WO2015178154A1 - パワーコンディショナ及び蓄電制御方法 - Google Patents

パワーコンディショナ及び蓄電制御方法 Download PDF

Info

Publication number
WO2015178154A1
WO2015178154A1 PCT/JP2015/062341 JP2015062341W WO2015178154A1 WO 2015178154 A1 WO2015178154 A1 WO 2015178154A1 JP 2015062341 W JP2015062341 W JP 2015062341W WO 2015178154 A1 WO2015178154 A1 WO 2015178154A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
conversion
unit
storage battery
bidirectional
Prior art date
Application number
PCT/JP2015/062341
Other languages
English (en)
French (fr)
Inventor
シャープ株式会社
知己 山下
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015178154A1 publication Critical patent/WO2015178154A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output

Abstract

 パワーコンディショナは、発電装置の発電電力及び商用電力系統から供給される電力の少なくとも一方を蓄電池に蓄電する。パワーコンディショナは、直流変換部と、双方向変換部と、電力伝達経路と、電圧比較部と、変換制御部と、を備える。直流変換部は、発電装置の発電電力を直流の電力に変換する。双方向変換部は、商用電力系統に対して電力の順変換及び逆変換を行う。電力伝達経路には、直流変換部及び双方向変換部が接続され、蓄電池に供給される電力が流れる。電圧比較部は、電力伝達経路を流れる電力の電圧値を検出し、該電圧値を所定の電圧閾値と比較する。変換制御部は、電圧比較部の比較結果に基づいて、双方向変換部の変換方向を制御する。

Description

パワーコンディショナ及び蓄電制御方法
 本発明は、蓄電池に接続されたパワーコンディショナ及びその蓄電制御方法に関する。
 近年、太陽光発電システムなどの自然エネルギーを利用した発電システムが一般家庭用の住宅、或いは産業用施設などに導入されつつある。これらの発電システムでは、発電電力が電子機器などの電源として利用される。また、現在では、自然エネルギーを利用した発電システムをより普及させるべく、発電電力を電力会社に買取させる電力買取制度が制定されている。そのため、発電電力が商用電力系統に逆潮流されることもある。
 一方、太陽光発電システムには、特許文献1のように、太陽光で発電した電力を蓄電する蓄電池が設置されていることがある。この蓄電池は、たとえば、太陽光発電できない夜間に停電した場合の予備電源、或いは、負荷電力系統の消費電力が一時的に突出して大きくなる場合の補助電源などとして用いられる。たとえば特許文献1の電力システムでは、パワーコンディショナは、太陽電池モジュールで発電した電力を直流から交流に変換して負荷に供給する。蓄電池は、双方向DC/DCコンバータを介して、蓄放電可能にパワーコンディショナと接続されている。
 蓄電池が設置された発電システムにおいて、蓄電池を蓄電する場合、発電量が蓄電量よりも大きければ発電電力を用いて十分に蓄電することができる。さらに、この場合、蓄電に用いられない一部の発電電力は、逆変換して商用電力系統に逆潮流させ、電力会社に売電することができる。一方、発電量が蓄電量未満であれば発電電力のみでは十分に蓄電することはできない。そのため、商用電力系統から供給される電力を順変換して、不足分の電力を補う必要がある。
特開2012-161189号公報
 しかしながら、特許文献1は、パワーコンディショナの出力端に負荷が接続される電力システムを想定しており、商用電力系統が接続される電力システムを想定していない。また、特許文献1のパワーコンディショナは、負荷に電力を供給する一方向の出力のみ行うことを想定しており、外部から電力の供給を受ける双方向の入出力を行うことを想定していない。そのため、発電量が蓄電量よりも大きい場合、蓄電に利用されない発電電力が無駄になる。また、発電量が蓄電量未満の場合、蓄電する電力が不足するが、特許文献1の電力システムではその不足分の電力を補うことはできない。さらに、蓄電する電力が不足した状態では、双方向DC/DCコンバータの変換効率が低下するため、蓄電効率も低下する。このように、特許文献1では、発電した電力を無駄なく利用できないという問題があった。
 本発明は、このような状況を鑑みてなされたものであり、発電電力を蓄電池に蓄電する際、発電電力を無駄なく利用することができるパワーコンディショナ及び蓄電制御方法を提供することを目的とする。
 上記目的を達成するために、本発明の一の態様によるパワーコンディショナは、発電装置の発電電力及び商用電力系統から供給される電力の少なくとも一方を蓄電池に蓄電するパワーコンディショナであって、発電電力を直流の電力に変換する直流変換部と、商用電力系統に対して電力の順変換及び逆変換を行う双方向変換部と、直流変換部及び双方向変換部に接続され、蓄電池に供給される電力が流れる電力伝達経路と、電力伝達経路を流れる電力の電圧値を検出し、該電圧値を所定の電圧閾値と比較する電圧比較部と、電圧比較部の比較結果に基づいて双方向変換部の変換方向を制御する変換制御部と、を備える。
 また、上記パワーコンディショナにおいて、変換制御部は、電圧値が第1電圧閾値以上である場合、双方向変換部に、電力伝達経路を流れる電力を逆変換させて、商用電力系統に出力させ、電圧値が第2電圧閾値未満である場合、双方向変換部に、商用電力系統から供給される電力を順変換させて、電力伝達経路に出力させてもよい。
 また、上記パワーコンディショナにおいて、所定時点からの経過時間を計時する計時部と、所定の待機時間が経過したか否かを判定する経過時間判定部と、をさらに備え、変換制御部は、前電圧比較部の比較後から待機時間が経過した後、双方向変換部の変換方向を制御してもよい。
 また、上記目的を達成するために、本発明の一の態様による蓄電制御方法は、発電装置の発電電力及び商用電力系統から供給される電力の少なくとも一方を蓄電池に蓄電する蓄電制御方法であって、発電電力を直流の電力に変換するステップと、商用電力系統に対して電力の順変換及び逆変換を行うステップと、蓄電池に供給される電力の電圧値を検出するステップと、電圧値を所定の電圧閾値と比較するステップと、比較するステップでの比較結果に基づいて、電力の順変換及び逆変換を行うステップの変換方向が制御されるステップと、を備える。
 本発明によれば、発電電力を蓄電池に蓄電する際、発電電力を無駄なく利用することができる。
太陽光発電システムの構成例を示すブロック図である。 第1実施形態に係る蓄電処理を説明するためのフローチャートである。 太陽光発電システムの他の構成例を示すブロック図である。 第2実施形態に係る蓄電処理を説明するためのフローチャートである。 風力発電システムの構成例を示すブロック図である。
 以下に、図面を参照して、本発明の実施形態を説明する。
<第1実施形態>
 まず、第1実施形態について、商用電力系統Eと接続される太陽光発電システム100を例に挙げて説明する。太陽光発電システム100は、太陽光を電力に変換する発電方式で電力供給を行う分散型電源である。図1は、太陽光発電システム100の構成例を示すブロック図である。この太陽光発電システム100では、夜間の停電、或いは負荷電力系統での消費電力の一時的な突出の回避などに備えて、発電した電力及び商用電力系統Eから供給される電力の少なくとも一方を蓄電池2に蓄電しておくことができる。また、太陽光発電システム100では、太陽光を利用して発電した電力を直流から交流に変換して商用電力系統Eに逆潮流(出力)し、該電力を電力会社に売電することが可能となっている。
 なお、以下では、太陽光発電システム100が商用電力系統Eから電力供給を受けて該電力をAC/DC変換することを順変換と呼ぶ。また、DC/AC変換した電力を太陽光発電システム100から商用電力系統Eに逆潮流することを逆変換と呼ぶ。
 次に、太陽光発電システム100の構成について説明する。太陽光発電システム100は、図1に示すように、太陽電池モジュール1と、蓄電池2と、パワーコンディショナ3と、コントローラ4と、を備えている。
 太陽電池モジュール1は、複数の太陽電池セルを含む発電装置であり、太陽光を受けて発電し、直流の電力を出力する。なお、以下では、太陽電池モジュール1から出力される直流の電力を発電電力と呼ぶ。
 蓄電池2は、繰り返し蓄放電可能な二次電池である。蓄電池2は、発電電力、及び、商用電力系統Eから供給される電力を順変換した電力の少なくとも一方を用いて蓄電される。また、蓄電池2は、蓄電された電力量(すなわち蓄電量)に応じた直流の電力を出力することができる。なお、以下では、蓄電池2に供給される直流の電力を蓄電電力と呼び、蓄電池2から出力される直流の電力を放電電力と呼ぶ。この蓄電池2としては、たとえば、リチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池、及び鉛電池などを用いることができる。
 パワーコンディショナ3は、たとえばMPPT(Maximum Power Point Tracking)制御により、発電電力が最大となるように太陽電池モジュール1の動作点を制御する発電制御装置である。このパワーコンディショナ3は、電力変換装置としても機能し、発電電力を逆変換して商用電力系統Eに出力する。また、パワーコンディショナ3は、蓄電池2の蓄放電制御装置としても機能し、蓄電池2に蓄電電力を供給したり、蓄電池2から放電電力の供給を受けたりする。このパワーコンディショナ3は、DC/DCコンバータ31と、双方向インバータ32と、コンデンサ33と、双方向DC/DCコンバータ34と、通信部35と、メモリ36と、IC37と、を有している。なお、DC/DCコンバータ31、双方向インバータ32、及び双方向DC/DCコンバータ34は、バスラインBL(電力伝達経路)を介して相互に接続されている。
 DC/DCコンバータ31は、太陽電池モジュール1に接続される直流変換部である。DC/DCコンバータ31は、発電電力を所定の直流の電力に変換する。また、DC/DCコンバータ31は太陽電池モジュール1に逆電流が流れることを防止している。
 双方向インバータ32は、商用電力系統Eに接続され、商用電力系統Eに対して電力の順変換及び逆変換を行う双方向変換部である。双方向インバータ32は、商用電力系統Eから順変換した直流の電力をバスラインBLに出力することができる。また、双方向インバータ32は、バスラインBLから入力される直流の電力を商用電力系統Eに応じた交流周波数の電力に逆変換して、商用電力系統Eに出力することもできる。後述するように、これらの動作はIC37により制御されている。
 コンデンサ33は、バスラインBLに接続され、バスラインBLを流れる電力のバス電圧値Vpの変動を除去又は軽減する。すなわち、コンデンサ33は、バス電圧値Vpを平滑化する。
 双方向DC/DCコンバータ34は、蓄電池2に接続され、バスラインBLを流れる直流の電力を蓄電池2に供給する電力に適した直流の蓄電電力に変換して蓄電池2に出力する。また、双方向DC/DCコンバータ34は、蓄電池2の放電電力を直流の電力に変換して、バスラインBLに出力する。後述するように、これらの動作はコントローラ4により制御されている。
 通信部35は、コントローラ4と無線通信又は有線通信する通信インターフェースである。
 メモリ36は、電源を供給しなくても格納された情報を非一時的に保持する不揮発性の記憶媒体である。メモリ36は、各機能要素(特にIC37)で用いられる制御情報及びプログラムなどを格納している。
 IC37は、メモリ36に格納された情報及びプログラムなどを用いて、パワーコンディショナ3の各構成要素を制御する制御部である。IC37は、機能的要素として、電圧比較部371と、第1変換制御部372と、を含んで構成される。
 電圧比較部371は、バスラインBLを流れる電力のバス電圧値Vpを検出し、該バス電圧値Vpを所定の電圧閾値と比較する。たとえば、電圧比較部371は、バス電圧値Vpを第1及び第2電圧閾値Vs1、Vs2と比較し、その電圧差を判定する。第1電圧閾値Vs1は、発電電力の一部を売電しても蓄電池2の蓄電処理を継続できることを示す上限閾値であり、たとえば390Vで設定される。また、第2電圧閾値Vs2は、蓄電池2の蓄電処理を継続するためには商用電力系統Eから買電する必要があることを示す下限閾値であり、たとえば330Vで設定される。なお、第1及び第2電圧閾値Vs1、Vs2は同じ値に設定されてもよい。
 第1変換制御部372は、電圧比較部371の比較結果に基づいて、双方向インバータ32の動作(変換方向、変換停止など)を制御する。たとえば、第1変換制御部372は、バス電圧値Vpが第1電圧閾値Vs1以上である場合、双方向インバータ32に、発電電力の一部を逆変換させて、商用電力系統Eに出力させる。また、第1変換制御部372は、バス電圧値Vpが第2電圧閾値Vs2未満である場合、双方向インバータ32に、商用電力系統Eから双方向インバータ32に供給される電力を順変換させてバスラインBLに出力させる。また、第1変換制御部372は、バス電圧値Vpが第1電圧閾値Vs1未満且つ第2電圧閾値Vs2以上である場合、双方向インバータ32の動作を停止させる。
 こうすれば、バスラインBLのバス電圧値Vpに応じて、双方向インバータ32の順変換/逆変換/停止が自動的に切り替えられる。そのため、発電電力を蓄電池に蓄電する際、発電電力を無駄なく利用することができる。
 たとえば、蓄電池2の蓄電中に、太陽電池モジュール1の発電量が増加して蓄電池2の蓄電量を大きく上回った場合を考える。この場合、バス電圧値Vpが上昇して第1電圧閾値Vs1以上になると、自動的に双方向インバータ32が逆変換動作に切り替わる。従って、蓄電に利用されない一部の発電電力(すなわち剰余電力)が逆変換されて、商用電力系統Eに出力される。従って、蓄電に利用されない発電電力を無駄なく利用することができる。
 また、蓄電池2の蓄電中に、太陽電池モジュール1の発電量が低下して蓄電池2の蓄電量を大きく下回った場合を考える。この場合、バス電圧値Vpが低下して第2電圧閾値Vs2未満になると、自動的に双方向インバータ32が順変換に切り替わる。従って、商用電力系統Eから供給されて順変換された直流の電力がバスラインBLに出力され、バス電圧値Vpを第2電圧閾値Vs2以上に上昇させる。従って、蓄電池2の蓄電する電力の不足分(すなわち不足電力)が補われるため、蓄電池2を継続して蓄電することができる。
 コントローラ4は、パワーコンディショナ3の制御、及びユーザ入力の受け付けなど行う外部制御装置である。コントローラ4は、入力部41と、通信部42と、メモリ43と、IC44と、を有している。入力部41は、ユーザ入力を受け付け、該ユーザ入力に応じた入力信号をIC44に出力する。通信部42は、パワーコンディショナ3と無線通信又は有線通信する通信インターフェースである。メモリ43は、電源を供給しなくても格納された情報を非一時的に保持する不揮発性の記憶媒体である。メモリ43は、各機能要素(特にIC44)で用いられる制御情報及びプログラムなどを格納している。
 IC44は、メモリ43に格納された情報及びプログラムなどを用いて、コントローラ4の各構成要素を制御する制御部である。IC44は、機能的要素として、蓄電池監視部441と、第2変換制御部442と、を含んで構成される。
 蓄電池監視部441は、蓄電池2の蓄電量を監視する。蓄電池監視部441は、該蓄電量が所定の閾値未満になると、パワーコンディショナ3の動作モードを蓄電モードに切り換えて、蓄電池2の蓄電を開始する。こうすれば、パワーコンディショナ3の動作モードを自動的に蓄電モードに切り換え、後述する蓄電処理(図2参照)を開始することができる。
 第2変換制御部442は、双方向DC/DCコンバータ34の動作(変換方向、変換停止など)を制御する。第2変換制御部442は、たとえば、蓄電池監視部441の検出結果、又はユーザ入力に基づいて、双方向DC/DCコンバータ34の変換方向(蓄電用の順変換方向A、放電用の逆変換方向B)を切り替える。さらに、第2変換制御部442は、該検出結果又はユーザ入力に基づいて、双方向DC/DCコンバータ34の変換動作のON/OFFを指令する。
 次に、太陽光発電システム100における蓄電池2の蓄電処理について説明する。図2は、第1実施形態に係る蓄電処理を説明するためのフローチャートである。たとえば蓄電池監視部441がパワーコンディショナ3を蓄電モードに切り換えると、図2の蓄電処理が開始される。
 まず、第2変換制御部442が双方向DC/DCコンバータ34を順変換方向Aで動作させ(ステップS101)、電圧比較部371はバス電圧値Vpが第1電圧閾値Vs1以上であるか否かを判定する(ステップS102)。Vp≧Vs1である場合(ステップS102でYES)、太陽電池モジュール1の発電能力は蓄電池2の蓄電能力を大きく上回っていると判断される。そのため、第1変換制御部372は双方向インバータ32を逆変換方向bで動作させる(ステップS104)。この動作により、蓄電に利用されない剰余電力が、双方向インバータ32で逆変換されて、商用電力系統Eに出力され、電力会社に売電される。そして、処理はステップS109に進む。
 一方、Vp≧Vs1でない場合(ステップS102でNO)、電圧比較部371はバス電圧値Vpが第2電圧閾値Vs2未満であるか否かを判定する(ステップS105)。Vp<Vs2である場合(ステップS105でYES)、太陽電池モジュール1の発電能力は蓄電池2の蓄電能力を大きく下回っていると判断される。そのため、第1変換制御部372は双方向インバータ32を順変換方向aで動作させる(ステップS107)。この動作により、不足電力が、電力会社から買電されて、商用電力系統Eから双方向インバータ32に供給され、双方向インバータ32で順変換されて、バスラインBLに出力される。そして、処理はステップS109に進む。
 また、Vp<Vs2でない場合(ステップS105でNo)、太陽電池モジュール1の発電能力は蓄電池2の蓄電能力とバランスしていると判断される。そのため、第1変換制御部372は双方向インバータ32の動作を停止させる(ステップS108)。すなわち、蓄電池2は発電電力を利用して蓄電され、双方向インバータ32は売電も買電もしない。そして、処理はステップS109に進む。
 ステップS109では、蓄電池監視部441が蓄電池2の蓄電量が所定の閾値以上であるか否かが判定される。蓄電量が所定の閾値未満である場合(ステップS109でNO)、処理はステップS102に戻り、蓄電処理が継続される。一方、蓄電量が所定の閾値以上である場合(ステップS109でYES)、蓄電処理は終了する。
<第2実施形態>
 次に、第2実施形態について説明する。第2実施形態では、蓄電処理において、Vp≧Vs1(S102でYES)又はVp<Vs2(S105でYES)であると判定されてから所定の待機時間が経過した後に、双方向インバータ32の変換方向が切り替えられる。それ以外は、第1実施形態と同様である。以下では、第1実施形態と異なる構成について説明する。また、第1実施形態と同様の構成部には同じ符号を付し、その説明を省略する。
 図3は、太陽光発電システム100の他の構成例を示すブロック図である。図3に示すように、パワーコンディショナ3はタイマ38をさらに備える。このタイマ38は、所定の時点からの経過時間を計時する計時部である。また、IC37は、機能的要素として、経過時間判定部373をさらに含んで構成される。経過時間判定部373は、電圧比較部371によりバス電圧値Vpが第1電圧閾値Vs1以上又は第2電圧閾値Vs2未満であると判定された時点からの経過時間が所定の待機時間を越えたか否かを判定する。
 図4は、第2実施形態に係る蓄電処理を説明するためのフローチャートである。たとえば、蓄電池監視部441がパワーコンディショナ3を蓄電モードに切り換えると、図4の蓄電処理が開始される。
 まず、双方向DC/DCコンバータ34を順変換方向Aで動作させ(ステップS101)、Vp≧Vs1であるか否かが判定される(ステップS102)。Vp≧Vs1である場合(ステップS102でYES)、経過時間判定部373は待機時間が経過したかを判定する(ステップS203)。待機時間が経過すると(ステップS203でYES)、第1変換制御部372は双方向インバータ32を逆変換方向bで動作させる(ステップS104)。そして、処理はステップS109に進む。なお、ステップS109の処理は第1実施形態と同様であるため、以下ではその説明を割愛する。
 一方、Vp≧Vs1でない場合(ステップS102でNO)、Vp<Vs2であるか否かが判定される(ステップS105)。Vp<Vs2である場合(ステップS105でYES)、経過時間判定部373は待機時間が経過したかを判定する(ステップS206)。待機時間が経過すると(ステップS206でYES)、第1変換制御部372は双方向インバータ32を順変換方向aで動作させる(ステップS106)。そして、処理はステップS109に進む。
 また、Vp<Vs2でない場合(ステップS105でNo)、第1変換制御部372は双方向インバータ32の動作を停止させる(ステップS108)。そして、処理はステップS109に進む。
 以上、第2実施形態によれば、電圧比較部371による比較及び判定から待機時間が経過した後、双方向インバータ32の動作(特に順変換/逆変換/停止の切り替え)が制御される。そのため、バス電圧値Vpが第1又は第2電圧閾値Vs1、Vs2付近で短期的に変動を繰り返しても、その変動周期が待機時間以内であれば、双方向インバータ32の動作がその都度切り替えられることはない。従って、双方向インバータ32の動作を安定させることができる。
<第3実施形態>
 次に、第3実施形態について説明する。第3実施形態では、分散型電源が太陽光以外の再生可能エネルギーを利用した発電(風力、水力、地熱、バイオマス、太陽熱など自然エネルギー発電、廃棄物発電など)を行う。それ以外は、第1及び第2実施形態と同様である。以下では、第1及び第2実施形態と異なる構成について説明する。また、第1及び第2実施形態と同様の構成部には同じ符号を付し、その説明を省略する。
 ここでは、風力発電システム100aを例に挙げて説明する。風力発電システム100aは、風力を利用した発電方式で電力供給を行う分散型電源である。図5は、風力発電システム100aの構成例を示すブロック図である。図5に示すように、風力発電システム100aは、風力発電装置1aと、蓄電池2と、パワーコンディショナ3と、コントローラ4と、を備えている。また、パワーコンディショナ3は、AC/DCコンバータ31aと、コンデンサ33と、双方向インバータ32と、双方向DC/DCコンバータ34と、通信部35と、メモリ36と、IC37と、を有している。
 風力発電装置1aは、たとえば水平軸プロペラ式の風車と、風車の回転により駆動される発電機(不図示)とを含んで構成される。風車のブレードが風を受けると、風車が回転する。その回転力が発電機に伝達され、交流の電力が発電機から発電電力として出力される。
 AC/DCコンバータ31aは、風力発電装置1aに接続される直流変換部である。AC/DCコンバータ31aは、交流の発電電力を直流の電力に変換する。また、AC/DCコンバータ31aは風力発電装置1aに逆電流が流れることを防止している。
 以上、本発明の実施形態について説明した。なお、上述の実施形態は例示であり、その各構成要素及び各処理の組み合わせに色々な変形が可能であり、本発明の範囲にあることは当業者に理解されるところである。
 たとえば、上述の第1~第3実施形態において、IC37、44の各機能的要素のうちの少なくとも一部は、物理的な構成要素(たとえば電気回路、素子、装置など)で実現されていてもよい。
 また、上述の第1~第3実施形態では、パワーコンディショナ3とは別にコントローラ4が設けられているが、本発明の適用範囲はこの例示に限定されない。コントローラ4の構成要素の少なくとも一部はパワーコンディショナ3に含まれていてもよい。たとえば、コントローラ4の蓄電監視部441、及び第2変換制御部442はパワーコンディショナ3又はIC37の機能的要素に含まれていてもよい。
 また、上述の第1~第3実施形態では、第1変換制御部372は、バス電圧値Vpが第1電圧閾値Vs1未満且つ第2電圧閾値Vs2以上である場合、双方向インバータ32の動作を停止させるが、本発明の適用範囲はこの例示に限定されない。この場合に、第1変換制御部372は、双方向インバータ32の動作を停止させなくてもよい。たとえば、バス電圧値Vpが第1電圧閾値Vs1未満且つ第2電圧閾値Vs2以上である場合、第1変換制御部372は、必ず順変換を行ってもよいし、必ず逆変換を行ってもよい。或いは、バス電圧値Vpが第1電圧閾値Vs1未満且つ第2電圧閾値Vs2以上に変化すると、第1変換制御部372は、変化する直前の変換方向と同じ変換方向を維持してもよいし、変化する直前の変換方向とは異なる変換方向に切り替えてもよい。このようにしても、バスラインBLのバス電圧値Vpに応じて、双方向インバータ32の順変換/逆変換を自動的に切り替えることはできる。
 また、上述の第1~第3実施形態では、蓄電池2の蓄電量が閾値未満になると、パワーコンディショナ3の動作モードが自動的に蓄電モードに切り換えられるが、本発明の適用範囲はこの例示に限定されない。動作モードは図示しない入力部が受け付けるユーザ入力に基づいて切り替えられてもよい。その場合、図2及び図4のステップS109では、蓄電モードをOFFする旨のユーザ入力がなされたか否かが判定される。或いは、自動的に蓄電モードに切り換えるか否かがユーザ入力により予め設定できる構成であってもよい。
 100  太陽光発電システム
 100a 風力発電システム
 1     太陽電池モジュール
 1a    風力発電装置
 2     蓄電池
 3     パワーコンディショナ
 31     DC/DCコンバータ
 31a    AC/DCコンバータ
 32     双方向インバータ
 33     コンデンサ
 34     双方向DC/DCコンバータ
 35     通信部
 36     メモリ
 37     IC
 371     電圧比較部
 372     第1変換制御部
 373     経過時間判定部
 38     タイマ
 BL     バスライン
 4     コントローラ
 41     入力部
 42     通信部
 43     メモリ
 44     IC
 441     蓄電池監視部
 442     第2変換制御部
 E     商用電力系統

Claims (4)

  1.  発電装置の発電電力及び商用電力系統から供給される電力の少なくとも一方を蓄電池に蓄電するパワーコンディショナであって、
     前記発電電力を直流の電力に変換する直流変換部と、
     前記商用電力系統に対して電力の順変換及び逆変換を行う双方向変換部と、
     前記直流変換部及び前記双方向変換部に接続され、前記蓄電池に供給される電力が流れる電力伝達経路と、
     前記電力伝達経路を流れる前記電力の電圧値を検出し、該電圧値を所定の電圧閾値と比較する電圧比較部と、
     前記電圧比較部の比較結果に基づいて前記双方向変換部の変換方向を制御する変換制御部と、を備えることを特徴とするパワーコンディショナ。
  2.  前記変換制御部は、
     前記電圧値が前記第1電圧閾値以上である場合、前記双方向変換部に、前記電力伝達経路を流れる前記電力を逆変換させて、前記商用電力系統に出力させ、
     前記電圧値が前記第2電圧閾値未満である場合、前記双方向変換部に、前記商用電力系統から供給される電力を順変換させて、前記電力伝達経路に出力させることを特徴とする請求項1に記載のパワーコンディショナ。
  3.  所定時点からの経過時間を計時する計時部と、
     所定の待機時間が経過したか否かを判定する経過時間判定部と、をさらに備え、
     前記変換制御部は、前電圧比較部の比較後から前記待機時間が経過した後、前記双方向変換部の前記変換方向を制御することを特徴とする請求項1または請求項2に記載のパワーコンディショナ。
  4.  発電装置の発電電力及び商用電力系統から供給される電力の少なくとも一方を蓄電池に蓄電する蓄電制御方法であって、
     前記発電電力を直流の電力に変換するステップと、
     前記商用電力系統に対して電力の順変換及び逆変換を行うステップと、
     前記蓄電池に供給される電力の電圧値を検出するステップと、
     前記電圧値を所定の電圧閾値と比較するステップと、
     前記比較するステップでの比較結果に基づいて、前記電力の順変換及び逆変換を行うステップの変換方向が制御されるステップと、
    を備えることを特徴とする蓄電制御方法。
PCT/JP2015/062341 2014-05-21 2015-04-23 パワーコンディショナ及び蓄電制御方法 WO2015178154A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-105344 2014-05-21
JP2014105344A JP2015220958A (ja) 2014-05-21 2014-05-21 パワーコンディショナ及び蓄電制御方法

Publications (1)

Publication Number Publication Date
WO2015178154A1 true WO2015178154A1 (ja) 2015-11-26

Family

ID=54553830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062341 WO2015178154A1 (ja) 2014-05-21 2015-04-23 パワーコンディショナ及び蓄電制御方法

Country Status (2)

Country Link
JP (1) JP2015220958A (ja)
WO (1) WO2015178154A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864816B (zh) * 2020-06-03 2022-04-05 西安图为电气技术有限公司 一种供电控制方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118976A (ja) * 1997-06-13 1999-01-12 Sharp Corp インバータ装置およびその起動方法
JP2009142013A (ja) * 2007-12-04 2009-06-25 Sharp Corp 電力供給システム
JP2012147508A (ja) * 2011-01-06 2012-08-02 Sharp Corp 直流給電システム
JP2014036550A (ja) * 2012-08-10 2014-02-24 Sharp Corp パワーコンディショナおよび電力供給システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118976A (ja) * 1997-06-13 1999-01-12 Sharp Corp インバータ装置およびその起動方法
JP2009142013A (ja) * 2007-12-04 2009-06-25 Sharp Corp 電力供給システム
JP2012147508A (ja) * 2011-01-06 2012-08-02 Sharp Corp 直流給電システム
JP2014036550A (ja) * 2012-08-10 2014-02-24 Sharp Corp パワーコンディショナおよび電力供給システム

Also Published As

Publication number Publication date
JP2015220958A (ja) 2015-12-07

Similar Documents

Publication Publication Date Title
JP5449334B2 (ja) 制御装置および制御方法
KR101369692B1 (ko) 전력 저장 시스템 및 그 제어방법
WO2017026287A1 (ja) 制御装置、エネルギー管理装置、システム、及び制御方法
JP6289661B2 (ja) 電力供給機器、電力供給システム及び電力供給機器の制御方法
WO2014017141A1 (ja) 充電装置
JP2008099527A (ja) 電力系統に接続された自家発電設備における蓄電池設備および蓄電池設備の運転方法
JP2015188308A (ja) 電力管理システム及び電力管理方法
JP6449645B2 (ja) 電力制御装置、及び電力制御方法
JP6557153B2 (ja) 電力管理装置
JP2024009124A (ja) 電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム
JP6574651B2 (ja) 電力制御装置
JP5841279B2 (ja) 電力充電供給装置
JP2015198555A (ja) 電力制御方法、電力制御装置、及び電力制御システム
JP6363412B2 (ja) パワーコンディショナ及び電力制御方法
JP6580950B2 (ja) 電力管理装置
JP2010035401A (ja) センサ制御式洗浄装置,およびその電源管理方法と電源管理システム
KR20150085227A (ko) 에너지 저장 시스템 및 그의 제어 방법
WO2016111080A1 (ja) 電力制御システム
WO2016056315A1 (ja) パワーコンディショナ、その電力制御方法、及び電力制御システム
WO2015178154A1 (ja) パワーコンディショナ及び蓄電制御方法
JP2014121151A (ja) 蓄電システム及び電力供給システム
EP3540897B1 (en) Energy storage apparatus
JP2014075902A (ja) 交流発電装置
JP2007300728A (ja) 発電装置
JP2018033227A (ja) 太陽光発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795378

Country of ref document: EP

Kind code of ref document: A1