カテニュラータム、ビフィドバクテリウム・シュードカテニュラータム等が挙げられる。ロイコノストック属に属する乳酸菌としては、ロイコノストック・ラクティス、ロイコノストック・メセンテロイデス等が挙げられる。ストレプトコッカス属に属する乳酸菌としては、ストレプトコッカス・サーモフィルス、ストレプトコッカス・ラクティス等が挙げられる。エンテロコッカス属に属する乳酸菌としては、エンテロコッカス・フェーカリス、エンテロコッカス・デュランス、エンテロコッカス・フェシウム等が挙げられる。ペディオコッカス属に属する乳酸菌としては、ペディオコッカス・ペントサセウス等が挙げられる。ワイセラ属に属する乳酸菌としては、ワイセラ・チバリア、ワイセラ・コンフューザ、ワイセラ・ハロトレランス等が挙げられる。オエノコッカス属に属する乳酸菌としては、オエノコッカス・オエニ等が挙げられる。
 以下、実施例によって本発明を更に具体的に説明するが、これらの実施例は本発明を限定するものでない。
(実施例1)乳酸菌株のSlpA定量
(1)乳酸菌株の調製
 実験には、Lactobacillus acidophilus L-92株、Lactobacillus acidophilus CP23株を用いた。各菌株をMRS培地(Difco)にて37℃、20時間静置培養した後、PBSにて3回洗菌し、PBSに懸濁した。
 L-92株のLiCl処理は、L-92株をPBSにて2回洗菌した後、上清を除去し、5 MのLiCl(Wako)溶液中で室温・静置にて一定時間インキュベートすることにより行った。インキュベート後、再度PBSで2回洗菌した後、PBSに再懸濁した。
(2) 免疫染色
 菌体懸濁液10μlをスライドガラスに塗布し乾燥させた後、アルコールランプにて火炎固定した。Mouse anti-SlpA (clone 383)(1.4 mg/ml)をPBSにて100倍希釈し、スライドグラスに載せた。室温にて2~3時間反応させた後、PBSにてスライドグラスを3回洗浄した。さらに、Cy3-ストレプトアビジン(Cy3-conjugated Streptavidin、ImmunoResearch Labolatories, INC.、No.016-160-084)をPBSにて200倍希釈して、スライドグラスに載せた。室温にて2~3時間反応させた後、PBSにてスライドグラスを3回洗浄した。
 カバーガラスをかけて封入した後、蛍光顕微鏡で観察し、目視により蛍光強度を確認した。結果を図1に示す。
 L-92株は菌体の表面がSlpAで覆われていたが、CP23株は表面に局在するSlpAが少ないことが示された。さらに、LiCl処理したL-92株も、表面のSlpAはほとんど除去されていることが示された(図1)。
(実施例2) 乳酸菌株のUmod結合性の評価
(1)乳酸菌株の調製
 実験には、実施例1と同様にして調製したL-92株、CP23株、LiCl処理したL-92株を用いた。L-92株の抗SlpA抗体処理は、抗SlpA抗体を終濃度140μg/mlとなるように溶解したPBS溶液にL-92株を懸濁し、4℃で一晩、穏やかに振とうすることによって行った。
(2) Umod結合試験(in vitro結合アッセイ)
 L-92株、CP23株、LiCl処理したL-92株(LiCl-L92)、及び抗SlpA抗体処理したL-92株についてUmod結合性を調べた。
