WO2015180694A1 - 移动终端光子数据传输方法、传输装置以及光子数据接收装置 - Google Patents

移动终端光子数据传输方法、传输装置以及光子数据接收装置 Download PDF

Info

Publication number
WO2015180694A1
WO2015180694A1 PCT/CN2015/082843 CN2015082843W WO2015180694A1 WO 2015180694 A1 WO2015180694 A1 WO 2015180694A1 CN 2015082843 W CN2015082843 W CN 2015082843W WO 2015180694 A1 WO2015180694 A1 WO 2015180694A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
brightness
photon
receiving end
data
Prior art date
Application number
PCT/CN2015/082843
Other languages
English (en)
French (fr)
Inventor
刘若鹏
徐思路
Original Assignee
深圳光启智能光子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启智能光子技术有限公司 filed Critical 深圳光启智能光子技术有限公司
Publication of WO2015180694A1 publication Critical patent/WO2015180694A1/zh
Priority to US15/361,402 priority Critical patent/US10014941B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication

Definitions

  • the invention relates to a mobile terminal photon data transmission method, a transmission device and a photon data receiving device, in particular to its application in an identity authentication system.
  • the light control system can be called a photon access control system when applied to the access control system.
  • the photon access control system includes an access control management system and a mobile terminal (for example, a mobile photonic client, that is, a photon signal transmitter implemented by a mobile phone, which may also be called a photon mobile phone. End, a mobile phone photonic client with a device that can emit light, a mobile phone photon key, etc.), a photon receiving end, and the like.
  • the traditional access control system is pre-registered on the distribution platform (network) through a smart card as the only personal identity (the registered related data is saved to the controller through the device network).
  • the smart card held by the user is swayed within the valid range of the card reader for feature recognition.
  • the card reader reads the data of the smart card and transmits it to the controller, and the controller compares the saved registration information with the acquired data. If the comparison is successful, the driver will open the door according to the normal situation, otherwise the door will remain closed, and the event information can be transmitted to the alarm, monitoring and other systems for processing by a third party.
  • the mobile phone photonic client identification information needs to be allocated.
  • the ID number identification number
  • the photon access control system the ID number (identification number) can be used to uniquely identify the mobile phone photonic client, which requires an ID number distribution platform (network). ) It performs a uniform ID number assignment. After the ID number is assigned, the photon receiving end obtains the correct optical signal through a device that can emit light (such as a flash on the mobile phone photonic client).
  • the device that emits light is the flash of the mobile phone itself, since the current mobile phone controls the flash to emit light at a relatively low frequency, the amount of information transmitted is very limited, and it takes a long time to transmit a long ID number. Although the uniqueness of the ID number can be realized after the ID number assignment is unified, the ID number between different devices no longer has a duplicate number phenomenon, but on the other hand, the ID number is lengthened, which further exacerbates this problem.
  • the object of the present invention is to provide a mobile terminal photon data transmission method, a transmission device and a photon data receiving device, which can ensure the full use of the light intensity of the flash of the mobile terminal (such as a mobile phone) to encode and transmit, and ensure the photon receiving end can ensure Correctly receive the data encoded by the brightness of the decoding.
  • a mobile terminal photon data transmission method characterized in that the method comprises the following steps:
  • the data to be transmitted is represented by optical signals of different brightness; the optical brightness level of the optical signal has N levels;
  • optical signal element of a brightness level represents an M-ary number
  • a series of optical signal elements represent a series of M-ary numbers
  • the optical signal is a combination of n optical signal elements
  • the combined encoding of 0-(N n -1) M-ary numbers is represented by a combination of optical signal elements having a combination of corresponding light luminance levels.
  • An M-ary number, and a series of optical signal elements are combined to represent a series of M-ary numbers;
  • M and N are natural numbers, and n is an integer greater than one;
  • the data to be transmitted is sent as an optical signal.
  • the method further includes the following steps:
  • Test data generation generating or receiving a set of test data from the server
  • test optical signal is a single optical signal element, encoding 0-(N-1) M-ary numbers: represented by an optical signal element having a corresponding optical brightness level An M-ary number, and a series of optical signal elements represent a series of M-ary numbers;
  • Combining 0-(N n -1) M-ary numbers when the test optical signal is a combination of n optical signal elements combining one optical signal element with a combination of corresponding light luminance levels Represents an M-ary number, and a series of optical signal elements represent a series of M-ary numbers, where M and N are natural numbers, n is an integer greater than 1; C, according to the recognition result of the test data by the photon receiving end The maximum intensity level of the brightness adjustment of the optical signal that can be recognized by the photon receiving end;
  • the data to be transmitted is encoded using the brightness-adjusted optical signal of the learned maximum intensity level.
  • step C is included in step C:
  • C2 finding the maximum intensity level of the brightness adjustment of the optical signal recognizable by the photon receiving end: after determining that the photon receiving end can recognize the brightness-adjusted optical signal of the specific light brightness level, recording the identifiable light Brightness level value, and increasing the brightness adjustment brightness brightness level, repeating step B; after determining that the photon receiving end is unable to recognize the brightness adjustment optical signal of the specific light brightness level, reducing the brightness adjustment brightness brightness level, Then repeat step B;
  • step C1 is included in step C1:
  • C1-1 repeating, by a predetermined number of times, light modulated by the brightness of the specific light brightness level, encoding the test data, and aligning the photon receiving end with optical information, receiving and identifying by the receiving end, comparing and determining Whether each decoding is correct: compare the test data with the corresponding field of the decoded data. If the data is equal, this indicates that the decoding is correct;
  • the method further includes the following steps:
  • Storing test data saving the test data to a first storage table of a host or server through a network;
  • the photon receiving end saves the decoded data to a second storage table of the same host or server;
  • step C1-1 And comparing and determining whether the single decoding is correct in step C1-1 is implemented by accessing the first storage table and the second storage table of the host or the server, and comparing the first storage table with the second Stores data for the corresponding field in the table.
  • the present invention also provides a mobile terminal photonic data transmission device, comprising: an encoding module for expressing data to be transmitted with optical signals of different brightness;
  • the light intensity level of the optical signal has N levels;
  • an optical signal element having a corresponding light luminance level represents an M-ary number, and a series
  • the optical signal element represents a series of M-ary numbers, where M and N are natural numbers;
  • the optical signal is a combination of n optical signal elements
  • the 0-(N n -1) M-ary numbers are combined and encoded, and the optical signal element combination having the corresponding light luminance level combination is represented by An M-ary number, and a series of optical signal elements are combined to represent a series of M-ary numbers, where M and N are natural numbers and n is an integer greater than one;
  • Transmitting module Send the data to be transmitted as an optical signal.
  • the mobile terminal photon data transmission device further comprises: a test data generating module, configured to generate or receive a set of test data from the server; and a test data encoding module, configured to control the brightness of the flash, to a specific brightness level The brightness-adjusted light encodes the test data, and then aligns the photon receiving end to emit a test light signal with the optical information;
  • test optical signal is a single optical signal element, encoding 0-(N-1) M-ary numbers: an optical signal element having a corresponding light luminance level represents an M-ary number, and one Series optical signal elements represent a series of M-ary numbers;
  • Combining 0-(N n -1) M-ary numbers when the test optical signal is a combination of n optical signal elements combining one optical signal element with a combination of corresponding light luminance levels Represents an M-ary number, and a series of optical signal elements represent a series of M-ary numbers, where M and N are natural numbers, n is an integer greater than 1, and a judgment module is used to determine the maximum size that the photon receiving end can recognize.
  • the encoding module encodes the data to be transmitted according to the brightness-adjusted optical signal of the maximum intensity level.
  • the determining module includes determining means for determining whether the photon receiving end can recognize the brightness-adjusted optical signal of the current specific light brightness level according to the recognition result of the photon receiving end, and the determining means comprises:
  • comparing and judging the module encoding the test data by repeating the light adjusted by the brightness of the specific light brightness level by a predetermined number of times, and aligning the light information emitted by the photon receiving end, and comparing the test data and the photon receiving end The corresponding field of the decoded data, if the data is equal, the decoding is judged to be correct;
  • the identification module calculates the recognition rate according to the correct number of times the photon receiving end decodes; if the recognition rate reaches or exceeds the specified threshold, it is determined that the photon receiving end can recognize the brightness adjusted optical signal of the specific light brightness level.
  • a photon data receiving device includes:
  • the comparison and determination module repeats receiving the optical signals encoded by the brightness-adjusted light of the specific light brightness level for the test data by a predetermined number of times, and decodes and compares the corresponding fields of the test data and the decoded data, and if the data is equal, determining Decoding correctly;
  • the identification module calculates the recognition rate according to the correct number of decodings; if the recognition rate reaches or exceeds the specified threshold, it is determined that the brightness adjustment optical signal of the specific light brightness level can be identified
  • the present invention encodes and transmits by controlling the light intensity of a flash of a mobile terminal such as a mobile phone, so that the amount of data transmitted can be reduced by combining strengths and weaknesses. And the combination of light intensity can improve security. Due to the increase in the number of light intensities, the number of codeables is greatly increased, so that some gaps can be used to further increase the security of the code.
  • the preferred solution of the present invention is particularly suitable for the case where the flash signal transmission efficiency of the existing mobile terminal is not high, and it is a method that can encode the optical information by adjusting the intensity combination of the brightness of the flash lamp to achieve more information transmission.
  • the scheme is to align the optical signal by aligning the light source with a certain amount of information by controlling the brightness of the flash by the mobile terminal before encoding, and determining how many levels of light brightness the photon receiving end can support according to the recognition result, and then
  • the encoding is performed according to the recognition capability of the photon receiving end, so that the photon receiving end can be recognized, and the transmitted code can be fully utilized to encode and transmit the light intensity of the mobile phone flash.
  • the present invention also calculates the recognition rate by testing the number of correctly decoded information received by the photon receiving end, and determines the effect of the reception according to the recognition rate, thereby further improving the reliability of the transmission.
  • FIG. 1 is a schematic diagram of a system of Embodiment 1 of the present invention.
  • FIG. 2 is a flow chart of a scheme for transmitting information to a mobile phone photonic client based on flash level control according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of the flow of determining whether the received optical signal is decoded correctly according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a mobile phone photonic client module according to Embodiment 1 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the method for solving the limited amount of information transmitted by the mobile phone flash is to encode the information on the intensity of the light (the brightness adjustment of the flash is prior art, for example, the PhotoTorch plug-in can adjust the brightness of the flash of the IPHONE mobile phone) to improve the unit.
  • the number of signals transmitted at the time For example, in a photon access control system, when a mobile phone is used as a terminal for photonic communication (ie, a mobile photonic client), optical information can be transmitted by controlling the flash of the mobile phone without changing the hardware of the mobile phone, wherein the optical information can be transmitted.
  • By controlling the intensity of the flash to encode and transmit it is possible to reduce the amount of data transmitted by combining the strengths and weaknesses, thereby reducing the overall illumination time, that is, transmitting more information in the same time.
  • this embodiment shows a mobile phone photonic client ID number distribution system, including the following modules:
  • Module 1 Server (not shown), which has an ID number issuing database, such as distributed database (mysql) or SQL Server 2005 or ORACLE, and can receive module communication.
  • database such as distributed database (mysql) or SQL Server 2005 or ORACLE
  • the module 2 and the ID number distribution platform are installed on different PCs and connected to an ID number distribution database.
  • the ID number distribution platform and the server are distributed to generate a unique ID number and a verification code, and a unique mapping relationship between the ID number and the verification code, and the ID number issuance database needs to allocate an ID number distribution platform distributed on different PCs. (Network) Uniform distribution of ID numbers, so the database must support distributed access.
  • the ID number issuance database is used to centrally control the distribution of the ID number, so that the ID number issuance database can be centrally managed, and there is no independent database for each ID number distribution platform (network), when the ID number is assigned. There will be no problem of repeated allocation.
  • Zhang San installed a set of ID number distribution platform (network) and ID number management database on the A machine.
  • Li Si installed a set of ID number distribution platform (network) on the B machine.
  • ID number management database if Zhang San randomly assigned an ID number: 24456 on the A machine, it happens that Li Si assigned the same ID number on the B machine: 24456, then the system can not distinguish 24456 when unlocking Zhang San’s is still Li Si’s. This embodiment avoids the occurrence of this situation.
  • the embodiment of the invention further provides a photon data transmission device for a mobile terminal (for example, a mobile phone photonic client), comprising:
  • Encoding module used to represent data to be transmitted with optical signals of different brightness
  • the light intensity level of the optical signal has N levels;
  • optical signal element having a corresponding brightness level represents an M-ary number
  • a series of optical signal elements represents a series of M-ary numbers
  • the optical signal is a combination of n optical signal elements
  • the combined encoding of 0-(N n -1) M-ary numbers is represented by a combination of optical signal elements having a combination of corresponding light luminance levels.
  • An M-ary number, and a series of optical signal elements are combined to represent a series of M-ary numbers, where M and N are natural numbers and n is an integer greater than one;
  • Transmitting module Send the data to be transmitted as an optical signal.
  • the optical signal element is defined as the smallest unit of the optical signal that can be encoded.
  • An optical signal element can have multiple brightness levels, and each brightness level can correspond to one data.
  • Module 3 mobile phone photonic client, as shown in FIG. 4, further comprising:
  • the ID number obtaining module is configured to acquire one or more ID numbers generated by the server according to the received “ID number acquisition” instruction of the user input;
  • Test data generation module for generating or receiving a set of test data from a server
  • test data encoding module for controlling the brightness of the flash, encoding the test data by the brightness adjusted by the brightness of the specific brightness level, and then aligning the photon receiving end with the optical information;
  • a judging module configured to determine a maximum brightness level that can be recognized by the photon receiving end, that is, the maximum intensity level of the brightness adjustment of the optical signal that can be recognized by the photon receiving end is obtained according to the recognition result of the photo data receiving end;
  • ID number encoding module for encoding the received ID number with the current light luminance level determined to be the maximum light intensity level.
  • the mobile photonic client After obtaining the ID number, the mobile photonic client encodes the optical information of the ID number to be sent. Before the encoding, the mobile phone photonic client controls the brightness of the flash to emit a certain amount of information, and then the photon receiving end is used to identify the optical signal, and according to the recognition result, it is determined how many levels of lightness the photon receiving end can support, such as sending 0- 7 light signal, light signal brightness adjustment has 1-8 level, then the light signal can be encoded by light: binary number 000 corresponds to brightness 1 light signal, 001 corresponds to brightness 2 light signal, and so on 111 corresponding brightness 8 After the test, the optical signal can be judged whether the received optical signal is correctly decoded in the photon receiving end program. The correct part of the decoding is the identifiable light brightness.
  • the mobile photonic client encodes the transmitted optical information, and then aligns the photon receiving end with a certain number of optical information, and the photon receiving end identifies each transmitted optical information, and passes the test photon receiving end to receive the correctly decoded
  • the number of times of information, to determine the effect of the reception, such as the mobile phone photonic client sends 100 times of optical information, the number of times the photon receiving end can correctly resolve the optical information is 98 times, which means photon reception
  • the recognition rate of the end is 98%, so the test is repeated 1000 times.
  • the average value of the recognition rate can be used to obtain the recognition effect of the photon receiving end.
  • the average recognition rate is above 95%, and the coding can be considered feasible.
  • Photon receiving end which includes a photosensor and a processing chip, etc., and a display lamp for displaying an operating state, and an interface connected to the network.
  • the mobile phone photonic client ID number allocation method is: before the mobile phone photonic client encodes the optical information to be transmitted, the mobile phone photonic client controls the brightness of the flash to emit a certain amount of information, and then aligns.
  • the photon receiving end identifies the optical signal, and judges how many levels of light brightness the photon receiving end can support according to the recognition result.
  • the photon receiving end issues a certain number of optical information.
  • the photon receiving end identifies the optical information transmitted each time, and determines the effect of the reception by testing the number of correctly decoded information received by the photon receiving end.
  • FIG. 2 is a flow chart of a scheme for a mobile phone photonic client to transmit information based on flash level control, the method comprising the steps of:
  • ID number acquisition the administrator sends a request to the website server through a web browser or other client, and the website server randomly generates one or more verification codes from the background and randomly generates one or more ID numbers, and generates a verification code. Bind with the ID number.
  • the mobile phone photonic client enters the verification code provided by the administrator, and clicks the “ID number acquisition” button of the mobile photonic client. If the verification code is input correctly, the ID number corresponding to the verification code is obtained. If it is not correct, the ID number cannot be obtained.
  • Test data generation generate a set of test data, which is to be encoded by an optical signal and sent to a photon receiving end.
  • the set of test data corresponding to the optical signal to be sent is stored in the A table in the mysql database of a host (also on the server) through the network.
  • S103 Encode the test data with a brightness adjusted by a specific brightness level and emit an optical signal: after the mobile photonic client obtains the ID number, before the optical information is encoded by the ID number, the brightness of the flash is controlled by the photonic client of the mobile phone.
  • the test signal is encoded by the light signal brightness level 8 and then aligned with the photon receiving end to emit light information: the light signal of brightness 1 represents a binary number 000, the light signal of brightness 2 represents a binary number 001, and so on, brightness
  • the optical signal of 8 represents a binary number 111 corresponding.
  • S104 Determine, according to the recognition result of the photon receiving end, whether the receiving end can recognize the brightness adjustment optical signal of the current light brightness level: receive the optical signal and identify, and determine whether the received optical signal is decoded correctly.
  • step S104 and subsequent steps the cooperation of the photon receiving end is required, which is mainly to obtain the maximum intensity level of the brightness adjustment of the optical signal that can be recognized by the photon receiving end according to the recognition result of the photo data receiving end.
  • the implementation method is as follows:
  • the photon receiving end After receiving the optical signal, the photon receiving end recognizes the signal according to the recognition result, and determines how many levels of light brightness the photon receiving end can support: whether the received optical signal is correctly decoded in the photon receiving end program, and the correct part of the decoding is identifiable. Light brightness, if all the optical signals are decoded correctly, it can be judged that the photon receiving end can recognize the 8-level brightness-adjusted optical signal, and then proceeds to step S105 to determine whether it is possible to confirm the maximum brightness level that the photon receiving end can recognize.
  • S104-2 Calculate the recognition rate and determine whether it is available: access the A and B tables in the database of the host, and compare the data of the corresponding fields in the A table and the B table. If the data is equal, this indicates correct identification. If the recognition rate is 96% or more, the verification proceeds, and the process proceeds to step S107, and the received ID number is encoded by the current light brightness level. If the recognition rate does not reach 96%, the light intensity level of the light intensity is reduced, and S101 to S104-2 are repeated, and the next round of 100 tests is performed. In this way, the photon client of the mobile phone can set the brightness level of the maximum light intensity to be used normally.
  • the mobile phone photonic client encodes the optical information to be transmitted, and the encoding uses a three-bit binary for direct encoding.
  • the mobile phone photonic client controls the brightness of the flash to issue a certain amount of information, and then The quasi-photon receiving end recognizes the optical signal, judges how many levels of light brightness the photon receiving end can support according to the recognition result, and then encodes the maximum light intensity supported by the optical information.
  • the recognition rate threshold does not have to be set to 96%, and can be changed to other values according to customer requirements and the actual situation of the device, such as: 90%, or 99%.
  • the above-mentioned signal for judging how many levels of light luminance the photon receiving end can support does not need to be performed once before each data transmission.
  • the A and B tables in this embodiment can also be set in the mobile phone. If stored in the mobile phone, the data in the B table is transmitted from the photon receiving end to the mobile photonic client through the network, for example: First, the data recognized and decoded by the photon receiving end is transmitted to the server through the network, and then transmitted to the mobile phone photonic client through the server, or directly transmitted from the photon receiving end to the mobile photonic client through the wireless network.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the difference between this embodiment and the first embodiment is that, when the test data is encoded by the light of the brightness adjustment of the specific light brightness level in the step S103 of the first embodiment, the brightness level of the light signal brightness adjustment is different to 8 levels. In the present embodiment, the case where the number of light levels is four is described.
  • step S103 the optical signal numbered 0-3 is transmitted, and the brightness adjustment of the optical signal has 1-4 levels, then 16 codes of light brightness can be performed on two groups of optical signals: brightness 1, brightness 1
  • the combination of optical signals corresponds to binary 0000
  • the combination of optical signals of brightness 1 and brightness 2 corresponds to 0001
  • the combination of optical signals of brightness 1 and brightness 3 corresponds to 0010
  • the combination of optical signals of brightness 1 and brightness 4 corresponds to 0011, brightness 2, brightness 1
  • the signal combination corresponds to 0100
  • the combination of the light signals of the brightness 2 and the brightness 2 corresponds to 0101
  • so on, and the combination of the light signals of the brightness 4 and the brightness 4 corresponds to 1111.
  • the mobile phone photonic client encodes the optical information to be transmitted, and the encoding adopts four-bit binary to perform four-level light intensity combined encoding mode, and before the encoding, the brightness of the flash is controlled by the mobile phone photonic client to issue a certain amount of information.
  • the data is then aligned with the photon receiving end to identify the optical signal, and based on the recognition result, it is judged how many levels of light intensity the photon receiving end can support, and then the optical information data is actually transmitted with the maximum supported optical intensity.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the difference between this embodiment and the first embodiment is that, when the test data is encoded by the light of the brightness adjustment of the specific light brightness level in the step S103 of the first embodiment, the brightness level of the light signal brightness adjustment is different to 8 levels. In the present embodiment, the case where the number of light levels is five is described.
  • step S103 the optical signal of the number 0-4 is transmitted, and the brightness adjustment of the optical signal has 1-5 levels, then the optical signal can be encoded by the two brightnesses: the corresponding binary 00000 corresponds to the brightness 1 and the brightness 1 , 00001 corresponds to the light signal of brightness 1, brightness 2, 00010 corresponds to the light signal of brightness 1, brightness 3, 00011 corresponds to the light signal of brightness 1, brightness 4, 00100 corresponds to the light signal of brightness 1, brightness 5, 00101 corresponds to brightness 2
  • the optical signal of luminance 1 is analogous, and 11000 corresponds to an optical signal of luminance 5 and luminance 5.
  • the present invention can encode a 0-(N-1) M-ary number using a single optical signal element having an optical luminance level of the optical signal to have a corresponding lightness.
  • An optical signal element of the series represents an encoded M-ary number
  • a series of optical signal elements represent a series of encoded M-ary numbers, where M and N are natural numbers.
  • the light intensity level has 8 levels
  • a single optical signal element can represent 8 values
  • 8 3-bit binary numbers can be completely encoded.
  • the brightness level has 4 levels
  • a single optical signal element can represent 4 values
  • 4 2-bit binary numbers can be completely encoded.
  • a single optical signal element represents a binary number and a plurality of optical signal elements represent a sequence of binary numbers.
  • the number of light levels is 10, and a single optical signal element can represent 10 values, and 10 decimal numbers can be fully encoded.
  • the present invention may also use a combination of n optical signal elements to jointly encode 0-(N n -1) M-ary numbers to have a combination of corresponding light luminance levels.
  • the combination of optical signal elements represents an encoded M-ary number
  • a series of optical signal element combinations represent a series of encoded M-ary numbers, where M and N are natural numbers and n is an integer greater than one.
  • the mobile phone photonic client encodes the optical information to be transmitted, and the encoding adopts a non-combined or combined encoding manner, and the brightness of the flash is controlled by the mobile photonic client before encoding.
  • a certain amount of information is outputted, and then the photon receiving end is used to identify the optical signal, and according to the recognition result, it is judged how many levels of lightness the photon receiving end can support, and then the maximum light supported by the photo information is actually transmitted. Strong coding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

一种移动终端光子数据传输方法和装置,通过调节光的亮度的强弱组合来对待传输数据进行编码从而达到发送更多信息的目的,并提高安全性。在编码之前先控制闪光灯的亮度发出一定信息量的数据,光子接收端对光信号进行识别,根据识别结果判断光子接收端能够支持多少级光亮度的信号,然后才根据光子接收端的识别能力进行编码,这样就能确保光子接收端能识别,并且能保证所发的码能充分利用手机闪光灯的发光亮度。一种光子数据接收装置,通过接收到的正确解码的信息的次数计算其识别率,根据识别率来判断接收的效果,更进一步提高了发码的可靠性。

Description

移动终端光子数据传输方法、传输装置以及光子数据接收装置 技术领域
本发明涉及一种移动终端光子数据传输方法、传输装置以及光子数据接收装置,尤其是其在身份认证系统中的应用。
背景技术
光控系统应用到门禁系统中就可以称之为光子门禁系统,光子门禁系统包括门禁管理系统、移动终端(例如手机光子客户端,即用手机实现的光子信号发送器,也可称为光子手机端、具有可以发光的装置的手机光子客户端、手机光子钥匙等)、光子接收端等。
传统的门禁管理系统是通过一张智能卡作为唯一的个人标识在分配平台(网络)上预先注册(注册的相关数据则通过设备网络保存到控制器上)。当用户进门时将持有的智能卡在读卡器有效范围内轻晃一下进行特征识别,读卡器读取了智能卡的数据后传输到控制器,控制器则根据保存的注册信息和获取的数据对比进行身份判断,如果比对成功则按照正常情况处理即驱动电锁开门,否则门保持关闭,并可将事件信息传输给报警、监控等系统,由第三方处理。
同样在光子门禁系统需要对手机光子客户端身份识别信息进行分配,对于光子门禁系统而言可以使用ID号(身份识别号)唯一识别手机光子客户端,这就要求有一个ID号分配平台(网络)其进行统一的ID号分配。分配好ID号以后,再通过可以发光的装置(比如手机光子客户端上的闪光灯等)让光子接收端获取正确的光信号。
如果发光的装置是手机本身的闪光灯,则由于目前的手机通过程序控制闪光灯发光时的发光频率比较低,所以传输的信息的数量非常有限,发送较长的ID号就需要较长的时间。在统一了ID号分配之后虽然可以实现ID号的唯一性,不同设备之间的ID号不再发生重号现象,但另一方面,会造成ID号加长,更加剧了这一问题。
发明内容
本发明的目的是提供一种移动终端光子数据传输方法、传输装置以及光子数据接收装置,既能保证充分利用移动终端(如手机)闪光灯的发光强弱来编码发送,又能确保光子接收端能正确接收解码用光亮度编码的数据。
一种移动终端光子数据传输方法,其特征在于包括以下步骤:
将待传输数据用不同亮度的光信号表示;所述光信号的光亮度级数有N级;
当所述光信号为单个光信号元时,对0-(N-1)个M进制数进行编码:以具有相应 光亮度级数的一个光信号元代表一个M进制数,而一系列光信号元代表一系列M进制数;
当所述光信号为使用n个光信号元的一个组合时,对0-(Nn-1)个M进制数进行组合编码:以具有相应光亮度级数组合的一个光信号元组合代表一个M进制数,而一系列的光信号元组合代表一系列M进制数;
其中M、N为自然数,n为大于1的整数;
将待传输数据以光信号发出。
进一步地,在所述编码步骤之前还包括如下步骤:
A、测试数据生成:生成或从服务器接收一组测试数据;
B、用特定光亮度级数的亮度调节的光对测试数据编码并发出测试光信号:控制闪光灯的亮度,以特定光亮度级数的亮度调节的光对所述测试数据进行编码,然后对准光子接收端以光信息发出;当所述测试光信号为单个光信号元时,对0-(N-1)个M进制数进行编码:以具有相应光亮度级数的一个光信号元代表一个M进制数,而一系列光信号元代表一系列M进制数;
当所述测试光信号为使用n个光信号元的一个组合时,对0-(Nn-1)个M进制数进行组合编码:以具有相应光亮度级数组合的一个光信号元组合代表一个M进制数,而一系列的光信号元组合代表一系列M进制数,其中M、N为自然数,n为大于1的整数;C、根据光子接收端对测试数据的识别结果获知此光子接收端能够识别的光信号亮度调节的最大光强级数;
且在所述编码步骤中,利用获知的最大光强级数的亮度调节的光信号对待传输数据进行编码。
进一步地,在步骤C中包括如下步骤:
C1、根据光子接收端的识别结果判断此光子接收端是否能够识别当前特定光亮度级数的亮度调节的光信号;
C2、寻找此光子接收端能够识别的光信号亮度调节的最大光强级数:在判断此光子接收端能够识别该特定光亮度级数的亮度调节的光信号后,记录下该可识别的光亮度级数值,并增加亮度调节的光亮度级数,重复步骤B;在判断此光子接收端不能够识别该特定光亮度级数的亮度调节的光信号后,减少亮度调节的光亮度级数,然后重复步骤B;
C3、将所记录的所有可识别的光亮度级数中的最大值记录为此光子接收端能够识别的光信号亮度调节的最大光强级数。
进一步地,在步骤C1中包括如下步骤:
C1-1、以预定次数重复以该特定光亮度级数的亮度调节的光对所述测试数据进行编码,对准光子接收端以光信息发出,由接收端接收并识别后,比较并判断 每次解码是否正确:比较测试数据和解码出来的数据的对应字段,如果数据相等,这表明解码正确;
C1-2、计算识别率并判断是否可用:根据解码正确的次数计算出识别率;如果识别率达到或超过指定阈值,则判断为该光子接收端可以识别该特定光亮度级数的亮度调节的光信号。
进一步地,还包括如下步骤:
存储测试数据:把所述测试数据通过网络保存到一台主机或服务器的的第一存储表中;
存储接收并解码的数据:光子接收端把解码出来的数据保存到同一台主机或服务器的第二存储表中;
并且在步骤C1-1中所说的比较并判断单次解码是否正确是通过如下方式实现的:访问该主机或服务器的第一存储表和第二存储表,并比较第一存储表和第二存储表中的对应字段的数据。
本发明还提出一种移动终端光子数据传输装置,包括:编码模块:用于将待传输数据用不同亮度的光信号表示;
所述光信号的光亮度级数有N级;
当所述光信号为单个光信号元时,对0-(N-1)个M进制数进行编码:以具有相应光亮度级数的一个光信号元代表一个M进制数,而一系列光信号元代表一系列M进制数,其中M、N为自然数;
当所述光信号为使用n个光信号元的一个组合时,对0-(Nn-1)个M进制数进行组合编码,以具有相应光亮度级数组合的一个光信号元组合代表一个M进制数,而一系列的光信号元组合代表一系列M进制数,其中M、N为自然数,n为大于1的整数;
发送模块:将待传输数据以光信号发出。
优选的,所述移动终端光子数据传输装置还包括:测试数据生成模块,用于生成或从服务器接收一组测试数据;测试数据编码模块,用于控制闪光灯的亮度,以特定光亮度级数的亮度调节的光对所述测试数据进行编码,然后对准光子接收端以光信息发出测试光信号;
当所述测试光信号为单个光信号元时,对0-(N-1)个M进制数进行编码:以具有相应光亮度级数的一个光信号元代表一个M进制数,而一系列光信号元代表一系列M进制数;
当所述测试光信号为使用n个光信号元的一个组合时,对0-(Nn-1)个M进制数进行组合编码:以具有相应光亮度级数组合的一个光信号元组合代表一个M进制数,而一系列的光信号元组合代表一系列M进制数,其中M、N为自然数,n为大于1的整数;判断模块,用于判断光子接收端能够识别的最大光亮度级数;
所述编码模块根据所述最大光强级数的亮度调节的光信号对待传输数据进行编码。
所述判断模块包括根据光子接收端的识别结果判断此光子接收端是否能够识别当前特定光亮度级数的亮度调节的光信号的判别装置,所述判别装置包括:
比较和判断模块,针对以预定次数重复以该特定光亮度级数的亮度调节的光对所述测试数据进行编码、并对准光子接收端发出的光信息,比较所述测试数据和光子接收端解码出来的数据的对应字段,如果数据相等,判断解码正确;以及
识别模块,根据光子接收端解码正确的次数计算出识别率;如果识别率达到或超过指定阈值,则判断光子接收端可以识别该特定光亮度级数的亮度调节的光信号。
一种光子数据接收装置,包括:
比较和判断模块,以预定次数重复接收以特定光亮度级数的亮度调节的光对测试数据编码的光信号,解码并比较所述测试数据和解码出来的数据的对应字段,如果数据相等,判断解码正确;
识别模块,根据解码正确的次数计算出识别率;如果识别率达到或超过指定阈值,则判断为可以识别该特定光亮度级数的亮度调节的光信号
本发明通过控制移动终端例如手机的闪光灯的发光强弱来编码发送,这样就可以通过组合强弱来减少发送的数据量。并且光强组合的方案可以提高安全性。由于光强级数的增多,使得可编码的数量大大增加,这样就可以使用些空位以进一步增加编码的安全性。
本发明的优选方案尤其适合于现有的移动终端的闪光灯信号发送效率不高的情况,它是一种可以通过调节闪光灯的亮度的强弱组合来对光信息进行编码从而达到发送更多信息目的的方案,通过在编码之前先通过移动终端控制闪光灯的亮度发出一定信息量的数据对准光子接收端对光信号进行识别,根据识别结果判断光子接收端能够支持多少级光亮度的信号,然后才根据光子接收端的识别能力进行编码,这样就能确保光子接收端能识别,并且能保证所发的码能充分利用手机闪光灯的发光强弱来编码发送。
在优选例中,本发明还通过测试光子接收端接收到的正确解码的信息的次数计算其识别率,根据识别率来判断接收的效果,更进一步提高了发码的可靠性。
附图说明
图1是本发明实施例1系统示意图。
图2是本发明实施例1对手机光子客户端基于闪光灯能级控制传送信息的方案的流程图。
图3是本发明实施例1判断接收的光信号是否解码正确流程示意图。
图4是本发明实施例1手机光子客户端模块示意图。
具体实施方式
下面将结合本发明实施方案中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施方式,都属于本发明保护的范围。
实施例一:
本实施例解决手机闪光灯传输信息量有限的方法是在发光的强弱上对信息进行编码(闪光灯亮度调节是现有技术,比如目前PhotoTorch小插件就可以调节IPHONE手机的闪光灯亮度),以提高单位时间传输的信号数量。例如,在光子门禁系统中,使用手机作为光子通信的终端(即手机光子客户端)时,可在不改变手机硬件的情况下,通过控制手机的闪光灯来发送光信息,其中光信息的发送可通过控制闪光灯的发光强弱来编码发送,这样就可以通过组合强弱来减少发送的数据量,达到减少整体发光时间的目的,也就是在相同时间内可以传送更多信息。
如图1所示,本实施例示出了一种手机光子客户端ID号分配系统,包括如下模块:
模块1:服务器(图中未示出),其上有一ID号发放数据库,例如分布式数据库(mysql)或者SQL Server 2005或者ORACLE等,并可以接收模块通讯。
模块2、ID号分配平台,安装于不同的PC上,与一ID号发放数据库相连。通过ID号分配平台和服务器实现分布式生成唯一的ID号和验证码,以及ID号和验证码的唯一映射关系,所述ID号发放数据库需要对分布在不同的PC上安装的ID号分配平台(网络)进行ID号的统一分配,所以数据库要支持分布式访问。
所述ID号发放数据库是用来集中控制ID号的分发的,这样可以集中管理ID号发放数据库,就不会出现每个ID号分配平台(网络)一个独立的数据库,在分配ID号的时候就不会出现重复分配的问题,比如张三在A机器上安装了一套ID号分配平台(网络)和ID号管理数据库,李四在B机器上安装了一套ID号分配平台(网络)和ID号管理数据库,如果张三在A机器上随机分配了一个ID号为:24456,恰巧李四在B机器上分配了同一个ID号:24456,那么开锁的时候系统就分辨不出24456是张三的还是李四的。本实施例避免了这一情况的出现。
本发明实施例还提供了一种移动终端(例如手机光子客户端)光子数据传输装置,包括:
编码模块:用于将待传输数据用不同亮度的光信号表示;
所述光信号的光亮度级数有N级;
当所述光信号为单个光信号元时,对0-(N-1)个M进制数进行编码:以具 有相应光亮度级数的一个光信号元代表一个M进制数,而一系列光信号元代表一系列M进制数;
当所述光信号为使用n个光信号元的一个组合时,对0-(Nn-1)个M进制数进行组合编码:以具有相应光亮度级数组合的一个光信号元组合代表一个M进制数,而一系列的光信号元组合代表一系列M进制数,其中M、N为自然数,n为大于1的整数;
发送模块:将待传输数据以光信号发出。
其中,定义光信号元为可进行编码的光信号的最小单位。一个光信号元可以有多个亮度等级,并且每个亮度等级可对应于一个数据。
模块3、手机光子客户端,如图4所示,其进一步包括:
ID号获取模块:用于根据接收到的用户输入的“ID号获取”指令,获取服务器生成的一个或多个ID号;
测试数据生成模块:用于生成或从服务器接收一组测试数据;
测试数据编码模块:用于控制闪光灯的亮度,以特定光亮度级数的亮度调节的光对所述测试数据进行编码,然后对准光子接收端以光信息发出;
判断模块,用于判断光子接收端能够识别的最大光亮度级数,即根据光子接收端对测试数据的识别结果获知此光子接收端能够识别的光信号亮度调节的最大光强级数;
ID号编码模块:用于利用已确定为是最大光强级数的当前光亮度级数对接收到的ID号进行编码。
手机光子客户端获取ID号后,对要发送的ID号进行光信息编码。编码之前通过手机光子客户端控制闪光灯的亮度发出一定信息量的数据,然后对准光子接收端对光信号进行识别,根据识别结果判断光子接收端能够支持多少级光亮度的信号,比如发送0-7的光信号,光信号亮度调节有1-8级,那么可以对光信号进行光亮度的编码:二进制数000对应亮度1的光信号,001对应亮度2的光信号,依次类推111对应亮度8的光信号,经过这种测试可以在光子接收端程序当中判断接收的光信号是否解码正确,解码正确的部分就是能够识别的光亮度,如果所有光信号解码正确,就可以判断此光子接收端能够识别8级亮度调节的光信号,然后可以增加亮度调节的光亮度级数然后重复上述识别过程;如果其中有光信号解码不正确的部分,可以判断此光子接收端不能支持8级的亮度调节的光信号,这个时候只能减少亮度调节级数然后重复上述识别过程。
手机光子客户端对发送的光信息进行编码后,然后对准光子接收端发出一定次数的光信息,光子接收端对每次发送的光信息进行识别,通过测试光子接收端接收到的正确解码的信息的次数,来判断接收的效果,比如手机光子客户端发送100次光信息,光子接收端能正确解析光信息的次数是98次,这就说明光子接收 端的识别率是98%,如此反复测试1000次,取识别率的平均值就可以得到光子接收端的识别效果,平均识别率达到95%以上就可以认为此编码可行。
模块4:光子接收端,其包含有光敏器件和处理芯片等,还包括用于显示工作状态的显示灯,以及与网络相连的接口。
在本发明实施方式中的手机光子客户端ID号分配方法是,在手机光子客户端对要发送的光信息进行编码之前,手机光子客户端控制闪光灯的亮度发出一定信息量的数据,然后对准光子接收端对光信号进行识别,根据识别结果判断光子接收端能够支持多少级光亮度的信号,手机光子客户端对发送的光信息进行编码后,对准光子接收端发出一定次数的光信息,光子接收端对每次发送的光信息进行识别,通过测试光子接收端接收到的正确解码的信息的次数,来判断接收的效果。
图2是手机光子客户端基于闪光灯能级控制传送信息的方案的流程图,该方法包括步骤:
S101、ID号获取:管理员通过web浏览器或者其他客户端发送请求给网站服务器,网站服务器从后台随机生成一个或者多个验证码和随机生成一个或者多个ID号,并对生成的验证码和ID号进行绑定。手机光子客户端输入管理员提供的验证码,并点击手机光子客户端的“ID号获取”按钮,如果验证码输入正确则获取验证码对应的ID号,如果不正确则不能获取ID号。
S102、测试数据生成:生成一组测试数据,该组测试数据是要用光信号进行编码并向光子接收端发出的。把预备要发的光信号所对应的这组测试数据通过网络保存到一台主机上(也可以是服务器上)的mysql数据库当中的A表中。
S103、用特定光亮度级数的亮度调节的光对测试数据编码并发出光信号:手机光子客户端获取ID号后,对ID号进行光信息编码之前,通过手机光子客户端控制闪光灯的亮度,以光信号亮度级数8级对所述测试数据进行编码,然后对准光子接收端以光信息发出:亮度1的光信号代表二进制数000,亮度2的光信号代表二进制数001,依次类推,亮度8的光信号代表二进制数111对应。
S104、根据光子接收端的识别结果判断接收端是否能识别当前光亮度级数的亮度调节的光信号:接收光信号并识别,并判断接收的光信号是否解码正确。
在步骤S104及之后的步骤中,需要光子接收端的配合来实现,其主要是要根据光子接收端对测试数据的识别结果获知此光子接收端能够识别的光信号亮度调节的最大光强级数,实现方法如下:
光子接收端收到光信号后进行识别,根据识别结果判断光子接收端能够支持多少级光亮度的信号:在光子接收端程序当中判断接收的光信号是否解码正确,解码正确的部分就是能够识别的光亮度,如果所有光信号解码正确,就可以判断此光子接收端能够识别8级亮度调节的光信号,然后进入步骤S105,判断是否可以确认是此光子接收端能够识别的最大光亮度级数,如果还不能确认是最大的, 可以增加亮度调节的光亮度级数,重复S103-S104;如果其中有光信号解码不正确的部分,可以判断此光子接收端不能支持该级数的亮度调节的光信号,这个时候只能减少亮度调节级数然后重复S103-S104。
在本例中,判断光子接收端能不能支持该级数的亮度调节的光信号时,采用如下步骤,如图3所示:
S104-1、保存解码数据:光子接收端把能解码出来的数据保存到主机的数据库当中的B表中。
S104-2、计算识别率并判断是否可用:访问主机的数据库当中的A和B表,比较A表和B表中的对应字段的数据,如果数据相等,这表明正确识别。跳转到S101,循环执行100次,如果识别率达到96%以上,则验证通过,即可进入步骤S107、利用当前的光亮度级数对接收到的ID号进行编码。如果识别率没有达到96%,则减小光强的光亮度级数,重复S101到S104-2,进行下一轮100次测试。这样手机光子客户端设置最大的光强的光亮度级数就可以正常使用了。
在本发明实施方式中,手机光子客户端对要发送的光信息进行编码,编码采用三位二进制进行直接编码方式,编码之前通过手机光子客户端控制闪光灯的亮度发出一定信息量的数据,然后对准光子接收端对光信号进行识别,根据识别结果判断光子接收端能够支持多少级光亮度的信号,然后实际发送光信息数据时就用此支持的最大的光强进行编码。其中识别率阈值不一定要设定为96%,也可以根据客户要求和设备的实际情况改为其他值,比如:90%,或99%等。上述的判断光子接收端能够支持多少级光亮度的信号并不需要每次发送数据前都进行一次。
实践中根据需要,本实施例中的A表和B表也可以设置在手机中,如果保存在手机中,则B表中的数据是通过网络从光子接收端传输到手机光子客户端的,比如:先通过网络将光子接收端识别解码出来的数据传输到服务器,然后再通过服务器传输到手机光子客户端,或者通过无线网络点对点直接从光子接收端传输到手机光子客户端。
实施例二:
本实施例与实施例一的不同在于,在实施例一步骤S103中用特定光亮度级数的亮度调节的光对测试数据编码时,其光信号亮度调节的光亮度级数不同为8级,而本实施例介绍光亮度级数为4级时的情况。
本例中,步骤S103中发送编号为0-3的光信号,光信号亮度调节有1-4级,那么可以对光信号两个一组进行光亮度的16个编码:亮度1、亮度1的光信号组合对应二进制0000,亮度1、亮度2的光信号组合对应0001,亮度1、亮度3的光信号组合对应0010,亮度1、亮度4的光信号组合对应0011,亮度2、亮度1的光信号组合对应0100,亮度2、亮度2的光信号组合对应0101,依次类推,亮度4、亮度4的光信号组合对应1111。
在本发明实施方式中,手机光子客户端对要发送的光信息进行编码,编码采用四位二进制进行四级光强组合编码方式,编码之前通过手机光子客户端控制闪光灯的亮度发出一定信息量的数据,然后对准光子接收端对光信号进行识别,根据识别结果判断光子接收端能够支持多少级光亮度的信号,然后实际发送光信息数据时就用此支持的最大的光强进行编码。
实施例三:
本实施例与实施例一的不同在于,在实施例一步骤S103中用特定光亮度级数的亮度调节的光对测试数据编码时,其光信号亮度调节的光亮度级数不同为8级,而本实施例介绍光亮度级数为5级时的情况。
在步骤S103中,发送编号0-4的光信号,光信号亮度调节有1-5级,那么可以对光信号进行两两光亮度的编码:对应的二进制00000对应亮度1、亮度1的光信号,00001对应亮度1、亮度2的光信号,00010对应亮度1、亮度3的光信号,00011对应亮度1、亮度4的光信号,00100对应亮度1、亮度5的光信号,00101对应亮度2、亮度1的光信号,依次类推,11000对应亮度5、亮度5的光信号。
总之,在一些的实施例中,本发明可使用光信号的光亮度级数有N级的单个光信号元,对0-(N-1)个M进制数进行编码,以具有相应光亮度级数的一个光信号元代表被编码的一个M进制数,而一系列光信号元代表一系列被编码的M进制数,其中M、N为自然数。例如,在实施例一中,光亮度级数有8级,则单个光信号元可表示8个数值,可完整编码8个3位的二进制数。如果光亮度级数有4级,则单个光信号元可表示4个数值,可完整编码4个2位的二进制数。在这种编码方式中,单个光信号元表示一个二进制数,而多个光信号元表示一个二进制数的序列。在另一实施例中,光亮度级数有10级,则单个光信号元可表示10个数值,可完整编码10个十进制数。
在另一些的实施例中,本发明还可使用n个光信号元的一个组合,对0-(Nn-1)个M进制数进行组合编码,以具有相应光亮度级数组合的一个光信号元组合代表被编码的一个M进制数,而一系列的光信号元组合代表一系列被编码的M进制数,其中M、N为自然数,n为大于1的整数。如实施例二中,4级光强的两个光信号元的组合,可以编码4*4=16个数,如编码二进制数0000-1111。如实施例三中,5级光强的两个光信号元的组合,可以编码5*5=25个数,如编码二进制数00000-11000。又如,8级光强的两个光信号元的组合,可以编码8*8=64个数,如编码二进制数000000-111111。
在本发明实施方式中,手机光子客户端对要发送的光信息进行编码,编码采用非组合或组合的编码方式,编码之前通过手机光子客户端控制闪光灯的亮度发 出一定信息量的数据,然后对准光子接收端对光信号进行识别,根据识别结果判断光子接收端能够支持多少级光亮度的信号,然后实际发送光信息数据时就用此支持的最大的光强进行编码。

Claims (9)

  1. 一种移动终端光子数据传输方法,其特征在于,包括以下步骤:
    将待传输数据用不同亮度的光信号表示;所述光信号的光亮度级数有N级;
    当所述光信号为单个光信号元时,对0-(N-1)个M进制数进行编码:以具有相应光亮度级数的一个光信号元代表一个M进制数,而一系列光信号元代表一系列M进制数;
    当所述光信号为使用n个光信号元的一个组合时,对0-(Nn-1)个M进制数进行组合编码:以具有相应光亮度级数组合的一个光信号元组合代表一个M进制数,而一系列的光信号元组合代表一系列M进制数;
    其中M、N为自然数,n为大于1的整数;
    将待传输数据以光信号发出。
  2. 如权利要求1所述的移动终端光子数据传输方法,其特征在于:
    在所述编码步骤之前还包括如下步骤:
    A、测试数据生成:生成或从服务器接收一组测试数据;
    B、用特定光亮度级数的亮度调节的光对测试数据编码并发出测试光信号:控制闪光灯的亮度,以特定光亮度级数的亮度调节的光对所述测试数据进行编码,然后对准光子接收端以光信息发出;当所述测试光信号为单个光信号元时,对0-(N-1)个M进制数进行编码:以具有相应光亮度级数的一个光信号元代表一个M进制数,而一系列光信号元代表一系列M进制数;
    当所述测试光信号为使用n个光信号元的一个组合时,对0-(Nn-1)个M进制数进行组合编码:以具有相应光亮度级数组合的一个光信号元组合代表一个M进制数,而一系列的光信号元组合代表一系列M进制数,其中M、N为自然数,n为大于1的整数;
    C、根据光子接收端对测试数据的识别结果获知此光子接收端能够识别的光信号亮度调节的最大光强级数;
    且在所述编码步骤中,利用获知的最大光强级数的亮度调节的光信号对待传输数据进行编码。
  3. 如权利要求2所述的移动终端光子数据传输方法,其特征在于,在步骤C中包括如下步骤:
    C1、根据光子接收端的识别结果判断此光子接收端是否能够识别当前特定光亮度级数的亮度调节的光信号;
    C2、寻找此光子接收端能够识别的光信号亮度调节的最大光强级数:在判断此光子 接收端能够识别该特定光亮度级数的亮度调节的光信号后,记录下该可识别的光亮度级数值,并增加亮度调节的光亮度级数,重复步骤B;在判断此光子接收端不能够识别该特定光亮度级数的亮度调节的光信号后,减少亮度调节的光亮度级数,然后重复步骤B;
    C3、将所记录的所有可识别的光亮度级数中的最大值记录为此光子接收端能够识别的光信号亮度调节的最大光强级数。
  4. 如权利要求3所述的移动终端光子数据传输方法,其特征在于,在步骤C1中包括如下步骤:
    C1-1、以预定次数重复以该特定光亮度级数的亮度调节的光对所述测试数据进行编码,对准光子接收端以光信息发出,由接收端接收并识别后,比较并判断每次解码是否正确:比较测试数据和解码出来的数据的对应字段,如果数据相等,这表明解码正确;
    C1-2、计算识别率并判断是否可用:根据解码正确的次数计算出识别率;如果识别率达到或超过指定阈值,则判断为该光子接收端可以识别该特定光亮度级数的亮度调节的光信号。
  5. 如权利要求4所述的移动终端光子数据传输方法,其特征在于,还包括如下步骤:
    存储测试数据:把所述测试数据通过网络保存到一台主机或服务器的的第一存储表中;
    存储接收并解码的数据:光子接收端把解码出来的数据保存到同一台主机或服务器的第二存储表中;
    并且在步骤C1-1中所说的比较并判断单次解码是否正确是通过如下方式实现的:访问该主机或服务器的第一存储表和第二存储表,并比较第一存储表和第二存储表中的对应字段的数据。
  6. 一种移动终端光子数据传输装置,其特征在于,包括:
    编码模块:用于将待传输数据用不同亮度的光信号表示;
    所述光信号的光亮度级数有N级;
    当所述光信号为单个光信号元时,对0-(N-1)个M进制数进行编码:以具有相应光亮度级数的一个光信号元代表一个M进制数,而一系列光信号元代表一系列M进制数,其中M、N为自然数;
    当所述光信号为使用n个光信号元的一个组合时,对0-(Nn-1)个M进制数进行组合编码:以具有相应光亮度级数组合的一个光信号元组合代表一个M进制数,而一系列的光信号元组合代表一系列M进制数,其中M、N为自然数,n为大于1的整数;
    发送模块:将待传输数据以光信号发出。
  7. 如权利要求6所述的移动终端光子数据传输装置,其特征在于,还包括:
    测试数据生成模块,用于生成或从服务器接收一组测试数据;
    测试数据编码模块,用于控制闪光灯的亮度,以特定光亮度级数的亮度调节的光对所述测试数据进行编码,然后对准光子接收端以光信息发出测试光信号;
    当所述测试光信号为单个光信号元时,对0-(N-1)个M进制数进行编码:以具有相应光亮度级数的一个光信号元代表一个M进制数,而一系列光信号元代表一系列M进制数;
    当所述测试光信号为使用n个光信号元的一个组合时,对0-(Nn-1)个M进制数进行组合编码:以具有相应光亮度级数组合的一个光信号元组合代表一个M进制数,而一系列的光信号元组合代表一系列M进制数,其中M、N为自然数,n为大于1的整数;
    判断模块,用于判断光子接收端能够识别的最大光亮度级数;
    所述编码模块根据所述最大光强级数的亮度调节的光信号对待传输数据进行编码。
  8. 如权利要求7所述的移动终端光子数据传输装置,其特征在于,所述判断模块包括根据光子接收端的识别结果判断此光子接收端是否能够识别当前特定光亮度级数的亮度调节的光信号的判别装置,所述判别装置包括:
    比较和判断模块,针对以预定次数重复以该特定光亮度级数的亮度调节的光对所述测试数据进行编码、并对准光子接收端发出的光信息,比较所述测试数据和光子接收端解码出来的数据的对应字段,如果数据相等,判断解码正确;以及
    识别模块,根据光子接收端解码正确的次数计算出识别率;如果识别率达到或超过指定阈值,则判断光子接收端可以识别该特定光亮度级数的亮度调节的光信号。
  9. 一种光子数据接收装置,其特征在于,包括:
    比较和判断模块,以预定次数重复接收以特定光亮度级数的亮度调节的光对测试数据编码的光信号,解码并比较所述测试数据和解码出来的数据的对应字段,如果数据相等,判断解码正确;
    识别模块,根据解码正确的次数计算出识别率;如果识别率达到或超过指定阈值,则判断为可以识别该特定光亮度级数的亮度调节的光信号。
PCT/CN2015/082843 2014-05-29 2015-06-30 移动终端光子数据传输方法、传输装置以及光子数据接收装置 WO2015180694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/361,402 US10014941B2 (en) 2014-05-29 2016-11-26 Photon data transmission method and transmission device for mobile terminal, and photon data receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410235636.4 2014-05-29
CN201410235636.4A CN105225297B (zh) 2014-05-29 2014-05-29 移动终端光子数据传输方法、传输装置以及光子数据接收装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/361,402 Continuation US10014941B2 (en) 2014-05-29 2016-11-26 Photon data transmission method and transmission device for mobile terminal, and photon data receiving device

Publications (1)

Publication Number Publication Date
WO2015180694A1 true WO2015180694A1 (zh) 2015-12-03

Family

ID=54698138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082843 WO2015180694A1 (zh) 2014-05-29 2015-06-30 移动终端光子数据传输方法、传输装置以及光子数据接收装置

Country Status (3)

Country Link
US (1) US10014941B2 (zh)
CN (1) CN105225297B (zh)
WO (1) WO2015180694A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105898922A (zh) * 2016-05-19 2016-08-24 捷开通讯科技(上海)有限公司 电子装置闪光灯亮度控制系统与方法
CN106303071A (zh) * 2016-09-09 2017-01-04 努比亚技术有限公司 一种控制终端上灯的方法及装置、终端
CN107203731A (zh) * 2017-04-18 2017-09-26 东莞信大融合创新研究院 标签集合的生成方法和装置、扫描方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105225297B (zh) * 2014-05-29 2018-05-25 深圳光启智能光子技术有限公司 移动终端光子数据传输方法、传输装置以及光子数据接收装置
CN106941378A (zh) * 2017-04-17 2017-07-11 胡燕红 一种近距离数据接收装置及通讯方法
CN109615753A (zh) * 2019-01-16 2019-04-12 深圳壹账通智能科技有限公司 智能门锁的开锁方法和装置
CN112153781A (zh) * 2019-06-28 2020-12-29 Oppo广东移动通信有限公司 灯光控制系统、方法、灯、移动终端及存储介质
CN110868255A (zh) * 2019-09-25 2020-03-06 南京邮电大学 基于可见光通信的手电筒音频通信装置
CN111954352B (zh) * 2020-09-08 2022-06-14 安徽世林照明股份有限公司 一种移动终端设备照明灯的控制系统及方法
CN114650103B (zh) * 2020-12-21 2023-09-08 航天科工惯性技术有限公司 一种泥浆脉冲数据传输方法、装置、设备及存储介质
CN114448507B (zh) * 2021-12-01 2024-05-07 浙江大华技术股份有限公司 一种应用于闸机的光信号识别方法以及闸机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097071A (ja) * 2005-09-30 2007-04-12 Nec Corp 可視光制御装置、可視光制御回路、可視光通信装置および可視光制御方法
CN102196322A (zh) * 2010-03-12 2011-09-21 中兴通讯股份有限公司 Epon系统的光功率调整方法及光线路终端
CN103051798A (zh) * 2012-12-21 2013-04-17 Tcl通讯(宁波)有限公司 一种基于光传感器的近距离无线数据传输方法及移动终端
CN103490812A (zh) * 2013-09-16 2014-01-01 北京航空航天大学 基于可见光的手机近场通信系统及方法
WO2014015353A2 (de) * 2012-07-23 2014-01-30 Isiqiri Interface Technologies Gmbh Zur informationsübertragung dienende vorrichtung welche auf sichtbarem licht als übertragungsmedium basiert
CN103795465A (zh) * 2013-07-31 2014-05-14 深圳光启创新技术有限公司 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192875A (ja) * 2002-12-10 2004-07-08 Nec Plasma Display Corp プラズマディスプレイパネル及びその駆動方法
JP4627084B2 (ja) * 2005-04-12 2011-02-09 パイオニア株式会社 通信システム、通信装置及び方法、並びにコンピュータプログラム
IL187836A0 (en) * 2007-12-03 2008-03-20 Eci Telecom Ltd Technique for generating multilevel coded optical signals
TWI387226B (zh) * 2009-01-07 2013-02-21 Ind Tech Res Inst 光發射裝置、光接收裝置、資料傳遞系統及應用其之方法
GB2496379A (en) 2011-11-04 2013-05-15 Univ Edinburgh A freespace optical communication system which exploits the rolling shutter mechanism of a CMOS camera
US8620163B1 (en) * 2012-06-07 2013-12-31 Google, Inc. Systems and methods for optically communicating small data packets to mobile devices
CN104620519B (zh) * 2012-09-10 2017-03-08 皇家飞利浦有限公司 光检测系统和方法
US9240837B2 (en) * 2013-03-12 2016-01-19 Google Inc. Systems and methods using optical communication for commissioning of network nodes
US9571312B2 (en) * 2013-11-26 2017-02-14 University Of Virginia Patent Foundation Expurgated pulse position modulation for communication
US9859976B2 (en) * 2014-03-03 2018-01-02 Eci Telecom Ltd. OSNR margin monitoring for optical coherent signals
CN105225297B (zh) * 2014-05-29 2018-05-25 深圳光启智能光子技术有限公司 移动终端光子数据传输方法、传输装置以及光子数据接收装置
CN105450299B (zh) * 2014-09-05 2019-08-30 深圳光启智能光子技术有限公司 信号的编解码方法及系统
US20160352419A1 (en) * 2015-05-27 2016-12-01 John P. Fonseka Constrained interleaving for 5G wireless and optical transport networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097071A (ja) * 2005-09-30 2007-04-12 Nec Corp 可視光制御装置、可視光制御回路、可視光通信装置および可視光制御方法
CN102196322A (zh) * 2010-03-12 2011-09-21 中兴通讯股份有限公司 Epon系统的光功率调整方法及光线路终端
WO2014015353A2 (de) * 2012-07-23 2014-01-30 Isiqiri Interface Technologies Gmbh Zur informationsübertragung dienende vorrichtung welche auf sichtbarem licht als übertragungsmedium basiert
CN103051798A (zh) * 2012-12-21 2013-04-17 Tcl通讯(宁波)有限公司 一种基于光传感器的近距离无线数据传输方法及移动终端
CN103795465A (zh) * 2013-07-31 2014-05-14 深圳光启创新技术有限公司 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统
CN103490812A (zh) * 2013-09-16 2014-01-01 北京航空航天大学 基于可见光的手机近场通信系统及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105898922A (zh) * 2016-05-19 2016-08-24 捷开通讯科技(上海)有限公司 电子装置闪光灯亮度控制系统与方法
CN106303071A (zh) * 2016-09-09 2017-01-04 努比亚技术有限公司 一种控制终端上灯的方法及装置、终端
CN106303071B (zh) * 2016-09-09 2019-08-30 努比亚技术有限公司 一种控制终端上灯的方法及装置、终端
CN107203731A (zh) * 2017-04-18 2017-09-26 东莞信大融合创新研究院 标签集合的生成方法和装置、扫描方法和装置
CN107203731B (zh) * 2017-04-18 2020-03-10 东莞信大融合创新研究院 标签集合的生成方法和装置、扫描方法和装置

Also Published As

Publication number Publication date
CN105225297A (zh) 2016-01-06
US20170078020A1 (en) 2017-03-16
CN105225297B (zh) 2018-05-25
US10014941B2 (en) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2015180694A1 (zh) 移动终端光子数据传输方法、传输装置以及光子数据接收装置
US9780877B2 (en) Multi-stage amplitude modulation-based methods, apparatuses and systems for coding and decoding visible light signal
US20150089624A1 (en) Security management method and apparatus in a home network system
US20170318460A1 (en) Method and system to provide multi-factor authentication for network access using light
RU2012111690A (ru) Когнитивное назначение идентификаторов для управления источников света
CN105450299A (zh) 信号的编解码方法、装置及系统
US20150188633A1 (en) Light signal-based information processing method and device
US20160234191A1 (en) Method for transmitting authentication password and method for acquiring authentication password by mobile terminal
CN103812657A (zh) 认证方法
US20170187457A1 (en) Methods and devices for optical signal encoding and decoding
TW201912457A (zh) 解鎖方法、裝置及系統
CN106296896A (zh) 一种基于led可见光通信的门禁系统
US9859978B2 (en) Self-adaptive receiving method, device, and system for radio signal
US11039319B2 (en) Access control levels between devices
US20190349207A1 (en) Robust computational fuzzy extractor and method for authentication
US10116420B2 (en) Error retransmission mechanism-comprised methods, apparatuses and systems for transmitting and receiving visible light signal
CN103793979B (zh) 用于升级光子接收端的方法
CN103986632A (zh) 一种利用可见光将设备加入到网络的方法
CN106656329A (zh) 可见光通信系统及方法
US20190051078A1 (en) Method of Achieving Free-pairing Wireless Door Lock Based on DIP Switch, a Wireless Door Lock and a Communication Method for the Wireless Door Lock
CN105471511B (zh) 一种提高光信号传输可靠性的编解码方法、装置及系统
US10621432B2 (en) Methods for acquiring information using biological feature, and terminal and background server
CN103812574B (zh) 提高光子身份认证系统识别率的方法、装置及系统
CN104506246A (zh) Led照明灯具的识别方法及led灯具及验证装置及系统
US9893862B2 (en) Aggregation frame design method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799072

Country of ref document: EP

Kind code of ref document: A1