WO2015182413A1 - Heavy-load tire - Google Patents

Heavy-load tire Download PDF

Info

Publication number
WO2015182413A1
WO2015182413A1 PCT/JP2015/064134 JP2015064134W WO2015182413A1 WO 2015182413 A1 WO2015182413 A1 WO 2015182413A1 JP 2015064134 W JP2015064134 W JP 2015064134W WO 2015182413 A1 WO2015182413 A1 WO 2015182413A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
core
bead core
bead
cross
Prior art date
Application number
PCT/JP2015/064134
Other languages
French (fr)
Japanese (ja)
Inventor
淳 喜寅
翔吾 和田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2015182413A1 publication Critical patent/WO2015182413A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores

Definitions

  • the present invention relates to a heavy duty tire having a pair of bead portions assembled to a rim flange.
  • a tread having a pair of bead portions assembled to a rim flange, a carcass ply straddling between the pair of bead portions, a side portion continuous to the pair of bead portions on the outer side in the tire radial direction, and a tire tread surface A heavy duty tire having a portion is known.
  • Each of the pair of bead portions has a bead core, and the carcass ply is folded back by the bead core.
  • the bead core has a symmetrical shape (for example, a hexagonal shape) in the tire radial direction cross section.
  • the “tire radial direction cross section” means a cross section by a plane passing through the center of the tire (rotation center of the tire) and parallel to the tire width direction. That is, the tire radial direction cross section is a cross section along the tire radial direction and the tire width direction.
  • the distortion caused by the pulling force acting on the carcass ply (hereinafter referred to as pull-out distortion), the distortion caused by the pushing pressure received by the bead portion from the rim flange (
  • the distortion caused by the fall of the bead portion (hereinafter referred to as the collapse distortion)
  • the distortion generated in the tire rubber near the folded end of the carcass ply (hereinafter referred to as the ply end distortion), and the like.
  • pull-out distortion is caused by the movement of the bead core rotating in the tire radial cross section (hereinafter referred to as rotation of the bead core).
  • Indentation distortion is caused by the movement of the bead core along the tire width direction (hereinafter, translation of the bead core).
  • the ply end distortion is caused by a pulling force acting on the carcass ply.
  • the bead core has a symmetrical shape
  • the bead core is rotated by the pulling force acting on the carcass ply, and the carcass ply is easily moved away from the bead core. . That is, it is difficult to suppress the rotation and translation of the bead core while reducing the weight of the tire.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heavy-duty tire that can reduce the weight of the tire and suppress the rotation and translation of the bead core.
  • a heavy load tire according to the present invention is a heavy load tire including a pair of bead portions assembled to a rim flange and a carcass ply straddling between the pair of bead portions, and the pair of bead portions includes:
  • Each includes a bead core having a bottom surface, and the bead core has a length L1 from the center in the tire width direction of the bottom surface to the innermost portion in the tire width direction in the tire radial direction cross section.
  • the gist of the invention is that it is shorter than the length L2 from the center in the direction to the outermost part located on the outermost side in the tire width direction, and the ply swing angle ⁇ is 50 ° or less.
  • FIG. 1 is a tire radial direction sectional view for explaining a bead portion of a heavy duty tire according to an embodiment of the present invention.
  • FIG. 2 is a schematic tire radial direction cross-sectional view of a bead portion for explaining a ply swing angle.
  • FIG. 3A is a schematic cross-sectional view in the tire radial direction illustrating the change of the shape of the carcass ply of the bead portion in the analysis calculation example 1
  • FIG. 3B is a diagram of the vicinity of the bead core in the analysis calculation example 1. It is a typical tire radial direction sectional view explaining the force applied to a carcass ply.
  • FIG. 4 is a graph showing a calculation result of the analysis calculation example 1.
  • FIG. 4 is a graph showing a calculation result of the analysis calculation example 1.
  • FIG. 5 is a graph showing the calculation result of the analysis calculation example 2.
  • FIG. 6 is a graph showing the calculation result of the analysis calculation example 3.
  • FIG. 7 is a schematic tire radial direction cross-sectional view illustrating a bead portion in Experimental Example 1 as compared with the conventional example.
  • FIG. 8 is a graph showing the experimental results of Experimental Example 1 and the conventional example.
  • FIG. 9 is a graph showing the experimental results of Experimental Example 2 and the conventional example.
  • FIG. 1 is a tire radial direction cross-sectional view illustrating a bead portion of a heavy duty tire according to an embodiment of the present invention (hereinafter referred to as the present embodiment). That is, FIG. 1 shows a cross section of the heavy-duty tire 1 by a surface passing along the tire width direction TD and the tire radial direction TR and passing through the tire center (tire rotation center).
  • the heavy load tire 1 of the present embodiment includes a pair of bead portions 10 assembled to a rim flange, a carcass ply 20 straddling between the pair of bead portions 10, and a rubber layer adjacent to the inside of the carcass ply 20 in the tire width direction. 14, a side portion continuous to the pair of bead portions 10 on the outer side of the tire radial direction TR, and a tread portion having a tire tread surface. In FIG. 1, the side portion and the tread portion are omitted, and only one bead portion of the pair of bead portions is illustrated.
  • the carcass ply 20 has a toroidal shape.
  • Each of the pair of bead portions 10 includes a bead core 12 having a hexagonal cross section having a bottom surface 12B.
  • the bead core 12 is provided to fix the heavy load tire 1 to a rim flange (not shown).
  • the bead core 12 is configured by a bead wire (hereinafter referred to as a wire).
  • the rubber layer 14 is disposed inside the bead core 12 (carcass ply 20) in the tire width direction TD.
  • the bottom surface 12B may be parallel to the tire width direction TD, and may have an inclination with respect to the tire width direction TD.
  • the bead core 12 has an innermost portion 12IE located on the innermost side in the tire width direction TD and an outermost portion 12OE located on the outermost side in the tire width direction TD in the tire radial direction cross section.
  • the bead core 12 has a length L1 from the center 12BC in the tire width direction of the bottom surface 12B to the innermost portion 12IE, and a length L2 from the center 12BC in the tire width direction of the bottom surface 12B to the outermost portion 12OE. Is shorter (asymmetrical).
  • the ply swing angle ⁇ is set to 50 ° or less.
  • the ply swing angle ⁇ is defined as follows. As shown in FIG. 1 and FIG. 2, in the tire radial direction cross section, parallel to the tire axial direction passing through the upper surface end forming the innermost corner 12 ⁇ / b> UE of the upper surface 12 ⁇ / b> U substantially parallel to the bottom surface 12 ⁇ / b> B of the bead core 12.
  • An intersection point between the straight line SP and the carcass ply body 20M is defined as a P point.
  • an intersection of the straight line SQ parallel to the tire axial direction passing through the folded end (tire radial direction outer side end) 20E of the folded ply 20R constituting the carcass ply 20 and the carcass ply body 20M is defined as Q point.
  • the angle formed between the straight line ST connecting the point P and the point Q and the straight line SP is the ply swing angle ⁇ . 1 and 2, the straight line ST, the straight line SP, and the straight line SQ are indicated by a one-dot chain line.
  • the tire width direction length UW is longer than the tire radial direction length VW.
  • FIG. 1 shows a conventional carcass ply 120 and a conventional carcass ply body 120M.
  • FIG. 3A the carcass ply body 120M of the conventional example and the folded end 120E of the carcass ply 120 of the conventional example are shown by two-dot chain lines.
  • the heavy load tire 1 of the present embodiment acts on the carcass ply 20 because the tire core cross-sectional shape in the radial direction of the bead core 12 is asymmetrical and the ply swing angle ⁇ is small as described above.
  • tensile_strength becomes small compared with the past, and the force which acts on the bead core 12 from the carcass ply 20 also becomes small (refer FIG.3 (b)). Therefore, the gauge thickness of the bead part 10 (thickness in the direction orthogonal to the longitudinal direction of the bead part 10) can be reduced, and the weight of the heavy load tire 1 can be reduced.
  • the tire width direction length UW is longer than the tire radial direction length VW, and the ply swing angle ⁇ is smaller than that of the conventional example. Therefore, in the heavy load tire 1 of the present embodiment, the bead core 12 becomes difficult to rotate as the ply swing angle ⁇ is decreased.
  • the bead core 12 is rotated by the pulling force of the carcass ply 20 when viewed in the tire radial cross section, the position of the wire constituting the bead core 12 in the tire radial direction, that is, the distance from the tire center (tire rotation center) of the wire. Means change. Since the variation of the radial position of the wire constituting the bead core 12 is relatively different depending on the wire, the rotational motion of the bead core 12 as a whole is observed when viewed in the tire radial cross section.
  • the rotation of the bead core 12 is related to the change in the radial position of the wire constituting the bead core 12.
  • the “tire center (tire rotation center)” and the “rotation center” of the bead core 12 are different concepts. Further, when the indentation distortion is caused by the indentation pressure received by the bead portion 10 from the rim flange, the translational motion of the bead core 12 exists, so that the rotation axis that is the rotation center of the bead core 12 when viewed in the tire radial cross section. Is not fixed during rotation.
  • the circumferential direction length of the wire greatly varies as the wire in which the position in the tire radial direction varies greatly due to the pulling force of the carcass ply 20 is removed.
  • the total strain energy of all the wires constituting the bead core 12 can be expressed as a function of the rotation amount (rotation angle amount) of the bead core 12. This function is determined based on the arrangement of the wires constituting the bead core 12.
  • the total increase amount of the strain energy of all the wires with respect to the rotation amount of the bead core 12 can be calculated. Therefore, based on the arrangement of the wires constituting the bead core 12, a rotational stiffness index that represents the difficulty in rotating the bead core 12 can be defined.
  • the amount of rotation of the bead core 12 can be reduced by optimizing the rotational stiffness index defined based on the arrangement of the wires constituting the bead core 12 and the ply swing angle ⁇ .
  • optimizing the rotational rigidity index means selecting a wire arrangement such that the total increase in strain energy of all wires with respect to the rotation amount of the bead core 12 is large.
  • the amount of rotation of the bead core 12 can be reduced compared to the conventional case. Further, the strain generated in the rubber layer of the folded end 20E of the folded ply 20R can be reduced.
  • the present inventor when the wire width is longer than the tire radial length VW and the ply swing angle ⁇ is 50 ° or less, the rotation stiffness index and the ply swing We have found that the angle ⁇ is optimal. That is, the present inventor has found that the bead core 12 is difficult to rotate according to such a wire arrangement and the ply swing angle ⁇ .
  • the inventor has a width of the maximum width portion of the bead core 12 (hereinafter also referred to as a core maximum width) of 10 mm or more and 30 mm or less, and It has been discovered that the wire arrangement in which the cross-sectional area of the bead core 12 (hereinafter also referred to as the core cross-sectional area) is 70 mm 2 or more and 240 mm 2 or less is the arrangement of the wires that optimizes the rotational stiffness index. That is, the present inventor has found that, according to such a wire arrangement, the total increase amount of strain energy of all wires with respect to the rotation amount of the bead core 12 becomes large, so that the bead core 12 becomes difficult to rotate.
  • the maximum core width is 10 mm or more and 30 mm or less. According to this structure, the base pressure by which the bead part 10 is pressed against a rim flange can be ensured, and the translation of the bead core 12 can be suppressed. Note that the maximum core width according to this embodiment is approximately the same as the maximum core width according to the conventional example.
  • the cross-sectional area of the bead core 12 (hereinafter also referred to as a core cross-sectional area) is 70 mm 2 or more and 240 mm 2 or less. According to this configuration, rotation and translation of the bead core 12 can be suppressed.
  • the core cross-sectional area according to this embodiment is approximately the same as the core cross-sectional area according to the conventional example.
  • the outermost portion 12OE is located on the outer side in the tire radial direction than the innermost portion 12IE. Accordingly, since the carcass ply 20 and the rubber layer 14 pass near the bead core 12, the gauge thickness of the bead portion 10 is reduced, and the weight of the heavy load tire 1 can be further reduced.
  • the bead core 12 when the bead core 12 is divided into two parts by the normal N passing through the center 12BC of the bottom surface 12B and extending along the direction perpendicular to the bottom surface 12B in the cross section described above.
  • the cross-sectional area of the portion 12K including the outermost portion 12OE is larger than the cross-sectional area of the portion 12J including the innermost portion 12IE. Also by this, since the carcass ply 20 and the rubber layer 14 pass near the bead core 12, the gauge thickness of the bead portion 10 is reduced, and the weight of the heavy load tire 1 can be further reduced.
  • the width in the direction along the bottom surface 12B, and the width of the bottom surface 12B (hereinafter also referred to as the core bottom surface width) is D.
  • a width in the direction along the bottom surface 12B, the width of the portion which passes through the outermost portion 12 Oe, a X W, in a direction perpendicular to the bottom surface 12B, outermost portion from the bottom surface 12B height to 12OE is X H.
  • a width in the direction along the bottom surface 12B, the width of the portion which passes through the innermost portion 12IE is Y W, in the direction perpendicular to the bottom surface 12B, innermost portion from the bottom surface 12B 12IE height to is Y H.
  • the rim attached to the heavy load tire 1 is preferably a 15 ° DC rim.
  • the 15 ° DC rim (15 ° deep rim) is a rim defined by the Japanese Industrial Standard number JIS D6402.
  • the bead core 12 has a length L1 from the center 12BC in the tire width direction of the bottom surface 12B to the innermost portion 12IE in the tire radial direction cross section, and the center in the tire width direction of the bottom surface 12B. It is shorter than the length L2 from 12BC to the outermost part 12OE (left-right asymmetric type). Accordingly, the gauge thickness of the bead portion 10 is reduced, and the heavy duty tire 1 can be made lighter.
  • the swing angle ⁇ is 50 ° or less, and by determining the direction of the tension of the carcass ply 20 in this way, the amount of rotation of the bead core 12 is suppressed, and distortion generated in the rubber layer of the folded end 20E of the folded ply 20R is suppressed. Thus, the rotation of the bead core 12 can be effectively suppressed.
  • the tire width direction length UW is longer than the tire radial direction length VW. Therefore, when the bead core 12 is rotated by the pulling force acting on the carcass ply 20, the displacement of the wire constituting the bead core 12 increases as the wire is farther from the rotation center of the bead core 12 (that is, the circumferential direction of the bead core 12). Distortion increases). As a result, the amount of rotation of the bead core 12 can be significantly reduced as compared with the prior art.
  • the width of the widest part of the bead core 12 is at 10mm or more and 30mm or less, the cross-sectional area of the bead core 12 (core area) is preferably 70 mm 2 or more and 240 mm 2 or less.
  • ⁇ Analysis calculation example 1> As shown in FIGS. 3 (a) and 3 (b), the present inventor compared the case where the pulling force F2 is applied to the carcass ply 120 (strictly, the carcass ply body 120M) in the conventional example, as compared with the conventional example. In the embodiment in which the ply swing angle ⁇ is reduced, the force acting on the carcass plies 20 and 120 was examined when the pulling force F1 was applied to the carcass ply 20 (strictly, the carcass ply body 20M).
  • the component force F1u in the tire radial direction of the pulling force F1 (see FIG. 3B) is smaller than the component force F2u in the tire radial direction of the pulling force F2 in the conventional example (see FIG. 3B). Focused on becoming.
  • the present inventor performed analysis calculation by FEM on the tire of 275 / 80R22.5 size as the heavy load tire 1 and calculated the relationship between the ply swing angle ⁇ at the normal internal pressure and the ply end separation index. .
  • the value of the shear strain of the tire rubber near the folded end 20E was obtained.
  • calculation was performed for four examples and one conventional example. The calculation results are shown in FIG. In all of the examples in which the ply swing angle ⁇ was 50 ° or less, the ply end separation index was better than in the conventional example in which the ply swing angle ⁇ was 60 °.
  • ⁇ Analysis calculation example 2> The inventor obtained the bead core rotation amount (hereinafter referred to as “core rotation amount”) by the above-described pulling force when the tire internal pressure was set to the normal internal pressure in the example and the conventional example, by analytical calculation using FEM. The calculation results are shown in FIG.
  • the core rotation amount was 9.5 ° in the conventional example, and 5.0 ° in the example. Therefore, compared to the conventional example, the result was that the core rotation amount was significantly reduced in the example.
  • the position in the tire circumferential direction which is the horizontal axis, is 0 ° on this perpendicular, The direction position is shown as 0 to 180 °, and the tire circumferential position on the other side is shown as 0 to ⁇ 180 °.
  • the shear strain of the tire rubber near the folded end of the carcass ply is lower in the example than in the conventional example in the entire angle range, that is, in all positions in the tire circumferential direction.
  • Example 1 Next, the present inventor used a tire having a size of 275 / 80R22.5 M880BZ as the heavy load tire, and obtained the core rotation amount at normal internal pressure by CT imaging in the example and the conventional example.
  • FIG. 7 shows a schematic cross-sectional shape of the bead portion between the example and the conventional example. The actual measurement results are shown in FIG.
  • both the example and the conventional example were performed over a plurality.
  • both the example and the conventional example show the obtained data with a solid plot of the core rotation amount on one side of the bead core of the tire and a hollow plot of the core rotation amount on the other side. ing. As can be seen from FIG. 8, the amount of core rotation was clearly reduced in the example compared to the conventional example.
  • Example 2 The present inventor used a tire of the same size as 275 / 80R22.5 M880BZ as the heavy load tire, and in the example and the conventional example, the heavy duty tire was mounted on the rotating drum and traveled, and according to the travel distance. An experiment was conducted in which the load was increased step by step and the rotating drum was rotated until the tire was damaged. The experimental results are shown in FIG.
  • the traveling distance of the example is about 1500 km longer.
  • an accelerated test is performed in which a load larger than the load applied when the tire is actually used is performed. Therefore, when converted to the travel distance in actual use, it becomes longer than 1500 km.
  • Example 3 The present inventor prepared Examples 1 to 3 and Comparative Examples 1 to 4 as samples having different core maximum widths and core cross-sectional areas. For Examples 1 to 3 and Comparative Examples 1 to 4, tire weight and core rotation were prepared. The amount, core translation, and BF durability were measured. The measurement results are as shown in Table 1.
  • the tire weight, the core rotation amount, the core translation amount, and the BF durability are represented by indexes with the value in Example 2 as “100”.
  • the BF durability is an index indicating the durability time and the durability distance of the tire in the drum straight running test.
  • the index means that the larger the index value, the better results were obtained.
  • the index means that the smaller the index value, the better the result.
  • Example 1 the maximum core width is 10 mm or more and 30 mm or less, and the bead core cross-sectional area is 70 mm 2 or more and 240 mm 2 or less.
  • Example 1 and Example 3 it turns out that the amount of core rotation and the amount of core translation are small compared with Example 2.
  • FIG. Furthermore, it turns out that BF durability is improving.
  • Example 1 the tire weight is increased as compared with Example 2, but the increase is less than 10% and is in an acceptable range.
  • Comparative Example 1 although the bead core cross-sectional area is 70 mm 2 or more and 240 mm 2 or less, the core maximum width is smaller than 10 mm. As shown in Table 1, in Comparative Example 1, it can be confirmed that the core rotation amount is increased and the BF durability is deteriorated as compared with Examples 1 to 3. Therefore, it can be seen that when the core maximum width is made smaller than 10 mm, the core rotation amount and the BF durability deteriorate.
  • the bead core cross-sectional area is 70 mm 2 or more and 240 mm 2 or less, but the core maximum width is larger than 30 mm.
  • Table 1 in Comparative Example 2, it can be confirmed that the tire weight is increased as compared with Examples 1 to 3. In particular, the tire weight is increased by 50% compared to Example 2, which exceeds the allowable range. Therefore, it can be seen that the tire weight deteriorates when the maximum core width is larger than 30 mm.
  • Comparative Example 3 although the maximum core width is 10 mm or more and 30 mm or less, the bead core cross-sectional area is smaller than 70 mm 2 . As shown in Table 1, it can be confirmed that in Comparative Example 3, the amount of core translation increases compared to Examples 1 to 3, and the BF durability deteriorates. Therefore, it can be seen that when the cross-sectional area of the bead core is smaller than 70 mm 2 , the core translation amount and the BF durability are deteriorated.
  • Comparative Example 4 the maximum core width is 10 mm or more and 30 mm or less, but the bead core cross-sectional area is larger than 240 mm 2 .
  • Table 1 in Comparative Example 4, it can be confirmed that the tire weight is increased and the core translation amount is increased as compared with Examples 1 to 3. Therefore, it can be seen that when the bead core cross-sectional area is larger than 240 mm 2 , the tire weight and the core translation amount deteriorate.
  • the maximum core width is 10 mm or more and 30 mm or less
  • the bead core cross-sectional area is 70 mm 2 or more and 240 mm 2 or less. Therefore, according to Examples 1 to 3, it was confirmed that rotation and translation of the bead core 12 can be effectively suppressed at the same time while reducing the tire weight as compared with Comparative Examples 1 to 4. Furthermore, it was confirmed that BF durability can be improved.
  • Example 4 As shown in Table 2, the present inventor prepared conventional examples, examples 4 and comparative examples 5 to 8 as samples having different core bottom surface width D, core drip A, core maximum width B, and core cross-sectional area. , BF durability, tire weight, core rotation amount, core translation amount and flange pressure were measured. The measurement results are as shown in Table 2.
  • the conventional example is a sample using a symmetrical bead core.
  • Example 4 and Comparative Examples 5 to 8 are samples in which the core bottom surface width D, the core stretch A, the core maximum width B, and the core cross-sectional area are changed as shown in Table 2.
  • Table 2 the core bottom surface width D, the core pulling A, the core maximum width B, and the core cross-sectional area are represented by indices with the value in the conventional example being “100”, unlike Experimental Example 3 (Table 1). .
  • the core A has a section from the innermost end of the bottom surface 12B to the innermost portion 12IE in the direction along the bottom surface 12B in the cross section along the tire width direction TD and the tire radial direction TR. Distance.
  • the BF durability, the tire weight, the core rotation amount, the core translation amount, and the flange pressure are represented by indices with the conventional example being “100”. For the flange pressure, the smaller the index value, the better the result.
  • the indices for BF durability, tire weight, core rotation amount, and core translation amount are the same as in Experimental Example 3 (Table 1).
  • Example 4 As shown in Table 2, in Example 4, the BF durability, the core rotation amount, the core translation amount, and the flange pressure are secured at the same level as the conventional example, but the tire weight is improved as compared with the conventional example. It was confirmed.
  • Comparative Example 8 in which A is reduced by the core and the cross-sectional area of the core is reduced, the tire weight is reduced, but the BF durability, the core rotation amount, the core translation amount, and the flange pressure may all be deteriorated. confirmed.
  • the maximum width portion of the bead core 12 is set while the length L1 from the center 12BC of the bottom surface 12B to the innermost portion 12IE is set shorter than the length L2 from the center 12BC of the bottom surface 12B to the outermost portion 12OE. It is confirmed that the rotation and translation of the bead core 12 can be effectively suppressed at the same time while reducing the tire weight by maintaining the width (hereinafter referred to as the core maximum width) and the cross-sectional area of the bead core 12 in the same manner as the conventional example. It was.

