WO2015173999A1 - Battery pack and electronic device - Google Patents

Battery pack and electronic device Download PDF

Info

Publication number
WO2015173999A1
WO2015173999A1 PCT/JP2015/001322 JP2015001322W WO2015173999A1 WO 2015173999 A1 WO2015173999 A1 WO 2015173999A1 JP 2015001322 W JP2015001322 W JP 2015001322W WO 2015173999 A1 WO2015173999 A1 WO 2015173999A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
battery
battery pack
generating component
sheet
Prior art date
Application number
PCT/JP2015/001322
Other languages
French (fr)
Japanese (ja)
Inventor
濱田 拓哉
忠行 久門
英則 津田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2015173999A1 publication Critical patent/WO2015173999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack that efficiently dissipates heat energy of a heat-generating component built in an electronic device, and an electronic device that incorporates the battery pack, and more particularly to a mobile phone, a smartphone, a tablet, an electronic book, a notebook computer, etc.
  • the present invention relates to a battery pack and an electronic device that are most suitable for portable electronic devices.
  • An electronic device incorporating a battery as a power source incorporates semiconductor elements such as a central processing unit (CPU), a field effect transistor (FET), a transistor, and a diode. These semiconductor elements are energized during operation and generate heat due to Joule heat. Since the semiconductor element does not operate normally when the temperature becomes higher than the set value, the semiconductor element radiates heat so as not to become higher than the set temperature.
  • semiconductor elements in recent years have a built-in CPU with almost no exception. However, this CPU requires a large amount of heat dissipation as its power consumption increases and the amount of heat generated increases as high-speed data is processed.
  • Patent Documents 1 and 2 In order to eliminate these disadvantages, devices having a structure that conducts heat energy to a battery built in an electronic device have been developed. (See Patent Documents 1 and 2)
  • the present invention has been developed for the purpose of solving the above disadvantages of conventional electronic devices.
  • An important object of the present invention is to provide a battery pack and an electronic device which can minimize the deterioration of the battery due to the temperature increase while uniformly conducting the heat energy of the heat generating component to the thin battery to reduce the temperature increase of the heat generating component. And to provide.
  • the battery pack of the present invention includes a thin battery 1 that is built in an electronic device having a heat generating component 3 and supplies electric power, and a heat radiating sheet 2 that is in a thermal contact state and in a surface contact state with the flat surface 1A of the thin battery 1. Is provided.
  • the heat dissipating sheet 2 includes a battery bonding portion 2A that is in a surface contact state with a predetermined area on the flat surface 1A, and a protruding portion 2B that protrudes from the outer periphery of the thin battery 1.
  • the protruding portion 2B has a component bonding portion 2C that is in a thermal contact state with the heat generating component 3 and is in a surface contact state, and conducts heat energy of the heat generating component 3 to the thin battery 1 through the heat radiating sheet 2.
  • the battery pack of the present invention can be provided with an opening 4 in the battery bonding portion 2A that exposes a part of the flat surface 1A and increases the distance of heat conduction from the heat generating component 3 to the thin battery 1.
  • the opening 4 can be arranged unevenly on the protruding portion 2B side in the heat conduction direction of heat energy conducted from the heat generating component 3 to the battery bonding portion 2A.
  • the opening position (W1) in the width direction of the opening 4 and the position (W2) in the width direction of the component bonding section 2C are the battery bonding section 2A and the protruding section 2B. It is possible to dispose at least a part of each of the both sides of the boundary line at a position facing each other.
  • the width direction opening position (W1) of the opening 4 and the width direction position (W2) of the component bonding portion 2C are heat conduction of heat energy transferred from the heat generating component 3 to the battery bonding portion 2A. It is the position in the width direction orthogonal to the direction (indicated by arrow C in the figure).
  • the area of the opening 4 can be 10% or more and 70% or less of the flat surface 1A.
  • the heat dissipation sheet 2 can have a thermal conductivity in the surface direction larger than the thermal conductivity in the thickness direction.
  • the heat radiating sheet 2 can be a graphite sheet, or a metal sheet made of aluminum or copper.
  • the electronic device in which the battery pack is incorporated is any one of a mobile phone, a smartphone, a tablet, an electronic book, and a notebook computer, and the heat generating component 3 can be a CPU.
  • the thin battery 1 can be either a rectangular battery having a metal outer can as an outer case or a laminate battery having a laminate film as an outer case.
  • the heat generating component 3 can be a semiconductor element.
  • the electronic device of the present invention includes a heat generating component 3, a thin battery 1 for supplying electric power, and a heat radiating sheet 2 that is in thermal contact with the flat surface 1A of the thin battery 1 and in surface contact.
  • the heat dissipating sheet 2 includes a battery bonding portion 2A that is in a surface contact state with a predetermined area on the flat surface 1A, and a protruding portion 2B that protrudes from the outer periphery of the thin battery 1.
  • the protruding portion 2B has a component bonding portion 2C that is in a thermal contact state with the heat generating component 3 and is in a surface contact state, and conducts heat energy of the heat generating component 3 to the thin battery 1 through the heat radiating sheet 2.
  • the electronic device of the present invention can be provided with an opening 4 that exposes a part of the flat surface 1A and increases the distance of heat conduction from the heat generating component 3 to the thin battery 1 in the battery bonding portion 2A.
  • the heat radiating sheet 2 has one surface in a surface-bonded state with the thin battery 1 and the other surface in a heat-bonded state on the inner surface of the outer case of the electronic device.
  • the thermal energy is thermally conducted to the thin battery 1 along the surface of the heat radiating sheet 2, and the heat energy thermally conducted to the surface of the heat radiating sheet 2 can be radiated to the outside through the exterior case.
  • the electronic device of the present invention is a mobile device such as a mobile phone, a smartphone, a tablet, an electronic book, or a notebook computer, and the heat generating component 3 can be a CPU.
  • the battery pack and the electronic device of the present invention are characterized in that the temperature rise of the heat generating component can be reduced by uniformly conducting the heat energy of the heat generating component to the thin battery, and the deterioration of the thin battery due to the temperature increase can be minimized. There is.
  • the above battery pack and electronic device make the heat-dissipating sheet come into surface contact with the flat surface of the thin battery with a predetermined area, and a protrusion is provided on the heat-dissipating sheet, and the heat-generating component is fixed to the protrusion in a thermally coupled state. Because it is.
  • This battery pack conducts heat by diffusing the heat energy of the heat generating component over a wide area on the flat surface of the thin battery through the heat dissipation sheet.
  • the thin battery has a structure in which positive and negative electrode plates are densely stacked inside the outer case, so the heat capacity of the unit area is larger than that of the plastic outer case, and it efficiently absorbs the heat energy of the heat-generating component to raise the temperature of the heat-generating component Make it smaller.
  • the thin battery absorbs the heat energy of the heat-generating component and rises in temperature, but does not conduct heat to the local part of the cylindrical battery as in the conventional electronic device. Thermal energy is diffused and conducted on the flat surface of the thin battery. For this reason, there is no local temperature rise of the thin battery, and heat energy is absorbed in a state where the temperature of the flat surface of a large area is made more uniform. For this reason, the thin battery can limit the temperature rise to a minimum while absorbing a large amount of heat energy, and can prevent deterioration due to the temperature rise.
  • the electronic device shown in the cross-sectional view of FIG. 1 includes a battery pack including a thin battery 1 and a heat dissipation sheet 2 for supplying power to a power supply circuit inside a plastic outer case 5.
  • the electronic device is a mobile device such as a mobile phone, a smartphone, a tablet, an electronic book, or a notebook computer.
  • the electronic device is not limited to a portable device such as a mobile phone or a smartphone, but may be another portable device, a game machine or a Walkman (registered trademark) with a built-in thin battery, or the like.
  • the heat generating component 3 is a central processing unit (CPU).
  • CPU central processing unit
  • the present invention does not specify the heat generating component 3 as a CPU, but can be other semiconductor elements such as a field effect transistor (FET), a transistor, and a diode, and can also be a resistor.
  • FET field effect transistor
  • the heat generating component 3 generates heat by the Joule heat of the flowing current. Accordingly, the amount of heat generated by the heat generating component 3 increases in proportion to the product of the square of the flowing current and the electric resistance, and varies depending on the flowing current.
  • FIG. 2 shows a battery pack.
  • the battery pack in FIG. 2 is in a thermal contact state and a surface contact state with a thin battery 1 for supplying power to a power circuit of an electronic device and a flat surface 1A of the thin battery 1.
  • a heat dissipation sheet 2 is provided.
  • the thin battery 1 is either a rectangular battery having a metal outer can as an outer case or a laminate battery having a laminated film as an outer case, and has a flat surface 1A that is a wide flat surface provided on both sides. .
  • positive and negative electrode plates (not shown) are laminated and sealed between the opposing flat surfaces 1 ⁇ / b> A in a posture parallel to the flat surface 1 ⁇ / b> A.
  • the thin battery 1 has a wider width and length of the flat surface 1A than the thickness, and the heat radiation sheet 2 can be bonded to the flat surface 1A so that the heat radiation sheet 2 can be fixed in a heat-bonded state over a wide area.
  • the heat radiating sheet 2 is a sheet having excellent heat conduction, and is a metal sheet obtained by thinly rolling a graphite sheet, a metal such as aluminum or copper. Since the graphite sheet has extremely excellent heat conduction characteristics (700 to 1950 W / m ⁇ K), the heat energy of the heat generating component 3 is efficiently conducted to the flat surface 1 A of the thin battery 1. In addition, the graphite sheet is extremely superior in heat conduction in the surface direction compared to heat conduction in the thickness direction, so that the heat energy of the heat generating component 3 is quickly conducted in the surface direction parallel to the surface. Conducted uniformly to the flat surface 1A of the thin battery 1.
  • the graphite sheet has a higher thermal conductivity than the aluminum outer case (about 230 W / m ⁇ K) of the thin battery 1, so that the graphite sheet can be applied to the entire surface of the graphite sheet more quickly than the heat conduction in the outer case of the thin battery 1.
  • the heat dissipating sheet 2 for example, a sheet having excellent heat conduction in the surface direction as compared with the thickness direction, such as a graphite sheet, is suitable. This is because the heat energy of the heat generating component 3 is promptly and uniformly conducted to the flat surface 1A of the thin battery 1.
  • This characteristic can be realized not only with a graphite sheet but also with heat-dissipating paper made by adding a heat conductive powder such as graphite to a fiber.
  • FIG. 2 has a heat dissipation sheet 2 laminated on almost the entire surface excluding the outer peripheral portion and the opening 4 of one flat surface 1A of the thin battery 1.
  • the heat-dissipating sheet 2 is preferably bonded and fixed to an area of 20% or more of one flat surface 1A.
  • the heat dissipation sheet 2 is bonded to the flat surface 1A of the thin battery 1 via an adhesive layer or an adhesive layer.
  • the heat-dissipating sheet 2 can be U-bent and bonded to the flat surfaces 1A on both sides of the thin battery 1.
  • the two heat dissipating sheets 2 can be bonded from the heat generating component 3 to the flat surfaces 1A on both sides of the thin battery 1.
  • the battery pack in which the heat-dissipating sheet 2 is bonded to the flat surfaces 1A on both sides of the thin battery 1 is characterized in that the entire thin battery 1 can be brought to a more uniform temperature. This is because the heat radiating sheet 2 is bonded to the flat surface 1A of the thin battery 1 with a large area, so that the heat energy can be conducted uniformly and efficiently throughout the thin battery 1.
  • the heat dissipation sheet 2 includes a battery bonding portion 2A that is bonded to the flat surface 1A of the thin battery 1 and a protruding portion 2B that protrudes from the outer periphery of the thin battery 1 to the outside.
  • the protruding portion 2B is provided with a component adhesion portion 2C that fixes the heat generating component 3 of the electronic device in a thermally coupled state and in a surface contact state.
  • the heat generating component 3 is bonded and fixed to the component bonding portion 2C of the heat radiating sheet 2 or is elastically pressed to be in a thermally coupled state and fixed in a surface contact state.
  • the battery bonding portion 2A is fixed in a state of surface contact with the flat surface 1A of the thin battery 1 in a thermally bonded state, and the component bonding portion 2C is also bonded to the surface of the heat generating component 3 in a surface contact state or is elastic. And is fixed in a close contact state.
  • the conductive heat radiation sheet 2 is fixed to the flat surface 1A of the thin battery 1 and the surface of the heat generating component 3 through an insulating layer.
  • a pressure-sensitive adhesive material or adhesive having excellent heat conduction characteristics is used for the pressure-sensitive adhesive layer or adhesive layer that adheres the heat radiation sheet 2 to the surface of the thin battery 1 and the heat-generating component 3.
  • the battery pack of FIG. 2 exposes a part of the flat surface 1A of the thin battery 1 to increase the distance of heat conduction from the heat generating component 3 to the thin battery 1 and to make the temperature distribution of the entire thin battery 1 uniform.
  • An opening 4 is provided. Since the opening 4 is provided in order to reduce the temperature difference of the flat surface 1A of the thin battery 1, the opening 4 is provided in a region where the temperature is highest including the radiant heat from the heat radiating component 3 in a state where the heat radiating sheet 2 is laminated. . That is, it is an area where the thin battery 1 and the heat dissipation component 3 are closest.
  • the heat dissipation sheet 2 bonded to the flat surface 1A of the thin battery 1 has a high temperature in a region close to the component bonding portion 2C.
  • the heat radiating sheet 2 shown in FIG. 2 has a heat conduction direction (indicated by an arrow C) of heat energy conducted from the heat generating component 3 to the battery bonding portion 2A.
  • the opening 4 is unevenly distributed on the protruding portion 2B side. This is because the heat energy is thermally conducted from the protruding portion 2B to the battery bonding portion 2A, so that the temperature of the battery bonding portion 2A of the heat radiation sheet 2 becomes higher on the protruding portion 2B side.
  • the heat radiating sheet 2 in FIG. 2 is provided with an opening 4 on the protruding portion 2B side with respect to the central portion (indicated by a one-dot chain line) in the heat conduction direction.
  • the heat radiation sheet 2 of FIG. 2 is configured such that the opening position (W1) in the width direction of the opening portion 4 and the position (W2) in the width direction of the component bonding portion 2C are partially or entirely, and the battery bonding portion 2A and the protruding portion. It arrange
  • the opening position (W1) in the width direction of the opening 4 is an opening position in the width direction orthogonal to the heat conduction direction of the heat energy conducted from the heat generating component 3 to the battery bonding portion 2A as indicated by an arrow C in FIG.
  • the position (W2) in the width direction of the component bonding portion 2C is a fixed position in the width direction orthogonal to the heat conduction direction of the heat energy indicated by the arrow C.
  • the dimension of the opening position (W1) in the width direction of the opening 4 is made larger than the dimension of the position (W2) in the width direction of the component bonding part 2C.
  • the width direction opening position (W1) can be made smaller than the width direction position (W2) or can be the same. 2 has an opening 4 so as to straddle both the battery bonding portion 2A and the protruding portion 2B.
  • the heat radiating sheet 2 partially changes the density of the openings 4 to make the temperature distribution of the thin battery 1 more uniform.
  • the opening 4 is enlarged in a region approaching the component bonding portion 2 ⁇ / b> C, and the opening 4 is reduced as the distance from the component bonding portion 2 ⁇ / b> C is increased.
  • the opening ratio of the unit area that opens the opening 4 gradually increases, and decreases as the distance from the component bonding portion 2C increases.
  • the temperature distribution on the flat surface 1A of the thin battery 1 is equalized.
  • the opening 4 so as to straddle both the battery bonding portion 2A and the protruding portion 2B.
  • the opening 4 can be provided only in the battery bonding portion 2A without being provided in the protruding portion 2B, or can be provided only in the protruding portion 2B.
  • the opening 4 provided in the component bonding part 2C is provided at a position approaching the boundary line with the battery bonding part 2A, that is, in the center of the boundary line in FIG. 2, so that the local temperature rise of the thin battery 1 is reduced. Restrict.
  • the change of the temperature of the flat surface 1A of the thin battery 1, the temperature of the heat generating component 3 as a heat source, and the capacity retention rate of the thin battery 1 was examined according to the shape of the heat dissipation sheet 2.
  • 4 to 6 are experimental examples in which the shape of the heat dissipation sheet 2 is changed.
  • the power consumption of the heat generating component 3 is 3 W
  • the heat radiating sheet 2 is a graphite sheet having a thickness of 17 ⁇ m
  • the flat surface 1A of the thin battery 1 is 90 mm ⁇ 55 mm in length ⁇ width
  • the heat radiating sheet 2 is used with a thickness of 4 mm, a width of the heat radiating sheet 2 of 53 mm, and a protruding amount of the protruding portion 2B of the heat radiating sheet 2 of 30 mm.
  • the thickness of the graphite sheet is 17 ⁇ m, but equivalent characteristics can be obtained if the thickness is 10 to 50 ⁇ m.
  • FIG. 7 to 9 show the temperature of the flat surface 1A of the thin battery 1, the temperature of the heat generating component 3 as a heat source, and the capacity retention rate of the thin battery 1 depending on the shape of the heat radiation sheet 2 of FIGS. It shows a state where and change.
  • the graph of FIG. 7 shows an area where the heat radiating sheet 2 without the opening 4 is bonded to the flat surface 1A of the thin battery 1, in other words, an area where the heat radiating sheet 2 is not bonded to the flat surface 1A ( FIG. 4 shows characteristics in which the temperature and the capacity retention ratio change when the hatching is changed).
  • FIG. 7 indicates an area where the heat radiation sheet 2 is not bonded on the flat surface 1A as an “area not attached to the battery” as an area ratio with respect to the flat surface 1A.
  • the graph of FIG. 8 shows that the heat radiation sheet 2 provided with the opening 4 is adhered to the entire flat surface 1A of the thin battery 1 and the flat surface 1A exposed by the opening 4 is exposed as shown in FIG.
  • FIG. 6 shows characteristics in which the temperature (capacity maintenance ratio) changes by changing the area (indicated by hatching in FIG. 5).
  • the graph of FIG. 9 shows that the heat radiation sheet 2 provided with the opening 4 is bonded to the region of 60% of the flat surface 1A of the thin battery 1 and the flat exposed by the opening 4 as shown in FIG. FIG.
  • FIG. 6 shows characteristics in which the area of the surface 1A (indicated by hatching in FIG. 6) is changed to change the temperature and capacity retention rate.
  • the horizontal axis of FIG. 8 and FIG. 9 shows the exposed area of the flat surface 1A exposed from the opening 4 as the “battery opening area” as an area ratio to the flat surface 1A.
  • the battery pack (FIG. 4) in which the heat-dissipating sheet 2 that does not have the opening 4 is bonded to the flat surface 1A on one side of the thin battery 1 and the area to be bonded to the flat surface 1A is changed.
  • the adhesion area to the flat surface 1A increases, in other words, as the unattached area on the battery decreases, the heat source temperature, that is, the temperature of the heat generating component 3 decreases, and the temperature difference of the flat surface 1A decreases.
  • the capacity maintenance rate after 800 cycles of the thin battery 1 is lowered.
  • the capacity maintenance rate after 800 cycles indicates the capacity maintenance rate for this battery based on the capacity maintenance rate after 800 cycles of the thin battery 1 in which the heat radiating sheet 2 is not bonded to the flat surface 1A.
  • Table 1 shows data of the graph shown in FIG.
  • the capacity until the thin battery 1 is discharged from full charge until reaching the discharge inhibition voltage is discharged and the time when the capacity is charged is defined as one cycle.
  • a curve A in FIG. 7 is an unattached area on the battery, which is a ratio of an area where the heat dissipation sheet 2 is not bonded to the flat surface 1A of the thin battery 1, that is, an area of a region where the battery bonding portion 2A is not bonded to the flat surface 1A.
  • the state in which the heat source temperature, that is, the temperature of the heat generating component 3 changes depending on the ratio is shown.
  • the surface temperature of the heat generating component 3 displayed as the heat source temperature falls to 40 ° C. to 78 ° C. depending on the unattached area on the battery.
  • the temperature of the heat generating component 3 is 40 ° C.
  • the battery pack in which the heat radiating sheet 2 is adhered to the entire flat surface 1A allows the thin battery 1 to absorb the heat energy of the heat generating component 3, and thus the cycle after 800 cycles of the thin battery 1
  • the capacity retention rate is reduced by 6 points to 78% compared to 84% in the state where the heat radiation sheet 2 is not adhered.
  • the temperature rise in the region A near the component bonding portion 2C of the battery bonding portion 2A is 13 ° C.
  • the temperature increase in the corner region B of the thin battery 1 far from the component bonding portion 2C is about 6 ° C.
  • the temperature difference of the flat surface 1A becomes as large as 7 ° C.
  • the temperature indicated by A, B, C, and D in the column of battery temperature increase indicates the temperature increase of the battery in region A, region B, region C, and region D shown in FIG. .
  • the battery pack can be provided with an opening 4 in the heat dissipation sheet 2 to reduce the temperature difference of the flat surface 1 ⁇ / b> A.
  • FIGS. 8 shows temperature characteristics in which the heat radiating sheet 2 having the opening 4 is bonded to the entire flat surface 1A as shown in FIG.
  • FIG. 9 shows a temperature characteristic in which the heat radiating sheet 2 having the opening 4 is bonded to a region of 60% of the flat surface 1A as shown in FIG.
  • the battery pack having the characteristics shown in FIG. 8 is provided with an opening 4 in the battery bonding portion 2A of the heat dissipation sheet 2 as shown in FIG.
  • the heat radiating sheet 2 of FIG. 5 also has an opening 4 so as to straddle both the battery adhesive portion 2A and the protruding portion 2B.
  • the flat surface 1A is exposed in the region of the opening 4, and the battery bonding portion 2A is bonded to the flat surface 1A in the region where the opening 4 is not provided. Further, as shown in FIG.
  • the heat radiating sheet 2 is bonded to the flat surface 1A with a width of 10 mm on both sides of the opening 4, and in order to change the area of the opening 4, the direction away from the component bonding portion 2C ( In the state where the length in the heat conduction direction is changed and the opening 4 extends to the tip, the lateral width is widened on both sides to increase the hole opening area to 100%. ing.
  • Table 2 shows the data of the graph shown in FIG.
  • the temperatures indicated by A, B, C, and D indicate the battery temperature increase in regions A, B, C, and D shown in FIG. .
  • the hole area is changed from 20% to 80%, and the temperature difference of the flat surface 1A is 2.2 ° C. (20%). It becomes as small as 1 ° C. (40%), 1.6 ° C. (60%), and 1.9 ° C. (80%).
  • the thin battery 1 can minimize the temperature difference of the flat surface 1A with the opening 4 as an optimum value.
  • the opening 4 of the heat radiating sheet 2 is effective for reducing the temperature difference of the thin battery 1, but when the opening 4 is enlarged, the temperature of the heat generating component 3 increases. This is because the heat conduction area between the heat radiation sheet 2 and the flat surface 1A of the thin battery 1 is reduced, and the heat energy conducted from the heat generating component 3 to the thin battery 1 is reduced.
  • the hole area is 20% to 80%
  • the temperature of the heat generating component 3 displayed as the heat source temperature is 52.2 ° C. (20%), 70 as shown by the curve A. .9 ° C. (40%), 81.0 ° C. (60%), and 85.0 ° C. (80%).
  • the cycle capacity retention rate after 800 cycles of the thin battery 1 is increased as the opening 4 is increased and the hole opening area is increased as shown by the curve B, that is, the heat conduction energy to the thin battery 1 is increased.
  • the capacity retention rate is close to 84% of the state in which the heat radiating sheet 2 is not adhered, that is, the deterioration becomes smaller.
  • FIG. 9 shows the temperature characteristics and capacity retention rate of the battery pack in which the heat-dissipating sheet 2 having the opening 4 is bonded to the 60% region of the flat surface 1A as shown in FIG.
  • the heat radiation sheet 2 in FIG. 6 also has an opening 4 so as to straddle both the battery bonding portion 2A and the protruding portion 2B.
  • the heat radiating sheet 2 is not adhered to the 40% region of the flat surface 1A, and the flat surface 1A is exposed at the opening 4 in the remaining 60% region.
  • the battery bonding portion 2A is bonded to the region of 60% of the flat surface 1A. Further, as shown in FIG.
  • the heat radiating sheet 2 is bonded to the flat surface 1 ⁇ / b> A with a width of 10 mm on both sides of the opening 4, and in order to change the area of the opening 4, the direction away from the component bonding portion 2 ⁇ / b> C ( In the state where the length in the heat conduction direction is changed and the opening 4 extends to the tip, the lateral width is widened on both sides and the hole area is increased to 60%. .
  • Table 3 shows the data of the graph shown in FIG.
  • the temperatures indicated by A, B, C, and D indicate the battery temperature increase in regions A, B, C, and D shown in FIG. .
  • the battery pack shown in FIG. 6 has a hole area changed from 10% to 40%, and the temperature difference of the flat surface 1A is 5.0 ° C. (10%). 9 ° C. (20%) and 2.9 ° C. (40%). Further, in this battery pack, the hole area is 10% to 40%, and the temperature of the heat generating component 3 displayed as the heat source temperature can be lowered to 67.7 ° C. to 78.2 ° C. as indicated by the curve A.
  • the cycle capacity maintenance rate after 800 cycles of the thin battery 1 is as shown by the curve B, as the opening 4 is increased, that is, as the heat conduction energy to the thin battery 1 is reduced, It is close to 84% of the state in which the heat radiating sheet 2 is not adhered, that is, the deterioration is small.
  • FIG. 10 shows a state in which the heat energy of the heat generating component 3 is thermally conducted and radiated to the outside.
  • This figure shows the heat conduction state of the heat-dissipating sheet 2 that is superior in heat conduction in the surface direction as compared to the thickness direction, such as a graphite sheet.
  • the heat energy of the heat generating component 3 is more quickly conducted in the surface direction of the heat radiating sheet 2 indicated by the arrow A than in the direction indicated by the arrow B, and is conducted to the flat surface 1A of the thin battery 1.
  • the thermal energy that is quickly conducted in the surface direction indicated by the arrow A is uniformly diffused on the surface of the heat dissipation sheet 2 and is conducted uniformly over a wide area of the flat surface 1A of the thin battery 1.
  • the heat-dissipating sheet 2 having the heat conduction characteristic prevents the temperature of the portion where the heat generating component 3 is fixed from being locally abnormally high, reduces the temperature difference across the flat surface 1A of the thin battery 1 and generates heat.
  • the temperature difference between the component 3 and the thin battery 1 flat surface 1A is reduced. Therefore, as shown in the sectional view of FIG. 10, the heat generating component 3 and the thin battery 1 are fixed to the same surface of the heat radiating sheet 2, and the local rise in the temperature on the upper surface of the heat radiating sheet 2 can be reduced.
  • This is characterized in that a local temperature rise of the outer case 5 due to the heat radiating sheet 2 can be reduced while the heat radiating sheet 2 is in close contact with the inner surface of the outer case 5 to be in a thermally coupled state.
  • the heat dissipation sheet 2 conducts heat energy of the heat generating component 3 to the thin battery 1 and causes the thin battery 1 to absorb heat energy of the heat generating component 3.
  • the temperature of the thin battery 1 that has absorbed the heat energy rises, the absorbed heat energy is radiated to the outside over time to lower the temperature.
  • the heat generating component 3 generates heat due to Joule heat, the amount of heat generated varies depending on the current consumption. For example, in a CPU of an electronic device such as a mobile phone, if the amount of data processed by, for example, image processing increases, the consumption flow rate increases and the amount of heat generation temporarily increases.
  • the temperature of the heat generating component 3 rises, the heat energy is conducted to the thin battery 1 through the heat dissipation sheet 2.
  • the thin battery 1 absorbs the heat energy of the heat generating component 3 and reduces the temperature rise of the heat generating component 3.
  • the heat capacity of the thin battery 1 is larger than that of the plastic outer case 5. This is because the heat capacity per unit weight of the thin battery 1 is larger than that of plastic, and the thin battery 1 is hotter than the outer case 5. Therefore, the heat dissipation structure in which the heat energy of the heat generating component 3 is conducted to the heat radiating sheet 2 and absorbed by the thin battery 1 is compared with the heat dissipation structure in which the heat energy of the heat generating component 3 is thermally conducted to the exterior case 5. The temperature rise of 3 can be reduced. The thin battery 1 absorbs the heat energy of the heat generating component 3 and rises in temperature.
  • the thin battery 1 whose temperature has risen radiates the heat energy absorbed through the heat radiating sheet 2 bonded to the flat surface 1A from the outer case 5 to the outside. In this state, the thin battery 1 has a small temperature difference, and the heat is uniformly radiated from the outer case 5 to the outside through the heat radiating sheet 2 bonded to the flat surface 1A.
  • the battery pack that absorbs the heat energy of the heat-generating component 3 such as the CPU through the heat-dissipating sheet 2 by heat conduction to the thin battery 1 is absorbed by the thin battery 1 and the heat-generating component 3 rapidly
  • the temperature rise can be reduced, and the thermal energy absorbed by the thin battery 1 can be radiated from the outer case 5 to the outside over time, so that the average temperature rise of the thin battery 1 can be reduced.
  • the thin battery 1 temporarily absorbs the heat energy of the heat generating component 3, that is, the thin battery 1 acts as a buffer that temporarily absorbs the heat energy, thereby causing the temperature of the heat generating component 3 to increase rapidly. Make it smaller.
  • the electronic device shown in the cross-sectional view of FIG. 1 has one surface (the lower surface in the figure) of the heat dissipation sheet 2 bonded to the thin battery 1 and the other surface (the upper surface in the figure) on the inner surface of the exterior case 5 of the electronic device. Arranged in a thermally coupled state.
  • the heat energy of the heat generating component 3 is thermally conducted to the thin battery 1 along the surface of the heat dissipation sheet 2 and absorbed by the thin battery 1.
  • the thermal energy absorbed by the thin battery 1 is radiated from the outer case 5 to the outside via the heat radiating sheet 2 and the outer case 5.
  • the heat dissipation sheet 2 can conduct heat energy of the heat generating component 3 to a plurality of thin batteries 1.
  • the battery pack of this figure two thin batteries 1 are arranged close to each other, and a heat dissipation sheet 2 is bonded to the flat surface 1A of both thin batteries 1. Since this battery pack conducts the heat energy of the heat generating component 3 to the two thin batteries 1, it has a feature that the temperature rise of the heat generating component 3 can be further reduced.
  • the heat radiation sheet 2 can be bonded to the flat surface 1A of three or more thin batteries 1 to conduct heat energy of the heat generating component 3 to each thin battery 1.
  • the heat-dissipating sheet 2 is bonded to the flat surfaces 1A of the plurality of thin batteries 1 and the heat generating component 3 is fixed to a position other than the boundary portion of the thin batteries 1 so that the heat energy of the heat generating components 3 is changed.
  • the thin battery 1 can be thermally conducted. This structure can reduce the temperature difference by providing the opening 4 in the battery adhesive portion 2A.
  • the battery pack and electronic device of the present invention can be conveniently used for devices that are important to use while reducing the temperature rise of the heat generating component 3 such as a built-in CPU.

Abstract

A battery pack comprises a heat-dissipating sheet (2) that is thermally coupled to and in surface contact with a flat surface (1A) of an embedded low-profile battery (1). The heat-dissipating sheet (2) includes: a battery adhering part (2A) that is in surface contact with the flat surface (1A); and a projection part (2B) that projects from the outer circumference of the low-profile battery (1). The projection part (2B) includes on the surface thereof a component adhering part (2C) that is thermally coupled to and in surface contact with a heat-emitting component (3), and the projection part conducts the heat energy of the heat-emitting component (3), which is fixed to the component adhering part (2C), to the low-profile battery (1) via the heat-dissipating sheet (2). Due to this configuration, while a temperature increase in the heat-emitting component is kept small by uniformly conducting the heat energy of the heat-emitting component to the low-profile battery, deterioration of the battery caused by the temperature increase can be minimized.

Description

電池パックおよび電子機器Battery pack and electronic equipment
 本発明は、電子機器に内蔵される発熱部品の熱エネルギを効率よく放熱する電池パックと、この電池パックを内蔵する電子機器に関し、とくに携帯電話、スマートフォン、タブレット、電子ブック、ノート型パソコンなどの携帯用の電子機器に最適な電池パックと電子機器に関する。 The present invention relates to a battery pack that efficiently dissipates heat energy of a heat-generating component built in an electronic device, and an electronic device that incorporates the battery pack, and more particularly to a mobile phone, a smartphone, a tablet, an electronic book, a notebook computer, etc. The present invention relates to a battery pack and an electronic device that are most suitable for portable electronic devices.
 電池を電源として内蔵する電子機器は、中央処理装置(CPU)、電界効果トランジスタ(FET)、トランジスタ、ダイオードなどの半導体素子を内蔵している。これ等の半導体素子は、動作中に通電されてジュール熱で発熱する。半導体素子は、温度が設定値よりも高くなると正常な動作をしなくなるので、設定温度よりも高くならないように放熱している。とくに、近年の電子機器は、ほとんど例外なくCPUを内蔵するが、このCPUは、膨大なデータを高速処理するにしたがって消費電力が大きくなって発熱量も大きくなり、相当な放熱が要求される。これまでの電子機器は、CPU等の発熱部品の放熱を外装ケースに熱伝導して、外装ケースから外部に放熱している。ただ、電子機器の外装ケースは、プラスチック等の熱伝導特性に好ましくない材質が多く、外部に効率よく放熱するのが難しい欠点がある。とくに、一時的に多量に発生する熱エネルギを速やかに放熱するのが特に難しい欠点がある。外装ケースをアルミニウム製などの金属ケースとして放熱量を大きくできるが、電子機器が重くなる欠点がある。 An electronic device incorporating a battery as a power source incorporates semiconductor elements such as a central processing unit (CPU), a field effect transistor (FET), a transistor, and a diode. These semiconductor elements are energized during operation and generate heat due to Joule heat. Since the semiconductor element does not operate normally when the temperature becomes higher than the set value, the semiconductor element radiates heat so as not to become higher than the set temperature. In particular, electronic devices in recent years have a built-in CPU with almost no exception. However, this CPU requires a large amount of heat dissipation as its power consumption increases and the amount of heat generated increases as high-speed data is processed. Conventional electronic devices conduct heat from a heat-generating component such as a CPU to the outer case and radiate heat from the outer case to the outside. However, the outer case of an electronic device has many disadvantages that it is difficult to efficiently dissipate heat to the outside because there are many unfavorable materials for heat conduction characteristics such as plastic. In particular, there is a drawback that it is particularly difficult to quickly dissipate heat energy generated in a large amount temporarily. Although the amount of heat radiation can be increased by using the outer case as a metal case made of aluminum or the like, there is a drawback that the electronic device becomes heavy.
 また、電子機器の外装ケースに急激な温度上昇が生じると、使用者はやけどをしたり、高温になった外装ケースに驚いたりすることとなる。 Also, if the temperature rises suddenly in the outer case of the electronic device, the user will be burned or surprised at the outer case that has become hot.
 これらの欠点を解消するために、電子機器に内蔵している電池に熱エネルギを熱伝導する構造の機器が開発されている。(特許文献1及び2参照) In order to eliminate these disadvantages, devices having a structure that conducts heat energy to a battery built in an electronic device have been developed. (See Patent Documents 1 and 2)
特開2009-27354号公報JP 2009-27354 A 特開2000-32307号公報JP 2000-32307 A
 内蔵している発熱部品の熱エネルギを電池に熱伝導する電子機器は、電池の寿命を相当に短くする弊害がある。とくに、従来の電子機器は、円筒形電池の局部に熱エネルギを伝導するので、電池の温度が局部的に高くなって、電池の寿命を著しく短くする弊害がある。 ”Electronic equipment that conducts heat energy of built-in heat-generating parts to the battery has a detrimental effect on the battery life. In particular, the conventional electronic device conducts heat energy to the local part of the cylindrical battery, so that the temperature of the battery is locally increased, and there is a problem that the life of the battery is remarkably shortened.
 本発明は、従来の電子機器が有する以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、発熱部品の熱エネルギを薄型電池に均一に伝導して発熱部品の温度上昇を小さくしながら、温度上昇に起因する電池の劣化を最小限にできる電池パックと電子機器とを提供することにある。 The present invention has been developed for the purpose of solving the above disadvantages of conventional electronic devices. An important object of the present invention is to provide a battery pack and an electronic device which can minimize the deterioration of the battery due to the temperature increase while uniformly conducting the heat energy of the heat generating component to the thin battery to reduce the temperature increase of the heat generating component. And to provide.
 本発明の電池パックは、発熱部品3を有する電子機器に内蔵されて電力を供給する薄型電池1と、薄型電池1のフラット面1Aに、熱結合状態であって面接触状態にある放熱シート2を備える。放熱シート2は、フラット面1Aに所定の面積で面接触状態にある電池接着部2Aと、薄型電池1の外周から突出している突出部2Bとを有する。突出部2Bは、発熱部品3に熱結合状態であって面接触状態にある部品接着部2Cを有し、発熱部品3の熱エネルギを、放熱シート2を介して薄型電池1に熱伝導する。 The battery pack of the present invention includes a thin battery 1 that is built in an electronic device having a heat generating component 3 and supplies electric power, and a heat radiating sheet 2 that is in a thermal contact state and in a surface contact state with the flat surface 1A of the thin battery 1. Is provided. The heat dissipating sheet 2 includes a battery bonding portion 2A that is in a surface contact state with a predetermined area on the flat surface 1A, and a protruding portion 2B that protrudes from the outer periphery of the thin battery 1. The protruding portion 2B has a component bonding portion 2C that is in a thermal contact state with the heat generating component 3 and is in a surface contact state, and conducts heat energy of the heat generating component 3 to the thin battery 1 through the heat radiating sheet 2.
 本発明の電池パックは、電池接着部2Aに、フラット面1Aの一部を露出させて、発熱部品3から薄型電池1への熱伝導の距離を長くする開口部4を設けることができる。 The battery pack of the present invention can be provided with an opening 4 in the battery bonding portion 2A that exposes a part of the flat surface 1A and increases the distance of heat conduction from the heat generating component 3 to the thin battery 1.
 本発明の電池パックは、開口部4が、発熱部品3から電池接着部2Aに熱伝導される熱エネルギの熱伝導方向において、突出部2B側に偏在して配置することができる。 In the battery pack of the present invention, the opening 4 can be arranged unevenly on the protruding portion 2B side in the heat conduction direction of heat energy conducted from the heat generating component 3 to the battery bonding portion 2A.
 本発明の電池パックは、図2に示すように、開口部4の幅方向開口位置(W1)と、部品接着部2Cの幅方向位置(W2)とが、電池接着部2Aと突出部2Bとの境界ラインの両側に少なくとも一部を互いに対向させる位置に配置することができる。開口部4の幅方向開口位置(W1)及び部品接着部2Cの幅方向位置(W2)は、図2に示すように、発熱部品3から電池接着部2Aに熱伝導される熱エネルギの熱伝導方向(図において矢印Cで示す)に直交する幅方向の位置である。 In the battery pack of the present invention, as shown in FIG. 2, the opening position (W1) in the width direction of the opening 4 and the position (W2) in the width direction of the component bonding section 2C are the battery bonding section 2A and the protruding section 2B. It is possible to dispose at least a part of each of the both sides of the boundary line at a position facing each other. As shown in FIG. 2, the width direction opening position (W1) of the opening 4 and the width direction position (W2) of the component bonding portion 2C are heat conduction of heat energy transferred from the heat generating component 3 to the battery bonding portion 2A. It is the position in the width direction orthogonal to the direction (indicated by arrow C in the figure).
 本発明の電池パックは、開口部4の面積を、フラット面1Aの10%以上であって70%以下とすることができる。 In the battery pack of the present invention, the area of the opening 4 can be 10% or more and 70% or less of the flat surface 1A.
 本発明の電池パックは、放熱シート2は、厚さ方向の熱伝導率よりも表面方向の熱伝導率を大きくすることができる。 In the battery pack of the present invention, the heat dissipation sheet 2 can have a thermal conductivity in the surface direction larger than the thermal conductivity in the thickness direction.
 本発明の電池パックは、放熱シート2をグラファイトシートとし、あるいは、アルミニウム製、銅製の何れかの金属シートとすることができる。 In the battery pack of the present invention, the heat radiating sheet 2 can be a graphite sheet, or a metal sheet made of aluminum or copper.
 本発明の電池パックは、これを内蔵させる電子機器が携帯電話、スマートフォン、タブレット、電子ブック、ノート型パソコンの何れかの携帯機器であって、発熱部品3をCPUとすることができる。 In the battery pack of the present invention, the electronic device in which the battery pack is incorporated is any one of a mobile phone, a smartphone, a tablet, an electronic book, and a notebook computer, and the heat generating component 3 can be a CPU.
 本発明の電池パックは、薄型電池1を、金属製の外装缶を外装ケースとする角形電池、又はラミネートフィルムを外装ケースとするラミネート電池の何れかとすることができる。また、本発明の電池パックは、発熱部品3を半導体素子とすることができる。 In the battery pack of the present invention, the thin battery 1 can be either a rectangular battery having a metal outer can as an outer case or a laminate battery having a laminate film as an outer case. In the battery pack of the present invention, the heat generating component 3 can be a semiconductor element.
 本発明の電子機器は、発熱部品3と、電力を供給する薄型電池1と、この薄型電池1のフラット面1Aに熱結合状態であって面接触状態にある放熱シート2とを備える。放熱シート2は、フラット面1Aに所定の面積で面接触状態にある電池接着部2Aと、薄型電池1の外周から突出する突出部2Bを有する。突出部2Bは、発熱部品3に熱結合状態であって面接触状態にある部品接着部2Cを有し、発熱部品3の熱エネルギを、放熱シート2を介して薄型電池1に熱伝導する。 The electronic device of the present invention includes a heat generating component 3, a thin battery 1 for supplying electric power, and a heat radiating sheet 2 that is in thermal contact with the flat surface 1A of the thin battery 1 and in surface contact. The heat dissipating sheet 2 includes a battery bonding portion 2A that is in a surface contact state with a predetermined area on the flat surface 1A, and a protruding portion 2B that protrudes from the outer periphery of the thin battery 1. The protruding portion 2B has a component bonding portion 2C that is in a thermal contact state with the heat generating component 3 and is in a surface contact state, and conducts heat energy of the heat generating component 3 to the thin battery 1 through the heat radiating sheet 2.
 本発明の電子機器は、電池接着部2Aに、フラット面1Aの一部を露出させて、発熱部品3から薄型電池1への熱伝導の距離を長くする開口部4を設けることができる。 The electronic device of the present invention can be provided with an opening 4 that exposes a part of the flat surface 1A and increases the distance of heat conduction from the heat generating component 3 to the thin battery 1 in the battery bonding portion 2A.
 本発明の電子機器は、放熱シート2が、一方の面を薄型電池1に面接着状態にあり、他方の面を当該電子機器の外装ケースの内面に熱結合状態に配置して、発熱部品3の熱エネルギが放熱シート2の表面に沿って薄型電池1に熱伝導され、かつ放熱シート2の表面に熱伝導される熱エネルギが外装ケースを介して外部に放熱されることができる。 In the electronic device of the present invention, the heat radiating sheet 2 has one surface in a surface-bonded state with the thin battery 1 and the other surface in a heat-bonded state on the inner surface of the outer case of the electronic device. The thermal energy is thermally conducted to the thin battery 1 along the surface of the heat radiating sheet 2, and the heat energy thermally conducted to the surface of the heat radiating sheet 2 can be radiated to the outside through the exterior case.
 本発明の電子機器は、携帯電話、スマートフォン、タブレット、電子ブック、ノート型パソコンの何れかの携帯機器であって、発熱部品3をCPUとすることができる。 The electronic device of the present invention is a mobile device such as a mobile phone, a smartphone, a tablet, an electronic book, or a notebook computer, and the heat generating component 3 can be a CPU.
 本発明の電池パック及び電子機器は、発熱部品の熱エネルギを薄型電池に均一に伝導することで発熱部品の温度上昇を小さくし、しかも温度上昇に起因する薄型電池の劣化を最小限にできる特徴がある。 The battery pack and the electronic device of the present invention are characterized in that the temperature rise of the heat generating component can be reduced by uniformly conducting the heat energy of the heat generating component to the thin battery, and the deterioration of the thin battery due to the temperature increase can be minimized. There is.
 それは、以上の電池パック及び電子機器が、放熱シートを薄型電池のフラット面に所定の面積で面接触させると共に、この放熱シートに突出部を設けてこの突出部に発熱部品を熱結合状態に固定しているからである。この電池パックは、発熱部品の熱エネルギを放熱シートを介して薄型電池のフラット面に広い面積に拡散して伝導をする。薄型電池は外装ケースの内部に正負の電極板を密に積層する構造から、単位面積の熱容量はプラスチック製の外装ケースよりも大きく、発熱部品の熱エネルギを効率よく吸収して発熱部品の温度上昇を小さくする。薄型電池は発熱部品の熱エネルギを吸収して温度上昇するが、従来の電子機器のように円筒形電池の局部に熱伝導するのではない。熱エネルギは薄型電池のフラット面に拡散して伝導される。このため、薄型電池の局部的な温度上昇はなく、広い面積のフラット面の温度をより均一化させる状態で、熱エネルギを吸収する。このため、薄型電池は多量の熱エネルギを吸収しながら温度上昇を最小限度に制限して、温度上昇に起因する劣化を防止できる。 The above battery pack and electronic device make the heat-dissipating sheet come into surface contact with the flat surface of the thin battery with a predetermined area, and a protrusion is provided on the heat-dissipating sheet, and the heat-generating component is fixed to the protrusion in a thermally coupled state. Because it is. This battery pack conducts heat by diffusing the heat energy of the heat generating component over a wide area on the flat surface of the thin battery through the heat dissipation sheet. The thin battery has a structure in which positive and negative electrode plates are densely stacked inside the outer case, so the heat capacity of the unit area is larger than that of the plastic outer case, and it efficiently absorbs the heat energy of the heat-generating component to raise the temperature of the heat-generating component Make it smaller. The thin battery absorbs the heat energy of the heat-generating component and rises in temperature, but does not conduct heat to the local part of the cylindrical battery as in the conventional electronic device. Thermal energy is diffused and conducted on the flat surface of the thin battery. For this reason, there is no local temperature rise of the thin battery, and heat energy is absorbed in a state where the temperature of the flat surface of a large area is made more uniform. For this reason, the thin battery can limit the temperature rise to a minimum while absorbing a large amount of heat energy, and can prevent deterioration due to the temperature rise.
本発明の実施例にかかる電子機器の断面図である。It is sectional drawing of the electronic device concerning the Example of this invention. 図1の電子機器に内蔵される電池パックの平面図である。It is a top view of the battery pack incorporated in the electronic device of FIG. 本発明の他の実施例にかかる電池パックの平面図である。It is a top view of the battery pack concerning the other Example of this invention. 本発明の他の実施例にかかる電池パックの平面図である。It is a top view of the battery pack concerning the other Example of this invention. 本発明の他の実施例にかかる電池パックの平面図である。It is a top view of the battery pack concerning the other Example of this invention. 本発明の他の実施例にかかる電池パックの平面図である。It is a top view of the battery pack concerning the other Example of this invention. 図4に示す電池パックの温度特性と容量維持率を示すグラフである。It is a graph which shows the temperature characteristic and capacity | capacitance maintenance factor of the battery pack shown in FIG. 図5に示す電池パックの温度特性と容量維持率を示すグラフである。It is a graph which shows the temperature characteristic and capacity retention of the battery pack shown in FIG. 図6に示す電池パックの温度特性と容量維持率を示すグラフである。It is a graph which shows the temperature characteristic and capacity | capacitance maintenance factor of the battery pack shown in FIG. 本発明の実施例にかかる電池パックの熱伝導状態を示す断面図である。It is sectional drawing which shows the heat conductive state of the battery pack concerning the Example of this invention. 本発明の他の実施例にかかる電池パックの平面図である。It is a top view of the battery pack concerning the other Example of this invention.
 以下、本発明の実施例を図面に基づいて説明する。図1の断面図に示す電子機器は、プラスチック製の外装ケース5の内部に、電源回路に電力を供給するための薄型電池1と放熱シート2からなる電池パックを内蔵している。電子機器は、携帯電話、スマートフォン、タブレット、電子ブック、ノート型パソコンなどの携帯機器である。ただ、電子機器は、携帯電話やスマートフォンなどの携帯機器に限らず、他の携帯機器、あるいは薄型電池を内蔵するゲーム機やウォークマン(登録商標)等とすることもできる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The electronic device shown in the cross-sectional view of FIG. 1 includes a battery pack including a thin battery 1 and a heat dissipation sheet 2 for supplying power to a power supply circuit inside a plastic outer case 5. The electronic device is a mobile device such as a mobile phone, a smartphone, a tablet, an electronic book, or a notebook computer. However, the electronic device is not limited to a portable device such as a mobile phone or a smartphone, but may be another portable device, a game machine or a Walkman (registered trademark) with a built-in thin battery, or the like.
 図1の電子機器は発熱部品3を内蔵している。発熱部品3は中央処理装置(CPU)である。ただ、本発明は発熱部品3をCPUに特定するものではなく、電界効果トランジスタ(FET)、トランジスタ、ダイオードなどの他の半導体素子とすることができ、また抵抗器などとすることもできる。発熱部品3は、流れる電流のジュール熱で発熱する。したがって、発熱部品3の発熱量は、流れる電流の二乗と電気抵抗の積に比例して大きくなり、流れる電流によって変動する。 1 The electronic device shown in FIG. The heat generating component 3 is a central processing unit (CPU). However, the present invention does not specify the heat generating component 3 as a CPU, but can be other semiconductor elements such as a field effect transistor (FET), a transistor, and a diode, and can also be a resistor. The heat generating component 3 generates heat by the Joule heat of the flowing current. Accordingly, the amount of heat generated by the heat generating component 3 increases in proportion to the product of the square of the flowing current and the electric resistance, and varies depending on the flowing current.
 図2は電池パックを示し、この図2の電池パックは、電子機器の電源回路に電力を供給する薄型電池1と、薄型電池1のフラット面1Aに、熱結合状態であって面接触状態に接着してなる放熱シート2を備える。薄型電池1は、金属製の外装缶を外装ケースとする角形電池、又はラミネートフィルムを外装ケースとするラミネート電池の何れかで、対向して設けられる広い平面状であるフラット面1Aを両面に有する。薄型電池1は、対向するフラット面1Aの間に、これと平行な姿勢で、正負の電極板(図示せず)を積層して密閉している。薄型電池1は、厚さに比較してフラット面1Aの横幅と縦幅が広く、フラット面1Aに放熱シート2を接着して、放熱シート2を広い面積で熱結合状態に固定できる。 FIG. 2 shows a battery pack. The battery pack in FIG. 2 is in a thermal contact state and a surface contact state with a thin battery 1 for supplying power to a power circuit of an electronic device and a flat surface 1A of the thin battery 1. A heat dissipation sheet 2 is provided. The thin battery 1 is either a rectangular battery having a metal outer can as an outer case or a laminate battery having a laminated film as an outer case, and has a flat surface 1A that is a wide flat surface provided on both sides. . In the thin battery 1, positive and negative electrode plates (not shown) are laminated and sealed between the opposing flat surfaces 1 </ b> A in a posture parallel to the flat surface 1 </ b> A. The thin battery 1 has a wider width and length of the flat surface 1A than the thickness, and the heat radiation sheet 2 can be bonded to the flat surface 1A so that the heat radiation sheet 2 can be fixed in a heat-bonded state over a wide area.
 放熱シート2は、熱伝導の優れたシートで、グラファイトシート、アルミニウムや銅等の金属を薄く圧延した金属シートである。グラファイトシートは極めて優れた熱伝導特性(700~1950W/m・K)を有するので、発熱部品3の熱エネルギを効率よく薄型電池1のフラット面1Aに熱伝導する。また、グラファイトシートは、厚さ方向の熱伝導に比較して、表面方向の熱伝導が極めて優れているので、発熱部品3の熱エネルギを、表面と平行な表面方向に速やかに熱伝導して、薄型電池1のフラット面1Aに均一に伝導する。また、グラファイトシートは、薄型電池1のアルミ製の外装ケース(約230W/m・K)よりも熱伝導率が高いので、薄型電池1の外装ケースで熱伝導するよりも速やかにグラファイトシート全面に熱伝導する。そのため、発熱部品3の熱エネルギを薄型電池1のフラット面1Aに均一に伝導することができる。放熱シート2は、例えばグラファイトシートのように、厚さ方向に比較して、表面方向の熱伝導が優れているシートが適している。それは、発熱部品3の熱エネルギを速やかに薄型電池1のフラット面1Aに均一に熱伝導するからである。この特性は、グラファイトシートに限らず、繊維にグラファイト等の熱伝導粉末を添加して抄紙された放熱紙等で実現できる。 The heat radiating sheet 2 is a sheet having excellent heat conduction, and is a metal sheet obtained by thinly rolling a graphite sheet, a metal such as aluminum or copper. Since the graphite sheet has extremely excellent heat conduction characteristics (700 to 1950 W / m · K), the heat energy of the heat generating component 3 is efficiently conducted to the flat surface 1 A of the thin battery 1. In addition, the graphite sheet is extremely superior in heat conduction in the surface direction compared to heat conduction in the thickness direction, so that the heat energy of the heat generating component 3 is quickly conducted in the surface direction parallel to the surface. Conducted uniformly to the flat surface 1A of the thin battery 1. Further, the graphite sheet has a higher thermal conductivity than the aluminum outer case (about 230 W / m · K) of the thin battery 1, so that the graphite sheet can be applied to the entire surface of the graphite sheet more quickly than the heat conduction in the outer case of the thin battery 1. Conducts heat. Therefore, the heat energy of the heat generating component 3 can be uniformly conducted to the flat surface 1 </ b> A of the thin battery 1. As the heat dissipating sheet 2, for example, a sheet having excellent heat conduction in the surface direction as compared with the thickness direction, such as a graphite sheet, is suitable. This is because the heat energy of the heat generating component 3 is promptly and uniformly conducted to the flat surface 1A of the thin battery 1. This characteristic can be realized not only with a graphite sheet but also with heat-dissipating paper made by adding a heat conductive powder such as graphite to a fiber.
 図1と図2の電池パックは、薄型電池1の片方のフラット面1Aの外周部と開口部4を除くほぼ全面に放熱シート2を積層している。ただし、放熱シート2は、好ましくは片方のフラット面1Aの20%以上の面積に接着して固定される。放熱シート2は、粘着層を介して、あるいは接着層を介して薄型電池1のフラット面1Aに接着される。 1 and FIG. 2 has a heat dissipation sheet 2 laminated on almost the entire surface excluding the outer peripheral portion and the opening 4 of one flat surface 1A of the thin battery 1. However, the heat-dissipating sheet 2 is preferably bonded and fixed to an area of 20% or more of one flat surface 1A. The heat dissipation sheet 2 is bonded to the flat surface 1A of the thin battery 1 via an adhesive layer or an adhesive layer.
 また、図示しないが、薄型電池1の両面のフラット面1Aに放熱シート2をU曲して接着することもできる。あるいは、発熱部品3から薄型電池1の両面のフラット面1Aに2枚の放熱シート2を接着することもできる。薄型電池1両面のフラット面1Aに放熱シート2を接着する電池パックは、薄型電池1の全体をより均一な温度にできる特徴がある。放熱シート2が広い面積で薄型電池1のフラット面1Aに接着されて、薄型電池1の全体により均一に、しかも効率よく熱エネルギを熱伝導できるからである。 Although not shown, the heat-dissipating sheet 2 can be U-bent and bonded to the flat surfaces 1A on both sides of the thin battery 1. Alternatively, the two heat dissipating sheets 2 can be bonded from the heat generating component 3 to the flat surfaces 1A on both sides of the thin battery 1. The battery pack in which the heat-dissipating sheet 2 is bonded to the flat surfaces 1A on both sides of the thin battery 1 is characterized in that the entire thin battery 1 can be brought to a more uniform temperature. This is because the heat radiating sheet 2 is bonded to the flat surface 1A of the thin battery 1 with a large area, so that the heat energy can be conducted uniformly and efficiently throughout the thin battery 1.
 放熱シート2は、薄型電池1のフラット面1Aに接着される電池接着部2Aと、薄型電池1の外周から外部に突出する突出部2Bとを有する。突出部2Bは、電子機器の発熱部品3を熱結合状態であって面接触状態に固定する部品接着部2Cを表面に設けている。発熱部品3は、放熱シート2の部品接着部2Cに接着して固定され、あるいは弾性的に押圧されて熱結合状態であって面接触状態に固定される。 The heat dissipation sheet 2 includes a battery bonding portion 2A that is bonded to the flat surface 1A of the thin battery 1 and a protruding portion 2B that protrudes from the outer periphery of the thin battery 1 to the outside. The protruding portion 2B is provided with a component adhesion portion 2C that fixes the heat generating component 3 of the electronic device in a thermally coupled state and in a surface contact state. The heat generating component 3 is bonded and fixed to the component bonding portion 2C of the heat radiating sheet 2 or is elastically pressed to be in a thermally coupled state and fixed in a surface contact state.
 電池接着部2Aは、面接触状態で薄型電池1のフラット面1Aに熱結合状態で接着して固定され、部品接着部2Cも発熱部品3の表面に面接触状態で接着して、あるいは弾性的に押圧されて密着状態に固定される。導電性のある放熱シート2は、絶縁層を介して薄型電池1のフラット面1Aと発熱部品3の表面に固定される。放熱シート2を薄型電池1と発熱部品3の表面に接着する粘着層や接着層は、優れた熱伝導特性の粘着材や接着剤が使用される。 The battery bonding portion 2A is fixed in a state of surface contact with the flat surface 1A of the thin battery 1 in a thermally bonded state, and the component bonding portion 2C is also bonded to the surface of the heat generating component 3 in a surface contact state or is elastic. And is fixed in a close contact state. The conductive heat radiation sheet 2 is fixed to the flat surface 1A of the thin battery 1 and the surface of the heat generating component 3 through an insulating layer. For the pressure-sensitive adhesive layer or adhesive layer that adheres the heat radiation sheet 2 to the surface of the thin battery 1 and the heat-generating component 3, a pressure-sensitive adhesive material or adhesive having excellent heat conduction characteristics is used.
 図2の電池パックは、薄型電池1のフラット面1Aの一部を露出させて、発熱部品3から薄型電池1への熱伝導の距離を長くし、薄型電池1全体の温度分布を均一化する開口部4を設けている。開口部4は、薄型電池1のフラット面1Aの温度差を少なくするために設けられるので、放熱シート2を積層する状態で放熱部品3からの輻射熱を含めて最も温度が高くなる領域に設けられる。つまり、薄型電池1と放熱部品3が最も接近する領域である。 The battery pack of FIG. 2 exposes a part of the flat surface 1A of the thin battery 1 to increase the distance of heat conduction from the heat generating component 3 to the thin battery 1 and to make the temperature distribution of the entire thin battery 1 uniform. An opening 4 is provided. Since the opening 4 is provided in order to reduce the temperature difference of the flat surface 1A of the thin battery 1, the opening 4 is provided in a region where the temperature is highest including the radiant heat from the heat radiating component 3 in a state where the heat radiating sheet 2 is laminated. . That is, it is an area where the thin battery 1 and the heat dissipation component 3 are closest.
 薄型電池1のフラット面1Aに接着される放熱シート2は、部品接着部2Cに近い領域で温度が高くなる。薄型電池1のフラット面1A全面の温度差を小さくするために、図2に示す放熱シート2は、発熱部品3から電池接着部2Aに熱伝導される熱エネルギの熱伝導方向(矢印Cで示す方向)において、突出部2B側に偏在して開口部4を配置している。熱エネルギが突出部2Bから電池接着部2Aに熱伝導されるので、放熱シート2の電池接着部2Aは、突出部2B側で温度が高くなるからである。図2の放熱シート2は、熱伝導方向の中央部(一点鎖線で示す)よりも突出部2B側に開口部4を設けている。 The heat dissipation sheet 2 bonded to the flat surface 1A of the thin battery 1 has a high temperature in a region close to the component bonding portion 2C. In order to reduce the temperature difference across the flat surface 1A of the thin battery 1, the heat radiating sheet 2 shown in FIG. 2 has a heat conduction direction (indicated by an arrow C) of heat energy conducted from the heat generating component 3 to the battery bonding portion 2A. Direction), the opening 4 is unevenly distributed on the protruding portion 2B side. This is because the heat energy is thermally conducted from the protruding portion 2B to the battery bonding portion 2A, so that the temperature of the battery bonding portion 2A of the heat radiation sheet 2 becomes higher on the protruding portion 2B side. The heat radiating sheet 2 in FIG. 2 is provided with an opening 4 on the protruding portion 2B side with respect to the central portion (indicated by a one-dot chain line) in the heat conduction direction.
 さらに、図2の放熱シート2は、開口部4の幅方向開口位置(W1)と、部品接着部2Cの幅方向位置(W2)とを、一部あるいは全体を、電池接着部2Aと突出部2Bとの境界ラインの両側に互いに対向させる位置に配置している。開口部4の幅方向開口位置(W1)は、図2において矢印Cで示すように、発熱部品3から電池接着部2Aに熱伝導される熱エネルギの熱伝導方向に直交する幅方向の開口位置であり、部品接着部2Cの幅方向位置(W2)は、矢印Cで示す熱エネルギの熱伝導方向に直交する幅方向の固定位置である。図2の放熱シート2は、開口部4の幅方向開口位置(W1)の寸法を部品接着部2Cの幅方向位置(W2)の寸法よりも大きくしている。ただ、図示しないが、幅方向開口位置(W1)を幅方向位置(W2)よりも小さくすることもでき、また同じにすることもできる。図2の放熱シート2は、電池接着部2Aと突出部2Bの両方に跨がるように開口部4を設けている。 Further, the heat radiation sheet 2 of FIG. 2 is configured such that the opening position (W1) in the width direction of the opening portion 4 and the position (W2) in the width direction of the component bonding portion 2C are partially or entirely, and the battery bonding portion 2A and the protruding portion. It arrange | positions in the position which mutually opposes on both sides of the boundary line with 2B. The opening position (W1) in the width direction of the opening 4 is an opening position in the width direction orthogonal to the heat conduction direction of the heat energy conducted from the heat generating component 3 to the battery bonding portion 2A as indicated by an arrow C in FIG. The position (W2) in the width direction of the component bonding portion 2C is a fixed position in the width direction orthogonal to the heat conduction direction of the heat energy indicated by the arrow C. In the heat radiating sheet 2 of FIG. 2, the dimension of the opening position (W1) in the width direction of the opening 4 is made larger than the dimension of the position (W2) in the width direction of the component bonding part 2C. However, although not shown, the width direction opening position (W1) can be made smaller than the width direction position (W2) or can be the same. 2 has an opening 4 so as to straddle both the battery bonding portion 2A and the protruding portion 2B.
 図3の放熱シート2は、複数の開口部4を設けている。この放熱シート2は、開口部4の密度を部分的に変化させて、薄型電池1の温度分布をより均等化する。この図4の放熱シート2は、部品接着部2Cに接近する領域で開口部4を大きく、部品接着部2Cから離れるにしたがって開口部4を小さくしている。この放熱シート2は、発熱部品3を固定する部品接着部2Cに接近する領域に近づくにしたがって、開口部4を開口する単位面積の開口率を次第に大きく、部品接着部2Cから離れるにしたがって小さくして、薄型電池1のフラット面1Aの温度分布を均等化している。すなわち、部品接着部2Cに接近して、温度が高くなる部位の開口率を高くして、放熱シート2からフラット面1Aに熱伝導される熱エネルギを小さくすると共に、フラット面1Aからの放熱量を大きくしている。図2と図3の放熱シート2は、電池接着部2Aと突出部2Bの両方に跨るように開口部4を設けている。図示しないが、開口部4は、突出部2Bに設けることなく電池接着部2Aにのみ設けることもでき、また突出部2Bにのみ設けることができる。部品接着部2Cに設けられる開口部4は、電池接着部2Aとの境界ラインに接近する位置、図2においては、境界ラインの中央部に設けて、薄型電池1の局部的な温度上昇を少なく制限する。 3 is provided with a plurality of openings 4. The heat radiating sheet 2 partially changes the density of the openings 4 to make the temperature distribution of the thin battery 1 more uniform. In the heat dissipation sheet 2 of FIG. 4, the opening 4 is enlarged in a region approaching the component bonding portion 2 </ b> C, and the opening 4 is reduced as the distance from the component bonding portion 2 </ b> C is increased. As the heat-dissipating sheet 2 approaches a region approaching the component bonding portion 2C that fixes the heat-generating component 3, the opening ratio of the unit area that opens the opening 4 gradually increases, and decreases as the distance from the component bonding portion 2C increases. Thus, the temperature distribution on the flat surface 1A of the thin battery 1 is equalized. That is, approaching the component bonding part 2C, increasing the aperture ratio of the portion where the temperature rises, reducing the heat energy thermally conducted from the heat dissipation sheet 2 to the flat surface 1A, and the amount of heat released from the flat surface 1A. Has increased. 2 and 3 has an opening 4 so as to straddle both the battery bonding portion 2A and the protruding portion 2B. Although not shown, the opening 4 can be provided only in the battery bonding portion 2A without being provided in the protruding portion 2B, or can be provided only in the protruding portion 2B. The opening 4 provided in the component bonding part 2C is provided at a position approaching the boundary line with the battery bonding part 2A, that is, in the center of the boundary line in FIG. 2, so that the local temperature rise of the thin battery 1 is reduced. Restrict.
 放熱シート2の形状により、薄型電池1のフラット面1Aの温度と、熱源である発熱部品3の温度と、薄型電池1の容量維持率の変化を検討した。図4~図6は、放熱シート2の形状を変更した実験例である。図4~図6の実験例は、発熱部品3の消費電力を3W、放熱シート2を17μmの厚みのグラファイトシート、薄型電池1のフラット面1Aが縦×横を90mm×55mm、薄型電池1の厚さを4mm、放熱シート2の横幅を53mm、放熱シート2の突出部2Bの突出量を30mmとする放熱シート2を使用しておこなっている。ここで、グラファイトシートの厚みを17μmとしたが、10~50μmの厚みであれば同等の特性を得ることができる。 The change of the temperature of the flat surface 1A of the thin battery 1, the temperature of the heat generating component 3 as a heat source, and the capacity retention rate of the thin battery 1 was examined according to the shape of the heat dissipation sheet 2. 4 to 6 are experimental examples in which the shape of the heat dissipation sheet 2 is changed. 4 to 6, the power consumption of the heat generating component 3 is 3 W, the heat radiating sheet 2 is a graphite sheet having a thickness of 17 μm, the flat surface 1A of the thin battery 1 is 90 mm × 55 mm in length × width, The heat radiating sheet 2 is used with a thickness of 4 mm, a width of the heat radiating sheet 2 of 53 mm, and a protruding amount of the protruding portion 2B of the heat radiating sheet 2 of 30 mm. Here, the thickness of the graphite sheet is 17 μm, but equivalent characteristics can be obtained if the thickness is 10 to 50 μm.
 そして、図7~図9は、図4~図6の放熱シート2の形状によって、薄型電池1のフラット面1Aの温度と、熱源である発熱部品3の温度と、薄型電池1の容量維持率とが変化する状態を示している。図7のグラフは、図4に示すように、開口部4を設けない放熱シート2を薄型電池1のフラット面1Aに接着する面積、言い換えると、フラット面1Aにおいて放熱シート2が接着されない面積(図4においてハッチングで表示)を変化させて温度や容量維持率が変化する特性を示している。ここで、図7の横軸は、フラット面1Aにおいて放熱シート2が接着されない面積を、フラット面1Aに対する面積比として、「電池上未添付面積」として示している。そして、図8のグラフは、図5に示すように、開口部4を設けている放熱シート2を薄型電池1のフラット面1Aの全面に接着して、開口部4によって露出するフラット面1Aの面積(図5においてハッチングで表示)を変化させて温度や容量維持率が変化する特性を示している。そして、図9のグラフは、図6に示すように、開口部4を設けている放熱シート2を薄型電池1のフラット面1Aの60%の領域に接着して、開口部4によって露出するフラット面1Aの面積(図6においてハッチングで表示)を変化させて温度や容量維持率が変化する特性を示している。ここで、図8と図9の横軸は、開口部4から露出するフラット面1Aの露出面積を、フラット面1Aに対する面積比として、「電池上穴開き面積」として示している。 7 to 9 show the temperature of the flat surface 1A of the thin battery 1, the temperature of the heat generating component 3 as a heat source, and the capacity retention rate of the thin battery 1 depending on the shape of the heat radiation sheet 2 of FIGS. It shows a state where and change. As shown in FIG. 4, the graph of FIG. 7 shows an area where the heat radiating sheet 2 without the opening 4 is bonded to the flat surface 1A of the thin battery 1, in other words, an area where the heat radiating sheet 2 is not bonded to the flat surface 1A ( FIG. 4 shows characteristics in which the temperature and the capacity retention ratio change when the hatching is changed). Here, the horizontal axis of FIG. 7 indicates an area where the heat radiation sheet 2 is not bonded on the flat surface 1A as an “area not attached to the battery” as an area ratio with respect to the flat surface 1A. Then, the graph of FIG. 8 shows that the heat radiation sheet 2 provided with the opening 4 is adhered to the entire flat surface 1A of the thin battery 1 and the flat surface 1A exposed by the opening 4 is exposed as shown in FIG. FIG. 6 shows characteristics in which the temperature (capacity maintenance ratio) changes by changing the area (indicated by hatching in FIG. 5). The graph of FIG. 9 shows that the heat radiation sheet 2 provided with the opening 4 is bonded to the region of 60% of the flat surface 1A of the thin battery 1 and the flat exposed by the opening 4 as shown in FIG. FIG. 6 shows characteristics in which the area of the surface 1A (indicated by hatching in FIG. 6) is changed to change the temperature and capacity retention rate. Here, the horizontal axis of FIG. 8 and FIG. 9 shows the exposed area of the flat surface 1A exposed from the opening 4 as the “battery opening area” as an area ratio to the flat surface 1A.
 薄型電池1片面のフラット面1Aに開口部4を設けない放熱シート2を接着してフラット面1Aに接着する面積を変化させる電池パック(図4)は、図7に示すように、放熱シート2のフラット面1Aへの接着面積が増加するにしたがって、言い換えると、電池上未添付面積が減少するにしたがって、熱源温度、すなわち発熱部品3の温度は低下し、フラット面1Aの温度差は小さくなり、薄型電池1の800サイクル後の容量維持率は低下する。800サイクル後の容量維持率は、フラット面1Aに放熱シート2を接着しない薄型電池1の800サイクル後の容量維持率を基準としてこの電池に対する容量維持率を示している。図7に示すグラフのデータを表1に示す。 As shown in FIG. 7, the battery pack (FIG. 4) in which the heat-dissipating sheet 2 that does not have the opening 4 is bonded to the flat surface 1A on one side of the thin battery 1 and the area to be bonded to the flat surface 1A is changed. As the adhesion area to the flat surface 1A increases, in other words, as the unattached area on the battery decreases, the heat source temperature, that is, the temperature of the heat generating component 3 decreases, and the temperature difference of the flat surface 1A decreases. The capacity maintenance rate after 800 cycles of the thin battery 1 is lowered. The capacity maintenance rate after 800 cycles indicates the capacity maintenance rate for this battery based on the capacity maintenance rate after 800 cycles of the thin battery 1 in which the heat radiating sheet 2 is not bonded to the flat surface 1A. Table 1 shows data of the graph shown in FIG.
 ここで、薄型電池1が満充電から放電されて放電禁止電圧になるまでの容量を放電し、その容量を充電した時を1サイクルとする。 Here, the capacity until the thin battery 1 is discharged from full charge until reaching the discharge inhibition voltage is discharged, and the time when the capacity is charged is defined as one cycle.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 図7の曲線Aは、薄型電池1のフラット面1Aに放熱シート2を接着しない面積の比率である電池上未添付面積、すなわち、フラット面1Aに対する電池接着部2Aが接着されていない領域の面積比によって熱源温度、すなわち発熱部品3の温度が変化する状態を示している。熱源温度として表示される発熱部品3の表面温度は、電池上未添付面積によって、40℃~78℃に低下する。フラット面1Aの全面に放熱シート2を接着する電池パックでは、発熱部品3の温度が40℃となる。この図7において、電池上未添付面積を100%とする電池パック、すなわち放熱シート2をフラット面1Aに接着しない電池パックは、発熱部品3の温度が90℃となる。したがって、放熱シート2を薄型電池1のフラット面1Aの全面に接着して、発熱部品3の温度は最大で50℃も低下する。 A curve A in FIG. 7 is an unattached area on the battery, which is a ratio of an area where the heat dissipation sheet 2 is not bonded to the flat surface 1A of the thin battery 1, that is, an area of a region where the battery bonding portion 2A is not bonded to the flat surface 1A. The state in which the heat source temperature, that is, the temperature of the heat generating component 3 changes depending on the ratio is shown. The surface temperature of the heat generating component 3 displayed as the heat source temperature falls to 40 ° C. to 78 ° C. depending on the unattached area on the battery. In the battery pack in which the heat dissipation sheet 2 is bonded to the entire flat surface 1A, the temperature of the heat generating component 3 is 40 ° C. In FIG. 7, in the battery pack in which the unattached area on the battery is 100%, that is, the battery pack in which the heat radiation sheet 2 is not bonded to the flat surface 1A, the temperature of the heat generating component 3 is 90 ° C. Therefore, the heat-dissipating sheet 2 is adhered to the entire flat surface 1A of the thin battery 1, and the temperature of the heat generating component 3 is reduced by 50 ° C. at the maximum.
 フラット面1Aの全面に放熱シート2を接着する電池パック(電池上未添付面積が0%)は、発熱部品3の熱エネルギを薄型電池1に吸収させるので、薄型電池1の800サイクル後のサイクル容量維持率が、曲線Bで示すように、放熱シート2を接着しない状態の84%に対して、78%と6ポイント低下する。また、図4において、電池接着部2Aの部品接着部2Cに近い領域Aの温度上昇は13℃、部品接着部2Cから離れた薄型電池1の隅部の領域Bの温度上昇は約6℃となって、フラット面1Aの温度差は7℃と大きくなる。 The battery pack in which the heat radiating sheet 2 is adhered to the entire flat surface 1A (the unattached area on the battery is 0%) allows the thin battery 1 to absorb the heat energy of the heat generating component 3, and thus the cycle after 800 cycles of the thin battery 1 As indicated by the curve B, the capacity retention rate is reduced by 6 points to 78% compared to 84% in the state where the heat radiation sheet 2 is not adhered. In FIG. 4, the temperature rise in the region A near the component bonding portion 2C of the battery bonding portion 2A is 13 ° C., and the temperature increase in the corner region B of the thin battery 1 far from the component bonding portion 2C is about 6 ° C. Thus, the temperature difference of the flat surface 1A becomes as large as 7 ° C.
 なお、表1の電池温度上昇の欄において、A、B、C、Dで表示する温度は、図4に示す領域A、領域B、領域C、領域Dにおける電池の上昇温度をそれぞれ示している。 In Table 1, the temperature indicated by A, B, C, and D in the column of battery temperature increase indicates the temperature increase of the battery in region A, region B, region C, and region D shown in FIG. .
 電池パックは、図5と図6に示すように、放熱シート2に開口部4を設けて、フラット面1Aの温度差を小さくできる。この状態を図8と図9に示している。図8は、図5に示すように、開口部4のある放熱シート2をフラット面1Aの全面に接着している温度特性を示している。図9は、図6に示すように、開口部4のある放熱シート2をフラット面1Aの60%の領域に接着している温度特性を示している。 As shown in FIGS. 5 and 6, the battery pack can be provided with an opening 4 in the heat dissipation sheet 2 to reduce the temperature difference of the flat surface 1 </ b> A. This state is shown in FIGS. FIG. 8 shows temperature characteristics in which the heat radiating sheet 2 having the opening 4 is bonded to the entire flat surface 1A as shown in FIG. FIG. 9 shows a temperature characteristic in which the heat radiating sheet 2 having the opening 4 is bonded to a region of 60% of the flat surface 1A as shown in FIG.
 図8の特性の電池パックは、図5に示すように、放熱シート2の電池接着部2Aに開口部4を設けている。図5の放熱シート2も、電池接着部2Aと突出部2Bの両方に跨がるように開口部4を設けている。この電池パックは、開口部4の領域においてフラット面1Aが露出し、開口部4を設けない領域で電池接着部2Aがフラット面1Aに接着されている。さらに、この放熱シート2は、図5に示すように、開口部4の両側において10mm幅でフラット面1Aに接着され、開口部4の面積を変化させるために、部品接着部2Cから離れる方向(図において矢印Xで表示)、すなわち、熱伝導方向の長さを変化させ、さらに、開口部4が先端まで延びる状態では、両横に横幅を広くして、穴開き面積を100%まで大きくしている。図8に示すグラフのデータを表2に示す。 The battery pack having the characteristics shown in FIG. 8 is provided with an opening 4 in the battery bonding portion 2A of the heat dissipation sheet 2 as shown in FIG. The heat radiating sheet 2 of FIG. 5 also has an opening 4 so as to straddle both the battery adhesive portion 2A and the protruding portion 2B. In this battery pack, the flat surface 1A is exposed in the region of the opening 4, and the battery bonding portion 2A is bonded to the flat surface 1A in the region where the opening 4 is not provided. Further, as shown in FIG. 5, the heat radiating sheet 2 is bonded to the flat surface 1A with a width of 10 mm on both sides of the opening 4, and in order to change the area of the opening 4, the direction away from the component bonding portion 2C ( In the state where the length in the heat conduction direction is changed and the opening 4 extends to the tip, the lateral width is widened on both sides to increase the hole opening area to 100%. ing. Table 2 shows the data of the graph shown in FIG.
 なお、表2の電池温度上昇の欄において、A、B、C、Dで表示する温度は、図5に示す領域A、領域B、領域C、領域Dにおける電池の上昇温度をそれぞれ示している。 In the column of battery temperature increase in Table 2, the temperatures indicated by A, B, C, and D indicate the battery temperature increase in regions A, B, C, and D shown in FIG. .
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 図5に示す電池パックは、表2と図8に示すように、穴開き面積を20%~80%に変化して、フラット面1Aの温度差が2.2℃(20%)、2.1℃(40%)、1.6℃(60%)、1.9℃(80%)と小さくなる。薄型電池1は、開口部4を最適値として、フラット面1Aの温度差を最も小さくできる。放熱シート2の開口部4は、薄型電池1の温度差を小さくするために有効であるが、開口部4を大きくすると発熱部品3の温度が上昇する。それは、放熱シート2と薄型電池1フラット面1Aとの熱伝導面積が小さくなって、発熱部品3から薄型電池1に熱伝導する熱エネルギが減少するからである。 5, as shown in Table 2 and FIG. 8, the hole area is changed from 20% to 80%, and the temperature difference of the flat surface 1A is 2.2 ° C. (20%). It becomes as small as 1 ° C. (40%), 1.6 ° C. (60%), and 1.9 ° C. (80%). The thin battery 1 can minimize the temperature difference of the flat surface 1A with the opening 4 as an optimum value. The opening 4 of the heat radiating sheet 2 is effective for reducing the temperature difference of the thin battery 1, but when the opening 4 is enlarged, the temperature of the heat generating component 3 increases. This is because the heat conduction area between the heat radiation sheet 2 and the flat surface 1A of the thin battery 1 is reduced, and the heat energy conducted from the heat generating component 3 to the thin battery 1 is reduced.
 図8と表2に示すように、穴開き面積を20%から80%として、熱源温度として表示
される発熱部品3の温度は曲線Aで示すように、52.2℃(20%)、70.9℃(40%)、81.0℃(60%)、85.0℃(80%)にできる。さらに、薄型電池1の800サイクル後のサイクル容量維持率は、曲線Bで示すように、開口部4を大きくして、穴開き面積を大きくするにしたがって、すなわち薄型電池1への熱伝導エネルギを少なくするにしたがって容量維持率は放熱シート2を接着しない状態の84%に近く、すなわち劣化が小さくなる。
As shown in FIG. 8 and Table 2, the hole area is 20% to 80%, and the temperature of the heat generating component 3 displayed as the heat source temperature is 52.2 ° C. (20%), 70 as shown by the curve A. .9 ° C. (40%), 81.0 ° C. (60%), and 85.0 ° C. (80%). Further, the cycle capacity retention rate after 800 cycles of the thin battery 1 is increased as the opening 4 is increased and the hole opening area is increased as shown by the curve B, that is, the heat conduction energy to the thin battery 1 is increased. As the capacity is decreased, the capacity retention rate is close to 84% of the state in which the heat radiating sheet 2 is not adhered, that is, the deterioration becomes smaller.
 図9は、図6に示すように、開口部4のある放熱シート2をフラット面1Aの60%の領域に接着している電池パックの温度特性と容量維持率を示している。図6の放熱シート2も、電池接着部2Aと突出部2Bの両方に跨がるように開口部4を設けている。この電池パックは、図6に示すように、フラット面1Aの40%の領域には放熱シート2が接着されず、また残りの60%の領域においては、開口部4においてフラット面1Aは露出し、開口部4を設けない領域で電池接着部2Aがフラット面1Aの60%の領域に接着されている。さらに、この放熱シート2は、図6に示すように、開口部4の両側において10mm幅でフラット面1Aに接着され、開口部4の面積を変化させるために、部品接着部2Cから離れる方向(図において矢印Xで表示)、すなわち、熱伝導方向の長さを変化させて、開口部4が先端まで延びる状態では、両側に横幅を広くして、穴開き面積を60%まで大きくしている。図9に示すグラフのデータを表3に示す。 FIG. 9 shows the temperature characteristics and capacity retention rate of the battery pack in which the heat-dissipating sheet 2 having the opening 4 is bonded to the 60% region of the flat surface 1A as shown in FIG. The heat radiation sheet 2 in FIG. 6 also has an opening 4 so as to straddle both the battery bonding portion 2A and the protruding portion 2B. In this battery pack, as shown in FIG. 6, the heat radiating sheet 2 is not adhered to the 40% region of the flat surface 1A, and the flat surface 1A is exposed at the opening 4 in the remaining 60% region. In the region where the opening 4 is not provided, the battery bonding portion 2A is bonded to the region of 60% of the flat surface 1A. Further, as shown in FIG. 6, the heat radiating sheet 2 is bonded to the flat surface 1 </ b> A with a width of 10 mm on both sides of the opening 4, and in order to change the area of the opening 4, the direction away from the component bonding portion 2 </ b> C ( In the state where the length in the heat conduction direction is changed and the opening 4 extends to the tip, the lateral width is widened on both sides and the hole area is increased to 60%. . Table 3 shows the data of the graph shown in FIG.
 なお、表3の電池温度上昇の欄において、A、B、C、Dで表示する温度は、図6に示す領域A、領域B、領域C、領域Dにおける電池の上昇温度をそれぞれ示している。 Note that in the column of battery temperature increase in Table 3, the temperatures indicated by A, B, C, and D indicate the battery temperature increase in regions A, B, C, and D shown in FIG. .
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 図6に示す電池パックは、表3と図9に示すように、穴開き面積を10%~40%に変化して、フラット面1Aの温度差を5.0℃(10%)、1.9℃(20%)、2.9℃(40%)にできる。さらに、この電池パックは、穴開き面積を10%~40%として、熱源温度として表示される発熱部品3の温度を曲線Aで示すように、67.7℃~78.2℃に低下できる。また、薄型電池1の800サイクル後のサイクル容量維持率は、曲線Bで示すように、開口部4を大きくするにしたがって、すなわち薄型電池1への熱伝導エネルギを少なくするにしたがって容量維持率は放熱シート2を接着しない状態の84%に近く、すなわち劣化が小さくなる。 As shown in Table 3 and FIG. 9, the battery pack shown in FIG. 6 has a hole area changed from 10% to 40%, and the temperature difference of the flat surface 1A is 5.0 ° C. (10%). 9 ° C. (20%) and 2.9 ° C. (40%). Further, in this battery pack, the hole area is 10% to 40%, and the temperature of the heat generating component 3 displayed as the heat source temperature can be lowered to 67.7 ° C. to 78.2 ° C. as indicated by the curve A. Further, the cycle capacity maintenance rate after 800 cycles of the thin battery 1 is as shown by the curve B, as the opening 4 is increased, that is, as the heat conduction energy to the thin battery 1 is reduced, It is close to 84% of the state in which the heat radiating sheet 2 is not adhered, that is, the deterioration is small.
 以上の図7~図9と表1~3は、消費電力を3Wとする発熱部品3の温度を示しているので、発熱部品3の消費電力が小さくなると温度上昇も小さくなる。また、薄型電池1フラット面1Aの面積が大きくなると、発熱部品3への熱伝導量が増加して、発熱部品3の温度上昇は小さくなる。したがって、放熱シート2の開口部4は、薄型電池1に許容される温度差、発熱部品3に許容される温度上昇、発熱部品3の消費電力、薄型電池1フラット面1Aの面積などを考慮して、用途に最適な値に設定される。放熱開口を大きくして、薄型電池1の温度上昇をより小さくでき、また、放熱開口を小さくして、発熱部品3の温度上昇を小さくできるからである。 7 to 9 and Tables 1 to 3 above show the temperature of the heat generating component 3 with power consumption of 3 W. Therefore, when the power consumption of the heat generating component 3 decreases, the temperature rise also decreases. Further, when the area of the flat surface 1A of the thin battery 1 increases, the amount of heat conduction to the heat generating component 3 increases, and the temperature rise of the heat generating component 3 decreases. Therefore, the opening 4 of the heat dissipation sheet 2 takes into consideration the temperature difference allowed for the thin battery 1, the temperature rise allowed for the heat generating component 3, the power consumption of the heat generating component 3, the area of the flat surface 1A of the thin battery 1 and the like. Therefore, it is set to the optimum value for the application. This is because the temperature increase of the thin battery 1 can be further reduced by increasing the heat dissipation opening, and the temperature increase of the heat generating component 3 can be decreased by decreasing the heat dissipation opening.
 図10は、発熱部品3の熱エネルギが熱伝導されて外部に放熱される状態を示している。この図は、グラファイトシートのように、厚さ方向に比較して、表面方向の熱伝導が優れている放熱シート2の熱伝導状態を示している。発熱部品3の熱エネルギは、矢印Bで示す方向よりも、矢印Aで示す放熱シート2の表面方向に速やかに伝導されて、薄型電池1のフラット面1Aに熱伝導される。矢印Aで示す表面方向に速やかに熱伝導される熱エネルギは、放熱シート2の表面で均一に拡散されて、薄型電池1のフラット面1Aの広い面積に均一に伝導される。発熱部品3の殆どの熱エネルギが、放熱シート2の表面方向に熱伝導されて、厚さ方向の熱伝導が小さいからである。この熱伝導特性の放熱シート2は、発熱部品3を固定している部分の温度が局部的に異常に高くなるのを防止して、薄型電池1フラット面1A全面の温度差を小さく、かつ発熱部品3と薄型電池1フラット面1Aとの温度差を小さくする。したがって、図10の断面図に示すように、放熱シート2の同じ面に発熱部品3と薄型電池1とを固定して、放熱シート2上面の温度の局部的な上昇を小さくできる。このことは、放熱シート2を外装ケース5の内面に密着して熱結合状態としながら、放熱シート2による外装ケース5の局部的な温度上昇も小さくできる特徴がある。 FIG. 10 shows a state in which the heat energy of the heat generating component 3 is thermally conducted and radiated to the outside. This figure shows the heat conduction state of the heat-dissipating sheet 2 that is superior in heat conduction in the surface direction as compared to the thickness direction, such as a graphite sheet. The heat energy of the heat generating component 3 is more quickly conducted in the surface direction of the heat radiating sheet 2 indicated by the arrow A than in the direction indicated by the arrow B, and is conducted to the flat surface 1A of the thin battery 1. The thermal energy that is quickly conducted in the surface direction indicated by the arrow A is uniformly diffused on the surface of the heat dissipation sheet 2 and is conducted uniformly over a wide area of the flat surface 1A of the thin battery 1. This is because most of the heat energy of the heat generating component 3 is conducted in the surface direction of the heat radiating sheet 2 and the heat conduction in the thickness direction is small. The heat-dissipating sheet 2 having the heat conduction characteristic prevents the temperature of the portion where the heat generating component 3 is fixed from being locally abnormally high, reduces the temperature difference across the flat surface 1A of the thin battery 1 and generates heat. The temperature difference between the component 3 and the thin battery 1 flat surface 1A is reduced. Therefore, as shown in the sectional view of FIG. 10, the heat generating component 3 and the thin battery 1 are fixed to the same surface of the heat radiating sheet 2, and the local rise in the temperature on the upper surface of the heat radiating sheet 2 can be reduced. This is characterized in that a local temperature rise of the outer case 5 due to the heat radiating sheet 2 can be reduced while the heat radiating sheet 2 is in close contact with the inner surface of the outer case 5 to be in a thermally coupled state.
 放熱シート2は、発熱部品3の熱エネルギを薄型電池1に熱伝導して、発熱部品3の熱エネルギを薄型電池1に吸収させる。熱エネルギを吸収した薄型電池1は温度上昇するが、吸収した熱エネルギを経時的に外部に放熱して温度を低下させる。発熱部品3は、ジュール熱で発熱するので、消費電流によって発熱量が変化する。たとえば、携帯電話などの電子機器のCPUは、たとえば画像処理などで処理するデータ量が多くなると消費流量が大きくなって一時的に発熱量が多くなる。発熱部品3の温度が上昇すると、熱エネルギは放熱シート2を介して薄型電池1に熱伝導される。薄型電池1は、発熱部品3の熱エネルギを吸収して、発熱部品3の温度上昇を小さくする。 The heat dissipation sheet 2 conducts heat energy of the heat generating component 3 to the thin battery 1 and causes the thin battery 1 to absorb heat energy of the heat generating component 3. Although the temperature of the thin battery 1 that has absorbed the heat energy rises, the absorbed heat energy is radiated to the outside over time to lower the temperature. Since the heat generating component 3 generates heat due to Joule heat, the amount of heat generated varies depending on the current consumption. For example, in a CPU of an electronic device such as a mobile phone, if the amount of data processed by, for example, image processing increases, the consumption flow rate increases and the amount of heat generation temporarily increases. When the temperature of the heat generating component 3 rises, the heat energy is conducted to the thin battery 1 through the heat dissipation sheet 2. The thin battery 1 absorbs the heat energy of the heat generating component 3 and reduces the temperature rise of the heat generating component 3.
 薄型電池1の熱容量はプラスチック製の外装ケース5よりも大きい。それは、薄型電池1の単位重量に対する熱容量がプラスチックよりも大きく、また、薄型電池1が外装ケース5よりも熱いからである。したがって、発熱部品3の熱エネルギを放熱シート2に熱伝導して薄型電池1に吸収させる放熱構造は、発熱部品3の熱エネルギを外装ケース5に熱伝導する放熱構造に比較して、発熱部品3の温度上昇を小さくできる。薄型電池1は、発熱部品3の熱エネルギを吸収して温度が上昇する。温度上昇した薄型電池1は、フラット面1Aに接着している放熱シート2を介して吸収した熱エネルギを外装ケース5から外部に放熱する。この状態で、薄型電池1は温度差が小さく、フラット面1Aに接着している放熱シート2を介して、外装ケース5から外部に均一に放熱される。 The heat capacity of the thin battery 1 is larger than that of the plastic outer case 5. This is because the heat capacity per unit weight of the thin battery 1 is larger than that of plastic, and the thin battery 1 is hotter than the outer case 5. Therefore, the heat dissipation structure in which the heat energy of the heat generating component 3 is conducted to the heat radiating sheet 2 and absorbed by the thin battery 1 is compared with the heat dissipation structure in which the heat energy of the heat generating component 3 is thermally conducted to the exterior case 5. The temperature rise of 3 can be reduced. The thin battery 1 absorbs the heat energy of the heat generating component 3 and rises in temperature. The thin battery 1 whose temperature has risen radiates the heat energy absorbed through the heat radiating sheet 2 bonded to the flat surface 1A from the outer case 5 to the outside. In this state, the thin battery 1 has a small temperature difference, and the heat is uniformly radiated from the outer case 5 to the outside through the heat radiating sheet 2 bonded to the flat surface 1A.
 したがって、放熱シート2を介してCPU等の発熱部品3の熱エネルギを薄型電池1に熱伝導して吸収させる電池パックは、一時的な発熱を薄型電池1に吸収して発熱部品3の急激な温度上昇を小さくし、薄型電池1に吸収される熱エネルギを経時的に外装ケース5から外部に放熱して、薄型電池1の平均的な温度上昇を小さくすることができる。すなわち、薄型電池1に発熱部品3の熱エネルギを一時的に吸収させて、すなわち、薄型電池1が熱エネルギを一時的に吸収するバッファーの作用をして、発熱部品3の急激な温度上昇を小さくする。 Therefore, the battery pack that absorbs the heat energy of the heat-generating component 3 such as the CPU through the heat-dissipating sheet 2 by heat conduction to the thin battery 1 is absorbed by the thin battery 1 and the heat-generating component 3 rapidly The temperature rise can be reduced, and the thermal energy absorbed by the thin battery 1 can be radiated from the outer case 5 to the outside over time, so that the average temperature rise of the thin battery 1 can be reduced. That is, the thin battery 1 temporarily absorbs the heat energy of the heat generating component 3, that is, the thin battery 1 acts as a buffer that temporarily absorbs the heat energy, thereby causing the temperature of the heat generating component 3 to increase rapidly. Make it smaller.
 図1の断面図に示す電子機器は、放熱シート2の片方の面(図において下面)を薄型電池1に接着して、他方の面(図において上面)を電子機器の外装ケース5の内面に熱結合状態に配置している。この電子機器は、発熱部品3の熱エネルギを放熱シート2の表面に沿って薄型電池1に熱伝導して薄型電池1に吸収させる。薄型電池1に吸収された熱エネルギは、放熱シート2と外装ケース5を介して外装ケース5から外部に放熱される。 The electronic device shown in the cross-sectional view of FIG. 1 has one surface (the lower surface in the figure) of the heat dissipation sheet 2 bonded to the thin battery 1 and the other surface (the upper surface in the figure) on the inner surface of the exterior case 5 of the electronic device. Arranged in a thermally coupled state. In this electronic device, the heat energy of the heat generating component 3 is thermally conducted to the thin battery 1 along the surface of the heat dissipation sheet 2 and absorbed by the thin battery 1. The thermal energy absorbed by the thin battery 1 is radiated from the outer case 5 to the outside via the heat radiating sheet 2 and the outer case 5.
 放熱シート2は、図11に示すように、複数の薄型電池1に発熱部品3の熱エネルギを熱伝導することができる。この図の電池パックは、2個の薄型電池1を接近して並べて、両方の薄型電池1のフラット面1Aに放熱シート2を接着している。この電池パックは、発熱部品3の熱エネルギを2個の薄型電池1に熱伝導するので、発熱部品3の温度上昇をより小さくできる特徴がある。さらに、図示しないが、放熱シート2は3個以上の薄型電池1のフラット面1Aに接着して、発熱部品3の熱エネルギを各々の薄型電池1に熱伝導することもできる。図11の電池パックは2個の薄型電池1の境界部分に部品接着部2Cを設けている。この電池パックは、発熱部品3の熱エネルギをバランスよく各々の薄型電池1に熱伝導するので、2個の薄型電池1の温度差を小さくできる。ただ、図示しないが、放熱シート2を複数の薄型電池1のフラット面1Aに接着して、発熱部品3を薄型電池1の境界部分以外の位置に固定して、発熱部品3の熱エネルギを各々の薄型電池1に熱伝導することもできる。この構造は、電池接着部2Aに開口部4を設けて、温度差を小さくすることができる。 As shown in FIG. 11, the heat dissipation sheet 2 can conduct heat energy of the heat generating component 3 to a plurality of thin batteries 1. In the battery pack of this figure, two thin batteries 1 are arranged close to each other, and a heat dissipation sheet 2 is bonded to the flat surface 1A of both thin batteries 1. Since this battery pack conducts the heat energy of the heat generating component 3 to the two thin batteries 1, it has a feature that the temperature rise of the heat generating component 3 can be further reduced. Further, although not shown, the heat radiation sheet 2 can be bonded to the flat surface 1A of three or more thin batteries 1 to conduct heat energy of the heat generating component 3 to each thin battery 1. The battery pack of FIG. 11 is provided with a component bonding portion 2C at the boundary between two thin batteries 1. Since this battery pack conducts heat energy of the heat generating component 3 to each thin battery 1 in a balanced manner, the temperature difference between the two thin batteries 1 can be reduced. However, although not shown, the heat-dissipating sheet 2 is bonded to the flat surfaces 1A of the plurality of thin batteries 1 and the heat generating component 3 is fixed to a position other than the boundary portion of the thin batteries 1 so that the heat energy of the heat generating components 3 is changed. The thin battery 1 can be thermally conducted. This structure can reduce the temperature difference by providing the opening 4 in the battery adhesive portion 2A.
 本発明の電池パックと電子機器は、内蔵するCPUなどの発熱部品3の温度上昇を小さくしながら使用することが大切な機器に便利に使用できる。 The battery pack and electronic device of the present invention can be conveniently used for devices that are important to use while reducing the temperature rise of the heat generating component 3 such as a built-in CPU.
  1…薄型電池  1A…フラット面
  2…放熱シート 2A…電池接着部 2B…突出部 2C…部品接着部
  3…発熱部品
  4…開口部
  5…外装ケース
DESCRIPTION OF SYMBOLS 1 ... Thin battery 1A ... Flat surface 2 ... Radiation sheet 2A ... Battery adhesion part 2B ... Projection part 2C ... Component adhesion part 3 ... Heat-generating component 4 ... Opening part 5 ... Exterior case

Claims (15)

  1.  発熱部品を有する電子機器に内蔵されて電力を供給する薄型電池と、
     前記薄型電池のフラット面に、熱結合状態であって面接触状態にある放熱シートとを備え、
     前記放熱シートは、前記フラット面に所定の面積で面接触状態にある電池接着部と、前記薄型電池の外周から突出してなる突出部とを有し、
     前記突出部は、前記発熱部品に熱結合状態であって面接触状態にある部品接着部を有し、
     前記発熱部品の熱エネルギを、前記放熱シートを介して前記薄型電池に熱伝導することを特徴とする電池パック。
    A thin battery that is built in an electronic device having a heat generating component and supplies power;
    The flat surface of the thin battery is provided with a heat dissipating sheet in a thermal contact state and in a surface contact state,
    The heat-dissipating sheet has a battery adhesion portion that is in a surface contact state with a predetermined area on the flat surface, and a protruding portion that protrudes from the outer periphery of the thin battery,
    The protruding portion has a component bonding portion that is in a heat-bonded state and in a surface contact state with the heat-generating component,
    A battery pack, wherein the heat energy of the heat generating component is thermally conducted to the thin battery through the heat dissipation sheet.
  2.  請求項1に記載される電池パックであって、
     前記電池接着部に、前記フラット面の一部を露出させて、前記発熱部品から前記薄型電池への熱伝導の距離を長くする開口部を設けてなることを特徴とする電池パック。
    The battery pack according to claim 1,
    A battery pack, wherein the battery bonding portion is provided with an opening that exposes a part of the flat surface and increases a distance of heat conduction from the heat generating component to the thin battery.
  3.  請求項2に記載される電池パックであって、
     前記開口部が、前記発熱部品から前記電池接着部に熱伝導される熱エネルギの熱伝導方向において、前記突出部側に偏在して配置されてなることを特徴とする電池パック。
    The battery pack according to claim 2,
    The battery pack, wherein the opening is unevenly arranged on the protruding portion side in a heat conduction direction of heat energy conducted from the heat-generating component to the battery bonding portion.
  4.  請求項2又は3に記載される電池パックであって、
     前記開口部の幅方向開口位置(W1)と、前記部品接着部の幅方向位置(W2)とが、前記電池接着部と前記突出部との境界ラインの両側に少なくとも一部を互いに対向させる位置に配置してなることを特徴とする電池パック。
    The battery pack according to claim 2 or 3,
    A position where the width direction opening position (W1) of the opening and the width direction position (W2) of the component bonding portion are at least partially opposed to each other on both sides of a boundary line between the battery bonding portion and the protruding portion. A battery pack characterized by being arranged in a battery pack.
  5.  請求項2ないし4のいずれかに記載される電池パックであって、
     前記開口部の面積を、前記フラット面の10%以上であって70%以下としてなることを特徴とする電池パック。
    The battery pack according to any one of claims 2 to 4,
    An area of the opening is 10% or more and 70% or less of the flat surface.
  6.  請求項2ないし5のいずれかに記載される電池パックであって、
     前記放熱シートは、厚さ方向の熱伝導率よりも表面方向の熱伝導率が大きいことを特徴とする電池パック。
    The battery pack according to any one of claims 2 to 5,
    The heat dissipation sheet has a thermal conductivity in the surface direction larger than the thermal conductivity in the thickness direction.
  7.  請求項6に記載される電池パックであって、
     前記放熱シートをグラファイトシートとすることを特徴とする電池パック。
    The battery pack according to claim 6,
    A battery pack, wherein the heat dissipation sheet is a graphite sheet.
  8.  請求項2ないし5のいずれかに記載される電池パックであって、
     前記放熱シートをアルミニウム製、銅製の何れかの金属シートとすることを特徴とする電池パック。
    The battery pack according to any one of claims 2 to 5,
    The battery pack, wherein the heat dissipation sheet is a metal sheet made of aluminum or copper.
  9.  請求項2ないし8のいずれかに記載される電池パックであって、
     前記電子機器が携帯電話、スマートフォン、タブレット、電子ブック、ノート型パソコンの何れかの携帯機器であって、前記発熱部品をCPUとすることを特徴とする電池パック。
    A battery pack according to any one of claims 2 to 8,
    A battery pack, wherein the electronic device is a mobile device such as a mobile phone, a smartphone, a tablet, an electronic book, or a notebook computer, and the heat generating component is a CPU.
  10.  請求項2ないし9のいずれかに記載される電池パックであって、
     前記薄型電池を、金属製の外装缶を外装ケースとする角形電池、又はラミネートフィルムを外装ケースとするラミネート電池の何れかとすることを特徴とする電池パック。
    The battery pack according to any one of claims 2 to 9,
    A battery pack, wherein the thin battery is any one of a rectangular battery having a metal outer can as an outer case or a laminated battery having a laminate film as an outer case.
  11.  請求項2ないし10のいずれかに記載される電池パックであって、
     前記発熱部品を半導体素子とすることを特徴とする電池パック。
    A battery pack according to any one of claims 2 to 10,
    A battery pack characterized in that the heat generating component is a semiconductor element.
  12.  発熱部品と
     電力を供給する薄型電池と、
     前記薄型電池のフラット面に、熱結合状態であって面接触状態にある放熱シートとを備え、
     前記放熱シートは、前記フラット面に所定の面積で面接触状態にある電池接着部と、前記薄型電池の外周から突出してなる突出部を有し、
     前記突出部は、前記発熱部品に熱結合状態であって面接触状態にある部品接着部を有し、
     前記発熱部品の熱エネルギを、前記放熱シートを介して前記薄型電池に熱伝導することを特徴とする電子機器。
    A heat-generating component and a thin battery that supplies power,
    The flat surface of the thin battery is provided with a heat dissipating sheet in a thermal contact state and in a surface contact state,
    The heat-dissipating sheet has a battery adhesive portion that is in a surface contact state with a predetermined area on the flat surface, and a protruding portion that protrudes from the outer periphery of the thin battery,
    The protruding portion has a component bonding portion that is in a heat-bonded state and in a surface contact state with the heat-generating component,
    An electronic apparatus characterized in that heat energy of the heat-generating component is thermally conducted to the thin battery through the heat dissipation sheet.
  13.  請求項12に記載される電子機器であって、
     前記電池接着部に、前記フラット面の一部を露出させて、前記発熱部品から前記薄型電池への熱伝導の距離を長くする開口部を設けてなることを特徴とする電子機器。
    An electronic device according to claim 12,
    An electronic apparatus comprising: an opening that exposes a part of the flat surface to the battery bonding portion to increase a distance of heat conduction from the heat-generating component to the thin battery.
  14.  請求項13に記載される電子機器であって、
     前記放熱シートが、一方の面を前記薄型電池に面接触状態にあり、他方の面を当該電子機器の外装ケースの内面に熱結合状態に配置しており、前記発熱部品の熱エネルギが前記放熱シートの表面に沿って前記薄型電池に熱伝導され、かつ前記放熱シートの表面に熱伝導される熱エネルギが前記外装ケースを介して外部に放熱されることを特徴とする電子機器。
    An electronic device according to claim 13,
    The heat dissipating sheet has one surface in surface contact with the thin battery and the other surface in thermal coupling with the inner surface of the exterior case of the electronic device, and the heat energy of the heat generating component An electronic device characterized in that heat energy conducted to the thin battery along the surface of the sheet and thermally conducted to the surface of the heat radiating sheet is radiated to the outside through the outer case.
  15.  請求項13又は14に記載される電子機器あって、
     前記電子機器が携帯電話、スマートフォン、タブレット、電子ブック、ノート型パソコンの何れかの携帯機器であって、前記発熱部品をCPUとすることを特徴とする電子機器。
    An electronic device according to claim 13 or 14,
    The electronic device is any one of a mobile phone, a smartphone, a tablet, an electronic book, and a notebook computer, and the heat generating component is a CPU.
PCT/JP2015/001322 2014-05-14 2015-03-11 Battery pack and electronic device WO2015173999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014100699A JP2017123212A (en) 2014-05-14 2014-05-14 Battery pack and electronic equipment
JP2014-100699 2014-05-14

Publications (1)

Publication Number Publication Date
WO2015173999A1 true WO2015173999A1 (en) 2015-11-19

Family

ID=54479557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001322 WO2015173999A1 (en) 2014-05-14 2015-03-11 Battery pack and electronic device

Country Status (2)

Country Link
JP (1) JP2017123212A (en)
WO (1) WO2015173999A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181519A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN109698292A (en) * 2017-10-20 2019-04-30 北京小米移动软件有限公司 Power supply, electronic equipment
WO2019139098A1 (en) * 2018-01-10 2019-07-18 藤森工業株式会社 Battery pack and electric ally drivenmotor device
CN114256553A (en) * 2019-01-09 2022-03-29 比亚迪股份有限公司 Battery pack without module frame, vehicle and energy storage device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6982460B2 (en) * 2017-10-16 2021-12-17 三洋化成工業株式会社 Lithium ion battery
KR102442035B1 (en) * 2018-11-30 2022-09-07 주식회사 엘지에너지솔루션 Secondary battery and device including the same
KR102549437B1 (en) * 2018-11-30 2023-06-28 주식회사 엘지에너지솔루션 Electrode assembly and secondary battery including the same
JPWO2021171404A1 (en) * 2020-02-26 2021-09-02
JP2021190383A (en) * 2020-06-03 2021-12-13 積水化学工業株式会社 Fireproof sheet and battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109729A (en) * 1983-11-15 1985-06-15 松下電工株式会社 Charger
JP2000323186A (en) * 1999-05-07 2000-11-24 Sanyo Electric Co Ltd Battery device of electronic apparatus
JP2013251413A (en) * 2012-05-31 2013-12-12 Sharp Corp Heat radiation member, heat generation source, and heat radiator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109729A (en) * 1983-11-15 1985-06-15 松下電工株式会社 Charger
JP2000323186A (en) * 1999-05-07 2000-11-24 Sanyo Electric Co Ltd Battery device of electronic apparatus
JP2013251413A (en) * 2012-05-31 2013-12-12 Sharp Corp Heat radiation member, heat generation source, and heat radiator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181519A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN109698292A (en) * 2017-10-20 2019-04-30 北京小米移动软件有限公司 Power supply, electronic equipment
CN109698292B (en) * 2017-10-20 2021-08-17 北京小米移动软件有限公司 Power supply and electronic device
WO2019139098A1 (en) * 2018-01-10 2019-07-18 藤森工業株式会社 Battery pack and electric ally drivenmotor device
JPWO2019139098A1 (en) * 2018-01-10 2020-12-24 藤森工業株式会社 Batteries and electric devices
JP7242560B2 (en) 2018-01-10 2023-03-20 藤森工業株式会社 Batteries and electric devices
CN114256553A (en) * 2019-01-09 2022-03-29 比亚迪股份有限公司 Battery pack without module frame, vehicle and energy storage device
CN114256553B (en) * 2019-01-09 2023-12-12 比亚迪股份有限公司 Battery pack without module frame, vehicle and energy storage device
US11955651B2 (en) 2019-01-09 2024-04-09 Byd Company Limited Power battery pack and electric vehicle

Also Published As

Publication number Publication date
JP2017123212A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
WO2015173999A1 (en) Battery pack and electronic device
JP6982738B2 (en) Composite sheet and battery pack using it
JP5945047B1 (en) Thermal diffusion plate for portable electronic devices
TWM459692U (en) Portable communication device with heat dissipation structure
JP2007012913A (en) Heat dissipation sheet and heat dissipation structure
US9430006B1 (en) Computing device with heat spreader
US20150201530A1 (en) Heat Spreading Packaging Apparatus
US10945331B2 (en) Mobile display device
TWM469525U (en) Heat dissipation structure for handheld mobile device
WO2019216869A1 (en) Composite films
TW201204227A (en) Heat dissipation apparatus
CN109152273A (en) Electronic device
KR20170080096A (en) Radiating sheet
JP2016181546A (en) Cooling structure and device
TWM467917U (en) Component structure with multiple heat dissipation effects applicable to electronic cover
JP2006005081A (en) Power component cooling device
TWI576558B (en) Heat dissipation structure
CN112687975A (en) Electronic equipment and heat dissipation method
WO2020087411A1 (en) Circuit board and supercomputing device
JP2012129379A (en) Radiation fin
TW200930261A (en) Cooling module
WO2021003833A1 (en) Novel heat dissipation patch for electronic device
TWM522552U (en) Handheld communication apparatus and thin heat sink thereof
TW201215298A (en) Electronic device
JP2017162857A (en) Heat sink and portable information equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP