WO2015182217A1 - 監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム - Google Patents

監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム Download PDF

Info

Publication number
WO2015182217A1
WO2015182217A1 PCT/JP2015/057549 JP2015057549W WO2015182217A1 WO 2015182217 A1 WO2015182217 A1 WO 2015182217A1 JP 2015057549 W JP2015057549 W JP 2015057549W WO 2015182217 A1 WO2015182217 A1 WO 2015182217A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
new
monitoring
calibration
server
Prior art date
Application number
PCT/JP2015/057549
Other languages
English (en)
French (fr)
Inventor
貴裕 戸泉
永典 實吉
鈴木 勝也
康将 本間
龍 橋本
耕治 工藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016523355A priority Critical patent/JP6597606B2/ja
Priority to US15/314,766 priority patent/US10274573B2/en
Publication of WO2015182217A1 publication Critical patent/WO2015182217A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • G01D4/004Remote reading of utility meters to a fixed location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/063Details of electronic electricity meters related to remote communication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2204/00Indexing scheme relating to details of tariff-metering apparatus
    • G01D2204/20Monitoring; Controlling
    • G01D2204/24Identification of individual loads, e.g. by analysing current/voltage waveforms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Definitions

  • the present invention relates to a monitoring system, a monitoring device, a server, a monitoring device operating method, a server operating method, and a program.
  • the total power consumption value (instantaneous value, etc.) of a predetermined monitoring unit (electric equipment group that consumes power on each floor of each home, company, building, etc.) is directed to the user.
  • the functions to be provided are being standardized.
  • each electric device can be grasped by attaching a measuring device to each electric device, for example.
  • a measuring device to each electric device
  • the work burden of attaching a measuring instrument to each electric device is large.
  • the number of electrical devices increases, the number of measuring instruments also increases, increasing the cost burden.
  • a measuring instrument is installed in a power supply trunk such as a power feed inlet and a distribution board, and the operating state of each electrical device is measured using measurement data (total current consumption waveform, etc.) measured by the measuring instrument.
  • a technique for estimating the above is disclosed.
  • a feature amount (teacher feature amount) during operation of each electric device and a feature amount (teacher feature amount) when a plurality of electric devices operate are prepared in advance.
  • the operating state of each electric apparatus is estimated based on the feature-value extracted from the measurement data measured by the power supply trunk part, and the teacher feature-value prepared beforehand.
  • Patent Document 2 discloses a technique for generating a teacher feature value indicating a feature value during operation of each electrical device. Specifically, the electrical equipment in the house to be measured is operated one by one, and predetermined data (current consumption, etc.) is individually measured. And the feature-value is extracted from the measured data of each electric equipment, and the extracted feature-value is preserve
  • Patent Document 3 discloses a technique for estimating an operating state of an electrical device using feature information on the publicly available electrical device existing on the network. For example, it is disclosed that electrical equipment manufacturers, sellers, and the like disclose feature information of electrical equipment in advance on a network.
  • Patent Document 4 discloses a technique that can estimate the operating status of an electrical device with high accuracy even if the voltage waveform applied to the electrical device changes.
  • the operation status of the electric device is estimated using data in a predetermined section other than a section in which the fluctuation of the harmonic current with respect to the fluctuation of the power supply voltage is larger than the reference.
  • the inventors centrally manage the teacher data of each of the plurality of electric devices on the server, and send the teacher data from the server to each of the plurality of monitoring devices that estimate the operating state of the electric device corresponding to each monitoring unit.
  • Patent Document 3 discloses a technology in which electrical equipment manufacturers, sellers, and the like disclose feature information of electrical equipment on a network in advance. In the case of this technology, it is necessary for a manufacturer, a seller, or the like of an electric device to perform an operation for generating feature amount information, which is troublesome. None of Patent Documents 1, 2, and 4 disclose means for solving the problem.
  • An object of the present invention is to provide a new technique for managing teacher data of each of a plurality of electric devices by a server.
  • a plurality of monitoring devices, and a server that communicates with each of the plurality of monitoring devices The monitoring device is Due to at least one measurement data among current consumption, power consumption, and input voltage, teacher data including a feature amount during operation of each of the plurality of existing electric devices, and an installation environment of each of the plurality of existing electric devices Based on the calibration data for each of the existing electrical devices for calibrating the variation appearing in the measurement data, new device data including the feature quantity of the new electrical device different from the existing electrical device from the measurement data
  • Monitoring means for extracting Calibration data generating means for generating the first calibration data of the new electrical device based on the calibration data of the existing electrical device; Calibration means for calibrating the new device data based on the first calibration data; Receiving means for receiving input of identification information of the new electrical device; Transmitting means for associating the identification information of the new electrical device with the new device data calibrated based on the first calibration data, and transmitting to the server; Have The server Receiving means for receiving the new device data after calibration of the
  • the present invention Due to at least one measurement data among current consumption, power consumption, and input voltage, teacher data including a feature amount during operation of each of the plurality of existing electric devices, and an installation environment of each of the plurality of existing electric devices Based on the calibration data for each of the existing electrical devices for calibrating the variation appearing in the measurement data, new device data including the feature quantity of the new electrical device different from the existing electrical device from the measurement data
  • Monitoring means for extracting Calibration data generating means for generating the first calibration data of the new electrical device based on the calibration data of the existing electrical device; Calibration means for calibrating the new device data based on the first calibration data;
  • Receiving means for receiving input of identification information of the new electrical device; Transmitting means for associating the identification information of the new electrical device with the new device data calibrated based on the first calibration data, and transmitting it to a server; Is provided.
  • a feature amount of a new electric device extracted from at least one measurement data among current consumption, power consumption and input voltage from a plurality of monitoring devices, and the measurement due to an installation environment of the new electric device Receiving means for receiving new equipment data after calibrating fluctuations appearing in the data, and identification information of the new electrical equipment; Teacher data generation means for generating the teacher data of the new electrical device based on the new device data after calibration of the new electrical device received from each of the plurality of monitoring devices, and registering the teacher data in the teacher data storage means;
  • a server is provided.
  • Computer Due to at least one measurement data among current consumption, power consumption, and input voltage, teacher data including a feature amount during operation of each of the plurality of existing electric devices, and an installation environment of each of the plurality of existing electric devices Based on the calibration data for each of the existing electrical devices for calibrating the variation appearing in the measurement data, new device data including the feature quantity of the new electrical device different from the existing electrical device from the measurement data Monitoring means to extract, Calibration data generating means for generating the first calibration data of the new electrical device based on the calibration data of the existing electrical device; Calibration means for calibrating the new device data based on the first calibration data; Accepting means for accepting input of identification information of the new electrical device; Transmitting means for associating the identification information of the new electrical device with the new device data calibrated based on the first calibration data, and transmitting to the server; A program for functioning as a server is provided.
  • Computer A feature amount of a new electric device extracted from at least one measurement data among current consumption, power consumption and input voltage from a plurality of monitoring devices, and the measurement due to an installation environment of the new electric device
  • Receiving means for receiving new equipment data after calibrating fluctuations appearing in the data, and identification information of the new electrical equipment
  • Teacher data generation means for generating the teacher data of the new electric device based on the new device data after calibration of the new electric device received from each of the plurality of monitoring devices, and registering the teacher data in the teacher data storage means
  • a program for functioning as a server is provided.
  • Computer Due to at least one measurement data among current consumption, power consumption, and input voltage, teacher data including a feature amount during operation of each of the plurality of existing electric devices, and an installation environment of each of the plurality of existing electric devices Based on the calibration data for each of the existing electrical devices for calibrating the variation appearing in the measurement data, new device data including the feature quantity of the new electrical device different from the existing electrical device from the measurement data Monitoring process to extract A calibration data generation step of generating the first calibration data of the new electrical device based on the calibration data of the existing electrical device; A calibration step of calibrating the new device data based on the first calibration data; A reception step for receiving input of identification information of the new electrical device; A transmission step of associating the identification information of the new electrical device with the new device data calibrated based on the first calibration data, and transmitting to the server; There is provided a method of operating a monitoring device that performs the above.
  • Computer A feature amount of a new electric device extracted from at least one measurement data among current consumption, power consumption and input voltage from a plurality of monitoring devices, and the measurement due to an installation environment of the new electric device
  • a receiving step of receiving new device data after calibrating fluctuations appearing in the data, and identification information of the new electric device
  • a method of operating a server that performs is provided.
  • a new technique for managing teacher data of each of a plurality of electrical devices by a server is realized.
  • Each unit included in the apparatus according to the present embodiment includes a CPU (Central Processing Unit) of an arbitrary computer, a memory, a program loaded in the memory (a program stored in the memory from the stage of shipping the apparatus in advance, a CD ( Compact Disc) and other storage media and programs downloaded from servers on the Internet), storage units such as hard disks that store the programs, and any combination of hardware and software, mainly a network connection interface It is realized by. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
  • a CPU Central Processing Unit
  • FIG. 1 is a diagram conceptually illustrating an example of a hardware configuration of an apparatus according to the present embodiment.
  • the apparatus according to the present embodiment includes, for example, a CPU 1A, a RAM (Random Access Memory) 2A, a ROM (Read Only Memory) 3A, a display control unit 4A, a display 5A, and operation reception that are connected to each other via a bus 10A.
  • other elements such as an input / output interface connected to an external device by wire, a microphone, and a speaker may be provided.
  • the CPU 1A controls the entire computer of the apparatus together with each element.
  • the ROM 3A includes an area for storing programs for operating the computer, various application programs, various setting data used when these programs operate.
  • the RAM 2A includes an area for temporarily storing data, such as a work area for operating a program.
  • the auxiliary storage device 9A is, for example, an HDD (Hard Disc Drive), and can store a large amount of data.
  • the display 5A is, for example, a display device (LED (Light Emitting Diode) display, liquid crystal display, organic EL (Electro Luminescence) display, etc.).
  • the display 5A may be a touch panel display integrated with a touch pad.
  • the display control unit 4A reads data stored in a VRAM (Video RAM), performs predetermined processing on the read data, and then sends the data to the display 5A to display various screens.
  • the operation reception unit 6A receives various operations via the operation unit 7A.
  • the operation unit 7A includes operation keys, operation buttons, switches, a jog dial, a touch panel display, a keyboard, and the like.
  • the communication unit 8A is wired and / or wirelessly connected to a network such as the Internet or a LAN (Local Area Network) and communicates with other electronic devices.
  • each monitoring device provided corresponding to each monitoring unit including a plurality of electric devices acquires measurement data of a predetermined electric device included in each monitoring unit.
  • a monitoring apparatus extracts the feature-value from the said measurement data, performs a required process, and transmits the said data to a server.
  • the server collects data of various electric devices from a plurality of monitoring devices. Then, the server generates teacher data for each electrical device based on the collected data. In this way, the server generates teacher data for various electric devices and centrally manages them.
  • the server provides teacher data of a predetermined electrical device to each monitoring device in response to a request from each of the plurality of monitoring devices. Then, the monitoring device that has received the teacher data from the server uses the received teacher data to estimate the operating state of the electrical device included in the corresponding monitoring unit.
  • FIG. 2 shows measurement data when the same electrical equipment placed in each of the first installation environment and the second installation environment different from each other is operated in the same manner. As shown in the figure, the measurement data of each other do not completely match, and there is a deviation. Among the feature amounts extracted from each of such measurement data, those having different values are included.
  • the wiring status in each monitoring unit specifically, the length of the wiring between the measuring instrument that measures the current consumption, power consumption, voltage consumption, etc. and the electrical equipment
  • the length from the distribution board to each outlet connected to each electrical device, the number of branches from the distribution board, the length of the cable provided in each electrical device, and an extension cord between the outlet and each electrical device Whether there is an extension cord or the length of the extension cord can be considered.
  • the type of measuring instrument e.g., transformers, substations, large-scale power in the surroundings
  • the teacher data of each electrical device is generated, and the teacher data is provided to a plurality of monitoring devices to estimate the operating state of the electrical device
  • the feature amount of the teacher data of the first electrical device managed by the server and the feature amount extracted from the measurement data of the first electrical device measured in a certain monitoring unit There can be a difference between them. As a result, the estimation accuracy of the operating state of the electrical device in the monitoring unit is deteriorated.
  • the monitoring system of the present embodiment is configured to generate teacher data for each of a plurality of electrical devices and manage them with a server in consideration of fluctuations in measurement data caused by the installation environment of the electrical devices. ing.
  • the monitoring unit only needs to be able to measure at least one of the total current consumption, the total power consumption, and the total input voltage in the unit, and the determination method is a design matter.
  • an electrical device group distributed panel unit
  • a group of electric devices (table tap units) that receive the supply can be used as one monitoring unit.
  • the outlet unit and the table tap unit by installing a measurement sensor in the outlet or the table tap, at least one of the total current consumption, the total power consumption, and the total input voltage can be measured in these units.
  • a group of electrical devices whose power and current values are measured by a watt-hour meter (Smart Meter: Smart Meter) that measures power digitally and has a communication function in the meter is a single monitoring unit (smart meter unit) ).
  • FIG. 3 is an overall schematic diagram of the monitoring system of the present embodiment.
  • the monitoring system of this embodiment includes a server 10 connected to a network 30 such as the Internet or a LAN, and a plurality of monitoring devices 20.
  • FIG. 23 shows an application example of the monitoring system of the present embodiment shown in FIG.
  • a plurality of electrical devices 60 that receive power supply via the distribution board 40 are one monitoring unit.
  • the monitoring device 20 is installed in the same area as the plurality of electric devices 60 included in the monitoring unit.
  • the monitoring apparatus 20 is comprised so that measurement data may be acquired from the measuring device 50 installed in the distribution board 40.
  • the server 10 manages teacher data for each of a plurality of electrical devices.
  • the teacher data includes a feature amount that appears in the measurement data when each electric device is operating. Then, the server 10 transmits teacher data of a predetermined electrical device to the monitoring device 20 in response to a request from the monitoring device 20.
  • FIG. 4 shows an example of teacher data stored in the server 10.
  • the information shown in FIG. 4 includes a teacher data ID for identifying each of a plurality of teacher data stored in the server 10, an electric device ID (such as a model number) for identifying each of the plurality of electric devices, and each electric The feature quantities appearing in the measurement data when the device is in operation are associated with each other.
  • the feature amount is a feature amount that can be specified by using at least one measurement data (waveform data) among current consumption, input voltage, and power consumption.
  • waveform data for example, the frequency strength / phase (harmonic component) of the current consumption, Phase, change in current consumption, average value, peak value, effective value, crest factor, waveform rate, current change convergence time, energization time, peak position, time difference between voltage peak position and current consumption peak position Or power factor.
  • the feature amount is not limited to the example here.
  • the monitoring device 20 is provided for each monitoring unit. Then, the monitoring device 20 estimates the operating state of the electric device included in the monitoring unit. Specifically, the monitoring device 20 acquires the teacher data of each electric device included in the monitoring unit monitored by the own device from the server 10 and holds it. Moreover, the monitoring device 20 holds calibration data for calibrating fluctuations appearing in measurement data due to the installation environment of each electrical device for each electrical device.
  • the calibration data is in a direction to eliminate the difference between the feature amount included in the teacher data of each electrical device acquired from the server 10 and the feature amount extracted from the measurement data of each electrical device measured in each installation environment. This is data for calibrating at least one feature amount.
  • the monitoring device 20 acquires measurement data (waveform data) including at least one of total current consumption, total power consumption, and total input voltage in a predetermined monitoring unit, the measurement data, the teacher data, The operating state of the electrical device is estimated using the calibration data.
  • new electric device a new electric device
  • the monitoring device 20 transmits the teacher data of the new electric device. Therefore, it is impossible to estimate the operating state of the electric equipment included in the monitoring unit.
  • the feature amount obtained by adding the feature amounts of the electric devices A to C is extracted from the measurement data. For this reason, after calibrating the feature values of each electrical device that is held, add any combination and compare it with the feature value extracted from the measurement data to determine which electrical device is operating. Can be identified. However, if a component of a new electrical device that does not include teacher data is included in the operating electrical device, any combination of the feature quantities of the retained electrical devices can be added. Does not match the feature value extracted from the measurement data.
  • the monitoring device 20 determines that a new electric device (new electric device) has been added to the monitoring unit when it detects a state where the operating state of the electric device cannot be estimated.
  • a new electric device new electric device
  • the server 10 may not hold the teacher data of such a new product. Therefore, when the monitoring device 20 detects that a new electrical device has been added to the monitoring unit, the monitoring device 20 extracts data relating to the new electrical device from the measurement data and transmits the data to the server 10.
  • the monitoring device 20 obtains the measurement data (waveform data) of the new electric device by calculating the difference between the measurement data before and after the operation state cannot be estimated. And the monitoring apparatus 20 extracts the feature-value from the said measurement data. In this way, the monitoring device 20 can acquire the feature amount of the new electric device.
  • the monitoring device 20 generates first calibration data for a new electrical device based on the calibration data of the existing electrical device included in the monitoring unit.
  • the calibration data generated in this way cannot be said to completely reflect the installation environment of the new electrical equipment.
  • the installation environment of electrical devices included in the same monitoring unit has parts that are similar or common to each other. For this reason, it is possible to generate calibration data for a new electrical device with a certain degree of accuracy by using the calibration data of an existing electrical device included in the same monitoring unit.
  • the monitoring device 20 calibrates the feature quantity of the new electrical device using the first calibration data.
  • the monitoring device 20 accepts input of identification information of a newly added new electric device from the user. Then, the monitoring device 20 associates the post-calibration feature amount of the new electric device with the identification information of the new electric device input from the user, and transmits the associated information to the server 10.
  • the server 10 acquires the post-calibration feature amount of the new electrical device transmitted from the plurality of monitoring devices 20 in this way. Then, the server 10 uses the acquired feature values after calibration, for example, performs a process such as averaging on the plurality of corrected feature values acquired from the plurality of monitoring devices 20, and Create new teacher data. As described above, teacher data for a plurality of electrical devices is accumulated in the server 10.
  • FIG. 5 shows an example of a functional block diagram of the monitoring device 20.
  • the monitoring device 20 includes a monitoring unit 21, a calibration data generation unit 22, a calibration unit 23, a reception unit 24, and a transmission unit 25.
  • a monitoring unit 21 includes a monitoring unit 21, a calibration data generation unit 22, a calibration unit 23, a reception unit 24, and a transmission unit 25.
  • the monitoring unit 21 calibrates the teacher data including the feature amount at the time of operation of each of the plurality of electric devices included in the monitoring unit, and the variation that appears in the measurement data due to the installation environment of each of the plurality of electric devices. It holds calibration data for each device.
  • an electrical device in which the monitoring unit 21 holds teacher data and calibration data is referred to as “existing electrical device”.
  • the monitoring unit 21 acquires at least one measurement data (waveform data) from the total current consumption, the total power consumption, and the total input voltage in the monitoring unit from the measurement device.
  • the measuring device may be installed on a distribution board, an outlet, a table tap, or the like. Further, the measuring device may be a so-called smart meter.
  • the monitoring unit 21 selects an electric device (new electric device) different from the existing electric device from the measurement data.
  • Data new device data including the component (feature value).
  • the new device data is a feature amount when the new device data is in operation.
  • FIG. 6 schematically shows an example of teacher data and calibration data held by the monitoring unit 21.
  • a teacher data ID an electric device ID, a device name, a feature amount during operation of the electric device, and calibration data of the electric device are associated with each other.
  • the data is generated based on data acquired from the server 10 or the like.
  • generates the data shown in FIG. 6 is demonstrated, it is not limited to this.
  • the monitoring device 20 when the monitoring device 20 is installed corresponding to a certain monitoring unit, the monitoring device 20 acquires the electric device ID (model number, etc.) of the electric device included in the monitoring unit. For example, the monitoring device 20 may accept an input of an electric device ID from the user. In addition, if wireless and / or wired communication is possible between the monitoring device 20 and the electric device, the monitoring device 20 may acquire the electric device ID from each of the electric devices via the communication. .
  • the monitoring device 20 When the monitoring device 20 acquires the electric device ID, the monitoring device 20 transmits the teacher data request to the server 10 with the acquired electric device ID.
  • the server 10 searches the own storage device in response to the request (see FIG. 4). Then, the server 10 takes out the teacher data associated with the electric device ID included in the request and returns it to the monitoring device 20.
  • the monitoring unit 21 stores the teacher data of the plurality of electrical devices acquired in this way.
  • the monitoring unit 21 generates calibration data for each electrical device using the acquired teacher data. For example, the monitoring unit 21 acquires measurement data for each electric device obtained by the user individually operating the electric device. And the monitoring part 21 extracts the feature-value from the said measurement data. Thereafter, the monitoring unit 21 eliminates the difference between the feature quantity of the first electrical device included in the teacher data and the feature quantity of the first electrical device obtained from the measurement data according to a predetermined algorithm.
  • Produce calibration data for The calibration data may be a function. For example, it may be a linear function that multiplies one feature amount by a predetermined coefficient, or may be a quadratic or higher function.
  • the calibration data may be a function that can be inversely transformed.
  • the monitoring unit 21 can accept a name for identifying each electric device from the user for each electric device.
  • the said name is used when notifying a user of the operating state of each electric equipment, for example. Based on the information obtained as described above, the monitoring unit 21 generates and manages data shown in FIG.
  • the monitoring unit 21 determines the operating states of a plurality of existing electrical devices included in the monitoring unit based on teacher data and calibration data as illustrated in FIG. 6 and measurement data (waveform data) acquired from the measurement device. Can be estimated. For example, the monitoring unit 21 extracts a predetermined feature amount from the measurement data. This feature amount is the sum of the feature amount at the time of operation of one electrical device operating at that time, or the feature amount at the time of operation of each of the plurality of electric devices operating at that time. .
  • the monitoring unit 21 obtains a calibrated feature value obtained by calibrating the feature value of each electrical device included in the teacher data with the calibration data of each electrical device. Note that the monitoring unit 21 may calculate and store the calibrated feature amount of each electrical device in advance. And the monitoring part 21 obtains the feature-value which added the feature-value after calibration with the combination of arbitrary electric equipments. Note that the monitoring unit 21 may hold such added feature amounts in advance.
  • FIG. 7 shows an example of the added feature amount.
  • the data shown in FIG. 7 includes a combined teacher data ID for identifying each combined teacher data generated by adding together the teacher data of each electrical device, and two or more teacher data based on each combined teacher data
  • the ID is associated with the feature amount obtained by adding the calibrated feature amount.
  • the monitoring unit 21 collates the feature amount extracted from the measurement data with the feature amount included in the teacher data (including the teacher data after calibration of each electric device and the combined teacher data), and matches the teacher data. Is identified. For example, the monitoring unit 21 inputs the feature amount extracted from the measurement data to the estimation model generated using the teacher data (including the teacher data after calibration of each electric device and the combined teacher data), and the estimation result (collation As a result, the ID of the matched teacher data (including the teacher data after calibration of each electric device and the combined teacher data) is obtained.
  • the estimation model can use, for example, multiple regression analysis, a neural network, a support vector machine, or the like.
  • the monitoring unit 21 can identify the electrical device that is operating at that time. And the monitoring apparatus 20 can output information as shown in FIG. 9, for example.
  • the device name (see FIG. 6) of the operating electrical device and the total power consumption are displayed.
  • the monitoring unit 21 does not hold teacher data of the new electric device. For this reason, when the component of a new electric equipment is contained in measurement data, the monitoring part 21 cannot estimate the operating state of the electric equipment contained in the monitoring unit. That is, the monitoring unit 21 obtains a result that there is no matching teacher data (including teacher data after calibration of each electrical device and summation teacher data).
  • the monitoring unit 21 determines that a new electric device has been added to the monitoring unit. For example, the monitoring unit 21 matches teacher data (including teacher data after calibrating each electrical device and combined teacher data) obtained by inputting the feature amount extracted from the measurement data into the estimation model. May be determined that a new electrical device has been added to the monitoring unit.
  • the monitoring unit 21 calculates the number of detections, the detection frequency, and the like of the state where the operating state of the electrical device cannot be estimated, and determines that a new electrical device has been added to the monitoring unit when the value exceeds a predetermined threshold. May be.
  • the monitoring unit 21 After determining that a new electrical device has been added to the monitoring unit, for example, the monitoring unit 21 changes a boundary from a state where the operating state of the electrical device can be estimated to a state where the operating state of the electrical device can no longer be estimated.
  • Measurement data (waveform data) of a new electric device can be obtained.
  • the monitoring unit 21 can obtain new device data including the feature amount of the new electrical device by extracting a predetermined feature amount from the measurement data (waveform data).
  • the calibration data generation unit 22 when the monitoring unit 21 extracts new device data, the calibration data generation unit 22 generates first calibration data of the new electrical device based on the calibration data of the existing electrical device accordingly. For example, the calibration data generation unit 22 may determine a predetermined one of the calibration data of a plurality of existing electrical devices as the first calibration data of the new electrical device. In addition, the calibration data generation unit 22 may determine a result obtained by averaging a part or all of a plurality of existing electrical devices as the first calibration data of the new electrical device.
  • the calibration data generation unit 22 determines a predetermined one of the calibration data of a plurality of existing electrical devices as the first calibration data of the new electrical device.
  • the calibration data generation unit 22 may be realized by the following processes (1) to (4). (1) Obtain the maximum value of the instantaneous current waveform. (2) Normalize the instantaneous current waveform with the maximum value of the instantaneous current waveform. (3) Compare the instantaneous waveform of the standardized current with the instantaneous waveform of each of the existing electrical devices that is held in advance using an error function. (4) Select the calibration function of the existing electrical equipment with the smallest error function value.
  • FIG. 8 shows a specific example.
  • the device X is a new electric device, and the devices A to C are existing electric devices.
  • the device A is selected by the processes (1) to (4).
  • the calibration data of the device A is determined as the first calibration data of the device X.
  • the error function is, for example, an average value of difference absolute values or an average value of sums of squares of differences, but other values such as an average value of absolute values of sums of N powers may be taken.
  • the calibration unit 23 calibrates the new device data (feature value) extracted by the monitoring unit 21 based on the first calibration data generated by the calibration data generation unit 22. That is, the calibration unit 23 calibrates the feature amount (new device data) extracted from the measurement data measured in monitoring units for the server.
  • the calibration data is a function that can be inversely converted
  • the feature quantity managed by the server can be calibrated for a predetermined monitoring unit (for a predetermined installation environment), or a predetermined monitoring unit (a predetermined installation environment).
  • the feature amount extracted from the measurement data measured in step) can be calibrated for the server.
  • the calibration data is a linear function that calibrates for each installation environment by multiplying the feature amount of the teacher data by a predetermined coefficient
  • the feature data extracted from the measurement data measured in the predetermined installation environment By multiplying the reciprocal of the coefficient, it can be calibrated for the server (for teacher data).
  • the receiving unit 24 receives input of identification information (electric device ID) of the new electric device accordingly.
  • the means for receiving input is not particularly limited.
  • the reception unit 24 outputs information such as “Please enter the model number of the newly installed electrical device” via the display of the monitoring device 20 or the display connected to the monitoring device 20, and the new electrical device.
  • the user may be prompted to input the electric equipment ID.
  • you may receive the input of predetermined information from a user via input devices, such as a touchscreen display which the monitoring apparatus 20 has, for example, an operation button.
  • the monitoring device 20 acquires and manages the electric device ID from each of the electric devices via the communication. You may keep it.
  • a new electric device ID that does not correspond to the managed electric device ID is acquired, it may be recognized as the electric device ID of the new electric device.
  • the transmission unit 25 associates the identification information (electric device ID) of the new electric device that the receiving unit 24 has received the input with the new device data (feature amount) calibrated based on the first calibration data. To the server 10.
  • FIG. 10 is a flowchart showing an example of the processing flow of the monitoring device 20 of the present embodiment.
  • the monitoring unit 21 extracts new device data (a feature amount of the electrical device newly installed in the monitoring unit) (Yes in S11), the subsequent processing starts. While the monitoring unit 21 does not extract new device data (No in S11), the monitoring unit 21 enters a waiting state.
  • the calibration data generation unit 22 When the monitoring unit 21 extracts new device data (Yes in S11), the calibration data generation unit 22 generates first calibration data (S12). Then, the calibration unit 23 calibrates the new device data extracted in S11 using the first calibration data generated in S12 (S13).
  • reception unit 24 receives input of identification information (electric device ID) of a new electric device (S14). Note that the order of the processing of S12 and S13 and the processing of S14 may be reversed.
  • the transmission unit 25 associates the new device data after calibration calibrated in S13 with the identification information (electric device ID) of the new electrical device received in S14, and transmits it to the server 10 (S15).
  • FIG. 11 shows an example of a functional block diagram of the server 10.
  • the server 10 includes a reception unit 11, a teacher data generation unit 12, and a teacher data storage unit 13.
  • the receiving unit 11 receives new device data (feature amount) after calibration of the new electric device and identification information (electric device ID) from the plurality of monitoring devices 20.
  • the teacher data generation unit 12 generates teacher data of the new electric device based on the new device data (feature amount) after the calibration of the new electric device received from each of the plurality of monitoring devices 20, and stores the teacher data in the teacher data storage unit 13. sign up.
  • the teacher data generation unit 12 groups the new device data (feature amount) after calibration of the new electrical device received from each of the plurality of monitoring devices 20 with the matching electrical device ID. For each group, predetermined statistical processing is performed on a plurality of new calibrated device data (features) to determine representative values (features). For example, the teacher data generation unit 12 sets all or part of a plurality of new calibrated device data (features) as processing targets, and calculates an average value, a mode value, a median value, a maximum value, a minimum value, and the like. It may be calculated as a representative value.
  • the teacher data generation unit 12 generates teacher data in which the representative value of each group determined in this way is associated with the electric device ID of each group, and registers the teacher data in the teacher data storage unit 13 (see FIG. 4). .
  • FIG. 12 is a flowchart showing an example of the processing flow of the server 10 of the present embodiment.
  • the receiving unit 11 receives new device data (feature amount) after calibration of a new electric device and identification information (electric device ID) from a plurality of monitoring devices 20 (S21).
  • the received data is grouped and accumulated, for example, for each of the matching electric device IDs.
  • the calibration data generation unit 22 generates teacher data for the new electrical device based on the new device data (feature value) after calibration of the new electrical device received from each of the plurality of monitoring devices 20 (S22). For example, the calibration data generation unit 22 sets a group in which the number of accumulated data exceeds a predetermined number among the above groups as a processing target. Then, the calibration data generation unit 22 sets all or a part of a predetermined number or more of feature quantities included in the processing target group as processing targets, and their statistical values (eg, average value, mode value, median value, maximum value). Value, minimum value, etc.) are calculated as representative values. Then, the calibration data generation unit 22 generates teacher data in which the representative value of each group determined in this way is associated with the electric device ID of each group.
  • the calibration data generation unit 22 generates teacher data in which the representative value of each group determined in this way is associated with the electric device ID of each group.
  • the calibration data generation unit 22 registers the teacher data generated in S22 in the teacher data storage unit 13 (S23).
  • the server 10 can collect data for generating teacher data from a plurality of monitoring devices 20. Then, the server 10 can generate predetermined teacher data based on the collected data. As described above, according to the present embodiment, a new technique for managing the teacher data including the feature amounts of each of the plurality of electric devices by the server is realized.
  • the server 10 can acquire data (features) after being calibrated with predetermined calibration data (first calibration data) from each monitoring device 20. That is, the server 10 does not acquire the characteristic amount of the new electric device obtained in each installation environment from each of the monitoring devices 20 whose monitoring targets are groups of electric devices placed in different installation environments. Then, the feature amount after being calibrated to a value measured in a predetermined reference installation environment is acquired. And the server 10 produces
  • each teacher is associated with one piece of teacher data including a feature value when each appliance is in operation.
  • a plurality of teacher data including feature amounts corresponding to a plurality of states that can be taken by each electric device may be associated with each electric device.
  • FIG. 13 shows the teacher data of the modified example held by the monitoring unit 21.
  • the teacher data ID, electrical device ID, device name, and calibration data are the same as in the example shown in FIG.
  • power value bands that can be consumed by each electric device are divided into a plurality of groups with a predetermined power value width. Then, a representative value (eg, median value) and a feature amount are associated with each group.
  • FIG. 14 shows the combined teacher data generated based on such teacher data.
  • the monitoring unit 21 can identify the operating electrical device as the operating state of the electrical device in the monitoring unit, and can also identify the power consumption of the electrical device. As a result, for example, information as shown in FIG. 15 can be provided to the user.
  • the monitoring unit 21 obtains measurement data (waveform data) of a new electric device by the same method as described above, the monitoring unit 21 extracts a feature amount of the new electric device based on the measurement data, Calculate the power consumed by the new electrical equipment. Then, the transmission unit 25 includes the identification information (electric device ID) of the new electric device, the new device data (feature amount) calibrated based on the first calibration data, and the power consumption value calculated by the monitoring unit 21. Are associated with each other and transmitted to the server 10.
  • the server 10 includes new device data (e.g., any one of a plurality of power value bands set with a width of 0 W to 5 W) having the same electric device ID and the same power consumption value ( Each feature amount is grouped and teacher data is generated. Even in such a modification, the same operation and effect are realized. Note that this modification is applicable to all the following embodiments.
  • new device data e.g., any one of a plurality of power value bands set with a width of 0 W to 5 W
  • Each feature amount is grouped and teacher data is generated. Even in such a modification, the same operation and effect are realized. Note that this modification is applicable to all the following embodiments.
  • processing for extracting feature data from measurement data (waveform data) of a new electrical device and generating new device data “generating first calibration data based on calibration data of an existing electrical device”.
  • the monitoring device 20 has performed all of “processing” and “processing of calibrating new device data (feature amount) based on the first calibration data”.
  • the server 10 may perform part or all of these.
  • the server 10 may receive measurement data (waveform data) of a new electrical device from the monitoring device 20. And you may extract a predetermined feature-value from the measurement data (waveform data) of the received new electric equipment.
  • the measurement data (waveform data) of the new electrical device may be transmitted from the monitoring device 20 to the server 10 after being compressed by a predetermined compression process.
  • the server 10 may store in advance calibration data of existing electrical devices held by each monitoring device 20 for each monitoring device 20. Then, the first calibration data may be generated based on the calibration data.
  • the server 10 may receive the first calibration data generated by the monitoring device 20 from the monitoring device 20.
  • the server 10 obtains new device data (feature amount) extracted from the measurement data (waveform data) of the new electric device received from the monitoring device 20 or new device data (feature amount) received from the monitoring device 20. Calibration may be performed based on the first calibration data generated by itself or the first calibration data received from the monitoring device 20. Note that this modification is applicable to all the following embodiments.
  • each electrical device described in the first modification is The server 10 may perform identification of each of a plurality of possible states, that is, processing for calculating a power consumption value from waveform data.
  • the teacher data generated by the server 10 is returned to the monitoring device 20.
  • the monitoring device 20 saves the received teacher data and generates calibration data for the new electric device based on the teacher data.
  • the monitoring device 20 may calibrate the feature amount included in the received teacher data with the generated calibration data and store it.
  • the monitoring device 20 may generate and store the combined teacher data (see FIG. 7, FIG. 14, etc.) using the corrected teacher data.
  • the monitoring device 20 estimates operating states of a plurality of electrical devices (including existing electrical devices and new electrical devices) using the teacher data, calibration data, teacher data after calibration, combined teacher data, and the like. Or extract new device data. Details will be described below.
  • FIG. 16 shows an example of a functional block diagram of the server 10.
  • the server 10 includes a reception unit 11, a teacher data generation unit 12, a teacher data storage unit 13, and a transmission unit 14.
  • the configurations of the reception unit 11, the teacher data generation unit 12, and the teacher data storage unit 13 are the same as those in the first embodiment, and thus description thereof is omitted here.
  • the transmission unit 14 transmits the teacher data generated by the teacher data generation unit 12 and newly registered in the teacher data storage unit 13 to the monitoring device 20.
  • the transmission unit 14 associates the identification information (electric device ID) of the new electric device with the new device data (feature amount) after calibration and transmits the teacher data to the monitoring device 20 that has transmitted to the server 10 in association with each other. Reply.
  • the teacher data generation unit 12 when the teacher data generation unit 12 generates a plurality of teacher data corresponding to each of a plurality of states for each new electric device, the teacher data in each state is simultaneously Instead of being generated, it may be generated sequentially.
  • the transmission unit 14 transmits the teacher data of all the generated states to the monitoring device 20. In the latter case, the transmission unit 14 may transmit (reply) the teacher data to the monitoring device 20 every time teacher data corresponding to a new state is generated.
  • FIG. 17 shows an example of a functional block diagram of the monitoring device 20.
  • the monitoring device 20 includes a monitoring unit 21, a calibration data generation unit 22, a calibration unit 23, a reception unit 24, a transmission unit 25, and a device-side reception unit 26. Since the configuration of the monitoring unit 21, the calibration unit 23, the reception unit 24, and the transmission unit 25 is the same as that of the first embodiment, description thereof is omitted here.
  • the device-side receiving unit 26 receives the teacher data of the new electric device transmitted from the transmitting unit 14 of the server 10.
  • the received teacher data is input to the monitoring unit 21 and the calibration data generation unit 22.
  • the calibration data generation unit 22 is based on the teacher data of the new electric device input from the device-side receiving unit 26 and the new device data (feature value) of the new electric device extracted by the monitoring unit 21. Generate calibration data. For example, the calibration data generation unit 22 eliminates the difference between the feature quantity of the new electrical device included in the teacher data and the feature quantity of the new electrical device extracted by the monitoring unit 21 according to a predetermined algorithm. Generate calibration data.
  • the calibration data may be a function. For example, it may be a linear function that multiplies one feature amount by a predetermined coefficient, or may be a quadratic or higher function.
  • the calibration data may be a function that can be inversely transformed. The calibration data generated in this way is input to the monitoring unit 21.
  • the device side reception unit 26 A plurality of teacher data corresponding to each of a plurality of states is received.
  • the calibration data generation unit 22 uses the teacher data corresponding to the state in which the feature amount is extracted as new device data by the monitoring unit 21 among the plurality of teacher data corresponding to each of the received plurality of states. Calibration data may be generated.
  • FIG. 18 is a flowchart showing an example of the processing flow of the monitoring device 20 of the present embodiment.
  • the device-side receiving unit 26 performs the new electric data.
  • the teacher data of the device is received (S51).
  • the calibration data generation unit 22 performs calibration data based on the new device data (feature amount) of the new electrical device extracted by the monitoring unit 21 and the feature amount of the new electrical device included in the teacher data received in S51. Is generated (S52).
  • the teacher data received in S51 and the calibration data generated in S52 are stored in association with each other (S53). Thereafter, the monitoring unit 21 estimates operating states of a plurality of electrical devices (including existing electrical devices and new electrical devices) using the teacher data, calibration data, and the like.
  • each monitoring device 20 receives teacher data from the server 10 and can estimate the operating states of a plurality of electric devices (including existing electric devices and new electric devices) included in the monitoring unit.
  • the teacher data generated by the server 10 by the method described in the first embodiment is returned to the monitoring device 20 as temporary teacher data.
  • the monitoring device 20 generates temporary calibration data based on the received temporary teacher data of the new electric device and the feature amount (new device data) of the new electric device extracted by the monitoring unit 21. Then, the monitoring device 20 calibrates the new device data extracted by the monitoring unit 21 with temporary calibration data, and transmits the new device data after calibration to the server 10.
  • the server 10 generates temporary teacher data by a method similar to the method described in the first embodiment, based on the received new device data after calibration. Then, the server 10 returns the generated temporary teacher data to the monitoring device 20 again.
  • FIG. 19 shows an example of a functional block diagram of the server 10.
  • the server 10 includes a reception unit 11, a teacher data generation unit 12, and a teacher data storage unit 13.
  • the teacher data generation unit 12 includes a first part 121, a second part 122, and a third part 123.
  • the server 10 may further include a transmission unit 14. Since the configurations of the teacher data storage unit 13 and the transmission unit 14 are the same as those in the first and second embodiments, description thereof is omitted here.
  • the 1st part 121 produces
  • FIG. The first unit 121 generates teacher data for a new electrical device in the same manner as the teacher data generation unit 12 described in the first embodiment generates teacher data for a new electrical device.
  • the teacher data is assumed to be temporary teacher data.
  • the second unit 122 transmits the temporary teacher data generated by the first unit 121 to the monitoring device 20.
  • the second unit 122 associates the identification information (electric device ID) of the new electric device with the new device data (feature amount) after calibration in correspondence with the monitoring device 20 that has transmitted to the server 10 in a temporary manner. Reply teacher data.
  • the third part 123 will be described later.
  • FIG. 17 shows an example of a functional block diagram of the monitoring device 20.
  • the monitoring device 20 includes a monitoring unit 21, a calibration data generation unit 22, a calibration unit 23, a reception unit 24, a transmission unit 25, and a device-side reception unit 26. Since the structure of the monitoring part 21 and the reception part 24 is the same as that of 1st and 2nd embodiment, description here is abbreviate
  • the device-side receiving unit 26 receives temporary teacher data transmitted from the second unit 122 of the server 10.
  • the calibration data generation unit 22 is based on the temporary feature amount included in the temporary teacher data received by the device-side reception unit 26 and the new device data (feature amount) extracted by the monitoring unit 21. Second calibration data that cancels the difference is generated. Since the calibration data generation method is the same as that in the above example, description thereof is omitted here.
  • the calibration unit 23 calibrates the new device data extracted by the monitoring unit 21 based on the second calibration data generated by the calibration data generation unit 22.
  • the transmission unit 25 associates the identification information (electric device ID) of the new electric device with the new device data (feature amount) calibrated based on the second calibration data, and transmits it to the server.
  • the receiving unit 11 of the server 10 monitors a plurality of pieces of new electrical device identification information (electrical device ID) and new device data (feature amount) calibrated based on the second calibration data. Receive from the device 20.
  • the first unit 121 generates temporary teacher data including the temporary feature amount again based on the new device data (feature amount) calibrated based on the second calibration data received from the plurality of monitoring devices 20. To do. Since the temporary teacher data generation method is the same as that in the above-described example, description thereof is omitted here.
  • the second unit 122 transmits the temporary teacher data generated by the first unit 121 to the monitoring device 20 again. Then, the device side reception unit 26, the calibration data generation unit 22, the calibration unit 23, and the transmission unit 25 of the monitoring device 20 repeat the same processing as described above.
  • the third unit 123 determines the temporary teacher data of the new electrical device obtained after repeating the above-described processing by the first unit 121 and the second unit 122 as the teacher data of the new electrical device, and stores the teacher data Register in the unit 13.
  • the third unit 123 may repeat the above process until the change amount of the temporary feature value (eg, the difference from the previous temporary feature value) falls within a predetermined threshold. Alternatively, it may be repeated a predetermined number of times. Further, it may be repeated for a predetermined period.
  • the change amount of the temporary feature value eg, the difference from the previous temporary feature value
  • FIG. 20 is a sequence diagram illustrating an example of a processing flow of the server 10 and the monitoring device 20 according to the present embodiment. The processes of S22-1 to S22-8 are performed during the process of S22 of FIG.
  • the server 10 When the server 10 receives new device data (features) calibrated from a plurality of monitoring devices 20 based on the first calibration data (explained in the first embodiment), the server 10 temporarily uses the new device data. Temporary teacher data including the feature amount is generated (S22-1). Thereafter, the server 10 transmits (replies) the temporary teacher data generated in S22-1 to the monitoring device 20 that has transmitted the calibrated new device data (feature amount) (S22-2).
  • the monitoring device 20 generates the second calibration data based on the temporary feature amount included in the received temporary teacher data and the new device data (feature amount) extracted by the monitoring unit 21 (S22-3). ). Then, the monitoring device 20 calibrates the new device data (feature amount) extracted by the monitoring unit 21 based on the generated second calibration data (S22-4). Thereafter, the monitoring device 20 transmits new device data (feature amount) calibrated based on the second calibration data to the server 10 (S22-5).
  • the server 10 When the server 10 receives new device data (features) calibrated from the plurality of monitoring devices 20 based on the second calibration data, the server 10 obtains temporary teacher data including temporary feature values based on the new device data. Generate (S22-6). Thereafter, the server 10 determines whether to repeat the above process. If it is determined to repeat (Yes in S22-7), the process returns to S22-2 to repeat the process. On the other hand, if it is determined not to repeat any more (No in S22-7), the process proceeds to S22-8.
  • the server 10 determines the temporary teacher data generated last as the teacher data of the new electric device and registers it in the teacher data storage unit 13. In this way, after the teacher data is registered in the teacher data storage unit 13, the processing described in the second embodiment can be executed.
  • the same operational effects as those of the first and second embodiments can be realized.
  • the calibration data can be optimized by repeating the process of generating temporary teacher data and temporary calibration data.
  • a process of generating the second calibration data that cancels the difference between these data based on temporary teacher data and new device data may perform at least one of “a process of calibrating new device data based on the calibration data”.
  • the monitoring device 20 extracts new device data (features) by the method described in the first embodiment, and then whether or not the teacher data of the new electric device is already stored in the server 10. To the server 10. Then, the processing content is changed according to the result of the inquiry.
  • FIG. 21 shows an example of a functional block diagram of the monitoring device 20.
  • the monitoring device 20 includes a monitoring unit 21, a calibration data generation unit 22, a calibration unit 23, a reception unit 24, a transmission unit 25, an inquiry unit 27, and a registration processing control unit 28. And have.
  • the monitoring device 20 may further include a device-side receiving unit 26.
  • the configurations of the monitoring unit 21, the calibration data generation unit 22, the calibration unit 23, the reception unit 24, the transmission unit 25, and the device-side reception unit 26 are the same as those in the first to third embodiments. Omitted.
  • the inquiry unit 27 inquires of the server 10 whether the teacher data of the new electrical device is already stored in the teacher data storage unit 13. For example, the inquiry unit 27 transmits new device data calibrated by using the first calibration data by the calibration unit 23 to the server 10, and the teacher data associated with the matching feature amount is transmitted. You may inquire whether it is already stored in the teacher data storage unit 13. Alternatively, the inquiry unit 27 transmits the identification information (electric device ID) of the new electric device received by the reception unit 24 to the server 10, and the teacher data associated with the electric device ID is already the teacher data storage unit 13. You may ask if it is stored in
  • the server 10 Upon receiving the inquiry, the server 10 searches the teacher data storage unit 13 and displays a search result (“stored” or “not stored” or “stored but insufficient data”). Send back.
  • “Insufficient data” is, for example, data in a state in which the third unit 123 described in the third embodiment determines that the repetition processing described in the third embodiment is still repeated. For example, the amount of change in the temporary feature value (eg, the difference from the previous temporary feature value, etc.) does not fall within a predetermined threshold, the data has not been repeated a predetermined number of times, the predetermined value Data that has not been repeated for a period of time.
  • the registration processing control unit 28 identifies the new electric device identification information (electric device ID) by the transmission unit 25. ) And the new device data calibrated based on the first calibration data are associated with each other and transmitted to the server 10 so that the calibration data generation unit 22, the calibration unit 23, the reception unit 24, and The transmission unit 25 is controlled.
  • the registration processing control unit 28 requests the teacher data of the electrical device from the server 10 and receives it. Then, the received teacher data is input to the monitoring unit 21 and the calibration data generation unit 22.
  • the calibration data generation unit 22 generates calibration data based on the input teacher data and the new device data (feature amount) extracted by the monitoring unit 21 and inputs the calibration data to the monitoring unit 21. Thereafter, the monitoring unit 21 estimates the operating state of electrical devices (including existing electrical devices and new electrical devices) included in the monitoring target using the input teacher data and calibration data.
  • the registration processing control unit 28 is based on the identification information (electric device ID) of the new electric device by the transmission unit 25 and the first calibration data. Then, at least one of the calibration data generation unit 22, the calibration unit 23, the reception unit 24, and the transmission unit 25 is controlled so that the process of associating and transmitting the new device data calibrated to the server 10 is not executed. Processing for generating first calibration data by the calibration data generation unit 22, processing for calibrating new device data based on the first calibration data by the calibration unit 23, and identification information (electric If at least one of the processes for accepting the input of (device ID) is not executed, the information that the transmitting unit 25 transmits to the server 10 is not complete.
  • the registration processing control unit 28 may realize the control by any method.
  • FIG. 22 is a flowchart showing an example of the processing flow of the monitoring device 20 of the present embodiment.
  • the monitoring unit 21 extracts new device data (characteristic amount of the electric device newly installed in the monitoring unit) (Yes in S31), the subsequent processing starts. While the monitoring unit 21 does not extract new device data (No in S31), the monitoring unit 21 is in a waiting state.
  • the calibration data generation unit 22 When the monitoring unit 21 extracts new device data (Yes in S31), the calibration data generation unit 22 generates first calibration data (S32). Then, the calibration unit 23 uses the first calibration data generated in S32 to calibrate the new device data extracted in S31 (S33). Thereafter, the inquiry unit 27 transmits the calibrated new device data (feature amount) to the server 10 and inquires whether the teacher data of the new device data is already stored in the teacher data storage unit 13 (S34).
  • the server 10 searches the teacher data storage unit 13 using the received new device data (feature value) after calibration as a key. When the teacher data associated with the matching feature amount is found, the server 10 returns a reply indicating “stored” to the monitoring device 20. On the other hand, when the teacher data associated with the matching feature quantity is not found, the server 10 monitors for an answer indicating “not saved” or “saved but insufficient data”. A reply is sent to the device 20.
  • the registration processing control unit 28 requests the teacher data from the server 10 and receives the teacher data (S36). ). Thereafter, the calibration data generation unit 22 generates calibration data based on the teacher data received in S36 and the new device data extracted in S31 (S37). Then, the teacher data received in S36 and the calibration data generated in S37 are registered in the monitoring unit 21 in association with each other. Thereafter, the monitoring unit 21 uses the newly registered teacher data and calibration data to estimate the operating state of the electric devices (including existing electric devices and new electric devices) included in the monitoring unit.
  • the registration processing control unit 28 associates the identification information (electric device ID) of the new electric device by the transmission unit 25 with the new device data calibrated based on the first calibration data, and transmits it to the server 10. At least one of the reception unit 24 and the transmission unit 25 is controlled so that the processing to be performed is not executed.
  • the reception unit 24 sets the new electrical device Is received (S39). Then, the transmission unit 25 associates the new device data after calibration calibrated in S33 with the identification information (electric device ID) of the new electrical device received in S39, and transmits the data to the server 10 (S40).
  • the inquiry unit 27 transmits the electrical device ID received by the reception unit 24 to the server 10, and inquires whether the teacher data corresponding to the electrical device ID is already stored in the teacher data storage unit 13. Good.
  • the registration processing control unit 28 uses the transmission unit 25 to identify the new electric device (electric device ID). And at least one of the calibration data generation unit 22, the calibration unit 23, and the transmission unit 25 so that the process of associating and transmitting the new device data calibrated based on the first calibration data to the server 10 is not executed. One may be controlled.
  • the calibration data generation unit 22 May generate the first calibration data, and the calibration unit 23 may calibrate the new device data based on the first calibration data.
  • advice for power saving can be given.
  • the monitoring device 20 of the first to fourth embodiments it is possible to confirm the time change of the operating state of the electrical device in one day (from 0:00 to 24:00). Based on such output, it is possible to specify a time zone or the like in which the electric device is frequently used, and to give advice such as consciously reducing the use in that time.
  • the timing of electrical equipment maintenance eg, cleaning of an air conditioner
  • the accumulated operation time of each electric device can be calculated by accumulating the estimation results. For example, it is possible to make a notification that prompts maintenance at a timing when the accumulated time reaches a predetermined value.
  • current consumption, power consumption, voltage, measurement characteristics, and the like may change due to failure of electrical equipment or aging of some components. Therefore, for example, when such a change is detected, a notification for urging maintenance can be performed.
  • advice on the use of a refrigerator can be given.
  • the current consumption, the power consumption, the voltage, the measurement feature amount, and the like can be changed according to the state of loading inside the refrigerator.
  • the monitoring device 20 of the first to fourth embodiments such a change can be detected. Based on this change, it is possible to notify a warning of overpacking or a reminder to increase the stockpile because the internal items are low.
  • the monitoring device 20 of the first to fourth embodiments it is possible to detect whether or not the usage pattern of the electric device is different from the usual by comparing it with a history of past estimation results. it can. If the usage pattern of electrical equipment is different from usual, there may be some change in the service recipient (electric equipment user) (eg, illness, involvement in an incident, etc.). Therefore, in such a case, a warning can be notified to the contact information registered in advance.
  • the user's life rhythm and the like can be determined based on the usage pattern of the electrical device (e.g., usage pattern in one day). Can be estimated. Therefore, it is stored in the server 10 for users of irregular life rhythms (eg, there are many activities at night (using many electric devices at night), daytime activities and nighttime activities appear irregularly, etc.). It is possible to propose a specific method for improving a lifestyle rhythm while referring to the lifestyle rhythm of a user having a regular lifestyle rhythm.
  • a plurality of monitoring devices, and a server that communicates with each of the plurality of monitoring devices The monitoring device is Due to at least one measurement data among current consumption, power consumption, and input voltage, teacher data including a feature amount during operation of each of the plurality of existing electric devices, and an installation environment of each of the plurality of existing electric devices Based on the calibration data for each of the existing electrical devices for calibrating the variation appearing in the measurement data, new device data including the feature quantity of the new electrical device different from the existing electrical device from the measurement data
  • the teacher data generation means includes First means for generating temporary teacher data including temporary feature values of the new electrical device based on the new device data after calibration of the new electrical device received from each of the plurality of monitoring devices; A second means for transmitting the temporary teacher data to the monitoring device; Have The monitoring device further includes device-side receiving means for receiving the temporary teacher data, The calibration data generation means generates second calibration data that cancels the difference between these data based on the temporary teacher data and the new device data, The calibration means calibrates the new equipment data based on the second calibration data, The transmission unit associates the identification information of the new electric device with the new device data calibrated based on the second calibration data, and transmits the association information to the server. 3.
  • the teacher data generation means includes A monitoring system further comprising third means for controlling the first means and the second means to repeatedly generate the process of generating the temporary teacher data and the process of transmitting the temporary teacher data to the monitoring device . 4).
  • the monitoring means for determining the provisional teacher data of the new electrical device obtained after repeating the processing by the first and second means as the teacher data of the new electrical device. . 5.
  • the monitoring means is a monitoring system that estimates operating states of a plurality of the existing electrical devices and extracts the new device data based on the measurement data, the teacher data, and the calibration data. 6).
  • the server Further comprising transmission means for transmitting the teacher data of the new electrical device to the monitoring device;
  • the calibration data generation means generates the third calibration data that cancels the difference between these data based on the teacher data of the new electrical device and the new device data,
  • the monitoring unit is further configured to estimate an operating state of the plurality of existing electric devices and the new electric device based on the teacher data of the new electric device and the third calibration data. 7).
  • the monitoring device is Inquiring means for inquiring of the server whether or not the teacher data of the new electric device is stored in the teacher data storage means when extracting the new device data of the new electric device; When the result of the inquiry is not stored, the identification information of the new electric device by the transmission means corresponds to the new device data calibrated based on the first calibration data. And a registration process control means for controlling the process to be transmitted to the server. Further comprising a monitoring system. 8).
  • the monitoring device is Inquiring means for inquiring of the server whether or not the teacher data of the new electric device is stored in the teacher data storage means when extracting the new device data of the new electric device;
  • the teacher data of the new electric device is received from the server, and the identification information of the new electric device by the transmitting means and the first Registration processing control means for controlling the new device data calibrated based on the calibration data so as not to be executed in association with the server; Further comprising a monitoring system.
  • a feature amount of a new electric device extracted from at least one measurement data among current consumption, power consumption and input voltage from a plurality of monitoring devices, and the measurement due to an installation environment of the new electric device
  • Receiving means for receiving new equipment data after calibrating fluctuations appearing in the data, and identification information of the new electrical equipment
  • Teacher data generation means for generating the teacher data of the new electrical device based on the new device data after calibration of the new electrical device received from each of the plurality of monitoring devices, and registering the teacher data in the teacher data storage means; Server with. 11.
  • a feature amount of a new electric device extracted from at least one measurement data among current consumption, power consumption and input voltage from a plurality of monitoring devices, and the measurement due to an installation environment of the new electric device A receiving step of receiving new device data after calibrating fluctuations appearing in the data, and identification information of the new electric device; A teacher data generation step of generating the teacher data of the new electrical device based on the new device data after calibration of the new electrical device received from each of the plurality of monitoring devices, and registering the teacher data in a teacher data storage unit; How the server runs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Human Resources & Organizations (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • Operations Research (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 複数の監視機器(20)とサーバ(10)とを有する監視システムを提供する。監視機器(20)は、測定データ(消費電流等)の中から既存電気機器と異なる新規電気機器の特徴量を含む新規機器データを抽出すると、既存電気機器の校正データに基づいて生成した校正データで新規電気機器の特徴量を校正し、当該新規電気機器の識別情報と対応付けてサーバ(10)に送信する。サーバ(10)は、複数の監視機器(20)から新規電気機器の校正後の新規機器データを受信すると、当該複数の校正後の新規機器データに基づいて、新規電気機器の教師データを生成し、登録する。

Description

監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム
 本発明は、監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラムに関する。
 近年、スマートメーターなどの普及に伴い、所定の監視単位(各家庭、各会社、ビルの1つのフロア等で電力を消費する電気機器群)の総消費電力値(瞬時値等)をユーザに向けて提供する機能が標準化しつつある。所定の監視単位の総消費電力値だけでなく、所定の監視単位に含まれる電気機器各々の消費電力値(瞬時値等)も提供することにより、更にきめ細やかな節電対策を促すことが期待される。
 電気機器個別の消費電力値は、例えば各電気機器に測定器を取り付けることで把握することができる。しかし、この手段の場合、各電気機器に測定器を取り付ける作業負担が大きい。また、電気機器の数が増えるに従い測定器の数も増え、費用負担が大きくなる。
 特許文献1には、給電引き込み口や分電盤等の電源幹線部に測定器を設置し、当該測定器で測定した測定データ(総消費電流波形等)を利用して各電気機器の稼働状態を推定する技術が開示されている。当該技術では、予め、各電気機器の動作時の特徴量(教師特徴量)や、複数の電気機器が動作時の特徴量(教師特徴量)を用意しておく。そして、電源幹線部で測定された測定データから抽出された特徴量と、予め用意している教師特徴量とに基づいて、各電気機器の稼働状態を推定する。
 特許文献2には、各電気機器の動作時の特徴量を示す教師特徴量を生成する技術が開示されている。具体的には、被計測家屋内の電気機器を1つずつ動作させて所定のデータ(消費電流等)を個別に測定する。そして、測定した各電気機器のデータから特徴量を抽出し、抽出した特徴量を教師特徴量として保存する。
 関連する技術が、特許文献3及び4に開示されている。
 特許文献3には、ネットワーク上に存在する公開された電気機器の特徴量情報を利用して、電気機器の稼働状態を推定する技術が開示されている。例えば、電気機器の製造者や販売者等が、予めネットワーク上で電気機器の特徴量情報を公開することが開示されている。
 特許文献4には、電気機器の印加される電圧波形が変化しても高い精度で電気機器の稼働状況を推定できる技術が開示されている。当該技術では、電源電圧の変動に対する高調波電流の変動が基準よりも大きい区間以外の所定の区間のデータを利用して、電気機器の稼働状況を推定する。
特許第3403368号公報 特許第4433890号公報 特開2010-210575号公報 特開2013-44736号公報
 本発明者らは、複数の電気機器各々の教師データをサーバで一元管理しておき、各監視単位に対応して電気機器の稼働状態を推定する複数の監視装置各々に、サーバから教師データを提供する技術を検討した。当該技術によれば、特許文献1及び2に記載の技術に比べて、監視単位毎に教師データを用意するための負担を軽減できる。
 しかし、従来、効率的に、サーバで一元管理するための教師データを生成し、サーバに記憶させる手段が存在しなかった。特許文献3は、電気機器の製造者や販売者等が予めネットワーク上で電気機器の特徴量情報を公開する技術を開示している。当該技術の場合、電気機器の製造者や販売者等が、特徴量情報を生成する作業などを実行する必要があり、手間である。特許文献1、2及び4いずれも、当該問題を解決する手段を開示していない。
 本発明は、複数の電気機器各々の教師データをサーバで管理するための新たな技術を提供することを課題とする。
 本発明によれば、
 複数の監視機器と、複数の前記監視機器各々と通信するサーバと、を有し、
 前記監視機器は、
  消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視手段と、
  前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成手段と、
  前記第1の校正データに基づいて、前記新規機器データを校正する校正手段と、
  前記新規電気機器の識別情報の入力を受付ける受付手段と、
  前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、前記サーバに送信する送信手段と、
を有し、
 前記サーバは、
  複数の前記監視機器から、前記新規電気機器の校正後の前記新規機器データと、前記識別情報とを受信する受信手段と、
  複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成手段と、
を有する監視システムが提供される。
 また、本発明によれば、
 消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視手段と、
 前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成手段と、
 前記第1の校正データに基づいて、前記新規機器データを校正する校正手段と、
 前記新規電気機器の識別情報の入力を受付ける受付手段と、
 前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、サーバに送信する送信手段と、
を有する監視機器が提供される。
 また、本発明によれば、
 複数の監視機器から、消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データの中から抽出された新規電気機器の特徴量を含み、前記新規電気機器の設置環境に起因して前記測定データに現れる変動を校正した後の新規機器データと、前記新規電気機器の識別情報とを受信する受信手段と、
 複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成手段と、
を有するサーバが提供される。
 また、本発明によれば、
 コンピュータを、
 消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視手段、
 前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成手段、
 前記第1の校正データに基づいて、前記新規機器データを校正する校正手段、
 前記新規電気機器の識別情報の入力を受付ける受付手段、
 前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、サーバに送信する送信手段、
として機能させるためのプログラムが提供される。
 また、本発明によれば、
 コンピュータを、
 複数の監視機器から、消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データの中から抽出された新規電気機器の特徴量を含み、前記新規電気機器の設置環境に起因して前記測定データに現れる変動を校正した後の新規機器データと、前記新規電気機器の識別情報とを受信する受信手段、
 複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成手段、
として機能させるためのプログラムが提供される。
 また、本発明によれば、
 コンピュータが、
 消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視工程と、
 前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成工程と、
 前記第1の校正データに基づいて、前記新規機器データを校正する校正工程と、
 前記新規電気機器の識別情報の入力を受付ける受付工程と、
 前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、サーバに送信する送信工程と、
を実行する監視機器の動作方法が提供される。
 また、本発明によれば、
 コンピュータが、
 複数の監視機器から、消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データの中から抽出された新規電気機器の特徴量を含み、前記新規電気機器の設置環境に起因して前記測定データに現れる変動を校正した後の新規機器データと、前記新規電気機器の識別情報とを受信する受信工程と、
 複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成工程と、
を実行するサーバの動作方法が提供される。
 本発明によれば、複数の電気機器各々の教師データをサーバで管理するための新たな技術が実現される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態の装置のハードウエア構成の一例を概念的に示す図である。 本実施形態の作用効果を説明するための図である。 本実施形態の監視システムの全体模式図の一例である。 本実施形態のサーバ10が管理する情報の一例を模式的に示す図である。 本実施形態の監視機器20の機能ブロック図の一例である。 本実施形態の監視機器20が管理する情報の一例を模式的に示す図である。 本実施形態の監視機器20が管理する情報の一例を模式的に示す図である。 第1の校正データを生成する処理の一例を説明するための図である。 本実施形態の監視機器20が出力する情報の一例を示す図である。 本実施形態の監視機器20の処理の流れの一例を示すフローチャートである。 本実施形態のサーバ10の機能ブロック図の一例である。 本実施形態のサーバ10の処理の流れの一例を示すフローチャートである。 本実施形態の監視機器20が管理する情報の一例を模式的に示す図である。 本実施形態の監視機器20が管理する情報の一例を模式的に示す図である。 本実施形態の監視機器20が出力する情報の一例を示す図である。 本実施形態のサーバ10の機能ブロック図の一例である。 本実施形態の監視機器20の機能ブロック図の一例である。 本実施形態の監視機器20の処理の流れの一例を示すフローチャートである。 本実施形態のサーバ10の機能ブロック図の一例である。 本実施形態の監視システムの処理の流れの一例を示すシーケンス図である。 本実施形態の監視機器20の機能ブロック図の一例である。 本実施形態の監視機器20の処理の流れの一例を示すフローチャートである。 本実施形態の監視システムの適用例を模式的に示す図である。
 まず、本実施形態の装置のハードウエア構成の一例について説明する。本実施形態の装置が備える各部は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされたプログラム(あらかじめ装置を出荷する段階からメモリ内に格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムも含む)、そのプログラムを格納するハードディスク等の記憶ユニット、ネットワーク接続用インタフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
 図1は、本実施形態の装置のハードウエア構成の一例を概念的に示す図である。図示するように、本実施形態の装置は、例えば、バス10Aで相互に接続されるCPU1A、RAM(Random Access Memory)2A、ROM(Read Only Memory)3A、表示制御部4A、ディスプレイ5A、操作受付部6A、操作部7A、通信部8A、補助記憶装置9A等を有する。なお、図示しないが、その他、外部機器と有線で接続される入出力インタフェイス、マイク、スピーカ等の他の要素を備えてもよい。
 CPU1Aは各要素とともに装置のコンピュータ全体を制御する。ROM3Aは、コンピュータを動作させるためのプログラムや各種アプリケーションプログラム、それらのプログラムが動作する際に使用する各種設定データなどを記憶する領域を含む。RAM2Aは、プログラムが動作するための作業領域など一時的にデータを記憶する領域を含む。補助記憶装置9Aは、例えばHDD(Hard Disc Drive)であり、大容量のデータを記憶可能である。
 ディスプレイ5Aは、例えば、表示装置(LED(Light Emitting Diode)表示器、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等)である。ディスプレイ5Aは、タッチパッドと一体になったタッチパネルディスプレイであってもよい。表示制御部4Aは、VRAM(Video RAM)に記憶されたデータを読み出し、読み出したデータに対して所定の処理を施した後、ディスプレイ5Aに送って各種画面表示を行う。操作受付部6Aは、操作部7Aを介して各種操作を受付ける。操作部7Aは、操作キー、操作ボタン、スイッチ、ジョグダイヤル、タッチパネルディスプレイ、キーボードなどを含む。通信部8Aは、有線及び/又は無線で、インターネット、LAN(Local Area Network)等のネットワークに接続し、他の電子機器と通信する。
 以下、本実施の形態について説明する。なお、以下の実施形態の説明において利用する機能ブロック図は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。これらの図においては、各装置は1つの機器により実現されるよう記載されているが、その実現手段はこれに限定されない。すなわち、物理的に分かれた構成であっても、論理的に分かれた構成であっても構わない。なお、同一の構成要素には同一の符号を付し、適宜説明を省略する。
<第1の実施形態>
 まず本実施形態の監視システムの概要について説明する。本実施形態では、複数の電気機器を含む監視単位各々に対応して設けられた監視装置各々が、各監視単位に含まれる所定の電気機器の測定データを取得する。そして、監視装置は、当該測定データから特徴量を抽出し、必要な処理を行った後、当該データをサーバに送信する。サーバは、複数の監視装置から各種電気機器のデータを収集する。そして、サーバは、収集したデータに基づいて、各電気機器の教師データを生成する。このようにして、サーバは、各種電気機器の教師データを生成し、一元管理する。
 その後、サーバは、複数の監視装置各々からの要求に応じて、所定の電気機器の教師データを各監視装置に提供する。そして、サーバから教師データを受信した監視装置は、受信した教師データを利用して、対応する監視単位に含まれる電気機器の稼働状態を推定する。
 ところで、同じ電気機器を同じように動作させた時の測定データであっても、電気機器の設置環境が異なれば、測定データも変動する。結果、測定データから抽出される特徴量も変動する。図2に一例を示す。図2は、互いに異なる第1の設置環境及び第2の設置環境各々に置かれた同じ電気機器を、同じように動作させた時の測定データを示す。図示するように、互いの測定データは完全には一致せず、ずれが生じている。このような測定データ各々から抽出される特徴量の中には、互い異なる値となるものの含まれる。
 測定データに変動をもたらす要因は様々であるが、例えば、各監視単位における配線の状態、具体的には、消費電流、消費電力、消費電圧等を測定する測定器と電気機器間の配線の長さ、分電盤から各電気機器が接続している各コンセントまでの長さ、分電盤からの分岐の数、各電気機器が備えるケーブルの長さ、コンセントと各電器機器間に延長コードが存在するか否か、延長コードが存在する場合その長さ等が考えられる。その他、同じ分岐に属し、配線を介して互いに接続された電気機器の数や種類や、測定器の種類、各監視単位の位置の周辺環境(例:周囲に変圧器、変電所、大規模電力消費施設等があるか否か、また、そこまでの距離等)等が考えられる。
 監視単位毎に設けられた監視装置が取得した電気機器各々のデータを利用して各電気機器の教師データを生成し、当該教師データを複数の監視装置に提供して電気機器の稼働状態を推定させる場合、このような電気機器の設置環境に起因した測定データの変動を考慮する必要がある。これを考慮しなかった場合、サーバが管理している第1の電気機器の教師データの特徴量と、ある監視単位において測定される第1の電気機器の測定データから抽出される特徴量との間に差が生まれ得る。そして、その結果、当該監視単位における電気機器の稼働状態の推定精度が悪くなってしまう。
 詳細は後述するが、本実施形態の監視システムは、電気機器の設置環境に起因した測定データの変動を考慮して、複数の電気機器各々の教師データを生成し、サーバで管理できるよう構成されている。
 なお、監視単位は、当該単位における総消費電流、総消費電力及び総入力電圧の中の少なくとも1つを測定できればよく、その定め方は設計的事項である。例えば、1つの分電盤から電力供給を受ける電気機器群(分電盤単位)を1つの監視単位としてもよい。又は、分電盤の1つの分岐で電力供給を受ける電気機器群(分電盤の分岐単位)や、1つのコンセントから電力供給を受ける電気機器群(コンセント単位)や、1つのテーブルタップから電力供給を受ける電気機器群(テーブルタップ単位)等を、1つの監視単位とすることもできる。コンセント単位、テーブルタップ単位の場合、コンセントやテーブルタップに測定センサを設置することで、これら単位で総消費電流、総消費電力及び総入力電圧の中の少なくとも1つを測定することができる。その他、電力をデジタルで計測し、メーター内に通信機能を持たせた電力量計(スマートメーター:Smart Meter)により電力値や電流値を測定される電気機器群を1つの監視単位(スマートメーター単位)としてもよい。
 ここで、本実施形態の監視システムの全体像を説明する。図3は、本実施形態の監視システムの全体模式図を示す。図3に示すように、本実施形態の監視システムは、インターネット、LAN等のネットワーク30に接続したサーバ10と、複数の監視機器20とを有する。
 図23に、図3に示す本実施形態の監視システムの適用例を示す。図23の場合、分電盤40を介して電力供給を受ける複数の電気機器60が1つの監視単位となる。監視機器20は、監視単位に含まれる複数の電気機器60と同じエリアに設置されている。そして、監視機器20は、分電盤40に設置された測定器50から、測定データを取得するよう構成されている。
 サーバ10は、複数の電気機器各々の教師データを管理している。教師データは、各電気機器が稼働している時に測定データに現れる特徴量を含む。そして、サーバ10は、監視機器20からの要求に応じて、所定の電気機器の教師データを、監視機器20に送信する。
 図4に、サーバ10に蓄積されている教師データの一例を示す。図4に示す情報は、サーバ10に蓄積されている複数の教師データ各々を識別するための教師データIDと、複数の電気機器各々を識別するための電気機器ID(型番など)と、各電気機器が稼働時に測定データに現れる特徴量とを互いに対応付けている。
 特徴量は、消費電流、入力電圧及び消費電力の中の少なくとも1つの測定データ(波形データ)を用いて特定可能な特徴量であり、例えば、消費電流の周波数強度・位相(高調波成分)、位相、消費電流の変化、平均値、ピーク値、実効値、波高率、波形率、電流変化の収束時間、通電時間、ピークの位置、電圧のピーク位置と消費電流のピーク位置との間の時間差、力率などであってもよい。なお、特徴量はここでの例示に限定されない。
 図3に戻り、監視機器20は、監視単位毎に設けられる。そして、監視機器20は、監視単位に含まれる電気機器の稼働状態を推定する。具体的には、監視機器20は、自機が監視する監視単位に含まれる電気機器各々の教師データをサーバ10から取得し、保持する。また、監視機器20は、電気機器毎に、電気機器各々の設置環境に起因して測定データに現れる変動を校正するための校正データを保持している。校正データは、サーバ10から取得した各電気機器の教師データに含まれる特徴量、及び、各設置環境下で測定された各電気機器の測定データから抽出される特徴量間の差をなくす方向に少なくとも一方の特徴量を校正するためのデータである。
 そして、監視機器20は、所定の監視単位における総消費電流、総消費電力及び総入力電圧の中の少なくとも1つを含む測定データ(波形データ)を取得すると、当該測定データと、上記教師データと、上記校正データとを利用して、電気機器の稼働状態を推定する。
 ところで、監視単位内に新たな電気機器(以下、「新規電気機器」)が追加され、その新規電気機器の成分が測定データに含まれていると、監視機器20は当該新規電気機器の教師データを保持していないため、監視単位に含まれる電気機器の稼働状態を推定できなくなる。
 例えば、電気機器A乃至Cのみが同時に稼働している時、測定データからは、電気機器A乃至Cの特徴量を足し合わせた特徴量が抽出される。このため、保持している電気機器各々の特徴量を校正後、任意の組み合わせで足し合わせ、測定データから抽出した特徴量と比較していくことで、いずれの電気機器が稼働しているのかを特定することができる。しかし、稼働している電気機器の中に、教師データを含まない新規電気機器の成分が含まれている場合、保持している電気機器各々の特徴量をどのような組み合わせで足し合わせても、測定データから抽出された特徴量とマッチングしない。
 監視機器20は、このような電気機器の稼働状態を推定できない状態を検出すると、新たな電気機器(新規電気機器)が監視単位に追加されたと判断する。ところで、監視単位に新たに追加された新規電気機器は、新たに市場に出された新商品である可能性がある。そして、サーバ10は、このような新商品の教師データを保持していない可能性がある。そこで、監視機器20は、新規電気機器が監視単位に追加されたことを検出すると、当該新規電気機器に関するデータを測定データから抽出し、サーバ10に送信する。
 例えば、監視機器20は、稼働状態を推定できなくなった時点の前後の測定データの差を算出することで、当該新規電気機器の測定データ(波形データ)を取得する。そして、監視機器20は当該測定データから特徴量を抽出する。このようにして、監視機器20は、新規電気機器の特徴量を取得することができる。
 その後、監視機器20は、監視単位に含まれる既存の電気機器の校正データに基づいて、新規電気機器用の第1の校正データを生成する。このように生成される校正データは、新規電気機器の設置環境を完全に反映した内容とはいえない。しかし、同じ監視単位に含まれる電気機器の設置環境は、互いに類似したり共通したりする部分がある。このため、同じ監視単位に含まれる既存の電気機器の校正データに基づくことで、ある程度精度の高い新規電気機器用の校正データを生成することができる。監視機器20は、新規電気機器用の第1の校正データを生成すると、当該第1の校正データを利用して新規電気機器の特徴量を校正する。
 また、監視機器20は、ユーザから新たに追加された新規電気機器の識別情報の入力を受付ける。そして、監視機器20は、新規電気機器の校正後の特徴量と、ユーザから入力された新規電気機器の識別情報とを対応付けて、サーバ10に送信する。
 サーバ10は、複数の監視機器20からこのように送信されてきた新規電気機器の校正後の特徴量を取得する。そして、サーバ10は、取得した校正後の特徴量を利用し、例えば複数の監視機器20から取得した複数の校正後の特徴量に対して平均化等の処理を行って、当該新規電気機器の教師データを新たに生成する。以上のようにして、サーバ10に複数の電気機器の教師データが蓄積されていく。
 次に、監視機器20及びサーバ10各々の構成について、詳細に説明する。
 図5に、監視機器20の機能ブロック図の一例を示す。図5に示すように、監視機器20は、監視部21と、校正データ生成部22と、校正部23と、受付部24と、送信部25とを有する。以下、各部について説明する。
 監視部21は、監視単位に含まれる複数の電気機器各々の稼働時の特徴量を含む教師データと、複数の電気機器各々の設置環境に起因して測定データに現れる変動を校正するための電気機器毎の校正データとを保持している。以下、監視部21が教師データ及び校正データを保持している電気機器を、「既存電気機器」という。
 また、監視部21は、監視単位における総消費電流、総消費電力及び総入力電圧の中の少なくとも1つの測定データ(波形データ)を、測定装置から取得する。測定装置は、分電盤、コンセント、テーブルタップ等に設置されていてもよい。また、測定装置は、いわゆるスマートメーターであってもよい。
 そして、監視部21は、測定データから抽出した所定の特徴量と、予め保持している教師データ及び校正データとに基づいて、測定データの中から、既存電気機器と異なる電気機器(新規電気機器)の成分(特徴量)を含んだデータ(新規機器データ)を抽出する。本実施形態においては、新規機器データは、新規機器データの稼働時の特徴量である。
 以下、監視部21による上記当該処理について詳細に説明する。
 まず、図6に、監視部21が保持する教師データ及び校正データの一例を模式的に示す。図6に示すデータは、教師データIDと、電気機器IDと、機器名称と、当該電気機器の稼働時の特徴量と、当該電気機器の校正データとが対応付けられている。当該データは、サーバ10から取得したデータ等に基づいて生成される。以下、監視部21が図6に示すデータを生成する処理の一例を説明するが、これに限定されない。
 例えば、監視機器20がある監視単位に対応して設置されたとき、監視機器20は、当該監視単位に含まれる電気機器の電気機器ID(型番など)を取得する。例えば、監視機器20は、ユーザから電気機器IDの入力を受付けてもよい。その他、監視機器20と電気機器との間で無線及び/又は有線での通信が可能であれば、監視機器20は、当該通信を介して、電気機器各々から電気機器IDを取得してもよい。
 監視機器20は、電気機器IDを取得すると、取得した電気機器IDを付して、教師データの要求をサーバ10に送信する。サーバ10は、当該要求に応じて、自記憶装置内を検索する(図4参照)。そして、サーバ10は、要求に含まれている電気機器IDに対応付けられている教師データを取り出して、監視機器20に返信する。監視部21は、このようにして取得された複数の電気機器の教師データを保存する。
 次に、監視部21は、取得した教師データを利用して、電気機器毎に校正データを生成する。例えば、監視部21は、ユーザが電気機器を個別に動作させることで得られた電気機器毎の測定データを取得する。そして、監視部21は、当該測定データから特徴量を抽出する。その後、監視部21は、予め定められた所定のアルゴリズムに従い、教師データに含まれる第1の電気機器の特徴量と、測定データから得られた第1の電気機器の特徴量との差をなくすための校正データを生成する。校正データは、関数であってもよい。例えば、一方の特徴量に所定の係数を掛ける一次関数であってもよいし、二次以上の関数であってもよい。なお、校正データは、逆変換可能な関数であってもよい。
 また、監視部21は、電気機器毎に、電気機器各々を識別する名称をユーザから受付けることができる。当該名称は、例えば各電気機器の稼働状態をユーザに通知する際に使用される。以上のようにして得られた情報に基づいて、監視部21は、図6に示すデータを生成し、管理する。
 次に、監視部21が、測定データの中から、新規電気機器の成分(特徴量)を含んだデータ(新規機器データ)を抽出する処理例について説明する。
 例えば、監視部21は、図6に示すような教師データ及び校正データと、測定装置から取得した測定データ(波形データ)とに基づいて、監視単位に含まれる複数の既存電気機器の稼働状態を推定することができる。例えば、監視部21は、測定データから所定の特徴量を抽出する。この特徴量は、その時点で稼働している1つの電気機器の稼働時の特徴量、又は、その時点で稼働している複数の電気機器各々の稼働時の特徴量を足し合わせたものである。
 また、監視部21は、教師データに含まれる各電気機器の特徴量を各電気機器の校正データで校正した校正後の特徴量を得る。なお、監視部21は、予め各電気機器の校正後の特徴量を算出し、保持しておいてもよい。そして、監視部21は、校正後の特徴量を任意の電気機器の組み合わせで足し合わせた特徴量を得る。なお、監視部21は、このような足し合わせた特徴量を予め保持しておいてもよい。
 図7に、足し合わせた特徴量の一例を示す。図7に示すデータは、各電気機器の教師データを合算して生成された合算教師データ各々を識別するための合算教師データIDと、各合算教師データの基となった2つ以上の教師データIDと、校正後の特徴量を足し合わせた特徴量とが対応付けられている。
 そして、監視部21は、測定データから抽出した特徴量と、教師データ(各電気機器の校正後の教師データ及び合算教師データを含む)に含まれる特徴量とを照合等し、マッチングする教師データを特定する。例えば、監視部21は、教師データ(各電気機器の校正後の教師データ及び合算教師データを含む)を用いて生成された推定モデルに測定データから抽出した特徴量を入力し、推定結果(照合結果)として、マッチングした教師データ(各電気機器の校正後の教師データ及び合算教師データを含む)のIDを得る。推定モデルは、例えば、重回帰分析、ニューラルネットワーク、サポートベクターマシン等を用いたものとできる。
 結果、監視部21は、その時点で、稼働している電気機器を特定することができる。そして、監視機器20は、例えば、図9に示すような情報を出力することができる。図9では、稼働している電気機器の機器名称(図6参照)と、総消費電力とが表示されている。
 ところで、監視単位内に新たな電気機器(新規電気機器)が追加されると、その新規電気機器の成分が測定データに含まれ得ることとなる。しかし、監視部21は当該新規電気機器の教師データを保持していない。このため、測定データに新規電気機器の成分が含まれている場合、監視部21は、監視単位に含まれる電気機器の稼働状態を推定できなくなる。すなわち、監視部21は、マッチングする教師データ(各電気機器の校正後の教師データ及び合算教師データを含む)が存在しないという結果を得ることとなる。
 監視部21は、このような電気機器の稼働状態を推定できない状態を検出すると、新規電気機器が監視単位に追加されたと判断する。例えば、監視部21は、上記推定モデルに測定データから抽出した特徴量を入力して得られた推定結果が、マッチングする教師データ(各電気機器の校正後の教師データ及び合算教師データを含む)が存在しないというものである場合、新規電気機器が監視単位に追加されたと判断してもよい。なお、監視部21は、電気機器の稼働状態を推定できない状態の検出回数や、検出頻度等を算出し、その値が所定の閾値を超えた時に、新規電気機器が監視単位に追加されたと判断してもよい。
 新規電気機器が監視単位に追加されたと判断した後、監視部21は、例えば、電気機器の稼働状態を推定できていた状態から、電気機器の稼働状態を推定できなくなった状態に変化した境目を特定し、その時点の前後の測定データ(電気機器の稼働状態を推定できていた状態の測定データ、及び、電気機器の稼働状態を推定できなくなった状態の測定データ)の差を算出することで、新規電気機器の測定データ(波形データ)を得ることができる。そして、監視部21は、当該測定データ(波形データ)から所定の特徴量を抽出することで、新規電気機器の特徴量を含む新規機器データを得ることができる。
 図5に戻り、校正データ生成部22は、監視部21が新規機器データを抽出すると、それに応じて、既存電気機器の校正データに基づき、新規電気機器の第1の校正データを生成する。例えば、校正データ生成部22は、複数の既存電気機器の校正データの中の所定の1つを、新規電気機器の第1の校正データとして決定してもよい。その他、校正データ生成部22は、複数の既存電気機器の一部又は全部の校正データを平均化したものを、新規電気機器の第1の校正データとして決定してもよい。
 ここで、校正データ生成部22が、複数の既存電気機器の校正データの中の所定の1つを、新規電気機器の第1の校正データとして決定する処理の一例について説明する。
 例えば、校正データ生成部22は、以下の(1)乃至(4)の処理により実現してもよい。
(1) 電流の瞬間波形の最大値を求める。
(2) 電流の瞬間波形の最大値で、電流の瞬間波形を規格化する。
(3) 規格化した電流の瞬間波形と予め保持している既存電気機器各々の瞬間波形を誤差関数で比較する。
(4) 誤差関数の値が最も小さかった既存電気機器の校正関数を選ぶ。
 図8に具体例を示す。機器Xは新規電気機器であり、機器A乃至Cは既存電気機器である。図8に示す例の場合、上記(1)乃至(4)の処理により、機器Aが選択される。そして、機器Aの校正データが、機器Xの第1の校正データとして決定される。誤差関数は例えば、差分絶対値の平均値や、差分2乗和の平均値などであるが、N乗和の絶対値の平均値など、これ以外の値をとっても構わない。
 図5に戻り、校正部23は、校正データ生成部22が生成した第1の校正データに基づいて、監視部21が抽出した新規機器データ(特徴量)を校正する。すなわち、校正部23は、監視単位で測定された測定データから抽出された特徴量(新規機器データ)を、サーバ用に校正する。校正データが逆変換可能な関数である場合、サーバで管理されている特徴量を所定の監視単位用(所定の設置環境用)に校正することもできるし、所定の監視単位(所定の設置環境)で測定された測定データから抽出された特徴量をサーバ用に校正することもできる。例えば、校正データが、教師データの特徴量に所定の係数を掛けることで各設置環境用に校正する一次関数である場合、所定の設置環境で測定された測定データから抽出された特徴量に当該係数の逆数を掛けることで、サーバ用(教師データ用)に校正することができる。
 受付部24は、監視部21が新規機器データを抽出すると、それに応じて、新規電気機器の識別情報(電気機器ID)の入力を受付ける。入力を受付ける手段は特段制限されない。例えば、受付部24は、監視機器20が有するディスプレイ又は監視機器20と繋がったディスプレイを介して、「新たに設置した電気機器の型番を入力してください」などの情報を出力し、新規電気機器の電気機器IDの入力をユーザに促してもよい。そして、監視機器20が有する例えばタッチパネルディスプレイや操作ボタン等の入力装置を介して、ユーザから所定の情報の入力を受付けてもよい。その他、監視機器20と電気機器との間で無線及び/又は有線での通信が可能であれば、監視機器20は、当該通信を介して、電気機器各々から電気機器IDを取得し、管理しておいてもよい。そして、管理している電気機器IDに該当しない新たな電気機器IDを取得すると、それを新規電気機器の電気機器IDと認識してもよい。
 送信部25は、受付部24が入力を受付けた新規電気機器の識別情報(電気機器ID)と、第1の校正データに基づいて校正された新規機器データ(特徴量)と、を対応付けて、サーバ10に送信する。
 図10は、本実施形態の監視機器20の処理の流れの一例を示すフローチャートである。
 監視部21が新規機器データ(新たに監視単位に設置された電気機器の特徴量)を抽出すると(S11のYes)、以降の処理がスタートする。監視部21が新規機器データを抽出しない間(S11のNo)、待ち状態となる。
 監視部21が新規機器データを抽出すると(S11のYes)、校正データ生成部22が第1の校正データを生成する(S12)。そして、校正部23は、S12で生成された第1の校正データを利用して、S11で抽出された新規機器データを校正する(S13)。
 また、受付部24は、新規電気機器の識別情報(電気機器ID)の入力を受付ける(S14)。なお、S12及びS13の処理と、S14の処理の順番は、逆でもよい。
 その後、送信部25は、S13で校正された校正後の新規機器データと、S14で受付けた新規電気機器の識別情報(電気機器ID)とを対応付けて、サーバ10に送信する(S15)。
 次に、サーバ10について説明する。図11に、サーバ10の機能ブロック図の一例を示す。図11に示すように、サーバ10は、受信部11と、教師データ生成部12と、教師データ保存部13とを有する。
 受信部11は、複数の監視機器20から、新規電気機器の校正後の新規機器データ(特徴量)と、識別情報(電気機器ID)とを受信する。
 教師データ生成部12は、複数の監視機器20各々から受信した新規電気機器の校正後の新規機器データ(特徴量)に基づいて、新規電気機器の教師データを生成し、教師データ保存部13に登録する。
 例えば、教師データ生成部12は、複数の監視機器20各々から受信した新規電気機器の校正後の新規機器データ(特徴量)を、電気機器IDが一致するものでグループ化する。そして、グループごとに、複数の校正後の新規機器データ(特徴量)に対して所定の統計処理を行い、代表値(特徴量)を決定する。例えば、教師データ生成部12は、複数の校正後の新規機器データ(特徴量)のすべて又は一部を処理対象とし、それらの平均値、最頻値、中央値、最大値、最小値等を、代表値として算出してもよい。
 教師データ生成部12は、このようにして決定した各グループの代表値と、各グループの電気機器IDとを対応付けた教師データを生成し、教師データ保存部13に登録する(図4参照)。
 図12は、本実施形態のサーバ10の処理の流れの一例を示すフローチャートである。
 まず、受信部11は、複数の監視機器20から、新規電気機器の校正後の新規機器データ(特徴量)と、識別情報(電気機器ID)とを受信する(S21)。受信したデータは、例えば、電気機器IDが一致するものごとにグループ化され、蓄積されていく。
 次に、校正データ生成部22は、複数の監視機器20各々から受信した新規電気機器の校正後の新規機器データ(特徴量)に基づいて、新規電気機器の教師データを生成する(S22)。例えば、校正データ生成部22は、上記グループのうち、蓄積されたデータ数が所定数を超えたグループを、処理対象とする。そして、校正データ生成部22は、処理対象のグループに含まれる所定数以上の特徴量のすべて又は一部を処理対象とし、それらの統計値(例:平均値、最頻値、中央値、最大値、最小値等)を、代表値として算出する。そして、校正データ生成部22は、このようにして決定した各グループの代表値と、各グループの電気機器IDとを対応付けた教師データを生成する。
 その後、校正データ生成部22は、S22で生成した教師データを、教師データ保存部13に登録する(S23)。
 以上説明した本実施形態によれば、サーバ10は、教師データを生成するためのデータを複数の監視機器20から収集することができる。そして、サーバ10は、収集したデータに基づいて、所定の教師データを生成することができる。このように、本実施形態によれば、複数の電気機器各々の特徴量を含む教師データをサーバで管理するための新たな技術が実現される。
 また、本実施形態では、サーバ10は、所定の校正データ(第1の校正データ)で校正された後のデータ(特徴量)を各監視機器20から取得することができる。すなわち、サーバ10は、互いに異なる設置環境におかれた電気機器群を監視対象とする監視機器20各々から、各設置環境下で得られた新規電気機器の特徴量を取得するのでなく、これを、所定の基準設置環境下で測定された場合の値に校正した後の特徴量を取得する。そして、サーバ10は、このような校正後の特徴量に基づいて、各電気機器の教師データを生成する。このため、本実施形態によれば、所定の基準設置環境下で測定された場合の特徴量を含む教師データを生成することが可能となる。
「第1の変形例」
 以上説明した実施形態では、各電気機器に、各電気機器の稼働時の特徴量を含む1つの教師データが対応していた。この変形例として、各電気機器に、各電気機器が取り得る複数の状態各々に対応した特徴量を含む複数の教師データが対応付けられてもよい。図13に、監視部21が保持する当該変形例の教師データを示す。教師データID、電気機器ID、機器名称、校正データは、図6に示す例と同様である。当該例では、各電気機器が消費し得る電力値帯を、所定の電力値幅で複数のグループに分ける。そして、グループごとに代表値(例:中央値等)、及び、特徴量を対応付ける。図示する「消費電力」の欄には、各グループ(各状態)の代表値が記載されている。図14は、このような教師データに基づいて生成された合算教師データである。当該変形例の場合、監視部21は、監視単位の電気機器の稼働状態として、稼働中の電気機器を特定するとともに、その電気機器の消費電力を特定することができる。結果、例えば、図15に示すような情報をユーザに向けて提供することができる。
 当該変形例の場合、監視部21は、例えば上述と同様の手法で新規電気機器の測定データ(波形データ)を得ると、当該測定データに基づいて新規電気機器の特徴量を抽出するとともに、当該新規電気機器が消費している電力値を算出する。そして、送信部25は、新規電気機器の識別情報(電気機器ID)と、第1の校正データに基づいて校正された新規機器データ(特徴量)と、監視部21が算出した消費電力値とを対応付けて、サーバ10に送信する。サーバ10は、電気機器IDが一致し、かつ、消費電力値が同じ電力値帯(例:0Wから5W幅で設定された複数の電力値帯の中のいずれか)に含まれる新規機器データ(特徴量)ごとにグループ化し、教師データを生成する。このような変形例においても、同様の作用効果が実現される。なお、当該変形例は、以下のすべての実施形態において適用可能である。
「第2の変形例」
 前記実施形態では、「新規電気機器の測定データ(波形データ)から特徴量を抽出し、新規機器データを生成する処理」、「既存電気機器の校正データに基づいて第1の校正データを生成する処理」、及び、「第1の校正データに基づいて、新規機器データ(特徴量)を校正する処理」のすべてを、監視機器20が行っていた。しかし、これらの一部又は全部を、サーバ10が行ってもよい。
 例えば、サーバ10は、監視機器20から新規電気機器の測定データ(波形データ)を受信してもよい。そして、受信した新規電気機器の測定データ(波形データ)から、所定の特徴量を抽出してもよい。なお、新規電気機器の測定データ(波形データ)は、所定の圧縮処理により圧縮された後に、監視機器20からサーバ10に送信されてもよい。
 また、サーバ10は、監視機器20ごとに、各監視機器20が保持している既存電気機器の校正データを予め保存しておいてもよい。そして、当該校正データに基づいて、第1の校正データを生成してもよい。
 また、サーバ10は、監視機器20が生成した第1の校正データを、監視機器20から受信してもよい。
 また、サーバ10は、監視機器20から受信した新規電気機器の測定データ(波形データ)から抽出した新規機器データ(特徴量)、又は、監視機器20から受信した新規機器データ(特徴量)を、自身で生成した第1の校正データ、又は、監視機器20から受信した第1の校正データに基づいて校正してもよい。なお、当該変形例は、以下のすべての実施形態において適用可能である。
 なお、第2の変形例を適用して、監視機器20からサーバ10に新規電気機器の測定データ(波形データ)が送信されることとした場合、第1の変形例で説明した各電気機器が取り得る複数の状態各々の特定、すなわち、波形データから消費電力値を算出する処理は、サーバ10が行ってもよい。
<第2の実施形態>
 まず、本実施形態の概要について説明する。本実施形態では、第1の実施形態で説明した手法でサーバ10が教師データを生成した後、サーバ10が生成した教師データを監視機器20に返信する。そして、監視機器20は、受信した教師データを保存するとともに、当該教師データに基づいて、新規電気機器の校正データを生成する。その後、監視機器20は、受信した教師データに含まれる特徴量を、生成した校正データで校正し、保存してもよい。また、監視機器20は、校正後の教師データを利用して、合算教師データ(図7、図14等参照)を生成し、保存してもよい。以降、監視機器20は、当該教師データ、校正データ、校正後の教師データ、合算教師データ等を利用して、複数の電気機器(既存電気機器及び新規電気機器を含む)の稼働状態を推定したり、新規機器データを抽出したりする。以下、詳細に説明する。
 図16に、サーバ10の機能ブロック図の一例を示す。図16に示すように、サーバ10は、受信部11と、教師データ生成部12と、教師データ保存部13、送信部14とを有する。受信部11、教師データ生成部12及び教師データ保存部13の構成は、第1の実施形態と同様であるので、ここでの説明は省略する。
 送信部14は、教師データ生成部12により生成され、教師データ保存部13に新たに登録された教師データを、監視機器20に送信する。例えば、送信部14は、新規電気機器の識別情報(電気機器ID)と、校正後の新規機器データ(特徴量)と、を対応付けてサーバ10に送信してきた監視機器20に、当該教師データを返信する。
 なお、第1の実施形態の変形例として説明したように、教師データ生成部12が新規電気機器毎に複数の状態各々に対応した複数の教師データを生成する場合、各状態の教師データが同時に生成されるのでなく、順次生成される場合もある。いずれの場合であっても、送信部14は、生成された複数の状態すべての教師データを監視機器20に送信する。後者の場合、送信部14は、新たな状態に対応した教師データが生成される毎に、その教師データを監視機器20に送信(返信)してもよい。
 図17に、監視機器20の機能ブロック図の一例を示す。図17に示すように、監視機器20は、監視部21と、校正データ生成部22と、校正部23と、受付部24と、送信部25と、機器側受信部26とを有する。監視部21、校正部23、受付部24及び送信部25の構成は、第1の実施形態と同様であるので、ここでの説明は省略する。
 機器側受信部26は、サーバ10の送信部14により送信されてきた新規電気機器の教師データを受信する。受信した教師データは、監視部21及び校正データ生成部22に入力される。
 校正データ生成部22は、機器側受信部26から入力された新規電気機器の教師データ及び、監視部21により抽出された新規電気機器の新規機器データ(特徴量)に基づいて、新規電気機器の校正データを生成する。例えば、校正データ生成部22は、予め定められた所定のアルゴリズムに従い、教師データに含まれる新規電気機器の特徴量と、監視部21により抽出された新規電気機器の特徴量との差をなくすための校正データを生成する。校正データは、関数であってもよい。例えば、一方の特徴量に所定の係数を掛ける一次関数であってもよいし、二次以上の関数であってもよい。なお、校正データは、逆変換可能な関数であってもよい。このようにして生成された校正データは、監視部21に入力される。
 なお、第1の実施形態の変形例として説明したように、教師データ生成部12が新規電気機器毎に複数の状態各々に対応した複数の教師データを生成する場合、機器側受信部26は、複数の状態各々に対応した複数の教師データを受信することになる。この場合、校正データ生成部22は、受信した複数の状態各々に対応した複数の教師データの内、監視部21により新規機器データとして特徴量を抽出された状態に対応した教師データを利用して、校正データを生成してもよい。
 図18は、本実施形態の監視機器20の処理の流れの一例を示すフローチャートである。
 送信部25が、新規電気機器の校正後の新規機器データ(特徴量)と、識別情報(電気機器ID)とをサーバ10に送信した後の所定のタイミングで、機器側受信部26が新規電気機器の教師データを受信する(S51)。
 すると、校正データ生成部22は、監視部21が抽出した新規電気機器の新規機器データ(特徴量)と、S51で受信した教師データに含まれる新規電気機器の特徴量とに基づいて、校正データを生成する(S52)。
 そして、S51で受信された教師データと、S52で生成された校正データとが対応付けて保存される(S53)。以降、監視部21は、当該教師データ及び校正データ等を利用して、複数の電気機器(既存電気機器及び新規電気機器を含む)の稼働状態を推定する。
 以上説明した本実施形態によれば、第1の実施形態と同様の作用効果を実現することができる。また、各監視機器20がサーバ10から教師データを受信し、監視単位に含まれる複数の電気機器(既存電気機器及び新規電気機器を含む)の稼働状態を推定することが可能となる。
<第3の実施形態>
 まず、本実施形態の概要について説明する。本実施形態では、第1の実施形態で説明した手法でサーバ10が生成した教師データを仮の教師データとして、監視機器20に返信する。監視機器20は、受信した新規電気機器の仮の教師データと、監視部21が抽出した新規電気機器の特徴量(新規機器データ)とに基づいて、仮の校正データを生成する。そして、監視機器20は、監視部21が抽出した新規機器データを仮の校正データで校正し、校正後の新規機器データをサーバ10に送信する。サーバ10は、受信した校正後の新規機器データに基づき、第1の実施形態で説明した手法と同様の手法で仮の教師データを生成する。そして、サーバ10は、生成した仮の教師データを、監視機器20に再び返信する。
 本実施形態では、上記処理を所定回数繰り返した後に得られる仮の教師データを、新規電気機器の教師データとして、教師データ保存部13に登録する。その後、このようにして教師データ保存部13に登録された新規電気機器の教師データに基づいて、第2の実施形態の処理を実行することができる。以下、詳細に説明する。
 図19に、サーバ10の機能ブロック図の一例を示す。図19に示すように、サーバ10は、受信部11と、教師データ生成部12と、教師データ保存部13とを有する。そして、教師データ生成部12は、第1部121と、第2部122と、第3部123とを有する。なお、サーバ10は、さらに送信部14を有してもよい。教師データ保存部13及び送信部14の構成は、第1及び第2の実施形態と同様であるので、ここでの説明は省略する。
 第1部121は、複数の監視機器20各々から受信した新規電気機器の校正後の新規機器データに基づいて、新規電気機器の仮の特徴量を含む仮の教師データを生成する。第1部121は、第1の実施形態で説明した教師データ生成部12が新規電気機器の教師データを生成する手法と同様の手法で、新規電気機器の教師データを生成する。そして、当該教師データを、仮の教師データとする。
 第2部122は、第1部121が生成した仮の教師データを監視機器20に送信する。例えば、第2部122は、新規電気機器の識別情報(電気機器ID)と、校正後の新規機器データ(特徴量)と、を対応付けてサーバ10に送信してきた監視機器20に、仮の教師データを返信する。
 第3部123については、後で説明する。
 図17に、監視機器20の機能ブロック図の一例を示す。図17に示すように、監視機器20は、監視部21と、校正データ生成部22と、校正部23と、受付部24と、送信部25と、機器側受信部26とを有する。監視部21及び受付部24の構成は、第1及び第2の実施形態と同様であるので、ここでの説明は省略する。
 機器側受信部26は、サーバ10の第2部122が送信してきた仮の教師データを受信する。
 校正データ生成部22は、機器側受信部26が受信した仮の教師データに含まれる仮の特徴量と、監視部21が抽出した新規機器データ(特徴量)とに基づいて、これらのデータ間の差を打ち消す第2の校正データを生成する。校正データの生成手法については、上述の例と同様であるので、ここでの説明は省略する。
 校正部23は、校正データ生成部22が生成した第2の校正データに基づいて、監視部21が抽出した新規機器データを校正する。
 送信部25は、新規電気機器の識別情報(電気機器ID)と、第2の校正データに基づいて校正された新規機器データ(特徴量)と、を対応付けて、サーバに送信する。
 図19に戻り、サーバ10の受信部11は、新規電気機器の識別情報(電気機器ID)と、第2の校正データに基づいて校正された新規機器データ(特徴量)と、を複数の監視機器20から受信する。
 第1部121は、複数の監視機器20から受信した第2の校正データに基づいて校正された新規機器データ(特徴量)に基づいて、再び、仮の特徴量を含む仮の教師データを生成する。仮の教師データの生成手法については、上述の例と同様であるので、ここでの説明は省略する。
 そして、第2部122は、第1部121が生成した仮の教師データを再び監視機器20に送信する。すると、監視機器20の機器側受信部26、校正データ生成部22、校正部23及び送信部25は、上記と同様の処理を繰り返す。
 図19に示す第3部123は、第1部121及び第2部122を制御し、仮の教師データを生成する処理、及び、仮の教師データを監視機器に送信する処理を繰り返し実行させる。そして、第3部123は、第1部121及び第2部122による上記処理を繰り返した後に得られた新規電気機器の仮の教師データを、新規電気機器の教師データとして決定し、教師データ保存部13に登録する。
 例えば、第3部123は、仮の特徴量の変化量(例:直前の仮の特徴量との差分等)が所定の閾値以内に収まるまで、上記処理を繰り返してもよい。又は、予め定められた所定回数繰り返してもよい。さらには、予め定められた所定の期間繰り返してもよい。
 図20は、本実施形態のサーバ10及び監視機器20の処理の流れの一例を示すシーケンス図である。S22-1乃至S22-8の処理は、図12のS22の処理時に行われる。
 サーバ10は、複数の監視機器20から第1の校正データ(第1の実施形態で説明済み)に基づいて校正された新規機器データ(特徴量)を受信すると、当該新規機器データに基づいて仮の特徴量を含む仮の教師データを生成する(S22-1)。その後、サーバ10は、S22-1で生成した仮の教師データを、校正された新規機器データ(特徴量)を送信してきた監視機器20に送信(返信)する(S22-2)。
 監視機器20は、受信した仮の教師データに含まれる仮の特徴量と、監視部21が抽出した新規機器データ(特徴量)とに基づいて、第2の校正データを生成する(S22-3)。そして、監視機器20は、生成した第2の校正データに基づいて、監視部21が抽出した新規機器データ(特徴量)を校正する(S22-4)。その後、監視機器20は、第2の校正データに基づいて校正した新規機器データ(特徴量)を、サーバ10に送信する(S22-5)。
 サーバ10は、複数の監視機器20から第2の校正データに基づいて校正された新規機器データ(特徴量)を受信すると、当該新規機器データに基づいて仮の特徴量を含む仮の教師データを生成する(S22-6)。その後、サーバ10は、上記処理を繰り返すか判断する。繰り返すと判断した場合(S22-7のYes)、S22-2に戻り処理を繰り返す。一方、それ以上繰り返さないと判断すると(S22-7のNo)、S22-8に進む。
 S22-8では、サーバ10は、最後に生成された仮の教師データを、その新規電気機器の教師データとして決定し、教師データ保存部13に登録する。このようにして、教師データ保存部13に教師データが登録された後、第2の実施形態で説明した処理を実行することができる。
 以上説明した本実施形態によれば、第1及び第2の実施形態と同様の作用効果を実現することができる。また、本実施形態によれば、仮の教師データ、及び、仮の校正データを生成する処理を繰り返すことで、校正データを最適化することができる。
 なお、本実施形態の変形例として、「仮の教師データと、新規機器データとに基づいて、これらのデータ間の差を打ち消す第2の前記校正データを生成する処理」、及び、「第2の校正データに基づいて、新規機器データを校正する処理」の少なくとも一方を、サーバ10が行ってもよい。
<第4の実施形態>
 まず、本実施形態の概要について説明する。本実施形態では、監視機器20は、第1の実施形態で説明した手法で新規機器データ(特徴量)を抽出した後、当該新規電気機器の教師データがサーバ10にすでに保存されているか否かを、サーバ10に問い合わせる。そして、問い合わせの結果に応じて、処理内容を変更する。
 図21に監視機器20の機能ブロック図の一例を示す。図21に示すように、監視機器20は、監視部21と、校正データ生成部22と、校正部23と、受付部24と、送信部25と、問合部27と、登録処理制御部28とを有する。監視機器20は、さらに、機器側受信部26を有してもよい。監視部21、校正データ生成部22、校正部23、受付部24、送信部25及び機器側受信部26の構成は、第1乃至第3の実施形態と同様であるので、ここでの説明は省略する。
 問合部27は、監視部21により新規電気機器の新規機器データが抽出されると、新規電気機器の教師データが教師データ保存部13にすでに保存されているか否かを、サーバ10に問い合わせる。例えば、問合部27は、校正部23により第1の校正データを利用して校正された後の新規機器データをサーバ10に送信し、これとマッチングする特徴量を対応付けられた教師データがすでに教師データ保存部13に保存されているか問い合わせてもよい。又は、問合部27は、受付部24が受付けた新規電気機器の識別情報(電気機器ID)をサーバ10に送信し、当該電気機器IDを対応付けられた教師データがすでに教師データ保存部13に保存されているか問い合わせてもよい。
 サーバ10は、当該問い合わせを受信すると、教師データ保存部13を検索し、検索結果(「保存されている」又は「保存されていない」又は、「保存されているがデータが不十分」)を返信する。「不十分なデータ」とは、例えば第3の実施形態で説明した第3部123が、第3の実施形態で説明した繰り返し処理をまだ繰り返すと判断する状態のデータである。例えば、仮の特徴量の変化量(例:直前の仮の特徴量との差分等)が所定の閾値以内に収まっていないデータ、予め定められた所定回数繰り返していないデータ、予め定められた所定の期間繰り返していないデータなどである。
 サーバ10からの回答が「保存されていない」又は「保存されているがデータが不十分」であった場合、登録処理制御部28は、送信部25による新規電気機器の識別情報(電気機器ID)と、第1の校正データに基づいて校正された新規機器データと、を対応付けてサーバ10に送信する処理が実行されるように、校正データ生成部22、校正部23、受付部24及び送信部25を制御する。
 一方、サーバ10からの回答が「保存されている」であった場合、登録処理制御部28は、サーバ10に当該電気機器の教師データを要求し、受信する。そして、受信した教師データを監視部21及び校正データ生成部22に入力する。校正データ生成部22は、入力された教師データ及び監視部21が抽出した新規機器データ(特徴量)に基づいて校正データを生成し、監視部21に入力する。監視部21は、以降、入力された教師データ及び校正データを利用して、監視対象に含まれる電気機器(既存電気機器及び新規電気機器を含む)の稼働状態を推定する。
 また、サーバ10からの回答が「保存されている」であった場合、登録処理制御部28は、送信部25による新規電気機器の識別情報(電気機器ID)と、第1の校正データに基づいて校正された新規機器データと、を対応付けてサーバ10に送信する処理が実行されないように、校正データ生成部22、校正部23、受付部24及び送信部25の少なくとも1つを制御する。校正データ生成部22による第1の校正データを生成する処理、校正部23による第1の校正データに基づいて新規機器データを校正する処理、及び、受付部24による新規電気機器の識別情報(電気機器ID)の入力を受付ける処理の中の少なくとも1つが実行されなかった場合、送信部25がサーバ10に送信する情報が揃わない。このため、送信部25による処理は実行されない。また、送信部25がサーバ10に送信する情報が揃っても、送信部25を制御して当該情報をサーバ10に送信させなければ、送信部25がサーバ10に所定の情報を送信する処理が実行されない。登録処理制御部28は、いずれの手法で当該制御を実現してもよい。
 図22は、本実施形態の監視機器20の処理の流れの一例を示すフローチャートである。
 監視部21が新規機器データ(新たに監視単位に設置された電気機器の特徴量)を抽出すると(S31のYes)、以降の処理がスタートする。監視部21が新規機器データを抽出しない間(S31のNo)、待ち状態となる。
 監視部21が新規機器データを抽出すると(S31のYes)、校正データ生成部22が第1の校正データを生成する(S32)。そして、校正部23は、S32で生成された第1の校正データを利用して、S31で抽出された新規機器データを校正する(S33)。その後、問合部27は、校正後の新規機器データ(特徴量)をサーバ10に送信し、当該新規機器データの教師データがすでに教師データ保存部13に保存されているか問い合わせる(S34)。
 サーバ10は、受信した校正後の新規機器データ(特徴量)をキーとして教師データ保存部13を検索する。マッチングする特徴量を対応付けられた教師データが見つかった場合、サーバ10は、「保存されている」ことを示す回答を、監視機器20に返信する。一方、マッチングする特徴量を対応付けられた教師データが見つからなかった場合、サーバ10は、「保存されていない」もしくは「保存されているがデータが不十分である」ことを示す回答を、監視機器20に返信する。
 サーバ10からの回答が「保存されている」ことを示すものであった場合(S35のYes)、登録処理制御部28はサーバ10にその教師データを要求し、その教師データを受信する(S36)。その後、校正データ生成部22は、S36で受信された教師データ、及び、S31で抽出された新規機器データに基づいて、校正データを生成する(S37)。そして、S36で受信された教師データ、及び、S37で生成された校正データが対応付けて監視部21に登録される。以降、監視部21は、新たに登録された教師データ及び校正データを利用して、監視単位に含まれる電気機器(既存電気機器及び新規電気機器を含む)の稼働状態を推定する。
 また、登録処理制御部28は、送信部25による新規電気機器の識別情報(電気機器ID)と、第1の校正データに基づいて校正された新規機器データと、を対応付けてサーバ10に送信する処理が実行されないように、受付部24及び送信部25の少なくとも1つを制御する。
 一方、サーバ10からの回答が「保存されていない」もしくは「保存されているがデータが不十分である」ことを示すものであった場合(S35のNo)、受付部24は、新規電気機器の識別情報(電気機器ID)の入力を受付ける(S39)。そして、送信部25は、S33で校正された校正後の新規機器データと、S39で受付けた新規電気機器の識別情報(電気機器ID)とを対応付けて、サーバ10に送信する(S40)。
 なお、上記の変形例として、S32及びS33の代わりに、「受付部24が新規電気機器の識別情報(電気機器ID)の入力を受付ける処理」を実行してもよい。そして、S34で、問合部27は、受付部24が受付けた電気機器IDをサーバ10に送信し、電気機器IDに対応する教師データがすでに教師データ保存部13に保存されているか問い合わせてもよい。
 そして、サーバ10からの回答が「保存されている」ことを示すものであった場合(S35のYes)、登録処理制御部28は、送信部25による新規電気機器の識別情報(電気機器ID)と、第1の校正データに基づいて校正された新規機器データと、を対応付けてサーバ10に送信する処理が実行されないように、校正データ生成部22、校正部23及び送信部25の少なくとも1つを制御してもよい。
 また、サーバ10からの回答が「保存されていない」もしくは「保存されているがデータが不十分である」ことを示すものであった場合(S35のNo)、その後に、校正データ生成部22が第1の校正データを生成し、校正部23が第1の校正データに基づいて新規機器データを校正してもよい。
 以上説明した本実施形態によれば、第1乃至第3の実施形態と同様の作用効果を実現することができる。
 また、監視単位に新たに追加された新規電気機器が発売日からすでにある程度の時間が経過している場合、その電気機器の教師データは、すでにサーバ10に登録されている可能性が高い。このような場合に、サーバ10と監視機器20の間で、第1の校正データに基づいた校正後の新規機器データと識別情報の送受信や、仮の教師データの送受信や、第2の校正データに基づいた校正後の新規機器データの送受信等を実行してしまうと、サーバ10や監視機器20に不要な処理負担を課すことになり、好ましくない。本実施形態では、これらの処理を実行する前に、ある監視単位で特定された新規電気機器の教師データがすでにサーバ10に登録されているか否か確認し、確認結果に応じて、処理内容を変更できる。このため、サーバ10や監視機器20が不要な処理を実行する不都合を軽減することができる。
 ここで、第1乃至第4の実施形態の監視機器20で推定された結果(電気機器の稼働状態の推定結果)に基づいて実現されるサービスの例を説明する。
 例えば、節電のためのアドバイスを行うことができる。第1乃至第4の実施形態の監視機器20によれば、1日(0時から24時)における電気機器の稼動状態の時間変化が確認できる。このような出力に基づいて、電気機器の使用が多い時間帯等を特定し、その時間における使用を意識的に減らすなどのアドバイスを行うことができる。
 その他の例として、電気機器のメンテナンス(例:エアコンの掃除)のタイミングを通知することができる。第1乃至第4の実施形態の監視機器20によれば、推定結果を蓄積していくことで、各電気機器の累積稼働時間を算出することができる。例えば、累積時間が所定の値となったタイミングで、メンテナンスを促す通知を行うことができる。また、電気機器の故障や一部部品の経年劣化により、消費電流、消費電力、電圧や、測定特徴量などが変化しうる。そこで、例えば、このような変化を検知すると、メンテナンスを促す通知を行うことができる。
 その他の例として、冷蔵庫の使用に関するアドバイスを行うことができる。冷蔵庫は、その内部への積み込み状態に応じて、消費電流、消費電力、電圧、測定特徴量などが変化しうる。第1乃至第4の実施形態の監視機器20によれば、このような変化を検知することができる。この変化に基づいて、詰め込みすぎの警告や、内部の物が少なくなっているので備蓄を増やす催促などを通知することができる。
 その他の例として、第1乃至第4の実施形態の監視機器20によれば、過去の推定結果の履歴と比較することで、電気機器の使用パターンがいつもと異なるか否かを検知することができる。電気機器の使用パターンがいつもと異なった場合、サービス受領者(電気機器の使用者)に何らかの変化(例:病気、事件に巻き込まれた等)が生じている可能性がある。そこで、このような場合、予め登録していた連絡先に警告を通知することができる。
 その他の例として、第1乃至第4の実施形態の監視機器20とサーバ10によれば、電気機器の使用パターン(例:1日の中の使用パターン)に基づいて、ユーザの生活リズム等を推定することができる。そこで、不規則な生活リズム(例:夜中の活動が多い(夜中に多くの電気機器を使用)、昼間の活動と夜中の活動が不規則に現れる等)のユーザに対して、サーバ10に保存された規則的な生活リズムを持つユーザの生活リズムを参考にしながら、具体的な生活リズムの改善方法を提案することができる。
 以下、参考形態の例を付記する。
1. 複数の監視機器と、複数の前記監視機器各々と通信するサーバと、を有し、
 前記監視機器は、
  消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視手段と、
  前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成手段と、
  前記第1の校正データに基づいて、前記新規機器データを校正する校正手段と、
  前記新規電気機器の識別情報の入力を受付ける受付手段と、
  前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、前記サーバに送信する送信手段と、
を有し、
 前記サーバは、
  複数の前記監視機器から、前記新規電気機器の校正後の前記新規機器データと、前記識別情報とを受信する受信手段と、
  複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成手段と、
を有する監視システム。
2. 1に記載の監視システムにおいて、
 前記教師データ生成手段は、
  複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の仮の特徴量を含む仮の教師データを生成する第1手段と、
  前記仮の教師データを前記監視機器に送信する第2手段と、
を有し、
 前記監視機器は、前記仮の教師データを受信する機器側受信手段をさらに有し、
 前記校正データ生成手段は、前記仮の教師データと、前記新規機器データとに基づいて、これらのデータ間の差を打ち消す第2の前記校正データを生成し、
 前記校正手段は、前記第2の校正データに基づいて、前記新規機器データを校正し、
 前記送信手段は、前記新規電気機器の前記識別情報と、前記第2の校正データに基づいて校正された前記新規機器データと、を対応付けて、前記サーバに送信する監視システム。
3. 2に記載の監視システムにおいて、
 前記教師データ生成手段は、
  前記第1手段及び前記第2手段を制御し、前記仮の教師データを生成する処理、及び、前記仮の教師データを前記監視機器に送信する処理を繰り返し実行させる第3手段をさらに有する監視システム。
4. 3に記載の監視システムにおいて、
  前記第3手段は、前記第1手段及び前記第2手段による前記処理を繰り返した後に得られた前記新規電気機器の前記仮の教師データを、前記新規電気機器の前記教師データとして決定する監視システム。
5. 1から5のいずれかに記載の監視システムにおいて、
 前記監視手段は、前記測定データと、前記教師データと、前記校正データと、に基づいて、複数の前記既存電気機器の稼働状態を推定するとともに、前記新規機器データを抽出する監視システム。
6. 5に記載の監視システムにおいて、
 前記サーバは、
  前記新規電気機器の前記教師データを前記監視機器に送信する送信手段をさらに有し、
 前記校正データ生成手段は、前記新規電気機器の前記教師データと、前記新規機器データとに基づいて、これらのデータ間の差を打ち消す第3の前記校正データを生成し、
 前記監視手段は、さらに、前記新規電気機器の前記教師データと、前記第3の校正データとに基づいて、複数の前記既存電気機器及び前記新規電気機器の稼働状態を推定する監視システム。
7. 1から6のいずれかに記載の監視システムにおいて、
 前記監視機器は、
  前記新規電気機器の前記新規機器データを抽出すると、前記新規電気機器の前記教師データが前記教師データ保存手段に保存されているか否かを前記サーバに問い合わせる問合手段と、
  前記問い合わせの結果が、保存されていない、であった場合、前記送信手段による前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて前記サーバに送信する処理が実行されるように制御する登録処理制御手段と、
をさらに有する監視システム。
8. 1から7のいずれかに記載の監視システムにおいて、
 前記監視機器は、
  前記新規電気機器の前記新規機器データを抽出すると、前記新規電気機器の前記教師データが前記教師データ保存手段に保存されているか否かを前記サーバに問い合わせる問合手段と、
  前記問い合わせの結果が、保存されている、であった場合、前記サーバから前記新規電気機器の前記教師データを受信するとともに、前記送信手段による前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて前記サーバに送信する処理が実行されないように制御する登録処理制御手段と、
をさらに有する監視システム。
9. 消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視手段と、
 前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成手段と、
 前記第1の校正データに基づいて、前記新規機器データを校正する校正手段と、
 前記新規電気機器の識別情報の入力を受付ける受付手段と、
 前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、サーバに送信する送信手段と、
を有する監視機器。
10. 複数の監視機器から、消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データの中から抽出された新規電気機器の特徴量を含み、前記新規電気機器の設置環境に起因して前記測定データに現れる変動を校正した後の新規機器データと、前記新規電気機器の識別情報とを受信する受信手段と、
 複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成手段と、
を有するサーバ。
11. コンピュータを、
 消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視手段、
 前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成手段、
 前記第1の校正データに基づいて、前記新規機器データを校正する校正手段、
 前記新規電気機器の識別情報の入力を受付ける受付手段、
 前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、サーバに送信する送信手段、
として機能させるためのプログラム。
12. コンピュータを、
 複数の監視機器から、消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データの中から抽出された新規電気機器の特徴量を含み、前記新規電気機器の設置環境に起因して前記測定データに現れる変動を校正した後の新規機器データと、前記新規電気機器の識別情報とを受信する受信手段、
 複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成手段、
として機能させるためのプログラム。
13. コンピュータが、
 消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視工程と、
 前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成工程と、
 前記第1の校正データに基づいて、前記新規機器データを校正する校正工程と、
 前記新規電気機器の識別情報の入力を受付ける受付工程と、
 前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、サーバに送信する送信工程と、
を実行する監視機器の動作方法。
14. コンピュータが、
 複数の監視機器から、消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データの中から抽出された新規電気機器の特徴量を含み、前記新規電気機器の設置環境に起因して前記測定データに現れる変動を校正した後の新規機器データと、前記新規電気機器の識別情報とを受信する受信工程と、
 複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成工程と、
を実行するサーバの動作方法。
 この出願は、2014年5月29日に出願された日本出願特願2014-111331号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (14)

  1.  複数の監視機器と、複数の前記監視機器各々と通信するサーバと、を有し、
     前記監視機器は、
      消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視手段と、
      前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成手段と、
      前記第1の校正データに基づいて、前記新規機器データを校正する校正手段と、
      前記新規電気機器の識別情報の入力を受付ける受付手段と、
      前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、前記サーバに送信する送信手段と、
    を有し、
     前記サーバは、
      複数の前記監視機器から、前記新規電気機器の校正後の前記新規機器データと、前記識別情報とを受信する受信手段と、
      複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成手段と、
    を有する監視システム。
  2.  請求項1に記載の監視システムにおいて、
     前記教師データ生成手段は、
      複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の仮の特徴量を含む仮の教師データを生成する第1手段と、
      前記仮の教師データを前記監視機器に送信する第2手段と、
    を有し、
     前記監視機器は、前記仮の教師データを受信する機器側受信手段をさらに有し、
     前記校正データ生成手段は、前記仮の教師データと、前記新規機器データとに基づいて、これらのデータ間の差を打ち消す第2の前記校正データを生成し、
     前記校正手段は、前記第2の校正データに基づいて、前記新規機器データを校正し、
     前記送信手段は、前記新規電気機器の前記識別情報と、前記第2の校正データに基づいて校正された前記新規機器データと、を対応付けて、前記サーバに送信する監視システム。
  3.  請求項2に記載の監視システムにおいて、
     前記教師データ生成手段は、
      前記第1手段及び前記第2手段を制御し、前記仮の教師データを生成する処理、及び、前記仮の教師データを前記監視機器に送信する処理を繰り返し実行させる第3手段をさらに有する監視システム。
  4.  請求項3に記載の監視システムにおいて、
      前記第3手段は、前記第1手段及び前記第2手段による前記処理を繰り返した後に得られた前記新規電気機器の前記仮の教師データを、前記新規電気機器の前記教師データとして決定する監視システム。
  5.  請求項1から5のいずれか1項に記載の監視システムにおいて、
     前記監視手段は、前記測定データと、前記教師データと、前記校正データと、に基づいて、複数の前記既存電気機器の稼働状態を推定するとともに、前記新規機器データを抽出する監視システム。
  6.  請求項5に記載の監視システムにおいて、
     前記サーバは、
      前記新規電気機器の前記教師データを前記監視機器に送信する送信手段をさらに有し、
     前記校正データ生成手段は、前記新規電気機器の前記教師データと、前記新規機器データとに基づいて、これらのデータ間の差を打ち消す第3の前記校正データを生成し、
     前記監視手段は、さらに、前記新規電気機器の前記教師データと、前記第3の校正データとに基づいて、複数の前記既存電気機器及び前記新規電気機器の稼働状態を推定する監視システム。
  7.  請求項1から6のいずれか1項に記載の監視システムにおいて、
     前記監視機器は、
      前記新規電気機器の前記新規機器データを抽出すると、前記新規電気機器の前記教師データが前記教師データ保存手段に保存されているか否かを前記サーバに問い合わせる問合手段と、
      前記問い合わせの結果が、保存されていない、であった場合、前記送信手段による前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて前記サーバに送信する処理が実行されるように制御する登録処理制御手段と、
    をさらに有する監視システム。
  8.  請求項1から7のいずれか1項に記載の監視システムにおいて、
     前記監視機器は、
      前記新規電気機器の前記新規機器データを抽出すると、前記新規電気機器の前記教師データが前記教師データ保存手段に保存されているか否かを前記サーバに問い合わせる問合手段と、
      前記問い合わせの結果が、保存されている、であった場合、前記サーバから前記新規電気機器の前記教師データを受信するとともに、前記送信手段による前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて前記サーバに送信する処理が実行されないように制御する登録処理制御手段と、
    をさらに有する監視システム。
  9.  消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視手段と、
     前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成手段と、
     前記第1の校正データに基づいて、前記新規機器データを校正する校正手段と、
     前記新規電気機器の識別情報の入力を受付ける受付手段と、
     前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、サーバに送信する送信手段と、
    を有する監視機器。
  10.  複数の監視機器から、消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データの中から抽出された新規電気機器の特徴量を含み、前記新規電気機器の設置環境に起因して前記測定データに現れる変動を校正した後の新規機器データと、前記新規電気機器の識別情報とを受信する受信手段と、
     複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成手段と、
    を有するサーバ。
  11.  コンピュータを、
     消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視手段、
     前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成手段、
     前記第1の校正データに基づいて、前記新規機器データを校正する校正手段、
     前記新規電気機器の識別情報の入力を受付ける受付手段、
     前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、サーバに送信する送信手段、
    として機能させるためのプログラム。
  12.  コンピュータを、
     複数の監視機器から、消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データの中から抽出された新規電気機器の特徴量を含み、前記新規電気機器の設置環境に起因して前記測定データに現れる変動を校正した後の新規機器データと、前記新規電気機器の識別情報とを受信する受信手段、
     複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成手段、
    として機能させるためのプログラム。
  13.  コンピュータが、
     消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データと、複数の既存電気機器各々の稼働時の特徴量を含む教師データと、複数の前記既存電気機器各々の設置環境に起因して前記測定データに現れる変動を校正するための前記既存電気機器毎の校正データと、に基づいて、前記測定データの中から、前記既存電気機器と異なる新規電気機器の前記特徴量を含む新規機器データを抽出する監視工程と、
     前記既存電気機器の前記校正データに基づいて、前記新規電気機器の第1の前記校正データを生成する校正データ生成工程と、
     前記第1の校正データに基づいて、前記新規機器データを校正する校正工程と、
     前記新規電気機器の識別情報の入力を受付ける受付工程と、
     前記新規電気機器の前記識別情報と、前記第1の校正データに基づいて校正された前記新規機器データと、を対応付けて、サーバに送信する送信工程と、
    を実行する監視機器の動作方法。
  14.  コンピュータが、
     複数の監視機器から、消費電流、消費電力及び入力電圧の中の少なくとも1つの測定データの中から抽出された新規電気機器の特徴量を含み、前記新規電気機器の設置環境に起因して前記測定データに現れる変動を校正した後の新規機器データと、前記新規電気機器の識別情報とを受信する受信工程と、
     複数の前記監視機器各々から受信した前記新規電気機器の校正後の前記新規機器データに基づいて、前記新規電気機器の前記教師データを生成し、教師データ保存手段に登録する教師データ生成工程と、
    を実行するサーバの動作方法。
PCT/JP2015/057549 2014-05-29 2015-03-13 監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム WO2015182217A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016523355A JP6597606B2 (ja) 2014-05-29 2015-03-13 監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム
US15/314,766 US10274573B2 (en) 2014-05-29 2015-03-13 Monitoring system, monitoring device and method of operating the same, server and method of operating the same, and non-transitory storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014111331 2014-05-29
JP2014-111331 2014-05-29

Publications (1)

Publication Number Publication Date
WO2015182217A1 true WO2015182217A1 (ja) 2015-12-03

Family

ID=54698559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057549 WO2015182217A1 (ja) 2014-05-29 2015-03-13 監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム

Country Status (3)

Country Link
US (1) US10274573B2 (ja)
JP (1) JP6597606B2 (ja)
WO (1) WO2015182217A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219842A (ja) * 2018-06-19 2019-12-26 日産自動車株式会社 車両管理システム及び車両管理方法
KR102453041B1 (ko) * 2022-04-21 2022-10-11 주식회사 그리드위즈 확장성을 가진 다목적 무정전 전기품질 데이터 수집 시스템

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI592774B (zh) * 2016-08-08 2017-07-21 明基能源技術股份有限公司 電器設備的操作識別方法及應用其的操作識別系統

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067988A1 (ja) * 2009-12-02 2011-06-09 日本電気株式会社 電力計測システム、電力計測方法および情報処理装置
JP2012122966A (ja) * 2010-12-10 2012-06-28 Sharp Corp 電力測定器、電力測定方法、電力測定システム、情報処理装置、制御プログラムおよび記憶媒体
JP2012255744A (ja) * 2011-06-10 2012-12-27 Sony Corp 情報処理装置およびその方法、サーバ装置およびその制御方法、並びにプログラム
WO2013157031A1 (ja) * 2012-04-16 2013-10-24 日立コンシューマエレクトロニクス株式会社 機器識別装置および機器識別装置の登録方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403368B2 (ja) 1999-02-01 2003-05-06 財団法人電力中央研究所 電気機器モニタリングシステム及び動作異常警報システム
JP4433890B2 (ja) 2004-06-04 2010-03-17 三菱電機株式会社 電気機器稼動状態推定システムおよび電気機器稼動状態推定用データベース構築方法
US9020769B2 (en) * 2009-01-26 2015-04-28 Geneva Cleantech Inc. Automatic detection of appliances
JP2010210575A (ja) 2009-03-12 2010-09-24 Oki Electric Ind Co Ltd 電気機器稼動状況推定装置、情報格納装置、及び、電気機器稼動状況推定システム
TWI423549B (zh) * 2010-07-02 2014-01-11 Univ Nat Chiao Tung 辨識電器狀態的電力監測裝置及其電力監測方法
JP5328858B2 (ja) 2011-08-26 2013-10-30 三菱電機株式会社 稼働状況判別装置、稼働状況判別プログラム、稼働状況判別方法、波形パターン学習装置、波形パターン学習プログラム、及び波形パターン学習方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067988A1 (ja) * 2009-12-02 2011-06-09 日本電気株式会社 電力計測システム、電力計測方法および情報処理装置
JP2012122966A (ja) * 2010-12-10 2012-06-28 Sharp Corp 電力測定器、電力測定方法、電力測定システム、情報処理装置、制御プログラムおよび記憶媒体
JP2012255744A (ja) * 2011-06-10 2012-12-27 Sony Corp 情報処理装置およびその方法、サーバ装置およびその制御方法、並びにプログラム
WO2013157031A1 (ja) * 2012-04-16 2013-10-24 日立コンシューマエレクトロニクス株式会社 機器識別装置および機器識別装置の登録方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219842A (ja) * 2018-06-19 2019-12-26 日産自動車株式会社 車両管理システム及び車両管理方法
JP7199844B2 (ja) 2018-06-19 2023-01-06 日産自動車株式会社 車両管理システム及び車両管理方法
KR102453041B1 (ko) * 2022-04-21 2022-10-11 주식회사 그리드위즈 확장성을 가진 다목적 무정전 전기품질 데이터 수집 시스템

Also Published As

Publication number Publication date
JPWO2015182217A1 (ja) 2017-04-20
JP6597606B2 (ja) 2019-10-30
US20170199265A1 (en) 2017-07-13
US10274573B2 (en) 2019-04-30

Similar Documents

Publication Publication Date Title
JP6958599B2 (ja) 監視装置、監視システム、監視方法及びプログラム
JP6583265B2 (ja) 監視装置、監視システム、監視方法及びプログラム
US20210278832A1 (en) Maintenance plan formulation device, method, and non-transitory medium
JP5520807B2 (ja) 住宅用電気機器メンテナンス管理装置及び住宅用電気機器メンテナンスシステム
WO2017047296A1 (ja) 教師データ提供装置、推定装置、推定システム、教師データ提供方法、推定方法、及び、プログラム
WO2015087470A1 (ja) 需要予測装置、プログラム
US11067612B2 (en) Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium
US9263890B2 (en) Power management apparatus and method for controlling the same
JP2011122908A (ja) 分析装置及び計測管理システム
JP6597606B2 (ja) 監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム
US10254319B2 (en) Apparatus, server, system and method for energy measuring
JP5491215B2 (ja) 省エネルギ診断システム
JP2010210575A (ja) 電気機器稼動状況推定装置、情報格納装置、及び、電気機器稼動状況推定システム
CN103869181A (zh) 监控装置及其识别电器装置的方法
JP6465106B2 (ja) 教師データ生成装置、電気機器監視システム、教師データ生成方法及びプログラム
JPWO2017038364A1 (ja) 情報出力装置、情報出力方法、及び、プログラム
US20150357816A1 (en) Apparatus, server, system and method for energy measuring
JP2015102526A (ja) 電力推定装置及び電力推定方法
JP2014055798A (ja) 表示装置、方法、およびプログラム
JP2012037339A (ja) 電力管理システム、電力管理方法
KR20160010793A (ko) 전력 관리 방법 및 이를 적용한 전력 관리 시스템
JP2015021775A (ja) 監視装置、監視方法及びプログラム
KR101174602B1 (ko) 단일 지점에서 과도 응답 분석을 통한 에너지 사용 패턴을 인식하는 시스템 및 방법
WO2015194248A1 (ja) 情報提供装置、情報提供方法、及び、プログラム
KR20080009891A (ko) 가상제어모니터링을 이용한 원격제어 주방관리 시스템 및제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523355

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15314766

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15799109

Country of ref document: EP

Kind code of ref document: A1