WO2015173881A1 - Hydrogen-generating catalyst, and exhaust gas purification catalyst - Google Patents

Hydrogen-generating catalyst, and exhaust gas purification catalyst Download PDF

Info

Publication number
WO2015173881A1
WO2015173881A1 PCT/JP2014/062667 JP2014062667W WO2015173881A1 WO 2015173881 A1 WO2015173881 A1 WO 2015173881A1 JP 2014062667 W JP2014062667 W JP 2014062667W WO 2015173881 A1 WO2015173881 A1 WO 2015173881A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
oxide
noble metal
release material
Prior art date
Application number
PCT/JP2014/062667
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 淳二
花木 保成
哲郎 内藤
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/062667 priority Critical patent/WO2015173881A1/en
Priority to PCT/JP2015/051126 priority patent/WO2015174102A1/en
Priority to US15/309,930 priority patent/US9878308B2/en
Priority to EP15792201.4A priority patent/EP3144062B1/en
Priority to JP2016519127A priority patent/JP6362040B2/en
Priority to CN201580025179.9A priority patent/CN106457226B/en
Publication of WO2015173881A1 publication Critical patent/WO2015173881A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a hydrogen generation catalyst, an exhaust gas purification catalyst, and an exhaust gas purification monolith catalyst. More specifically, the present invention relates to a hydrogen generation catalyst having excellent hydrogen generation performance, an exhaust gas purification catalyst using the same, and an exhaust gas purification monolith catalyst.
  • an exhaust gas purification catalyst using a noble metal is usually used.
  • the noble metal is expensive, a reduction in the amount of use is required from the viewpoint of cost reduction.
  • rhodium (Rh) which exhibits high purification activity with respect to nitrogen oxides (NOx), is particularly expensive, and thus a reduction in the amount of use is particularly demanded.
  • rhodium (Rh) is aluminum oxide (Al 2 O 3 ). It is known that deterioration with time occurs, such as solid solution in the solution or rhodium (Rh) is coated with a cerium (Ce) -containing oxide. In this case, since the nitrogen oxide (NOx) purification performance of the exhaust gas purification catalyst is lowered, it is necessary to increase the amount of rhodium (Rh) used in advance in order to compensate for the reduced performance.
  • NOx nitrogen oxide
  • An object of the present invention is to provide a hydrogen generation catalyst having excellent hydrogen generation performance, an exhaust gas purification catalyst and an exhaust gas purification monolith catalyst using the same.
  • the inventors of the present invention made extensive studies to achieve the above object. As a result, the inventors have found that the above object can be achieved by supporting a noble metal on an oxide containing lanthanum (La) and zirconium (Zr), and further coexisting this with an oxygen storage / release material, thereby completing the present invention. It came to.
  • La lanthanum
  • Zr zirconium
  • the hydrogen generation catalyst of the present invention comprises a noble metal, an oxide containing lanthanum (La) and zirconium (Zr) supporting the noble metal, and an oxygen storage / release material.
  • the exhaust gas purifying catalyst of the present invention includes a first catalyst unit comprising a noble metal and an oxide containing lanthanum (La) and zirconium (Zr) supporting the noble metal, and a second catalyst comprising an oxygen storage / release material.
  • a unit and a holding material that holds the first catalyst unit and the second catalyst unit in a separated state are contained.
  • the exhaust gas purification monolith catalyst of the present invention is such that a catalyst layer containing the exhaust gas purification catalyst of the present invention is formed in the exhaust gas flow path of the monolith carrier.
  • the present invention is configured to include a noble metal, an oxide containing lanthanum (La) and zirconium (Zr) supporting the noble metal, and an oxygen storage / release material. Therefore, it is possible to provide a hydrogen generation catalyst having excellent hydrogen generation performance, an exhaust gas purification catalyst using the same, and an exhaust gas purification monolith catalyst.
  • FIG. 1 is an explanatory diagram showing a reaction in a hydrogen generation catalyst.
  • FIG. 2 is an explanatory view showing a mitigation mechanism of carbon monoxide (CO) adsorption poisoning.
  • FIG. 3 is a graph showing the results of measuring the state of rhodium (Rh) supported on an oxide in the hydrogen generation catalyst of each example by X-ray photoelectron spectroscopy (XPS).
  • FIG. 4 is a graph showing the production entropy per oxygen atom of various oxides.
  • FIG. 5 is an explanatory diagram showing the interaction between a specific additive element (M) and carbon monoxide (CO).
  • FIG. 6 is an explanatory view showing a monolith catalyst for exhaust gas purification according to the third embodiment of the present invention.
  • FIG. 7 is an explanatory diagram showing a measurement program for a carbon monoxide shift reaction test.
  • FIG. 8 is an explanatory view showing the catalyst arrangement in the NOx emission amount measurement.
  • the hydrogen generation catalyst of the present embodiment is composed of a noble metal, an oxide containing lanthanum (La) and zirconium (Zr) supporting the noble metal, and an oxygen storage / release material.
  • a noble metal such as platinum (Pt), rhodium (Rh), palladium (Pd) is supported on an oxide containing lanthanum (La) and zirconium (Zr), and the oxygen storage / release material coexists. By making it, it will have the outstanding hydrogen production performance. Further, when such a hydrogen generation catalyst is applied to an exhaust gas purification catalyst, the generated hydrogen (H 2 ) acts as a NOx reducing agent, and the NOx purification rate can be improved.
  • the reason for having excellent hydrogen generation performance is that a noble metal such as rhodium (Rh) is supported on an oxide containing lanthanum (La) and zirconium (Zr), and this and an oxygen storage / release material coexist.
  • Rh rhodium
  • La oxide containing lanthanum
  • Zr zirconium
  • CO carbon monoxide
  • FIG. 1 is an explanatory diagram showing a reaction in a hydrogen generation catalyst.
  • FIG. 1A is an explanatory diagram showing a reaction when the oxygen storage / release material coexists
  • FIG. 1B is an explanatory diagram showing a reaction when the oxygen storage / release material does not coexist.
  • CO carbon monoxide
  • H 2 O water
  • hydrogen (H 2 ) and carbon dioxide (CO 2 ) are generated.
  • the defect site ⁇ of the oxygen storage / release material 14 stores oxygen (O) of carbon dioxide (CO 2 ), the carbon monoxide (CO) adsorption poisoning is released, and the carbon monoxide shift on the surface of the noble metal 12a.
  • the reaction will be promoted.
  • 12b in a figure shows the predetermined oxide which carry
  • the supply amount of fuel and air is normally controlled by feedback control around A / F 14.6. Therefore, the A / F of the exhaust gas is not constant and is slightly on the lean side or the rich side. Since the emission amount of carbon monoxide (CO) and hydrocarbon (HC) increases on the rich side, hydrogen can be increased by reacting it with water (H 2 O) in the exhaust gas.
  • a rich spike may be performed in order to operate a lean NOx trap, and even in that case, emissions of carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas may be reduced. Since it increases, hydrogen can be increased by reacting it with water (H 2 O) in the exhaust gas.
  • the noble metal is preferably rhodium (Rh). This is because, when rhodium (Rh) is applied among various noble metals, the above-described carbon monoxide shift reaction is more likely to proceed.
  • the oxides are lanthanum (La), zirconium (Zr), neodymium (Nd), samarium (Sm), europium (Eu), magnesium (Mg), and calcium. It preferably contains at least one additive element selected from the group consisting of (Ca) (hereinafter sometimes referred to as “M”). This is because when such an oxide is applied, the above-described carbon monoxide shift reaction is more likely to proceed.
  • FIG. 2 is an explanatory view showing a mitigation mechanism of carbon monoxide (CO) adsorption poisoning.
  • a specific additive element (M) in the figure, neodymium (Nd) is shown
  • the noble metal such as rhodium (Rh) becomes a single metal having more electrons than in the case of a metal oxide. Electron repulsion effect occurs, and ⁇ bond from carbon monoxide (CO) becomes difficult.
  • a specific additive element (M) is not added, a ⁇ bond is easily formed with carbon monoxide (CO) (see FIG. 2B).
  • Rh-OM a specific additive element
  • Rh-OM when there is a bond
  • MO bond is stronger.
  • Rh—O bond is easily broken.
  • Rh the bonding electrons of the Rh—O bond are not in a shared state but are biased toward Rh, and Rh behaves more like a single metal. That is, Rh changes from a metal oxide state to a single metal state in which there are many electrons.
  • FIG. 3 is a graph showing the results of measuring the state of rhodium (Rh) supported on the oxide of the hydrogen generation catalyst of each example by X-ray photoelectron spectroscopy (XPS).
  • FIG. 3 shows the electronic state of the 3d orbital of rhodium (Rh), and compared with the oxide of the hydrogen generation catalyst of Comparative Example 1-3, lanthanum (La), zirconium (Zr), neodymium (Nd ), Samarium (Sm), europium (Eu), magnesium (Mg), and an oxide containing at least one additional element selected from the group consisting of calcium (Ca) is supported with a noble metal such as rhodium (Rh).
  • a noble metal such as rhodium (Rh).
  • FIG. 4 is a graph showing the production entropy per oxygen atom of each oxide.
  • the entropy of formation of each oxide before conversion per oxygen atom is quoted from the chemical handbook.
  • FIG. 4 shows that the larger the production entropy value per oxygen atom, the stronger the MO bond.
  • the lanthanum oxide (La 2 O 3 ), zirconium oxide (ZrO 2 ), and aluminum oxide (Al 2 O 3 ) having stronger MO bond than neodymium oxide (Nd 2 It can be seen that they are O 3 ), samarium oxide (Sm 2 O 3 ), europium oxide (Eu 2 O 3 ), magnesium oxide (MgO), and calcium oxide (CaO).
  • neodymium (Nd), samarium (Sm), europium (Eu), magnesium (Mg), calcium (Ca) can be applied as the additive element (M). You may apply these individually by 1 type or in combination of 2 or more types.
  • FIG. 5 is an explanatory diagram showing the interaction between a specific additive element (M) and carbon monoxide (CO).
  • M specific additive element
  • CO carbon monoxide
  • At least one additive element selected from the group consisting of lanthanum (La), zirconium (Zr), neodymium (Nd), samarium (Sm), europium (Eu), magnesium (Mg), and calcium (Ca)
  • the oxide containing is preferably a complex oxide.
  • the heat resistance of the zirconium oxide (ZrO 2 ) can be improved, so that the hydrogen generation performance after durability can be improved.
  • the oxygen storage / release material preferably contains an oxide containing iron (Fe).
  • An oxide containing iron (Fe) is an inexpensive oxygen storage / release material, which can improve the efficiency of the carbon monoxide shift reaction without causing a significant cost increase that increases the amount of noble metal used. And the amount of hydrogen generation can be increased.
  • the oxygen storage / release material may be composed of an oxide containing iron (Fe) and an oxide containing cerium (Ce) disposed in contact with the oxide.
  • an oxide containing iron (Fe) is disposed in contact with an oxide containing cerium (Ce)
  • oxygen in the cerium oxide (CeO 2 ) is easily released, and an oxidation containing lanthanum (La) and zirconium.
  • Coexisting with a material on which a noble metal is supported can improve the efficiency of the carbon monoxide shift reaction and increase the amount of hydrogen produced.
  • an oxide containing praseodymium (Pr) may be provided in contact with an oxide containing iron (Fe) instead of the oxide containing cerium (Ce).
  • the exhaust gas purifying catalyst of the present embodiment includes a first catalyst unit composed of a noble metal and an oxide containing lanthanum and zirconium supporting the noble metal, a second catalyst unit composed of an oxygen storage / release material, and a first catalyst. And a holding material that holds the unit and the second catalyst unit in a separated state.
  • the hydrogen generation catalyst having excellent hydrogen generation performance provides excellent purification performance for carbon monoxide (CO), nitrogen oxide (NOx), and the like.
  • hydrocarbon (HC) also exhibits excellent purification performance.
  • the pores formed by the holding material are each catalyst. Preferably it is smaller than or the same as the unit particle size.
  • the oxygen storage / release material in the second catalyst unit includes at least one selected from the group consisting of iron (Fe), cobalt (Co), and manganese (Mn). It is preferable that an oxide is included.
  • a noble metal such as rhodium (Rh) and a transition metal element such as iron (Fe), cobalt (Co), and manganese (Mn) coexist
  • the efficiency of the carbon monoxide shift reaction can be improved, and the amount of hydrogen produced Can be increased.
  • the oxygen storage / release material in the second catalyst unit is represented by the general formula (1).
  • La x M1 1-x M2O 3- ⁇ (1) La is lanthanum, M1 is at least one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M2 is iron (Fe), cobalt (Co) and manganese) It preferably contains a perovskite oxide represented by the formula (Mn): at least one selected from the group consisting of (Mn), wherein x satisfies 0 ⁇ x ⁇ 1, and ⁇ satisfies 0 ⁇ ⁇ ⁇ 1.
  • the rate-limiting step in the carbon monoxide shift reaction is adsorption of water (H 2 O) or carbon dioxide (CO 2 ).
  • H 2 O water
  • CO 2 carbon dioxide
  • a perovskite oxide having a precious metal such as rhodium (Rh) and a transition metal element such as iron (Fe), cobalt (Co), or manganese (Mn) as a constituent element coexists these become adsorption sites.
  • the efficiency of the carbon monoxide shift reaction can be improved, and the amount of hydrogen produced can be increased.
  • the presence of the perovskite type oxide can suppress deterioration due to durability.
  • the oxygen storage / release material contains an oxide containing cerium.
  • an oxide containing praseodymium (Pr) may be used instead of the oxide containing cerium (Ce).
  • the first catalyst unit is an oxide containing the specific additive element (M) described above, carbon monoxide (CO) adsorption poisoning in a carbon monoxide shift reaction that causes a reduction in hydrogen generation performance. Is alleviated and has excellent hydrogen generation performance.
  • M specific additive element
  • CO carbon monoxide
  • the oxygen storage / release material can be used even in a reducing atmosphere. Since oxygen is supplied, collapse of the perovskite structure due to the loss of oxygen in the structure is suppressed. As a result, the catalyst performance can be maintained. When oxides containing a transition metal element that is not a perovskite type are applied, these oxides may react with the holding material, resulting in a reduction in catalyst performance.
  • FIG. 6 is an explanatory view showing a monolith catalyst for exhaust gas purification according to the third embodiment.
  • FIG. 6A is a perspective view showing the monolith catalyst for exhaust gas purification of this embodiment.
  • FIG. 6 (B) is a front view schematically showing a portion surrounded by an encircling line B of the exhaust gas purifying monolith catalyst shown in FIG. 6 (A).
  • FIG. 6C is an enlarged view schematically showing a portion surrounded by an encircling line C of the exhaust gas purifying monolith catalyst shown in FIG. 6B.
  • FIG. 6 is an explanatory view showing a monolith catalyst for exhaust gas purification according to the third embodiment.
  • FIG. 6A is a perspective view showing the monolith catalyst for exhaust gas purification of this embodiment.
  • FIG. 6 (B) is a front view schematically showing a portion surrounded by an encircling line B of the exhaust gas purifying monolith catalyst shown in FIG. 6 (A).
  • FIG. 6C is an enlarged view schematically showing
  • FIG. 6 (D) is an enlarged view schematically showing a part surrounded by an encircling line D of the exhaust gas purifying monolith catalyst shown in FIG. 6 (C).
  • the exhaust gas purifying monolith catalyst 1 of the present embodiment has a catalyst layer 10 containing the exhaust gas purifying catalyst of the second embodiment described above. It is formed in the exhaust gas flow path 30a.
  • the undercoat layer 20 mentioned later is formed.
  • the exhaust gas-purifying catalyst 11 in the present embodiment includes a first catalyst unit 12, a second catalyst unit 14, a first catalyst unit 12, and a second catalyst.
  • a holding member 16 that holds the unit 14 in a separated state is contained.
  • the first catalyst unit 12 is composed of the above-described noble metal 12a and the oxide 12b containing lanthanum (La) and zirconium (Zr) supporting the noble metal 12a.
  • the second catalyst unit 14 is made of an oxygen storage / release material, and in the present embodiment, the cerium-containing oxide 14a and the predetermined perovskite oxidation described above disposed in contact with the cerium-containing oxide 14a. It consists of thing 14b.
  • the first catalyst unit and the second catalyst unit cooperate to function as a hydrogen generation catalyst.
  • a honeycomb carrier made of a heat-resistant material such as ceramics such as cordierite or a metal such as ferritic stainless steel can be applied.
  • the exhaust gas purifying monolithic catalyst preferably has an undercoat layer containing a heat-resistant inorganic oxide in the lowermost layer of the catalyst layer.
  • the monolith carrier with the exhaust gas purification catalyst to form a catalyst layer, the contact between the exhaust gas purification catalyst and the exhaust gas is improved, and the catalyst performance can be further improved.
  • the catalyst gathers at the corners of the honeycomb carrier, and the coating layer is partially thickened.
  • the coat layer is thick, the exhaust gas is difficult to diffuse, and the catalyst disposed at the corner is not used for purification of the exhaust gas.
  • Example 1-1 3 mass% lanthanum oxide (La 2 O 3 ) -5 mass% neodymium oxide (Nd 2 O 3 ) -zirconium oxide (ZrO 2 ) (hereinafter referred to as “lanthanum oxide (La 2 O 3 ) -neodymium oxide ( Nd 2 O 3 ) -zirconium oxide (ZrO 2 ) ”is sometimes simply referred to as“ ZrLaNd oxide ”), and a hexarhodium salt was impregnated by an incipient wetness method. Subsequently, it dried at 150 degreeC for 12 hours. Thereafter, it was calcined at 400 ° C. for 1 hour to obtain a first catalyst unit (powder).
  • concentration in the 1st catalyst unit of this example is 0.092 mass%.
  • Example 1-1 The first catalyst unit obtained in Example 1-1 was used as the hydrogen generation catalyst of this example.
  • Example 1-2 The second catalyst unit obtained in Example 1-1 was used as the hydrogen generation catalyst of this example.
  • Example 1-1 which belongs to the scope of the present invention, has a higher hydrogen production rate than the Comparative Examples 1-1 to 1-3 outside the present invention, and the carbon monoxide shift reaction proceeds efficiently. I understand that. Further, in Example 1-1, more hydrogen was produced than the sum of Comparative Example 1-1 and Comparative Example 1-2.
  • Example 2-1 ZrLaNd oxide was impregnated with a predetermined amount of rhodium (Rh). Next, it was dried and fired to obtain an Rh / ZrLaNd oxide powder. Next, pure water was added to the powder so that the solid content was 40% by mass, and the powder was pulverized to obtain a first catalyst unit-containing slurry. (2) A ZrCeNd oxide was impregnated with a predetermined amount of LaSrFeO 3 so that iron (Fe) was 5 mass%. Next, it was dried and fired to obtain a LaSrFeO 3 / ZrCeNd oxide powder.
  • this powder was charged with pure water so that the solid content was 40% by mass and pulverized to obtain a second catalyst unit-containing slurry.
  • a predetermined amount of the slurry obtained in the above (1) and (2) and boehmite were mixed to obtain a mixed slurry.
  • the mixed slurry was dried and calcined at 550 ° C. for 3 hours to obtain a powder containing the first catalyst unit and the second catalyst unit.
  • concentration in the 1st catalyst unit of this example is 0.092 mass%.
  • Example 2-2 ZrLaNd oxide was impregnated with a predetermined amount of rhodium (Rh). Next, it was dried and fired to obtain an Rh / ZrLaNd oxide powder. Next, pure water was added to the powder so that the solid content was 40% by mass, and the powder was pulverized to obtain a first catalyst unit-containing slurry.
  • a ZrCeNd oxide was impregnated with a predetermined amount of LaSrFeO 3 so that iron (Fe) was 5 mass%. Next, it was dried and fired to obtain a LaSrFeO 3 / ZrCeNd oxide powder.
  • this powder was charged with pure water so that the solid content was 40% by mass and pulverized to obtain a second catalyst unit-containing slurry.
  • a predetermined amount of the slurry obtained in the above (1) and (2) and boehmite were mixed to obtain a mixed slurry.
  • the mixed slurry was dried and fired at 550 ° C. for 3 hours to obtain a surface layer powder.
  • the powder, binder, nitric acid, and pure water obtained in the above (3) were put into a magnetic pot, and shaken and pulverized with alumina balls to obtain a surface layer slurry.
  • Aluminum oxide (Al 2 O 3 ), binder, nitric acid, and pure water were put into a magnetic pot and shaken and ground with alumina balls to obtain an inner layer slurry.
  • the inner layer slurry obtained in the above (5) was put into a ceramic honeycomb carrier, and excess inner layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. The coating amount at this time is 113 g / L.
  • the surface layer slurry obtained in the above (4) was put into the carrier obtained in the above (6), and the excess surface layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. Thereafter, it was calcined at 400 ° C.
  • the coating amount at this time was 124 g / L.
  • the rhodium (Rh) amount in the monolith catalyst for exhaust gas purification was 0.03 g / L.
  • Example 2-3 In Example 2-2, except that iron (Fe), which is an M2 element, is changed to cobalt (Co), which is an M2 element, the same operation as in Example 2-2 is repeated, and this example is for exhaust gas purification. A monolith catalyst was obtained.
  • Example 2-4 In Example 2-2, the same operation as in Example 2-2 was repeated except that iron (Fe) as the M2 element was changed to manganese (Mn) as the M2 element. A monolith catalyst was obtained.
  • the mixed slurry was dried and calcined at 550 ° C. for 3 hours to obtain a powder containing the first catalyst unit and the second catalyst unit.
  • concentration in the 1st catalyst unit of this example is 0.092 mass%.
  • Binder, nitric acid, and pure water were put into a magnetic pot and shaken and pulverized with alumina balls to obtain a surface layer slurry. Using this slurry, the average particle size of the exhaust gas-purifying catalyst powder was measured. The obtained results are shown in Table 2.
  • the powder, binder, nitric acid, and pure water obtained in the above (3) were put into a magnetic pot, and shaken and pulverized with alumina balls to obtain a surface layer slurry.
  • Aluminum oxide (Al 2 O 3 ), binder, nitric acid, and pure water were put into a magnetic pot and shaken and ground with alumina balls to obtain an inner layer slurry.
  • the inner layer slurry obtained in the above (5) was put into a ceramic honeycomb carrier, and excess inner layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. The coating amount at this time is 113 g / L.
  • the surface layer slurry obtained in the above (4) was put into the carrier obtained in the above (6), and the excess surface layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. Thereafter, it was calcined at 400 ° C. under air flow to obtain the monolith catalyst for exhaust gas purification of this example. The coating amount at this time was 124 g / L. Moreover, the rhodium (Rh) amount in the monolith catalyst for exhaust gas purification was 0.03 g / L.
  • this powder was charged with pure water so that the solid content was 40% by mass and pulverized to obtain a second catalyst unit-containing slurry.
  • a predetermined amount of the slurry obtained in the above (1) and (2) and boehmite were mixed to obtain a mixed slurry.
  • the mixed slurry was dried and fired at 550 ° C. for 3 hours to obtain a surface layer powder.
  • the powder, binder, nitric acid, and pure water obtained in the above (3) were put into a magnetic pot, and shaken and pulverized with alumina balls to obtain a surface layer slurry.
  • Aluminum oxide (Al 2 O 3 ), binder, nitric acid, and pure water were put into a magnetic pot and shaken and ground with alumina balls to obtain an inner layer slurry.
  • the inner layer slurry obtained in the above (5) was put into a ceramic honeycomb carrier, and excess inner layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. The coating amount at this time is 113 g / L.
  • the surface layer slurry obtained in the above (4) was put into the carrier obtained in the above (6), and the excess surface layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. Thereafter, it was calcined at 400 ° C.
  • the coating amount at this time was 124 g / L.
  • the rhodium (Rh) amount in the monolith catalyst for exhaust gas purification was 0.03 g / L. Table 2 shows a part of the specifications of each example.
  • FIG. 8 is an explanatory view showing the catalyst arrangement in the NOx emission amount measurement.
  • the three-way catalyst 2 is arranged directly below (manifold position) of an engine 100 of a vehicle manufactured by Nissan Motor Co., Ltd. having a displacement of 1.5 L, and is endured under the following conditions downstream thereof.
  • the exhaust gas purification monolithic catalyst 1 of Example 2-4, Comparative Example 2-2, and Comparative Example 2-3 is disposed and travels in NEDC mode (cold start). NOx emission in the monolith catalyst was measured. The obtained results are shown in Table 2.
  • ⁇ Durability conditions> A catalyst was placed behind the Nissan Motor Co., Ltd. V-6 cylinder 3.5L engine, the catalyst inlet temperature was adjusted to 840 ° C., and 250 hours durability treatment was performed in an exhaust gas atmosphere. The fuel used was unleaded gasoline.
  • Example 2-1 belonging to the scope of the present invention produces more hydrogen than Comparative Example 2-1 outside the present invention, and the carbon monoxide shift reaction proceeds efficiently. Further, from Table 2, Examples 2-2 to 2-4 belonging to the scope of the present invention have less NOx emissions than Comparative Examples 2-2 and 2-3 outside the present invention. I understand.
  • the configurations described in the hydrogen generation catalyst, the exhaust gas purification catalyst, and the exhaust gas purification monolith catalyst of each embodiment and each example described above are not limited to each embodiment or each example.
  • the configurations of the embodiments and examples can be combined with those other than the embodiments and examples described above, or the details of the configurations can be changed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