 まず、ヒトIgG1のFcドメインにマウスUmod蛋白質(配列番号8の1-616位)をつなげて発現させた融合蛋白質(Fc-mUmod)を、Hase K. et al., Uptake through glycoprotein 2 of FimH1 bacteria by M cells initiates mucosal immune response, Nature 2009, 462:226-31の記載に従って作製した。mUmod(マウスUmod)配列(配列番号9)を増幅させるためのプライマーとしてForwardプライマー:5’-CGCAGATCTACCATGGGGATCCCTTTGACC-3’(配列番号10)およびReverse プライマー:5’-CGCGTCGACCTTGGACACTGAGGCCTGG-3’(配列番号11)を用い、制限酵素BglIIとSalIを用いてFcドメインを挿入したpcDNA3ベクター(invitrogen)にクローニングした。
 Fc-mUmodをクローニングしたベクターを、ヒト胎児腎細胞由来HEK293T細胞に導入し、7-10日培養した。上清中に分泌されたFc-mUmod蛋白質を回収し、HiTrap protein AHP affinity column(GE Healthcare)を用いて精製した。
 次に、Fc-mUmod蛋白質およびコントロールFc蛋白質としてhIgGを、5μg/mlになるようにPBSにて希釈したものを96穴プレートに50μlアプライし、4℃にて一晩固相化した。各ウェルを200μlのPBSにて3回洗浄した後、1% BSA/PBS溶液を200μlアプライして室温にて2時間ブロッキングした。ブロッキング溶液を除去した後、10cells/50μl となるようにPBSにて懸濁した被検乳酸菌の菌体を、50μlずつアプライし、室温にて2時間インキュベートした。各ウェルを200μlのPBSにて5回洗浄した後、PBSを完全に除去した。
 NucleoSpinTM Tissue(Takara)を用いて、プレートに結合した菌体からDNAを抽出した。方法は付属のプロトコルに従った。抽出したDNAを鋳型として、16S rRNA遺伝子をターゲットとするユニバーサルプライマー(F:5’-AACTGGAGGAAGGTGGGGAT-3’(配列番号12)、R:5’-AGGAGGTGATCCAACCGCA-3’(配列番号13))を用いてリアルタイムPCRを行い、Fc-mUmodおよびhIgGに結合した菌数を定量した。方法はSYBRTM Premix Ex TaqTM II (Tli RNaseH Plus )(Takara)に付属のプロトコルに従った。
 Fc-mUmodに結合した菌数からhIgGに結合した菌数を引いた値をUmod結合数とした。各菌株のUmod結合数は、L-92株の結合数を100%とし、それに対する比率で示した。結果を図2および3に示す。
 表層蛋白質SlpAが少ないCP23株、LiCl処理によってSlpAを除去したL-92株は、SlpAを多量に有するL-92株と比較してUmod結合性が有意に低かった(図2)。また、L-92株を抗SlpA抗体で処理すると、Umod結合性が減少傾向を示した(図3)。これらの結果より、L-92株のUmod結合性にはSlpAが関与することが示唆された。
(実施例3) 乳酸菌株のM細胞への取り込み量の評価
(1)乳酸菌株の調製
 実験には、実施例1と同様にして調製したL-92株、CP23株、LiCl処理したL-92株を用いた。
(2)ループアッセイ
 L-92株、CP23株、LiCl処理したL-92株は、Cy3 Mono-Reactive Dye Pack(GE Healthcare)によって蛍光標識し、109 cells/mlとなるようにPBSに懸濁した。手順はメーカーの推奨プロトコルに従った。C57BL/6Jマウスを数時間絶食させた後、イソフルラン麻酔下において開腹し、小腸パイエル板の両側を糸で縛り、菌体溶液を100μlずつ(108 cellsずつ)ループ部位に注入した。1時間インキュベートした後に頚椎脱臼にてマウスを安楽死させた。
(3) 免疫染色