Abstract

A heavy-load tire (1) is provided with: a pair of bead portions (10) to be assembled to a rim flange; and a carcass ply (20) straddling the pair of bead portions (10). Each of the pair of bead portions (10) is provided with a bead core (12) having a bottom surface. The bead core (12) is such that, in a cross section taken in a tire radial direction, a length (L1) from the center in the tire width direction of the bottom surface (12B) to an inner-most portion (12IE) positioned at the most inside in the tire width direction is smaller than a length (L2) from the center in the tire width direction of the bottom surface (12B) to an outer-most portion (12OE) positioned at the most outside in the tire width direction, wherein a ply inclined angle (θ) is not more than 50°.

Description

重荷重用タイヤHeavy duty tire
 本発明は、リムフランジに組み付けられる1対のビード部を有する重荷重用タイヤに関する。 The present invention relates to a heavy duty tire having a pair of bead portions assembled to a rim flange.
 従来、リムフランジに組み付けられる1対のビード部と、1対のビード部間に跨るカーカスプライと、タイヤ径方向の外側において1対のビード部に連続するサイド部と、タイヤ踏み面を有するトレッド部とを有する重荷重用タイヤが知られている。1対のビード部は、それぞれ、ビードコアを有しており、カーカスプライは、ビードコアで折り返される。一般的に、ビードコアは、タイヤ径方向断面において、左右対称な形状(例えば、六角形状)を有している。なお、本明細書で「タイヤ径方向断面」とは、タイヤ中心(タイヤの回転中心)を通りタイヤ幅方向に平行な平面による断面を意味する。すなわち、タイヤ径方向断面は、タイヤ径方向およびタイヤ幅方向に沿った断面である。 Conventionally, a tread having a pair of bead portions assembled to a rim flange, a carcass ply straddling between the pair of bead portions, a side portion continuous to the pair of bead portions on the outer side in the tire radial direction, and a tire tread surface A heavy duty tire having a portion is known. Each of the pair of bead portions has a bead core, and the carcass ply is folded back by the bead core. Generally, the bead core has a symmetrical shape (for example, a hexagonal shape) in the tire radial direction cross section. In the present specification, the “tire radial direction cross section” means a cross section by a plane passing through the center of the tire (rotation center of the tire) and parallel to the tire width direction. That is, the tire radial direction cross section is a cross section along the tire radial direction and the tire width direction.
特開2003-205714号公報JP 2003-205714 A
 ところで、重荷重用タイヤでは、タイヤ重量の軽量化が重要であり、タイヤ重量の軽量化では、タイヤ幅方向においてビードコアに隣接するゴム材料のゲージ厚を抑制することが好ましい。 By the way, in heavy-duty tires, it is important to reduce the tire weight. In reducing the tire weight, it is preferable to suppress the gauge thickness of the rubber material adjacent to the bead core in the tire width direction.
 一方で、重荷重用タイヤのカーカスプライの故障の要因としては、カーカスプライに引抜き力が作用することによって生じる歪み(以下、引き抜け歪みという)、リムフランジからビード部が受ける押し込み圧によって生じる歪み(以下、押し込み歪みという)、ビード部の倒れ込みによって生じる歪み(以下、倒れ込み歪みという)、カーカスプライの折り返し端の近くのタイヤゴムに生じる歪み(以下、プライ端歪みという)等が挙げられる。 On the other hand, as a cause of failure of the carcass ply of the heavy duty tire, the distortion caused by the pulling force acting on the carcass ply (hereinafter referred to as pull-out distortion), the distortion caused by the pushing pressure received by the bead portion from the rim flange ( Hereinafter, the distortion caused by the fall of the bead portion (hereinafter referred to as the collapse distortion), the distortion generated in the tire rubber near the folded end of the carcass ply (hereinafter referred to as the ply end distortion), and the like.
 ここで、引き抜け歪みは、タイヤ径方向断面においてビードコアが回転する動き(以下、ビードコアの回転という)によって生じる。押し込み歪みは、タイヤ幅方向に沿ってビードコアが移動する動き(以下、ビードコアの並進)によって生じる。また、プライ端歪みは、カーカスプライに引抜き力が作用することによって生じる。 Here, pull-out distortion is caused by the movement of the bead core rotating in the tire radial cross section (hereinafter referred to as rotation of the bead core). Indentation distortion is caused by the movement of the bead core along the tire width direction (hereinafter, translation of the bead core). Further, the ply end distortion is caused by a pulling force acting on the carcass ply.
 しかしながら、上述したように、ビードコアが左右対称な形状である場合には、ビードコアを軽量化すると、カーカスプライに作用する引抜き力によって、ビードコアが回転し、カーカスプライがビードコアから外れる向きに動き易くなる。すなわち、タイヤ重量を軽量化しながらビードコアの回転及び並進を抑制することが難しい。 However, as described above, when the bead core has a symmetrical shape, if the bead core is reduced in weight, the bead core is rotated by the pulling force acting on the carcass ply, and the carcass ply is easily moved away from the bead core. . That is, it is difficult to suppress the rotation and translation of the bead core while reducing the weight of the tire.
 本発明は、上述した課題を解決するためになされたものであり、タイヤ重量を軽量化し、かつ、ビードコアの回転及び並進の抑制を可能とする重荷重用タイヤを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heavy-duty tire that can reduce the weight of the tire and suppress the rotation and translation of the bead core.
 本発明に係る重荷重用タイヤは、リムフランジに組み付けられる1対のビード部と、1対のビード部の間に跨るカーカスプライと、を備える重荷重用タイヤであって、1対のビード部は、それぞれ、底面を有するビードコアを備えており、ビードコアは、タイヤ径方向断面において、底面のタイヤ幅方向中心からタイヤ幅方向の最も内側に位置する最内部分までの長さL1は、底面のタイヤ幅方向中心からタイヤ幅方向の最も外側に位置する最外部分までの長さL2よりも短く、プライ振り出し角度θが50°以下であることを要旨とする。 A heavy load tire according to the present invention is a heavy load tire including a pair of bead portions assembled to a rim flange and a carcass ply straddling between the pair of bead portions, and the pair of bead portions includes: Each includes a bead core having a bottom surface, and the bead core has a length L1 from the center in the tire width direction of the bottom surface to the innermost portion in the tire width direction in the tire radial direction cross section. The gist of the invention is that it is shorter than the length L2 from the center in the direction to the outermost part located on the outermost side in the tire width direction, and the ply swing angle θ is 50 ° or less.
図1は、本発明の実施形態の重荷重用タイヤのビード部を説明するタイヤ径方向断面図である。FIG. 1 is a tire radial direction sectional view for explaining a bead portion of a heavy duty tire according to an embodiment of the present invention. 図2は、プライ振り出し角度を説明するビード部の模式的なタイヤ径方向断面図である。FIG. 2 is a schematic tire radial direction cross-sectional view of a bead portion for explaining a ply swing angle. 図3(a)は、解析計算例1においてビード部のカーカスプライの形状を変更することを説明する模式的なタイヤ径方向断面図、図3(b)は、解析計算例1においてビードコア付近のカーカスプライに加えられる力を説明する模式的なタイヤ径方向断面図である。FIG. 3A is a schematic cross-sectional view in the tire radial direction illustrating the change of the shape of the carcass ply of the bead portion in the analysis calculation example 1, and FIG. 3B is a diagram of the vicinity of the bead core in the analysis calculation example 1. It is a typical tire radial direction sectional view explaining the force applied to a carcass ply. 図4は、解析計算例1の算出結果を示すグラフ図である。FIG. 4 is a graph showing a calculation result of the analysis calculation example 1. 図5は、解析計算例2の算出結果を示すグラフ図である。FIG. 5 is a graph showing the calculation result of the analysis calculation example 2. 図6は、解析計算例3の算出結果を示すグラフ図である。FIG. 6 is a graph showing the calculation result of the analysis calculation example 3. 図7は、従来例と比較して、実験例1におけるビード部を説明する模式的なタイヤ径方向断面図である。FIG. 7 is a schematic tire radial direction cross-sectional view illustrating a bead portion in Experimental Example 1 as compared with the conventional example. 図8は、実験例1および従来例の実験結果を示すグラフ図である。FIG. 8 is a graph showing the experimental results of Experimental Example 1 and the conventional example. 図9は、実験例2および従来例の実験結果を示すグラフ図である。FIG. 9 is a graph showing the experimental results of Experimental Example 2 and the conventional example.
 以下、本発明の実施の形態に係る重荷重用タイヤについて、添付図面を参照しながら説明する。なお、以下の説明では同一又は類似の部分には、同一又は類似の符号を付し、その説明を適宜省略する。また、以下に示す実施の形態は、この発明の技術的思想を具体化するための例示であって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに限定するものではない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。 Hereinafter, a heavy duty tire according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the following description, the same or similar parts are denoted by the same or similar reference numerals, and the description thereof is omitted as appropriate. The following embodiments are exemplifications for embodying the technical idea of the present invention, and the embodiments of the present invention are described below in terms of the material, shape, structure, arrangement, etc. of the components. It is not limited to. The embodiments of the present invention can be implemented with various modifications without departing from the scope of the invention.
 図1は、本発明の実施形態(以下、本実施形態という)の重荷重用タイヤのビード部を説明するタイヤ径方向断面図である。すなわち、図1は、タイヤ幅方向TD及びタイヤ径方向TRに沿う面で、かつタイヤ中心(タイヤの回転中心)を通る面による、重荷重用タイヤ1の断面を示している。 FIG. 1 is a tire radial direction cross-sectional view illustrating a bead portion of a heavy duty tire according to an embodiment of the present invention (hereinafter referred to as the present embodiment). That is, FIG. 1 shows a cross section of the heavy-duty tire 1 by a surface passing along the tire width direction TD and the tire radial direction TR and passing through the tire center (tire rotation center).
 本実施形態の重荷重用タイヤ1は、リムフランジに組み付けられる1対のビード部10と、1対のビード部10間に跨るカーカスプライ20と、カーカスプライ20のタイヤ幅方向内側に隣接するゴム層14と、タイヤ径方向TRの外側において1対のビード部10に連続するサイド部と、タイヤ踏み面を有するトレッド部とを有する。なお、図1では、サイド部及びトレッド部を省略して、1対のビード部のうち、片側のビード部のみを図示している。カーカスプライ20は、トロイダル形状を有している。 The heavy load tire 1 of the present embodiment includes a pair of bead portions 10 assembled to a rim flange, a carcass ply 20 straddling between the pair of bead portions 10, and a rubber layer adjacent to the inside of the carcass ply 20 in the tire width direction. 14, a side portion continuous to the pair of bead portions 10 on the outer side of the tire radial direction TR, and a tread portion having a tire tread surface. In FIG. 1, the side portion and the tread portion are omitted, and only one bead portion of the pair of bead portions is illustrated. The carcass ply 20 has a toroidal shape.