This hydrogen-generating catalyst comprises: a noble metal; an oxide which supports the noble metal, and which includes lanthanum (La) and zirconium (Zr); and an oxygen occlusion/release material. This exhaust gas purification catalyst includes: a first catalyst unit comprising a noble metal, and an oxide which supports the noble metal, and which includes lanthanum (La) and zirconium (Zr); a second catalyst unit comprising the oxygen occlusion/release material; and a holding material which holds the first catalyst unit and the second catalyst unit in a state of being separated from each other.

Description

水素生成用触媒及び排ガス浄化用触媒Hydrogen production catalyst and exhaust gas purification catalyst
 本発明は、水素生成用触媒、排ガス浄化用触媒及び排ガス浄化用モノリス触媒に関する。
 更に詳細には、本発明は、優れた水素生成性能を有する水素生成用触媒、これを用いた排ガス浄化用触媒及び排ガス浄化用モノリス触媒に関する。
The present invention relates to a hydrogen generation catalyst, an exhaust gas purification catalyst, and an exhaust gas purification monolith catalyst.
More specifically, the present invention relates to a hydrogen generation catalyst having excellent hydrogen generation performance, an exhaust gas purification catalyst using the same, and an exhaust gas purification monolith catalyst.
 従来、環境に対する負荷を低減するため、車両の内燃機関から排出される排ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などの有害物質を除去する、アルミニウム酸化物(Al)等の金属酸化物担体に白金(Pt)等の貴金属を担持した排ガス浄化用触媒が広く利用されている。
 また、内燃機関の排気系には、通常、排ガス中の有害物質を浄化するための排ガス浄化装置が設置されている。
Conventionally, in order to reduce the load on the environment, harmful substances such as hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) contained in the exhaust gas discharged from the internal combustion engine of the vehicle are removed. Exhaust gas purifying catalysts in which a noble metal such as platinum (Pt) is supported on a metal oxide carrier such as aluminum oxide (Al 2 O 3 ) are widely used.
Further, an exhaust gas purification device for purifying harmful substances in the exhaust gas is usually installed in the exhaust system of the internal combustion engine.
 排ガス浄化装置では、通常、貴金属を用いた排ガス浄化用触媒が使用されるが、貴金属は、高価であるため、コスト削減の観点からその使用量の低減が求められている。
 そして、貴金属の中でも、窒素酸化物(NOx)に対して高い浄化活性を示すロジウム(Rh)は、特に高価であるため、その使用量の低減が特に求められている。
In the exhaust gas purification apparatus, an exhaust gas purification catalyst using a noble metal is usually used. However, since the noble metal is expensive, a reduction in the amount of use is required from the viewpoint of cost reduction.
Among noble metals, rhodium (Rh), which exhibits high purification activity with respect to nitrogen oxides (NOx), is particularly expensive, and thus a reduction in the amount of use is particularly demanded.
 また、従来、触媒担体の主成分としてアルミニウム酸化物(Al)やセリウム(Ce)含有酸化物を用いた排ガス浄化用触媒では、ロジウム(Rh)がアルミニウム酸化物(Al)に固溶したり、ロジウム(Rh)がセリウム(Ce)含有酸化物に被覆されるなどの経時劣化が生じることが知られている。
 この場合、排ガス浄化用触媒の窒素酸化物(NOx)浄化性能が低下するので、その性能低下分を補うために、ロジウム(Rh)の使用量を予め多くする必要があった。
Conventionally, in exhaust gas purification catalysts using aluminum oxide (Al 2 O 3 ) or cerium (Ce) -containing oxide as the main component of the catalyst carrier, rhodium (Rh) is aluminum oxide (Al 2 O 3 ). It is known that deterioration with time occurs, such as solid solution in the solution or rhodium (Rh) is coated with a cerium (Ce) -containing oxide.
In this case, since the nitrogen oxide (NOx) purification performance of the exhaust gas purification catalyst is lowered, it is necessary to increase the amount of rhodium (Rh) used in advance in order to compensate for the reduced performance.
 これに対して、ランタン(La)やジルコニウム(Zr)を含む複合酸化物に、ロジウム(Rh)を担持させた炭化水素改質触媒が提案されている(特許文献1参照。)。 On the other hand, a hydrocarbon reforming catalyst in which rhodium (Rh) is supported on a composite oxide containing lanthanum (La) and zirconium (Zr) has been proposed (see Patent Document 1).
日本国特開2002-126522号公報Japanese Unexamined Patent Publication No. 2002-126522
 しかしながら、資源枯渇の懸念から、更なる貴金属の使用量の低減が求められており、特許文献1に記載された炭化水素改質触媒では、活性点の反応速度が十分ではなく、窒素酸化物(NOx)の浄化効率が大きく低下するという問題点があった。 However, due to concerns about resource depletion, further reduction in the amount of noble metal used is required. In the hydrocarbon reforming catalyst described in Patent Document 1, the reaction rate at the active site is not sufficient, and nitrogen oxides ( There has been a problem that the purification efficiency of NOx) is greatly reduced.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明は、優れた水素生成性能を有する水素生成用触媒、これを用いた排ガス浄化用触媒及び排ガス浄化用モノリス触媒を提供することを目的とする。 The present invention has been made in view of such problems of the conventional technology. An object of the present invention is to provide a hydrogen generation catalyst having excellent hydrogen generation performance, an exhaust gas purification catalyst and an exhaust gas purification monolith catalyst using the same.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた。その結果、ランタン(La)とジルコニウム(Zr)とを含む酸化物に貴金属を担持させ、更にこれと酸素吸蔵放出材とを共存させることにより、上記目的が達成できることを見出し、本発明を完成するに至った。 The inventors of the present invention made extensive studies to achieve the above object. As a result, the inventors have found that the above object can be achieved by supporting a noble metal on an oxide containing lanthanum (La) and zirconium (Zr), and further coexisting this with an oxygen storage / release material, thereby completing the present invention. It came to.
 すなわち、本発明の水素生成用触媒は、貴金属と、貴金属を担持する、ランタン(La)とジルコニウム(Zr)とを含む酸化物と、酸素吸蔵放出材とからなるものである。 That is, the hydrogen generation catalyst of the present invention comprises a noble metal, an oxide containing lanthanum (La) and zirconium (Zr) supporting the noble metal, and an oxygen storage / release material.
 また、本発明の排ガス浄化用触媒は、貴金属と貴金属を担持するランタン(La)及びジルコニウム(Zr)を含む酸化物とからなる第1の触媒ユニットと、酸素吸蔵放出材からなる第2の触媒ユニットと、第1の触媒ユニットと第2の触媒ユニットとを隔てた状態で保持する保持材と、を含有するものである。 The exhaust gas purifying catalyst of the present invention includes a first catalyst unit comprising a noble metal and an oxide containing lanthanum (La) and zirconium (Zr) supporting the noble metal, and a second catalyst comprising an oxygen storage / release material. A unit and a holding material that holds the first catalyst unit and the second catalyst unit in a separated state are contained.
 更に、本発明の排ガス浄化用モノリス触媒は、本発明の排ガス浄化用触媒を含有する触媒層が、モノリス担体の排ガス流路に形成されているものである。 Furthermore, the exhaust gas purification monolith catalyst of the present invention is such that a catalyst layer containing the exhaust gas purification catalyst of the present invention is formed in the exhaust gas flow path of the monolith carrier.
 本発明によれば、貴金属と、貴金属を担持する、ランタン(La)とジルコニウム(Zr)とを含む酸化物と、酸素吸蔵放出材とからなる構成とした。
 そのため、優れた水素生成性能を有する水素生成用触媒、これを用いた排ガス浄化用触媒及び排ガス浄化用モノリス触媒を提供することができる。
According to the present invention, it is configured to include a noble metal, an oxide containing lanthanum (La) and zirconium (Zr) supporting the noble metal, and an oxygen storage / release material.
Therefore, it is possible to provide a hydrogen generation catalyst having excellent hydrogen generation performance, an exhaust gas purification catalyst using the same, and an exhaust gas purification monolith catalyst.
図1は、水素生成用触媒における反応を示す説明図である。FIG. 1 is an explanatory diagram showing a reaction in a hydrogen generation catalyst. 図2は、一酸化炭素(CO)吸着被毒の緩和メカニズムを示す説明図である。FIG. 2 is an explanatory view showing a mitigation mechanism of carbon monoxide (CO) adsorption poisoning. 図3は、各例の水素生成用触媒における酸化物に担持されたロジウム(Rh)の状態をX線光電子分光法(XPS)で測定した結果を示すグラフである。FIG. 3 is a graph showing the results of measuring the state of rhodium (Rh) supported on an oxide in the hydrogen generation catalyst of each example by X-ray photoelectron spectroscopy (XPS). 図4は、各種酸化物の酸素1原子当たりの生成エントロピーを示すグラフである。FIG. 4 is a graph showing the production entropy per oxygen atom of various oxides. 図5は、特定の添加元素(M)と一酸化炭素(CO)との相互作用を示す説明図である。FIG. 5 is an explanatory diagram showing the interaction between a specific additive element (M) and carbon monoxide (CO). 図6は、本発明の第3の実施形態に係る排ガス浄化用モノリス触媒を示す説明図である。FIG. 6 is an explanatory view showing a monolith catalyst for exhaust gas purification according to the third embodiment of the present invention. 図7は、一酸化炭素シフト反応試験の測定プログラムを示す説明図である。FIG. 7 is an explanatory diagram showing a measurement program for a carbon monoxide shift reaction test. 図8は、NOx排出量測定における触媒配置を示す説明図である。FIG. 8 is an explanatory view showing the catalyst arrangement in the NOx emission amount measurement.
 以下、本発明の一実施形態に係る水素生成用触媒、これを用いた排ガス浄化用触媒及び排ガス浄化用モノリス触媒について詳細に説明する。 Hereinafter, a hydrogen generation catalyst according to an embodiment of the present invention, an exhaust gas purification catalyst using the same, and an exhaust gas purification monolith catalyst will be described in detail.
(第1の実施形態)
 まず、本発明の第1の実施形態に係る水素生成用触媒について詳細に説明する。
 本実施形態の水素生成用触媒は、貴金属と、貴金属を担持する、ランタン(La)とジルコニウム(Zr)とを含む酸化物と、酸素吸蔵放出材とからなるものである。
(First embodiment)
First, the hydrogen generation catalyst according to the first embodiment of the present invention will be described in detail.
The hydrogen generation catalyst of the present embodiment is composed of a noble metal, an oxide containing lanthanum (La) and zirconium (Zr) supporting the noble metal, and an oxygen storage / release material.
 このように、ランタン(La)とジルコニウム(Zr)とを含む酸化物に、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)などの貴金属を担持させ、これと酸素吸蔵放出材とを共存させることにより、優れた水素生成性能を有するものとなる。
 また、このような水素生成用触媒を排ガス浄化用触媒に適用すると、生成した水素(H)がNOxの還元剤として作用し、NOx浄化率を向上させることができる。
As described above, a noble metal such as platinum (Pt), rhodium (Rh), palladium (Pd) is supported on an oxide containing lanthanum (La) and zirconium (Zr), and the oxygen storage / release material coexists. By making it, it will have the outstanding hydrogen production performance.
Further, when such a hydrogen generation catalyst is applied to an exhaust gas purification catalyst, the generated hydrogen (H 2 ) acts as a NOx reducing agent, and the NOx purification rate can be improved.
 優れた水素生成性能を有するものとなる理由は、ランタン(La)とジルコニウム(Zr)とを含む酸化物に、ロジウム(Rh)などの貴金属が担持され、これと酸素吸蔵放出材とが共存すると、水素生成性能の低下の要因となる一酸化炭素シフト反応の反応生成物である二酸化炭素の形で生じる一酸化炭素(CO)吸着被毒が緩和されるためであると考えられる。 The reason for having excellent hydrogen generation performance is that a noble metal such as rhodium (Rh) is supported on an oxide containing lanthanum (La) and zirconium (Zr), and this and an oxygen storage / release material coexist. This is thought to be because carbon monoxide (CO) adsorption poisoning produced in the form of carbon dioxide, which is a reaction product of the carbon monoxide shift reaction, which causes a decrease in hydrogen production performance, is alleviated.
 図1は、水素生成用触媒における反応を示す説明図である。図1(A)は、酸素吸蔵放出材が共存する場合における反応を示す説明図であり、図1(B)は、酸素吸蔵放出材が共存しない場合における反応を示す説明図である。
 図1(B)に示すように、酸素吸蔵放出材が共存しない場合には、リッチ雰囲気の排ガス中に含まれる一酸化炭素(CO)と水(HO)とが貴金属12a表面において、一酸化炭素シフト反応を起こした場合、水素(H)と二酸化炭素(CO)とが生成する。しかしながら、二酸化炭素(CO)は、そのまま貴金属12a表面に残り易く、一酸化炭素シフト反応の進行が阻害される。
 一方、図1(A)に示すように、酸素吸蔵放出材が共存する場合には、リッチ雰囲気の排ガス中に含まれる一酸化炭素(CO)と水(HO)とが貴金属12a表面において、一酸化炭素シフト反応を起こした場合、水素(H)と二酸化炭素(CO)とが生成する。このとき、酸素吸蔵放出材14の欠陥サイトαが二酸化炭素(CO)の酸素(O)を吸蔵し、一酸化炭素(CO)吸着被毒が解除され、貴金属12a表面での一酸化炭素シフト反応が促進されることとなる。なお、図中の12bは、貴金属を担持する所定の酸化物を示す。