 パイエル板を切り出し、1 x HBSS(GIBCO)にて洗浄した後、BD Cytofix/CytopermTM(BD Bioscience)にて固定し、Perm/WashTM Buffer 10x(BD Bioscience)をmilliQ水で1x に希釈し、Saponin from Quillaja bark(SIGMA)を終濃度0.1%となるように添加した洗浄液にてよく洗い、洗浄液に0.2%となるようにBSAを懸濁させたブロッキング溶液でブロッキングを行った。
 Rat anti-mouse GP2 IgG2a (clone 2F11-C3)(1.0 mg/ml)を100倍となるようにブロッキング溶液に希釈した一次抗体溶液中でインキュベートし、洗浄液にてよく洗い、次にAlexa FluorTM 488 goat anti-rat IgG (H+L)(Invitrogen)(2.0 mg/ml)を200倍となるようにブロッキング溶液に希釈した二次抗体溶液中でインキュベートした。PBSにてよく洗浄した組織をホールマウントし、観察に用いた。
(4)M細胞への取り込み量比較
 共焦点顕微鏡Leica SP2 AOBS Conforcal and Multiphoton(Leica)にて濾胞上皮領域を撮影し、Alexa 488により免疫染色されたM細胞と、Cy3標識された菌体が重なっている部分を、「M細胞に取り込まれている菌体」としてカウントした。Image J(http://rsb.info.nih.gov/ij/download.htmlよりダウンロード)を用いて、濾胞上皮部分の面積を測定し、面積あたりでM細胞に取り込まれている菌体量(Cy3+M cells/PP dome area (cells/mm2))を算出した。
 各菌株のM細胞への取り込み量は、L-92株の取り込み量を100%とし、それに対する比率で示した。結果を図4に示す。Umod結合性の低いCP23株およびLiCl-L92株は、L-92株と比較するとM細胞への取り込み性が有意に減少した。よって、L-92株のM細胞への取り込みにSlpAが関与することが示唆された。
(実施例4) SlpA結合担体のM細胞への取り込み量の評価
(1)SlpAの単離精製
 Lactobacillus acidophilus L-92株を5MのLiCl中で30分インキュベートし、SlpAを抽出した。遠心して菌体を除去した後、透析チューブ(20/32吋、日本メデカルサイエンス)を用いてPBS溶液にて透析し、SlpAを得た。SDS-PAGEおよびCBB染色により単一のバンドが得られたことを確認した。
(2)蛍光ビーズへの蛋白質結合
 2色の蛍光ビーズ(FluoSpheres(登録商標)calboxylate-modified microspheres 1.0 mm, orange / yellow-green(Invitrogen))に(1)で単離精製したSlpAまたはBSAを共有結合させた。EDAC[1-Ethyl-3-(3-dimetylaminopropyl) carbodimide, hydrochloride] (同仁化学研究所)を用い、手順はメーカーの推奨プロトコルに従った。
(3)ループアッセイ
 インキュベート時間を2時間とする以外は、実施例3に記載のとおり行った。
(4)パイエル板取り込み量比較
 パイエル板を切り出し、1xHBSS(GIBCO)にて洗浄した後、O.C.T.compound(Sakura Fintek USA)を用いて凍結ブロックを作成した。クリオスタットLEICA CM1850を用いて5mm厚さの凍結切片を作成し、パイエル板内部に取り込まれているビーズの数を蛍光顕微鏡にて観察および測定した。1マウスあたり6~12切片を観察し、平均を求めた。
 SlpAを結合させた蛍光ビーズとBSAを結合させた蛍光ビーズのパイエル板への取り込み量の比較を図5に示す。SlpAを結合させることによりM細胞からの取り込み量を促進することが確認された。
(実施例5)各種乳酸菌株のUmod結合性の評価
(1)被検乳酸菌の調製