 1対のビード部10は、それぞれ、底面12Bを有する断面六角形状のビードコア12を備えている。ビードコア12は、重荷重用タイヤ1をリムフランジ(不図示)に固定するために設けられる。ビードコア12は、ビードワイヤ(以下、ワイヤと記載)によって構成される。ゴム層14は、タイヤ幅方向TDにおいてビードコア12(カーカスプライ20)の内側に配置される。 Each of the pair of bead portions 10 includes a bead core 12 having a hexagonal cross section having a bottom surface 12B. The bead core 12 is provided to fix the heavy load tire 1 to a rim flange (not shown). The bead core 12 is configured by a bead wire (hereinafter referred to as a wire). The rubber layer 14 is disposed inside the bead core 12 (carcass ply 20) in the tire width direction TD.
 底面12Bは、タイヤ幅方向TDと平行であってもよく、また、タイヤ幅方向TDに対して傾きを有していてもよい。 The bottom surface 12B may be parallel to the tire width direction TD, and may have an inclination with respect to the tire width direction TD.
 ビードコア12は、タイヤ径方向断面において、タイヤ幅方向TDの最も内側に位置する最内部分12IE、および、タイヤ幅方向TDの最も外側に位置する最外部分12OEを有する。 The bead core 12 has an innermost portion 12IE located on the innermost side in the tire width direction TD and an outermost portion 12OE located on the outermost side in the tire width direction TD in the tire radial direction cross section.
 ビードコア12は、タイヤ径方向断面において、底面12Bのタイヤ幅方向の中心12BCから最内部分12IEまでの長さL1が、底面12Bのタイヤ幅方向の中心12BCから最外部分12OEまでの長さL2よりも短くされている(左右非対称形)。そして、プライ振り出し角度θが50°以下にされている。 In the cross section in the tire radial direction, the bead core 12 has a length L1 from the center 12BC in the tire width direction of the bottom surface 12B to the innermost portion 12IE, and a length L2 from the center 12BC in the tire width direction of the bottom surface 12B to the outermost portion 12OE. Is shorter (asymmetrical). The ply swing angle θ is set to 50 ° or less.
 ここでプライ振り出し角度θは、以下のように定義される。図1、図2に示すように、タイヤ径方向断面において、ビードコア12の底面12Bに略平行な上面12Uのうち最内側の角部12UEを形成している上面端を通過するタイヤ軸方向に平行な直線SPと、カーカスプライ本体20Mとの交点をP点とする。また、カーカスプライ20を構成する折り返しプライ20Rの折り返し端(タイヤ径方向外側端)20Eを通過するタイヤ軸方向に平行な直線SQと、カーカスプライ本体20Mとの交点をQ点とする。また、そして、P点とQ点とを結ぶ直線STと上記直線SPとのなす角度がプライ振り出し角度θとなる。図1、図2において、直線ST、直線SP、直線SQは、1点鎖線で示されている。 Here, the ply swing angle θ is defined as follows. As shown in FIG. 1 and FIG. 2, in the tire radial direction cross section, parallel to the tire axial direction passing through the upper surface end forming the innermost corner 12 </ b> UE of the upper surface 12 </ b> U substantially parallel to the bottom surface 12 </ b> B of the bead core 12. An intersection point between the straight line SP and the carcass ply body 20M is defined as a P point. Further, an intersection of the straight line SQ parallel to the tire axial direction passing through the folded end (tire radial direction outer side end) 20E of the folded ply 20R constituting the carcass ply 20 and the carcass ply body 20M is defined as Q point. The angle formed between the straight line ST connecting the point P and the point Q and the straight line SP is the ply swing angle θ. 1 and 2, the straight line ST, the straight line SP, and the straight line SQ are indicated by a one-dot chain line.
 また、ビードコア12のタイヤ径方向断面では、タイヤ幅方向長さUWがタイヤ径方向長さVWよりも長くされている。 Further, in the tire radial direction cross section of the bead core 12, the tire width direction length UW is longer than the tire radial direction length VW.
 なお、図1、図3(a)、図3(b)では、従来例に示す構成が2点鎖線で示されている。具体的には、図1では、従来例のカーカスプライ120、および従来例のカーカスプライ本体120Mが示されている。同様に、図3(a)では、従来例のカーカスプライ本体120M、および従来例のカーカスプライ120の折り返し端120Eが2点鎖線で示されている。 In addition, in FIG. 1, FIG. 3 (a), FIG.3 (b), the structure shown in a prior art example is shown with the dashed-two dotted line. Specifically, FIG. 1 shows a conventional carcass ply 120 and a conventional carcass ply body 120M. Similarly, in FIG. 3A, the carcass ply body 120M of the conventional example and the folded end 120E of the carcass ply 120 of the conventional example are shown by two-dot chain lines.
 本実施形態の重荷重用タイヤ1は、従来に比べ、上記したようにビードコア12のタイヤ径方向断面形状が左右非対称で、しかもプライ振り出し角度θが小さくなっていることにより、カーカスプライ20に作用する張力が従来に比べて小さくなり、カーカスプライ20からビードコア12に作用する力も小さくなる(図3(b)参照)。よって、ビード部10のゲージ厚(ビード部10の長手方向に直交する方向の厚み)を減少させることができ、重荷重用タイヤ1の軽量化を図ることができる。 The heavy load tire 1 of the present embodiment acts on the carcass ply 20 because the tire core cross-sectional shape in the radial direction of the bead core 12 is asymmetrical and the ply swing angle θ is small as described above. A tension | tensile_strength becomes small compared with the past, and the force which acts on the bead core 12 from the carcass ply 20 also becomes small (refer FIG.3 (b)). Therefore, the gauge thickness of the bead part 10 (thickness in the direction orthogonal to the longitudinal direction of the bead part 10) can be reduced, and the weight of the heavy load tire 1 can be reduced.
 本実施形態の重荷重用タイヤ1は、タイヤ幅方向長さUWがタイヤ径方向長さVWよりも長くなっており、かつ、従来例と比較して、プライ振り出し角度θが小さくなっている。そのため、本実施形態の重荷重用タイヤ1において、プライ振り出し角度θを小さくするほど、ビードコア12は回転しにくくなる。 In the heavy load tire 1 of the present embodiment, the tire width direction length UW is longer than the tire radial direction length VW, and the ply swing angle θ is smaller than that of the conventional example. Therefore, in the heavy load tire 1 of the present embodiment, the bead core 12 becomes difficult to rotate as the ply swing angle θ is decreased.
 プライ振り出し角度θを小さくするほど、ビードコア12は回転しにくくなる理由は次のように説明される。 The reason why the bead core 12 becomes difficult to rotate as the ply swing angle θ decreases is explained as follows.
 ビードコア12がカーカスプライ20の引抜き力によって回転するとは、タイヤ径方向断面で見たときに、ビードコア12を構成するワイヤのタイヤ径方向位置、すなわちワイヤのタイヤ中心(タイヤの回転中心)からの距離が変わることを意味する。ビードコア12を構成するワイヤの径方向位置の変動が、ワイヤによって相対的に異なるため、タイヤ径方向断面で見たときに、ビードコア12全体としての回転運動が観察される。 The bead core 12 is rotated by the pulling force of the carcass ply 20 when viewed in the tire radial cross section, the position of the wire constituting the bead core 12 in the tire radial direction, that is, the distance from the tire center (tire rotation center) of the wire. Means change. Since the variation of the radial position of the wire constituting the bead core 12 is relatively different depending on the wire, the rotational motion of the bead core 12 as a whole is observed when viewed in the tire radial cross section.
 このように、ビードコア12の回転は、ビードコア12を構成するワイヤの径方向位置の変動と関係している。 Thus, the rotation of the bead core 12 is related to the change in the radial position of the wire constituting the bead core 12.
 なお、「タイヤ中心(タイヤの回転中心)」とビードコア12の「回転中心」とは、異なる概念であることに注意する。また、リムフランジからビード部10が受ける押し込み圧によって押し込み歪みが生じている場合にはビードコア12の並進運動が存在するため、タイヤ径方向断面で見たときのビードコア12の回転中心である回転軸は、回転途中において固定されていない。 Note that the “tire center (tire rotation center)” and the “rotation center” of the bead core 12 are different concepts. Further, when the indentation distortion is caused by the indentation pressure received by the bead portion 10 from the rim flange, the translational motion of the bead core 12 exists, so that the rotation axis that is the rotation center of the bead core 12 when viewed in the tire radial cross section. Is not fixed during rotation.
 ビードコア12を構成するワイヤのうち、カーカスプライ20の引抜き力によってタイヤ径方向位置が大きく変動するワイヤほど、そのワイヤの周方向の長さは大きく変動する。 Among the wires constituting the bead core 12, the circumferential direction length of the wire greatly varies as the wire in which the position in the tire radial direction varies greatly due to the pulling force of the carcass ply 20 is removed.
 ワイヤに働く外力がワイヤの張力に対して仕事をすることにより、ワイヤの周方向の長さが変動し、同時に、ワイヤの持つ歪エネルギーが蓄えられる。すなわち、ワイヤのタイヤ径方向位置を大きく変動させるためには、ワイヤの張力に抗してワイヤに対して働くタイヤ径方向の力が大きくなければならない。このような関係があるため、ワイヤの周方向の長さの変動を介して、ビードコア12を回転させるためには、ワイヤの張力に抗してワイヤに対して働くタイヤ径方向の力が必要となる。 When the external force acting on the wire works against the tension of the wire, the circumferential length of the wire varies, and at the same time, the strain energy of the wire is stored. That is, in order to greatly change the position of the wire in the tire radial direction, the force in the tire radial direction acting on the wire against the tension of the wire must be large. Because of this relationship, in order to rotate the bead core 12 through fluctuations in the circumferential length of the wire, a tire radial force acting on the wire against the wire tension is required. Become.
 ここで、プライ振り出し角度θによって、ビードコア12に作用する力の向きが変わることに注意する。カーカスプライ20からビードコア12に作用する力の大きさが同じ条件で比較した場合、プライ振り出し角度θが小さく、0°に近い場合には、ワイヤに対して働くタイヤ径方向の力は、プライ振り出し角度θが大きい場合(90°に近い場合)と比較して弱くなることが分かる(図3(b)参照のこと)。 Note that the direction of the force acting on the bead core 12 changes depending on the ply swing angle θ. When the magnitude of the force acting on the bead core 12 from the carcass ply 20 is compared under the same condition, when the ply swing angle θ is small and close to 0 °, the tire radial force acting on the wire is It turns out that it becomes weak compared with the case where angle (theta) is large (when it is close to 90 degrees) (refer FIG.3 (b)).
 そのため、カーカスプライ20からビードコア12に作用する力の大きさが同じ条件で比較した場合、プライ振り出し角度θを小さくするほど、ワイヤのタイヤ径方向位置を大きく変動させることが難しくなり、ビードコア12は回転しにくくなる。 Therefore, when the magnitude of the force acting on the bead core 12 from the carcass ply 20 is compared under the same condition, the smaller the ply swing angle θ, the more difficult it is to change the position of the wire in the tire radial direction. It becomes difficult to rotate.
 なお、上述したように、ワイヤの周方向の長さの変動量が大きいほど、ワイヤの歪エネルギーは大きくなる関係がある。そのため、ビードコア12を構成する全ワイヤの歪エネルギーの合計を、ビードコア12の回転量(回転角度量)の関数として表現することができる。この関数は、ビードコア12を構成するワイヤの配置に基づいて決定される。 As described above, there is a relationship in which the strain energy of the wire increases as the amount of fluctuation in the circumferential length of the wire increases. Therefore, the total strain energy of all the wires constituting the bead core 12 can be expressed as a function of the rotation amount (rotation angle amount) of the bead core 12. This function is determined based on the arrangement of the wires constituting the bead core 12.