FIG. 1 is an explanatory diagram showing a reaction in a hydrogen generation catalyst. FIG. 1A is an explanatory diagram showing a reaction when the oxygen storage / release material coexists, and FIG. 1B is an explanatory diagram showing a reaction when the oxygen storage / release material does not coexist.
As shown in FIG. 1B, in the case where the oxygen storage / release material does not coexist, carbon monoxide (CO) and water (H 2 O) contained in the exhaust gas in the rich atmosphere are one on the surface of the noble metal 12a. When a carbon oxide shift reaction occurs, hydrogen (H 2 ) and carbon dioxide (CO 2 ) are generated. However, carbon dioxide (CO 2 ) tends to remain on the surface of the noble metal 12a as it is, and the progress of the carbon monoxide shift reaction is inhibited.
On the other hand, as shown in FIG. 1A, when the oxygen storage / release material coexists, carbon monoxide (CO) and water (H 2 O) contained in the exhaust gas in a rich atmosphere are present on the surface of the noble metal 12a. When a carbon monoxide shift reaction occurs, hydrogen (H 2 ) and carbon dioxide (CO 2 ) are generated. At this time, the defect site α of the oxygen storage / release material 14 stores oxygen (O) of carbon dioxide (CO 2 ), the carbon monoxide (CO) adsorption poisoning is released, and the carbon monoxide shift on the surface of the noble metal 12a. The reaction will be promoted. In addition, 12b in a figure shows the predetermined oxide which carry | supports a noble metal.
 ここで、例えば、ガソリンエンジンでは、通常、A/F14.6付近でフィードバック制御により燃料と空気の供給量を制御している。したがって、排ガスのA/Fは一定ではなく、わずかにリーン側であったり、リッチ側であったりする。リッチ側のときに一酸化炭素(CO)や炭化水素(HC)の排出量が増加するので、それと排ガス中の水(HO)とを反応させて、水素を増加させることができる。
 また、例えば、ディーゼルエンジンでは、リーンNOxトラップを作動させるために、リッチスパイクを実施することがあり、その場合においても、排ガス中の一酸化炭素(CO)や炭化水素(HC)の排出量が増加するので、それと排ガス中の水(HO)とを反応させて、水素を増加させることができる。
Here, for example, in a gasoline engine, the supply amount of fuel and air is normally controlled by feedback control around A / F 14.6. Therefore, the A / F of the exhaust gas is not constant and is slightly on the lean side or the rich side. Since the emission amount of carbon monoxide (CO) and hydrocarbon (HC) increases on the rich side, hydrogen can be increased by reacting it with water (H 2 O) in the exhaust gas.
In addition, for example, in a diesel engine, a rich spike may be performed in order to operate a lean NOx trap, and even in that case, emissions of carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas may be reduced. Since it increases, hydrogen can be increased by reacting it with water (H 2 O) in the exhaust gas.
 また、本実施形態の水素生成用触媒においては、貴金属がロジウム(Rh)であることが好ましい。
 種々の貴金属の中で、ロジウム(Rh)を適用すると、上述したような一酸化炭素シフト反応がより進行し易いためである。
In the hydrogen generation catalyst of the present embodiment, the noble metal is preferably rhodium (Rh).
This is because, when rhodium (Rh) is applied among various noble metals, the above-described carbon monoxide shift reaction is more likely to proceed.
 更に、本実施形態の水素生成用触媒においては、酸化物が、ランタン(La)と、ジルコニウム(Zr)と、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、マグネシウム(Mg)及びカルシウム(Ca)からなる群より選ばれる少なくとも1種の添加元素(以下「M」ということがある。)とを含むことが好ましい。
 このような酸化物を適用すると、上述したような一酸化炭素シフト反応がより進行し易いためである。
Furthermore, in the hydrogen generation catalyst of the present embodiment, the oxides are lanthanum (La), zirconium (Zr), neodymium (Nd), samarium (Sm), europium (Eu), magnesium (Mg), and calcium. It preferably contains at least one additive element selected from the group consisting of (Ca) (hereinafter sometimes referred to as “M”).
This is because when such an oxide is applied, the above-described carbon monoxide shift reaction is more likely to proceed.
 一酸化炭素シフト反応が進行し易くなる理由は、特定の添加元素(M)によりロジウム(Rh)などの貴金属の電子の結合エネルギーが低くなり、貴金属がより金属単体のように振る舞うことによって、水素生成性能の低下の要因となる一酸化炭素シフト反応における一酸化炭素(CO)吸着被毒が緩和されるためであると考えられる。 The reason why the carbon monoxide shift reaction is likely to proceed is that the specific additive element (M) lowers the binding energy of electrons of noble metals such as rhodium (Rh), and the noble metal behaves more like a simple metal, thereby causing hydrogen This is thought to be due to the mitigation of carbon monoxide (CO) adsorption poisoning in the carbon monoxide shift reaction, which causes a reduction in production performance.
 図2は、一酸化炭素(CO)吸着被毒の緩和メカニズムを示す説明図である。図2(A)に示すように、特定の添加元素(M)(図中ではネオジム(Nd)を示す。)によりロジウム(Rh)などの貴金属が金属酸化物の場合より電子が多い金属単体となり、電子反発の効果が発生し、一酸化炭素(CO)からのσ結合が困難になる。
 一方、特定の添加元素(M)が添加されていない場合には、一酸化炭素(CO)とσ結合を形成しやすい(図2(B)参照。)。
FIG. 2 is an explanatory view showing a mitigation mechanism of carbon monoxide (CO) adsorption poisoning. As shown in FIG. 2 (A), a specific additive element (M) (in the figure, neodymium (Nd) is shown), the noble metal such as rhodium (Rh) becomes a single metal having more electrons than in the case of a metal oxide. Electron repulsion effect occurs, and σ bond from carbon monoxide (CO) becomes difficult.
On the other hand, when a specific additive element (M) is not added, a σ bond is easily formed with carbon monoxide (CO) (see FIG. 2B).
 また、特定の添加元素(M)を添加することにより、貴金属の電子の結合エネルギーが低くなる理由は、例えば、Rh-O-Mという結合がある場合、Rh-O結合と、M-O結合を比較すると、M-O結合の方が強いためであると考えられる。
 これにより、Rh-O結合が切れやすくなる結果、Rh-O結合の結合電子は共有状態ではなく、Rhの方に偏って存在することとなり、Rhがより金属単体のように振る舞う。つまり、Rhが金属酸化物の状態から電子が多い状態である金属単体の状態へと変化する。
The reason why the bond energy of electrons of the noble metal is lowered by adding a specific additive element (M) is, for example, when there is a bond called Rh-OM, when Rh-O bond and MO bond are present. Is considered to be because the MO bond is stronger.
As a result, the Rh—O bond is easily broken. As a result, the bonding electrons of the Rh—O bond are not in a shared state but are biased toward Rh, and Rh behaves more like a single metal. That is, Rh changes from a metal oxide state to a single metal state in which there are many electrons.
 図3は、各例の水素生成用触媒の酸化物に担持されたロジウム(Rh)の状態をX線光電子分光法(XPS)で測定した結果を示すグラフである。
 図3から、ロジウム(Rh)の3d軌道の電子状態が分かり、比較例1-3の水素生成用触媒の酸化物と比較して、ランタン(La)と、ジルコニウム(Zr)と、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、マグネシウム(Mg)及びカルシウム(Ca)からなる群より選ばれる少なくとも1種の添加元素とを含む酸化物に、ロジウム(Rh)などの貴金属を担持された実施例1-1の水素生成用触媒の酸化物においては、ロジウム(Rh)が相対的に低酸化側にシフトし、金属単体の状態へ変化していることが分かる。
FIG. 3 is a graph showing the results of measuring the state of rhodium (Rh) supported on the oxide of the hydrogen generation catalyst of each example by X-ray photoelectron spectroscopy (XPS).
FIG. 3 shows the electronic state of the 3d orbital of rhodium (Rh), and compared with the oxide of the hydrogen generation catalyst of Comparative Example 1-3, lanthanum (La), zirconium (Zr), neodymium (Nd ), Samarium (Sm), europium (Eu), magnesium (Mg), and an oxide containing at least one additional element selected from the group consisting of calcium (Ca) is supported with a noble metal such as rhodium (Rh). In the oxide of the hydrogen generation catalyst of Example 1-1, it can be seen that rhodium (Rh) is relatively shifted to the low oxidation side and changed to a single metal state.
 図4は、各酸化物の酸素1原子当たりの生成エントロピーを示すグラフである。なお、酸素1原子当たりに換算する前の各酸化物の生成エントロピーは化学便覧から引用したものである。また、図4においては、酸素1原子当たりの生成エントロピー値が大きいほど、M-O結合が強いことを示す。
 図4より、従来のランタン酸化物(La)、ジルコニウム酸化物(ZrO)、アルミニウム酸化物(Al)よりもM-O結合が強いものは、ネオジム酸化物(Nd)、サマリウム酸化物(Sm)、ユウロピウム酸化物(Eu)、マグネシウム酸化物(MgO)、カルシウム酸化物(CaO)であることが分かる。
 したがって、添加元素(M)としては、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、マグネシウム(Mg)、カルシウム(Ca)を適用することができる。これらは、1種を単独で又は2種以上を組み合わせて適用してもよい。
FIG. 4 is a graph showing the production entropy per oxygen atom of each oxide. The entropy of formation of each oxide before conversion per oxygen atom is quoted from the chemical handbook. FIG. 4 shows that the larger the production entropy value per oxygen atom, the stronger the MO bond.
As shown in FIG. 4, the lanthanum oxide (La 2 O 3 ), zirconium oxide (ZrO 2 ), and aluminum oxide (Al 2 O 3 ) having stronger MO bond than neodymium oxide (Nd 2 It can be seen that they are O 3 ), samarium oxide (Sm 2 O 3 ), europium oxide (Eu 2 O 3 ), magnesium oxide (MgO), and calcium oxide (CaO).
Therefore, neodymium (Nd), samarium (Sm), europium (Eu), magnesium (Mg), calcium (Ca) can be applied as the additive element (M). You may apply these individually by 1 type or in combination of 2 or more types.
 また、図5は、特定の添加元素(M)と一酸化炭素(CO)との相互作用を示す説明図である。
 図5に示すように、特定の添加元素(M)は、d軌道に空軌道を有するため、一酸化炭素(CO)とσ結合することが可能であり、貴金属表面上の一酸化炭素(CO)吸着被毒を緩和することができる。
FIG. 5 is an explanatory diagram showing the interaction between a specific additive element (M) and carbon monoxide (CO).
As shown in FIG. 5, since the specific additive element (M) has an empty orbital in the d orbital, it can be σ-bonded with carbon monoxide (CO), and carbon monoxide (CO on the noble metal surface). ) Can reduce adsorption poisoning.
 また、ランタン(La)と、ジルコニウム(Zr)と、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、マグネシウム(Mg)及びカルシウム(Ca)からなる群より選ばれる少なくとも1種の添加元素とを含む酸化物は、複合酸化物であることが好ましい。
 一部複合化していると、ジルコニウム酸化物(ZrO)の耐熱性を向上させることができるので、耐久後の水素生成性能を向上させることができる。
Further, at least one additive element selected from the group consisting of lanthanum (La), zirconium (Zr), neodymium (Nd), samarium (Sm), europium (Eu), magnesium (Mg), and calcium (Ca) The oxide containing is preferably a complex oxide.
When partly composited, the heat resistance of the zirconium oxide (ZrO 2 ) can be improved, so that the hydrogen generation performance after durability can be improved.
 また、本実施形態の水素生成用触媒においては、酸素吸蔵放出材が鉄(Fe)を含む酸化物を含むことが好ましい。
 鉄(Fe)を含む酸化物は、安価な酸素吸蔵放出材であり、貴金属の使用量を増加するような大幅なコスト増を生じさせることなく、一酸化炭素シフト反応の効率を向上させることができ、水素生成量を増加させることができる。
In the hydrogen generation catalyst of the present embodiment, the oxygen storage / release material preferably contains an oxide containing iron (Fe).
An oxide containing iron (Fe) is an inexpensive oxygen storage / release material, which can improve the efficiency of the carbon monoxide shift reaction without causing a significant cost increase that increases the amount of noble metal used. And the amount of hydrogen generation can be increased.
 更に、本実施形態の水素生成用触媒においては、酸素吸蔵放出材が鉄(Fe)を含む酸化物と酸化物と接触して配設されるセリウム(Ce)を含む酸化物とからなることが好ましい。
 セリウム(Ce)を含む酸化物に鉄(Fe)を含む酸化物を接触して配設させると、セリウム酸化物(CeO)の酸素が抜けやすくなり、ランタン(La)とジルコニウムとを含む酸化物に貴金属が担持されたものと共存させると、一酸化炭素シフト反応の効率を向上させることができ、水素生成量を増加させることができる。なお、セリウム(Ce)を含む酸化物に代えて、プラセオジム(Pr)を含む酸化物を鉄(Fe)を含む酸化物と接触させて配設してもよい。
Further, in the hydrogen generation catalyst of the present embodiment, the oxygen storage / release material may be composed of an oxide containing iron (Fe) and an oxide containing cerium (Ce) disposed in contact with the oxide. preferable.
When an oxide containing iron (Fe) is disposed in contact with an oxide containing cerium (Ce), oxygen in the cerium oxide (CeO 2 ) is easily released, and an oxidation containing lanthanum (La) and zirconium. Coexisting with a material on which a noble metal is supported can improve the efficiency of the carbon monoxide shift reaction and increase the amount of hydrogen produced. Note that an oxide containing praseodymium (Pr) may be provided in contact with an oxide containing iron (Fe) instead of the oxide containing cerium (Ce).
(第2の実施形態)
 次に、本発明の第2の実施形態に係る排ガス浄化用触媒について詳細に説明する。
 本実施形態の排ガス浄化用触媒は、貴金属と貴金属を担持するランタン及びジルコニウムを含む酸化物とからなる第1の触媒ユニットと、酸素吸蔵放出材からなる第2の触媒ユニットと、第1の触媒ユニットと第2の触媒ユニットとを隔てた状態で保持する保持材と、を含有するものである。
(Second Embodiment)
Next, the exhaust gas purifying catalyst according to the second embodiment of the present invention will be described in detail.
The exhaust gas purifying catalyst of the present embodiment includes a first catalyst unit composed of a noble metal and an oxide containing lanthanum and zirconium supporting the noble metal, a second catalyst unit composed of an oxygen storage / release material, and a first catalyst. And a holding material that holds the unit and the second catalyst unit in a separated state.
 このような構成とすると、上述したように、水素生成性能に優れた水素生成用触媒によって、一酸化炭素(CO)や窒素酸化物(NOx)などの浄化性能が優れたものとなる。また、炭化水素(HC)についても優れた浄化性能を示す。 With such a configuration, as described above, the hydrogen generation catalyst having excellent hydrogen generation performance provides excellent purification performance for carbon monoxide (CO), nitrogen oxide (NOx), and the like. In addition, hydrocarbon (HC) also exhibits excellent purification performance.
 所定の第1の触媒ユニットと第2の触媒ユニットとが隔てられた状態で含有されると、熱などによる凝集によって劣化が進行することがない。一方、第1の触媒ユニットと第2の触媒ユニットにおける後述するペロブスカイト型酸化物とが接触すると、第1触媒ユニットにおける貴金属を担持する酸化物の凝集が促進され、その結果、貴金属の凝集が促進される。 When the predetermined first catalyst unit and the second catalyst unit are contained in a separated state, deterioration does not proceed due to aggregation due to heat or the like. On the other hand, when the perovskite oxide described later in the first catalyst unit and the second catalyst unit comes into contact with each other, aggregation of the oxide supporting the noble metal in the first catalyst unit is promoted, and as a result, aggregation of the noble metal is promoted. Is done.
 なお、特に限定されるものではないが、第1の触媒ユニットと第2の触媒ユニットとをより確実に隔てた状態で保持することができるという観点から、保持材が形成する細孔が各触媒ユニットの粒径より小さいか又は同じであることが好ましい。 Although not particularly limited, from the viewpoint that the first catalyst unit and the second catalyst unit can be held in a more reliably separated state, the pores formed by the holding material are each catalyst. Preferably it is smaller than or the same as the unit particle size.
 また、本実施形態の排ガス浄化用触媒においては、第2の触媒ユニットにおける酸素吸蔵放出材が、鉄(Fe)、コバルト(Co)及びマンガン(Mn)からなる群より選ばれる少なくとも1種を含む酸化物を含むことが好ましい。
 例えば、ロジウム(Rh)などの貴金属と鉄(Fe)、コバルト(Co)、マンガン(Mn)などの遷移金属元素が共存すると、一酸化炭素シフト反応の効率を向上させることができ、水素生成量を増加させることができる。
In the exhaust gas purifying catalyst of the present embodiment, the oxygen storage / release material in the second catalyst unit includes at least one selected from the group consisting of iron (Fe), cobalt (Co), and manganese (Mn). It is preferable that an oxide is included.
For example, when a noble metal such as rhodium (Rh) and a transition metal element such as iron (Fe), cobalt (Co), and manganese (Mn) coexist, the efficiency of the carbon monoxide shift reaction can be improved, and the amount of hydrogen produced Can be increased.
 更に、本実施形態の排ガス浄化用触媒においては、第2の触媒ユニットにおける酸素吸蔵放出材が、一般式(1)
 LaM11-xM2O3-δ・・・(1)
(式(1)中、Laはランタン、M1はバリウム(Ba)、ストロンチウム(Sr)及びカルシウム(Ca)からなる群より選ばれる少なくとも1種、M2は鉄(Fe)、コバルト(Co)及びマンガン(Mn)からなる群より選ばれる少なくとも1種を示し、xは0<x≦1、δは0≦δ≦1を満足する。)で表されるペロブスカイト型酸化物を含むことが好ましい。
 一酸化炭素シフト反応における律速段階は、水(HO)や二酸化炭素(CO)の吸着である。例えば、ロジウム(Rh)などの貴金属と鉄(Fe)、コバルト(Co)、マンガン(Mn)などの遷移金属元素を構成要素とするペロブスカイト型酸化物が共存すると、これらが吸着サイトとなるため、一酸化炭素シフト反応の効率を向上させることができ、水素生成量を増加させることができる。また、ペロブスカイト型酸化物を存在させることにより、耐久に伴う劣化を抑制することもできる。
Furthermore, in the exhaust gas purifying catalyst of the present embodiment, the oxygen storage / release material in the second catalyst unit is represented by the general formula (1).
La x M1 1-x M2O 3-δ (1)
(In formula (1), La is lanthanum, M1 is at least one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M2 is iron (Fe), cobalt (Co) and manganese) It preferably contains a perovskite oxide represented by the formula (Mn): at least one selected from the group consisting of (Mn), wherein x satisfies 0 <x ≦ 1, and δ satisfies 0 ≦ δ ≦ 1.
The rate-limiting step in the carbon monoxide shift reaction is adsorption of water (H 2 O) or carbon dioxide (CO 2 ). For example, when a perovskite oxide having a precious metal such as rhodium (Rh) and a transition metal element such as iron (Fe), cobalt (Co), or manganese (Mn) as a constituent element coexists, these become adsorption sites. The efficiency of the carbon monoxide shift reaction can be improved, and the amount of hydrogen produced can be increased. In addition, the presence of the perovskite type oxide can suppress deterioration due to durability.
 また、本実施形態の排ガス浄化用触媒においては、酸素吸蔵放出材が、セリウムを含む酸化物を含むことが好ましい。なお、セリウム(Ce)を含む酸化物に代えて、プラセオジム(Pr)を含む酸化物を適用してもよい。
 還元雰囲気下でも、酸素吸蔵放出材から酸素が供給されるので、構造中の酸素が抜けることによるペロブスカイト構造の崩壊が抑制される。その結果、触媒性能を維持することができる。
In the exhaust gas purifying catalyst of the present embodiment, it is preferable that the oxygen storage / release material contains an oxide containing cerium. Note that an oxide containing praseodymium (Pr) may be used instead of the oxide containing cerium (Ce).
Even under a reducing atmosphere, since oxygen is supplied from the oxygen storage / release material, the collapse of the perovskite structure due to the loss of oxygen in the structure is suppressed. As a result, the catalyst performance can be maintained.
 なお、第1の触媒ユニットが、上述した特定の添加元素(M)を含む酸化物であると、水素生成性能の低下の要因となる一酸化炭素シフト反応における一酸化炭素(CO)吸着被毒が緩和され、優れた水素生成性能を有するものとなる。 When the first catalyst unit is an oxide containing the specific additive element (M) described above, carbon monoxide (CO) adsorption poisoning in a carbon monoxide shift reaction that causes a reduction in hydrogen generation performance. Is alleviated and has excellent hydrogen generation performance.
 また、第2の触媒ユニットが、リッチ雰囲気下において酸素を放出する酸素吸蔵放出材とペロブスカイト型酸化物とが接触して配設されたものであると、還元雰囲気下でも、酸素吸蔵放出材から酸素が供給されるので、構造中の酸素が抜けることによるペロブスカイト構造の崩壊が抑制される。その結果、触媒性能を維持することができる。ペロブスカイト型でない遷移金属元素を含む酸化物を適用すると、これらの酸化物は、保持材と反応して、触媒性能が低下することがある。 In addition, when the second catalyst unit is arranged in contact with the oxygen storage / release material that releases oxygen in a rich atmosphere and the perovskite oxide, the oxygen storage / release material can be used even in a reducing atmosphere. Since oxygen is supplied, collapse of the perovskite structure due to the loss of oxygen in the structure is suppressed. As a result, the catalyst performance can be maintained. When oxides containing a transition metal element that is not a perovskite type are applied, these oxides may react with the holding material, resulting in a reduction in catalyst performance.
(第3の実施形態)
 次に、本発明の第3の実施形態に係る排ガス浄化用モノリス触媒について図面を参照しながら詳細に説明する。
 図6は、第3の実施形態に係る排ガス浄化用モノリス触媒を示す説明図である。図6(A)は、本実施形態の排ガス浄化用モノリス触媒を示す斜視図である。図6(B)は、図6(A)に示す排ガス浄化用モノリス触媒の包囲線Bで囲まれた部位を模式的に示す正面図である。図6(C)は、図6(B)に示す排ガス浄化用モノリス触媒の包囲線Cで囲まれた部位を模式的に示す拡大図である。図6(D)は、図6(C)に示す排ガス浄化用モノリス触媒の包囲線Dで囲まれた部位を模式的に示す拡大図である。図6(A)~(C)に示すように、本実施形態の排ガス浄化用モノリス触媒1は、上述した第2の実施形態の排ガス浄化用触媒を含有する触媒層10が、モノリス担体30の排ガス流路30aに形成されているものである。また、本実施形態においては、後述するアンダーコート層20が形成されている。そして、図6(D)に示すように、本実施形態における排ガス浄化用触媒11は、第1の触媒ユニット12と、第2の触媒ユニット14と、第1の触媒ユニット12と第2の触媒ユニット14とを隔てた状態で保持する保持材16とを含有するものである。
 なお、第1の触媒ユニット12は、上述した貴金属12aと貴金属12aを担持するランタン(La)とジルコニウム(Zr)とを含む酸化物12bとからなる。
 また、第2の触媒ユニット14は、酸素吸蔵放出材からなり、本実施形態においては、セリウム含有酸化物14a、及びセリウム含有酸化物14aと接触して配設される上述した所定のペロブスカイト型酸化物14bからなる。そして、第1の触媒ユニットと第2の触媒ユニットとが協働して、水素生成用触媒として機能する。
 更に、モノリス担体30は、コーディエライトなどのセラミックスやフェライト系ステンレスなどの金属等の耐熱性材料から成るハニカム担体などを適用することができる。
(Third embodiment)
Next, an exhaust gas purifying monolith catalyst according to a third embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 6 is an explanatory view showing a monolith catalyst for exhaust gas purification according to the third embodiment. FIG. 6A is a perspective view showing the monolith catalyst for exhaust gas purification of this embodiment. FIG. 6 (B) is a front view schematically showing a portion surrounded by an encircling line B of the exhaust gas purifying monolith catalyst shown in FIG. 6 (A). FIG. 6C is an enlarged view schematically showing a portion surrounded by an encircling line C of the exhaust gas purifying monolith catalyst shown in FIG. 6B. FIG. 6 (D) is an enlarged view schematically showing a part surrounded by an encircling line D of the exhaust gas purifying monolith catalyst shown in FIG. 6 (C). As shown in FIGS. 6A to 6C, the exhaust gas purifying monolith catalyst 1 of the present embodiment has a catalyst layer 10 containing the exhaust gas purifying catalyst of the second embodiment described above. It is formed in the exhaust gas flow path 30a. Moreover, in this embodiment, the undercoat layer 20 mentioned later is formed. As shown in FIG. 6D, the exhaust gas-purifying catalyst 11 in the present embodiment includes a first catalyst unit 12, a second catalyst unit 14, a first catalyst unit 12, and a second catalyst. A holding member 16 that holds the unit 14 in a separated state is contained.
The first catalyst unit 12 is composed of the above-described noble metal 12a and the oxide 12b containing lanthanum (La) and zirconium (Zr) supporting the noble metal 12a.
The second catalyst unit 14 is made of an oxygen storage / release material, and in the present embodiment, the cerium-containing oxide 14a and the predetermined perovskite oxidation described above disposed in contact with the cerium-containing oxide 14a. It consists of thing 14b. The first catalyst unit and the second catalyst unit cooperate to function as a hydrogen generation catalyst.
Furthermore, as the monolithic carrier 30, a honeycomb carrier made of a heat-resistant material such as ceramics such as cordierite or a metal such as ferritic stainless steel can be applied.
 このような構成とすると、排ガス浄化用触媒と排ガスとの接触性が向上し、触媒性能の更なる向上が可能となる。 With such a configuration, the contact between the exhaust gas purifying catalyst and the exhaust gas is improved, and the catalyst performance can be further improved.
 また、図6(C)に示すように、排ガス浄化用モノリス触媒においては、触媒層の最下層に、耐熱性無機酸化物を含むアンダーコート層を有することが好ましい。
 上述したように、モノリス担体に排ガス浄化用触媒をコートして触媒層を形成することにより、排ガス浄化用触媒と排ガスとの接触性は向上し、触媒性能の更なる向上が可能となる。しかしながら、モノリス担体に排ガス浄化用触媒をコートするとハニカム担体の角に触媒が集まり、部分的にコート層が厚くなる。コート層が厚くなると排ガスが拡散しづらくなるため、角に配設された触媒は排ガスの浄化に使用されなくなる。これを防ぐために、アンダーコート層を設け、ハニカム担体の角を無くすことにより、排ガス浄化用触媒と排ガスとの接触性が低い部分に配設される排ガス浄化用触媒を少なくすることができる。
As shown in FIG. 6C, the exhaust gas purifying monolithic catalyst preferably has an undercoat layer containing a heat-resistant inorganic oxide in the lowermost layer of the catalyst layer.
As described above, by coating the monolith carrier with the exhaust gas purification catalyst to form a catalyst layer, the contact between the exhaust gas purification catalyst and the exhaust gas is improved, and the catalyst performance can be further improved. However, when the exhaust gas purification catalyst is coated on the monolithic carrier, the catalyst gathers at the corners of the honeycomb carrier, and the coating layer is partially thickened. When the coat layer is thick, the exhaust gas is difficult to diffuse, and the catalyst disposed at the corner is not used for purification of the exhaust gas. In order to prevent this, by providing an undercoat layer and eliminating the corners of the honeycomb carrier, it is possible to reduce the exhaust gas purifying catalyst disposed in the portion where the contact between the exhaust gas purifying catalyst and the exhaust gas is low.
 以下、本発明を実施例により更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
(実施例1-1)
 3質量%ランタン酸化物(La)-5質量%ネオジム酸化物(Nd)-ジルコニウム酸化物(ZrO)(以下「ランタン酸化物(La)-ネオジム酸化物(Nd)-ジルコニウム酸化物(ZrO)」を単に「ZrLaNd酸化物」ということがある。)に対して、ヘキサロジウム塩をインシピエントウェットネス法により含浸させた。次いで、150℃で12時間乾燥した。しかる後、400℃で1時間焼成して、第1の触媒ユニット(粉末)を得た。なお、本例の第1の触媒ユニットにおけるロジウム(Rh)担持濃度は、0.092質量%である。
 次いで、20質量%セリウム酸化物(CeO)-10質量%ネオジム酸化物(Nd)-ジルコニウム酸化物(ZrO)(以下「セリウム酸化物(CeO)-ネオジム酸化物(Nd)-ジルコニウム酸化物(ZrO)」を単に「ZrCeNd酸化物」ということがある。)に対して、ランタン(La)塩、ストロンチウム(Sr)塩及び鉄(Fe)塩を溶解した水溶液を含浸させた。次いで、150℃で12時間乾燥した。しかる後、400℃で2時間焼成し、更に700℃で5時間焼成して、第2の触媒ユニット(粉末)を得た。
 しかる後、第1の触媒ユニットと第2の触媒ユニットとを重量比で第1の触媒ユニット:第2の触媒ユニット=5:2となるように秤量して、乳鉢で5分間混合して、本例の水素生成用触媒を得た。
Example 1-1
3 mass% lanthanum oxide (La 2 O 3 ) -5 mass% neodymium oxide (Nd 2 O 3 ) -zirconium oxide (ZrO 2 ) (hereinafter referred to as “lanthanum oxide (La 2 O 3 ) -neodymium oxide ( Nd 2 O 3 ) -zirconium oxide (ZrO 2 ) ”is sometimes simply referred to as“ ZrLaNd oxide ”), and a hexarhodium salt was impregnated by an incipient wetness method. Subsequently, it dried at 150 degreeC for 12 hours. Thereafter, it was calcined at 400 ° C. for 1 hour to obtain a first catalyst unit (powder). In addition, the rhodium (Rh) carrying | support density | concentration in the 1st catalyst unit of this example is 0.092 mass%.
Next, 20 mass% cerium oxide (CeO 2 ) —10 mass% neodymium oxide (Nd 2 O 3 ) —zirconium oxide (ZrO 2 ) (hereinafter “cerium oxide (CeO 2 ) —neodymium oxide (Nd 2 )” O 3 ) -zirconium oxide (ZrO 2 ) ”may be simply referred to as“ ZrCeNd oxide ”.) An aqueous solution in which a lanthanum (La) salt, a strontium (Sr) salt, and an iron (Fe) salt are dissolved Was impregnated. Subsequently, it dried at 150 degreeC for 12 hours. Thereafter, it was calcined at 400 ° C. for 2 hours and further calcined at 700 ° C. for 5 hours to obtain a second catalyst unit (powder).
Thereafter, the first catalyst unit and the second catalyst unit are weighed so that the weight ratio of the first catalyst unit: the second catalyst unit = 5: 2 and mixed in a mortar for 5 minutes, The hydrogen generation catalyst of this example was obtained.
(比較例1-1)
 実施例1-1で得られた第1の触媒ユニットを本例の水素生成用触媒とした。
(Comparative Example 1-1)
The first catalyst unit obtained in Example 1-1 was used as the hydrogen generation catalyst of this example.
(比較例1-2)
 実施例1-1で得られた第2の触媒ユニットを本例の水素生成用触媒とした。
(Comparative Example 1-2)
The second catalyst unit obtained in Example 1-1 was used as the hydrogen generation catalyst of this example.
(比較例1-3)
 3質量%ランタン酸化物(La)-ジルコニウム酸化物(ZrO)(以下「ランタン酸化物(La)-ジルコニウム酸化物(ZrO)」を単に「ZrLa酸化物」ということがある。)に対して、ヘキサロジウム塩をインシピエントウェットネス法により含浸させた。次いで、150℃で12時間乾燥した。しかる後、400℃で1時間焼成して、第1の触媒ユニット(粉末)を得た。なお、本例の第1の触媒ユニットにおけるロジウム(Rh)担持濃度は、0.092質量%である。
 本例で得られた第1の触媒ユニットを本例の水素生成用触媒とした。
(Comparative Example 1-3)
3 mass% lanthanum oxide (La 2 O 3 ) -zirconium oxide (ZrO 2 ) (hereinafter “lanthanum oxide (La 2 O 3 ) -zirconium oxide (ZrO 2 )” is simply referred to as “ZrLa oxide”. ) Was impregnated with an incipient wetness method. Subsequently, it dried at 150 degreeC for 12 hours. Thereafter, it was calcined at 400 ° C. for 1 hour to obtain a first catalyst unit (powder). In addition, the rhodium (Rh) carrying | support density | concentration in the 1st catalyst unit of this example is 0.092 mass%.
The first catalyst unit obtained in this example was used as the hydrogen generation catalyst of this example.
[性能評価]
(水素生成性能試験)
 上記各例の水素生成用触媒(粉末)を用いて、下記条件下、一酸化炭素シフト反応試験を行った。得られた結果を表1に示す。
[Performance evaluation]
(Hydrogen production performance test)
Using the hydrogen generation catalyst (powder) in each of the above examples, a carbon monoxide shift reaction test was performed under the following conditions. The obtained results are shown in Table 1.
(試験条件)
・試料量:0.2g
・測定条件:図7に示す測定プログラムに従った。
・昇温還元測定:四重極質量分析計にてガス成分を検出した。
・検出フラグメント:m/z=2、18、28、44
・測定温度:400℃
・測定雰囲気:2.5体積%CO、HO/He(室温にてバブリング導入)
・流量:100ml/min
(Test conditions)
-Sample amount: 0.2g
Measurement conditions: According to the measurement program shown in FIG.
-Temperature reduction measurement: Gas components were detected with a quadrupole mass spectrometer.
Detection fragment: m / z = 2, 18, 28, 44
・ Measurement temperature: 400 ℃
Measurement atmosphere: 2.5% by volume CO, H 2 O / He (introducing bubbling at room temperature)
・ Flow rate: 100ml / min
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の範囲に属する実施例1-1は、本発明外の比較例1-1~比較例1-3より水素生成速度が速く、一酸化炭素シフト反応が効率良く進行していることが分かる。また、実施例1-1は、比較例1-1と比較例1-2とを足し合わせた以上の水素が生成した。 From Table 1, Example 1-1, which belongs to the scope of the present invention, has a higher hydrogen production rate than the Comparative Examples 1-1 to 1-3 outside the present invention, and the carbon monoxide shift reaction proceeds efficiently. I understand that. Further, in Example 1-1, more hydrogen was produced than the sum of Comparative Example 1-1 and Comparative Example 1-2.
(実施例2-1)
(1)ZrLaNd酸化物に所定量のロジウム(Rh)を含浸させた。次いで、乾燥させ、焼成して、Rh/ZrLaNd酸化物粉末を得た。次に、この粉末を固形分が40質量%となるように純水を投入し、粉砕して、第1の触媒ユニット含有スラリーを得た。
(2)また、ZrCeNd酸化物に鉄(Fe)が5質量%となるように所定量のLaSrFeOを含浸させた。次いで、乾燥させ、焼成して、LaSrFeO/ZrCeNd酸化物粉末を得た。次に、この粉末を固形分が40質量%となるように純水を投入し、粉砕して、第2の触媒ユニット含有スラリーを得た。
(3)上記(1)、(2)で得られたスラリーとベーマイトを所定量混合して混合スラリーを得た。次に、混合スラリーを乾燥し、550℃で3時間焼成して、第1の触媒ユニット及び第2の触媒ユニットを含有する粉末を得た。なお、本例の第1の触媒ユニットにおけるロジウム(Rh)担持濃度は、0.092質量%である。
Example 2-1
(1) ZrLaNd oxide was impregnated with a predetermined amount of rhodium (Rh). Next, it was dried and fired to obtain an Rh / ZrLaNd oxide powder. Next, pure water was added to the powder so that the solid content was 40% by mass, and the powder was pulverized to obtain a first catalyst unit-containing slurry.
(2) A ZrCeNd oxide was impregnated with a predetermined amount of LaSrFeO 3 so that iron (Fe) was 5 mass%. Next, it was dried and fired to obtain a LaSrFeO 3 / ZrCeNd oxide powder. Next, this powder was charged with pure water so that the solid content was 40% by mass and pulverized to obtain a second catalyst unit-containing slurry.
(3) A predetermined amount of the slurry obtained in the above (1) and (2) and boehmite were mixed to obtain a mixed slurry. Next, the mixed slurry was dried and calcined at 550 ° C. for 3 hours to obtain a powder containing the first catalyst unit and the second catalyst unit. In addition, the rhodium (Rh) carrying | support density | concentration in the 1st catalyst unit of this example is 0.092 mass%.
(実施例2-2)
(1)ZrLaNd酸化物に所定量のロジウム(Rh)を含浸させた。次いで、乾燥させ、焼成して、Rh/ZrLaNd酸化物粉末を得た。次に、この粉末を固形分が40質量%となるように純水を投入し、粉砕して、第1の触媒ユニット含有スラリーを得た。
(2)また、ZrCeNd酸化物に鉄(Fe)が5質量%となるように所定量のLaSrFeOを含浸させた。次いで、乾燥させ、焼成して、LaSrFeO/ZrCeNd酸化物粉末を得た。次に、この粉末を固形分が40質量%となるように純水を投入し、粉砕して、第2の触媒ユニット含有スラリーを得た。
(3)上記(1)、(2)で得られたスラリーとベーマイトを所定量混合して混合スラリーを得た。次に、混合スラリーを乾燥し、550℃で3時間焼成して、表層粉末を得た。
(4)上記(3)で得られた粉末、バインダー、硝酸、純水を磁性ポットに投入し、アルミナボールと共に振とう粉砕して、表層スラリーを得た。
(5)アルミニウム酸化物(Al)、バインダー、硝酸、純水を磁性ポットに投入し、アルミナボールと共に振とう粉砕して、内層スラリーを得た。
(6)上記(5)で得られた内層スラリーをセラミック製のハニカム担体に投入し、空気流にて余剰の内層スラリーを除去した。次いで、120℃で乾燥した。このときのコート量は、113g/Lである。
(7)上記(4)で得られた表層スラリーを上記(6)で得られた担体に投入し、空気流にて余剰の表層スラリーを除去した。次いで、120℃で乾燥した。しかる後、空気流通下、400℃で焼成して、本例の排ガス浄化用モノリス触媒を得た。このときのコート量は、124g/Lであった。また、排ガス浄化用モノリス触媒中のロジウム(Rh)量は0.03g/Lであった。
(Example 2-2)
(1) ZrLaNd oxide was impregnated with a predetermined amount of rhodium (Rh). Next, it was dried and fired to obtain an Rh / ZrLaNd oxide powder. Next, pure water was added to the powder so that the solid content was 40% by mass, and the powder was pulverized to obtain a first catalyst unit-containing slurry.
(2) A ZrCeNd oxide was impregnated with a predetermined amount of LaSrFeO 3 so that iron (Fe) was 5 mass%. Next, it was dried and fired to obtain a LaSrFeO 3 / ZrCeNd oxide powder. Next, this powder was charged with pure water so that the solid content was 40% by mass and pulverized to obtain a second catalyst unit-containing slurry.
(3) A predetermined amount of the slurry obtained in the above (1) and (2) and boehmite were mixed to obtain a mixed slurry. Next, the mixed slurry was dried and fired at 550 ° C. for 3 hours to obtain a surface layer powder.
(4) The powder, binder, nitric acid, and pure water obtained in the above (3) were put into a magnetic pot, and shaken and pulverized with alumina balls to obtain a surface layer slurry.
(5) Aluminum oxide (Al 2 O 3 ), binder, nitric acid, and pure water were put into a magnetic pot and shaken and ground with alumina balls to obtain an inner layer slurry.
(6) The inner layer slurry obtained in the above (5) was put into a ceramic honeycomb carrier, and excess inner layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. The coating amount at this time is 113 g / L.
(7) The surface layer slurry obtained in the above (4) was put into the carrier obtained in the above (6), and the excess surface layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. Thereafter, it was calcined at 400 ° C. under air flow to obtain the monolith catalyst for exhaust gas purification of this example. The coating amount at this time was 124 g / L. Moreover, the rhodium (Rh) amount in the monolith catalyst for exhaust gas purification was 0.03 g / L.
(実施例2-3)
 実施例2-2において、M2元素である鉄(Fe)をM2元素であるコバルト(Co)に変更したこと以外は、実施例2-2と同様の操作を繰り返して、本例の排ガス浄化用モノリス触媒を得た。
(Example 2-3)
In Example 2-2, except that iron (Fe), which is an M2 element, is changed to cobalt (Co), which is an M2 element, the same operation as in Example 2-2 is repeated, and this example is for exhaust gas purification. A monolith catalyst was obtained.
(実施例2-4)
 実施例2-2において、M2元素である鉄(Fe)をM2元素であるマンガン(Mn)に変更したこと以外は、実施例2-2と同様の操作を繰り返して、本例の排ガス浄化用モノリス触媒を得た。
(Example 2-4)
In Example 2-2, the same operation as in Example 2-2 was repeated except that iron (Fe) as the M2 element was changed to manganese (Mn) as the M2 element. A monolith catalyst was obtained.
(比較例2-1)
(1)ZrLaNd酸化物に所定量のロジウム(Rh)を含浸させた。次いで、乾燥させ、焼成して、Rh/ZrLaNd酸化物粉末を得た。次に、この粉末を固形分が40質量%となるように純水を投入し、粉砕して、第1の触媒ユニット含有スラリーを得た。
(2)また、ZrCeNd酸化物粉末を固形分が40質量%となるように純水を投入し、粉砕して、第2の触媒ユニット含有スラリーを得た。
(3)上記(1)、(2)で得られたスラリーとベーマイトを所定量混合して混合スラリーを得た。次に、混合スラリーを乾燥し、550℃で3時間焼成して、第1の触媒ユニット及び第2の触媒ユニットを含有する粉末を得た。なお、本例の第1の触媒ユニットにおけるロジウム(Rh)担持濃度は、0.092質量%である。
(Comparative Example 2-1)
(1) ZrLaNd oxide was impregnated with a predetermined amount of rhodium (Rh). Next, it was dried and fired to obtain an Rh / ZrLaNd oxide powder. Next, pure water was added to the powder so that the solid content was 40% by mass, and the powder was pulverized to obtain a first catalyst unit-containing slurry.
(2) In addition, ZrCeNd oxide powder was charged with pure water so that the solid content was 40% by mass and pulverized to obtain a second catalyst unit-containing slurry.
(3) A predetermined amount of the slurry obtained in the above (1) and (2) and boehmite were mixed to obtain a mixed slurry. Next, the mixed slurry was dried and calcined at 550 ° C. for 3 hours to obtain a powder containing the first catalyst unit and the second catalyst unit. In addition, the rhodium (Rh) carrying | support density | concentration in the 1st catalyst unit of this example is 0.092 mass%.
(比較例2-2)
(1)ZrLaNd酸化物に所定量のロジウム(Rh)を含浸させた。次いで、乾燥させ、焼成して、Rh/ZrLaNd酸化物粉末を得た。次に、この粉末を固形分が40質量%となるように純水を投入し、粉砕して、第1の触媒ユニット含有スラリーを得た。
(2)また、ZrCeNd酸化物粉末を固形分が40質量%となるように純水を投入し、粉砕して、第2の触媒ユニット含有スラリーを得た。
(3)上記(1)、(2)で得られたスラリー、ベーマイトを所定量混合して混合スラリーを得た。次に、混合スラリーを乾燥し、550℃で3時間焼成して、表層粉末を得た。
バインダー、硝酸、純水を磁性ポットに投入し、アルミナボールと共に振とう粉砕して、表層スラリーを得た。このスラリーを用いて、排ガス浄化用触媒粉末の平均粒子径を測定した。得られた結果は、表2に示す。
(4)上記(3)で得られた粉末、バインダー、硝酸、純水を磁性ポットに投入し、アルミナボールと共に振とう粉砕して、表層スラリーを得た。
(5)アルミニウム酸化物(Al)、バインダー、硝酸、純水を磁性ポットに投入し、アルミナボールと共に振とう粉砕して、内層スラリーを得た。
(6)上記(5)で得られた内層スラリーをセラミック製のハニカム担体に投入し、空気流にて余剰の内層スラリーを除去した。次いで、120℃で乾燥した。このときのコート量は、113g/Lである。
(7)上記(4)で得られた表層スラリーを上記(6)で得られた担体に投入し、空気流にて余剰の表層スラリーを除去した。次いで、120℃で乾燥した。しかる後、空気流通下、400℃で焼成して、本例の排ガス浄化用モノリス触媒を得た。このときのコート量は、124g/Lであった。また、排ガス浄化用モノリス触媒中のロジウム(Rh)量は0.03g/Lであった。
(Comparative Example 2-2)
(1) ZrLaNd oxide was impregnated with a predetermined amount of rhodium (Rh). Next, it was dried and fired to obtain an Rh / ZrLaNd oxide powder. Next, pure water was added to the powder so that the solid content was 40% by mass, and the powder was pulverized to obtain a first catalyst unit-containing slurry.
(2) In addition, ZrCeNd oxide powder was charged with pure water so that the solid content was 40% by mass and pulverized to obtain a second catalyst unit-containing slurry.
(3) A predetermined amount of the slurry and boehmite obtained in (1) and (2) above were mixed to obtain a mixed slurry. Next, the mixed slurry was dried and fired at 550 ° C. for 3 hours to obtain a surface layer powder.
Binder, nitric acid, and pure water were put into a magnetic pot and shaken and pulverized with alumina balls to obtain a surface layer slurry. Using this slurry, the average particle size of the exhaust gas-purifying catalyst powder was measured. The obtained results are shown in Table 2.
(4) The powder, binder, nitric acid, and pure water obtained in the above (3) were put into a magnetic pot, and shaken and pulverized with alumina balls to obtain a surface layer slurry.
(5) Aluminum oxide (Al 2 O 3 ), binder, nitric acid, and pure water were put into a magnetic pot and shaken and ground with alumina balls to obtain an inner layer slurry.
(6) The inner layer slurry obtained in the above (5) was put into a ceramic honeycomb carrier, and excess inner layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. The coating amount at this time is 113 g / L.
(7) The surface layer slurry obtained in the above (4) was put into the carrier obtained in the above (6), and the excess surface layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. Thereafter, it was calcined at 400 ° C. under air flow to obtain the monolith catalyst for exhaust gas purification of this example. The coating amount at this time was 124 g / L. Moreover, the rhodium (Rh) amount in the monolith catalyst for exhaust gas purification was 0.03 g / L.
(比較例2-3)
(1)ZrLaNd酸化物に所定量のロジウム(Rh)を含浸させた。次いで、乾燥させ、焼成して、Rh/ZrLaNd酸化物粉末を得た。次に、この粉末を固形分が40質量%となるように純水を投入し、粉砕して、第1の触媒ユニット含有スラリーを得た。
(2)また、ZrCeNd酸化物に鉄(Fe)が5質量%となるように所定量のLaSrFeOを含浸させた。次いで、乾燥させ、焼成して、LaSrFeO/ZrCeNd酸化物粉末を得た。次に、この粉末を固形分が40質量%となるように純水を投入し、粉砕して、第2の触媒ユニット含有スラリーを得た。
(3)上記(1)、(2)で得られたスラリーとベーマイトを所定量混合して混合スラリーを得た。次に、混合スラリーを乾燥し、550℃で3時間焼成して、表層粉末を得た。
(4)上記(3)で得られた粉末、バインダー、硝酸、純水を磁性ポットに投入し、アルミナボールと共に振とう粉砕して、表層スラリーを得た。
(5)アルミニウム酸化物(Al)、バインダー、硝酸、純水を磁性ポットに投入し、アルミナボールと共に振とう粉砕して、内層スラリーを得た。
(6)上記(5)で得られた内層スラリーをセラミック製のハニカム担体に投入し、空気流にて余剰の内層スラリーを除去した。次いで、120℃で乾燥した。このときのコート量は、113g/Lである。
(7)上記(4)で得られた表層スラリーを上記(6)で得られた担体に投入し、空気流にて余剰の表層スラリーを除去した。次いで、120℃で乾燥した。しかる後、空気流通下、400℃で焼成して、本例の排ガス浄化用モノリス触媒を得た。このときのコート量は、124g/Lであった。また、排ガス浄化用モノリス触媒中のロジウム(Rh)量は0.03g/Lであった。
 各例の仕様の一部を表2に示す。
(Comparative Example 2-3)
(1) ZrLaNd oxide was impregnated with a predetermined amount of rhodium (Rh). Next, it was dried and fired to obtain an Rh / ZrLaNd oxide powder. Next, pure water was added to the powder so that the solid content was 40% by mass, and the powder was pulverized to obtain a first catalyst unit-containing slurry.
(2) A ZrCeNd oxide was impregnated with a predetermined amount of LaSrFeO 3 so that iron (Fe) was 5 mass%. Next, it was dried and fired to obtain a LaSrFeO 3 / ZrCeNd oxide powder. Next, this powder was charged with pure water so that the solid content was 40% by mass and pulverized to obtain a second catalyst unit-containing slurry.
(3) A predetermined amount of the slurry obtained in the above (1) and (2) and boehmite were mixed to obtain a mixed slurry. Next, the mixed slurry was dried and fired at 550 ° C. for 3 hours to obtain a surface layer powder.
(4) The powder, binder, nitric acid, and pure water obtained in the above (3) were put into a magnetic pot, and shaken and pulverized with alumina balls to obtain a surface layer slurry.
(5) Aluminum oxide (Al 2 O 3 ), binder, nitric acid, and pure water were put into a magnetic pot and shaken and ground with alumina balls to obtain an inner layer slurry.
(6) The inner layer slurry obtained in the above (5) was put into a ceramic honeycomb carrier, and excess inner layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. The coating amount at this time is 113 g / L.
(7) The surface layer slurry obtained in the above (4) was put into the carrier obtained in the above (6), and the excess surface layer slurry was removed by an air flow. Subsequently, it dried at 120 degreeC. Thereafter, it was calcined at 400 ° C. under air flow to obtain the monolith catalyst for exhaust gas purification of this example. The coating amount at this time was 124 g / L. Moreover, the rhodium (Rh) amount in the monolith catalyst for exhaust gas purification was 0.03 g / L.
Table 2 shows a part of the specifications of each example.
[性能評価]
(水素生成性能試験)
 上記実施例2-1及び比較例2-1の水素生成用触媒(粉末)を用いて、下記条件下、一酸化炭素シフト反応試験を行った。得られた結果を表2に示す。
[Performance evaluation]
(Hydrogen production performance test)
Using the hydrogen generation catalyst (powder) of Example 2-1 and Comparative Example 2-1, a carbon monoxide shift reaction test was performed under the following conditions. The obtained results are shown in Table 2.
(試験条件)
・試料量:0.2g
・測定条件:図7に示す測定プログラムに従った。
・昇温還元測定:四重極質量分析計にてガス成分を検出した。
・検出フラグメント:m/z=2、18、28、44
・測定温度:400℃
・測定雰囲気:2.5体積%CO、HO/He(室温にてバブリング導入)
・流量:100ml/min
(Test conditions)
-Sample amount: 0.2g
Measurement conditions: According to the measurement program shown in FIG.
-Temperature reduction measurement: Gas components were detected with a quadrupole mass spectrometer.
Detection fragment: m / z = 2, 18, 28, 44
・ Measurement temperature: 400 ℃
Measurement atmosphere: 2.5% by volume CO, H 2 O / He (introducing bubbling at room temperature)
・ Flow rate: 100ml / min
(NOx排出量測定)
 図8は、NOx排出量測定における触媒配置を示す説明図である。図8に示すように、排気量1.5Lの株式会社日産自動車製の車両のエンジン100の直下(マニホールド位置)に三元触媒2を配置し、その下流に下記条件で耐久させた実施例2-2~実施例2-4、比較例2-2及び比較例2-3の排ガス浄化用モノリス触媒1を配置して、NEDCモード(コールドスタート)を走行し、このときの各例の排ガス浄化用モノリス触媒におけるNOx排出量を測定した。得られた結果を表2に示す。
(NOx emission measurement)
FIG. 8 is an explanatory view showing the catalyst arrangement in the NOx emission amount measurement. As shown in FIG. 8, the three-way catalyst 2 is arranged directly below (manifold position) of an engine 100 of a vehicle manufactured by Nissan Motor Co., Ltd. having a displacement of 1.5 L, and is endured under the following conditions downstream thereof. The exhaust gas purification monolithic catalyst 1 of Example 2-4, Comparative Example 2-2, and Comparative Example 2-3 is disposed and travels in NEDC mode (cold start). NOx emission in the monolith catalyst was measured. The obtained results are shown in Table 2.
<耐久条件>
 株式会社日産自動車製V型6気筒3.5Lエンジン後方に触媒を配置し、触媒入口温度が840℃となるよう調整し、排気ガス雰囲気下にて250時間耐久処理を行った。なお、使用燃料は無鉛ガソリンを使用した。
<Durability conditions>
A catalyst was placed behind the Nissan Motor Co., Ltd. V-6 cylinder 3.5L engine, the catalyst inlet temperature was adjusted to 840 ° C., and 250 hours durability treatment was performed in an exhaust gas atmosphere. The fuel used was unleaded gasoline.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2、本発明の範囲に属する実施例2-1は、本発明外の比較例2-1より水素生成量が多く、一酸化炭素シフト反応が効率良く進行していることが分かる。
 また、表2より、本発明の範囲に属する実施例2-2~実施例2-4は、本発明外の比較例2-2及び比較例2-3と比較すると、NOx排出量が少ないことが分かる。
Table 2 shows that Example 2-1 belonging to the scope of the present invention produces more hydrogen than Comparative Example 2-1 outside the present invention, and the carbon monoxide shift reaction proceeds efficiently.
Further, from Table 2, Examples 2-2 to 2-4 belonging to the scope of the present invention have less NOx emissions than Comparative Examples 2-2 and 2-3 outside the present invention. I understand.
 以上、本発明を若干の実施形態及び実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。 As mentioned above, although this invention was demonstrated by some embodiment and an Example, this invention is not limited to these, A various deformation | transformation is possible within the range of the summary of this invention.
 例えば、上述した各実施形態や各実施例の水素生成用触媒、排ガス浄化用触媒及び排ガス浄化用モノリス触媒に記載した構成は、各実施形態や各実施例に限定されるものではなく、例えば、各実施形態や各実施例の構成を上述した各実施形態や各実施例以外の組み合わせにしたり、構成の細部を変更したりすることができる。 For example, the configurations described in the hydrogen generation catalyst, the exhaust gas purification catalyst, and the exhaust gas purification monolith catalyst of each embodiment and each example described above are not limited to each embodiment or each example. The configurations of the embodiments and examples can be combined with those other than the embodiments and examples described above, or the details of the configurations can be changed.
  1 排ガス浄化用モノリス触媒
  2 三元触媒
 10 触媒層
 11 排ガス浄化用触媒
 12 第1の触媒ユニット
 12a 貴金属
 12b 酸化物
 14 第2の触媒ユニット(酸素吸蔵放出材)
 14a セリウム含有酸化物
 14b ペロブスカイト型酸化物
 16 保持材
 20 アンダーコート層
 30 モノリス担体
 30a 排ガス流路
100 エンジン
  α 欠陥サイト
DESCRIPTION OF SYMBOLS 1 Monolith catalyst for exhaust gas purification 2 Three-way catalyst 10 Catalyst layer 11 Catalyst for exhaust gas purification 12 First catalyst unit 12a Precious metal 12b Oxide 14 Second catalyst unit (oxygen storage / release material)
14a Cerium-containing oxide 14b Perovskite oxide 16 Holding material 20 Undercoat layer 30 Monolith support 30a Exhaust gas flow channel 100 Engine α Defect site

Claims (10)

  1.  貴金属と、
     上記貴金属を担持する、ランタンとジルコニウムとを含む酸化物と、
     酸素吸蔵放出材とからなる
    ことを特徴とする水素生成用触媒。
    With precious metals,
    An oxide containing lanthanum and zirconium supporting the noble metal;
    A hydrogen generation catalyst comprising an oxygen storage / release material.
  2.  上記貴金属が、ロジウムであることを特徴とする請求項1に記載の水素生成用触媒。 2. The hydrogen generation catalyst according to claim 1, wherein the noble metal is rhodium.
  3.  上記酸化物が、ランタンと、ジルコニウムと、ネオジム、サマリウム、ユウロピウム、マグネシウム及びカルシウムからなる群より選ばれる少なくとも1種の添加元素とを含む
    ことを特徴とする請求項1又は2に記載の水素生成用触媒。
    3. The hydrogen generation according to claim 1, wherein the oxide contains lanthanum, zirconium, and at least one additive element selected from the group consisting of neodymium, samarium, europium, magnesium, and calcium. Catalyst.
  4.  上記酸素吸蔵放出材が、鉄を含む酸化物を含むことを特徴とする請求項1~3のいずれか1つの項に記載の水素生成用触媒。 The hydrogen generation catalyst according to any one of claims 1 to 3, wherein the oxygen storage / release material contains an oxide containing iron.
  5.  上記酸素吸蔵放出材が、鉄を含む酸化物と該酸化物と接触して配設されるセリウムを含む酸化物とからなることを特徴とする請求項1~4のいずれか1つの項に記載の水素生成用触媒。 5. The oxygen storage / release material comprises an oxide containing iron and an oxide containing cerium disposed in contact with the oxide. Catalyst for hydrogen production.
  6.  貴金属と、該貴金属を担持する、ランタンとジルコニウムとを含む酸化物とからなる第1の触媒ユニットと、
     酸素吸蔵放出材からなる第2の触媒ユニットと、
     上記第1の触媒ユニットと上記第2の触媒ユニットとを隔てた状態で保持する保持材と、を含有する
    ことを特徴とする排ガス浄化用触媒。
    A first catalyst unit comprising a noble metal and an oxide containing lanthanum and zirconium supporting the noble metal;
    A second catalyst unit comprising an oxygen storage / release material;
    An exhaust gas purifying catalyst comprising: a holding material that holds the first catalyst unit and the second catalyst unit in a separated state.
  7.  上記第2の触媒ユニットにおける酸素吸蔵放出材が、鉄、コバルト及びマンガンからなる群より選ばれる少なくとも1種を含む酸化物を含むことを特徴とする請求項6に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 6, wherein the oxygen storage / release material in the second catalyst unit contains an oxide containing at least one selected from the group consisting of iron, cobalt and manganese.
  8.  上記第2の触媒ユニットにおける酸素吸蔵放出材が、一般式(1)
     LaM11-xM2O3-δ・・・(1)
    (式(1)中、Laはランタン、M1はバリウム(Ba)、ストロンチウム(Sr)及びカルシウム(Ca)からなる群より選ばれる少なくとも1種、M2は鉄(Fe)、コバルト(Co)及びマンガン(Mn)からなる群より選ばれる少なくとも1種を示し、xは0<x≦1、δは0≦δ≦1を満足する。)で表されるペロブスカイト型酸化物を含むことを特徴とする請求項6又は7に記載の排ガス浄化用触媒。
    The oxygen storage / release material in the second catalyst unit is represented by the general formula (1).
    La x M1 1-x M2O 3-δ (1)
    (In formula (1), La is lanthanum, M1 is at least one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M2 is iron (Fe), cobalt (Co) and manganese) And at least one selected from the group consisting of (Mn), wherein x satisfies 0 <x ≦ 1 and δ satisfies 0 ≦ δ ≦ 1). The exhaust gas-purifying catalyst according to claim 6 or 7.
  9.  上記酸素吸蔵放出材が、セリウムを含む酸化物を含むことを特徴とする請求項6~8のいずれか1つの項に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to any one of claims 6 to 8, wherein the oxygen storage / release material contains an oxide containing cerium.
  10.  請求項6~9のいずれか1つの項に記載の排ガス浄化用触媒を含有する触媒層が、モノリス担体の排気流路に形成されていることを特徴とする排ガス浄化用モノリス触媒。 An exhaust gas purifying monolith catalyst, characterized in that the catalyst layer containing the exhaust gas purifying catalyst according to any one of claims 6 to 9 is formed in an exhaust passage of a monolith carrier.
PCT/JP2014/062667 2014-05-13 2014-05-13 Hydrogen-generating catalyst, and exhaust gas purification catalyst WO2015173881A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2014/062667 WO2015173881A1 (en) 2014-05-13 2014-05-13 Hydrogen-generating catalyst, and exhaust gas purification catalyst
PCT/JP2015/051126 WO2015174102A1 (en) 2014-05-13 2015-01-16 Exhaust gas purification catalyst
US15/309,930 US9878308B2 (en) 2014-05-13 2015-01-16 Exhaust gas purification catalyst
EP15792201.4A EP3144062B1 (en) 2014-05-13 2015-01-16 Exhaust gas purification catalyst
JP2016519127A JP6362040B2 (en) 2014-05-13 2015-01-16 Exhaust gas purification catalyst
CN201580025179.9A CN106457226B (en) 2014-05-13 2015-01-16 Catalyst for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062667 WO2015173881A1 (en) 2014-05-13 2014-05-13 Hydrogen-generating catalyst, and exhaust gas purification catalyst

Publications (1)

Publication Number Publication Date
WO2015173881A1 true WO2015173881A1 (en) 2015-11-19

Family

ID=54479453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062667 WO2015173881A1 (en) 2014-05-13 2014-05-13 Hydrogen-generating catalyst, and exhaust gas purification catalyst

Country Status (1)

Country Link
WO (1) WO2015173881A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772552A (en) * 2022-03-23 2022-07-22 浙江浙能技术研究院有限公司 Structured oxygen carrier for hydrogen production by chemical chain methane reforming and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070792A (en) * 1999-09-03 2001-03-21 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas
JP2004041946A (en) * 2002-07-12 2004-02-12 Mazda Motor Corp Catalyst for cleaning exhaust gas of engine
JP2007301530A (en) * 2006-05-15 2007-11-22 Mazda Motor Corp Exhaust gas purification catalyst
JP2010051886A (en) * 2008-08-27 2010-03-11 Mazda Motor Corp Catalyst for cleaning exhaust gas
JP2014018724A (en) * 2012-07-17 2014-02-03 Nissan Motor Co Ltd Catalytic structure for cleaning exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070792A (en) * 1999-09-03 2001-03-21 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas
JP2004041946A (en) * 2002-07-12 2004-02-12 Mazda Motor Corp Catalyst for cleaning exhaust gas of engine
JP2007301530A (en) * 2006-05-15 2007-11-22 Mazda Motor Corp Exhaust gas purification catalyst
JP2010051886A (en) * 2008-08-27 2010-03-11 Mazda Motor Corp Catalyst for cleaning exhaust gas
JP2014018724A (en) * 2012-07-17 2014-02-03 Nissan Motor Co Ltd Catalytic structure for cleaning exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772552A (en) * 2022-03-23 2022-07-22 浙江浙能技术研究院有限公司 Structured oxygen carrier for hydrogen production by chemical chain methane reforming and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5996538B2 (en) Catalyst for lean-burn gasoline engines with improved NO oxidation activity
US10376839B2 (en) Exhaust gas purification catalyst for lean burn engine
US20110271658A1 (en) Nitrogen oxide storage catalytic converter for use in a motor vehicle in a close-coupled position
JP5305904B2 (en) Exhaust gas purification catalyst
JP2010058110A (en) Low noble metal-supporting three way catalyst
JP5458973B2 (en) Exhaust gas purification catalyst
CN113042045A (en) Catalyst for exhaust gas purification
JP6362040B2 (en) Exhaust gas purification catalyst
JP2002143683A (en) Catalyst for purification of exhaust gas and method for manufacturing the same
EP2954950B1 (en) Catalyst for purifying nox occlusion reduction-type exhaust gas and exhaust gas purification method using said catalyst
JP2010119994A (en) Catalyst for cleaning exhaust
JP2011183319A (en) Catalyst and method for cleaning exhaust gas
WO2015173880A1 (en) Hydrogen-generating catalyst, and exhaust gas purification catalyst
JP2010227799A (en) Exhaust gas purifying catalyst
JP2008223708A (en) Exhaust emission control system
JPH09248462A (en) Exhaust gas-purifying catalyst
WO2015173881A1 (en) Hydrogen-generating catalyst, and exhaust gas purification catalyst
JP5428774B2 (en) Exhaust gas purification catalyst
JP2007260564A (en) Exhaust gas-purifying catalyst and method for regenerating the same
JP2014213272A (en) Exhaust gas purification catalyst and exhaust gas purification device
JP5051009B2 (en) NOx storage reduction catalyst
JP2010051847A (en) Catalyst for cleaning exhaust gas
JP5324414B2 (en) Exhaust purification catalyst
JP2016032795A (en) Exhaust-gas purification catalyst
JP2007152303A (en) Hydrogen-producing catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14892098

Country of ref document: EP

Kind code of ref document: A1