 実験には、ラクトバチルス属に属する乳酸菌約20株を用いた。各菌株は、実施例1と同様に、MRS培地(Difco)にて37℃、20時間静置培養した後、PBSにて3回洗菌し、PBSに懸濁した。
(2) Umod結合試験(in vitro結合アッセイ)
 各菌株のUmod結合性の評価は、実施例2と同様に実施した。
 被検乳酸菌14株のUmod結合数の算出結果を表1に示す。Fc-mUmodに結合した菌数からhIgGに結合した菌数を引いた値をUmod結合数とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、Umod結合数は、ラクトバチルス属の中でも菌種や菌株の違いによって異なることが確認された。
(実施例6)乳酸菌の菌体表層におけるS-layer proteinのアミノ酸配列に存在する共通配列の検討
 実施例5の結果を踏まえ、S-layer proteinのマルチプルアライメント解析をClutalW(http://clustalw.ddbj.nig.ac.jp/)を用いて行った。具体的にはゲノム情報の利用が可能なラクトバチルス属に属する菌種の中で、実施例5において比較的にUmod結合性が高いことが確認されたラクトバチルス・アシドフィルス(gi|58336516|ref|YP_193101.1| S-layer protein [Lactobacillus acidophilus NCFM])、およびラクトバチルス・ヘルベティカス(gi|550820440|emb|CDI42266.1| Surface layer protein [Lactobacillus helveticus CIRM-BIA 953])が共通して保有し、逆にUmod結合性が低いことが確認されたラクトバチルス・ガセリ(gi|1619598|emb|CAA69725.1| aggregation promoting protein [Lactobacillus gasseri])が保有しない配列を特定した。
 アライメント解析の結果を図6に示す。Umod結合性の高いラクトバチルス・アシドフィルスおよびラクトバチルス・ヘルベティカスが共通して保有し、逆にUmod結合性が低かったラクトバチルス・ガセリが保有しない配列として、式(I)~式(VI)が特定された(図7)。
 また、ラクトバチルス・アシドフィルスおよびラクトバチルス・ヘルベティカスに加え、ゲノム情報が利用可能であった他のラクトバチルス属の菌種の中から、ラクトバチルス・アシドフィルスの近縁種として考えられるラクトバチルス・クリスパタス(gi|113967820|gb|ABI49168.1| SlpB [Lactobacillus crispatus])、ラクトバチルス・アミロボラス(gi|385816784|ref|YP_005853174.1| s-layer protein [Lactobacillus amylovorus GRL1118])およびラクトバチルス・ガリナルム(gi|51242255|gb|AAT99079.1| LgsF [Lactobacillus gallinarum])を選択して解析した。
 図8に、式(I)~式(VI)で示されるアミノ酸配列と、それに対応する部分のラクトバチルス・アシドフィルス、ラクトバチルス・ヘルベティカス、ラクトバチルス・クリスパタス、ラクトバチルス・アミロボラス、ラクトバチルス・ガリナルムのアミノ酸配列を示す(配列番号14~43)。これら5菌種においては、式(V)が最も共通性が高く、式(VI)が最も共通性が低いことがわかった。
 本発明は、プロバイオティクス飲食品や粘膜ワクチンなどの医薬品の製造分野において利用できる。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に組み入れるものとする。

