WO2015177173A1 - Procede de propulsion d'un fauteuil roulant, kit et fauteuil mettant en oeuvre un tel procede - Google Patents

Procede de propulsion d'un fauteuil roulant, kit et fauteuil mettant en oeuvre un tel procede Download PDF

Info

Publication number
WO2015177173A1
WO2015177173A1 PCT/EP2015/061030 EP2015061030W WO2015177173A1 WO 2015177173 A1 WO2015177173 A1 WO 2015177173A1 EP 2015061030 W EP2015061030 W EP 2015061030W WO 2015177173 A1 WO2015177173 A1 WO 2015177173A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheels
wheelchair
chair
mode
wheel
Prior art date
Application number
PCT/EP2015/061030
Other languages
English (en)
Inventor
Sami MOHAMMAD
Thierry-Marie GUERRA
Original Assignee
Centre National De La Recherche Scientifique
Universite De Valenciennes Et Du Hainaut Cambresis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Universite De Valenciennes Et Du Hainaut Cambresis filed Critical Centre National De La Recherche Scientifique
Priority to EP15725553.0A priority Critical patent/EP3145467A1/fr
Priority to US15/311,769 priority patent/US10252638B2/en
Publication of WO2015177173A1 publication Critical patent/WO2015177173A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • A61G5/041Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven having a specific drive-type
    • A61G5/045Rear wheel drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/06Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs with obstacle mounting facilities, e.g. for climbing stairs, kerbs or steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/16Single-axle vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/34Wheel chairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/22Yaw angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/32Driving direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/12Driver interactions by confirmation, e.g. of the input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/18Driver interactions by enquiring driving style
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/34Stabilising upright position of vehicles, e.g. of single axle vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/40Problem solutions or means not otherwise provided for related to technical updates when adding new parts or software
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/80Other vehicles not covered by groups B60Y2200/10 - B60Y2200/60
    • B60Y2200/84Wheelchairs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a method of propelling a wheelchair. It also relates to a kit implementing such a method for equipping a wheelchair, and an electric wheelchair implementing this method.
  • the invention applies in particular to improve the mobility of wheelchairs on all types of terrain.
  • wheelchairs There are various types of wheelchairs on the market, from the simplest in a manual version to the most sophisticated in an all-electric version. Faced with the difficulties encountered in everyday life, many people with reduced mobility give up manual wheelchairs. Indeed, these chairs require significant physical effort on the part of users and are not always easy to maneuver, ultimately limiting the autonomy of people. The latter must then make choices among all the chairs available on the market based in particular on their disability, their physical capabilities and their financial means.
  • One solution to allow these people to regain greater autonomy is to use an all-electric wheelchair equipped with a control member. From this control member, the user can control the chair in all directions, the chair being propelled by means of an electric motor, the handrails coupled to the wheels are also always provided to allow manual activation including in unavailability of electric propulsion.
  • Another less expensive solution is to equip a conventional wheelchair with an additional motorization kit.
  • An object of the invention is in particular to allow electrically powered wheelchairs to move in all types of terrain and especially in the types of terrain described above.
  • the subject of the invention is a method of propelling a wheelchair, said wheelchair having two driving wheels each equipped with a rotation drive motor, the value of the driving torque applied by each motor. being slaved to perform a gyroscopic stabilization of said chair moving on both motor, loaded by a user, in an inclined equilibrium position ⁇ 0 .
  • said method uses a direct model defined by the following equation, for the system composed of said loaded wheelchair and engines:
  • x is a state vector, a function of time, such that:
  • - ⁇ being equal to 1/2 (0 R + 6 L ), 0 R and 0 L being respectively the angles of rotation of the right wheel and the left wheel relative to a given origin; - ⁇ being the deflection angle of the chair relative to the equilibrium position ⁇ ' ,
  • the control law must not only guarantee stability, performance and robustness in each of these modes, but also guarantee a reliable passage (obviously controlled but also smoothly) between the different modes: two wheels compared to four wheels, four wheels compared to two wheels, two wheels or four wheels with respect to assistance and assistance with respect to two wheels or four wheels.
  • control signals may be:
  • ⁇ , ⁇ respectively being the values of the torques applied by the left and right motors.
  • control input u has as its components the speeds of the driving wheels or the control input u has as components the control voltages applied to the motors.
  • the method uses for example a static and / or dynamic nonlinear state feedback.
  • a state observer of the unmeasured variables or an estimator of the perturbation inputs is for example added, this state feedback being defined by the following equation:
  • the deflection angle ⁇ is measured from a tilt angle value ⁇ & ⁇ measured by a mechanically secured gyroscope of said chair, said deflection angle ⁇ being the difference between the gyroscopic measurement of the inclination ⁇ ⁇ and an estimated value of the equilibrium angle ⁇ , said estimated value of the equilibrium angle being a function of the geometric and dynamic parameters of said loaded chair.
  • the invention also relates to an electric propulsion kit adapted to equip a wheelchair with two driving wheels, said kit comprising at least:
  • a gyroscope for measuring the angle of inclination of the chair
  • a central unit delivering a signal for controlling the value of the driving torque of each of the motors, said central unit comprising a computer capable of executing a so-called two-wheel servocontrol, from a control signal, implementing the method propulsion device described above, for stabilizing said wheelchair moving on both motor, loaded by a user, in an inclined balance position ⁇ .
  • the central unit From a deactivation signal of said two-wheel servocontrol, the central unit generates, for example, torque values which cause the rear wheels to accelerate for a predetermined period of time, forcing the wheelchair to tilt forwards and to land on its front wheels.
  • a control interface generates an activation and deactivation signal for said two-wheel servocontrol.
  • the control interface is for example of the "joystick” type or is a screen for navigating through a menu.
  • An activation signal of said two-wheel servo is for example generated by a tilting movement of said chair backwards, said movement being sensed by the gyro.
  • the deactivation signal of said two-wheel servo is generated by a tilting movement of said chair forward, said movement being sensed by the gyro.
  • the motorization kit is mounted on transport equipment such as a stretcher, a trolley, a bed or the like, to enable the user, who in this case has his driving abilities, a maneuverability and easy transport of heavy loads.
  • transport equipment such as a stretcher, a trolley, a bed or the like.
  • control device such as a small joystick to control the left and right movement of the equipment.
  • the subject of the invention is also an electric wheelchair comprising two driving wheels each driven by an electric motor, said chair comprising at least: a gyroscope for measuring the angle of inclination of said chair;
  • a central unit delivering a signal for controlling the value of the driving torque of each of the motors, said central unit comprising a computer capable of executing a so-called two-wheel servocontrol, from a control signal, implementing the method propulsion device described above, for stabilizing said wheelchair moving on the two motor, loaded by a user, in an inclined equilibrium position ⁇ 0 .
  • the central unit From a sign of deactivation of said two-wheel servo, the central unit generates, for example, engine torque values that create an acceleration of the driving wheels rearward for a determined time, forcing the wheelchair to tilt forward and to land on its front wheels.
  • said chair comprises a control interface generating a signal for activating and deactivating said two-wheel control, said interface being for example of the "joystick" type or being for example a screen making it possible to navigate in a menu.
  • An activating signal of said two-wheel control is for example generated by a tilting movement of said chair backwards, said movement being picked up by the gyro.
  • a deactivation signal of said two-wheel control is for example generated by a tilting movement of said chair forward, said movement being sensed by the gyro.
  • FIG. 6 an illustration of a propulsion according to the invention on a sloping track.
  • Figure i shows a person moving in a manual wheelchair.
  • the person controls the movement of the chair by exerting a circular thrust forward or back on the handrail 2 coupled to each wheel 1 driving, causing the rolling of these wheels.
  • Two small wheels 5 at the front complete the four-wheel device to ensure the stability of the wheelchair, the latter which is free to rotate about a vertical axis help the wheelchair user to go.
  • An electric propulsion help device reduces or eliminates these physical efforts.
  • Such a device comprises two electric motors, a motor being coupled to each wheel to drive it in rotation.
  • the motors used may be of the brushless motor type, also called "brushless" motors. Other types of motors can be used, such as DC motors.
  • the motor torque delivered by a motor may be a function of the drive movement applied to the handrail 2.
  • several solutions are possible to detect the propulsion torque then produced by the user and to control the drive motors. function of this applied torque.
  • Another solution for controlling the drive motors of the wheels is to use a control member such as a joystick for example, also called “joystick” attached to the frame of the chair and more particularly on the armrest for easy handling by the user.
  • the joystick thus makes it possible to control the motors forwards or backwards, to adjust the drive speed of the wheels, and to turn to the left or to the right by activating one or the other of the motors. Electric propulsion works perfectly on regular soils.
  • FIG. 1 illustrates a first example of an obstacle.
  • the user must cross the edge of a sidewalk 4 to climb on it. The user must then make a movement back to lift the front of the chair, which requires physical effort with a risk of complete tilting of the chair backwards.
  • FIG. 2 presents another example of obstacle clearance where the user moves from a sidewalk 21 to a roadway 22. In this case, the user must be careful not to tip forward and overturn. .
  • Figure 3 presents another difficult situation where a user has to descend a slope with his wheelchair 10. Even if the braking system of the chair makes it possible to control the speed of descent, there is a significant risk that the user switches to the before or at least feels such a fear that he refuses to descend the bank.
  • Figure 4 illustrates the principle of implementation of the invention.
  • the invention provides a mode of operation subsequently called "two-wheel” mode in which the chair 10 moves only on the two drive wheels 1, in an inclined equilibrium position. In this configuration, the chair can move more easily on rough or unstable ground, on slopes and can overcome obstacles more easily.
  • the wheelchair is maintained in this "two-wheel” mode by the torques applied to the drive wheels 1 by their drive motor.
  • Figure 4 shows the chair loaded by a user in a position of equilibrium around a stabilization angle ⁇ 0 , the user moving on a horizontal plane.
  • This angle is formed between the horizontal plane 41 and the plane 42 comprising the four wheels 1, 5 of the chair, more particularly this plane 42 corresponds to a fictitious plane supporting the four wheels.
  • a driving torque ⁇ is applied to the left wheel and a driving torque T r to the right wheel whose values make it possible to obtain the speed and the stabilization angle ⁇ ⁇ according to a servocontrol which will be described by the after.
  • the speed of movement of the wheelchair corresponds to the speed of rotation of the drive wheels 1, different speeds of rotation between the wheels allow the wheelchair to turn right or left.
  • the torque values to be applied depend on the geometric and dynamic parameters of the weighted wheelchair, the desired drive wheel speeds and the stabilization angle ⁇ 0 .
  • This angle of stabilization, or equilibrium is the angle of inclination of the chair for which the center of gravity CG of the assembly formed by the chair 10 and the user 40 meets the axis vertical 43 passing through the axis of the driving wheels 1. In practice, this angle is of the order of 20 ° to 30 °, which allows to overcome the standard obstacles of the sidewalk or stair step type and offers a tilt of the chair relative to the comfortable horizontal for l 'user.
  • H (q) being the mass matrix
  • F (q, q) including the coefficients of friction f
  • G (q) representing the gravity matrix
  • the nonlinearities are included in the interpolation functions ⁇ ,. ( ⁇ ( ⁇ )).
  • the state vector x (t) includes at least the chair tilt angle variables, the wheel angle and their derivatives. For example: x - ⁇ ⁇ ⁇ ⁇ y
  • the state vector x (t) may contain additional terms, such as disturbance estimates.
  • ⁇ (t) is dependent, linearly or otherwise, on the state variables x (t) or on external parameters such as in particular the mass, the inertia or the geometry of the system.
  • the angle ⁇ is for example measured by a gyro mechanically secured to the frame of the chair.
  • the wheelchair position "two wheels” can be advantageously controlled by a control member of the joystick type without other movements from the user who can remain comfortably seated in his chair.
  • Figure 5 illustrates the system servo loop to ensure operation in all modes, in "two-wheel” position at equilibrium with a desired travel speed, "four-wheel” mode, mode “Assistance” and the passages between these modes.
  • the movement instructions are only given by the command, a joystick for example.
  • This control loop with the gyroscope and the adapted interfaces is the stabilization system of the chair in position, or mode, "two wheels” in “assistance mode” and switching between modes.
  • the servo loop is implemented by a program, called gyro stabilization program, activated or deactivated by an external control signal.
  • control transmits a speed reference wheel rotation ⁇ ref and rotation angle in the horizontal plane ⁇ ⁇ / .
  • the speed reference is integrated with respect to time and thus transformed into a rotation angle setpoint 0 ref .
  • the control law is calculated from the nonlinear model described above taking into account the different modes of operation.
  • the setting in two-wheel mode and the return to four-wheel mode involves non-linear terms that are no longer compatible with linearization valid only for small angles.
  • the control law implemented not only advantageously allows these four-wheel transitions with respect to two wheels and two wheels with respect to four wheels but also the propulsion by a caregiver, a third person, which modifies the behavior of the balance and must therefore be taken into account.
  • changes of mode between two and / or four wheels and assistance to the caregiver are taken into account safely and smoothly in both directions.
  • control law can be either nonlinear, of the Parallel Distributed Compensation type for example:
  • p j (t) represents the mode of operation or the transition between the modes: two wheels with respect to four wheels, four wheels relative to two wheels, two wheels or four wheels;
  • 0 re f is the time integral of the rotational speed reference of said driving wheels (1);
  • these laws may include a state observer 52 making it possible to reconstruct unmeasured variables and / or to estimate external disturbances.
  • x (i) and / or ⁇ (t) respectively by their estimates x ⁇ t) and z (t).
  • the synthesis of these correctors, plus the observers, calls in particular on the advanced techniques of the automatic, for example Linear Matrix Inequalities, H syntheses, H ⁇ , so-called high gain techniques, algebraic methods. In any case, they provide evidence of stability and robustness in all modes of operation while ensuring energy and time performance and passages between safe and comfortable modes for the user, smoothly.
  • FIG. 5 illustrates an example of possible servocontrol, where the system is slaved to rotational speed, itself integrated into an angle setpoint.
  • the servo system can also enslave the system on engine torque instructions. It is also possible to control the control voltage applied to the drive motors of the wheels.
  • the equilibrium angle ⁇ 0 is determined a priori. In all cases, the servo system is able to compensate for any possible difference in system resulting from the change of position of balance due to the movements of the user, the state of the road or the drift of the sensors.
  • This equilibrium value corresponds to an inclination of the chair where the center of gravity CG meets the vertical axis 41 passing through the axis of the driving wheels 1.
  • This angle ⁇ 0 can therefore be estimated a priori. Knowing the mechanical parameters and dimensions of the chair can reliably calculate the coordinates of the center of gravity CG in a reference linked to the chair, retaining a mean weight and morphology standard for the user. If necessary, the coordinates of the center of gravity can be calculated beforehand according to the weight and the morphology of the user,
  • Activation of the "two-wheel” mode can be done on the flat by the user in the easiest possible way, by activating a command such as a button or navigating in a menu.
  • An initialization instruction of the servocontrol mode "two wheels” is then sent to the gyro stabilization program.
  • There are several ways to get to the equilibrium position In a first mode, it is a third person who inclines the chair. In a second mode, the equilibrium maneuver is performed in an automated manner provided the necessary space and the user follows a number of instructions.
  • the system is programmed to return to the "four wheel” position at any time, especially if there is any risk to the user.
  • the transition to the "four wheel” position is simple.
  • the stabilization program is stopped and a horizontal return sequence is applied. It is a matter of applying a significant acceleration to the two engines towards the rear during a determined time, which forces the wheelchair to tilt forwards and to land on the front wheels 5. It is also possible to apply this sequence back to the horizontal before stopping the stabilization program and program this algorithm to stop the signal if the angle ⁇ becomes too large, it is also possible that a third person stops the mode "two wheels" while holding the chair.
  • This movement of flip-flop is detected by the gyroscope.
  • a sudden change of forward tilt is then interpreted as a two-wheel mode off signal.
  • a tilting of the wheelchair to the rear, caused by a third person or by the user, detected by the gyroscope is interpreted as a two-wheel mode activation signal.
  • FIG. 6 shows an example of use of a "two-wheel" mode where the user and his wheelchair descend a ramp 61, for example an embankment or a sloping track.
  • the drive torques of the wheels are always controlled so as to maintain the chair in equilibrium, that is to say by maintaining the center of gravity CG on the vertical axis 43 passing through the axis of the wheels, the inclination the chair being stabilized around the equilibrium angle ⁇ 0 relative to the horizontal 41.
  • the user descends the slope 51 on his chair safely, without risk of tipping forward.
  • Another advantage of the "two-wheel" mode is also better maneuverability, especially for changes of direction as the ground contact area is reduced, since it is based on two wheels instead of the four wheels for a conventional wheelchair. .
  • the change of direction is effected by acting on the driving torques to obtain the orientation angle ⁇ according to the equations above.
  • the invention can be implemented in the form of a kit for equipping manual wheelchairs or directly equiping an all-electric wheelchair, but also for equipping rolling systems such as transport equipment, particularly of a person, such as a stretcher, a trolley or a bed for example. In the rest of the description, the kit is applied to a wheelchair.
  • the kit includes at least the following elements, which are removable in a kit version and are an integral part of an all-electric chair version:
  • a gyroscope for measuring the angle of inclination of the chair relative to the horizontal, the gyroscope being fixed on the chassis of the chair;
  • a central unit including processing means for implementing the stabilization program for the two-wheel mode, but also the torque calculations to be applied for the four-wheel mode and calculating and generating the control signal driving couples.
  • the motors are for example of the brushless motor type, also called “brushless” or DC motors.
  • the kit also includes a battery supplying electrical power to the motors and the central unit.
  • a battery supplying electrical power to the motors and the central unit.
  • a not shown inverter is coupled to each motor to transform the DC voltage supplied by the battery into AC voltage.
  • This inverter can be placed at the level of the motors or at the level of the support of the battery in the case of use of a motor of the "brushless" type.
  • the control interface is for example of the joystick type or any manual control device.
  • the control interface can also take the form of navigation within a menu, including the transition to two-wheel mode.
  • This controller sends a signal to the central unit containing control or mode information.
  • This signal can indeed contain the "two-wheel” mode information, in which case the central unit activates the stabilization algorithm.
  • the control signal can also be stop information mode "two wheels", or a speed information or rotation to the right or left in particular.
  • the central unit activates or deactivates the stabilization program, or sends a torque command to each motor.
  • the central unit also receives the angle measurement information ⁇ ⁇ provided by the gyroscope, this information being used as one of the input signals of the stabilization program. More particularly, knowing the estimated value ⁇ of the equilibrium angle, the value ⁇ of the angle of inclination with respect to this equilibrium angle is obtained by the relation:
  • the central unit comprises calculating means for calculating the driving torque to be applied making it possible to obtain the speed of movement of the chair and to stabilize the inclination of the chair around the equilibrium angle ⁇ 0 , these calculation means implementing the stabilization program.
  • This enslavement uses advanced techniques of automatic according to the knowledge of the skilled person.
  • the drive motors of the wheels can be slaved into torque, speed or tension depending on the angle of inclination, or rotation, of the chair relative to the horizontal, this angle being calculated using the gyroscope.
  • the same housing that can be attached to the chassis of the chair can contain the gyroscope and the central unit, which is implanted with digital and analog circuits on one or more cards.
  • the central unit comprises the circuits necessary for the calculations, possibly interface means with the equipment to be controlled, in particular the motors.
  • the interface means include, for example, amplifiers for amplifying low level signals as well as analog-to-digital or digital-to-analog conversion circuits for processing the received signals and sending the control signals.
  • the kit must also allow the user to move in a conventional mode, on all four wheels, with assisted propulsion.
  • the means for calculating the driving torques do not deal with the inclination.
  • the calculation algorithm can be the same as in the "two-wheel" mode, the angle ⁇ 0 being taken as 0.
  • a command for example a switch, makes it possible to switch from conventional propulsion to "two-wheel” mode or by navigation in a menu as indicated above.
  • the control law implemented allows these four-wheel transitions with respect to two wheels and two wheels compared to four wheels, but also the propulsion by a caregiver.
  • changes of mode between two and / or four wheels and assistance to the caregiver are taken into account safely and smoothly in both directions.
  • the "two wheels" mode is intended to be installed on an all-electric wheelchair, some adaptations are necessary to integrate this new mode of operation to an existing solution.
  • a gyroscope must be added to measure the angle of inclination of the chair and to implement calculation and interface means that allow the stabilization program to be carried out.
  • the invention has been described for a wheelchair with four wheels including two driving wheels.
  • the invention can of course be applied to a chair with a different number of wheels.
  • the invention applies to a wheelchair having at least three wheels including two driving wheels.
  • the "four-wheel” mode described above is then in this case an "all-wheel” mode.
  • This "all-wheel” mode corresponds to the chair's naturally stable position and mode of movement, in particular when it rests on all its wheels, the "two-wheel” mode being a position which is not naturally stable and which is maintained thanks to the enslavement.

Abstract

Le fauteuil roulant ayant deux roues motrices (1) équipées chacune d'un moteur d'entraînement en rotation, caractérisé en ce que la valeur du couple d'entraînement appliqué par chaque moteur est asservie pour stabiliser ledit fauteuil (10) en déplacement sur les deux motrices (1), chargé par un utilisateur (40), dans une position d'équilibre inclinée (ψ 0 ).

Description

PROCEDE DE PROPULSION D'UN FAUTEUIL ROULANT,
KIT ET FAUTEUIL METTANT EN ŒUVRE UN TEL PROCEDE
La présente invention concerne un procédé de propulsion d'un fauteuil roulant. Elle concerne également un kit mettant en œuvre un tel procédé pour équiper un fauteuil roulant, ainsi qu'un fauteuil roulant électrique mettant en œuvre ce procédé. L'invention s'applique notamment pour améliorer la mobilité des fauteuils roulant sur tous types de terrains. II existe sur le marché divers types de fauteuils roulants, du plus simple dans une version manuelle aux plus sophistiqués dans une version tout électrique. Face aux difficultés rencontrées dans la vie quotidienne, nombre de personnes à mobilité réduite renoncent au fauteuil roulant manuel. En effet, ces fauteuils nécessitent un effort physique important de la part des utilisateurs et ne sont pas toujours faciles à manœuvrer, limitant finalement l'autonomie des personnes. Ces dernières doivent alors faire des choix parmi l'ensemble des fauteuils disponibles sur le marché en fonction notamment de leur handicap, de leurs possibilités physique et de leurs moyens financiers. Une solution pour permettre à ces personnes de retrouver une plus grande autonomie est d'utiliser un fauteuil tout électrique équipé d'un organe de commande. A partir de cet organe de commande, l'utilisateur peut piloter le fauteuil dans toutes les directions, le fauteuil étant propulsé au moyen d'un moteur électrique, des mains courantes couplées aux roues étant par ailleurs toujours prévues pour permettre une activation manuelle notamment en cas d'indisponibilité de la propulsion électrique. Une autre solution, moins coûteuse, consiste à équiper un fauteuil roulant classique avec un kit de motorisation additionnel.
Même pour un fauteuil à propulsion électrique, qu'il soit tout électrique ou équipé d'un kit de motorisation électrique, il subsiste des situations où la propulsion et la mobilité du fauteuil est difficile voire dangereuse pour la personne qui est assise dans le fauteuil. C'est typiquement le cas lorsqu'un fauteuil roulant doit se déplacer en dehors d'un sol aplani, stable et régulier. En particulier les terrains herbeux ou recouverts de bosses sont très difficiles voire impossibles à parcourir. Le franchissement d'obstacles tels que les bords de trottoir sont également difficiles à parcourir avec risque de basculement des fauteuils. Les franchissements des terrains en pentes, tels que les talus ou les dévers de routes par exemple, sont particulièrement délicats avec un risque très important de basculement des fauteuils à tel point que la plupart des utilisateurs renoncent à les franchir sans aide par une ou plusieurs tierces personnes.
Un but de l'invention est notamment de permettre à des fauteuils roulants à propulsion électrique de se déplacer dans tous types de terrains et notamment dans les types de terrains décrits ci-dessus. A cet effet, l'invention a pour objet un procédé de propulsion d'un fauteuil roulant, ledit fauteuil roulant ayant deux roues motrices équipées chacune d'un moteur d'entraînement en rotation, la valeur du couple d'entraînement appliqué par chaque moteur étant asservie pour effectuer une stabilisation gyroscopique dudit fauteuil en déplacement sur les deux motrices, chargé par un utilisateur, dans une position d'équilibre inclinée ψ0.
Dans un mode de mise en œuvre possible, pour asservir la valeur du couple moteur de chaque roue, ledit procédé utilise un modèle direct définit par l'équation suivante, pour le système composé dudit fauteuil chargé et des moteurs :
Figure imgf000004_0001
où x est un vecteur d'état, fonction du temps, tel que :
* = ψ è ψ]Γ ,
- z(r) étant dépendant, linéairement ou non, des variables d'état x(t) ou de paramètres externes tels que notamment la masse, l'inertie, ou géométrie ;
- y(î) étant les sorties à contrôler
- u étant l'entrée de commande influençant les composantes du vecteur d'état x ;
- Θ étant égale à 1/2 (0R + 6L), 0R et 0L étant respectivement les angles de rotation de la roue droite et de la roue gauche par rapport à une origine donnée ; - ψ étant l'angle de déviation du fauteuil par rapport à la position d'équilibre ψο ',
- Les fonctions non linéaires A, (z(i)) , les matrices Ai t Bn i e {{,... ,r) dépendant des paramètres géométriques et mécaniques dudit système, le nombre r dépendant directement du nombre de non linéarités prises en compte dans le modèle.
Ce modèle permet notamment de décrire les différents modes de fonctionnement à savoir :
- Le mode deux roues
- Le mode quatre roues
- Le mode d'assistance à une tierce personne
La loi de commande doit non seulement garantir stabilité, performance et robustesse dans chacun de ces modes, mais également garantir un passage fiable (évidemment maîtrisé mais aussi sans à-coups) entre les différents modes : deux roues par rapport à quatre roues, quatre roues par rapport à deux roues, deux roues ou quatre roues par rapport à assistance et assistance par rapport à deux roues ou quatre roues.
Suivant les modes de mise en œuvre particuliers, les signaux de commande peuvent être :
Figure imgf000005_0001
Γ, , Γ, étant respectivement les valeurs des couples appliqués par les moteurs gauche et droit.
Dans d'autres modes de mise en œuvre possibles, l'entrée de commande u a pour composantes les vitesses des roues motrices ou l'entrée de commande u a pour composantes les tensions de commande appliquées aux moteurs.
Le procédé utilise par exemple un retour d'état non linéaire statique et/ou dynamique. Dans ce cas un observateur d'état des variables non mesurées ou un estimateur des entrées de perturbation est par exemple ajouté, ce retour d'état étant défini par l'équation suivante :
ii(t) = Neref +∑h, (z(t))Klx(t)
- eref étant l'intégrale par rapport au temps de la consigne de vitesse de rotation desdites roues motrices ; - les gains apparaissant ici, N et Ku i e {1, ... , r'}, assurant la stabilité, la robustesse et les performances du système ainsi que le passage entre les différents modes, ils peuvent être déterminés à l'aide de techniques avancées de l'automatique, par exemple les Inégalités Matricielles Linéaires, les synthèses H2 , Hm , les techniques dites de grand gain, les méthodes algébriques notamment.
L'angle de déviation ψ est par exemple mesuré à partir d'une valeur d'angle d'inclinaison ψ mesurée par un gyroscope mécaniquement solidaire dudit fauteuil, ledit angle de déviation ψ étant la différence entre la mesure gyroscopique de l'inclinaison ψίνΓ et une valeur estimée de l'angle d'équilibre ψο, ladite valeur estimée de l'angle d'équilibre étant fonction des paramètres géométriques et dynamiques dudit fauteuil chargé.
L'invention a également pour objet un kit de propulsion électrique apte à équiper un fauteuil roulant comportant deux roues motrices, ledit kit comportant au moins :
- deux moteurs aptes à être fixés chacun sur une roue motrice ;
- un gyroscope pour mesurer l'angle d'inclinaison du fauteuil ;
- une unité centrale délivrant un signal pour commander la valeur du couple d'entraînement de chacun des moteurs, ladite unité centrale comportant un calculateur apte à exécuter un asservissement dit deux roues, à partir d'un signal de commande, mettant en œuvre le procédé de propulsion décrit précédemment, pour stabiliser ledit fauteuil en déplacement sur les deux motrices, chargé par un utilisateur, dans une position d'équilibre inclinée ψο. A partir d'un signal de désactivation dudit asservissement deux roues, l'unité centrale génère par exemple des valeurs de couples moteurs créant une accélération des roues motrices vers l'arrière pendant un temps déterminé, obligeant le fauteuil à basculer vers l'avant et de se poser sur ses roues avant. Une interface de commande génère par exemple un signal d'activation et de désactivation dudit asservissement deux roues. L'interface de commande est par exemple du type « joystick » ou est un écran permettant de naviguer dans un menu. Un signai d'activation dudit asservissement deux roues est par exemple généré par un mouvement de basculement dudit fauteuil vers l'arrière, ledit mouvement étant capté par le gyroscope. Dans un autre mode de réalisation possible le signal de désactivation dudit asservissement deux roues est généré par un mouvement de basculement dudit fauteuil vers l'avant, ledit mouvement étant capté par le gyroscope.
Dans une autre configuration possible, le kit de motorisation est monté sur un équipement de transport comme un brancard, un chariot, un lit ou autre, pour permettre à l'utilisateur, qui, dans ce cas, a ses capacités motrices, une manœuvrabilité et une facilité de transport des charges lourdes. La mise en mode deux roues étant effectuée par la commande, il suffit à l'utilisateur (la tierce personne dans le cas d'un fauteuil roulant) d'incliner le dispositif vers l'avant pour qu'il avance ou vers l'arrière pour qu'il recule. Pour faire tourner l'équipement de transport il y a deux possibilités :
- en inclinant l'équipement l'utilisateur exerce une force sur un côté de l'équipement pour l'empêcher d'avancer l'obligeant ainsi de tourner de ce côté ;
ou le kit est fourni avec un dispositif de commande comme une petite manette permettant de commander le mouvement à gauche et à droite de l'équipement.
L'invention a encore pour objet un fauteuil roulant électrique comportant deux roues motrices entraînées chacune par un moteur électrique, ledit fauteuil comportant au moins : - un gyroscope pour mesurer l'angle d'inclinaison dudit fauteuil ;
- une unité centrale délivrant un signal pour commander la valeur du couple d'entraînement de chacun des moteurs, ladite unité centrale comportant un calculateur apte à exécuter un asservissement dit deux roues, à partir d'un signal de commande, mettant en œuvre le procédé de propulsion décrit précédemment, pour stabiliser ledit fauteuil en déplacement sur les deux motrices, chargé par un utilisateur, dans une position d'équilibre inclinée ψ0. A partir d'un signai de désactivation dudit asservissement deux roues, l'unité centrale génère par exemple des valeurs de couples moteurs créant une accélération des roues motrices vers l'arrière pendant un temps déterminé, obligeant le fauteuil à basculer vers l'avant et de se poser sur ses roues avant. Dans un mode de réalisation possible, ledit fauteuil comporte une interface de commande générant un signal d'activatîon et de désactivation dudit asservissement deux roues, ladite interface étant par exemple du type « Joystick » ou étant par exemple un écran permettant de naviguer dans un menu. Un signal d'activatîon dudit asservissement deux roues est par exemple généré par un mouvement de basculement dudit fauteuil vers l'arrière, ledit mouvement étant capté par le gyroscope. Un signal de désactivation dudit asservissement deux roues est par exemple généré par un mouvement de basculement dudit fauteuil vers l'avant, ledit mouvement étant capté par le gyroscope.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
- La figure 1 , une personne se déplaçant dans un fauteuil roulant ;
- La figure 2, une personne en fauteuil roulant franchissant un premier type d'obstacle ;
- La figure 3, une personne en fauteuil roulant franchissant un deuxième type d'obstacle ;
- La figure 4, une illustration du principe de propulsion d'un fauteuil roulant selon l'invention ;
- La figure 5, une illustration d'un asservissement possible ;
- La figure 6, une illustration d'une propulsion selon l'invention sur une piste en pente.
La figure i représente une personne se déplaçant dans un fauteuil roulant manuel. La personne commande le déplacement du fauteuil en exerçant une poussée circulaire avant ou arrière sur la main courante 2 couplée à chaque roue 1 motrice, entraînant le roulement de ces roues. Deux petites roues 5 situées à l'avant complètent le dispositif à quatre roues pour assurer la stabilité au sol du fauteuil, ces dernières qui son libres en rotation autour d'un axe vertical aident l'utilisateur du fauteuil à se diriger. Un dispositif d'aide électrique à la propulsion permet de réduire ou de supprimer ces efforts physiques. Un tel dispositif comporte deux moteurs électriques, un moteur étant couplé à chaque roue pour l'entraîner en rotation. Les moteurs utilisés peuvent être du type moteur sans balais encore appelés moteurs «brushless ». On peut aussi utiliser d'autres types de moteurs, notamment des moteurs à courant continu. Le couple moteur délivré par un moteur peut être fonction du mouvement d'entraînement appliqué sur la main courante 2. Dans ce cas, plusieurs solutions sont possibles pour détecter le couple de propulsion alors produit par l'utilisateur et commander les moteurs d'entraînement en fonction de ce couple appliqué. Une autre solution pour commander les moteurs d'entraînement des roues consiste à utiliser un organe de commande tel qu'une manette par exemple, encore appelée « joystick » fixée sur le châssis du fauteuil et plus particulièrement sur l'accoudoir pour faciliter sa manipulation par l'utilisateur. La manette permet ainsi de commander les moteurs vers l'avant ou vers l'arrière, de régler la vitesse d'entraînement des roues, et de tourner à gauche ou à droite en activant l'un ou l'autre des moteurs. La propulsion électrique fonctionne parfaitement sur des sols réguliers. Les dispositifs de propulsion électrique selon l'art antérieur permettent en effet aux utilisateurs de fauteuils roulants de se déplacer aisément dans des intérieurs, pourvu qu'il y ait la place nécessaire et qu'il n'y ait pas de dénivelés trop importants. Ils permettent aussi des déplacements aisés sur trottoirs ou des routes planes. II n'en est plus de même lorsque les passages deviennent accidentés, ou présentent des obstacles. La figure 1 illustre un premier exemple d'obstacle. Dans cet exemple, l'utilisateur doit franchir le bord d'un trottoir 4 pour monter sur celui-ci. L'utilisateur doit alors faire un mouvement en arrière pour soulever l'avant du fauteuil, ce qui demande un effort physique avec un risque de basculement complet du fauteuil vers l'arrière.
La figure 2 présente un autre cas de figure de franchissement d'obstacle où l'utilisateur passe d'un trottoir 21 à une chaussée 22. Dans ce cas, l'utilisateur doit faire attention à ne pas basculer vers l'avant et se renverser. La figure 3 présente une autre situation difficile où un utilisateur doit descendre un talus avec sa chaise roulante 10. Même si le système de freinage du fauteuil permet de maîtriser la vitesse de descente, il y a un risque important que l'utilisateur bascule vers l'avant ou au moins éprouve une crainte telle qu'il refuse de descendre le talus.
La figure 4 illustre le principe de mise en œuvre de l'invention. Pour permettre au fauteuil roulant de se déplacer en toutes circonstances, par exemple de franchir des obstacles du type de ceux des figures 1 , 2 et 3, et plus généralement pour se déplacer sur des sols accidentés ou instables, l'invention prévoit un mode fonctionnement appelé par la suite mode « deux roues » dans lequel le fauteuil 10 se déplace uniquement sur les deux roues motrices 1 , dans une position d'équilibre inclinée. Dans cette configuration, le fauteuil peut se déplacer plus aisément sur des sols accidentés ou instables, sur des pentes et peut franchir plus facilement des obstacles. Le fauteuil est maintenu dans ce mode « deux roues » par les couples appliqués sur les roues motrices 1 par leur moteur d'entraînement.
La figure 4 présente le fauteuil chargé par un utilisateur en position d'équilibre autour d'un angle de stabilisation ψ0 , l'utilisateur se déplaçant sur un plan horizontal. Cet angle est formé entre le plan horizontal 41 et le plan 42 comportant les quatre roues 1 , 5 du fauteuil, plus particulièrement ce plan 42 correspond à un plan fictif supportant les quatre roues.
Selon l'invention, on applique un couple moteur Π sur la roue gauche et un couple moteur Tr sur la roue droite dont les valeurs permettent d'obtenir la vitesse et l'angle de stabilisation ψη selon un asservissement qui sera décrit par la suite. La vitesse de déplacement du fauteuil correspond à la vitesse de rotation des roues motrices 1 , des vitesses de rotations différentes entre les roues permettent au fauteuil de tourner à droite ou à gauche.
Les valeurs de couples à appliquer dépendent des paramètres géométriques et dynamiques du fauteuil lesté, des vitesses de roues motrices souhaitées et de l'angle de stabilisation ψ0. Cet angle de stabilisation, ou d'équilibre, est l'angle d'inclinaison du fauteuil pour lequel le centre de gravité CG de l'ensemble formé par le fauteuil 10 et l'utilisateur 40 rencontre l'axe vertical 43 passant par l'axe des roues motrices 1 . En pratique, cet angle est de l'ordre de 20° à 30°, ce qui permet de franchir les obstacles standard du type bord de trottoir ou marche d'escalier et offre une inclinaison du fauteuil par rapport à l'horizontal confortable pour l'utilisateur.
En mode « quatre roues », lorsque le fauteuil se déplace sur ses quatre roues 1 , 5, pour calculer les couples d'entraînement à appliquer sur les roues motrices, on prend en compte les paramètres suivants :
- m, la masse du fauteuil lesté, c'est-à-dire chargé par l'utilisateur ;
- r, le rayon des roues motrices 1 ;
- L, la distance entre centre de gravité et axe des roues ;
- J, l'inertie relative à l'axe des roues ;
- f, le coefficient de frôlement des roues ; Les équations du mouvement du fauteuil peuvent être obtenues en appliquant les lois de la mécanique classique, 0R , 0L étant respectivement les angles de rotation de la roue droite et de la roue gauche par rapport à une origine angulaire donnée, Γ,( et ΓΛ étant respectivement les couples d'entraînement exercés sur les roues droites et gauche, un couple d'entraînement étant la somme du couple appliqué par le moteur électrique de la roue et du couple d'entraînement exercé par l'utilisateur sur la roue. En termes énergétiques, en définissant :
- l'énergie cinétique :
Ec = /2mr2 (Ôfi + Ôl ) + y2 j (èfl + Ô ) ;
- l'énergie potentielle :
Ep = rng(r + L cos /) ;
- et les variables généralisées : qT = [θ. οΗ ψ] ;
on peut décrire le modèle non linéaire complet, incluant les frottements, à partir des équations de Lagrange :
H {q) q + F (q, q) q + G {q) = Qu
H (q) étant la matrice de masse, F (q, q) incluant les coefficients de frottements f et G (q) représentant la matrice de gravité.
A partir de cette modélisation très générale et qui prend en compte l'ensemble des non linéarités du système, il est possible d'en dégager des modèles exacts dans le compact voulu de l'espace d'état (qui représente donc l'ensemble du domaine de fonctionnement du système), soit non linéaires soit mis sous des formes polytopiques (dites quasi-LPV), par exemple :
*( =∑ (=1 *( )[4*M + *.«(/)] (') =∑ (*('))ς*(
Dans ce cas les non linéarités sont incluses dans les fonctions d'interpolation Λ,. (ζ(ί)) . Dans ce modèle, le vecteur d'état x(t) inclut au minimum les variables d'angle d'inclinaison du fauteuil, l'angle des roues et leurs dérivées. Par exemple : x - \ θ ψ Θ y
- Θ étant égale à 1/2 (0Λ + 0/.), θη et QL ;
- ψ : étant l'angle de déviation du fauteuil par rapport à la position d'équilibre ψ0.
Les fonctions (∑(ή) étant des fonctions non linéaires. Ces fonctions et les matrices At , Bn i e {l,... ,r] dépendent des paramètres géométriques et mécaniques du système, le nombre r étant le nombre de non linéarités prises en compte dans le modèle.
Le vecteur d'état x (t) peut contenir des termes supplémentaires, telles que des estimations de perturbations. ∑(t) est dépendant, linéairement ou non, des variables d'état x (t) ou de paramètres externes tels que notamment la masse, l'inertie ou la géométrie du système.
L'angle ψ est par exemple mesuré par un gyroscope solidaire mécaniquement du châssis du fauteuil.
Le fauteuil en position « deux roues » peut être avantageusement piloté par un organe de commande du type joystick sans autres mouvements de la part de l'utilisateur qui peut rester confortablement assis dans son fauteuil.
La figure 5 illustre la boucle d'asservissement du système pour garantir le fonctionnement dans tous les modes, en position « deux roues » à l'équilibre avec une vitesse de déplacement souhaitée, mode« quatre roues », mode « assistance » et les passages entre ces modes. Les consignes de mouvement sont seulement données par la commande, un joystick par exemple. Cette boucle d'asservissement avec le gyroscope et les interfaces adaptées constitue le système de stabilisation du fauteuil en position, ou mode, « deux roues », en « mode assistance » et du passage entre les modes. La boucle d'asservissement est mise en œuvre par un programme, dit programme de stabilisation gyroscopique, activé ou désactivé par un signal de commande extérieur.
Dans ce cas, la commande transmet une consigne de vitesse de rotation des roues Ôref et d'angle de rotation dans le plan horizontal φη/ . La consigne de vitesse est intégrée par rapport au temps et ainsi transformée en consigne d'angle de rotation 0ref .
La figure 5 illustre plus précisément l'asservissement de l'angle de rotation des roues Θ, où Θ = 1/2 (0R + eL).
Dans cet asservissement 51 , la déviation du centre de gravité du fauteuil CG par rapport à sa position d'équilibre est considérée comme une perturbation à rejeter.
La loi de commande est calculée à partir du modèle non linéaire décrit précédemment en tenant compte des différents modes de fonctionnement. Notamment, la mise en mode deux roues et la remise en mode quatre roues fait intervenir des termes non linéaires qui ne sont plus compatibles avec une linéarisation valable seulement pour des petits angles. La loi de commande mise en œuvre, non seulement permet avantageusement ces transitions quatre roues par rapport à deux roues et deux roues par rapport à quatre roues mais également la propulsion par un aidant, une tierce personne, qui modifie le comportement de l'équilibre et doit donc être pris en compte. Naturellement les changements de mode entre deux et/ou quatre roues et assistance à l'aidant sont pris en compte de façon sécurisée et sans à-coups dans les deux sens.
La loi de commande peut être soit non linéaire, de type Parallel Distributed Compensation par exemple :
u(i) = NeK/ + h, (z(t)) KlX(t)
Soit à commutations :
Figure imgf000014_0001
où pj (t) représente le mode de fonctionnement ou le passage entre les modes : deux roues par rapport à quatre roues, quatre roues par rapport à deux roues, deux roues ou quatre roues ;
0ref est l'intégrale par rapport au temps de la consigne de vitesse de rotation desdites roues motrices (1 ) ;
Les gains apparaissant ici, N et Κ^, ί Ε {1, ... , r'}, assurent la stabilité, la robustesse et les performances du système ainsi que le passage entre les différents modes.
De plus ces lois peuvent comprendre un observateur d'état 52 permettant de reconstruire des variables non mesurées et/ou estimer des perturbations externes. Dans ce cas on remplace x(i) et/ou ∑(t) respectivement par leur estimée x {t) et z (t) , La synthèse de ces correcteurs, plus les observateurs éventuellement, fait appel notamment aux techniques avancées de l'automatique, par exemple les Inégalités Matricielles Linéaires, les synthèses H, , H , les techniques dites de grand gain, les méthodes algébriques. Dans tous les cas, elles permettent de donner des preuves de stabilité et de robustesse dans tous les modes de fonctionnement en garantissant en plus des performances énergétiques et temporelles et des passages entre les modes sécurisés et confortables pour l'utilisateur, sans à- coups.
Pour toutes ces fonctionnalités, y compris maintenir le fauteuil en position d'équilibre « deux roues », un dispositif selon l'invention utilise une boucle de commande, c'est-à-dire un asservissement. La figure 5 illustre un exemple d'asservissement possible, où l'on asservit le système en vitesse de rotation, elle-même intégrée en consigne d'angle.
On peut également asservir le système sur des consignes de couple moteur. On peut également prendre comme consigne d'asservissement la tension de commande appliquée aux moteurs d'entraînement des roues. L'angle d'équilibre ψ0 est déterminé a priori. Dans tous les cas, le système d'asservissement est capable de compenser toute éventuelle différence du système résultant du changement de position d'équilibre dû aux mouvements de l'utilisateur, de l'état de la route ou encore de la dérive des capteurs.
Cette valeur d'équilibre correspond à une inclinaison du fauteuil où le centre de gravité CG rencontre l'axe vertical 41 passant par l'axe des roues motrices 1. Cet angle ψ0 peut donc être estimé a priori. Connaissant les paramètres mécaniques et de dimensions du fauteuil on peut calculer de façon fiable les coordonnées du centre de gravité CG dans un repère lié au fauteuil, en retenant un poids moyen et une morphologie standard pour l'utilisateur. En cas de besoin, les coordonnées du centre de gravité peuvent être calculées préalablement en fonction du poids et de la morphologie de l'utilisateur,
L'activation du mode « deux roues » peut se faire sur le plat par l'utilisateur de la façon la plus simple possible, en activant une commande telle qu'un bouton ou en naviguant dans un menu. Une consigne d'initialisation de l'asservissement du mode « deux roues » est alors envoyée au programme de stabilisation gyroscopique. Il y a plusieurs façons d'arriver à la position d'équilibre. Dans un premier mode, c'est une tierce personne qui incline le fauteuil. Dans un second mode, la manœuvre d'équilibre est réalisée de façon automatisée à condition d'avoir l'espace nécessaire et que l'utilisateur respecte un certain nombre de consignes.
Le système est programmé pour revenir à la position « quatre roues » à tout moment, notamment s'il y a le moindre risque pour l'utilisateur. Le passage à la position « quatre roues » est simple. Le programme de stabilisation est arrêté et une séquence de retour à l'horizontale est appliquée. II s'agit d'appliquer une accélération importante aux deux moteurs vers l'arrière pendant un temps déterminé, ce qui oblige le fauteuil à basculer vers l'avant et de se poser sur les roues avant 5. Il est aussi possible d'appliquer cette séquence de retour vers l'horizontale avant d'arrêter le programme de stabilisation et de programmer cet algorithme pour stopper le signal si l'angle ψ devient trop grand, il est possible aussi qu'une tierce personne arrête le mode « deux roues » en maintenant le fauteuil.
Un mouvement de bascule du fauteuil vers l'avant, généré par une tierce personne ou par l'utilisateur, via les mains courantes 2, génère la désactivation de l'asservissement du mode deux roues. Ce mouvement de bascule est détecté par le gyroscope. Un brusque changement d'inclinaison vers l'avant est alors interprété comme un signal de désactivation du mode deux roues.
De même un basculement du fauteuil vers l'arrière, provoqué par une tierce personne ou par l'utilisateur, détecté par le gyroscope est interprété comme un signal d'activation du mode deux roues.
La figure 6 présente un exemple d'utilisation d'un mode « deux roues » où l'utilisateur et son fauteuil roulant descendent une rampe 61 , par exemple un talus ou une voie en pente. Les couples d'entraînement des roues sont toujours commandés de façon à maintenir le fauteuil en équilibre, c'est-à-dire en maintenant le centre de gravité CG sur l'axe vertical 43 passant par l'axe des roues, l'inclinaison du fauteuil étant stabilisé autour de l'angle d'équilibre ψ0 par rapport à l'horizontal 41. Avantageusement, l'utilisateur descend la pente 51 sur son fauteuil en toute sécurité, sans risque de basculement vers l'avant.
Un autre avantage du mode « deux roues » est aussi une meilleure maniabilité, en particulier pour les changements de direction étant donné que la surface de contact au sol est réduite, puisqu'elle repose sur deux roues au lieu des quatre roues pour un fauteuil classique. Le changement de direction s'opère en jouant sur les couples moteurs pour obtenir l'angle d'orientation Φ conformément aux équations ci-dessus.
L'invention peut être mise en œuvre sous forme de kit pour équiper des fauteuils manuels ou équiper directement un fauteuil tout électrique, mais aussi pour équiper des systèmes roulant tels que des équipements de transport, notamment de personne, comme un brancard, un chariot ou un lit par exemple. Dans la suite de la description, le kit est appliqué à un fauteuil roulant.
Le kit comporte au moins les éléments suivants, qui sont démontables dans une version kit et font partie intégrante dans une version de fauteuil tout électrique :
- deux moteurs aptes à être fixés chacun sur une roue motrice 1 ; - un gyroscope pour mesurer î'angîe d'inclinaison du fauteuil par rapport à l'horizontale, le gyroscope étant fixé sur le châssis du fauteuil ;
- une interface de commande ;
- une unité centrale intégrant notamment des moyens de traitement pour mettre en œuvre le programme de stabilisation pour le mode « deux roues », mais également les calculs de couples moteurs à appliquer pour le mode « quatre roues » et calculer et générer le signal de commande des couples moteurs.
Les moteurs sont par exemple du type moteurs sans balais, encore appelés moteurs « brushless » ou à courant continu.
Le kit comporte également une batterie fournissant l'énergie électrique aux moteurs et l'unité centrale. Classiquement, un onduleur non représenté est couplé à chaque moteur pour transformer la tension continue fournie par la batterie en tension alternative. Cet onduleur peut être placé au niveau des moteurs ou au niveau du support de la batterie dans le cas d'utilisation d'un moteur de type « brushless ».
L'interface de commande est par exemple du type joystick ou tout organe de commande manuelle. L'interface de commande peut également prendre la forme d'une navigation à l'intérieur d'un menu, proposant notamment le passage au mode deux roues.
Cet organe de commande envoie un signal vers l'unité centrale contenant une information de commande ou de mode. Ce signal peut en effet contenir l'information de mode « deux roues », dans ce cas l'unité centrale active l'algorithme de stabilisation. Le signal de commande peut être aussi une information d'arrêt du mode « deux roues », ou une information de vitesse ou de rotation à droite ou à gauche notamment.
En fonction des signaux reçus, l'unité centrale active ou désactive le programme de stabilisation, ou envoie une commande de couple vers chaque moteur.
L'unité centrale reçoit par ailleurs l'information de mesure d'angle ψ fournie par le gyroscope, cette information étant exploitée comme un des signaux d'entrée du programme de stabilisation. Plus particulièrement, connaissant la valeur estimée ψο de l'angle d'équilibre, on obtient la valeur ψ de l'angle d'inclinaison par rapport à cet angle d'équilibre par la relation :
ψ = ψ - ψ0. C'est cette valeur d'angle ψ qui est exploitée, en tant que variable d'entrée, pour asservir le fauteuil incliné autour de la position d'équilibre.
Comme indiqué précédemment, l'unité centrale comporte des moyens de calcul pour calculer les couples moteurs à appliquer permettant d'obtenir la vitesse de déplacement du fauteuil et de stabiliser l'inclinaison du fauteuil autour de l'angle d'équilibre ψ0, ces moyens de calcul mettant en œuvre le programme de stabilisation. Cet asservissement fait appel à des techniques avancées de l'automatique selon les connaissances de l'homme du métier. Comme indiqué précédemment, de façon classique, les moteurs d'entraînement des roues peuvent être asservis en couple, vitesse ou en tension en fonction de l'angle d'inclinaison, ou de rotation, du fauteuil par rapport à l'horizontale, cet angle étant calculé à l'aide du gyroscope.
Un même boîtier apte à être fixé sur le châssis du fauteuil peut contenir le gyroscope et l'unité centrale, laquelle est implantée avec circuits numériques et analogiques sur une ou plusieurs cartes. L'unité centrale comporte les circuits nécessaires aux calculs, éventuellement des moyens d'interface avec les équipements à commander, notamment les moteurs. Les moyens d'interface incluent par exemple des amplificateurs pour amplifier des signaux bas niveau ainsi que des circuits de conversion analogique- numérique ou numérique-analogique pour traiter les signaux reçus et envoyer les signaux de commande.
Le kit doit permettre également de permettre à l'utilisateur de se déplacer selon un mode classique, sur les quatre roues, avec une propulsion assistée. Dans ce cas, les moyens de calcul des couples moteurs ne traitent pas l'inclinaison. L'algorithme de calcul peut être le même que dans le mode « deux roues », l'angle ψ0 étant pris égal à 0.
Une commande, par exemple un commutateur, permet de passer de la propulsion classique au mode « deux roues » ou par navigation dans un menu comme indiqué précédemment. De plus la loi de commande mise en œuvre permet ces transitions quatre roues par rapport à deux roues et deux roues par rapport à quatre roues mais également la propulsion par un aidant. Naturellement les changements de mode entre deux et/ou quatre roues et assistance à l'aidant sont pris en compte de façon sécurisée et sans à-coups dans les deux sens. Dans le cas où le mode « deux roues » est prévu pour être implanté sur un fauteuil tout électrique, quelques adaptations sont nécessaires pour intégrer ce nouveau mode de fonctionnement à une solution existante. Il faut ajouter un gyroscope pour mesurer l'angle d'inclinaison du fauteuil et implémenter des moyens de calcul et d'interface qui permettent de réaliser le programme de stabilisation.
L'invention a été décrite pour un fauteuil comportant quatre roues dont deux roues motrices. L'invention peut bien sûr s'appliquer pour un fauteuil comportant un nombre différent de roues. En particulier, l'invention s'applique pour un fauteuil ayant au moins trois roues dont deux roues motrices. Le mode « quatre roues » décrit précédemment est alors dans ce cas un mode « toutes roues ». Ce mode « toutes roues » correspond à la position et au mode de déplacement naturellement stable du fauteuil, en particulier lorsqu'il repose sur toutes ses roues, le mode « deux roues » étant une position qui n'est pas naturellement stable et qui est maintenue grâce à l'asservissement.

Claims

REVENDICATIONS
1. Procédé de propulsion d'un fauteuil roulant, ledit fauteuil roulant ayant au moins trois roues dont deux sont des roues motrices (1 ), lesdites roues motrices étant équipées chacune d'un moteur d'entraînement en rotation, caractérisé en ce que ledit procédé comporte au moins deux modes de propulsions, un mode de propulsion dit « toutes roues » où le fauteuil est propulsé sur toutes ses roues et un mode de propulsion dit « deux roues » appliquant un asservissement où la valeur du couple d'entraînement appliqué par chaque moteur est asservie pour effectuer une stabilisation gyroscopique dudit fauteuil (10) en déplacement sur les deux motrices (1 ), chargé par un utilisateur (40), dans une position d'équilibre inclinée (ψ0), le mode « deux roues » étant activé ou désactivé par un signa! de commande.
2. Procédé selon la revendication 1 , caractérisé en ce que dans le mode « deux roues », pour asservir la valeur du couple moteur de chaque roue, il utilise un modèle non linéaire défini par l'équation suivante, pour le système composé dudit fauteuil chargé et des moteurs :
(=!
Figure imgf000020_0001
où x est un vecteur d'état tel que :
Χ = [Θ ψ è ψ ,
- ζ (ή étant dépendant, linéairement ou non, du vecteur d'état x et/ou de paramètres externes ;
- >(/) représentant les sorties à contrôler ;
u étant l'entrée de commande influençant les composante du vecteur d'état x ;
- Θ étant égale à 1/2 (θκ + θ·), 0R et 0L étant respectivement les angles de rotation de la roue droite et de la roue gauche par rapport à une origine donnée ;
- ψ : étant l'angle de déviation du fauteuil par rapport à la position d'équilibre ψ0 ; - Les fonctions h, (z(/)) et les matrices A B, , r e {!,..., r} dépendant des paramètres géométriques et mécaniques dudit système, le nombre r étant le nombre de non linéarités prises en compte dans le modèle.
3. Procédé selon la revendication 2, caractérisé en ce que :
Γ,,Γ. étant respectivement les valeurs des couples appliqués par les moteurs gauche et droit.
4. Procédé selon la revendication 2, caractérisé en ce que l'entrée commande u a pour composantes les vitesses des roues motrices.
5. Procédé selon la revendication 2, caractérisé en ce que l'entrée de commande u a pour composantes les tensions de commande appliquées aux moteurs.
6. Procédé selon l'une quelconque des revendications 2 à 5, caractérisé en ce qu'il utilise un retour d'état statique et/ou dynamique défini par l'équation suivante :
Figure imgf000021_0001
- pj (t) représentant le mode de fonctionnement ou le passage entre lesdits modes ;
- On/ étant l'intégrale par rapport au temps de la consigne de vitesse de rotation desdites roues motrices (i) ;
N et Kij. i E {1, ,,. , τ'] étant des gains assurant la stabilité, la robustesse et les performances dudit système et le passage entre lesdits modes.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'angle de déviation (ψ) est mesuré à partir d'une valeur d'angle d'inclinaison mesurée par un gyroscope mécaniquement solidaire dudit fauteuil, ledit angle de déviation (ψ) étant la différence entre la mesure gyroscopique de l'inclinaison et une valeur estimé de l'angle d'équilibre (ψ0), ladite valeur estimée de l'angle d'équilibre étant fonction des paramètres géométriques et dynamiques dudit fauteuil chargé,
8. Kit de propulsion électrique apte à équiper un système roulant (10) comportant au moins trois roues dont deux roues motrices et étant en position stable lorsqu'il repose sur au moins trois roues, comportant toutes roues dont deux roues motrices (1), caractérisé en ce qu'il comporte au moins :
- deux moteurs aptes à être fixés chacun sur une roue motrice (1) ; - un gyroscope pour mesurer l'angle d'inclinaison dudit système roulant (10) ;
- une unité centrale délivrant un signal pour commander la valeur du couple d'entraînement de chacun des moteurs, ladite unité centrale comportant un calculateur apte à exécuter un asservissement à partir dudit signal de commande, ledit asservissement mettant en œuvre le mode « deux roues » du procédé de propulsion selon l'une quelconque des revendications 1 à 7 apte à être appliqué à un fauteuil roulant, pour stabiliser ledit système roulant (10) en déplacement sur les deux motrices (1), chargé par un utilisateur (40), dans une position d'équilibre inclinée (ψ0) ;
- une interface de commande générant ledit signal de commande apte à activer et désactiver ledit asservissement du mode « deux roues ».
9. Kit selon la revendication 8, caractérisé en ce qu'à partir d'une information de désactivation dudit asservissement, générée par ledit signal de commande, l'unité centrale génère des valeurs de couples moteurs créant une accélération des roues motrices (1) vers l'arrière pendant un temps déterminé, obligeant le fauteuil à basculer vers l'avant et de se poser sur ses roues avant (5).
10. Kit selon la revendication 9, caractérisé en ce que l'interface de commande est du type « joystick ».
1 1. Kit selon ia revendication 9, caractérisé en ce que l'interface de commande est un écran permettant de naviguer dans un menu.
12. Kit selon l'une quelconque des revendications 8 à 1 1 , caractérisé en ce qu'un signai d'activation dudit asservissement du mode « deux roues » est généré par un mouvement de basculement dudit fauteuil vers l'arrière, ledit mouvement étant capté par le gyroscope.
13. Kit selon l'une quelconque des revendications 8 à 12, caractérisé en ce qu'un signal de désactivation dudit asservissement du mode « deux roues » est généré par un mouvement de basculement dudit fauteuil vers l'avant, ledit mouvement étant capté par le gyroscope.
14. Kit selon l'une quelconque des revendications 8 à 13, caractérisé en ce que ledit système roulant est un fauteuil roulant (10).
15. Fauteuil roulant électrique comportant au moins trois roues dont deux roues motrices (1 ), lesdites roues motrices étant entraînées chacune par un moteur électrique, caractérisé en ce qu'il comporte au moins :
- un gyroscope pour mesurer l'angle d'inclinaison dudit fauteuil (10) ;
- une unité centrale délivrant un signal pour commander la valeur du couple d'entraînement de chacun des moteurs, ladite unité centrale comportant un calculateur apte à exécuter un asservissement à partir dudit signal de commande, ledit asservissement mettant en œuvre le mode « deux roues » du procédé de propulsion selon l'une quelconque des revendications 1 à 7, pour stabiliser ledit fauteuil (10) en déplacement sur les deux motrices (1 ), chargé par un utilisateur (40), dans une position d'équilibre inclinée (ψ0) ; - une interface de commande générant ledit signal de commande apte à activer et désactiver ledit asservissement du mode « deux roues ».
18. Fauteuil roulant électrique selon la revendication 15, caractérisé en ce 5 qu'à partir d'un signal de désactivation dudit asservissement deux roues, l'unité centrale génère des valeurs de couples moteurs créant une accélération des roues motrices (1 ) vers l'arrière pendant un temps déterminé, obligeant le fauteuil à basculer vers l'avant et de se poser sur ses roues avant (5). o
17, Fauteuil roulant électrique selon la revendication 15, caractérisé en ce que l'interface de commande est du type « joystick ».
19. Fauteuil roulant électrique selon l'une quelconque des revendications 15 à 18, caractérisé en ce qu'un signal d'activation dudit asservissement du0 mode « deux roues » est généré par un mouvement de basculement dudit fauteuil vers l'arrière, ledit mouvement étant capté par le gyroscope.
20. Fauteuil roulant électrique selon l'une quelconque des revendications 15 à 19, caractérisé en ce qu'un signal de désactivation dudit asservissement5 du mode « deux roues » est généré par un mouvement de basculement dudit fauteuil vers l'avant, ledit mouvement étant capté par le gyroscope.
PCT/EP2015/061030 2014-05-19 2015-05-19 Procede de propulsion d'un fauteuil roulant, kit et fauteuil mettant en oeuvre un tel procede WO2015177173A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15725553.0A EP3145467A1 (fr) 2014-05-19 2015-05-19 Procede de propulsion d'un fauteuil roulant, kit et fauteuil mettant en oeuvre un tel procede
US15/311,769 US10252638B2 (en) 2014-05-19 2015-05-19 Wheelchair propulsion method, kit, and wheelchair implementing such a method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1454449A FR3020942A1 (fr) 2014-05-19 2014-05-19 Procede de propulsion d'un fauteuil roulant, kit et fauteuil mettant en œuvre un tel procede.
FR1454449 2014-05-19

Publications (1)

Publication Number Publication Date
WO2015177173A1 true WO2015177173A1 (fr) 2015-11-26

Family

ID=51261082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/061030 WO2015177173A1 (fr) 2014-05-19 2015-05-19 Procede de propulsion d'un fauteuil roulant, kit et fauteuil mettant en oeuvre un tel procede

Country Status (4)

Country Link
US (1) US10252638B2 (fr)
EP (1) EP3145467A1 (fr)
FR (1) FR3020942A1 (fr)
WO (1) WO2015177173A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020942A1 (fr) * 2014-05-19 2015-11-20 Centre Nat Rech Scient Procede de propulsion d'un fauteuil roulant, kit et fauteuil mettant en œuvre un tel procede.
CN107757795A (zh) * 2017-11-21 2018-03-06 南阳师范学院 一种基于myRIO平台的自平衡小车控制系统及方法
US20210212871A1 (en) * 2020-01-15 2021-07-15 Michele Marie Klein Folding electric wheelchair

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003624A (en) * 1995-06-06 1999-12-21 University Of Washington Stabilizing wheeled passenger carrier capable of traversing stairs
US20030226698A1 (en) * 2002-06-11 2003-12-11 Kamen Dean L. Hybrid human/electric powered vehicle
EP1759973A1 (fr) * 2005-09-06 2007-03-07 Toyota Jidosha Kabushiki Kaisha Objet mouvant et méthode de control associée
JP2008263676A (ja) * 2007-04-10 2008-10-30 Toyota Central R&D Labs Inc 自走車とその制御装置及び制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443250B1 (en) * 1993-02-24 2002-09-03 Deka Products Limited Partnership Control of a balancing personal vehicle
US6311794B1 (en) * 1994-05-27 2001-11-06 Deka Products Limited Partneship System and method for stair climbing in a cluster-wheel vehicle
US6547026B2 (en) * 1997-10-14 2003-04-15 Deka Products Limited Partnership Safety separation system
EP1161216B1 (fr) * 1999-03-15 2005-08-03 Deka Products Limited Partnership Systeme et procede de commande d'un fauteuil roulant
US7182166B2 (en) * 2004-03-23 2007-02-27 Deka Products Limited Partnership Footrest tuck mechanism
US7403844B2 (en) * 2005-08-31 2008-07-22 Invacare Corporation Method and apparatus for programming parameters of a power driven wheelchair for a plurality of drive settings
EP2355764B1 (fr) * 2008-11-12 2016-12-28 Zoomability AB Appareil de transport et procédé de transport d'une charge utile dans un plan désiré indépendamment de l'inclinaison 3d dudit appareil
JP2015047986A (ja) * 2013-09-02 2015-03-16 株式会社ジェイテクト 階段昇降機
FR3020942A1 (fr) * 2014-05-19 2015-11-20 Centre Nat Rech Scient Procede de propulsion d'un fauteuil roulant, kit et fauteuil mettant en œuvre un tel procede.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003624A (en) * 1995-06-06 1999-12-21 University Of Washington Stabilizing wheeled passenger carrier capable of traversing stairs
US20030226698A1 (en) * 2002-06-11 2003-12-11 Kamen Dean L. Hybrid human/electric powered vehicle
EP1759973A1 (fr) * 2005-09-06 2007-03-07 Toyota Jidosha Kabushiki Kaisha Objet mouvant et méthode de control associée
JP2008263676A (ja) * 2007-04-10 2008-10-30 Toyota Central R&D Labs Inc 自走車とその制御装置及び制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EL-HADI GUECHI ET AL: "TS-fuzzy predictor observer design for trajectory tracking of wheeled mobile robot", IECON 2011 - 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, IEEE, 7 November 2011 (2011-11-07), pages 319 - 324, XP032104458, ISBN: 978-1-61284-969-0, DOI: 10.1109/IECON.2011.6119272 *
TAKAHASHI Y ET AL: "Front wheel raising and inverse pendulum control of power assist wheel chair robot", INDUSTRIAL ELECTRONICS SOCIETY, 1999. IECON '99 PROCEEDINGS. THE 25TH ANNUAL CONFERENCE OF THE IEEE SAN JOSE, CA, USA 29 NOV.-3 DEC. 1999, PISCATAWAY, NJ, USA,IEEE, US, vol. 2, 29 November 1999 (1999-11-29), pages 668 - 673, XP010366687, ISBN: 978-0-7803-5735-8, DOI: 10.1109/IECON.1999.816479 *

Also Published As

Publication number Publication date
US10252638B2 (en) 2019-04-09
EP3145467A1 (fr) 2017-03-29
US20170088014A1 (en) 2017-03-30
FR3020942A1 (fr) 2015-11-20

Similar Documents

Publication Publication Date Title
JP4564175B2 (ja) 車椅子用制御システム及び方法
JP5336546B2 (ja) 制御スケジューリング・システム及び方法
JP4511344B2 (ja) 使用者によって推進される車椅子および車椅子を推進する方法
EP2331384B1 (fr) Procédés et appareils de déplacement d un véhicule vers le haut ou le bas d une surface inclinée
JP5184088B2 (ja) ピッチ変調による車両制御
JP5309071B2 (ja) 個人用移動車両及び方法
US6915878B2 (en) Self-balancing ladder and camera dolly
EP3522845B1 (fr) Vehicule d'aide a la mobilite adapte pour le franchissement d'obstacles
WO2015177173A1 (fr) Procede de propulsion d'un fauteuil roulant, kit et fauteuil mettant en oeuvre un tel procede
KR20130006902A (ko) 이동 보조 시스템
WO2018096175A1 (fr) Véhicule à gyropode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15725553

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015725553

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015725553

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15311769

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE