WO2015174493A1 - 植物栽培装置 - Google Patents

植物栽培装置 Download PDF

Info

Publication number
WO2015174493A1
WO2015174493A1 PCT/JP2015/063897 JP2015063897W WO2015174493A1 WO 2015174493 A1 WO2015174493 A1 WO 2015174493A1 JP 2015063897 W JP2015063897 W JP 2015063897W WO 2015174493 A1 WO2015174493 A1 WO 2015174493A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
nozzle
spray
solution supply
plant cultivation
Prior art date
Application number
PCT/JP2015/063897
Other languages
English (en)
French (fr)
Inventor
博 池内
憲男 大西
片岡 大輔
陽介 彦坂
陽史 小谷
Original Assignee
株式会社いけうち
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社いけうち filed Critical 株式会社いけうち
Priority to KR1020167031703A priority Critical patent/KR20170005003A/ko
Priority to JP2016519302A priority patent/JP6613525B2/ja
Priority to CN201580025085.1A priority patent/CN106413386A/zh
Publication of WO2015174493A1 publication Critical patent/WO2015174493A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G29/00Root feeders; Injecting fertilisers into the roots
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G2031/006Soilless cultivation, e.g. hydroponics with means for recycling the nutritive solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a plant cultivation device, and is particularly suitable for farming in a plant factory, and enables economical farming by lowering operating costs and increasing yields.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-196164
  • the cultivated plants P are set on the upper surface along the length direction L in the horizontally long cultivation box 100 and the roots Pr of these cultivated plants P are cultivated. It is suspended in the box 100.
  • an inclined partition plate 106 that partitions the top and bottom along the length direction is installed, and one nozzle 110 is attached to the center of the inner surface of one side wall 101 on the short side, while the other side wall 102 in the vicinity of A spray circulation fan 115 is attached to the lower part.
  • the nozzle 110 and the fan 115 cause the nutrient solution spray from the nozzle 110 to flow to the other side wall 102 above the inclined partition plate 106 and flow downward along the other side wall 102 in the cultivation box 100. It is circulated to the one side wall 101 below the partition plate 106.
  • a two-fluid nozzle that sprays a mixed fluid of nutrient solution and compressed air is used, and as shown in FIG.
  • pressurized air is supplied from the air compressor 120 to the nozzle 110, and the nutrient solution
  • the two-fluid nozzle 110 supplies the cultivation box 100 with a high spray pressure. Spraying.
  • the nozzle 110 is installed on one end side in the length direction in the long cultivation box 100, the droplets are 30 ⁇ m or less so that the nutrient solution sprayed from the nozzle 110 stays in the air in the cultivation box 100.
  • it is a fine mist of 10 ⁇ m or less, and the inside of the cultivation box is brought into a near-saturated state by the mist of the nutrient solution so that the root part Pr of the cultivated plant at a position away from the nozzle 110 can absorb the nutrient solution.
  • the spray from one nozzle 110 installed in one end of the length direction is circulated in the whole cultivation box 100 by the fan 115 installed in the other end side. Therefore, a two-fluid nozzle that extends the spray distance is used as the nozzle 110.
  • an air compressor is required to supply pressurized air to the two-fluid nozzle, equipment costs and operating costs (running costs) are incurred. Further, the equipment cost and the operation cost are also applied to the fan 115 for spray circulation. In particular, running costs are disadvantageous for farming.
  • the cultivation box 100 when the cultivation box 100 is filled with a mist containing a fine nutrient solution of 10 ⁇ m or less (so-called dry fog), the nutrient solution can be absorbed by the root of the cultivated plant at a position away from the nozzle 110, On the other end side with respect to the nozzle injection side, the nutrient solution becomes dilute and the growth of the plant slows down, making it difficult to grow the cultivated plant uniformly. And the droplet which floats in the air accumulates in the bottom part of the cultivation box 100, without being absorbed by the plant, and the quantity collect
  • This recovered amount is about 30% of the spray amount from the nozzle 110, and is not absorbed by the root part of the plant and becomes inefficient.
  • cultivated plants grow, their nutrient requirements increase.
  • the nutrient solution can be absorbed by the growing root, but if the floating amount in the air is increased, it will fall and be recovered as a droplet
  • the amount increases and the amount of nutrient solution absorbed by the root of the plant is insufficient.
  • the present invention improves the problem of the running cost and the problem of poor nutrient absorption of the cultivated plant, speeds up the cultivation of the cultivated plant, increases the yield, reduces the running cost, and makes more economical farming possible.
  • the challenge is to make it possible.
  • the present invention includes an elongated hollow cultivation box in which the root of a cultivated plant hangs down, and a nutrient solution supply pipe is attached along the inner wall of the lengthwise direction, and a required interval is provided in the nutrient solution supply pipe. Attach a nozzle to spray a fluid consisting of nutrient solution by opening There is provided a plant cultivating apparatus characterized in that the particle diameter of the spray from the nozzle is a mixture of small particles of less than 20 ⁇ m and large particles of 20 ⁇ m to 100 ⁇ m and an average particle diameter of 10 ⁇ m to 30 ⁇ m.
  • so-called semi-dry fog having an average particle size of 10 to 30 ⁇ m sprayed from one fluid nozzle is used, and a nutrient solution having a particle size of 20 to 100 ⁇ m, preferably 20 to 40 ⁇ m and a particle size of about 30 ⁇ m is directly applied to the roots of cultivated plants. I try to absorb it.
  • ultrafine droplets of less than 20 ⁇ m, preferably 10 ⁇ m or less, are suspended in the air in the cultivation box, and the nutrient solution is attached to the side opposite to the nozzle injection side or to the cocoon part branched from the rhizome. .
  • the average particle diameter of the fog is measured by a laser method.
  • the nutrients can be efficiently absorbed by the root of the cultivated plant by both the large particle droplet and the small particle droplet, the growth of the cultivated plant can be promoted.
  • the average particle size of the entire spray is semi-dry fog consisting of fine mist of 10-30 ⁇ m, it is difficult to fall as water droplets on the bottom of the cultivation box, increasing the nutrient solution absorption rate to the root of the cultivated plant and nurturing Waste of liquid can be eliminated.
  • the particle size of the spray from the nozzle is not uniform, and particularly in a one-fluid nozzle that ejects only a liquid without mixing with air, the particle size width of the droplets contained in the spray becomes large.
  • the particle diameter at the center of the spray distribution tends to be large and the particle diameter at the outer periphery tends to be small.
  • the droplets of large particles are sprayed on the roots of the roots of the cultivated plants to ensure that the nutrient solution is absorbed by the roots, Small particle droplets are suspended in the air in the cultivation box, and the nutrient solution is absorbed by the root portion where the nutrient solution cannot be sprayed directly from the nozzle.
  • a hollow portion of a cylindrical housing is used as a nutrient solution channel, and the nutrient solution is supplied from one side in the length direction of the nutrient solution channel, and the nutrient solution channel While closing the other end in the length direction with the injection wall, and providing a nozzle in the center of the injection wall,
  • the nozzle tip is fixed to the inner surface of the injection wall, and an injection hole communicating with the injection port is provided on one end surface of the nozzle tip, and the other end side of the nozzle tip is curved in an arc shape toward the injection hole. It is preferable to use a nozzle having a configuration in which a swirling groove is provided and the nutrient solution is ejected from the nozzle while swirling through the swirling groove.
  • the particle size and average particle size of the sprayed large particles and small particles can be adjusted by the shape including the arc angle, arc length, etc. of the swirling grooves, the number of swirling grooves, the spacing of the swirling grooves, and the like.
  • the spray angle range can be expanded and reduced by the spray pressure described later, and the spray amount can be increased or decreased.
  • a one-fluid nozzle that sprays the nutrient solution as a swirling flow from the nozzle nozzle, expands / contracts the spray angle range by increasing / decreasing the spray pressure, and increases / decreases the spray amount.
  • the nutrient solution is supplied from the pump to the nozzle, the spray pressure of the nozzle is set to 1 MPa to 7 MPa, the spray pressure of the nozzle is changed by changing the discharge pressure of the pump according to the length of the root portion where the cultivated plant grows. It is preferable to gradually increase the pressure within the range of 1 MPa to 7 MPa, increase the spray angle of the nozzle and increase the spray amount. As described above, the spraying pressure of the nozzle is 1 MPa to 7 MPa, preferably 2 MPa to 4 MPa.
  • the spray pressure can be adjusted within the range of 1: 3 by adjusting the spray pressure as described above. Further, it is preferable that the spray angle can be enlarged or reduced in the range of 50 ° to 120 °.
  • the spraying pressure is reduced so that the spraying angle is 50 to 70 ° and the spraying amount is reduced.
  • the spraying pressure is increased to increase the spraying angle to 90 ° to 120 ° at the maximum and the spraying amount is increased to nearly three times the spraying amount at the beginning of cultivation.
  • the spray angle is preferably 50 to 90 ° at the maximum.
  • the spray angle is reduced to 50 to 70 °, and the spray angle is increased from 70 ° to 120 ° as the spray pressure is increased from 3 MPa to 7 MPa. It is preferable to use the one that increases with an angle of about 3 times as much as the spray amount.
  • the nutrient solution supply pipes are attached along the inner surfaces of both side walls in the length direction of the cultivation box, and the nozzles are attached to the nutrient solution supply pipes on the both side walls at intervals in a staggered arrangement.
  • the cultivation box is, for example, a large cultivation box in which three units of 6 m in length, 0.35 m to 1 m in width and 0.4 m in height are connected as one unit, or 18 m in length. It is a large cultivation box with a width of 20m, a width of 0.35m to 1m, and a height of 0.4m.
  • cultiva plants are arranged at intervals of 50 to 100 cm in the length direction. Therefore, when cultivated plants are arranged in a row, nozzles are attached to the nutrient solution supply pipes on both sides with a pitch of 100 to 200 cm.
  • a pair of the nutrient solution supply pipes arranged on both side walls of the cultivation box are connected to one nutrient solution supply pump, and the nutrient solution supply pipes on both sides are separated from the one pump with time difference.
  • Supply the liquid and spray alternately from the nozzles on both sides Alternatively, the nutrient solution supply pipes arranged on the both side walls are made continuous to form one nutrient solution supply pipe, and one nutrient solution supply pump is connected to the nutrient solution supply pipe, and the nozzles on both sides are connected. It is set as the structure sprayed simultaneously and spraying at a time difference simultaneously. If it is this structure, a nutrient solution can be supplied to the nozzle arrange
  • a plurality of rows of cultivation boxes are provided, and a common supply pipe connected to one pump is branched and connected to the nutrient solution supply pipes piped in the rows of the cultivation boxes through an on-off valve. It is preferable to supply the nutrient solution to the nozzles in the plurality of cultivation boxes with a pump.
  • a common pipe in which a washing water supply pipe and a nutrient solution supply pipe are connected via an on-off valve is connected to the suction side of the pump, the on-off valve is opened and closed, and the nozzle is intermittently attached. It is preferable to supply washing water through the liquid supply pipe.
  • water such as water that supplies viscous nutrient solution that adheres to the nutrient solution supply pipe intermittently, the solid components in the nozzle nozzle and other connected parts are prevented by solid components in the nutrient solution. As a result, the injection from the nozzle can be maintained normally.
  • the nutrient solution is directed between the root portion of the cultivated plant or the adjacent root portion from the nozzle attached at intervals to the nutrient solution supply pipe piped in the cultivation box that hangs the root portion of the cultivated plant. Therefore, it is not necessary to increase the spray distance from each nozzle. Therefore, it is possible to use a one-fluid nozzle that sprays only nutrient solution without mixing pressurized air, and an air compressor can be dispensed with, and a fan that circulates the spray within the box can be dispensed with. Can be reduced.
  • the spray from the one-fluid nozzle is a so-called semi-dry fog having a large particle of 20 ⁇ m to 100 ⁇ m and a small particle of less than 20 ⁇ m distributed, and an average particle diameter of 10 to 30 ⁇ m. It can be absorbed directly into the root rhizome of the plant, and small particles can be suspended in the air and attached to the side opposite to the nozzle injection side or to the ridge portion branched from the rhizome. Thus, since the nutrients can be efficiently absorbed into the roots of the cultivated plant by both the large particle droplet and the small particle droplet, the growth of the cultivated plant can be promoted.
  • the average particle size of the entire spray is a semi-dry fog of 10-30 ⁇ m, it is hard to fall as water droplets at the bottom of the cultivation box, increasing the nutrient solution absorption rate to the rhizome to the cultivated plant and wasting the nutrient solution Can be eliminated.
  • (A) is sectional drawing which shows the cultivation box of the plant cultivation apparatus of 1st Embodiment of this invention
  • (B) is an expanded sectional view of the BB line of (A)
  • (C) is a principal part expanded sectional view. is there. It is a whole perspective view of a plant cultivation apparatus. It is a schematic plan view which shows the nutrient solution supply path
  • (A) is sectional drawing
  • (B) is a right view of a nozzle tip.
  • (A) is a perspective view showing a nutrient solution spray state from a nozzle to a cultivated plant
  • (B) is a perspective view showing a spray angle from a nozzle in the early stage of cultivation
  • (C) is a spray angle from a nozzle in the late stage of cultivation. It is a perspective view shown.
  • (A) (B) is drawing which shows a prior art example.
  • the plant cultivation apparatus includes a rectangular parallelepiped cultivation box 1 having an upper surface opening.
  • the size of each cultivation box 1 is such that a large number of cultivated plants P can be cultivated at regular intervals in length L and width W.
  • the cultivation box 1 of this embodiment has a length L of 6 m, a width W of 450 mm or 1 m (in this embodiment, a width of 1 m), and a height H of three links of 0.4 m to form a single subunit. It is a large box.
  • the cultivated plants P are planted in a line at regular intervals (70 mm) in the length direction at the center in the width direction in the long box.
  • the plurality of cultivation boxes 1 are mounted on the mounting frame 10 in two upper and lower stages as shown in FIG. Further, as shown in FIG. 3, two sets of the subunits SU are arranged in the width direction in each stage, and pipes described later are connected to form one unit U, and three sets of the units U are arranged in parallel. .
  • the mounting form and mounting number of the cultivation box 1 to the mounting frame 10 are not limited.
  • each cultivation box 1 As shown in FIG. 1, a pair of nutrient solution supply pipes 2 (2 ⁇ / b> A, 2 ⁇ / b> B) are piped along the inner surfaces of both side walls 1 a, 1 b in the lengthwise direction, Nozzles 3 (3A, 3B) for spraying only one fluid of the nutrient solution are attached to the nutrient solution supply pipes 2 toward the inside with a predetermined interval.
  • Nozzles 3 3A, 3B
  • the supply port at one end in the length direction of the nutrient solution supply pipes 2 (2A, 2B) on both sides is connected to pipes 5C, 5D through open / close valves 4A, 4B comprising electromagnetic open / close valves.
  • the pipes 5 ⁇ / b> C and 5 ⁇ / b> D are connected to the pump 6 through the common pipe 5, and the pump 6 is connected to the nutrient solution tank 7.
  • the on-off valves 4A and 4B are alternately opened at predetermined time intervals, and the nutrient solution is sprayed alternately from the nozzles 3A and 3B at predetermined time intervals. For example, after ejecting from the nozzle 3A for 10 seconds, it is ejected from the nozzle 3B for 10 seconds after 50 seconds, and this is repeated.
  • two subunits SU arranged in parallel in the width direction are defined as one unit U. Therefore, the nutrient solution supply pipes 2A of the two subunits SU are connected to each other by a connecting pipe 5A. It connects with the said piping 5C, the nutrient solution supply pipes 2B are connected with the connecting piping 5B, and are connected with the said piping 5D.
  • the common pipe 5 of the three units U is connected to three branch pipes 5F, 5G, and 5H branched from the connection pipe 5E to the pump 6, and the branch pipes 5F to 5H are connected to the on-off valves 4C, 4D, and 4E, respectively.
  • the nutrient solution is sequentially supplied to each nutrient solution supply pipe 2 by one pump 6. Furthermore, in one subunit SU, three cultivation boxes 1 are installed in the length direction. Therefore, the through-hole of the nutrient solution supply pipe 2 is provided in the width direction wall 1c of each cultivation box 1, and the front-end
  • each cultivation box 1 is closed with a lid 11, and the inside of the cultivation box 1 is a substantially sealed hollow portion 1f.
  • the lid member 11 includes a substrate 11a made of foamed polystyrene and a heat shield plate 11b that is fixed to the upper surface of the substrate 11a.
  • a planting hole 11d is provided at an interval in the lid member 11, and the root part Pr of the cultivated plant P supported by the float by the lid member 11 is hung down to the upper part of the hollow part 1f through the planting hole 11d.
  • the nutrient solution supply pipe 2 (2A, 2B) is installed at a height position substantially corresponding to the vertical position at the time of attachment.
  • nozzles 3A and 3B are attached to the nutrient solution supply pipes 2A and 2B on both sides with a pitch 2S that is twice the planting pitch S of the cultivated plant P.
  • the front and rear nozzles 3A and 3B are attached in a staggered arrangement, and the nozzles 3A and 3B are alternately arranged opposite to the cultivated plant P.
  • the nozzles 3A and 3B may be disposed between the adjacent cultivated plants P, and the nutrient solution may be absorbed from the side of the root.
  • the nozzle 3 (3A, 3B) is a one-fluid nozzle shown in FIGS. 4 (A) and 4 (B) and sprays only the nutrient solution obtained by diluting the fertilizer with water at a required magnification. That is, the two-fluid nozzle that requires the air compressor presented in Patent Document 1 is not used.
  • the nozzle 3 composed of the one-fluid nozzle sprays the nutrient solution as a swirling flow from the nozzle nozzle 62c and expands / contracts the spray angle range and increases / decreases the spray amount by increasing / decreasing the spray pressure.
  • the particle size of the spray from the nozzle 3 is a mixture of small particles of less than 20 ⁇ m, preferably ultrafine particles of 10 ⁇ m or less, and large particles of 20 ⁇ m or more and 100 ⁇ m or less, preferably 30 to 50 ⁇ m, and an average particle size of 10 ⁇ m.
  • a so-called semi-dry fog of ⁇ 30 ⁇ m can be generated.
  • the configuration of the nozzle 3 includes a cylindrical housing 62 and a nozzle tip 63 fixed to the inner surface of the ejection side wall 62b at one end in the length direction of the nutrient solution flow path 62a formed of a hollow portion of the housing 62.
  • An injection port 62c is provided in the center of the injection side wall 62b, and the other end opening of the nutrient solution channel 62a at the other end is connected to the nutrient solution supply pipe 2.
  • An injection hole 63a communicating with the injection port 62c is provided on one end surface of the nozzle tip 63 on the injection side, and a tapered hole 63b having a diameter reduced from the other end surface toward the injection hole 63a is provided.
  • the inner surface of the tapered hole 63b and the other end surface 63c surrounding the tapered hole 63b are provided with a plurality of turning grooves 63m that are curved in an arc shape with a required angular interval.
  • the nutrient solution supplied to the nutrient solution flow path 62a from the pump 6 at a required pressure flows into the tapered hole 63b of the nozzle tip 63, and a swirling flow is formed by the swirling groove 63m on the inner peripheral surface thereof. It is assumed that the fuel is ejected while turning outward through 63a and the nozzle 62c.
  • the discharge pressure of the pump 6 is controlled so that the spray pressure of the nutrient solution in the nozzle 3 is 1 MPa to 7 MPa. Since the nutrient solution is sprayed as a swirling flow from the nozzle 62c in the nozzle 3, when the spray pressure increases, the angle at which the spray injected as the swirling flow is distributed, that is, the spray angle gradually increases. Specifically, in the nozzle 3, when the spray pressure increases from 1 MPa to 7 MPa, the spray angle ⁇ increases from 50 ° to 120 °. When the spray pressure increases from 1 MPa to 7 MPa, the spray amount increases 1 to 3 times.
  • the spray pressure is set to 1 MPa
  • the spray angle is set to about 50 °
  • the cultivated plant P grows.
  • the discharge pressure of the pump 6 is controlled as shown in FIG. 5C to gradually increase the spraying pressure of the nozzle 3 to the range of 7 MP, thereby expanding the spraying angle and spraying. The amount is increased so that the entire length of the root Pr is included in the spray range.
  • tap water serving as cleaning water is intermittently supplied to the nozzle 3.
  • the pump 6 has two suction ports 6i-1 and 6i-2 connected to the discharge port 6u.
  • One suction port 6i-1 is connected to the nutrient solution tank 7 via a pipe 16, while the other suction port 6i-2 is connected to a tap water supply unit 18 via a pipe 17 to the pipes 16 and 17.
  • the cleaning water is supplied when the nutrient solution is not supplied to the nozzle 3 through the on-off valves 4H and 4I.
  • the supply of the washing water is performed by controlling opening / closing of the on-off valves 4A to 4I composed of electromagnetic on-off valves provided in the pipe, similarly to the spray start and spray stop. Further, the nutrient solution condensed in the cultivation box 1 is discharged from the drainage port provided in the cultivation box 1, the discharged nutrient solution is collected in a collection tank (not shown), returned to the nutrient solution tank, We are using.
  • the nutrient solution is sprayed alternately toward the root portion Pr of the cultivated plant P with a time difference from the nozzles 3A and 3B attached to the nutrient solution supply pipes 2A and 2B on both sides in each cultivation box 1. is doing. Since the spray has an average particle size of 10-30 ⁇ m, it can be prevented from agglomerating and dropping as water droplets, and can be suspended in the air in the large cultivation box 1 to make the roots of the cultivated plants easily adsorb nutrient solution. At the same time, oxygen and nitrogen in the air can be easily touched.
  • grains 20 micrometers or more contained in spraying can adhere directly to the root part Pr, and can improve the absorption efficiency of a nutrient solution. Furthermore, since the spraying pressure of the nozzle 3 is increased corresponding to the growth of cultivated plants to widen the spraying angle, the nutrient solution can be directly absorbed by the entire length of the root Pr. And according to the growth of cultivated plants, the spray pressure of the nozzle 3 is increased to increase the spray amount. As a result, the growth of cultivated plants can be promoted and the yield can be increased.
  • nozzles 3 are arranged at intervals on both sides in the cultivation box 1, it is not necessary to extend the spray distance from each nozzle. It is not necessary to use a one-fluid nozzle that sprays only, and to install a fan for circulating the spray in the cultivation box 1. Therefore, an air compressor and a fan can be dispensed with, and running costs and equipment costs can be reduced.
  • FIG. 6 shows a first modification of the first embodiment.
  • the nutrient solution supply pipes arranged on both sides of the cultivation box 1 are made continuous to form one nutrient solution supply tube 2, and one nutrient solution supply pump 6 is provided in the nutrient solution supply tube 2. Connected. It sprays toward the root part of the cultivated plant simultaneously from the nozzle 3 arranged in a staggered manner on both sides.
  • FIG. 7 shows a second modification of the first embodiment.
  • two rows of cultivated plants P are planted in a staggered arrangement in the cultivation box 1, and the nozzles 3A, 3B on both sides and the cultivated plants P on the same side are arranged opposite to each other.
  • the nozzle may not be disposed opposite to the cultivated plant P, but may be disposed between adjacent cultivated plants so that the nutrient solution is absorbed from the side by the root of the adjacent cultivated plant.
  • FIG. 8 shows a second embodiment.
  • variety of the cultivation box 1 shall be 450 mm, and the nutrient solution supply pipe
  • the nutrient solution supply pipe 2 is not provided on the other side wall 1b side, and no nozzle is provided. Therefore, the nutrient solution is sprayed on the cultivated plant by the nozzle 3 only from one side.
  • One cultivation box 1-B is 18 m to 20 m long, and two long cultivation boxes 1-B are arranged in parallel to constitute one unit U.
  • On-off valves 4M and 4N are interposed in pipes 5M and 5N connected to the nutrient solution supply pipe 2 provided in the two cultivation boxes 1-B, respectively.
  • the nutrient solution supply pipe 2 is installed along one side wall in the length direction in the cultivation box 1-B, and is directed toward the root of the cultivation plant only from the nozzle 3 attached to the nutrient solution supply pipe 2 Even if sprayed from one side, it is a semi-dry fog with an average particle size of 10-30 ⁇ m, so that droplets can be suspended in the air, and the nutrient solution is also applied to the root of the opposite surface that is not sprayed directly from the nozzle 3 Can be attached.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)
  • Nozzles (AREA)

Abstract

 植物栽培装置のランニングコストを低下すると共に、栽培植物の養液吸収率を高め成長を促進して収穫量を増加する。栽培植物の根部が下垂する細長い中空の栽培ボックスを備え、長さ方向の側壁内面に沿って養液供給管を取り付け、各養液供給管にそれぞれ所要間隔をあけて、養液からなる一流体を噴霧するノズルを取り付け、該ノズルからの噴霧の粒子径は20μm未満の小粒子と20μm以上100μm以下の大粒子が混在すると共に平均粒子径を10μm~30μmとしている。

Description

植物栽培装置
 本発明は植物栽培装置に関し、特に、植物工場で営農を行う場合に好適に用いられ、運転コストの低下と収穫量の増加により経済的な営農を可能とするものである。
 植物栽培装置は従来より多数提案されており、本出願人も特開2012-196164号公報(特許文献1)で図9(A)(B)に示す植物栽培装置を提供している。該特許文献1で提供している植物栽培装置では、横長な栽培ボックス100内に長さ方向Lに沿って上面に栽培植物Pを間隔をあけてセットし、これら栽培植物Pの根部Prを栽培ボックス100内に垂下させている。栽培ボックス100内には長さ方向に沿って上下を仕切る傾斜仕切板106を設置し、短辺側の一側壁101の内面中央に1つのノズル110を取り付ける一方、対向する他側壁102の近傍の下部に噴霧循環用のファン115を取り付けている。
 前記ノズル110とファン115とにより、栽培ボックス100内でノズル110からの養液の噴霧を傾斜仕切板106の上方で他側壁102へと流し、他側壁102に沿って下方へ流した後に、傾斜仕切板106の下方で一側壁101へ循環させている。かつ、前記ノズル110として、養液と圧搾空気の混合流体を噴霧する二流体ノズルを用い、図9(B)に示すように、エアコンプレッサー120から圧力空気をノズル110に供給すると共に、養液タンク121からポンプ122で所要圧として養液を供給し、栽培ボックス100内で他側壁102に向けて噴霧の飛距離を増大するために、二流体のノズル110から高い噴射圧力で栽培ボックス100に噴霧している。
 さらに、ノズル110は長い栽培ボックス100内で長さ方向の一端側に設置しているため、栽培ボックス100内の空気中にノズル110から噴霧する養液が滞留するように液滴が30μm以下、好ましくは10μm以下の微細な霧とし、養液の霧で栽培ボックス内を近飽和状態とし、ノズル110から離れた位置の栽培植物の根部Prが養液を吸収できるようにしている。
特開2012-196164号公報
 特許文献1の植物栽培装置では、長い栽培ボックス100内で、長さ方向の一端に設置した1個のノズル110からの噴霧を他端側に設置したファン115により栽培ボックス100内の全体に循環させるため、ノズル110として噴霧の飛距離が伸びる二流体ノズルを用いている。しかしながら二流体ノズルに圧力空気を供給するためにエアコンプレッサーを必要とするため、設備コストおよび運転コスト(ランニングコスト)がかかる。かつ、噴霧循環用のファン115にも設備コストおよび運転コストがかかる。特に、ランニングコストがかかることは営農にとって不利となる。
 また、栽培ボックス100内に、10μm以下の微細な養液を含む霧(所謂ドライフォグ)を充満させると、ノズル110より離れた位置の栽培植物の根部に養液を吸収させることができるが、ノズル噴射側に対して他端側では養液が希薄となり植物の生育が鈍化し、栽培植物を均等に生育することが難しい。かつ、空気中に浮遊する液滴が植物に吸収されずに栽培ボックス100の底部に溜まり、図9(B)に示すように、タンク130で回収される量が多くなる。この回収量はノズル110からの噴霧量の30%程度となり、その分、植物の根部に吸収されず、非効率となる。
 栽培植物は成長と共に養分要求量も増加する。ドライフォグとして栽培ボックス内の空気中に養液を浮遊させた場合、成長する根部に養液を吸収させることはできるが、空気中の浮遊量を多くすると、液滴として落下して回収される量も増加し、植物の根部に吸収される養液量が不足する。健全な生育状態を維持し、さらに、植物をより早期に成長させて収穫量を増加させるためには、植物の根部に必要量の養液が確実に吸収されるように改善する必要がある。
 本発明は、前記ランニングコストの問題および栽培植物の養分吸収率が悪い問題を改善し、栽培植物の育生を速めて収穫量を増加させると共に、ランニングコストを低下して、より経済的な営農を可能とすることを課題としている。
 前記課題を解決するため、本発明は、栽培植物の根部が下垂する細長い中空の栽培ボックスを備え、長さ方向の側壁内面に沿って養液供給管を取り付け、該養液供給管に所要間隔をあけて養液からなる一流体を噴霧するノズルを取り付け、
 前記ノズルからの噴霧の粒子径は20μm未満の小粒子と20μm以上100μm以下の大粒子が混在すると共に平均粒子径を10μm~30μmとしていることを特徴とする植物栽培装置を提供している。
 前記のように、本発明では栽培ボックス内に栽培植物の根部に向けて養液を噴霧するノズルを間隔をあけて複数配置しているため、前記特許文献1の1本のノズルからの噴霧をボックス内に循環させる場合と比較して各ノズルからの噴霧飛距離を伸ばす必要はなく、よって、圧力空気を混合せずに養液のみを噴霧する一流体ノズルを用いている。このように、圧力空気を用いないため、エアコンプレッサーを不要に出来ると共に、栽培ボックス内で噴霧を循環させるファンも不要にでき、ランニングコストおよび設備コストを低下できる。
 また、一流体ノズルから噴霧する平均粒子径を10~30μmの所謂セミドライフォグとし、そのうち、20μm以上100μm以下、好ましくは20~40μmで、30μm前後の粒径の養液を栽培植物の根茎に直接的に吸収させるようにしている。一方、20μm未満、好ましくは、10μm以下の超微粒の液滴を栽培ボックス内の空気中に浮遊させ、ノズル噴射側と反対側や根茎から分岐する髭部分に養液を付着させるようにしている。前記霧の平均粒子径はレーザ法で測定している。
 このように、大粒子の液滴と小粒子の液滴の両方で効率よく栽培植物の根部に養分を吸収させることができるため、栽培植物の成長を促進できる。
 かつ、噴霧全体の平均粒径を10~30μmの微霧からなるセミドライフォグとしているため、栽培ボックスの底部に水滴となって落下しにくく、栽培植物の根部への養液吸収率を高めると共に養液の無駄を無くすことができる。
 通常、ノズルからの噴霧の粒径は均一でなく、特に、空気と混合せずに液体のみを噴射する一流体ノズルでは、噴霧中に含まれる液滴の粒径幅が大きくなる。特に、噴口から旋回流として養液を噴霧する一流体ノズルでは、噴霧分布の中央部分の粒子径は大きくなり、外周の粒子径は小さくなりやすい。
 本発明では、前記旋回流を噴霧する一流体ノズルの特性を利用して、前記のように、大粒子の液滴を栽培植物の根部の根幹に吹き付けて養液を根部に確実に吸収させ、小粒子の液滴を栽培ボックス内の空気中に浮遊させて、ノズルから直接に養液が吹き付けられない根部に養液を吸収させている。
 一流体ノズルからなる前記ノズルとして、例えば、筒形状のハウジングの中空部を養液流路とし、該養液流路の長さ方向の一方側から養液を供給すると共に、養液流路の長さ方向の他端を噴射壁で閉鎖し、該噴射壁の中央に噴口を設ける一方、
 前記噴射壁の内面にノズルチップを固定し、該ノズルチップの一端面に前記噴口と連通する噴射穴を設けると共に、該ノズルチップの他端側に前記噴射穴に向けて円弧状に湾曲させた旋回溝を設け、該旋回溝を通して旋回させながら前記噴口より養液を噴射させる構成としているノズルを用いることが好ましい。
 前記旋回溝の円弧角度、円弧長さ等を含む形状、旋回溝の本数、旋回溝の間隔等により、噴霧の前記大粒子、小粒子の粒径、平均粒子径を調節できる。かつ、後述する噴霧圧により噴霧角度範囲を拡縮出来ると共に噴霧量を増減できる。
 前記ノズルとして、ノズル噴口から旋回流として前記養液を噴霧すると共に、噴霧圧力の増減により噴霧角度範囲が拡縮し且つ噴霧量が増減する一流体ノズルを用いることが好ましい。
 前記ノズルにポンプから養液を供給し、該ノズルの噴霧圧力を1MPa~7MPaとし、前記栽培植物の成長する根部の長さに対応させて前記ポンプの吐出圧を変えて前記ノズルの噴霧圧力を前記1MPa~7MPaの範囲内で漸次高圧として、前記ノズルの噴霧角度を大きくすると共に噴霧量を増加することが好ましい。
 前記のように、前記ノズルの噴霧圧力は、1MPa~7MPaとし、好ましくは2MPa~4MPaとしている。
 前記のように噴霧圧力を調節して、噴霧量を1:3の範囲で増減可能とすることが好ましい。また、噴霧角度を50°~120°の範囲で拡縮可能とすることが好ましい。
 詳しくは、栽培初期では噴霧圧力を小さくして、噴霧角度を50~70°とすると共に噴霧量を少なくする。栽培植物の成長に応じて、根部の上下方向の成長が大きい植物では噴霧圧力を高めて噴霧角度を最大90°~120°と大きくすると共に噴霧量を栽培初期の噴霧量の3倍近くに増加させる。根部の上下方向の成長が小さい植物では噴霧角度を最大50~90°とすることが好ましい。
 本発明で用いる一流体ノズルは、噴霧圧力を1~2MPaと小さくすると、噴霧角度が50~70°と小さくなり、噴霧圧力を3MPaを越えて7MPaへ増大するにしたがって噴霧角度が70°~120°と増大し、噴霧量が約3倍に増大するものを用いることが好ましい。
 前記栽培ボックスの長さ方向の両側壁の内面に沿ってそれぞれ前記養液供給管を取り付け、該両側壁の養液供給管にノズルを千鳥配置に間隔をあけて取り付けることが好ましい。
 其の際、両側壁の養液供給管に千鳥配置するノズルは、それぞれ各栽培植物の根部と対向する位置または隣接する根部の間に配置することが好ましい。例えば、栽培植物が小さく千鳥配置で2列とする場合、同一側のノズルは隣接する栽培植物の間に配置する一方、栽培植物が大きく一列の場合は両側のノズルをそれぞれ栽培植物の2倍のピッチをあけて配置することが好ましい。
 本発明は主として営農用を対象としているため、栽培ボックスは、例えば、長さ6m、巾0.35m~1m、高さ0.4mを1ユニットとして3連結した大型栽培ボックス、あるいは長さ18m~20m、幅を0.35m~1m、高さ0.4mの大型栽培ボックスとしている。この大型栽培ボックス内に栽培植物を長さ方向に50~100cmの間隔をあけて配置している。よって、栽培植物を一列に配置すると、両側養液供給管には、それぞれ100~200cmのピッチをあけてノズルを取り付けている。
 前記のように両側に千鳥配置するノズルから栽培ボックス内に向けて噴霧すると、栽培ボックス内の全体に略均等に噴霧を充満させ、栽培植物の根部の全周に渡って均等に養液を吸収させることができる。
 かつ、栽培植物の根部と対向位置または隣接する栽培植物の根部の間に向けてノズルから噴霧することで、前記大粒子の液滴を根部に直接に吸収させて、養液の無駄を無くし、より経済的な営農ができる。
 前記栽培ボックスの両側壁に配置する一対の前記養液供給管を1台の前記養液供給用のポンプに接続し、該一台のポンプから両側の前記養液供給管に時間差をあけて養液を供給して両側の前記ノズルから交互に噴霧させ、
 あるいは両側壁に配置する前記養液供給管を連続させて1本の養液供給管とし、該養液供給管に1台の前記養液供給用のポンプを接続して、両側の前記ノズルから同時に連続して噴霧させ又は時間差をあけて同時に噴霧させる構成としている。
 該構成とすると、両側に配置したノズルに1台のポンプで養液を供給でき、運転コストを抑えることができる。
 特に、前者の構成として両側に配置するノズルから交互に噴霧すると、ポンプの容量を小さくでき、運転コストをより抑えることができる。
 また、栽培ボックスを複数列で設け、これら複数列の栽培ボックス内に配管した前記養液供給管に、1台のポンプに接続した共通供給管を開閉弁を介して分岐して連続し、1台のポンプにより複数の栽培ボックス内の前記ノズルに養液を供給することが好ましい。
 前記構成とすると、設備コストおよび運転コストを低減しながら、栽培植物の収穫量を増加できる。
 また、前記ポンプの吸い込み側に洗浄水供給管と養液供給管とを開閉弁を介して接続した共用管を接続し、前記開閉弁を開閉して、間欠的に前記ノズルを取り付けた前記養液供給管を通して洗浄水を供給することが好ましい。
 養液供給管に付着する粘性を有する養液を間欠的に供給する水等の洗浄水で洗浄することにより、養液中の固着成分によってノズル噴口や他の接続部分の固形物蓄積を防御することができ、その結果、ノズルからの噴射を正常に維持することができる。
 前記本発明の植物栽培装置では、栽培植物の根部を垂れ下げる栽培ボックス内に配管した養液供給管に間隔をあけて取り付けたノズルから養液を栽培植物の根部または隣接する根部の間に向けて噴射しているため、各ノズルからの噴霧飛距離を伸ばす必要はない。よって、圧力空気を混合せずに養液のみを噴霧する一流体ノズルを用いることができ、エアコンプレッサーを不要にできると共に、ボックス内で噴霧を循環させるファンも不要とでき、特に、ランニングコストを低下できる。
 かつ、前記一流体ノズルからの噴霧は20μm以上100μm以下の大粒子と、20μm未満の小粒子が分布し、平均粒子径が10~30μmの所謂セミドライフォグとしているため、大粒子の液滴を栽培植物の根茎に直接的に吸収させることができると共に、小粒子を空気中に浮遊させ、ノズル噴射側と反対側や根茎から分岐する髭部分に付着させることができる。このように、大粒子の液滴と小粒子の液滴の両方で効率よく栽培植物の根に養分を吸収させることができるため、栽培植物の成長を促進できる。かつ、噴霧全体の平均粒径を10~30μmのセミドライフォグとしているため、栽培ボックスの底部に水滴となって落下しにくく、栽培植物への根茎への養液吸収率を高めると共に養液の無駄を無くすことができる。
(A)は本発明の第1実施形態の植物栽培装置の栽培ボックスを示す断面図、(B)は(A)のB-B線の拡大断面図、(C)は要部拡大断面図である。 植物栽培装置の全体斜視図である。 植物栽培装置の養液供給経路を示す概略平面図である。 前記栽培ボックス内に設置するノズルを示し、(A)は断面図、(B)はノズルチップの右側面図である。 (A)は栽培植物へのノズルからの養液噴霧状態を示す斜視図、(B)は栽培初期のノズルからの噴霧角度を示す斜視図、(C)は栽培後期のノズルからの噴霧角度を示す斜視図である。 第1実施形態の第1変形例の概略平面図である。 第1実施形態の第2変形例の概略平面図である。 第2実施形態の概略平面図である。 (A)(B)は従来例を示す図面である。
 以下、本発明の植物栽培装置の実施形態を図面を参照して説明する。
 図1乃至図5に第1実施形態を示す。
 植物栽培装置は図1に示すように、上面開口の直方体状の栽培ボックス1を備えている。各栽培ボックス1の大きさは多数の栽培植物Pを長さLおよび幅Wに一定間隔をあけて栽培できる大きさとしている。本実施形態の栽培ボックス1は長さLが6m、幅Wが450mmまたは1m(本実施形態では幅1m)、高さHが0.4mを3連結して1つのサブユニットとし、長尺な大型ボックスとしている。該長尺なボックス内の幅方向の中央部に栽培植物Pを長さ方向に一定間隔(70mm)をあけて一列に植えている。
 複数の栽培ボックス1は図2に示すように、搭載用フレーム10に上下2段で搭載している。また、図3に示すように、各段に幅方向に前記サブユニットSUを2組並設すると共に後述する配管を連結して1つのユニットUとし、該ユニットUを3組並設している。なお、搭載用フレーム10への栽培ボックス1の搭載形態および搭載個数は限定されない。
 前記各栽培ボックス1内には、図1に示すように、長さ方向の両側壁1a、1bの内面に沿って、略全長に一対の養液供給管2(2A、2B)を配管し、これら養液供給管2に一定間隔をあけて内部側に向けて養液のみの一流体を噴霧するノズル3(3A、3B)を取り付けている。
 このように、栽培ボックス1内には長さ方向の両側に多数のノズル3を配置しているため、前記特許文献1で提示した栽培ボックス内に配置していた噴霧循環用のファンは設けていない。
 図3に示すように、前記両側の養液供給管2(2A、2B)の長さ方向の一端の供給口を電磁開閉弁からなる開閉弁4A、4Bを介設した配管5C、5Dと接続し、該配管5C、5Dを共通配管5を介してポンプ6と接続し、該ポンプ6を養液タンク7と接続している。
 前記配管とすることで、開閉弁4A、4Bを所定時間間隔をあけて交互に開弁してノズル3Aと3Bから所定時間間隔をあけて交互に養液を噴霧している。例えば、ノズル3Aから10秒間噴射した後、50秒あけてノズル3Bから10秒間噴射し、これを繰り返している。
 本実施形態では、図3に示すように、幅方向に並列する2つのサブユニットSUを1ユニットUとしているため、2つのサブユニットSUの養液供給管2A同士を連結配管5Aで連結して前記配管5Cと接続し、養液供給管2B同士を連結配管5Bで連結して前記配管5Dと接続している。かつ、3つのユニットUの共通配管5をポンプ6との接続管5Eから分岐する3つの分岐管5F、5G、5Hにそれぞれ接続し、これら分岐管5F~5Hにそれぞれ開閉弁4C、4D、4Eを介在させて、1つのポンプ6で養液を順次各養液供給管2へ供給している。
 さらに、1つのサブユニットSUでは長さ方向に栽培ボックス1を3連続して設置している。よって、各栽培ボックス1の幅方向壁1cに養液供給管2の貫通穴を設け、養液供給管2の長さ方向の先端を継手(図示せず)を介して連続させて前記貫通穴に通している。即ち、長さ方向に連続して配置する3つの栽培ボックス1の各養液供給管2を3つのユニットの先端まで連続させている。
 各栽培ボックス1の上面開口を蓋材11で閉鎖し、栽培ボックス1の内部を略密閉された中空部1fとしている。蓋材11は発泡スチロールからなる基板11aと、該基板11aの上面に固着する遮熱板11bからなる。蓋材11に間隔をあけて植付穴11dを設け、蓋材11でフロート支持された栽培植物Pの根部Prを植付穴11dを通して中空部1fの上部に垂れ下げている。
 前記のように、栽培ボックス1の長さ方向に延在する両側側壁1a、1bの内面に沿って、かつ、図1(B)および図5に示すように、栽培植物Pの根部Prの植付時の上下位置と略対応する高さ位置に養液供給管2(2A、2B)を設置している。また、図1(C)に示すように、両側の養液供給管2A、2Bに栽培植物Pの植え付けピッチSの2倍のピッチ2Sをあけてノズル3A、3Bを取り付けている。かつ、前後のノズル3Aと3Bとは千鳥配置に取り付け、ノズル3Aと3Bとを交互に栽培植物Pに対向配置している。なお、ノズル3Aと3Bをそれぞれ隣接する栽培植物Pの間に配置し、根部の側方から養液を吸収させてもよい。
 ノズル3(3A、3B)は図4(A)(B)に示す一流体ノズルとし、肥料を水により所要倍率で希釈した養液のみを噴射している。即ち、特許文献1で提示したエアコンプレッサーを必要とする二流体ノズルを用いていない。
 前記一流体ノズルからなるノズル3は、ノズル噴口62cから旋回流として養液を噴霧すると共に噴霧圧力の増減により噴霧角度範囲が拡縮すると共に噴霧量が増減するものとしている。かつ、該ノズル3からの噴霧の粒子径は20μm未満の小粒子、好ましくは10μm以下の超微粒子と、20μm以上100μm以下、好ましくは30~50μmの大粒子が混在すると共に、平均粒子径が10μm~30μmの所謂セミドライフォグを発生できるものとしている。
 ノズル3の構成は、筒形状のハウジング62と、該ハウジング62の中空部からなる養液流路62aの長さ方向一端の噴射側壁62bの内面に固定したノズルチップ63とからなる。前記噴射側壁62bの中央に噴口62cを設けると共に他端の養液流路62aの他端開口を養液供給管2と連続させている。
 前記ノズルチップ63の噴射側の一端面に噴口62cと連通する噴射穴63aを設けると共に、他端面から噴射穴63aに向けて縮径するテーパ状穴63bを設けている。該テーパ状穴63bの内面およびテーパ状穴63bを囲む他端面63cに図4(B)に示すように、所要角度間隔をあけて円弧状に湾曲させた複数の旋回溝63mを設けている。
 該ノズル3では、養液流路62aにポンプ6より所要圧力で供給される養液がノズルチップ63のテーパ状穴63bに流入し、その内周面の旋回溝63mにより旋回流となり、噴射穴63a、噴口62cを通して外部に旋回しながら噴射されるものとしている。
 該ノズル3における養液の噴射圧力は1MPa~7MPaとなるように、前記ポンプ6の吐出圧を制御している。
 該ノズル3では噴口62cから旋回流として養液を噴霧しているため、噴霧圧力が増加すると、旋回流として噴射される噴霧が分布する角度、即ち、噴霧角度は次第に増加する。
 具体的には前記ノズル3では、噴霧圧力が1MPa→7MPaに増加すると、噴霧角度θが50°→120°と拡大する。かつ、噴霧圧力が1MPa→7MPaに増加すると、噴霧量が1→3倍に増加する。
 よって、栽培植物Pの植え込み時には図5(B)に示すように、根部Prの長さが短いため、噴霧圧力を最小の1MPaとし噴霧角度を約50°とし、栽培植物Pの成長する根部Prの長さに対応させ、栽培後期では、図5(C)に示すようにポンプ6の吐出圧を制御して、ノズル3の噴霧圧力を7MPの範囲まで漸次高圧し、噴霧角度を広げると共に噴霧量を増加し、根部Prの全長が噴霧範囲に含まれるようにしている。
 また、ノズル3には、洗浄水となる水道水を間欠的に供給している。図3に示すように、前記ポンプ6には吐出口6uに2個の吸入口6i-1、6i-2を連続させている。一方の吸入口6i-1を前記養液タンク7と配管16を介して連続する一方、他方の吸入口6i-2を水道水供給部18と配管17を介して接続し、配管16と17に開閉弁4H、4Iを介在させ、養液をノズル3に供給していない時に洗浄水を供給している。
 洗浄水の供給は、噴霧開始および噴霧停止と同様に、前記配管に介設した電磁開閉弁からなる開閉弁4A~4Iを開閉制御して行っている。
 また、栽培ボックス1に設けた排液口から栽培ボックス1内で結露した養液を排出し、該排出した養液を回収タンク(図示せず)で回収して、養液タンクに戻し、再利用している。
 前記構成として植物栽培装置では、各栽培ボックス1内で両側の養液供給管2A、2Bに取り付けたノズル3Aと3Bから時間差をあけて交互に養液を栽培植物Pの根部Prに向けて噴霧している。噴霧は平均粒子径を10~30μmとしているため、水滴として凝集して落下するのを抑制でき、大型の栽培ボックス1内で空気中に浮遊させ、栽培植物の根部が養液を吸着しやすくし、同時に空中の酸素、窒素の触取も容易に行えるようにしている。かつ、ノズル3から根部Prに向けて直接に噴霧されるため、噴霧中に含まれる20μm以上の大粒子が根部Prに直接に付着でき、養液の吸収効率を高めることができる。
 さらに、栽培植物の成長に対応してノズル3の噴霧圧力を増加して噴霧角度を広げるため、常時、根部Prの全長で養液を直接に吸収できる。かつ、栽培植物の成長に対応してノズル3の噴霧圧力を増加して噴霧量を増加する。その結果、栽培植物の成長を促進して、収穫量を増加できる。
 また、栽培ボックス1内の両側にノズル3を間隔をあけて複数配置しているため、各ノズルからの噴霧飛距離を伸ばす必要はなく、よって、ノズル3として圧力空気を混合せずに養液のみを噴霧する一流体ノズルを用い、かつ、栽培ボックス1内で噴霧を循環させるファンを設置する必要はない。よって、エアコンプレッサーおよびファンを不要にでき、ランニングコストおよび設備コストを低下できる。
 図6に第1実施形態の第1変形例を示す。
 第1変形例では、栽培ボックス1の両側に配置する養液供給管を連続させて1本の養液供給管2とし、該養液供給管2に1台の養液供給用のポンプ6を接続している。両側に千鳥配置したノズル3から同時にそれぞれ栽培植物の根部に向けて噴霧している。
 図7に第1実施形態の第2変形例を示す。
 第2変形例では、栽培ボックス1に栽培植物Pを千鳥配置で2列植え込み、両側のノズル3A、3Bと前後同一側の栽培植物Pとを対向させて配置している。
 尚、両側のノズル3Aと3Bを図7と逆配置として、栽培植物Pの間に対して離れた位置にノズル3A、3Bを配置してもよい。
 さらに、ノズルを栽培植物Pと対向配置せず、隣接する栽培植物の間に配置し、隣接する栽培植物の根部に側方から養液を吸収させるようにしてもよい。
 図8に第2実施形態を示す。
 第2実施形態では、栽培ボックス1の幅は450mmとし、この幅を狭くした栽培ボックス1内には、長さ方向の一方の側壁1aに沿って養液供給管2を配管して、ノズル3を取り付けているが、他方の側壁1b側には、該養液供給管2を配管しておらず、ノズルを設置していない。よって、栽培植物には一方側からのみノズル3により養液が噴霧されるようにしている。また、一つの栽培ボックス1-Bは18m~20mと長尺とし、該長尺な栽培ボックス1ーBを平行に2個配列して1つのユニットUを構成している。この2個の栽培ボックス1ーB内に設ける養液供給管2に接続した配管5M、5Nにそれぞれ開閉弁4M、4Nを介設している。
 前記のように、栽培ボックス1ーB内で長さ方向の一方の側壁に沿って養液供給管2を設置し、該養液供給管2に取り付けたノズル3からのみ栽培植物の根部に向けて一方側から噴霧しても、平均粒子径が10~30μmのセミドライフォグとしているため、空気中に液滴を浮遊させることができ、ノズル3から直接に噴霧されない反対面の根部にも養液を付着させることができる。
 1 栽培ボックス
 2 養液供給管
 3 ノズル
 4 開閉弁
 6 ポンプ
 P 栽培植物
 Pr 根部

Claims (9)

  1.  栽培植物の根部が下垂する細長い中空の栽培ボックスを備え、長さ方向の側壁内面に沿って養液供給管を取り付け、該養液供給管に所要間隔をあけて養液からなる一流体を噴霧するノズルを取り付け、
     前記ノズルからの噴霧の粒子径は20μm未満の小粒子と20μm以上100μm以下の大粒子が混在すると共に平均粒子径を10μm~30μmとしていることを特徴とする植物栽培装置。
  2.  前記ノズルとして、ノズル噴口から旋回流として前記養液を噴霧すると共に、噴霧圧力の増減により噴霧角度範囲が拡縮し且つ噴霧量が増減する一流体ノズルを用いている請求項1に記載の植物栽培装置。
  3.  前記ノズルにポンプから所要圧力で養液を供給し、該ノズルの噴霧圧力を1MPa~7MPaとし、前記栽培植物の成長する根部の長さに対応させて前記ポンプの吐出圧を前記ノズルの噴霧圧力が前記1MPa~7MPaの範囲内で漸次高圧とし、前記ノズルの噴霧角度を大きく且つ噴霧量を増加できるものとしている請求項1又は請求項2に記載の植物栽培装置。
  4.  前記ノズルの噴霧圧力を増減して、噴霧量を1:3の範囲で増減できるものとしている請求項2または請求項3に記載の植物栽培装置。
  5.  前記ノズルの噴霧圧力を増減して、噴霧角度を50°~120°の範囲で変化させている請求項2乃至請求項4のいずれか1項に記載の植物栽培装置。
  6.  前記栽培ボックスの長さ方向の両側壁の内面に沿ってそれぞれ前記養液供給管を取り付け、該両側壁の養液供給管にノズルを千鳥配置に間隔をあけて取り付け、該栽培ボックス内には前記ノズルから噴霧される霧を循環させるファンを配置していない請求項1乃至請求項5のいずれか1項に記載の植物栽培装置。
  7.  前記栽培ボックスの両側壁に配置する一対の前記養液供給管を1台の前記養液供給用のポンプに接続し、該一台のポンプから両側の前記養液供給管に時間差をあけて養液を供給して両側の前記ノズルから交互に噴霧させ、
     あるいは両側壁に配置する前記養液供給管を連続させて1本の養液供給管とし、該養液供給管に1台の前記養液供給用のポンプを接続して、両側の前記ノズルから同時に連続して噴霧させ又は時間差をあけて同時に噴霧させる構成としている請求項6に記載の植物栽培装置。
  8.  前記ポンプの吸入側に接続する養液供給管と共に洗浄水供給管を前記ポンプに接続すると共に、前記養液供給管と洗浄水供給管にそれぞれ開閉弁を接続し、間欠的に前記養液供給管を通して前記ノズルに洗浄水を供給している請求項3乃至請求項7のいずれか1項に記載の植物栽培装置。
  9.  前記ノズルは、筒形状のハウジングの中空部を養液流路とし、該養液流路の長さ方向の他端を噴射壁で閉鎖し、該噴射壁の中央に噴口を設ける一方、
     前記噴射壁の内面にノズルチップを固定し、該ノズルチップの一端面に前記噴口と連通する噴射穴を設けると共に、該ノズルチップの他端側に前記噴射穴に向けて円弧状に湾曲させた旋回溝を設け、該旋回溝を通して旋回させながら前記噴口より養液を噴射させる構成としている請求項1乃至請求項8のいずれか1項に記載の植物栽培装置。
PCT/JP2015/063897 2014-05-16 2015-05-14 植物栽培装置 WO2015174493A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167031703A KR20170005003A (ko) 2014-05-16 2015-05-14 식물 재배 장치
JP2016519302A JP6613525B2 (ja) 2014-05-16 2015-05-14 植物栽培装置
CN201580025085.1A CN106413386A (zh) 2014-05-16 2015-05-14 作物栽培设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014102362 2014-05-16
JP2014-102362 2014-05-16

Publications (1)

Publication Number Publication Date
WO2015174493A1 true WO2015174493A1 (ja) 2015-11-19

Family

ID=54480029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063897 WO2015174493A1 (ja) 2014-05-16 2015-05-14 植物栽培装置

Country Status (4)

Country Link
JP (1) JP6613525B2 (ja)
KR (1) KR20170005003A (ja)
CN (1) CN106413386A (ja)
WO (1) WO2015174493A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112854A (ja) * 2015-12-21 2017-06-29 修司 畑瀬 水耕栽培システム
CN108432625A (zh) * 2018-06-19 2018-08-24 洛阳中农富源现代农业技术有限公司 一种无土栽培用定植盘
WO2019069826A1 (ja) 2017-10-02 2019-04-11 株式会社いけうち 植物栽培装置
EP3348141A4 (en) * 2015-11-10 2019-06-05 H. Ikeuchi & Co., Ltd. DEVICE FOR CONTROLLING PESTS IN A PLANT CULTURE ROOM
WO2019106763A1 (en) * 2017-11-29 2019-06-06 Kewpie Corporation Hydroponic cultivation apparatus
CN110214687A (zh) * 2019-06-13 2019-09-10 西南交通大学 一种基于气雾栽培的轮换式家庭蔬菜培育机
JP2019165659A (ja) * 2018-03-23 2019-10-03 本多電子株式会社 超音波霧化栽培装置
US20210169027A1 (en) * 2018-06-22 2021-06-10 Eden Growth Systems, Inc. Grow towers
EP3691440A4 (en) * 2017-10-04 2021-06-30 Muanchart, Mankaew PLANT GROWING SYSTEM WITH HUMIDIFIER
KR102285568B1 (ko) * 2021-02-04 2021-08-04 농업회사법인 네이처팜 주식회사 식물공장 시스템의 분무경 장치
JP2022172019A (ja) * 2021-05-01 2022-11-14 株式会社最上川環境技術研究所 養液栽培における培養原液供給装置及びこれを用いた養液栽培システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101989449B1 (ko) * 2017-08-30 2019-06-14 김인기 식물 재배기
CN107926694A (zh) * 2017-12-11 2018-04-20 佛山市田森温室科技有限公司 一种自清洗功能的蔬菜培育系统
CN108040862A (zh) * 2017-12-11 2018-05-18 佛山市田森温室科技有限公司 一种自动清洗功能的培养槽
CN107864847A (zh) * 2017-12-11 2018-04-03 佛山市田森温室科技有限公司 一种无土蔬菜栽培系统
AU2020264069A1 (en) * 2019-04-22 2021-09-02 Mankaew MUANCHART Equipment and process for plant nutrition through the air
CN114071990A (zh) * 2019-05-10 2022-02-18 农业发展有限公司 用于植物冠层的空气分配及热量提取
KR102642724B1 (ko) * 2020-12-10 2024-03-07 한경렬 기능성 성분강화 식물재배시스템
KR102644288B1 (ko) * 2021-07-29 2024-03-06 록야 주식회사 담액경과 분무경의 선택적 사용이 가능한 식물재배용 혼합베드

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443658U (ja) * 1987-09-11 1989-03-15
JPH06197647A (ja) * 1993-01-07 1994-07-19 Okabe Lock:Kk ミスト栽培方法およびその装置
JP2008012486A (ja) * 2006-07-07 2008-01-24 Maruyama Mfg Co Ltd 薬液散布装置
JP2012010651A (ja) * 2010-06-30 2012-01-19 Ikeuchi:Kk 植物栽培装置、育苗装置および植物栽培方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267221A (ja) * 1987-04-27 1988-11-04 Q P Corp 水耕栽培装置
JPH0350850U (ja) * 1989-09-26 1991-05-17
JP5037897B2 (ja) * 2006-10-24 2012-10-03 株式会社いけうち ノズル
ITVI20070006A1 (it) * 2007-01-05 2008-07-06 Giancarlo Costa Elemento per colture aeroponiche ed idroponiche e relativo impianto di gestione
KR20100039781A (ko) * 2008-10-08 2010-04-16 장주현 초미립자안개 분사방식 농작물재배기
JP5496805B2 (ja) * 2010-07-27 2014-05-21 株式会社いけうち 吸気冷却装置
JP2012196164A (ja) 2011-03-18 2012-10-18 Ikeuchi:Kk 植物栽培装置
JP2012223127A (ja) * 2011-04-19 2012-11-15 Ikeuchi:Kk 植物栽培装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443658U (ja) * 1987-09-11 1989-03-15
JPH06197647A (ja) * 1993-01-07 1994-07-19 Okabe Lock:Kk ミスト栽培方法およびその装置
JP2008012486A (ja) * 2006-07-07 2008-01-24 Maruyama Mfg Co Ltd 薬液散布装置
JP2012010651A (ja) * 2010-06-30 2012-01-19 Ikeuchi:Kk 植物栽培装置、育苗装置および植物栽培方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348141A4 (en) * 2015-11-10 2019-06-05 H. Ikeuchi & Co., Ltd. DEVICE FOR CONTROLLING PESTS IN A PLANT CULTURE ROOM
JP2017112854A (ja) * 2015-12-21 2017-06-29 修司 畑瀬 水耕栽培システム
WO2019069826A1 (ja) 2017-10-02 2019-04-11 株式会社いけうち 植物栽培装置
EP3691440A4 (en) * 2017-10-04 2021-06-30 Muanchart, Mankaew PLANT GROWING SYSTEM WITH HUMIDIFIER
WO2019106763A1 (en) * 2017-11-29 2019-06-06 Kewpie Corporation Hydroponic cultivation apparatus
JP2020526227A (ja) * 2017-11-29 2020-08-31 キユーピー株式会社 水耕栽培装置
JP2019165659A (ja) * 2018-03-23 2019-10-03 本多電子株式会社 超音波霧化栽培装置
JP7067701B2 (ja) 2018-03-23 2022-05-16 本多電子株式会社 超音波霧化栽培装置
CN108432625A (zh) * 2018-06-19 2018-08-24 洛阳中农富源现代农业技术有限公司 一种无土栽培用定植盘
US20210169027A1 (en) * 2018-06-22 2021-06-10 Eden Growth Systems, Inc. Grow towers
CN110214687A (zh) * 2019-06-13 2019-09-10 西南交通大学 一种基于气雾栽培的轮换式家庭蔬菜培育机
KR102285568B1 (ko) * 2021-02-04 2021-08-04 농업회사법인 네이처팜 주식회사 식물공장 시스템의 분무경 장치
JP2022172019A (ja) * 2021-05-01 2022-11-14 株式会社最上川環境技術研究所 養液栽培における培養原液供給装置及びこれを用いた養液栽培システム

Also Published As

Publication number Publication date
JP6613525B2 (ja) 2019-12-11
KR20170005003A (ko) 2017-01-11
CN106413386A (zh) 2017-02-15
JPWO2015174493A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6613525B2 (ja) 植物栽培装置
JP7216423B2 (ja) 植物栽培装置
JP5792888B2 (ja) 植物栽培装置
US20110061297A1 (en) Apparatus for aeroponically growing and developing plants
US20110023359A1 (en) Aeroponic growing apparatus and method
JP2012010651A (ja) 植物栽培装置、育苗装置および植物栽培方法
JP2012223127A (ja) 植物栽培装置
JP2010523129A (ja) 水栽培システム
CN104904565B (zh) 农业节水滴灌头
CN102165913B (zh) 可调速不堵塞的瓶式根部滴灌装置
JP7067701B2 (ja) 超音波霧化栽培装置
CN204093649U (zh) 喷雾装置
KR20170092185A (ko) 분무 수경 재배 장치
JP2012196164A (ja) 植物栽培装置
CN211558353U (zh) 一种水气复合栽培架
CN108684516A (zh) 一种雾培最优雾滴粒径谱测试试验台
JP6725834B2 (ja) 噴霧式水耕栽培装置
CN218851550U (zh) 一种立体种植塔储水结构及立体种植塔
KR200425845Y1 (ko) 물안개를 이용한 수경재배기
KR200398840Y1 (ko) 물안개를 이용한 수경재배기
KR102541690B1 (ko) 분무형 수경재배 장치
CN220630494U (zh) 一种可用于气雾栽培的植物培养装置
TWM494489U (zh) 多流體氣霧栽培系統
CN209518050U (zh) 一种适用于多环境的水培系统
TWM494488U (zh) 植物栽培裝置系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15791916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519302

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167031703

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15791916

Country of ref document: EP

Kind code of ref document: A1