WO2015174530A1 - Hot-rolled steel plate member - Google Patents

Hot-rolled steel plate member Download PDF

Info

Publication number
WO2015174530A1
WO2015174530A1 PCT/JP2015/064101 JP2015064101W WO2015174530A1 WO 2015174530 A1 WO2015174530 A1 WO 2015174530A1 JP 2015064101 W JP2015064101 W JP 2015064101W WO 2015174530 A1 WO2015174530 A1 WO 2015174530A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
less
steel sheet
steel plate
content
Prior art date
Application number
PCT/JP2015/064101
Other languages
French (fr)
Japanese (ja)
Inventor
匹田 和夫
啓達 小嶋
進一郎 田畑
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to MX2016014884A priority Critical patent/MX2016014884A/en
Priority to ES15793575T priority patent/ES2753390T3/en
Priority to PL15793575T priority patent/PL3144405T3/en
Priority to JP2016519321A priority patent/JP6315087B2/en
Priority to EP15793575.0A priority patent/EP3144405B1/en
Priority to US15/311,117 priority patent/US20170073792A1/en
Priority to CN201580024959.1A priority patent/CN106661685B/en
Priority to KR1020167033364A priority patent/KR101908210B1/en
Publication of WO2015174530A1 publication Critical patent/WO2015174530A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor

Definitions

  • This specification relates to a hot-formed steel plate member formed by hot forming a steel plate.
  • a hot stamping technique has been adopted as a technique for press forming a difficult-to-form material such as a high-strength steel sheet.
  • the hot stamping technique is a hot forming technique in which a material used for forming is heated to form.
  • the steel sheet is soft and has good formability during forming, and after forming, the formed member can obtain higher strength than the cold forming steel sheet.
  • Japanese Patent Application Publication No. 2006-213959 discloses a steel member having a tensile strength of 980 MPa.
  • Japanese Patent Application Publication No. 2007-314817 discloses that a hot pressed steel sheet member having excellent tensile strength and toughness can be obtained by reducing the cleanliness and the segregation degree of P and S. Yes.
  • Japanese Patent Application Publication No. 2002-102980 has a problem that the hardenability at the time of hot pressing is insufficient, resulting in poor hardness stability.
  • Japanese Patent Application Publication No. 2006-213959 and Japanese Patent Application Publication No. 2007-314817 disclose steel sheets having excellent tensile strength and toughness, there is still room for improvement in terms of local deformation characteristics. Has been.
  • An object of the embodiment of the present specification is to provide a hot-formed steel sheet member having excellent hardness stability and local deformability.
  • the hot-formed steel plate member is not a flat plate but a formed body.
  • the hot-formed steel plate member is also referred to as a “hot-formed steel plate member”.
  • Chemical composition is mass%, C: 0.08 to 0.16%, Si: 0.19% or less, Mn: 0.40 to 1.50%, P: 0.02% or less, S: 0.01% or less, sol.
  • the total volume ratio of martensite, tempered martensite and bainite is 50% or more, and the volume ratio of ferrite is 3% or less,
  • the average particle size of the former ⁇ grains is 10 ⁇ m or less,
  • There is provided a hot-formed steel sheet member in which the number density of residual carbides present is 4 ⁇ 10 3 pieces / mm 2 or less.
  • the embodiment of the present specification is based on the above knowledge, and according to one aspect of the embodiment, (1)
  • the chemical composition is mass%, C: 0.08 to 0.16%, Si: 0.19% or less, Mn: 0.40 to 1.50%, P: 0.02% or less, S: 0.01% or less, sol.
  • a hot-formed steel plate member according to (1) preferably The chemical composition is mass%, Nb: 0.003 to 0.50%, Ni: 0.01 to 2.0%, Cu: 0.01 to 1.0%, Mo: 0.01 to 1.0%, V: 0.01 to 1.0% And Ca: 0.001 to 0.005% 1 or more types selected from the group consisting of:
  • the hot-formed steel plate member according to any one of (1) to (4) preferably having a plating layer on the surface of the steel plate member.
  • the hot-formed steel plate member according to any one of (1) to (5) preferably, the steel plate member has a tensile strength of 1.0 GPa or more.
  • C 0.08 to 0.16%
  • C is an important element for enhancing the hardenability of steel and ensuring the strength after quenching. Further, since C is an austenite-forming element, it has an effect of suppressing strain-induced ferrite transformation during high strain forming. Therefore, it is easy to obtain a stable hardness distribution in the steel sheet member after hot forming. When the C content is less than 0.08%, it becomes difficult to secure a tensile strength of 1.0 GPa or more after quenching and to obtain the above-described effects. Therefore, the C content is 0.08% or more. On the other hand, if the C content exceeds 0.16%, the strength after quenching excessively increases and local deformability deteriorates. Therefore, the C content is 0.16% or less.
  • the C content is preferably 0.085% or more, and more preferably 0.9% or more. Moreover, it is preferable that C content is 0.15% or less, and it is more preferable that it is 0.14% or less.
  • Si 0.19% or less Si is an element having an action of suppressing scale formation during high-temperature heating during hot forming.
  • the Si content exceeds 0.19%, the heating temperature necessary for austenite transformation during hot forming becomes extremely high. For this reason, the cost required for heat treatment increases, and quenching becomes insufficient due to insufficient heating.
  • Si is a ferrite-forming element, if the Si content is too high, strain-induced ferrite transformation is likely to occur during high strain molding. For this reason, the hardness of the steel sheet member after hot forming is locally reduced, making it difficult to obtain a stable hardness distribution.
  • the Si content is 0.19% or less.
  • the Si content is preferably 0.15% or less.
  • the Si content is preferably 0.01% or more.
  • Mn 0.40 to 1.50%
  • Mn is an element useful for enhancing the hardenability of the steel sheet and for ensuring the strength after hot forming stably. If the Mn content is less than 0.40%, it is difficult to obtain the above effects. Therefore, the Mn content is 0.40% or more. On the other hand, when the Mn content exceeds 1.50%, coarse MnS is generated, which causes deterioration of local deformability. Therefore, the Mn content is 1.50% or less.
  • the Mn content is preferably 0.80% or more, and preferably 1.40% or less.
  • P 0.02% or less
  • P is an element contained as an impurity, but has the effect of improving the hardenability of steel and further ensuring the strength of steel after quenching stably. , You may make it contain positively.
  • the P content exceeds 0.02%, the local deformability is significantly deteriorated. Therefore, the P content is 0.02% or less.
  • the P content is preferably 0.01% or less.
  • the lower limit of the P content is not particularly limited, but excessive reduction of the P content causes a significant cost increase. For this reason, it is preferable that P content shall be 0.0002% or more.
  • S 0.01% or less S is an element that is contained as an impurity and deteriorates local deformability. When the S content exceeds 0.01%, the local deformability is significantly deteriorated. Therefore, the S content is 0.01% or less.
  • the lower limit of the S content is not particularly limited, but excessive reduction of the S content causes a significant cost increase, so the S content is preferably 0.0002% or more.
  • sol. Al 0.01 to 1.0% sol.
  • Al is an element having an action of deoxidizing molten steel to make the steel sound. sol. If the Al content is less than 0.01%, deoxidation is not sufficient. Furthermore, sol. Al is an element that has the effect of enhancing the hardenability of the steel sheet and ensuring the strength after quenching stably, so it may be positively incorporated. Therefore, sol. Al content shall be 0.01% or more. However, even if it contains exceeding 1.0%, the effect acquired by the effect
  • N 0.01% or less
  • N is an element that is contained as an impurity and deteriorates toughness. If the N content exceeds 0.01%, coarse nitrides are formed in the steel, and the local deformability and toughness are significantly deteriorated. Therefore, the N content is 0.01% or less.
  • the N content is preferably 0.008% or less.
  • the lower limit of the N content is not particularly limited, but excessive reduction of the N content causes a significant cost increase. For this reason, the N content is preferably 0.0002% or more, and more preferably 0.0008% or more.
  • Cr 0.25 to 3.00% Cr is an element having an effect of enhancing the hardenability of steel. Therefore, it is an especially important element in the embodiment in which the Mn content is limited to 1.50% or less.
  • Cr is an austenite-forming element and has an action of suppressing strain-induced ferrite transformation during high strain forming. Therefore, by containing Cr, it becomes easy to obtain a stable hardness distribution in the steel sheet member after hot forming. If the Cr content is less than 0.25%, the above effects cannot be obtained sufficiently. Therefore, the Cr content is 0.25% or more. On the other hand, if the Cr content exceeds 3.00%, Cr concentrates in carbides in the steel, delays the solid solution of carbides in the heating process when subjected to hot forming, and decreases hardenability. Therefore, the Cr content is 3.00% or less.
  • the Cr content is preferably 0.30% or more, and more preferably 0.40% or more. Moreover, it is preferable that Cr content is 2.50% or less, and it is preferable that it is 2.00%
  • Ti 0.01 to 0.05%
  • Ti is an element having an action of suppressing recrystallization of austenite grains when the hot forming steel sheet is heated to Ac 3 point or more and used for hot forming. Furthermore, it has the effect
  • Ti content shall be 0.05% or less.
  • the Ti content is preferably 0.015% or more.
  • Ti content is 0.04% or less, and it is preferable that it is 0.03% or less.
  • B 0.001 to 0.01%
  • B is an element having an effect of enhancing the hardenability of steel and ensuring the strength after quenching stably. Therefore, it is an especially important element in the embodiment in which the Mn content is limited to 1.50% or less. If the B content is less than 0.001%, the above effects cannot be obtained sufficiently. Therefore, the B content is 0.001% or more. On the other hand, when the B content exceeds 0.01%, the above effect is saturated, and further, local deformability deterioration of the quenched portion is caused. Therefore, the B content is 0.01% or less.
  • the B content is preferably 0.005% or less.
  • the hot-formed steel plate member of the embodiment has a chemical composition composed of the above elements C to B, the remaining Fe and impurities.
  • impurities are components mixed in due to various factors in the manufacturing process, such as ores and scraps, when manufacturing steel sheets industrially, and are allowed within a range that does not adversely affect the embodiment. Means what will be done.
  • the hot-formed steel sheet member of the embodiment further contains one or more elements selected from the group consisting of Nb, Ni, Cu, Mo, V, and Ca in the amounts shown below. You may let them.
  • Nb 0 to 0.50% Nb suppresses recrystallization and forms fine carbides to suppress grain growth when heating a hot forming steel sheet to Ac 3 point or higher to be used for hot forming. Fine austenite grains It is an element which has the effect
  • Ni 0 to 2.0%
  • Ni is an element effective for enhancing the hardenability of the steel sheet and stably securing the strength after quenching, and therefore Ni may be contained as necessary. However, even if Ni is contained in excess of 2.0%, the effect is small, and the cost is unnecessarily increased. For this reason, when it contains Ni, the content shall be 2.0% or less.
  • the Ni content is preferably 1.5% or less. In order to obtain the above effect, the Ni content is preferably 0.01% or more, and more preferably 0.05% or more.
  • Cu 0 to 1.0%
  • Cu is an element effective for enhancing the hardenability of the steel sheet and stably securing the strength after quenching, and may be contained as necessary. However, even if Cu is contained exceeding 1.0%, the effect is small, and the cost is unnecessarily increased. For this reason, when it contains Cu, the content shall be 1.0% or less.
  • the Cu content is preferably 0.5% or less. In order to obtain the above effect, the Cu content is preferably 0.01% or more, and more preferably 0.03% or more.
  • Mo 0 to 1.0%
  • Mo is an element having an action of forming fine carbides to suppress grain growth and making austenite grains fine when heating a hot-forming steel sheet to Ac 3 or more to be used for hot forming. is there. It also has the effect of greatly improving the local deformability of the hot-formed steel sheet member. For this reason, you may contain Mo as needed. However, when the Mo content exceeds 1.0%, the effect is saturated and the cost is increased unnecessarily. Therefore, when it contains Mo, the content shall be 1.0% or less.
  • the Mo content is preferably 0.7% or less. To obtain the above effect, the Mo content is preferably 0.01% or more, and more preferably 0.04% or more.
  • V 0 to 1.0%
  • V is an element effective for enhancing the hardenability of the steel sheet and stably securing the strength after quenching, and may be contained as necessary. However, even if V is contained exceeding 1.0%, the effect is small, and the cost is unnecessarily increased. For this reason, when it contains V, the content shall be 1.0% or less.
  • the V content is preferably 0.08% or less. In order to obtain the above effect, the V content is preferably 0.01% or more, and more preferably 0.02% or more.
  • Ca 0 to 0.005%
  • Ca is an element that has the effect of reducing the inclusions in the steel and improving the local deformability after quenching, and thus may be included as necessary.
  • the content shall be 0.005% or less.
  • the Ca content is preferably 0.004% or less.
  • the Ca content is preferably 0.001% or more, and more preferably 0.002% or more.
  • (B) Metal structure in the embodiment, in order to improve local deformability, it is preferable to suppress variation in hardness in the metal structure after hot forming. When the difference in hardness in the structure becomes large, it becomes a starting point of voids. Therefore, it is preferable to suppress the mixture of low-temperature transformation structure such as hard martensite and bainite and soft ferrite structure as much as possible. Therefore, the hot-formed steel sheet member of the embodiment preferably has a metal structure mainly composed of a low-temperature transformation structure and a volume ratio of ferrite of 3% or less.
  • the metal structure mainly composed of a low temperature transformation structure means a metal structure in which the total volume ratio of martensite, tempered martensite and bainite is 50% or more.
  • the tempered martensite here means martensite in which martensite transformed during quenching is tempered by automatic tempering, and martensite that has undergone low temperature tempering such as a paint baking process after quenching.
  • the low temperature transformation structure in the metal structure is preferably 80% or more and more preferably 90% or more in volume ratio.
  • the retained austenite contained in the metal structure is preferably 10% or less by volume ratio.
  • MnS concentrates in the center as inclusions, and it becomes easy to form hard martensite, resulting in a difference in hardness from the surroundings and a deterioration in local deformability.
  • the value of ⁇ of the hot-formed steel sheet member is preferably set to 1.6 or less.
  • the value of ⁇ is more preferably 1.2 or less.
  • the segregation of Mn in the steel sheet is controlled mainly by the steel sheet composition, particularly the impurity content, and the conditions for continuous casting, and does not substantially change before and after hot rolling and hot forming. Therefore, the inclusions and segregation status of the hot-forming steel sheet are almost the same as the inclusions and segregation status of the hot-formed steel sheet member produced by hot forming. Since the value of ⁇ does not change greatly by hot forming, the value of ⁇ of the hot-formed steel sheet member is also reduced to 1.6 or less by setting the value of ⁇ of the hot-forming steel sheet to 1.6 or less. When the value of ⁇ is 1.2 or less, the value of ⁇ of the hot-formed steel sheet member can also be 1.2 or less.
  • the maximum Mn concentration at the center of the plate thickness is determined by the following method. Using an electronic probe microanalyzer (EPMA), line analysis is performed at the center of the plate thickness of the steel sheet, three measured values are selected in descending order from the analysis result, and the average value is calculated. In addition, the average Mn concentration at the 1/4 depth position of the plate thickness from the surface is determined by the following method. Similarly, using EPMA, analysis is performed at 10 positions at the 1/4 depth position of the steel sheet, and the average value is calculated.
  • EPMA electronic probe microanalyzer
  • the cleanliness value is more preferably 0.04% or less.
  • the value of the cleanliness of steel is obtained by calculating the area percentage occupied by the above-mentioned A-type, B-type and C-type inclusions.
  • the cleanness value of the hot-formed steel sheet member is also 0 by setting the cleanness value of the hot-formed steel sheet to 0.08% or less. 0.08% or less, and by setting it to 0.04% or less, the cleanliness value of the hot-formed steel sheet member can also be made 0.04% or less.
  • the cleanliness value of the hot-formed steel plate or hot-formed steel plate member is obtained by the following method.
  • test materials are cut out from five locations.
  • the plate thickness of the hot-formed steel plate or hot-formed steel plate member is t, 1 / 8t, 1 / 4t, 1 / 2t, 3 / 4t, 7 / 8t in the plate thickness direction of each test material
  • the cleanliness is investigated by point calculation. The numerical value having the largest cleanliness value (lowest cleanliness) at each plate thickness is taken as the cleanliness value of the specimen.
  • Average particle size of old ⁇ grains 10 ⁇ m or less
  • Local deformability is improved by reducing the old ⁇ particle size in the hot-formed steel sheet member.
  • voids are generated at the boundaries of the old ⁇ grain boundaries and the substructure within the grains.
  • the refinement of the old ⁇ grains suppresses the generation of voids and delays the connection. Deformability can be improved. If the average particle size of the former ⁇ exceeds 10 ⁇ m, this effect cannot be exhibited. Therefore, the average particle diameter of the old ⁇ grains in the hot-formed steel sheet member is 10 ⁇ m or less.
  • it is effective to lower the heating temperature, delay the dissolution of carbide during heating, and suppress the grain growth.
  • the average particle diameter of old ⁇ grains can be measured using a method defined by ISO643. That is, the number of crystal grains in the measurement visual field is measured, the average area of the crystal grains is obtained by dividing the area of the measurement visual field by the number of crystal grains, and the crystal grain diameter in the equivalent circle diameter is calculated. At that time, it is preferable to measure the number of grains at the boundary of the visual field as 1/2 and adjust the magnification so that the number of crystal grains is 200 or more. In order to improve accuracy, it is preferable to measure a plurality of visual fields.
  • Residual carbide 4 ⁇ 10 3 pieces / mm 2 or less
  • Residual carbide has an effect of suppressing ⁇ grain growth during heating and holding during hot forming by pinning. Therefore, it is desirable for residual carbides to be present during heating and holding. The smaller the residual carbide after hot forming, the better the hardenability and the higher the strength. Therefore, it is preferable that the number density of residual carbides can be reduced upon completion of heating and holding.
  • the number density of residual carbides present in the hot-formed steel plate member is preferably 4 ⁇ 10 3 pieces / mm 2 or less.
  • the high-strength hot-formed steel plate member according to the embodiment may have a plating layer on the surface for the purpose of improving corrosion resistance.
  • the plating layer may be an electroplating layer or a hot dipping layer.
  • Examples of the electroplating layer include electrogalvanizing, electro-Zn—Ni alloy plating, electro-Zn—Fe alloy plating and the like.
  • the hot dip galvanizing layer includes hot dip galvanizing, alloyed hot dip galvanizing, hot dip aluminum plating, hot dip Zn-Al alloy plating, hot dip Zn-Al-Mg alloy plating, hot dip Zn-Al-Mg-Si alloy plating, etc. Illustrated.
  • the amount of plating adhesion is not particularly limited, and may be adjusted within a general range.
  • a slab is produced by casting.
  • the heating temperature of the molten steel is set to 5 ° C. higher than the liquidus temperature of the steel, and the molten steel per unit time. It is desirable to limit the casting amount to 6 t / min or less.
  • the molten steel flow in the mold is fast, so that inclusions are easily trapped in the solidified shell and inclusions in the slab increase.
  • the molten steel heating temperature is less than 5 ° C higher than the liquidus temperature, the viscosity of the molten steel increases, and inclusions hardly float in the continuous casting machine, resulting in an increase in inclusions in the slab. Cleanliness is likely to deteriorate.
  • the molten steel heating temperature from the liquidus temperature of the molten steel is 5 ° C. or more and the molten steel casting amount per unit time is 6 t / min or less, inclusions are hardly brought into the slab. As a result, the amount of inclusions at the stage of producing the slab can be effectively reduced, and the steel plate cleanliness of 0.08% or less can be easily achieved.
  • the molten steel heating temperature is more preferably 8 ° C. or higher than the liquidus temperature, and the molten steel casting amount per unit time is more preferably 5 t / min or less.
  • the molten steel heating temperature 8 ° C. or more higher than the liquidus temperature and setting the molten steel casting amount per unit time to 5 t / min or less it becomes easy to make the cleanliness 0.04% or less. Therefore it is desirable.
  • the center segregation reduction treatment include a method of discharging molten steel enriched in Mn in an unsolidified layer before the slab is completely solidified.
  • molten steel enriched with Mn before complete solidification can be discharged.
  • the electromagnetic stirring treatment can be performed, for example, by applying a flow to the unsolidified molten steel at 250 to 1000 gauss, and the unsolidified layer reduction treatment, for example, reduces the final solidified portion with a gradient of about 1 mm / m. Can be done.
  • ⁇ ⁇ Soaking (soaking) treatment may be performed on the slab obtained by the above method as necessary.
  • a preferable soaking temperature is 1200 to 1300 ° C.
  • a soaking time is 20 to 50 hours.
  • hot rolling is performed on the slab.
  • the hot rolling start temperature is 1000 to 1300 ° C. and the hot rolling completion temperature is 850 ° C. or higher from the viewpoint of more uniformly generating carbides.
  • the coiling temperature is preferably higher from the viewpoint of workability, but if it is too high, the yield decreases due to scale formation, so it is preferably 500 to 650 ° C.
  • the hot-rolled steel sheet obtained by hot rolling is descaled by pickling or the like.
  • the hot-rolled steel sheet subjected to descaling treatment is annealed to obtain a hot-rolled annealed steel sheet and It is preferable to do.
  • the form of carbides existing in the steel sheet before hot forming and the concentration of elements in the carbides Degree is important. Although it is desirable that the carbide is finely dispersed, in that case, since the dissolution of the carbide is accelerated, the effect of suppressing grain growth cannot be expected. If elements such as Mn and Cr are concentrated in the carbide, the carbide is difficult to dissolve. For this reason, it is desirable that the form of carbide in the steel sheet before hot forming is finely dispersed and the concentration of elements in the carbide is high.
  • the form of carbide can be controlled by adjusting the annealing conditions after hot rolling. Specifically, it is preferable to perform annealing for 5 hours or less by setting the annealing temperature to Ac1 point or lower and Ac1 point to ⁇ 100 ° C. or higher.
  • the carbide When the coiling temperature after hot rolling is set to 550 ° C. or less, the carbide is easily finely dispersed. However, since the concentration level of the element in the carbide also decreases, the concentration of the element is advanced by annealing.
  • the coiling temperature is 550 ° C. or higher, pearlite is generated, and element concentration in the carbide in pearlite is progressing.
  • annealing is performed in order to divide the pearlite and disperse the carbide.
  • the hot-rolled annealed steel sheet, the cold-rolled steel sheet that has been cold-rolled to the hot-rolled annealed steel sheet, or the cold-rolled annealed steel that has been annealed A steel plate can be used. What is necessary is just to select a process process suitably according to the plate
  • Cold rolling may be performed using a normal method. From the viewpoint of ensuring good flatness, the rolling reduction in cold rolling is preferably 30% or more. On the other hand, in order to avoid an excessive load, the rolling reduction in cold rolling is preferably 80% or less.
  • annealing is preferably performed at an Ac1 point or less and for a time or less, preferably for 3 hours or less.
  • the hot-formed steel sheet member according to the embodiment may have a plating layer on the surface for the purpose of improving corrosion resistance or the like.
  • the plating layer is preferably formed on the steel plate before hot forming.
  • annealing may be performed prior to the plating process in the continuous hot dip galvanizing line, or only the plating process may be performed without performing annealing at a low heating holding temperature.
  • an alloying heat treatment may be performed after hot dip galvanization to form an alloyed hot dip galvanized steel sheet.
  • Zinc-based plating can also be applied by electroplating.
  • the zinc-based plating can be applied to at least a part of the surface of the steel material, but in the case of a steel plate, it is generally applied to the entire surface of one side or both sides.
  • a high-strength hot-formed steel plate member can be obtained by performing hot forming on the hot-formed steel plate.
  • the heating rate of the steel sheet during hot forming is preferably 20 ° C./sec or more from the viewpoint of suppressing grain growth. More preferably, it is 50 ° C./sec or more. It is desirable that the heating temperature of the steel sheet during hot forming exceeds Ac 3 point and is 1050 ° C. or lower. When the heating temperature is 3 points or less of Ac, the austenite single phase state is not obtained before hot forming, and ferrite, pearlite, or bainite remains in the steel sheet.
  • the metal structure is not mainly composed of martensite after hot forming, and the desired hardness may not be obtained. Further, not only the hardness variation of the hot-formed steel sheet member is increased, but also the local deformability is deteriorated.
  • the heating temperature of the steel sheet during hot forming is preferably 1050 ° C. or lower. Further, if the heating time is less than 1 min, the austenite single phase may be insufficient even when heated, and further, the carbide is not sufficiently dissolved. The number density of carbides increases. When it exceeds 10 minutes, austenite will coarsen and the local deformability of a hot-formed steel plate member may deteriorate. Accordingly, the heating time of the steel sheet during hot forming is desirably 1 to 10 minutes.
  • the hot forming start temperature is Ar 3 points or more. After hot forming, it is desirable to rapidly cool at a cooling rate of 10 ° C./sec or more, and it is more desirable to quench at a rate of 20 ° C./sec or more. There is no particular upper limit on the cooling rate.
  • the steel sheet member In order to obtain a hot-formed steel sheet member having a martensite-based metal structure with little hardness variation, it is desirable to rapidly cool the steel sheet until the surface temperature of the steel sheet is 350 ° C. or lower after hot forming.
  • the cooling end temperature is preferably 100 ° C. or lower, more preferably room temperature.
  • the obtained slab was hot rolled by a hot rolling tester to obtain a hot rolled steel sheet having a thickness of 3.0 mm. After winding, the hot rolled steel sheet was pickled and further annealed. Some of the steel sheets were further cold-rolled with a cold rolling tester to obtain cold-rolled steel sheets having a thickness of 1.5 mm. Further, some of the cold-rolled steel sheets were annealed at 600 ° C. for 2 hours to obtain cold-rolled annealed steel sheets.
  • hot pressing hatch forming
  • the hot-formed steel plate member 2 was obtained.
  • the steel sheet is heated in a heating furnace with changing the surface temperature between 820 ° C. and 1100 ° C., held at that temperature for 90 seconds, then removed from the heating furnace and immediately heated in a mold with a cooling device.
  • An intermediate press was performed, and a quenching treatment was performed simultaneously with molding. The following evaluation was performed about the said hot-formed steel plate member. The evaluation results are shown in Table 2.
  • hot rolled means a hot-rolled steel sheet having a thickness of 3.0 mm that has been hot-rolled
  • cold-rolled means a thickness that has been further cold-rolled to the hot-rolled steel sheet. This means a cold-rolled steel sheet having a thickness of 1.5 mm. * Means outside the scope of the embodiment.
  • Residual ⁇ volume fraction is obtained by chemically polishing an inner layer of 1/8 of the plate thickness from the surface of the steel sheet, and then by X-ray diffraction using a Mo tube.
  • the diffraction strength I ⁇ (200) of ferrite (200) and ferrite (211) It was obtained from the intensity ratio of the diffraction intensity I ⁇ (211) and the diffraction intensity I ⁇ (220) of (220) of austenite and the diffraction intensity I ⁇ (311) of (311).
  • V ⁇ (volume%) 0.25 ⁇ ⁇ I ⁇ (220) / (1.35 ⁇ I ⁇ (200) + I ⁇ (220)) + I ⁇ (220) / (0.69 ⁇ I ⁇ (211) + I ⁇ (220)) + I ⁇ (311) / (1.5 ⁇ I ⁇ (200) + I ⁇ (311)) + I ⁇ (311) / (0.69 ⁇ I ⁇ (211) + I ⁇ (311)) ⁇
  • ⁇ Measurement of Mn segregation degree ⁇ > In the central part of the thickness of the hot-formed steel sheet member, line analysis using EPMA is performed, and after selecting three measured values in order from the analysis result, the average value is calculated, and the maximum Mn at the central part of the thickness is calculated. The concentration was determined. In addition, at the 1/4 depth position of the sheet thickness from the surface of the hot-formed steel plate member, analysis is performed at 10 locations using EPMA, the average value is calculated, and the 1/4 depth position of the sheet thickness from the surface is calculated. The average Mn concentration was determined. And Mn segregation degree (alpha) was calculated
  • the average grain size of old ⁇ grains in hot-formed steel sheet members is the equivalent of a circle by measuring the number of crystal grains in the measurement field of view and dividing the area of the measurement field by the number of crystal grains to determine the average area of the crystal grains It calculated
  • the local deformability was measured by a notch tensile test.
  • the tensile test piece had a parallel part width of 16.5 mm and a parallel part length of 60 mm, and the rolling direction was taken as the longitudinal direction. Further, a V-notch having a depth of 2 mm was processed at the center of the length of the tensile test piece to obtain a notched tensile test piece. The thickness of the notch test piece was 1.4 mm.
  • the shape of the notch tensile test piece is shown in FIG.
  • a tensile test was performed using the above-described notched tensile test piece, and the notch elongation at the time of breaking at the V notch portion was measured to evaluate the local deformability.
  • the gauge distance was 5 mm, and the tensile speed (crosshead speed) during the tensile test was 0.5 mm / min.
  • test number 2 indicates that the composition of the steel satisfies the range of the embodiment, but the casting amount of molten steel per unit time is large. The deformability was inferior.
  • Test No. 3 since the center segregation reduction treatment and the soaking treatment were not carried out, the Mn segregation degree exceeded 1.6 and the local deformability was inferior.
  • Test No. 5 resulted in poor local deformability due to the cleanliness value exceeding 0.08% because the molten steel heating temperature was low. In Test No.
  • test No. 16 since the S content exceeded the upper limit of the range of the embodiment, the cleanliness value exceeded 0.08%, resulting in poor local deformability.
  • Test No. 17 since the Mn content exceeded the upper limit of the range of the embodiment, the Mn segregation degree exceeded 1.6 and the local deformability was inferior.
  • Test No. 18 where the Si content exceeds the upper limit of the range of the embodiments, A 3-point increases, the volume ratio of ferrite is more than 3% after hot forming, hardness less stable results It became.
  • Test No. 19 resulted in inferior local deformability because the C content exceeded the upper limit of the range of the embodiment.
  • Test No. 20 resulted in inferior hardness stability because the Cr content was lower than the range of the embodiment.
  • Test Nos. 1, 4, 7, 8, 10, 12, 13 and 15 satisfying the range of the embodiment resulted in excellent hardness stability and local deformability.

Abstract

 A hot-rolled steel plate member having a chemical composition, by mass%, of 0.08-0.16% of C, 0.19% or less of Si, 0.40-1.50% of Mn, 0.02% or less of P, 0.01% or less of S, 0.01-1.0% of sol. Al, 0.01% or less of N, 0.25-3.00% of Cr, 0.01-0.05% of Ti, 0.001-0.01% of B, 0-0.50% of Nb, 0-2.0% of Ni, 0-1.0% of Cu, 0-1.0% of Mo, 0-1.0% of V, and 0-0.005% of Ca, the balance being Fe and unavoidable impurities, in which the total volume fraction of martensite, tempered martensite, and bainite is 50% or higher, the volume fraction of ferrite is 3% or less, the average particle size of prior γ grains is 10 μm or less, and the number density of residual carbides that are present is 4 × 103 per mm2 or less.

Description

熱間成形鋼板部材Hot forming steel plate
 本明細書は、鋼板を熱間成形して形成された熱間成形鋼板部材に関する。 This specification relates to a hot-formed steel plate member formed by hot forming a steel plate.
 自動車用鋼板の分野においては、燃費向上のための軽量化と耐衝突特性の向上とを両立するため、高い引張強度を有する高強度鋼板の適用が拡大してきた。しかし、高強度化に伴い鋼板のプレス成形性は低下するため、複雑な形状の製品を製造することが困難になってきている。 In the field of steel sheets for automobiles, the application of high-strength steel sheets having high tensile strength has been expanded in order to achieve both weight reduction for improving fuel economy and improvement of impact resistance. However, since the press formability of the steel sheet decreases with increasing strength, it has become difficult to manufacture products having complicated shapes.
 その結果、例えば、鋼板の高強度化に伴い、延性が低下して加工度が高い部位で破断するという問題のほか、スプリングバックおよび壁反りが大きくなることから、寸法精度が劣化する等の問題が生じている。したがって、高強度、特に780MPa以上の引張強度を有する鋼板を、複雑な形状を有する製品にプレス成形することは容易ではない。 As a result, for example, with the increase in strength of the steel sheet, in addition to the problem that ductility decreases and breaks at a high degree of workability, the problem is that the dimensional accuracy deteriorates because the springback and wall warp become large. Has occurred. Therefore, it is not easy to press-mold a steel sheet having a high strength, particularly a tensile strength of 780 MPa or more, into a product having a complicated shape.
 そこで近年、例えば日本国特許出願公開2002-102980号公報に開示されるように、高強度鋼板のような成形が困難な材料をプレス成形する技術として、ホットスタンプ技術が採用されている。ホットスタンプ技術とは、成形に供する材料を加熱して成形する熱間成形技術である。この技術では、成形と同時に焼入れを行うため、成形時において鋼板は軟質で良好な成形性を有し、成形後において成形部材は冷間成形用鋼板より高い強度を得ることが可能となる。 Therefore, in recent years, as disclosed in, for example, Japanese Patent Application Publication No. 2002-102980, a hot stamping technique has been adopted as a technique for press forming a difficult-to-form material such as a high-strength steel sheet. The hot stamping technique is a hot forming technique in which a material used for forming is heated to form. In this technique, since quenching is performed simultaneously with forming, the steel sheet is soft and has good formability during forming, and after forming, the formed member can obtain higher strength than the cold forming steel sheet.
 また、日本国特許出願公開2006-213959号公報では、980MPaの引張強度を有する鋼製部材が開示されている。
 日本国特許出願公開2007-314817号公報には、清浄度とPおよびSの偏析度とを低くすることで、引張強度と靭性とに優れた熱間プレス鋼板部材が得られることが開示されている。
Japanese Patent Application Publication No. 2006-213959 discloses a steel member having a tensile strength of 980 MPa.
Japanese Patent Application Publication No. 2007-314817 discloses that a hot pressed steel sheet member having excellent tensile strength and toughness can be obtained by reducing the cleanliness and the segregation degree of P and S. Yes.
開示の概要Summary of disclosure
 日本国特許出願公開2002-102980号公報に記載の金属材は、熱間プレス時の焼入れ性が不十分であり、その結果として硬さの安定性に劣るという問題がある。日本国特許出願公開2006-213959号公報および日本国特許出願公開2007-314817号公報では、引張強度と靱性とに優れた鋼板が開示されているものの、局部変形特性の点において改善の余地が残されている。 The metal material described in Japanese Patent Application Publication No. 2002-102980 has a problem that the hardenability at the time of hot pressing is insufficient, resulting in poor hardness stability. Although Japanese Patent Application Publication No. 2006-213959 and Japanese Patent Application Publication No. 2007-314817 disclose steel sheets having excellent tensile strength and toughness, there is still room for improvement in terms of local deformation characteristics. Has been.
 本明細書の実施の形態は、硬さ安定性と局部変形能に優れる熱間成形鋼板部材を提供することを目的とする。なお、熱間成形された鋼板部材は、多くの場合、平板ではなく成形体であり、本明細書では、成形体である場合も含めて「熱間成形鋼板部材」という。 An object of the embodiment of the present specification is to provide a hot-formed steel sheet member having excellent hardness stability and local deformability. In many cases, the hot-formed steel plate member is not a flat plate but a formed body. In this specification, the hot-formed steel plate member is also referred to as a “hot-formed steel plate member”.
 本明細書の一態様によれば、
 化学組成が、質量%で、
 C:0.08~0.16%、
 Si:0.19%以下、
 Mn:0.40~1.50%、
 P:0.02%以下、
 S:0.01%以下、
 sol.Al:0.01~1.0%、
 N:0.01%以下、
 Cr:0.25~3.00%、
 Ti:0.01~0.05%、
 B:0.001~0.01%、
 Nb:0~0.50%、
 Ni:0~2.0%、
 Cu:0~1.0%、
 Mo:0~1.0%、
 V:0~1.0%、
 Ca:0~0.005%、
 残部:Feおよび不純物であり、
 マルテンサイト、焼戻しマルテンサイトおよびベイナイトの合計体積率が50%以上であり、かつ、フェライトの体積率が3%以下であり、
 旧γ粒の平均粒径が10μm以下であり、
 存在する残留炭化物の数密度が4×10個/mm以下である熱間成形鋼板部材が提供される。
According to one aspect of the present specification,
Chemical composition is mass%,
C: 0.08 to 0.16%,
Si: 0.19% or less,
Mn: 0.40 to 1.50%,
P: 0.02% or less,
S: 0.01% or less,
sol. Al: 0.01 to 1.0%
N: 0.01% or less,
Cr: 0.25 to 3.00%,
Ti: 0.01 to 0.05%,
B: 0.001 to 0.01%,
Nb: 0 to 0.50%,
Ni: 0 to 2.0%,
Cu: 0 to 1.0%,
Mo: 0 to 1.0%,
V: 0 to 1.0%,
Ca: 0 to 0.005%,
Balance: Fe and impurities,
The total volume ratio of martensite, tempered martensite and bainite is 50% or more, and the volume ratio of ferrite is 3% or less,
The average particle size of the former γ grains is 10 μm or less,
There is provided a hot-formed steel sheet member in which the number density of residual carbides present is 4 × 10 3 pieces / mm 2 or less.
実施例におけるハット成形での金型の形状を示す模式図である。It is a schematic diagram which shows the shape of the metal mold | die in the hat molding in an Example. 実施例において熱間成形により得られた成形体の形状を示す模式図である。It is a schematic diagram which shows the shape of the molded object obtained by hot forming in the Example. 実施例における切欠引張試験片の形状を示す模式図である。It is a schematic diagram which shows the shape of the notch tensile test piece in an Example.
 本発明者らは、硬さ安定性と局部変形能に優れる熱間成形鋼板部材を提供するために、鋭意研究を行った結果、以下の知見を得た。 As a result of intensive studies to provide a hot-formed steel sheet member having excellent hardness stability and local deformability, the present inventors have obtained the following knowledge.
 (1)熱間成形鋼板部材中の旧γ粒を微細化させることにより、ボイドの発生と連結とを遅延するため、局部変形能が向上する。従って、旧γ粒を微細化することが好ましい。
 (2)熱間成形鋼板部材中に残留炭化物が多く存在すると、熱間成形後の焼入れ性が低下し硬さ安定性が低下するおそれがあるだけでなく、残留炭化物はボイドの発生源となり局部変形能を劣化させる。従って、残留炭化物の数密度を低減することが好ましい。
(1) Since the old γ grains in the hot-formed steel sheet member are refined, the generation and connection of voids are delayed, so that local deformability is improved. Therefore, it is preferable to refine the old γ grains.
(2) If a large amount of residual carbide is present in the hot-formed steel sheet member, not only the hardenability after hot forming may be reduced and the hardness stability may be reduced, but the residual carbide may be a source of voids and become localized. Deteriorates deformability. Therefore, it is preferable to reduce the number density of residual carbides.
 本明細書の実施の形態は、上記知見に基づくものであり、実施の形態の一態様によれば、
(1)化学組成が、質量%で、
 C:0.08~0.16%、
 Si:0.19%以下、
 Mn:0.40~1.50%、
 P:0.02%以下、
 S:0.01%以下、
 sol.Al:0.01~1.0%、
 N:0.01%以下、
 Cr:0.25~3.00%、
 Ti:0.01~0.05%、
 B:0.001~0.01%、
 Nb:0~0.50%、
 Ni:0~2.0%、
 Cu:0~1.0%、
 Mo:0~1.0%、
 V:0~1.0%、
 Ca:0~0.005%、
 残部:Feおよび不純物であり、
 マルテンサイト、焼戻しマルテンサイトおよびベイナイトの合計体積率が50%以上であり、かつ、フェライトの体積率が3%以下であり、
 旧γ粒の平均粒径が10μm以下であり、
 存在する残留炭化物の数密度が4×10個/mm以下である熱間成形鋼板部材が提供される。
The embodiment of the present specification is based on the above knowledge, and according to one aspect of the embodiment,
(1) The chemical composition is mass%,
C: 0.08 to 0.16%,
Si: 0.19% or less,
Mn: 0.40 to 1.50%,
P: 0.02% or less,
S: 0.01% or less,
sol. Al: 0.01 to 1.0%
N: 0.01% or less,
Cr: 0.25 to 3.00%,
Ti: 0.01 to 0.05%,
B: 0.001 to 0.01%,
Nb: 0 to 0.50%,
Ni: 0 to 2.0%,
Cu: 0 to 1.0%,
Mo: 0 to 1.0%,
V: 0 to 1.0%,
Ca: 0 to 0.005%,
Balance: Fe and impurities,
The total volume ratio of martensite, tempered martensite and bainite is 50% or more, and the volume ratio of ferrite is 3% or less,
The average particle size of the former γ grains is 10 μm or less,
There is provided a hot-formed steel sheet member in which the number density of residual carbides present is 4 × 10 3 pieces / mm 2 or less.
(2)(1)の熱間成形鋼板部材であって、好ましくは、
 前記化学組成が、質量%で、
 Nb:0.003~0.50%、
 Ni:0.01~2.0%、
 Cu:0.01~1.0%、
 Mo:0.01~1.0%、
 V:0.01~1.0%
 および
 Ca:0.001~0.005%
 からなる群より選択される1種以上を含有する。
(2) A hot-formed steel plate member according to (1), preferably
The chemical composition is mass%,
Nb: 0.003 to 0.50%,
Ni: 0.01 to 2.0%,
Cu: 0.01 to 1.0%,
Mo: 0.01 to 1.0%,
V: 0.01 to 1.0%
And Ca: 0.001 to 0.005%
1 or more types selected from the group consisting of:
(3)(1)または(2)の熱間成形鋼板部材であって、好ましくは、JIS G 0555(2003)で規定される鋼の清浄度の値が0.08%以下である。 (3) The hot-formed steel plate member according to (1) or (2), preferably having a cleanliness value of steel defined by JIS G 0555 (2003) of 0.08% or less.
(4)(1)から(3)までのいずれかの熱間成形鋼板部材であって、好ましくは、下記(i)式で表されるMn偏析度αが1.6以下である。
 α=[板厚中心部での最大Mn濃度(質量%)]/[表面から板厚の1/4深さ位置での平均Mn濃度(質量%)]   ・・・(i)
(4) The hot-formed steel sheet member according to any one of (1) to (3), preferably having a Mn segregation degree α represented by the following formula (i) of 1.6 or less.
α = [maximum Mn concentration (mass%) at the thickness center portion] / [average Mn concentration (mass%) at ¼ depth position of the thickness from the surface] (i)
(5)(1)から(4)までのいずれかの熱間成形鋼板部材であって、好ましくは、前記鋼板部材の表面にめっき層を有する。
(6)(1)から(5)までのいずれかの熱間成形鋼板部材であって、好ましくは、前記鋼板部材が1.0GPa以上の引張強度を有する。
(5) The hot-formed steel plate member according to any one of (1) to (4), preferably having a plating layer on the surface of the steel plate member.
(6) The hot-formed steel plate member according to any one of (1) to (5), preferably, the steel plate member has a tensile strength of 1.0 GPa or more.
 以下、実施の形態について詳しく説明する。 Hereinafter, embodiments will be described in detail.
 (A)化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
(A) Chemical composition The reason for limitation of each element is as follows. In the following description, “%” for the content means “% by mass”.
 C:0.08~0.16%
 Cは、鋼の焼入れ性を高め、焼入れ後の強度を確保するのに重要な元素である。また、Cはオーステナイト生成元素であるため、高ひずみ成形時におけるひずみ誘起フェライト変態を抑制する作用を有する。そのため、熱間成形後の鋼板部材において安定した硬度分布を得ることを容易にする。C含有量が0.08%未満では、焼入れ後において1.0GPa以上の引張強度を確保すること、および、上記の効果を得ることが困難となる。したがって、C含有量は0.08%以上とする。一方、C含有量が0.16%を超えると、焼入れ後の強度が過度に上昇して局部変形能が劣化する。したがって、C含有量は0.16%以下とする。C含有量は0.085%以上であるのが好ましく、0.9%以上であるのがより好ましい。また、C含有量は0.15%以下であるのが好ましく、0.14%以下であるのがより好ましい。
C: 0.08 to 0.16%
C is an important element for enhancing the hardenability of steel and ensuring the strength after quenching. Further, since C is an austenite-forming element, it has an effect of suppressing strain-induced ferrite transformation during high strain forming. Therefore, it is easy to obtain a stable hardness distribution in the steel sheet member after hot forming. When the C content is less than 0.08%, it becomes difficult to secure a tensile strength of 1.0 GPa or more after quenching and to obtain the above-described effects. Therefore, the C content is 0.08% or more. On the other hand, if the C content exceeds 0.16%, the strength after quenching excessively increases and local deformability deteriorates. Therefore, the C content is 0.16% or less. The C content is preferably 0.085% or more, and more preferably 0.9% or more. Moreover, it is preferable that C content is 0.15% or less, and it is more preferable that it is 0.14% or less.
 Si:0.19%以下
 Siは、熱間成形に際しての高温加熱時におけるスケール生成を抑制する作用を有する元素である。しかしながら、Si含有量が0.19%を超えると、熱間成形に際してオーステナイト変態させるのに必要な加熱温度が著しく高温となる。このため、熱処理に要するコストの上昇を招いたり、加熱不足により焼入れが不十分となったりする。また、Siはフェライト生成元素であるため、Si含有量が高すぎると、高ひずみ成形時にひずみ誘起フェライト変態が生じやすくなる。そのため、熱間成形後の鋼板部材において局所的に硬さが低下して、安定した硬度分布を得るのが困難となる。さらに、多量にSiを含有させると、溶融めっき処理を施す場合のぬれ性の低下により不めっきが生じる場合がある。したがって、Si含有量は0.19%以下とする。Si含有量は0.15%以下であるのが好ましい。上記の効果を得たい場合は、Si含有量は0.01%以上であるのが好ましい。
Si: 0.19% or less Si is an element having an action of suppressing scale formation during high-temperature heating during hot forming. However, if the Si content exceeds 0.19%, the heating temperature necessary for austenite transformation during hot forming becomes extremely high. For this reason, the cost required for heat treatment increases, and quenching becomes insufficient due to insufficient heating. Moreover, since Si is a ferrite-forming element, if the Si content is too high, strain-induced ferrite transformation is likely to occur during high strain molding. For this reason, the hardness of the steel sheet member after hot forming is locally reduced, making it difficult to obtain a stable hardness distribution. Furthermore, when Si is contained in a large amount, non-plating may occur due to a decrease in wettability when a hot dipping process is performed. Therefore, the Si content is 0.19% or less. The Si content is preferably 0.15% or less. In order to obtain the above effect, the Si content is preferably 0.01% or more.
 Mn:0.40~1.50%
 Mnは、鋼板の焼入れ性を高め、かつ熱間成形後の強度を安定して確保するためには有用な元素である。Mn含有量が0.40%未満では、上記の効果を得ることが困難となる。したがって、Mn含有量は0.40%以上とする。一方、Mn含有量が1.50%を超えると粗大なMnSが生成するようになり、局部変形能劣化の要因となる。したがって、Mn含有量は1.50%以下とする。Mn含有量は0.80%以上であるのが好ましく、1.40%以下であるのが好ましい。
Mn: 0.40 to 1.50%
Mn is an element useful for enhancing the hardenability of the steel sheet and for ensuring the strength after hot forming stably. If the Mn content is less than 0.40%, it is difficult to obtain the above effects. Therefore, the Mn content is 0.40% or more. On the other hand, when the Mn content exceeds 1.50%, coarse MnS is generated, which causes deterioration of local deformability. Therefore, the Mn content is 1.50% or less. The Mn content is preferably 0.80% or more, and preferably 1.40% or less.
 P:0.02%以下
 Pは、不純物として含有される元素であるが、鋼の焼入れ性を高め、さらに、焼入れ後の鋼の強度を安定して確保することを可能にする作用を有するので、積極的に含有させても良い。しかし、P含有量が0.02%を超えると局部変形能の劣化が著しくなる。したがって、P含有量は0.02%以下とする。P含有量は0.01%以下であるのが好ましい。P含有量の下限は特に限定する必要はないが、P含有量の過剰な低減は著しいコスト上昇を招く。このため、P含有量は0.0002%以上とすることが好ましい。
P: 0.02% or less P is an element contained as an impurity, but has the effect of improving the hardenability of steel and further ensuring the strength of steel after quenching stably. , You may make it contain positively. However, when the P content exceeds 0.02%, the local deformability is significantly deteriorated. Therefore, the P content is 0.02% or less. The P content is preferably 0.01% or less. The lower limit of the P content is not particularly limited, but excessive reduction of the P content causes a significant cost increase. For this reason, it is preferable that P content shall be 0.0002% or more.
 S:0.01%以下
 Sは、不純物として含有され、局部変形能を劣化させる元素である。S含有量が0.01%を超えると局部変形能の劣化が顕著となる。したがって、S含有量は0.01%以下とする。S含有量の下限は特に限定する必要はないが、S含有量の過剰な低減は著しいコスト上昇を招くため、S含有量は0.0002%以上とすることが好ましい。
S: 0.01% or less S is an element that is contained as an impurity and deteriorates local deformability. When the S content exceeds 0.01%, the local deformability is significantly deteriorated. Therefore, the S content is 0.01% or less. The lower limit of the S content is not particularly limited, but excessive reduction of the S content causes a significant cost increase, so the S content is preferably 0.0002% or more.
 sol.Al:0.01~1.0%
 sol.Alは、溶鋼を脱酸して鋼を健全化する作用を有する元素である。sol.Al含有量が0.01%未満では脱酸が十分でない。さらに、sol.Alは鋼板の焼入れ性を高め、かつ焼入れ後の強度を安定して確保する作用を有する元素でもあるので、積極的に含有させても良い。したがって、sol.Al含有量は0.01%以上とする。しかしながら、1.0%を超えて含有させてもその作用により得られる効果は小さく、かつ、いたずらにコストの増加を招く。このため、sol.Al含有量は1.0%以下とする。sol.Al含有量は0.02%以上であるのが好ましく、0.2%以下であるのが好ましい。
sol. Al: 0.01 to 1.0%
sol. Al is an element having an action of deoxidizing molten steel to make the steel sound. sol. If the Al content is less than 0.01%, deoxidation is not sufficient. Furthermore, sol. Al is an element that has the effect of enhancing the hardenability of the steel sheet and ensuring the strength after quenching stably, so it may be positively incorporated. Therefore, sol. Al content shall be 0.01% or more. However, even if it contains exceeding 1.0%, the effect acquired by the effect | action is small, and it causes a cost increase unnecessarily. For this reason, sol. Al content shall be 1.0% or less. sol. The Al content is preferably 0.02% or more, and preferably 0.2% or less.
 N:0.01%以下
 Nは、不純物として含有され、靭性を劣化させる元素である。N含有量が0.01%を超えると鋼中に粗大な窒化物を形成して、局部変形能および靭性を著しく劣化させる。したがって、N含有量は0.01%以下とする。N含有量は0.008%以下であるのが好ましい。N含有量の下限は特に限定する必要はないが、N含有量の過剰な低減は著しいコスト上昇を招く。このため、N含有量は0.0002%以上とすることが好ましく、0.0008%以上とすることがより好ましい。
N: 0.01% or less N is an element that is contained as an impurity and deteriorates toughness. If the N content exceeds 0.01%, coarse nitrides are formed in the steel, and the local deformability and toughness are significantly deteriorated. Therefore, the N content is 0.01% or less. The N content is preferably 0.008% or less. The lower limit of the N content is not particularly limited, but excessive reduction of the N content causes a significant cost increase. For this reason, the N content is preferably 0.0002% or more, and more preferably 0.0008% or more.
 Cr:0.25~3.00%
 Crは、鋼の焼入れ性を高める作用を有する元素である。そのため、Mn含有量を1.50%以下に制限する実施の形態では特に重要な元素である。また、Crはオーステナイト生成元素であり、高ひずみ成形時におけるひずみ誘起フェライト変態を抑制する作用を有する。そのため、Crを含有させることで、熱間成形後の鋼板部材において安定した硬度分布を得ることが容易になる。Cr含有量が0.25%未満では、上記の効果を十分に得ることはできない。したがって、Cr含有量は0.25%以上とする。一方、Cr含有量が3.00%を超えると、Crが鋼中の炭化物に濃化して、熱間成形に供する際の加熱工程における炭化物の固溶を遅延させ、焼入れ性を低下させる。したがって、Cr含有量は3.00%以下とする。Cr含有量は0.30%以上であるのが好ましく、0.40%以上であるのがより好ましい。また、Cr含有量は2.50%以下であるのが好ましく、2.00%以下であるのが好ましい。
Cr: 0.25 to 3.00%
Cr is an element having an effect of enhancing the hardenability of steel. Therefore, it is an especially important element in the embodiment in which the Mn content is limited to 1.50% or less. Cr is an austenite-forming element and has an action of suppressing strain-induced ferrite transformation during high strain forming. Therefore, by containing Cr, it becomes easy to obtain a stable hardness distribution in the steel sheet member after hot forming. If the Cr content is less than 0.25%, the above effects cannot be obtained sufficiently. Therefore, the Cr content is 0.25% or more. On the other hand, if the Cr content exceeds 3.00%, Cr concentrates in carbides in the steel, delays the solid solution of carbides in the heating process when subjected to hot forming, and decreases hardenability. Therefore, the Cr content is 3.00% or less. The Cr content is preferably 0.30% or more, and more preferably 0.40% or more. Moreover, it is preferable that Cr content is 2.50% or less, and it is preferable that it is 2.00% or less.
 Ti:0.01~0.05%
 Tiは、熱間成形用鋼板をAc点以上に加熱して熱間成形に供する際に、オーステナイト粒の再結晶を抑制する作用を有する元素である。さらに微細な炭化物を形成してオーステナイト粒の粒成長を抑制して細粒にする作用を有する。このため、熱間成形鋼板部材の局部変形能を大きく改善する作用を有する。また、Tiは鋼中のNと優先的に結合するため、BNの析出によるBの消費を抑制し、その結果としてBによる焼入れ性を高める作用を有する。したがって、Ti含有量は0.01%以上とする。しかし、0.05%を超えて含有させると、TiCの析出量が増加してCが消費され、焼入れ後の強度が低下する。このため、Ti含有量は0.05%以下とする。Ti含有量は0.015%以上であるのが好ましい。また、Ti含有量は0.04%以下であるのが好ましく、0.03%以下であるのが好ましい。
Ti: 0.01 to 0.05%
Ti is an element having an action of suppressing recrystallization of austenite grains when the hot forming steel sheet is heated to Ac 3 point or more and used for hot forming. Furthermore, it has the effect | action which forms a fine carbide | carbonized_material and suppresses the grain growth of an austenite grain and makes it a fine grain. For this reason, it has the effect | action which improves the local deformability of a hot-formed steel plate member greatly. Moreover, since Ti preferentially bonds with N in the steel, the consumption of B due to the precipitation of BN is suppressed, and as a result, it has the effect of improving the hardenability by B. Therefore, the Ti content is 0.01% or more. However, if the content exceeds 0.05%, the amount of TiC deposited increases, C is consumed, and the strength after quenching decreases. For this reason, Ti content shall be 0.05% or less. The Ti content is preferably 0.015% or more. Moreover, it is preferable that Ti content is 0.04% or less, and it is preferable that it is 0.03% or less.
 B:0.001~0.01%
 Bは、鋼の焼入れ性を高め、かつ、焼入れ後の強度を安定して確保することを可能にする作用を有する元素である。そのため、Mn含有量を1.50%以下に制限する実施の形態では特に重要な元素である。B含有量が0.001%未満では、上記の効果を十分に得ることができない。したがって、B含有量は0.001%以上とする。一方、B含有量が0.01%を超えると、上記の効果は飽和し、さらに焼入れ部の局部変形能劣化を招く。したがって、B含有量は0.01%以下とする。B含有量は0.005%以下であるのが好ましい。
B: 0.001 to 0.01%
B is an element having an effect of enhancing the hardenability of steel and ensuring the strength after quenching stably. Therefore, it is an especially important element in the embodiment in which the Mn content is limited to 1.50% or less. If the B content is less than 0.001%, the above effects cannot be obtained sufficiently. Therefore, the B content is 0.001% or more. On the other hand, when the B content exceeds 0.01%, the above effect is saturated, and further, local deformability deterioration of the quenched portion is caused. Therefore, the B content is 0.01% or less. The B content is preferably 0.005% or less.
 実施の形態の熱間成形鋼板部材は、上記のCからBまでの元素と、残部Feおよび不純物とからなる化学組成を有する。 The hot-formed steel plate member of the embodiment has a chemical composition composed of the above elements C to B, the remaining Fe and impurities.
 ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、実施の形態に悪影響を与えない範囲で許容されるものを意味する。 Here, "impurities" are components mixed in due to various factors in the manufacturing process, such as ores and scraps, when manufacturing steel sheets industrially, and are allowed within a range that does not adversely affect the embodiment. Means what will be done.
 実施の形態の熱間成形鋼板部材には、上記の元素に加えてさらに、下記に示す量のNb、Ni、Cu、Mo、VおよびCaからなる群より選択される1種以上の元素を含有させても良い。 In addition to the above elements, the hot-formed steel sheet member of the embodiment further contains one or more elements selected from the group consisting of Nb, Ni, Cu, Mo, V, and Ca in the amounts shown below. You may let them.
 Nb:0~0.50%
 Nbは、熱間成形用鋼板をAc点以上に加熱して熱間成形に供する際に、再結晶を抑制し、さらに微細な炭化物を形成して粒成長を抑制し、オーステナイト粒を細粒にする作用を有する元素である。このため、熱間成形鋼板部材の局部変形能を大きく改善する作用を有する。したがって、必要に応じてNbを含有させても良い。しかし、0.50%を超えて含有させると、NbCの析出量が増加してCが消費され、焼入れ後の強度が低下する。このため、Nbを含有させる場合にはその含有量は0.50%以下とする。Nb含有量は0.45%以下であるのが好ましい。上記の効果を得たい場合は、Nb含有量を0.003%以上とすることが好ましく、0.005%以上とすることがより好ましい。
Nb: 0 to 0.50%
Nb suppresses recrystallization and forms fine carbides to suppress grain growth when heating a hot forming steel sheet to Ac 3 point or higher to be used for hot forming. Fine austenite grains It is an element which has the effect | action which makes it. For this reason, it has the effect | action which improves the local deformability of a hot-formed steel plate member greatly. Therefore, you may contain Nb as needed. However, if the content exceeds 0.50%, the amount of NbC deposited increases, C is consumed, and the strength after quenching decreases. For this reason, when it contains Nb, the content shall be 0.50% or less. The Nb content is preferably 0.45% or less. To obtain the above effect, the Nb content is preferably 0.003% or more, and more preferably 0.005% or more.
 Ni:0~2.0%
 Niは、鋼板の焼入れ性を高め、かつ、焼入れ後の強度を安定して確保するのに有効な元素であるため、必要に応じて含有させても良い。しかし、2.0%を超えてNiを含有させてもその効果は小さく、いたずらにコストの増加を招く。このため、Niを含有させる場合にはその含有量は2.0%以下とする。Ni含有量は1.5%以下であるのが好ましい。上記の効果を得たい場合は、Ni含有量を0.01%以上とすることが好ましく、0.05%以上とすることがより好ましい。
Ni: 0 to 2.0%
Ni is an element effective for enhancing the hardenability of the steel sheet and stably securing the strength after quenching, and therefore Ni may be contained as necessary. However, even if Ni is contained in excess of 2.0%, the effect is small, and the cost is unnecessarily increased. For this reason, when it contains Ni, the content shall be 2.0% or less. The Ni content is preferably 1.5% or less. In order to obtain the above effect, the Ni content is preferably 0.01% or more, and more preferably 0.05% or more.
 Cu:0~1.0%
 Cuは、鋼板の焼入れ性を高め、かつ、焼入れ後の強度を安定して確保するのに有効な元素であるため、必要に応じて含有させても良い。しかし、1.0%を超えてCuを含有させてもその効果は小さく、いたずらにコストの増加を招く。このため、Cuを含有させる場合にはその含有量は1.0%以下とする。Cu含有量は0.5%以下であるのが好ましい。上記の効果を得たい場合は、Cu含有量を0.01%以上とすることが好ましく、0.03%以上とすることがより好ましい。
Cu: 0 to 1.0%
Cu is an element effective for enhancing the hardenability of the steel sheet and stably securing the strength after quenching, and may be contained as necessary. However, even if Cu is contained exceeding 1.0%, the effect is small, and the cost is unnecessarily increased. For this reason, when it contains Cu, the content shall be 1.0% or less. The Cu content is preferably 0.5% or less. In order to obtain the above effect, the Cu content is preferably 0.01% or more, and more preferably 0.03% or more.
 Mo:0~1.0%
 Moは、熱間成形用鋼板をAc点以上に加熱して熱間成形に供する際に、微細な炭化物を形成して粒成長を抑制し、オーステナイト粒を細粒にする作用を有する元素である。また、熱間成形鋼板部材の局部変形能を大きく改善する効果も有する。このため、必要に応じてMoを含有させても良い。しかし、Mo含有量が1.0%を超えると、その効果は飽和し、いたずらにコストの増加を招く。したがって、Moを含有する場合にはその含有量は1.0%以下とする。Mo含有量は0.7%以下であるのが好ましい。上記の効果を得たい場合は、Mo含有量を0.01%以上とすることが好ましく、0.04%以上とすることがより好ましい。
Mo: 0 to 1.0%
Mo is an element having an action of forming fine carbides to suppress grain growth and making austenite grains fine when heating a hot-forming steel sheet to Ac 3 or more to be used for hot forming. is there. It also has the effect of greatly improving the local deformability of the hot-formed steel sheet member. For this reason, you may contain Mo as needed. However, when the Mo content exceeds 1.0%, the effect is saturated and the cost is increased unnecessarily. Therefore, when it contains Mo, the content shall be 1.0% or less. The Mo content is preferably 0.7% or less. To obtain the above effect, the Mo content is preferably 0.01% or more, and more preferably 0.04% or more.
 V:0~1.0%
 Vは、鋼板の焼入れ性を高め、かつ、焼入れ後の強度を安定して確保するのに有効な元素であるため、必要に応じて含有させても良い。しかし、1.0%を超えてVを含有させてもその効果は小さく、いたずらにコストの増加を招く。このため、Vを含有する場合にはその含有量は1.0%以下とする。V含有量は0.08%以下であるのが好ましい。上記の効果を得たい場合は、V含有量を0.01%以上とすることが好ましく、0.02%以上とすることがより好ましい。
V: 0 to 1.0%
V is an element effective for enhancing the hardenability of the steel sheet and stably securing the strength after quenching, and may be contained as necessary. However, even if V is contained exceeding 1.0%, the effect is small, and the cost is unnecessarily increased. For this reason, when it contains V, the content shall be 1.0% or less. The V content is preferably 0.08% or less. In order to obtain the above effect, the V content is preferably 0.01% or more, and more preferably 0.02% or more.
 Ca:0~0.005%
 Caは、鋼中の介在物を微細化し、焼入れ後の局部変形能を向上させる効果を有する元素であるため、必要に応じて含有させても良い。しかし、Ca含有量が0.005%を超えるとその効果は飽和して、いたずらにコストの増加を招く。したがって、Caを含有する場合にはその含有量は0.005%以下とする。Ca含有量は0.004%以下であるのが好ましい。上記の効果を得たい場合は、Ca含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。
Ca: 0 to 0.005%
Ca is an element that has the effect of reducing the inclusions in the steel and improving the local deformability after quenching, and thus may be included as necessary. However, when the Ca content exceeds 0.005%, the effect is saturated and the cost is unnecessarily increased. Therefore, when it contains Ca, the content shall be 0.005% or less. The Ca content is preferably 0.004% or less. When it is desired to obtain the above effect, the Ca content is preferably 0.001% or more, and more preferably 0.002% or more.
 (B)金属組織
 実施の形態において、局部変形能を改善するためには、熱間成形後の金属組織内での硬さのバラツキを抑制することが好ましい。組織内での硬さ差が大きくなるとボイドの起点となるため、硬質なマルテンサイトおよびベイナイトのような低温変態組織ならびに軟質なフェライト組織の混在は可能な限り抑制するのが好ましい。そのため、実施の形態の熱間成形鋼板部材は、低温変態組織を主体とし、かつ、フェライトの体積率が3%以下である金属組織を有するものであることが好ましい。
(B) Metal structure In the embodiment, in order to improve local deformability, it is preferable to suppress variation in hardness in the metal structure after hot forming. When the difference in hardness in the structure becomes large, it becomes a starting point of voids. Therefore, it is preferable to suppress the mixture of low-temperature transformation structure such as hard martensite and bainite and soft ferrite structure as much as possible. Therefore, the hot-formed steel sheet member of the embodiment preferably has a metal structure mainly composed of a low-temperature transformation structure and a volume ratio of ferrite of 3% or less.
 なお、低温変態組織を主体とする金属組織とは、マルテンサイト、焼戻しマルテンサイトおよびベイナイトの合計体積率が50%以上である金属組織を意味する。ここでの焼戻しマルテンサイトとは、焼入時に変態するマルテンサイトが自動焼戻しにて焼き戻されたマルテンサイト、および焼入後の塗装焼き付け工程等の低温焼戻しを受けたマルテンサイトを意味する。金属組織中の低温変態組織は、体積率で、80%以上であることが好ましく、90%以上であることがより好ましい。 The metal structure mainly composed of a low temperature transformation structure means a metal structure in which the total volume ratio of martensite, tempered martensite and bainite is 50% or more. The tempered martensite here means martensite in which martensite transformed during quenching is tempered by automatic tempering, and martensite that has undergone low temperature tempering such as a paint baking process after quenching. The low temperature transformation structure in the metal structure is preferably 80% or more and more preferably 90% or more in volume ratio.
 また、残留オーステナイトはTRIP効果により延性を向上するため、含まれていても問題ない。ただし、オーステナイトから変態したマルテンサイトは硬質のため、ボイドの起点となり得る。そのため、金属組織中に含まれる残留オーステナイトは、体積率で、10%以下であることが好ましい。 Moreover, since retained austenite improves ductility by the TRIP effect, there is no problem even if it is included. However, since martensite transformed from austenite is hard, it can be a starting point for voids. Therefore, the retained austenite contained in the metal structure is preferably 10% or less by volume ratio.
 Mn偏析度α:1.6以下
 α=[板厚中心部での最大Mn濃度(質量%)]/[表面から板厚の1/4深さ位置での平均Mn濃度(質量%)]   ・・・(i)
 熱間成形鋼板部材の板厚断面中心部では、中心偏析が起きることでMnが濃化する。そのため、MnSが介在物として中心に集中し、硬質なマルテンサイトができやすくなるため、周囲との硬さに差が生じ、局部変形能が悪化する結果となる。特に上記(i)式で表されるMnの偏析度αの値が1.6を超えると、局部変形能が著しく悪化する。したがって、局部変形能を改善するためには、熱間成形鋼板部材のαの値を1.6以下とすることが好ましい。局部変形能の一層の改善のためには、αの値を1.2以下とすることがより好ましい。
Mn segregation degree α: 1.6 or less α = [maximum Mn concentration (mass%) at the center of the plate thickness] / [average Mn concentration (mass%) at the 1/4 depth position of the plate thickness from the surface]・ ・ (I)
In the center part of the thickness cross section of the hot-formed steel sheet member, Mn is concentrated due to center segregation. For this reason, MnS concentrates in the center as inclusions, and it becomes easy to form hard martensite, resulting in a difference in hardness from the surroundings and a deterioration in local deformability. Particularly, when the value of the segregation degree α of Mn represented by the above formula (i) exceeds 1.6, the local deformability is remarkably deteriorated. Therefore, in order to improve local deformability, the value of α of the hot-formed steel sheet member is preferably set to 1.6 or less. In order to further improve the local deformability, the value of α is more preferably 1.2 or less.
 鋼板中のMnの偏析は、主に鋼板組成、特に不純物含有量と、連続鋳造の条件とにより制御され、熱間圧延および熱間成形の前後では実質的に変化しない。したがって、熱間成形用鋼板の介在物および偏析状況は、それから熱間成形により製造された熱間成形鋼板部材の介在物および偏析状況とほとんど同じである。熱間成形によってαの値が大きく変化することはないため、熱間成形用鋼板のαの値を1.6以下にすることで、熱間成形鋼板部材のαの値も1.6以下にすることができ、αの値を1.2以下にすることで、熱間成形鋼板部材のαの値も1.2以下にすることができる。 The segregation of Mn in the steel sheet is controlled mainly by the steel sheet composition, particularly the impurity content, and the conditions for continuous casting, and does not substantially change before and after hot rolling and hot forming. Therefore, the inclusions and segregation status of the hot-forming steel sheet are almost the same as the inclusions and segregation status of the hot-formed steel sheet member produced by hot forming. Since the value of α does not change greatly by hot forming, the value of α of the hot-formed steel sheet member is also reduced to 1.6 or less by setting the value of α of the hot-forming steel sheet to 1.6 or less. When the value of α is 1.2 or less, the value of α of the hot-formed steel sheet member can also be 1.2 or less.
 板厚中心部での最大Mn濃度は、以下の方法により求める。電子プローブマイクロアナライザ(EPMA)を用いて鋼板の板厚中心部においてライン分析を行い、分析結果から高い順に3つの測定値を選択し、その平均値を算出する。また、表面から板厚の1/4深さ位置での平均Mn濃度は、以下の方法により求める。同じくEPMAを用いて鋼板の1/4深さ位置において10ヶ所の分析を行い、その平均値を算出する。 The maximum Mn concentration at the center of the plate thickness is determined by the following method. Using an electronic probe microanalyzer (EPMA), line analysis is performed at the center of the plate thickness of the steel sheet, three measured values are selected in descending order from the analysis result, and the average value is calculated. In addition, the average Mn concentration at the 1/4 depth position of the plate thickness from the surface is determined by the following method. Similarly, using EPMA, analysis is performed at 10 positions at the 1/4 depth position of the steel sheet, and the average value is calculated.
 清浄度:0.08%以下
 鋼板部材中にJIS G 0555(2003)に記載のA系、B系およびC系介在物が多く存在すると、上記介在物が破壊の起点となりやすくなる。介在物が増加すると亀裂伝播が容易に起こるため、局部変形能が劣化する。特に、1.0GPa以上の引張強度を有するような熱間成形鋼板部材の場合、介在物の存在割合を低く抑えることが好ましい。JIS G 0555(2003)で規定される鋼の清浄度の値が0.08%を超えると、介在物の量が多いため、実用上十分な局部変形能を確保することが困難となる。そのため、熱間成形用鋼板の清浄度の値は0.08%以下とすることが好ましい。局部変形能をより一層改善するには清浄度の値を0.04%以下とすることがより好ましい。なお、鋼の清浄度の値は、上記のA系、B系およびC系介在物の占める面積百分率を算出したものである。
Cleanliness: 0.08% or less When a large amount of inclusions of A, B, and C inclusions described in JIS G 0555 (2003) are present in the steel sheet member, the inclusions are likely to be the starting point of destruction. If the inclusions increase, crack propagation easily occurs and local deformability deteriorates. In particular, in the case of a hot-formed steel sheet member having a tensile strength of 1.0 GPa or more, it is preferable to suppress the presence ratio of inclusions. If the value of the cleanliness of the steel specified in JIS G 0555 (2003) exceeds 0.08%, it is difficult to ensure a practically sufficient local deformability because the amount of inclusions is large. Therefore, the cleanliness value of the hot forming steel plate is preferably 0.08% or less. In order to further improve the local deformability, the cleanliness value is more preferably 0.04% or less. In addition, the value of the cleanliness of steel is obtained by calculating the area percentage occupied by the above-mentioned A-type, B-type and C-type inclusions.
 熱間成形によって清浄度の値が大きく変化することはないため、熱間成形用鋼板の清浄度の値を0.08%以下とすることで、熱間成形鋼板部材の清浄度の値も0.08%以下にすることができ、0.04%以下とすることで、熱間成形鋼板部材の清浄度の値も0.04%以下にすることができる。 Since the cleanness value does not change greatly by hot forming, the cleanness value of the hot-formed steel sheet member is also 0 by setting the cleanness value of the hot-formed steel sheet to 0.08% or less. 0.08% or less, and by setting it to 0.04% or less, the cleanliness value of the hot-formed steel sheet member can also be made 0.04% or less.
 実施の形態において、熱間成形用鋼板または熱間成形鋼板部材の清浄度の値は以下の方法によって求める。熱間成形用鋼板または熱間成形鋼板部材について、5ヶ所から供試材を切り出す。そして、熱間成形用鋼板または熱間成形鋼板部材の板厚をtとすると、各供試材の板厚方向の1/8t、1/4t、1/2t、3/4t、7/8tの各位置について、点算法にて清浄度を調査する。各板厚における清浄度の値が最も大きい(清浄性が最も低い)数値を、その供試材の清浄度の値とする。 In the embodiment, the cleanliness value of the hot-formed steel plate or hot-formed steel plate member is obtained by the following method. For the hot forming steel plate or hot forming steel plate member, test materials are cut out from five locations. And when the plate thickness of the hot-formed steel plate or hot-formed steel plate member is t, 1 / 8t, 1 / 4t, 1 / 2t, 3 / 4t, 7 / 8t in the plate thickness direction of each test material For each position, the cleanliness is investigated by point calculation. The numerical value having the largest cleanliness value (lowest cleanliness) at each plate thickness is taken as the cleanliness value of the specimen.
 旧γ粒の平均粒径:10μm以下
 熱間成形鋼板部材中の旧γ粒径を小さくすれば局部変形能が改善される。マルテンサイトを主体とする鋼板では、旧γ粒界および粒内の下部組織の境界にてボイドが発生するが、旧γ粒の微細化により、ボイドの発生を抑制し、連結を遅延するため局部変形能を向上させることができる。旧γの平均粒径が10μmを超えるとこの効果を発揮できない。したがって、熱間成形鋼板部材中の旧γ粒の平均粒径は10μm以下とする。なお、旧γ粒を微細化させるためには、加熱温度を低温化し、加熱中の炭化物の溶解を遅延し粒の成長を抑制するのが効果的である。
Average particle size of old γ grains: 10 μm or less Local deformability is improved by reducing the old γ particle size in the hot-formed steel sheet member. In steel sheets mainly composed of martensite, voids are generated at the boundaries of the old γ grain boundaries and the substructure within the grains. However, the refinement of the old γ grains suppresses the generation of voids and delays the connection. Deformability can be improved. If the average particle size of the former γ exceeds 10 μm, this effect cannot be exhibited. Therefore, the average particle diameter of the old γ grains in the hot-formed steel sheet member is 10 μm or less. In order to refine the old γ grains, it is effective to lower the heating temperature, delay the dissolution of carbide during heating, and suppress the grain growth.
 旧γ粒の平均粒径は、ISO643で規定される方法を用いて測定することができる。すなわち、測定視野内における結晶粒数を計測し、測定視野の面積を当該結晶粒数で割ることによって結晶粒の平均面積を求め、円相当径での結晶粒径を算出する。その際、視野の境界にある粒は1/2個として計測し、倍率については結晶粒数が200個以上になるように調整することが好ましい。また、精度向上のためには複数の視野について計測を行うことが好ましい。 The average particle diameter of old γ grains can be measured using a method defined by ISO643. That is, the number of crystal grains in the measurement visual field is measured, the average area of the crystal grains is obtained by dividing the area of the measurement visual field by the number of crystal grains, and the crystal grain diameter in the equivalent circle diameter is calculated. At that time, it is preferable to measure the number of grains at the boundary of the visual field as 1/2 and adjust the magnification so that the number of crystal grains is 200 or more. In order to improve accuracy, it is preferable to measure a plurality of visual fields.
 残留炭化物:4×10個/mm以下
 熱間成形の場合、鋼中に一般に存在する炭化物の再固溶により十分な焼入れ性を確保することができる。しかしながら、炭化物の一部が再固溶されずに残留する場合がある。残留炭化物は、ピニングにより熱間成形中の加熱保持時のγ粒成長を抑制する効果を持つ。したがって、加熱保持中には残留炭化物が存在することが望ましい。熱間成形後にはこの残留炭化物が少ないほど、焼入れ性が向上し、高強度を確保することができる。よって加熱保持完了時に残留炭化物数密度が低減できることが好ましい。
Residual carbide: 4 × 10 3 pieces / mm 2 or less In the case of hot forming, sufficient hardenability can be secured by re-dissolution of carbide generally present in steel. However, a part of the carbide may remain without being re-dissolved. Residual carbide has an effect of suppressing γ grain growth during heating and holding during hot forming by pinning. Therefore, it is desirable for residual carbides to be present during heating and holding. The smaller the residual carbide after hot forming, the better the hardenability and the higher the strength. Therefore, it is preferable that the number density of residual carbides can be reduced upon completion of heating and holding.
 残留炭化物が多く存在すると、熱間成形後の焼入れ性が低下するおそれがあるだけでなく、残留炭化物はボイドの発生源となり局部変形能を劣化させる。特に、残留炭化物の数密度が4×10個/mmを超えると、熱間成形後の焼入れ性が悪化するおそれがある。そのため、熱間成形鋼板部材中に存在する残留炭化物の数密度は4×10個/mm以下とするのが好ましい。 If there is a large amount of residual carbide, not only the hardenability after hot forming may be lowered, but the residual carbide becomes a source of voids and deteriorates local deformability. In particular, if the number density of residual carbides exceeds 4 × 10 3 pieces / mm 2 , the hardenability after hot forming may be deteriorated. Therefore, the number density of residual carbides present in the hot-formed steel plate member is preferably 4 × 10 3 pieces / mm 2 or less.
 (C)めっき層
 実施の形態に係る高強度熱間成形鋼板部材は、その表面に耐食性の向上等を目的としてめっき層を有していても良い。めっき層は電気めっき層であっても良く、溶融めっき層であっても良い。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき、電気Zn-Fe合金めっき等が例示される。また、溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、一般的な範囲内で調整すれば良い。
(C) Plating layer The high-strength hot-formed steel plate member according to the embodiment may have a plating layer on the surface for the purpose of improving corrosion resistance. The plating layer may be an electroplating layer or a hot dipping layer. Examples of the electroplating layer include electrogalvanizing, electro-Zn—Ni alloy plating, electro-Zn—Fe alloy plating and the like. The hot dip galvanizing layer includes hot dip galvanizing, alloyed hot dip galvanizing, hot dip aluminum plating, hot dip Zn-Al alloy plating, hot dip Zn-Al-Mg alloy plating, hot dip Zn-Al-Mg-Si alloy plating, etc. Illustrated. The amount of plating adhesion is not particularly limited, and may be adjusted within a general range.
 (D)熱間成形用鋼板の製造方法
 実施の形態に係る熱間成形用鋼板部材の製造に用いる熱間成形用鋼板の製造条件について特に制限はないが、以下に示す製造方法を用いることにより、好適に製造することができる。
(D) Manufacturing method of hot forming steel plate There are no particular restrictions on the manufacturing conditions of the hot forming steel plate used for manufacturing the hot forming steel plate member according to the embodiment, but by using the manufacturing method shown below. , Can be preferably produced.
 上述の化学組成を有する鋼を炉で溶製した後、鋳造によってスラブを作製する。鋼板の清浄度を0.08%以下にするには、溶鋼を連続鋳造する際に、溶鋼の加熱温度をその鋼の液相線温度より5℃以上高い温度とし、かつ、単位時間当たりの溶鋼鋳込み量を6t/min以下に抑えることが望ましい。 鋼 After melting the steel having the above chemical composition in a furnace, a slab is produced by casting. In order to reduce the cleanliness of the steel sheet to 0.08% or less, when continuously casting the molten steel, the heating temperature of the molten steel is set to 5 ° C. higher than the liquidus temperature of the steel, and the molten steel per unit time. It is desirable to limit the casting amount to 6 t / min or less.
 連続鋳造時に溶鋼の単位時間当たりの鋳込み量が6t/minを超えると、鋳型内での溶鋼流動が速いために、凝固シェルに介在物が捕捉されやすくなり、スラブ中の介在物が増加する。また、溶鋼加熱温度が液相線温度より5℃高い温度未満であると、溶鋼の粘度が高くなり、連続鋳造機内にて介在物が浮上しにくく、結果として、スラブ中の介在物が増加して清浄性が悪化しやすくなる。 When the casting amount of molten steel per unit time exceeds 6 t / min during continuous casting, the molten steel flow in the mold is fast, so that inclusions are easily trapped in the solidified shell and inclusions in the slab increase. In addition, when the molten steel heating temperature is less than 5 ° C higher than the liquidus temperature, the viscosity of the molten steel increases, and inclusions hardly float in the continuous casting machine, resulting in an increase in inclusions in the slab. Cleanliness is likely to deteriorate.
 一方、溶鋼の液相線温度からの溶鋼加熱温度を5℃以上、かつ単位時間当たりの溶鋼鋳込み量を6t/min以下として鋳造することにより、介在物がスラブ内に持ち込まれにくくなる。その結果、スラブを作製する段階での介在物の量を効果的に減少させることができ、0.08%以下という鋼板清浄度を容易に達成できるようになる。 On the other hand, when the molten steel heating temperature from the liquidus temperature of the molten steel is 5 ° C. or more and the molten steel casting amount per unit time is 6 t / min or less, inclusions are hardly brought into the slab. As a result, the amount of inclusions at the stage of producing the slab can be effectively reduced, and the steel plate cleanliness of 0.08% or less can be easily achieved.
 溶鋼を連続鋳造する際、溶鋼加熱温度は液相線温度より8℃以上高い温度とすることがより望ましく、また、単位時間当たりの溶鋼鋳込み量を5t/min以下にすることがより望ましい。溶鋼加熱温度を液相線温度より8℃以上高い温度とし、かつ、単位時間当たりの溶鋼鋳込み量を5t/min以下にすることにより、清浄度を0.04%以下とすることが容易になるため望ましい。 When continuously casting molten steel, the molten steel heating temperature is more preferably 8 ° C. or higher than the liquidus temperature, and the molten steel casting amount per unit time is more preferably 5 t / min or less. By making the molten steel heating temperature 8 ° C. or more higher than the liquidus temperature and setting the molten steel casting amount per unit time to 5 t / min or less, it becomes easy to make the cleanliness 0.04% or less. Therefore it is desirable.
 局部変形能悪化の原因となるMnSの集中を抑制するためには、Mnの中心偏析を低減させる中心偏析低減処理を行うことが望ましい。中心偏析低減処理としては、スラブが完全凝固する前の未凝固層において、Mnが濃化した溶鋼を排出する方法が例示される。 In order to suppress the concentration of MnS that causes deterioration of local deformability, it is desirable to perform a center segregation reduction process that reduces the center segregation of Mn. Examples of the center segregation reduction treatment include a method of discharging molten steel enriched in Mn in an unsolidified layer before the slab is completely solidified.
 具体的には、電磁攪拌、未凝固層圧下等の処理を施すことで、完全凝固前のMnが濃化した溶鋼を排出させることができる。なお、電磁攪拌処理は、例えば、250~1000ガウスで未凝固溶鋼に流動を与えることで行うことができ、未凝固層圧下処理は、例えば、最終凝固部を1mm/m程度の勾配で圧下することで行うことができる。 Specifically, by performing treatment such as electromagnetic stirring and unsolidified layer pressure, molten steel enriched with Mn before complete solidification can be discharged. The electromagnetic stirring treatment can be performed, for example, by applying a flow to the unsolidified molten steel at 250 to 1000 gauss, and the unsolidified layer reduction treatment, for example, reduces the final solidified portion with a gradient of about 1 mm / m. Can be done.
 上記の方法で得られたスラブに対して、必要に応じてソーキング(均熱)処理を実施してもよい。ソーキング処理を行うことで、偏析したMnを拡散させ偏析度を低下させることができる。ソーキング処理を行う場合の好ましい均熱温度は1200~1300℃であり、均熱時間は20~50時間である。 ソ ー Soaking (soaking) treatment may be performed on the slab obtained by the above method as necessary. By performing the soaking process, segregated Mn can be diffused and the degree of segregation can be reduced. In the soaking process, a preferable soaking temperature is 1200 to 1300 ° C., and a soaking time is 20 to 50 hours.
 その後、上記のスラブに熱間圧延を施す。熱間圧延条件は、炭化物をより均一に生成させる観点から、熱間圧延開始温度を1000~1300℃の温度域とし、熱間圧延完了温度を850℃以上とすることが好ましい。巻取温度は、加工性の観点からは高い方が好ましいが、高すぎるとスケール生成により歩留まりが低下するので、500~650℃とすることが好ましい。熱間圧延により得られた熱延鋼板には、酸洗等により脱スケール処理を施す。 After that, hot rolling is performed on the slab. In terms of hot rolling conditions, it is preferable that the hot rolling start temperature is 1000 to 1300 ° C. and the hot rolling completion temperature is 850 ° C. or higher from the viewpoint of more uniformly generating carbides. The coiling temperature is preferably higher from the viewpoint of workability, but if it is too high, the yield decreases due to scale formation, so it is preferably 500 to 650 ° C. The hot-rolled steel sheet obtained by hot rolling is descaled by pickling or the like.
 実施の形態においては、熱間成形後の旧γ粒径を微細にし、残留炭化物の数密度を低減させるために、脱スケール処理が施された熱延鋼板に焼鈍を施して熱延焼鈍鋼板とすることが好ましい。 In the embodiment, in order to refine the old γ grain size after hot forming and reduce the number density of residual carbide, the hot-rolled steel sheet subjected to descaling treatment is annealed to obtain a hot-rolled annealed steel sheet and It is preferable to do.
 熱間成形後の旧γ粒径を微細にするためには、溶解中の炭化物により、γ粒の成長を抑制することが好ましい。ただし、熱間成形鋼板部材中では、焼入れ性を向上させ、高強度を確保し、ボイドの発生を抑制するために、残留炭化物の数密度を低減することが好ましい。 In order to make the old γ grain size after hot forming fine, it is preferable to suppress the growth of γ grains by the carbide being dissolved. However, in the hot-formed steel sheet member, it is preferable to reduce the number density of residual carbides in order to improve hardenability, ensure high strength, and suppress the generation of voids.
 熱間成形鋼板部材中の旧γ粒径を微細にし、かつ、残留炭化物の数密度を低減させるためには、熱間成形前の鋼板中に存在する炭化物の形態及び炭化物中の元素の濃化度合いが重要となる。炭化物は微細に分散していることが望ましいが、その場合、炭化物の溶解が早くなるため、粒成長抑制効果が期待できない。炭化物中にMn、Cr等の元素が濃化していると炭化物が固溶しにくくなる。そのため、熱間成形前の鋼板中の炭化物の形態は微細に分散し、かつ炭化物中の元素の濃化度合いは高い方が望ましい。 In order to reduce the old γ grain size in the hot-formed steel sheet member and reduce the number density of residual carbides, the form of carbides existing in the steel sheet before hot forming and the concentration of elements in the carbides Degree is important. Although it is desirable that the carbide is finely dispersed, in that case, since the dissolution of the carbide is accelerated, the effect of suppressing grain growth cannot be expected. If elements such as Mn and Cr are concentrated in the carbide, the carbide is difficult to dissolve. For this reason, it is desirable that the form of carbide in the steel sheet before hot forming is finely dispersed and the concentration of elements in the carbide is high.
 炭化物の形態は、熱間圧延後の焼鈍条件を調整することで制御することが可能である。具体的には、焼鈍温度をAc1点以下かつAc1点-100℃以上とし、5時間以下の焼鈍を行うことが好ましい。 The form of carbide can be controlled by adjusting the annealing conditions after hot rolling. Specifically, it is preferable to perform annealing for 5 hours or less by setting the annealing temperature to Ac1 point or lower and Ac1 point to −100 ° C. or higher.
 熱間圧延後の巻取温度を550℃以下にすると、炭化物が微細分散しやすくなる。しかしながら、炭化物中の元素の濃化度合いも低下するため、焼鈍を行うことにより、元素の濃化を進行させる。 When the coiling temperature after hot rolling is set to 550 ° C. or less, the carbide is easily finely dispersed. However, since the concentration level of the element in the carbide also decreases, the concentration of the element is advanced by annealing.
 巻取温度が550℃以上の場合は、パーライトが生成しており、パーライト中の炭化物への元素濃化は進んでいる。この場合は、パーライトを分断させて炭化物を分散するために、焼鈍を行う。 When the coiling temperature is 550 ° C. or higher, pearlite is generated, and element concentration in the carbide in pearlite is progressing. In this case, annealing is performed in order to divide the pearlite and disperse the carbide.
 実施の形態における熱間成形鋼板部材用の鋼板としては、上記熱延焼鈍鋼板、当該熱延焼鈍鋼板に冷間圧延を施した冷延鋼板、又は当該冷延鋼板に焼鈍を施した冷延焼鈍鋼板を用いることができる。処理工程は、製品の板厚精度要求レベル等に応じて適宜選択すればよい。なお、炭化物は硬質であるため、冷間圧延を施した場合でもその形態が変化することはなく、冷間圧延後も冷間圧延前の存在形態が維持される。 As the steel sheet for the hot-formed steel sheet member in the embodiment, the hot-rolled annealed steel sheet, the cold-rolled steel sheet that has been cold-rolled to the hot-rolled annealed steel sheet, or the cold-rolled annealed steel that has been annealed A steel plate can be used. What is necessary is just to select a process process suitably according to the plate | board thickness precision required level etc. of a product. In addition, since carbide is hard, even when cold rolling is performed, the form does not change, and the form before cold rolling is maintained even after cold rolling.
 冷間圧延は通常の方法を用いて行えばよい。良好な平坦性を確保する観点からは、冷間圧延における圧下率は30%以上とすることが好ましい。一方、荷重が過大となることを避けるため、冷間圧延における圧下率は80%以下とすることが好ましい。 Cold rolling may be performed using a normal method. From the viewpoint of ensuring good flatness, the rolling reduction in cold rolling is preferably 30% or more. On the other hand, in order to avoid an excessive load, the rolling reduction in cold rolling is preferably 80% or less.
 冷延鋼板に焼鈍を施す場合には、事前に脱脂等の処理を施すのが望ましい。焼鈍は冷延歪み取りの目的で、Ac1点以下で時間以下、好ましくは3時間以下の焼鈍を行うのが好ましい。 When the cold-rolled steel sheet is annealed, it is desirable to perform a degreasing process in advance. For the purpose of cold-rolling distortion removal, annealing is preferably performed at an Ac1 point or less and for a time or less, preferably for 3 hours or less.
 (E)めっき層の形成方法
 前述のように、実施の形態に係る熱間成形鋼板部材は、その表面に耐食性の向上等を目的としてめっき層を有していても良い。めっき層の形成は、熱間成形を施す前の鋼板に対して行うことが望ましい。鋼板の表面に亜鉛系めっきを施す場合には、生産性の観点からは、連続溶融亜鉛めっきラインにおいて溶融亜鉛系めっきを施すことが好ましい。その場合、連続溶融亜鉛めっきラインにおいてめっき処理に先立って焼鈍を施しても良く、加熱保持温度を低温にして焼鈍を行わずにめっき処理のみを施すものであっても良い。また、溶融亜鉛めっき後に合金化熱処理を行って、合金化溶融亜鉛めっき鋼板にしても良い。亜鉛系めっきは電気めっきにより施すこともできる。なお、亜鉛系めっきは、鋼材の表面の少なくとも一部に施すことができるが、鋼板の場合には、片面または両面の全面に施すのが一般的である。
(E) Method for forming plating layer As described above, the hot-formed steel sheet member according to the embodiment may have a plating layer on the surface for the purpose of improving corrosion resistance or the like. The plating layer is preferably formed on the steel plate before hot forming. When zinc-based plating is applied to the surface of the steel sheet, it is preferable to perform hot-dip galvanizing in a continuous hot dip galvanizing line from the viewpoint of productivity. In that case, annealing may be performed prior to the plating process in the continuous hot dip galvanizing line, or only the plating process may be performed without performing annealing at a low heating holding temperature. Further, an alloying heat treatment may be performed after hot dip galvanization to form an alloyed hot dip galvanized steel sheet. Zinc-based plating can also be applied by electroplating. The zinc-based plating can be applied to at least a part of the surface of the steel material, but in the case of a steel plate, it is generally applied to the entire surface of one side or both sides.
 (F)熱間成形鋼板部材の製造方法
 上記の熱間成形用鋼板に対して熱間成形を施すことによって、高強度熱間成形鋼板部材を得ることができる。熱間成形時における鋼板の加熱速度は粒成長を抑制する観点から、20℃/sec以上が望ましい。さらに好ましくは50℃/sec以上である。熱間成形時における鋼板の加熱温度は、Ac点を超え、1050℃以下の温度とすることが望ましい。加熱温度がAc点以下では、熱間成形前にオーステナイト単相状態とはならず、鋼板中にフェライト、パーライトまたはベイナイトが残存してしまう。その結果、熱間成形後にマルテンサイトを主体とする金属組織とはならず、所望の硬度が得られない場合がある。また、熱間成形鋼板部材の硬度ばらつきも大きくなってしまうだけでなく局部変形能も劣化する。
(F) Manufacturing method of hot-formed steel plate member A high-strength hot-formed steel plate member can be obtained by performing hot forming on the hot-formed steel plate. The heating rate of the steel sheet during hot forming is preferably 20 ° C./sec or more from the viewpoint of suppressing grain growth. More preferably, it is 50 ° C./sec or more. It is desirable that the heating temperature of the steel sheet during hot forming exceeds Ac 3 point and is 1050 ° C. or lower. When the heating temperature is 3 points or less of Ac, the austenite single phase state is not obtained before hot forming, and ferrite, pearlite, or bainite remains in the steel sheet. As a result, the metal structure is not mainly composed of martensite after hot forming, and the desired hardness may not be obtained. Further, not only the hardness variation of the hot-formed steel sheet member is increased, but also the local deformability is deteriorated.
 一方、加熱温度が1050℃を超えると、オーステナイトが粗大化し、鋼板部材の局部変形能が劣化する場合がある。したがって、熱間成形時における鋼板の加熱温度は1050℃以下とするのが好ましい。また、加熱時間が1min未満であると、加熱してもオーステナイト単相化が不十分となる場合があり、さらに炭化物の溶解が不十分となるので、γ粒径は微細となっても、残留炭化物の数密度が大きくなる。10minを超えると、オーステナイトが粗大化し、熱間成形鋼板部材の局部変形能が劣化する場合がある。したがって、熱間成形時における鋼板の加熱時間は、1~10minとするのが望ましい。 On the other hand, when the heating temperature exceeds 1050 ° C., austenite becomes coarse, and the local deformability of the steel sheet member may deteriorate. Therefore, the heating temperature of the steel sheet during hot forming is preferably 1050 ° C. or lower. Further, if the heating time is less than 1 min, the austenite single phase may be insufficient even when heated, and further, the carbide is not sufficiently dissolved. The number density of carbides increases. When it exceeds 10 minutes, austenite will coarsen and the local deformability of a hot-formed steel plate member may deteriorate. Accordingly, the heating time of the steel sheet during hot forming is desirably 1 to 10 minutes.
 熱間成形開始温度がAr点未満の温度であると、フェライト変態が始まるために、その後に強制冷却してもマルテンサイトを主体とする組織にならない場合がある。そのため、熱間成形開始温度は、Ar点以上とするのが望ましい。熱間成形後は、10℃/sec以上の冷却速度で急冷するのが望ましく、20℃/sec以上の速度で急冷するのがより望ましい。冷却速度の上限は特に規定しない。 If the hot forming start temperature is lower than the Ar 3 point, ferrite transformation starts, so that even if forced cooling is performed thereafter, a structure mainly composed of martensite may not be formed. Therefore, it is desirable that the hot forming start temperature is Ar 3 points or more. After hot forming, it is desirable to rapidly cool at a cooling rate of 10 ° C./sec or more, and it is more desirable to quench at a rate of 20 ° C./sec or more. There is no particular upper limit on the cooling rate.
 硬度ばらつきの少ないマルテンサイト主体の金属組織を有する熱間成形鋼板部材を得るためには、熱間成形後に鋼板の表面温度が350℃以下になるまで急冷させるのが望ましい。冷却終了温度は、100℃以下とするのが好ましく、室温とするのがより好ましい。 In order to obtain a hot-formed steel sheet member having a martensite-based metal structure with little hardness variation, it is desirable to rapidly cool the steel sheet until the surface temperature of the steel sheet is 350 ° C. or lower after hot forming. The cooling end temperature is preferably 100 ° C. or lower, more preferably room temperature.
 以下、実施例によって実施の形態をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the embodiments will be described more specifically by way of examples. However, the present invention is not limited to these examples.
 表1に示す化学成分を有する鋼を試験転炉で溶製し、連続鋳造試験機にて連続鋳造を実施し、幅1000mm、厚さ250mmのスラブを作製した。表1において、*は、実施の形態の組成範囲を外れることを意味している。表2に示す条件において、溶鋼の加熱温度および単位時間当たりの溶鋼鋳込み量の調整を行った。スラブの冷却速度の制御は2次冷却スプレー帯の水量を変更することにより行った。中心偏析低減処理は、凝固末期部においてロールを用いて、1mm/mの勾配で軽圧下を実施し、最終凝固部の濃化溶鋼を排出することにより行った。一部のスラブについては、その後、1250℃、24時間の条件においてソーキング処理を実施した。 Steel having the chemical components shown in Table 1 was melted in a test converter, and continuous casting was performed with a continuous casting tester to produce a slab having a width of 1000 mm and a thickness of 250 mm. In Table 1, * means out of the composition range of the embodiment. Under the conditions shown in Table 2, the heating temperature of the molten steel and the amount of molten steel cast per unit time were adjusted. The cooling rate of the slab was controlled by changing the amount of water in the secondary cooling spray zone. The center segregation reduction treatment was performed by performing light reduction at a gradient of 1 mm / m using a roll in the final solidification portion and discharging the concentrated molten steel in the final solidification portion. Some slabs were then soaked at 1250 ° C. for 24 hours.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 得られたスラブについて、熱間圧延試験機によって熱間圧延を施し、厚さ3.0mmの熱延鋼板とした。巻取り後、熱延鋼板を酸洗し、さらに、焼鈍を施した。一部の鋼板についてはさらに冷間圧延試験機にて冷間圧延を施し、厚さ1.5mmの冷延鋼板とした。さらに、一部の冷延鋼板に、600℃で2hの焼鈍を施し、冷延焼鈍鋼板を得た。 The obtained slab was hot rolled by a hot rolling tester to obtain a hot rolled steel sheet having a thickness of 3.0 mm. After winding, the hot rolled steel sheet was pickled and further annealed. Some of the steel sheets were further cold-rolled with a cold rolling tester to obtain cold-rolled steel sheets having a thickness of 1.5 mm. Further, some of the cold-rolled steel sheets were annealed at 600 ° C. for 2 hours to obtain cold-rolled annealed steel sheets.
 その後、図1および図2に示すように、熱間プレス試験装置を用いて、上記の熱間成形用鋼板1に対して、金型(パンチ11、ダイス12)により熱間プレス(ハット成形)を実施し、熱間成形鋼板部材2を得た。鋼板を加熱炉内で表面温度が820℃から1100℃までの間で条件を変えて加熱し、その温度にて90秒保持した後、加熱炉より取り出し、すぐさま冷却装置付きの金型にて熱間プレスを実施し、成形と同時に焼入れ処理を施した。上記熱間成形鋼板部材について以下の評価を行った。評価結果を表2に示す。なお、表2において、「熱延」は、熱間圧延を施した厚さ3.0mmの熱延鋼板を意味し、「冷延」は、この熱延鋼板にさらに冷間圧延を施した厚さ1.5mmの冷延鋼板を意味している。*は、実施の形態の範囲を外れることを意味している。 Thereafter, as shown in FIG. 1 and FIG. 2, hot pressing (hat forming) is performed on the steel sheet for hot forming 1 with a die (punch 11, die 12) using a hot press test apparatus. The hot-formed steel plate member 2 was obtained. The steel sheet is heated in a heating furnace with changing the surface temperature between 820 ° C. and 1100 ° C., held at that temperature for 90 seconds, then removed from the heating furnace and immediately heated in a mold with a cooling device. An intermediate press was performed, and a quenching treatment was performed simultaneously with molding. The following evaluation was performed about the said hot-formed steel plate member. The evaluation results are shown in Table 2. In Table 2, “hot rolled” means a hot-rolled steel sheet having a thickness of 3.0 mm that has been hot-rolled, and “cold-rolled” means a thickness that has been further cold-rolled to the hot-rolled steel sheet. This means a cold-rolled steel sheet having a thickness of 1.5 mm. * Means outside the scope of the embodiment.
 <熱間成形鋼板部材の機械特性の評価>
 熱間成形鋼板部材について、圧延直角方向からJIS5号引張試験を採取し、JIS Z 2241(2011)に準じて引張試験を実施し、引張強さ(TS)の測定を行った。
<Evaluation of mechanical properties of hot-formed steel sheet member>
About the hot-formed steel plate member, a JIS No. 5 tensile test was taken from the direction perpendicular to the rolling direction, a tensile test was performed according to JIS Z 2241 (2011), and a tensile strength (TS) was measured.
 <金属組織の同定>
 熱間成形鋼板部材の、圧延方向と平行な断面のうち板厚中央部が観察面となるように切り出した後、鏡面研磨した。その後、ナイタール腐食し、走査型電子顕微鏡(倍率2000倍)を用いて、各試料5視野について金属組織の観察を行った。得られた顕微鏡写真に画像処理を施すことで、フェライトの面積率を求め、それをフェライトの体積率とした。また、金属組織中の残留オーステナイトの体積率については、X線回折(XRD)を用いて求めた。そしてそれらの残部を低温変態組織の体積率として算出した。残留γ体積率は鋼板表面より板厚の1/8内層を化学研磨後、Mo管球を用いたX線回折で、フェライトの(200)の回折強度Iα(200)、フェライトの(211)の回折強度Iα(211)とオーステナイトの(220)の回折強度Iγ(220)および(311)の回折強度Iγ(311)の強度比より求めた。 
Vγ(体積%)=0.25×{Iγ(220)/(1.35×Iα(200)+Iγ(220))+Iγ(220)/(0.69×Iα(211)+Iγ(220))+Iγ(311)/(1.5×Iα(200)+Iγ(311))+Iγ(311)/(0.69×Iα(211)+Iγ(311))}
<Identification of metal structure>
The hot-formed steel plate member was cut out so that the central portion of the plate thickness became the observation surface in the cross section parallel to the rolling direction, and then mirror polished. Thereafter, the metal structure was observed with respect to 5 fields of view of each sample using a scanning electron microscope (magnification 2000 times). The obtained micrograph was subjected to image processing to obtain the area ratio of ferrite, which was defined as the volume ratio of ferrite. Moreover, about the volume ratio of the retained austenite in a metal structure, it calculated | required using X-ray diffraction (XRD). The remainder was calculated as the volume fraction of the low temperature transformation structure. Residual γ volume fraction is obtained by chemically polishing an inner layer of 1/8 of the plate thickness from the surface of the steel sheet, and then by X-ray diffraction using a Mo tube. The diffraction strength Iα (200) of ferrite (200) and ferrite (211) It was obtained from the intensity ratio of the diffraction intensity Iα (211) and the diffraction intensity Iγ (220) of (220) of austenite and the diffraction intensity Iγ (311) of (311).
Vγ (volume%) = 0.25 × {Iγ (220) / (1.35 × Iα (200) + Iγ (220)) + Iγ (220) / (0.69 × Iα (211) + Iγ (220)) + Iγ (311) / (1.5 × Iα (200) + Iγ (311)) + Iγ (311) / (0.69 × Iα (211) + Iγ (311))}
 <清浄度の評価>
 熱間成形鋼板部材について、5ヶ所から供試材を切り出した。各供試材の板厚tに対して1/8t、1/4t、1/2t、3/4t、7/8tの各位置について、点算法にて清浄度を調査した。そして、各板厚における清浄度の値が最も大きい(清浄性が最も低い)数値を、その供試材の清浄度の値とした。
<Evaluation of cleanliness>
With respect to the hot-formed steel plate member, test materials were cut out from five locations. The cleanliness of each position of 1 / 8t, 1 / 4t, 1 / 2t, 3 / 4t, and 7 / 8t with respect to the thickness t of each test material was investigated by a point calculation method. And the numerical value with the largest cleanliness value (lowest cleanliness) at each plate thickness was taken as the cleanliness value of the specimen.
 <Mn偏析度αの計測>
 熱間成形鋼板部材の板厚中央部において、EPMAを用いたライン分析を行い、分析結果から高い順に3つの測定値を選択した後、その平均値を算出し、板厚中心部での最大Mn濃度を求めた。また、熱間成形鋼板部材の表面から板厚の1/4深さ位置において、EPMAを用いて10ヶ所の分析を行い、その平均値を算出し、表面から板厚の1/4深さ位置での平均Mn濃度を求めた。そして、上記の板厚中心部での最大Mn濃度を、表面から板厚の1/4深さ位置での平均Mn濃度で割ることによって、Mn偏析度αを求めた。
<Measurement of Mn segregation degree α>
In the central part of the thickness of the hot-formed steel sheet member, line analysis using EPMA is performed, and after selecting three measured values in order from the analysis result, the average value is calculated, and the maximum Mn at the central part of the thickness is calculated. The concentration was determined. In addition, at the 1/4 depth position of the sheet thickness from the surface of the hot-formed steel plate member, analysis is performed at 10 locations using EPMA, the average value is calculated, and the 1/4 depth position of the sheet thickness from the surface is calculated. The average Mn concentration was determined. And Mn segregation degree (alpha) was calculated | required by dividing the maximum Mn density | concentration in said board thickness center part by the average Mn density | concentration in the 1/4 depth position of board thickness from the surface.
 <旧γ粒の平均粒径の測定>
 熱間成形鋼板部材中の旧γ粒の平均粒径は、測定視野内における結晶粒数を計測し、測定視野の面積を当該結晶粒数で割ることによって結晶粒の平均面積を求め、円相当径での結晶粒径を算出することにより求めた。その際、視野の境界にある粒は1/2個として計測し、観察倍率については結晶粒数が200個以上になるように適宜調整した。
<Measurement of average particle diameter of old γ grains>
The average grain size of old γ grains in hot-formed steel sheet members is the equivalent of a circle by measuring the number of crystal grains in the measurement field of view and dividing the area of the measurement field by the number of crystal grains to determine the average area of the crystal grains It calculated | required by calculating the crystal grain size by a diameter. At that time, the number of grains at the boundary of the visual field was measured as ½, and the observation magnification was appropriately adjusted so that the number of crystal grains was 200 or more.
 <残留炭化物の数密度>
 熱間成形鋼板部材の表面を、ピクラール液を使って腐食し、走査型電子顕微鏡で2000倍に拡大し、複数視野の観察を行った。このときに、炭化物が存在する視野の数を数えて1mmあたりの個数を算出した。
<Number density of residual carbides>
The surface of the hot-formed steel sheet member was corroded using a picral solution, magnified 2000 times with a scanning electron microscope, and observed in multiple fields. At this time, the number per 1 mm 2 was calculated by counting the number of fields of view in which carbides exist.
 <局部変形能の測定>
 局部変形能の測定は、切欠引張試験により行った。引張試験片は、平行部の幅が16.5mm、平行部長さが60mmであり、圧延方向を長手方向として採取した。また、上記引張試験片の長さ中央部に深さ2mmのVノッチを加工し、切欠引張試験片とした。切欠試験片の厚さは1.4mmとした。切欠引張試験片の形状を図3に示す。上記の切欠引張試験片を用いて引張試験を行い、Vノッチ部で破断した時点での切欠伸びを測定し、局部変形能の評価を行った。標点距離は5mmとし、引張試験の際の引張速度(クロスヘッド速度)は0.5mm/minとした。
<Measurement of local deformability>
The local deformability was measured by a notch tensile test. The tensile test piece had a parallel part width of 16.5 mm and a parallel part length of 60 mm, and the rolling direction was taken as the longitudinal direction. Further, a V-notch having a depth of 2 mm was processed at the center of the length of the tensile test piece to obtain a notched tensile test piece. The thickness of the notch test piece was 1.4 mm. The shape of the notch tensile test piece is shown in FIG. A tensile test was performed using the above-described notched tensile test piece, and the notch elongation at the time of breaking at the V notch portion was measured to evaluate the local deformability. The gauge distance was 5 mm, and the tensile speed (crosshead speed) during the tensile test was 0.5 mm / min.
 <硬度のばらつき>
 硬さ安定性の評価として下記の試験を行った。熱間成形用の鋼板を熱処理シミュレータにて、10℃/secで900℃まで加熱した後、150sec保持した。その後、約80℃/secおよび10℃/secのそれぞれの冷却速度によって室温まで冷却した。それぞれの試料について、断面の板厚の1/4位置でビッカース硬さ試験を実施した。硬度測定はJIS Z 2244(2009)に準拠して行い、試験力は9.8Nとして、5点測定し、その平均を求めた。冷却速度が約80℃/secおよび10℃/secであるときのそれぞれの硬さの平均値を、HS80、HS10とし、その差ΔHvを硬さ安定性の指標とした。
<Hardness variation>
The following tests were performed as evaluation of hardness stability. The steel sheet for hot forming was heated to 900 ° C. at 10 ° C./sec with a heat treatment simulator and then held for 150 sec. Then, it cooled to room temperature with each cooling rate of about 80 degreeC / sec and 10 degreeC / sec. About each sample, the Vickers hardness test was implemented in the 1/4 position of the plate | board thickness of a cross section. The hardness was measured in accordance with JIS Z 2244 (2009), the test force was 9.8 N, five points were measured, and the average was obtained. The average values of the respective hardnesses when the cooling rate was about 80 ° C./sec and 10 ° C./sec were HS 80 and HS 10 , and the difference ΔHv was used as an index of hardness stability.
 硬さ安定性および局部変形能の評価においては、それぞれΔHvが50以下および切欠
伸びが6%以上であるものを良好であると判断した。
In the evaluation of hardness stability and local deformability, those having ΔHv of 50 or less and notch elongation of 6% or more were judged to be good.
 表2から分かるように、試験番号2は、鋼の組成は実施の形態の範囲を満足するものの、単位時間当たりの溶鋼鋳込み量が大きいため、清浄度の値が0.08%を超え、局部変形能が劣る結果となった。
 試験番号3は中心偏析低減処理及びソーキング処理を実施していないため、Mn偏析度が1.6を超え、局部変形能が劣る結果となった。
 試験番号5は、溶鋼加熱温度が低いため、清浄度の値が0.08%を超え、局部変形能が劣る結果となった。
 試験番号6は、熱間成形温度が低いため、熱間成形後にフェライト体積率が3%を超え、硬さ安定性が劣る結果となり、さらに残留炭化物の数密度も8.0×10個/mmと高かったため、局部変形能が劣る結果となった。
 試験番号9は、熱間成形時の加熱温度が高いため、旧γ粒径が大きくなり、局部変形能が劣る結果となった。
 試験番号11は、熱間圧延後の巻取温度が高いため、残留炭化物密度が高くなり、局部変形能が劣る結果となった。
 試験番号14は、熱間圧延後の焼鈍温度が高く焼鈍時間も長いため、熱間成形後にフェライト体積率が3%を超え、硬さ安定性が劣る結果となった。また、炭化物の溶解が不十分となって残留炭化物密度が高くなり、局部変形能が劣る結果となった。
 試験番号16はS含有量が実施の形態の範囲の上限値を超えているため、清浄度の値が0.08%を超え、局部変形能が劣る結果となった。
 試験番号17はMn含有量が実施の形態の範囲の上限値を超えているため、Mn偏析度が1.6を超え、局部変形能が劣る結果となった。
 試験番号18はSi含有量が実施の形態の範囲の上限値を超えているため、A点が上昇し、熱間成形後にフェライトの体積率が3%を超え、硬さ安定性が劣る結果となった。
 試験番号19はC含有量が実施の形態の範囲の上限値を超えているため、局部変形能が劣る結果となった。
 試験番号20は、Cr含有量が実施の形態の範囲より低いため、硬さ安定性に劣る結果となった。
As can be seen from Table 2, the test number 2 indicates that the composition of the steel satisfies the range of the embodiment, but the casting amount of molten steel per unit time is large. The deformability was inferior.
In Test No. 3, since the center segregation reduction treatment and the soaking treatment were not carried out, the Mn segregation degree exceeded 1.6 and the local deformability was inferior.
Test No. 5 resulted in poor local deformability due to the cleanliness value exceeding 0.08% because the molten steel heating temperature was low.
In Test No. 6, since the hot forming temperature is low, the ferrite volume fraction exceeds 3% after hot forming, resulting in poor hardness stability, and the number density of residual carbides is also 8.0 × 10 3 pieces / for higher and mm 2, resulted in local deformability is poor.
In Test No. 9, since the heating temperature at the time of hot forming was high, the old γ particle size was increased, resulting in poor local deformability.
Test No. 11 had a high coiling temperature after hot rolling, resulting in a high residual carbide density and poor local deformability.
In Test No. 14, since the annealing temperature after hot rolling was high and the annealing time was long, the ferrite volume fraction exceeded 3% after hot forming, resulting in poor hardness stability. Further, the dissolution of the carbide was insufficient, the residual carbide density was increased, and the local deformability was inferior.
In test number 16, since the S content exceeded the upper limit of the range of the embodiment, the cleanliness value exceeded 0.08%, resulting in poor local deformability.
In Test No. 17, since the Mn content exceeded the upper limit of the range of the embodiment, the Mn segregation degree exceeded 1.6 and the local deformability was inferior.
For Test No. 18 where the Si content exceeds the upper limit of the range of the embodiments, A 3-point increases, the volume ratio of ferrite is more than 3% after hot forming, hardness less stable results It became.
Test No. 19 resulted in inferior local deformability because the C content exceeded the upper limit of the range of the embodiment.
Test No. 20 resulted in inferior hardness stability because the Cr content was lower than the range of the embodiment.
 一方、実施の形態の範囲を満足する試験番号1、4、7、8、10、12、13および15は、硬さ安定性および局部変形能の双方に優れる結果となった。 On the other hand, Test Nos. 1, 4, 7, 8, 10, 12, 13 and 15 satisfying the range of the embodiment resulted in excellent hardness stability and local deformability.
 2014年5月15日に出願された日本国特許出願2014-101443号および2014年5月15日に出願された日本国特許出願2014-101444号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese Patent Application No. 2014-101443 filed on May 15, 2014 and Japanese Patent Application No. 2014-101444 filed on May 15, 2014 are hereby incorporated by reference in their entirety. It is captured.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.
 以上、種々の典型的な実施の形態を説明してきたが、本発明はそれらの実施の形態に限定されない。本発明の範囲は、次の請求の範囲によってのみ限定されるものである。 Although various typical embodiments have been described above, the present invention is not limited to these embodiments. The scope of the present invention is limited only by the following claims.

Claims (6)

  1.  化学組成が、質量%で、
     C:0.08~0.16%、
     Si:0.19%以下、
     Mn:0.40~1.50%、
     P:0.02%以下、
     S:0.01%以下、
     sol.Al:0.01~1.0%、
     N:0.01%以下、
     Cr:0.25~3.00%、
     Ti:0.01~0.05%、
     B:0.001~0.01%、
     Nb:0~0.50%、
     Ni:0~2.0%、
     Cu:0~1.0%、
     Mo:0~1.0%、
     V:0~1.0%、
     Ca:0~0.005%、
     残部:Feおよび不純物であり、
     マルテンサイト、焼戻しマルテンサイトおよびベイナイトの合計体積率が50%以上であり、かつ、フェライトの体積率が3%以下であり、
     旧γ粒の平均粒径が10μm以下であり、
     存在する残留炭化物の数密度が4×10個/mm以下である熱間成形鋼板部材。
    Chemical composition is mass%,
    C: 0.08 to 0.16%,
    Si: 0.19% or less,
    Mn: 0.40 to 1.50%,
    P: 0.02% or less,
    S: 0.01% or less,
    sol. Al: 0.01 to 1.0%
    N: 0.01% or less,
    Cr: 0.25 to 3.00%,
    Ti: 0.01 to 0.05%,
    B: 0.001 to 0.01%,
    Nb: 0 to 0.50%,
    Ni: 0 to 2.0%,
    Cu: 0 to 1.0%,
    Mo: 0 to 1.0%,
    V: 0 to 1.0%,
    Ca: 0 to 0.005%,
    Balance: Fe and impurities,
    The total volume ratio of martensite, tempered martensite and bainite is 50% or more, and the volume ratio of ferrite is 3% or less,
    The average particle size of the former γ grains is 10 μm or less,
    A hot-formed steel plate member in which the number density of residual carbides present is 4 × 10 3 pieces / mm 2 or less.
  2.  前記化学組成が、質量%で、
     Nb:0.003~0.50%、
     Ni:0.01~2.0%、
     Cu:0.01~1.0%、
     Mo:0.01~1.0%、
     V:0.01~1.0%
     および
     Ca:0.001~0.005%
     からなる群より選択される1種以上を含有する、請求項1記載の熱間成形鋼板部材。
    The chemical composition is mass%,
    Nb: 0.003 to 0.50%,
    Ni: 0.01 to 2.0%,
    Cu: 0.01 to 1.0%,
    Mo: 0.01 to 1.0%,
    V: 0.01 to 1.0%
    And Ca: 0.001 to 0.005%
    The hot-formed steel plate member according to claim 1, comprising at least one selected from the group consisting of:
  3.  JIS G 0555(2003)で規定される鋼の清浄度の値が0.08%以下である、請求項1または請求項2記載の熱間成形鋼板部材。 The hot-formed steel sheet member according to claim 1 or 2, wherein a steel cleanliness value specified in JIS G 0555 (2003) is 0.08% or less.
  4.  下記(i)式で表されるMn偏析度αが1.6以下である、請求項1から請求項3までのいずれか一項に記載の熱間成形鋼板部材。
     α=[板厚中心部での最大Mn濃度(質量%)]/[表面から板厚の1/4深さ位置での平均Mn濃度(質量%)]   ・・・(i)
    The hot-formed steel plate member according to any one of claims 1 to 3, wherein a Mn segregation degree α represented by the following formula (i) is 1.6 or less.
    α = [maximum Mn concentration (mass%) at the thickness center portion] / [average Mn concentration (mass%) at ¼ depth position of the thickness from the surface] (i)
  5.  前記鋼板部材の表面にめっき層を有する、請求項1から請求項4までのいずれか一項に記載の熱間成形鋼板部材。 The hot-formed steel plate member according to any one of claims 1 to 4, further comprising a plating layer on a surface of the steel plate member.
  6.  前記鋼板部材が1.0GPa以上の引張強度を有する、請求項1から請求項5までのいずれか一項に記載の熱間成形鋼板部材。 The hot-formed steel plate member according to any one of claims 1 to 5, wherein the steel plate member has a tensile strength of 1.0 GPa or more.
PCT/JP2015/064101 2014-05-15 2015-05-15 Hot-rolled steel plate member WO2015174530A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2016014884A MX2016014884A (en) 2014-05-15 2015-05-15 Hot-rolled steel plate member.
ES15793575T ES2753390T3 (en) 2014-05-15 2015-05-15 Hot formed steel plate element
PL15793575T PL3144405T3 (en) 2014-05-15 2015-05-15 Hot-formed steel sheet member
JP2016519321A JP6315087B2 (en) 2014-05-15 2015-05-15 Hot forming steel plate
EP15793575.0A EP3144405B1 (en) 2014-05-15 2015-05-15 Hot-formed steel sheet member
US15/311,117 US20170073792A1 (en) 2014-05-15 2015-05-15 Hot-formed steel sheet member
CN201580024959.1A CN106661685B (en) 2014-05-15 2015-05-15 Hot forming steel plate member
KR1020167033364A KR101908210B1 (en) 2014-05-15 2015-05-15 Hot-rolled steel plate member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-101444 2014-05-15
JP2014101444 2014-05-15
JP2014-101443 2014-05-15
JP2014101443 2014-05-15

Publications (1)

Publication Number Publication Date
WO2015174530A1 true WO2015174530A1 (en) 2015-11-19

Family

ID=54480065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064101 WO2015174530A1 (en) 2014-05-15 2015-05-15 Hot-rolled steel plate member

Country Status (10)

Country Link
US (1) US20170073792A1 (en)
EP (1) EP3144405B1 (en)
JP (1) JP6315087B2 (en)
KR (1) KR101908210B1 (en)
CN (1) CN106661685B (en)
ES (1) ES2753390T3 (en)
MX (1) MX2016014884A (en)
PL (1) PL3144405T3 (en)
TW (1) TWI563101B (en)
WO (1) WO2015174530A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062381A1 (en) * 2016-09-28 2018-04-05 Jfeスチール株式会社 Steel sheet and production method therefor
JP2020528963A (en) * 2017-07-25 2020-10-01 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv Steel strips, sheets or blanks for manufacturing hot-formed parts, parts, and methods of hot-forming parts with blanks.
JP2021523373A (en) * 2018-05-10 2021-09-02 フンダシオ エウレカト Equipment for making thin plate test pieces

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3124637T3 (en) * 2014-03-26 2020-03-31 Nippon Steel Corporation High-strength hot-formed steel sheet member
WO2017017484A1 (en) * 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
MA50453A (en) 2017-10-24 2021-04-07 Arcelormittal PROCESS ALLOWING THE MANUFACTURE OF A SHEET OF STEEL ANNUALLY BY GALVANIZATION
US11680331B2 (en) * 2017-10-24 2023-06-20 Arcelormittal Method for the manufacture of a coated steel sheet
RU2761927C1 (en) 2017-11-17 2021-12-14 Арселормиттал Method for manufacturing zinc-coated steel sheet resistant to liquid metal embrittlement
WO2020162513A1 (en) * 2019-02-05 2020-08-13 日本製鉄株式会社 Coated steel member, coated steel sheet, and methods for producing same
JP7151878B2 (en) * 2019-04-01 2022-10-12 日本製鉄株式会社 HOT STAMP MOLDED PRODUCT, HOT STAMP STEEL STEEL, AND METHOD OF MANUFACTURING THEM
WO2020241258A1 (en) * 2019-05-31 2020-12-03 日本製鉄株式会社 Hot-stamp-molded article
KR102279900B1 (en) * 2019-09-03 2021-07-22 주식회사 포스코 Steel plate for hot forming, hot-formed member and method of manufacturing thereof
US20230002873A1 (en) * 2019-12-20 2023-01-05 Posco Steel for hot forming, hot-formed member, and manufacturing methods therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183139A (en) * 2004-11-30 2006-07-13 Jfe Steel Kk Automobile member and its production method
JP2007211276A (en) * 2006-02-08 2007-08-23 Sumitomo Metal Ind Ltd Plated steel sheet for hot-press use, its manufacturing method, and method for manufacturing hot press formed member
JP2007314817A (en) * 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd Steel sheet to be hot-pressed, hot-pressed steel sheet member, and method for manufacturing them
WO2009082091A1 (en) * 2007-12-26 2009-07-02 Posco Hot rolled steel sheet having superior hot press forming property and high tensile strength, formed article using the steel sheet and method for manufacturing the steel sheet and the formed article
WO2012157581A1 (en) * 2011-05-13 2012-11-22 新日本製鐵株式会社 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
WO2013105631A1 (en) * 2012-01-13 2013-07-18 新日鐵住金株式会社 Hot stamp molded article and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133870B1 (en) * 2006-05-10 2012-04-06 수미도모 메탈 인더스트리즈, 리미티드 Hot-pressed steel sheet member and process for production thereof
JP5910168B2 (en) * 2011-09-15 2016-04-27 臼井国際産業株式会社 TRIP type duplex martensitic steel, method for producing the same, and ultra high strength steel processed product using the TRIP type duplex martensitic steel
WO2013065346A1 (en) * 2011-11-01 2013-05-10 Jfeスチール株式会社 High-strength hot-rolled steel sheet having excellent bending characteristics and low-temperature toughness and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183139A (en) * 2004-11-30 2006-07-13 Jfe Steel Kk Automobile member and its production method
JP2007211276A (en) * 2006-02-08 2007-08-23 Sumitomo Metal Ind Ltd Plated steel sheet for hot-press use, its manufacturing method, and method for manufacturing hot press formed member
JP2007314817A (en) * 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd Steel sheet to be hot-pressed, hot-pressed steel sheet member, and method for manufacturing them
WO2009082091A1 (en) * 2007-12-26 2009-07-02 Posco Hot rolled steel sheet having superior hot press forming property and high tensile strength, formed article using the steel sheet and method for manufacturing the steel sheet and the formed article
WO2012157581A1 (en) * 2011-05-13 2012-11-22 新日本製鐵株式会社 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
WO2013105631A1 (en) * 2012-01-13 2013-07-18 新日鐵住金株式会社 Hot stamp molded article and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062381A1 (en) * 2016-09-28 2018-04-05 Jfeスチール株式会社 Steel sheet and production method therefor
JP6388085B2 (en) * 2016-09-28 2018-09-12 Jfeスチール株式会社 Steel sheet and manufacturing method thereof
JPWO2018062381A1 (en) * 2016-09-28 2018-09-27 Jfeスチール株式会社 Steel sheet and manufacturing method thereof
US11268164B2 (en) 2016-09-28 2022-03-08 Jfe Steel Corporation Steel sheet and method for producing the same
JP2020528963A (en) * 2017-07-25 2020-10-01 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv Steel strips, sheets or blanks for manufacturing hot-formed parts, parts, and methods of hot-forming parts with blanks.
JP7326247B2 (en) 2017-07-25 2023-08-15 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Steel strip, sheet or blank for producing hot formed parts, parts and method of hot forming blanks into parts
JP2021523373A (en) * 2018-05-10 2021-09-02 フンダシオ エウレカト Equipment for making thin plate test pieces
JP7089065B2 (en) 2018-05-10 2022-06-21 フンダシオ エウレカト Equipment for making sheet metal test pieces

Also Published As

Publication number Publication date
EP3144405A1 (en) 2017-03-22
EP3144405B1 (en) 2019-08-21
KR20160147025A (en) 2016-12-21
PL3144405T3 (en) 2020-02-28
JPWO2015174530A1 (en) 2017-04-27
ES2753390T3 (en) 2020-04-08
US20170073792A1 (en) 2017-03-16
EP3144405A4 (en) 2018-01-03
MX2016014884A (en) 2017-03-07
KR101908210B1 (en) 2018-10-15
TWI563101B (en) 2016-12-21
JP6315087B2 (en) 2018-04-25
CN106661685A (en) 2017-05-10
CN106661685B (en) 2018-04-20
TW201602360A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
JP6237884B2 (en) High strength hot-formed steel sheet
JP6315087B2 (en) Hot forming steel plate
US10501832B2 (en) Plated steel sheet
JP6380660B2 (en) Heat-treated steel plate member and manufacturing method thereof
JP4725415B2 (en) Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof
JP6380659B2 (en) Heat-treated steel plate member and manufacturing method thereof
KR102186320B1 (en) Steel plate and plated steel plate
TWI515310B (en) Hot stamp molded article, cold-rolled steel, and method for producing thereof
JP5541428B1 (en) steel sheet
KR101479391B1 (en) Cold rolled steel sheet having excellent shape fixability and method for manufacturing the same
WO2019208556A1 (en) Steel member and method for producing same
JP7160184B2 (en) Steel plate and its manufacturing method
WO2016163467A1 (en) Steel sheet for heat treatment
JPWO2020203158A1 (en) Steel plate
JP6032173B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet having a maximum tensile strength of 980 MPa and excellent delayed fracture resistance
WO2020204027A1 (en) Hot-stamping molded article and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519321

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15311117

Country of ref document: US

Ref document number: MX/A/2016/014884

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201608105

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20167033364

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015793575

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015793575

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016026692

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016026692

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161114