Claims (13)

  1.  下記の式(I)~(VI)に示すアミノ酸配列からなるペプチドモチーフの少なくとも1種を含み、かつウロモジュリン(Umod)蛋白質に対して結合活性を有するラクトバチルス属の乳酸菌の表層蛋白質又はその断片を含有する、腸管における物質取り込み促進剤。
     式(I):Asn-Thr-Asn-Thr-Asn-Ala-Lys-Tyr-Asp-Val-Asp-Val-Thr-Pro-Ser-Val-Ser-Ala-X1-Ala (式(I)中、X1はValまたはIleを表す)
     式(II):Gly-X2-Leu-Thr-Gly-X3-Ile-Ser-Ala-Ser-Tyr-Asn-Gly-Lys-X4-Tyr-Thr-Ala Asn-Leu (式(II)中、X2はAsnまたはSerを表し、X3はThrまたはSerを表し、X4はThrまたはSerを表す)
     式(III):Tyr-Thr-Val-Thr-Val-X5-Asp-Val-Ser-Phe-Asn-Phe-Gly-Ser-Glu-Asn-Ala- Gly-Lys (式(III)中、X5はAsnまたはProを表す)
     式(IV):Val-Val-Ala-Ala-Ile-X6-Ser-Lys-Tyr-Phe-Ala-Ala-Gln-Tyr-Ala(式(IV)中、X6はAsnまたはThrを表す)
     式(V):His-Thr-Phe-Thr-Val-Asn-Val-Lys-Ala-Thr-Ser-Asn-X7-Asn-X8-Lys-Ser-Ala Thr-Leu-Pro-Val (式(V)中、X7はThrまたはValを表し、X8はGlyまたはSerを表す)
     式(VI):Val-Thr-Val-Pro-Asn-Val-Ala-Glu-Pro-Thr-Val-X9-Ser-Val-Ser-Lys (式(VI)中、X9はAlaまたはProを表す)
  2.  前記式(I)~(VI)で示されるアミノ酸配列において、1~10個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるペプチドモチーフの少なくとも1種を含み、かつウロモジュリン(Umod)蛋白質に対して結合活性を有するラクトバチルス属の乳酸菌の表層蛋白質を含有する、請求項1に記載の腸管における物質取り込み促進剤。
  3.  前記表層蛋白質が、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)、ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)、ラクトバチルス・クリスパタス(Lactobacillus crispatus)、ラクトバチルス・アミロボラス(Lactobacillus amylovorus)、またはラクトバチルス・ガリナルム(Lactobacillus gallinarum)由来のS-layer proteinである、請求項1または2に記載の腸管における物質取り込み促進剤。
  4.  前記表層蛋白質がラクトバチルス・アシドフィルス由来のSlpA蛋白質である、請求項1~3のいずれかに記載の腸管における物質取り込み促進剤。
  5.  前記ラクトバチルス・アシドフィルス由来のSlpA蛋白質が以下の(a)~(c)のいずれかの蛋白質である、請求項4に記載の腸管における物質取り込み促進剤。
     (a) 配列番号7に示すアミノ酸配列からなる蛋白質
     (b) 配列番号7に示すアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質
     (c) 配列番号7に示すアミノ酸配列と90%以上の配列同一性を有する蛋白質
  6.  請求項1~5のいずれかに記載の腸管における物質取り込み促進剤と腸管取り込み対象物質との複合体。
  7.  前記腸管取り込み対象物質が食品成分である、請求項6に記載の複合体。
  8.  前記食品成分が乳酸菌である、請求項7に記載の複合体。
  9.  前記腸管取り込み対象物質が医薬品成分である、請求項6に記載の複合体。
  10.  前記医薬品成分が粘膜ワクチン抗原である、請求項9に記載の複合体。
  11.  請求項6~10のいずれかに記載の複合体を含む組成物。
  12.  飲食品、医薬品または動物用飼料である、請求項11に記載の組成物。
  13.  被検乳酸菌の菌体表層における、下記式(I)~(VI)で示されるアミノ酸配列からなるペプチドモチーフの少なくとも1種を含む蛋白質の発現量を測定することを含む、腸管内移行能が高い乳酸菌のスクリーニング方法。
     式(I):Asn-Thr-Asn-Thr-Asn-Ala-Lys-Tyr-Asp-Val-Asp-Val-Thr-Pro-Ser-Val-Ser-Ala-X1-Ala (式(I)中、X1はValまたはIleを表す)
     式(II):Gly-X2-Leu-Thr-Gly-X3-Ile-Ser-Ala-Ser-Tyr-Asn-Gly-Lys-X4-Tyr-Thr-Ala Asn-Leu (式(II)中、X2はAsnまたはSerを表し、X3はThrまたはSerを表し、X4はThrまたはSerを表す)
     式(III):Tyr-Thr-Val-Thr-Val-X5-Asp-Val-Ser-Phe-Asn-Phe-Gly-Ser-Glu-Asn-Ala- Gly-Lys (式(III)中、X5はAsnまたはProを表す)
     式(IV):Val-Val-Ala-Ala-Ile-X6-Ser-Lys-Tyr-Phe-Ala-Ala-Gln-Tyr-Ala(式(IV)中、X6はAsnまたはThrを表す)
     式(V):His-Thr-Phe-Thr-Val-Asn-Val-Lys-Ala-Thr-Ser-Asn-X7-Asn-X8-Lys-Ser-Ala Thr-Leu-Pro-Val (式(V)中、X7はThrまたはValを表し、X8はGlyまたはSerを表す)
     式(VI):Val-Thr-Val-Pro-Asn-Val-Ala-Glu-Pro-Thr-Val-X9-Ser-Val-Ser-Lys (式(VI)中、X9はAlaまたはProを表す)
PCT/JP2015/064573 2014-05-29 2015-05-21 腸管における物質取り込み促進剤 WO2015182470A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016523447A JP6376417B2 (ja) 2014-05-29 2015-05-21 腸管における物質取り込み促進剤
US15/313,872 US20170202908A1 (en) 2014-05-29 2015-05-21 Agent for promoting substance incorporation in intestinal tract

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-111681 2014-05-29
JP2014111681 2014-05-29

Publications (1)

Publication Number Publication Date
WO2015182470A1 true WO2015182470A1 (ja) 2015-12-03

Family

ID=54698806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064573 WO2015182470A1 (ja) 2014-05-29 2015-05-21 腸管における物質取り込み促進剤

Country Status (3)

Country Link
US (1) US20170202908A1 (ja)
JP (1) JP6376417B2 (ja)
WO (1) WO2015182470A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282178A (zh) * 2016-09-05 2017-01-04 南京农业大学 重组嗜酸乳杆菌s层蛋白在大肠杆菌中的高效表达及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7497126B2 (ja) * 2018-11-29 2024-06-10 雪印メグミルク株式会社 抗菌ペプチド産生促進用組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051631A1 (en) * 1998-04-03 1999-10-14 Timo Korhonen A protein region responsible of binding to epithelial cell types and a dna sequence encoding said region
JP2005528085A (ja) * 2001-12-28 2005-09-22 ネーデルランドセ・オルガニザテイエ・フール・テゲパスト−ナトウールベテンシヤツペリーク・オンデルツエク・テイエヌオー 修飾された細菌表層タンパク質
WO2006073145A1 (ja) * 2005-01-04 2006-07-13 Calpis Co., Ltd 抗アレルギー効果を有する乳酸菌の製造法
WO2014167995A1 (ja) * 2013-04-11 2014-10-16 カルピス株式会社 免疫調節作用を有する乳酸菌のスクリーニング方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051631A1 (en) * 1998-04-03 1999-10-14 Timo Korhonen A protein region responsible of binding to epithelial cell types and a dna sequence encoding said region
JP2005528085A (ja) * 2001-12-28 2005-09-22 ネーデルランドセ・オルガニザテイエ・フール・テゲパスト−ナトウールベテンシヤツペリーク・オンデルツエク・テイエヌオー 修飾された細菌表層タンパク質
WO2006073145A1 (ja) * 2005-01-04 2006-07-13 Calpis Co., Ltd 抗アレルギー効果を有する乳酸菌の製造法
WO2014167995A1 (ja) * 2013-04-11 2014-10-16 カルピス株式会社 免疫調節作用を有する乳酸菌のスクリーニング方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AATTOURI, N. ET AL.: "Oral ingestion of lactic- acid bacteria by rats increases lymphocyte proliferation and interferon-y production", BRITISH JOURNAL OF NUTRITION, vol. 87, no. 04, 2002, pages 367 - 373, XP055242259, ISSN: 0007-1145 *
HOLLMANN, A. ET AL.: "S-layer proteins from lactobacilli as vaccine delivery systems", INTERNATIONAL JOURNAL OF MICROBIOLOGY RESEARCH, vol. 2, no. 2, 2010, pages 30 - 43, XP055242260, ISSN: 0975-5276 *
HYNONEN, U. ET AL.: "Lactobacillus surface layer proteins: structure, function and applications", APPL MICROBIOL BIOTECHNOL, vol. 97, no. 12, 2013, pages 5225 - 5243, XP035328899, ISSN: 0175-7598 *
MOEINI, H. ET AL.: "Lactobacillus acidophilus as a live vehicle for oral immunization against chicken anemia virus", APPL MICROBIOL BIOTECHNOL, vol. 90, no. 1, 2011, pages 77 - 88, XP019889709, ISSN: 0175-7598 *
XUEYAN, C. ET AL.: "Characterization of Surface Layer Proteins in Lactobacillus crispatus Isolate ZJ001", J. MICROBIOL. BIOTECHNOL., vol. 19, no. 10, 2009, pages 1176 - 1183, XP055242257 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282178A (zh) * 2016-09-05 2017-01-04 南京农业大学 重组嗜酸乳杆菌s层蛋白在大肠杆菌中的高效表达及其应用
CN106282178B (zh) * 2016-09-05 2019-06-04 南京农业大学 重组嗜酸乳杆菌s层蛋白在大肠杆菌中的高效表达及其应用

Also Published As

Publication number Publication date
JPWO2015182470A1 (ja) 2017-06-01
US20170202908A1 (en) 2017-07-20
JP6376417B2 (ja) 2018-08-22

Similar Documents

Publication Publication Date Title
Le Maréchal et al. Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties
RU2294366C2 (ru) Трансформированные молочно-кислые бактерии, снижающие склонность к проявлению аллергических реакций, и их применение
Kajikawa et al. Dissimilar properties of two recombinant Lactobacillus acidophilus strains displaying Salmonella FliC with different anchoring motifs
AU2005316041B2 (en) Pharmaceutical composition comprising a bacterial cell displaying a heterologous proteinaceous compound
AU2002256639B2 (en) Lactic acid bacteria as agents for treating and preventing allergy
AU2002220561A1 (en) Lactic acid bacteria capable of reducing an individual&#39;s tendency to develop allergic reactions
Ma et al. Screening and identification of a chicken dendritic cell binding peptide by using a phage display library
Xu et al. Rapid detection of Campylobacter jejuni using fluorescent microspheres as label for immunochromatographic strip test
Oh et al. Cytoplasmic expression of a model antigen with M Cell-Targeting moiety in lactic acid bacteria and implication of the mechanism as a mucosal vaccine via oral route
JP6376417B2 (ja) 腸管における物質取り込み促進剤
Niu et al. Immune evaluation of recombinant Lactobacillus plantarum with surface display of HA1-DCpep in mice
US20230068615A1 (en) Microbiota-Derived Proteins Inducing Il-10 Release From Human Cells And Uses Thereof
EP4135733A2 (en) Engineered probiotics for treatment and immunity against viruses
TW201732041A (zh) 經修飾之初乳蛋白質及其應用
Liu et al. Identification of the Lactobacillus SLP domain that binds gastric mucin
Kim et al. Identification of a peptide enhancing mucosal and systemic immune responses against EGFP after oral administration in mice
Panwar et al. Insights into involvement of S-layer proteins of probiotic Lactobacilli in relation to gut health
Su et al. Construction of Lactobacillus rhamnosus GG particles surface display system
Niu et al. A novel bacterium-like particles platform displaying antigens by new anchoring proteins induces efficacious immune responses
CN107417773B (zh) 黏合细胞壁之胜肽
US20150196634A1 (en) Cultured myeloid dendritic cells isolated from peyers patches and uses thereof
Chalet Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties
Le Maréchal et al. are involved in its anti-inflammatory properties
Stuknyte BIOACTIVES IN MILK-DERIVED PRODUCTS: BACTERIAL PRODUCTION OF IMMUNOMODULATORY CASEIN HYDROLYSATES AND TOOLS FOR IDENTIFICATION OF IMMUNOGENIC BACTERIAL PROTEIN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799905

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15313872

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016523447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799905

Country of ref document: EP

Kind code of ref document: A1