 すなわち、ビードコア12を構成するワイヤの配置に基づいて、ビードコア12の回転量に対する全ワイヤの歪エネルギーの合計の増加量を計算することができる。よって、ビードコア12を構成するワイヤの配置に基づいて、ビードコア12の回転し難さを表す回転剛性指標を定義することができる。 That is, based on the arrangement of the wires constituting the bead core 12, the total increase amount of the strain energy of all the wires with respect to the rotation amount of the bead core 12 can be calculated. Therefore, based on the arrangement of the wires constituting the bead core 12, a rotational stiffness index that represents the difficulty in rotating the bead core 12 can be defined.
 ビードコア12を構成するワイヤの配置に基づいて定義された回転剛性指標、およびプライ振り出し角度θを最適化することで、ビードコア12の回転量を従来に比べて低減させることができる。ここで、回転剛性指標を最適化するとは、ビードコア12の回転量に対する全ワイヤの歪エネルギーの合計の増加量が大きくなるようなワイヤの配置を選択することを意味する。 The amount of rotation of the bead core 12 can be reduced by optimizing the rotational stiffness index defined based on the arrangement of the wires constituting the bead core 12 and the ply swing angle θ. Here, optimizing the rotational rigidity index means selecting a wire arrangement such that the total increase in strain energy of all wires with respect to the rotation amount of the bead core 12 is large.
 このようなワイヤの配置によれば、ビードコア12の回転量を従来に比べて低減させることができる。また、折り返しプライ20Rの折り返し端20Eのゴム層に生じる歪も小さくすることができる。 </ RTI> According to such a wire arrangement, the amount of rotation of the bead core 12 can be reduced compared to the conventional case. Further, the strain generated in the rubber layer of the folded end 20E of the folded ply 20R can be reduced.
 本発明者は、タイヤ幅方向長さUWがタイヤ径方向長さVWよりも長いワイヤの配置であって、かつ、プライ振り出し角度θが50°以下である場合に、回転剛性指標、およびプライ振り出し角度θが最適であることを発見した。すなわち、本発明者は、このようなワイヤ配置およびプライ振り出し角度θによれば、ビードコア12が回転しにくくなることを発見した。 The present inventor, when the wire width is longer than the tire radial length VW and the ply swing angle θ is 50 ° or less, the rotation stiffness index and the ply swing We have found that the angle θ is optimal. That is, the present inventor has found that the bead core 12 is difficult to rotate according to such a wire arrangement and the ply swing angle θ.
 さらに、後述する解析計算例および実験例で説明するように、本発明者は、ビードコア12の最大幅部分の幅(以下、コア最大幅ともいう)が10mm以上かつ30mm以下であって、さらに、ビードコア12の断面積(以下、コア断面積ともいう)が70mm以上かつ240mm以下となるワイヤの配置が、回転剛性指標を最適化するワイヤの配置であることを発見した。すなわち、本発明者は、このようなワイヤ配置によれば、ビードコア12の回転量に対する全ワイヤの歪エネルギーの合計の増加量が大きくなるため、ビードコア12が回転しにくくなることを発見した。 Furthermore, as will be described in an analysis calculation example and an experimental example described later, the inventor has a width of the maximum width portion of the bead core 12 (hereinafter also referred to as a core maximum width) of 10 mm or more and 30 mm or less, and It has been discovered that the wire arrangement in which the cross-sectional area of the bead core 12 (hereinafter also referred to as the core cross-sectional area) is 70 mm 2 or more and 240 mm 2 or less is the arrangement of the wires that optimizes the rotational stiffness index. That is, the present inventor has found that, according to such a wire arrangement, the total increase amount of strain energy of all wires with respect to the rotation amount of the bead core 12 becomes large, so that the bead core 12 becomes difficult to rotate.
 図1に示す断面において、底面12Bに沿った方向幅であって、コア最大幅は、10mm以上かつ30mm以下である。この構成によれば、ビード部10がリムフランジに押し当てられるベース圧を確保することができ、ビードコア12の並進を抑制することができる。なお、本実施形態に係るコア最大幅は、従来例に係るコア最大幅と同程度である。 In the cross section shown in FIG. 1, it is the direction width along the bottom surface 12B, and the maximum core width is 10 mm or more and 30 mm or less. According to this structure, the base pressure by which the bead part 10 is pressed against a rim flange can be ensured, and the translation of the bead core 12 can be suppressed. Note that the maximum core width according to this embodiment is approximately the same as the maximum core width according to the conventional example.
 また図1に示す断面において、ビードコア12の断面積(以下、コア断面積ともいう)は、70mm以上かつ240mm以下である。この構成によれば、ビードコア12の回転及び並進を抑制することができる。なお、本実施形態に係るコア断面積は、従来例に係るコア断面積と同程度である。 In the cross section shown in FIG. 1, the cross-sectional area of the bead core 12 (hereinafter also referred to as a core cross-sectional area) is 70 mm 2 or more and 240 mm 2 or less. According to this configuration, rotation and translation of the bead core 12 can be suppressed. The core cross-sectional area according to this embodiment is approximately the same as the core cross-sectional area according to the conventional example.
 また、本実施形態では、最外部分12OEは、最内部分12IEよりもタイヤ径方向外側に位置する。これによって、カーカスプライ20及びゴム層14がビードコア12の近くを通るため、ビード部10のゲージ厚が減少し、重荷重用タイヤ1の更なる軽量化を図ることができる。 Further, in the present embodiment, the outermost portion 12OE is located on the outer side in the tire radial direction than the innermost portion 12IE. Accordingly, since the carcass ply 20 and the rubber layer 14 pass near the bead core 12, the gauge thickness of the bead portion 10 is reduced, and the weight of the heavy load tire 1 can be further reduced.
 また、本実施形態では、上述した断面において、底面12Bの中心12BCを通り、かつ、底面12Bに対して垂直な方向に沿って延びる法線Nによって、ビードコア12を2つの部分に分けた場合に、最外部分12OEを含む部分12Kの断面積は、最内部分12IEを含む部分12Jの断面積よりも大きい。これによっても、カーカスプライ20及びゴム層14がビードコア12の近くを通るため、ビード部10のゲージ厚が減少し、重荷重用タイヤ1の更なる軽量化を図ることができる。 In the present embodiment, when the bead core 12 is divided into two parts by the normal N passing through the center 12BC of the bottom surface 12B and extending along the direction perpendicular to the bottom surface 12B in the cross section described above. The cross-sectional area of the portion 12K including the outermost portion 12OE is larger than the cross-sectional area of the portion 12J including the innermost portion 12IE. Also by this, since the carcass ply 20 and the rubber layer 14 pass near the bead core 12, the gauge thickness of the bead portion 10 is reduced, and the weight of the heavy load tire 1 can be further reduced.
 本実施形態において、タイヤ径方向断面において、底面12Bに沿った方向における幅であって、底面12Bの幅(以下、コア底面幅ともいう)は、Dである。タイヤ径方向断面において、底面12Bに沿った方向における幅であって、最外部分12OEを通る部分の幅は、Xであり、底面12Bに対して垂直な方向において、底面12Bから最外部分12OEまでの高さは、Xである。上述した断面において、底面12Bに沿った方向における幅であって、最内部分12IEを通る部分の幅は、Yであり、底面12Bに対して垂直な方向において、底面12Bから最内部分12IEまでの高さは、Yである。 In the present embodiment, in the tire radial direction cross section, the width in the direction along the bottom surface 12B, and the width of the bottom surface 12B (hereinafter also referred to as the core bottom surface width) is D. In the tire radial direction cross-section, a width in the direction along the bottom surface 12B, the width of the portion which passes through the outermost portion 12 Oe, a X W, in a direction perpendicular to the bottom surface 12B, outermost portion from the bottom surface 12B height to 12OE is X H. In the above-described cross-section, a width in the direction along the bottom surface 12B, the width of the portion which passes through the innermost portion 12IE is Y W, in the direction perpendicular to the bottom surface 12B, innermost portion from the bottom surface 12B 12IE height to is Y H.
 本発明者は、このようなケースにおいて、次の関係式1~4を満たすことが好ましいことを発見した。
  [関係式1] 1≦X/D≦2.2、
  [関係式2] Y/D<X/D≦2.5、
  [関係式3] 1≦Y/D≦2.2、
  [関係式4] 0<Y/D≦1.4
The present inventor has found that it is preferable to satisfy the following relational expressions 1 to 4 in such a case.
[Relational Expression 1] 1 ≦ X W /D≦2.2,
[Relational expression 2] Y H / D <X H /D≦2.5,
[Relational Expression 3] 1 ≦ Y W /D≦2.2,
[Relational Expression 4] 0 <Y H /D≦1.4
 なお、重荷重用タイヤ1が、トラック用もしくはバス用のタイヤであってチューブレスタイヤである場合、重荷重用タイヤ1に装着するリムは15°DCリムであることが好ましい。なお、15°DCリム(15°深底リム)とは、日本工業規格の番号JISD6402の規格で規定されるリムである。 When the heavy load tire 1 is a truck or bus tire and is a tubeless tire, the rim attached to the heavy load tire 1 is preferably a 15 ° DC rim. The 15 ° DC rim (15 ° deep rim) is a rim defined by the Japanese Industrial Standard number JIS D6402.
 (作用及び効果)
 以上説明したように、本実施形態では、ビードコア12は、タイヤ径方向断面において、底面12Bのタイヤ幅方向の中心12BCから最内部分12IEまでの長さL1が、底面12Bのタイヤ幅方向の中心12BCから最外部分12OEまでの長さL2よりも短い(左右非対称形)。従って、ビード部10のゲージ厚が減少し、軽量化を図った重荷重用タイヤ1とすることができる。
(Function and effect)
As described above, in this embodiment, the bead core 12 has a length L1 from the center 12BC in the tire width direction of the bottom surface 12B to the innermost portion 12IE in the tire radial direction cross section, and the center in the tire width direction of the bottom surface 12B. It is shorter than the length L2 from 12BC to the outermost part 12OE (left-right asymmetric type). Accordingly, the gauge thickness of the bead portion 10 is reduced, and the heavy duty tire 1 can be made lighter.
 しかも、振り出し角度θが50°以下であり、このようにカーカスプライ20の張力の向きを決めることで、ビードコア12の回転量を抑えて折り返しプライ20Rの折り返し端20Eのゴム層に生じる歪を抑制することができ、ビードコア12の回転を効果的に抑制することが可能となる。 In addition, the swing angle θ is 50 ° or less, and by determining the direction of the tension of the carcass ply 20 in this way, the amount of rotation of the bead core 12 is suppressed, and distortion generated in the rubber layer of the folded end 20E of the folded ply 20R is suppressed. Thus, the rotation of the bead core 12 can be effectively suppressed.
 その上、ビードコア12のタイヤ径方向断面では、タイヤ幅方向長さUWがタイヤ径方向長さVWよりも長くされている。従って、カーカスプライ20に作用する引抜き力によってビードコア12が回転したときには、ビードコア12を構成するワイヤに関して、ビードコア12の回転中心から離れているワイヤほど、変位が大きくなる(すなわち、ビードコア12の周方向歪が大きくなる)。この結果、ビードコア12の回転量を従来に比べて大幅に低減させることができる。 In addition, in the tire radial direction cross section of the bead core 12, the tire width direction length UW is longer than the tire radial direction length VW. Therefore, when the bead core 12 is rotated by the pulling force acting on the carcass ply 20, the displacement of the wire constituting the bead core 12 increases as the wire is farther from the rotation center of the bead core 12 (that is, the circumferential direction of the bead core 12). Distortion increases). As a result, the amount of rotation of the bead core 12 can be significantly reduced as compared with the prior art.
 よって、本実施形態では、タイヤ重量を軽量化し、かつ、ビードコア12の回転を効果的に抑制することができる重荷重用タイヤ1とすることができる。しかも、折り返しプライ20Rの折り返し端20Eのゴム層に生じる歪も小さくすることができる。 Therefore, in the present embodiment, it is possible to reduce the weight of the tire and to make the heavy load tire 1 capable of effectively suppressing the rotation of the bead core 12. In addition, distortion generated in the rubber layer of the folded end 20E of the folded ply 20R can be reduced.
 また、ビードコア12の最大幅部分の幅(コア最大幅)は、10mm以上かつ30mm以下であり、ビードコア12の断面積(コア断面積)は、70mm以上かつ240mm以下であることが好ましい。このような構成とすることにより、タイヤ重量を軽量化しながらも、ビードコア12の回転および並進を効果的に抑制することができる。 The width of the widest part of the bead core 12 (core maximum width) is at 10mm or more and 30mm or less, the cross-sectional area of the bead core 12 (core area) is preferably 70 mm 2 or more and 240 mm 2 or less. By setting it as such a structure, rotation and translation of the bead core 12 can be suppressed effectively, reducing a tire weight.
 <解析計算例1>
 本発明者は、図3(a)および図3(b)に示すように、従来例でカーカスプライ120(厳密にはカーカスプライ本体120M)に引抜き力F2が作用した場合と、従来例に比べてプライ振り出し角度θを小さくした実施例でカーカスプライ20(厳密にはカーカスプライ本体20M)に引抜き力F1が作用した場合とで、カーカスプライ20、120に作用する力を検討した。
<Analysis calculation example 1>
As shown in FIGS. 3 (a) and 3 (b), the present inventor compared the case where the pulling force F2 is applied to the carcass ply 120 (strictly, the carcass ply body 120M) in the conventional example, as compared with the conventional example. In the embodiment in which the ply swing angle θ is reduced, the force acting on the carcass plies 20 and 120 was examined when the pulling force F1 was applied to the carcass ply 20 (strictly, the carcass ply body 20M).
 そして、引抜き力F1のタイヤ径方向の分力F1u(図3(b)参照)のほうが、従来例での引抜き力F2のタイヤ径方向の分力F2u(図3(b)参照)よりも小さくなることに着目した。 The component force F1u in the tire radial direction of the pulling force F1 (see FIG. 3B) is smaller than the component force F2u in the tire radial direction of the pulling force F2 in the conventional example (see FIG. 3B). Focused on becoming.
 そこで、本発明者は、重荷重用タイヤ1として、275/80R22.5のサイズのタイヤに関してFEMによる解析計算を行い、正規内圧時のプライ振り出し角度θと、プライ端セパレーション指標との関係を算出した。プライ端セパレーション指標として、折り返し端20E近くのタイヤゴムのせん断歪の値を求めた。この解析計算では、4つの実施例と、1つの従来例とについて計算した。算出結果を図4に示す。プライ振り出し角度θが50°以下である実施例では、何れも、プライ振り出し角度θが60°である従来例に比べ、プライ端セパレーション指標が良好であるという結果になった。 Therefore, the present inventor performed analysis calculation by FEM on the tire of 275 / 80R22.5 size as the heavy load tire 1 and calculated the relationship between the ply swing angle θ at the normal internal pressure and the ply end separation index. . As the ply end separation index, the value of the shear strain of the tire rubber near the folded end 20E was obtained. In this analysis calculation, calculation was performed for four examples and one conventional example. The calculation results are shown in FIG. In all of the examples in which the ply swing angle θ was 50 ° or less, the ply end separation index was better than in the conventional example in which the ply swing angle θ was 60 °.
 <解析計算例2>
 本発明者は、実施例と従来例とで、タイヤ内圧を正規内圧にしたときの上記引抜き力によるビードコアの回転量(以下、コア回転量という)を、FEMによる解析計算で求めた。算出結果を図5に示す。
<Analysis calculation example 2>
The inventor obtained the bead core rotation amount (hereinafter referred to as “core rotation amount”) by the above-described pulling force when the tire internal pressure was set to the normal internal pressure in the example and the conventional example, by analytical calculation using FEM. The calculation results are shown in FIG.
 コア回転量は、従来例では9.5°であり、実施例では5.0°となった。従って、従来例に比べ、実施例のほうがコア回転量は大幅に下がるという結果になった。 The core rotation amount was 9.5 ° in the conventional example, and 5.0 ° in the example. Therefore, compared to the conventional example, the result was that the core rotation amount was significantly reduced in the example.
 <解析計算例3>
 本発明者は、実施例と従来例とについて、正規内圧時および正規荷重時で、タイヤ周方向位置と、カーカスプライの折り返し端(すなわち、実施例ではカーカスプライ20の折り返し端20E、従来例ではカーカスプライ120の折り返し端120E(図3(a)参照))の近くのタイヤゴムのせん断歪との関係を、FEMによる解析計算で算出した。算出結果を図6に示す。タイヤ回転中心を通過し接地面に直交する垂線を基準として、図6では、横軸であるタイヤ周方向位置を、この垂線上の位置を0°、この垂線上の位置から一方側のタイヤ周方向位置を0~180°、他方側のタイヤ周方向位置を0~-180°として示している。
<Analysis calculation example 3>
The inventor of the present invention, for the example and the conventional example, at the normal internal pressure and the normal load, the position in the tire circumferential direction and the folded end of the carcass ply (that is, the folded end 20E of the carcass ply 20 in the example, the conventional example) A relationship with the shear strain of the tire rubber near the folded end 120E of the carcass ply 120 (see FIG. 3A) was calculated by FEM analysis calculation. The calculation results are shown in FIG. In FIG. 6, with reference to a perpendicular passing through the center of rotation of the tire and perpendicular to the ground contact surface, in FIG. 6, the position in the tire circumferential direction, which is the horizontal axis, is 0 ° on this perpendicular, The direction position is shown as 0 to 180 °, and the tire circumferential position on the other side is shown as 0 to −180 °.
 図6から分かるように、全角度範囲、すなわちタイヤ周方向の全ての位置で、カーカスプライの折り返し端の近くのタイヤゴムのせん断歪は従来例よりも実施例のほうが低くなっていた。 As can be seen from FIG. 6, the shear strain of the tire rubber near the folded end of the carcass ply is lower in the example than in the conventional example in the entire angle range, that is, in all positions in the tire circumferential direction.
 <実験例1>
 次に、本発明者は、重荷重用タイヤとして、275/80R22.5 M880BZのサイズのタイヤを用い、実施例と従来例とで、正規内圧時におけるコア回転量をCT撮影で求めた。実施例と従来例とのビード部の模式的な断面形状を図7に示す。また、実測結果を図8に示す。
<Experimental example 1>
Next, the present inventor used a tire having a size of 275 / 80R22.5 M880BZ as the heavy load tire, and obtained the core rotation amount at normal internal pressure by CT imaging in the example and the conventional example. FIG. 7 shows a schematic cross-sectional shape of the bead portion between the example and the conventional example. The actual measurement results are shown in FIG.
 本実験例では、実施例、従来例とも複数本にわたって行った。図8では、実施例、従来例の両者とも、タイヤのビードコアのうちの一方側のコア回転量を中実のプロットで、他方側のコア回転量を中空のプロットで、得られたデータを示している。図8から分かるように、従来例に比べ、実施例のほうが、明らかにコア回転量が減少していた。 In this experimental example, both the example and the conventional example were performed over a plurality. In FIG. 8, both the example and the conventional example show the obtained data with a solid plot of the core rotation amount on one side of the bead core of the tire and a hollow plot of the core rotation amount on the other side. ing. As can be seen from FIG. 8, the amount of core rotation was clearly reduced in the example compared to the conventional example.
 <実験例2>
 本発明者は、重荷重用タイヤとして、同じく275/80R22.5 M880BZのサイズのタイヤを用い、実施例と従来例とで、回転ドラムに重荷重用タイヤを装着して走行させ、走行距離に応じて段階的に荷重を上昇させていき、タイヤが破損するまで回転ドラムを回転させることで走行させる実験を行った。実験結果を図9に示す。
<Experimental example 2>
The present inventor used a tire of the same size as 275 / 80R22.5 M880BZ as the heavy load tire, and in the example and the conventional example, the heavy duty tire was mounted on the rotating drum and traveled, and according to the travel distance. An experiment was conducted in which the load was increased step by step and the rotating drum was rotated until the tire was damaged. The experimental results are shown in FIG.
 図9から分かるように、従来例に比べ、実施例のほうが約1500kmも走行距離が長いという結果になった。なお、本実験例では、実際のタイヤ使用時にかかる荷重よりも大きい荷重をかける促進試験を行っているので、実際の使用での走行距離に換算すると1500kmよりももっと長くなる。 As can be seen from FIG. 9, compared to the conventional example, the result is that the traveling distance of the example is about 1500 km longer. In this experimental example, an accelerated test is performed in which a load larger than the load applied when the tire is actually used is performed. Therefore, when converted to the travel distance in actual use, it becomes longer than 1500 km.
 <実験例3>
 本発明者は、コア最大幅及びコア断面積が異なるサンプルとして、実施例1~3、比較例1~4を準備し、実施例1~3、比較例1~4について、タイヤ重量、コア回転量、コア並進量、及びBF耐久性を測定した。測定結果は、表1に示す通りである。
<Experimental example 3>
The present inventor prepared Examples 1 to 3 and Comparative Examples 1 to 4 as samples having different core maximum widths and core cross-sectional areas. For Examples 1 to 3 and Comparative Examples 1 to 4, tire weight and core rotation were prepared. The amount, core translation, and BF durability were measured. The measurement results are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、タイヤ重量、コア回転量、コア並進量、BF耐久性は、実施例2での値を“100”として指数によって表されている。なお、BF耐久性とは、ドラム直進試験におけるタイヤの耐久時間・耐久距離を示す指標である。 In Table 1, the tire weight, the core rotation amount, the core translation amount, and the BF durability are represented by indexes with the value in Example 2 as “100”. The BF durability is an index indicating the durability time and the durability distance of the tire in the drum straight running test.
 BF耐久性については、指数は、指数の値が大きいほど、良好な結果が得られた旨を意味する。一方で、タイヤ重量、コア回転量、コア並進量については、指数は、指数の値が小さいほど、良好な結果が得られたことを意味する。なお、実施例1~3で得られた結果と、比較例1~4で得られた結果との比較にあたり、タイヤ重量については、実施例3との比較で評価を行った。 As for BF durability, the index means that the larger the index value, the better results were obtained. On the other hand, for the tire weight, the core rotation amount, and the core translation amount, the index means that the smaller the index value, the better the result. In comparison between the results obtained in Examples 1 to 3 and the results obtained in Comparative Examples 1 to 4, the tire weight was evaluated by comparison with Example 3.
 表1に示すように、実施例1~3では、コア最大幅が10mm以上かつ30mm以下、であり、ビードコア断面積が70mm以上かつ240mm以下となっている。実施例1及び実施例3では、実施例2と比較して、コア回転量、及びコア並進量が小さくなっていることが分かる。さらに、BF耐久性が向上していることが分かる。 As shown in Table 1, in Examples 1 to 3, the maximum core width is 10 mm or more and 30 mm or less, and the bead core cross-sectional area is 70 mm 2 or more and 240 mm 2 or less. In Example 1 and Example 3, it turns out that the amount of core rotation and the amount of core translation are small compared with Example 2. FIG. Furthermore, it turns out that BF durability is improving.
 実施例1及び実施例3では、実施例2と比較してタイヤ重量が増加しているが、その増加量は1割未満で収まっており、許容できる範囲である。 In Example 1 and Example 3, the tire weight is increased as compared with Example 2, but the increase is less than 10% and is in an acceptable range.
 比較例1では、ビードコア断面積が70mm以上かつ240mm以下となっているものの、コア最大幅が10mmよりも小さくなっている。表1に示すように、比較例1では、実施例1~3と比較してコア回転量が増加し、また、BF耐久性が悪化することが確認できる。よって、コア最大幅を10mmよりも小さくした場合、コア回転量及びBF耐久性が悪化することが分かる。 In Comparative Example 1, although the bead core cross-sectional area is 70 mm 2 or more and 240 mm 2 or less, the core maximum width is smaller than 10 mm. As shown in Table 1, in Comparative Example 1, it can be confirmed that the core rotation amount is increased and the BF durability is deteriorated as compared with Examples 1 to 3. Therefore, it can be seen that when the core maximum width is made smaller than 10 mm, the core rotation amount and the BF durability deteriorate.
 比較例2では、ビードコア断面積が70mm以上かつ240mm以下となっているものの、コア最大幅が30mmよりも大きくなっている。表1に示すように、比較例2では、実施例1~3と比較してタイヤ重量が増加していることが確認できる。特に、タイヤ重量は実施例2と比較して5割増加しており、許容できる範囲を超えている。よって、コア最大幅を30mmよりも大きくした場合、タイヤ重量が悪化することが分かる In Comparative Example 2, the bead core cross-sectional area is 70 mm 2 or more and 240 mm 2 or less, but the core maximum width is larger than 30 mm. As shown in Table 1, in Comparative Example 2, it can be confirmed that the tire weight is increased as compared with Examples 1 to 3. In particular, the tire weight is increased by 50% compared to Example 2, which exceeds the allowable range. Therefore, it can be seen that the tire weight deteriorates when the maximum core width is larger than 30 mm.
 比較例3では、コア最大幅が10mm以上かつ30mm以下となっているものの、ビードコア断面積が70mmよりも小さくなっている。表1に示すように、比較例3では、実施例1~3と比較してコア並進量が増加し、また、BF耐久性が悪化することが確認できる。よって、ビードコア断面積を70mmよりも小さくした場合、コア並進量及びBF耐久性が悪化することが分かる。 In Comparative Example 3, although the maximum core width is 10 mm or more and 30 mm or less, the bead core cross-sectional area is smaller than 70 mm 2 . As shown in Table 1, it can be confirmed that in Comparative Example 3, the amount of core translation increases compared to Examples 1 to 3, and the BF durability deteriorates. Therefore, it can be seen that when the cross-sectional area of the bead core is smaller than 70 mm 2 , the core translation amount and the BF durability are deteriorated.
 比較例4では、コア最大幅が10mm以上かつ30mm以下となっているものの、ビードコア断面積が240mmよりも大きくなっている。表1に示すように、比較例4では、実施例1~3と比較してタイヤ重量が増加し、またコア並進量が増加していることが確認できる。よって、ビードコア断面積を240mmよりも大きくした場合、タイヤ重量及びコア並進量が悪化することが分かる。 In Comparative Example 4, the maximum core width is 10 mm or more and 30 mm or less, but the bead core cross-sectional area is larger than 240 mm 2 . As shown in Table 1, in Comparative Example 4, it can be confirmed that the tire weight is increased and the core translation amount is increased as compared with Examples 1 to 3. Therefore, it can be seen that when the bead core cross-sectional area is larger than 240 mm 2 , the tire weight and the core translation amount deteriorate.
 上述したように、実施例1~3では、コア最大幅が10mm以上かつ30mm以下であって、ビードコア断面積が70mm以上かつ240mm以下となっている。そのため、実施例1~3によれば、比較例1~4と比較して、タイヤ重量を軽量化しながら、同時に、ビードコア12の回転及び並進を効果的に抑制できることが確認された。さらにBF耐久性を向上できることが確認された。 As described above, in Examples 1 to 3, the maximum core width is 10 mm or more and 30 mm or less, and the bead core cross-sectional area is 70 mm 2 or more and 240 mm 2 or less. Therefore, according to Examples 1 to 3, it was confirmed that rotation and translation of the bead core 12 can be effectively suppressed at the same time while reducing the tire weight as compared with Comparative Examples 1 to 4. Furthermore, it was confirmed that BF durability can be improved.
 <実験例4>
 本発明者は、表2に示すように、コア底面幅D、コアでっぱりA、コア最大幅B及びコア断面積が異なるサンプルとして、従来例、実施例4、比較例5~8を準備して、BF耐久性、タイヤ重量、コア回転量、コア並進量及びフランジ圧を測定した。測定結果は、表2に示す通りである。
<Experimental example 4>
As shown in Table 2, the present inventor prepared conventional examples, examples 4 and comparative examples 5 to 8 as samples having different core bottom surface width D, core drip A, core maximum width B, and core cross-sectional area. , BF durability, tire weight, core rotation amount, core translation amount and flange pressure were measured. The measurement results are as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 従来例は、左右対称のビードコアを用いたサンプルである。実施例4、比較例5~8は、コア底面幅D、コアでっぱりA、コア最大幅B及びコア断面積を表2に示すように変更したサンプルである。表2において、コア底面幅D、コアでっぱりA、コア最大幅B及びコア断面積は、実験例3(表1)とは異なり、従来例での値を“100”として指数によって表されている。なお、コアでっぱりAは、図1に示すように、タイヤ幅方向TD及びタイヤ径方向TRに沿った断面において、底面12Bに沿った方向において、底面12Bの最内側端から最内部分12IEまでの距離である。 The conventional example is a sample using a symmetrical bead core. Example 4 and Comparative Examples 5 to 8 are samples in which the core bottom surface width D, the core stretch A, the core maximum width B, and the core cross-sectional area are changed as shown in Table 2. In Table 2, the core bottom surface width D, the core pulling A, the core maximum width B, and the core cross-sectional area are represented by indices with the value in the conventional example being “100”, unlike Experimental Example 3 (Table 1). . As shown in FIG. 1, the core A has a section from the innermost end of the bottom surface 12B to the innermost portion 12IE in the direction along the bottom surface 12B in the cross section along the tire width direction TD and the tire radial direction TR. Distance.
 なお、BF耐久性、タイヤ重量、コア回転量、コア並進量及びフランジ圧は、従来例を“100”として指数によって表されている。フランジ圧について、指数の値が小さいほど、良好な結果が得られたことを意味する。BF耐久性、タイヤ重量、コア回転量、コア並進量についての指数は、実験例3(表1)と同様である。 The BF durability, the tire weight, the core rotation amount, the core translation amount, and the flange pressure are represented by indices with the conventional example being “100”. For the flange pressure, the smaller the index value, the better the result. The indices for BF durability, tire weight, core rotation amount, and core translation amount are the same as in Experimental Example 3 (Table 1).
 表2に示すように、実施例4では、BF耐久性、コア回転量、コア並進量及びフランジ圧については従来例と同等のレベルを確保しながらも、タイヤ重量については従来例よりも向上することが確認された。 As shown in Table 2, in Example 4, the BF durability, the core rotation amount, the core translation amount, and the flange pressure are secured at the same level as the conventional example, but the tire weight is improved as compared with the conventional example. It was confirmed.
 一方で、左右対称の形状を維持しながら、底面12Bに沿った方向においてビードコアの幅が縮小された比較例5では、タイヤ重量が軽量化されるが、BF耐久性、コア回転量、コア並進量及びフランジ圧がいずれも悪化することが確認された。 On the other hand, in Comparative Example 5 in which the width of the bead core is reduced in the direction along the bottom surface 12B while maintaining the symmetrical shape, the tire weight is reduced, but the BF durability, the core rotation amount, and the core translation are reduced. It was confirmed that both the amount and the flange pressure deteriorated.
 左右対称の形状を維持しながら、コア底面幅Dのみが縮小された比較例6では、タイヤ重量が軽量化されるが、BF耐久性、コア回転量、コア並進量及びフランジ圧がいずれも悪化することが確認された。 In Comparative Example 6 in which only the core bottom width D is reduced while maintaining a symmetrical shape, the tire weight is reduced, but the BF durability, the core rotation amount, the core translation amount, and the flange pressure are all deteriorated. Confirmed to do.
 左右対称の形状を維持しながら、コア最大幅Bのみが縮小された比較例7では、タイヤ重量が増加しており、タイヤ重量を十分に軽量化することができないことが確認された。 In Comparative Example 7 in which only the core maximum width B was reduced while maintaining a symmetrical shape, it was confirmed that the tire weight was increased and the tire weight could not be reduced sufficiently.
 コアでっぱりAを減少するとともに、コア断面積が縮小された比較例8では、タイヤ重量が軽量化されるが、BF耐久性、コア回転量、コア並進量及びフランジ圧がいずれも悪化することが確認された。 In Comparative Example 8, in which A is reduced by the core and the cross-sectional area of the core is reduced, the tire weight is reduced, but the BF durability, the core rotation amount, the core translation amount, and the flange pressure may all be deteriorated. confirmed.
 上述したように、底面12Bの中心12BCから最内部分12IEまでの長さL1を底面12Bの中心12BCから最外部分12OEまでの長さL2よりも短く設定しながらも、ビードコア12の最大幅部分の幅(以下、コア最大幅)及びビードコア12の断面積を従来例と同様に維持することによって、タイヤ重量を軽量化しながら、同時に、ビードコア12の回転及び並進を効果的に抑制できることが確認された。 As described above, the maximum width portion of the bead core 12 is set while the length L1 from the center 12BC of the bottom surface 12B to the innermost portion 12IE is set shorter than the length L2 from the center 12BC of the bottom surface 12B to the outermost portion 12OE. It is confirmed that the rotation and translation of the bead core 12 can be effectively suppressed at the same time while reducing the tire weight by maintaining the width (hereinafter referred to as the core maximum width) and the cross-sectional area of the bead core 12 in the same manner as the conventional example. It was.
 以上説明した実施形態は、本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は当該実施形態に限定されるものではない。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。 The embodiment described above is merely an example described for facilitating the understanding of the present invention, and the present invention is not limited to the embodiment. The technical scope of the present invention is not limited to the specific technical matters disclosed in the above embodiment, but includes various modifications, changes, alternative techniques, and the like that can be easily derived therefrom.
 本出願は、2014年5月26日に出願された日本国特許願第2014-107986号に基づく優先権、および2015年3月27日に出願された日本国特許願第2015-066250号に基づく優先権、を主張しており、これらの出願の全内容が参照により本明細書に組み込まれる。 This application is based on the priority based on Japanese Patent Application No. 2014-107986 filed on May 26, 2014 and on the basis of Japanese Patent Application No. 2015-0666250 filed on March 27, 2015. Priority, and the entire contents of these applications are incorporated herein by reference.
 本発明によれば、タイヤ重量を軽量化し、かつ、ビードコアの回転及び並進を効果的に抑制できる重荷重用タイヤを提供することができる。 According to the present invention, it is possible to provide a heavy duty tire capable of reducing the weight of the tire and effectively suppressing the rotation and translation of the bead core.
  1 重荷重用タイヤ
  10  ビード部
  12  ビードコア
  12J、12K  部分
  20  カーカスプライ
  12B  底面
  12IE  最内部分
  12OE  最外部分
  N  法線
1 Heavy load tire 10 Bead portion 12 Bead core 12J, 12K portion 20 Carcass ply 12B Bottom surface 12IE Innermost portion 12OE Outermost portion N Normal

Claims (4)

  1.  リムフランジに組み付けられる1対のビード部と、前記1対のビード部の間に跨るカーカスプライと、を備える重荷重用タイヤであって、
     前記1対のビード部は、それぞれ、底面を有するビードコアを備えており、
     前記ビードコアは、タイヤ径方向断面において、前記底面のタイヤ幅方向中心からタイヤ幅方向の最も内側に位置する最内部分までの長さL1が、前記底面のタイヤ幅方向中心からタイヤ幅方向の最も外側に位置する最外部分までの長さL2よりも短くされ、かつ、タイヤ幅方向長さがタイヤ径方向長さよりも長くされており、
     プライ振り出し角度θが50°以下であることを特徴とする重荷重用タイヤ。
    A heavy-duty tire comprising a pair of bead portions assembled to a rim flange and a carcass ply straddling the pair of bead portions,
    Each of the pair of bead portions includes a bead core having a bottom surface;
    In the cross section in the tire radial direction, the bead core has a length L1 from the center in the tire width direction on the bottom surface to the innermost portion located on the innermost side in the tire width direction, which is the longest in the tire width direction from the center in the tire width direction on the bottom surface. It is shorter than the length L2 to the outermost part located outside, and the tire width direction length is longer than the tire radial direction length,
    A heavy duty tire having a ply swing angle θ of 50 ° or less.
  2.  請求項1に記載の重荷重用タイヤであって、
     前記タイヤ径方向断面において、前記底面に沿った方向における幅であって、前記ビードコアの最大幅部分の幅は、10mm以上かつ30mm以下であり、
     前記タイヤ径方向断面において、前記ビードコアの断面積は、70mm以上かつ240mm以下であり、
     15°DCリムを装着すること
    を特徴とする重荷重用タイヤ。
    The heavy duty tire according to claim 1,
    In the tire radial direction cross section, the width in the direction along the bottom surface, the width of the maximum width portion of the bead core is 10 mm or more and 30 mm or less,
    In the tire radial direction cross section, the cross-sectional area of the bead core is 70 mm 2 or more and 240 mm 2 or less,
    A heavy duty tire equipped with a 15 ° DC rim.
  3.  請求項1又は2に記載の重荷重用タイヤであって、
     前記最外部分は、前記最内部分よりもタイヤ径方向外側に位置すること
    を特徴とする重荷重用タイヤ。
    The heavy duty tire according to claim 1 or 2,
    The outermost portion is located on the outer side in the tire radial direction with respect to the innermost portion.
  4.  請求項1ないし3のいずれか一項に記載の重荷重用タイヤであって、
     前記タイヤ径方向断面において、前記底面の中心を通り、かつ、前記底面に対して垂直な方向に沿って延びる法線によって、前記ビードコアを2つの部分に分けた場合に、前記最外部分を含む部分の断面積は、前記最内部分を含む部分の断面積よりも大きいこと
    を特徴とする重荷重用タイヤ。
     
     
    The heavy duty tire according to any one of claims 1 to 3,
    In the tire radial direction cross section, the outermost portion is included when the bead core is divided into two portions by a normal line that passes through the center of the bottom surface and extends along a direction perpendicular to the bottom surface. A heavy duty tire characterized in that a cross-sectional area of the portion is larger than a cross-sectional area of the portion including the innermost portion.

PCT/JP2015/064134 2014-05-26 2015-05-18 Heavy-load tire WO2015182413A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014107986 2014-05-26
JP2014-107986 2014-05-26
JP2015-066250 2015-03-27
JP2015066250 2015-03-27

Publications (1)

Publication Number Publication Date
WO2015182413A1 true WO2015182413A1 (en) 2015-12-03

Family

ID=54698750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064134 WO2015182413A1 (en) 2014-05-26 2015-05-18 Heavy-load tire

Country Status (1)

Country Link
WO (1) WO2015182413A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139803A (en) * 1974-08-05 1976-04-03 Michelin & Cie Taiyagaihino kairyo
JPS5391205A (en) * 1976-12-13 1978-08-10 Pirelli Tubeless tire
JPH09263113A (en) * 1995-11-29 1997-10-07 Bridgestone Corp 15× taper radial tire for truck and bus
JP2003104016A (en) * 2001-09-28 2003-04-09 Bridgestone Corp Pneumatic tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139803A (en) * 1974-08-05 1976-04-03 Michelin & Cie Taiyagaihino kairyo
JPS5391205A (en) * 1976-12-13 1978-08-10 Pirelli Tubeless tire
JPH09263113A (en) * 1995-11-29 1997-10-07 Bridgestone Corp 15× taper radial tire for truck and bus
JP2003104016A (en) * 2001-09-28 2003-04-09 Bridgestone Corp Pneumatic tire

Similar Documents

Publication Publication Date Title
JP6241920B2 (en) Pneumatic tire
JP6450320B2 (en) Pneumatic tire
WO2014084370A1 (en) Pneumatic tire
RU2618358C2 (en) Pneumatic tire
JP6514616B2 (en) Heavy duty tire
WO2013111576A1 (en) Pneumatic tire
JP5257185B2 (en) Pneumatic tire
JP6848356B2 (en) Pneumatic tires
WO2015063978A1 (en) Tire
JP6282930B2 (en) Pneumatic tire
JP4555873B2 (en) Heavy duty tire
JP6450112B2 (en) Pneumatic tire
JP2013039851A (en) Pneumatic tire
WO2015105084A1 (en) Pneumatic tire
WO2015182413A1 (en) Heavy-load tire
JP6450111B2 (en) Pneumatic tire
JP6294792B2 (en) Pneumatic tire
JP6058316B2 (en) Pneumatic tire
JP5742122B2 (en) Pneumatic tire
JP2008260348A (en) Pneumatic tire
WO2014065298A1 (en) Pneumatic tire
JP2007106174A (en) Pneumatic tire
JP6352666B2 (en) tire
JP6294791B2 (en) Pneumatic tire
JP5823795B2 (en) Heavy duty pneumatic radial tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP