JP2010119994A - Catalyst for cleaning exhaust - Google Patents

Catalyst for cleaning exhaust Download PDF

Info

Publication number
JP2010119994A
JP2010119994A JP2008298390A JP2008298390A JP2010119994A JP 2010119994 A JP2010119994 A JP 2010119994A JP 2008298390 A JP2008298390 A JP 2008298390A JP 2008298390 A JP2008298390 A JP 2008298390A JP 2010119994 A JP2010119994 A JP 2010119994A
Authority
JP
Japan
Prior art keywords
composite oxide
catalyst
supported
czn
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008298390A
Other languages
Japanese (ja)
Other versions
JP5391664B2 (en
Inventor
Hisaya Kawabata
久也 川端
Yasuhiro Ochi
康博 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008298390A priority Critical patent/JP5391664B2/en
Publication of JP2010119994A publication Critical patent/JP2010119994A/en
Application granted granted Critical
Publication of JP5391664B2 publication Critical patent/JP5391664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the catalytic performance of a catalyst for cleaning exhaust including a Ce-Zr complex oxide supporting Pd and Rh employed therein as catalytic metal. <P>SOLUTION: The catalyst for cleaning exhaust includes a plurality of catalyst layers 2, 3 laid over a support 1. The plurality of the catalyst layers include a lower catalyst layer 2 comprising a first complex oxide containing Ce and Zr, and Pd supported by the first complex oxide, and an upper catalyst layer 3 comprising a second complex oxide containing Ce and Zr, and Rh supported by the second complex oxide. At least one species of alkali earth metals selected from Ca, Sr, and Mg is dissolved as a solid solution at least in one of the first complex oxide and the second complex oxide. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purification catalyst.

排気ガス浄化用触媒にはCe含有酸化物が添加されることが多い。例えば、HC(炭化水素)、CO(一酸化炭素)及びNOx(窒素酸化物)を浄化する三元触媒に関しては、Ce含有酸化物が、ストイキより酸素過剰の雰囲気では酸素を吸蔵し、酸素不足の雰囲気になると酸素を放出することにより、その触媒が有効に働くA/Fウィンドウ(空燃比領域)を拡大することが知られている。ディーゼルエンジン等の希薄燃焼エンジン用の排気ガス浄化用触媒にあっては、排気ガス中に比較的多く含まれるNOxをCe含有酸化物が吸着することが知られている。ディーゼルパティキュレートフィルタに担持させるパティキュレート燃焼用の排気ガス浄化用触媒にあっては、Ce含有酸化物がCeイオンの価数変化によって排気ガス中の酸素を取り込んで内部の酸素を活性酸素として放出する酸素交換反応を起こし、その活性酸素によってパティキュレートの燃焼を促進することが知られている。   A Ce-containing oxide is often added to the exhaust gas purification catalyst. For example, for a three-way catalyst that purifies HC (hydrocarbon), CO (carbon monoxide), and NOx (nitrogen oxide), the Ce-containing oxide occludes oxygen in an oxygen-excess atmosphere than stoichiometry, resulting in a lack of oxygen. It is known that the A / F window (air-fuel ratio region) in which the catalyst works effectively is expanded by releasing oxygen in the atmosphere. In an exhaust gas purifying catalyst for a lean combustion engine such as a diesel engine, it is known that a Ce-containing oxide adsorbs a relatively large amount of NOx contained in the exhaust gas. In the exhaust gas purification catalyst for particulate combustion supported on a diesel particulate filter, the Ce-containing oxide takes in oxygen in the exhaust gas by changing the valence of Ce ions and releases the internal oxygen as active oxygen It is known to cause an oxygen exchange reaction that promotes the burning of particulates by the active oxygen.

ところで、代表的なCe含有酸化物であるセリアは、その耐熱性が低い。そこで、その耐熱性を改善すべく、セリアにZrを固溶させたCeZr系複合酸化物が開発され、さらに最近では、触媒性能の改善のために、CeZr系複合酸化物に触媒金属を固溶させることも行われている。   By the way, ceria which is a typical Ce-containing oxide has low heat resistance. Therefore, in order to improve the heat resistance, a CeZr-based composite oxide in which Zr is dissolved in ceria has been developed. More recently, in order to improve the catalyst performance, a catalytic metal is dissolved in the CeZr-based composite oxide. It is also done.

例えば、特許文献1には、排気ガス浄化用触媒として、Ce等の希土類金属と、Ba等のアルカリ土類金属と、Zrと、貴金属とを含有する複合酸化物を用いることが記載されている。例えば、(Ce,Zr)Oで表される複合酸化物と、BaCeOで表される複合酸化物と、BaZrOで表される複合酸化物と、Ba(Zr,Ce)Oで表されれる複合酸化物とを含有し、Ptが固溶した粉末が開示されている。 For example, Patent Document 1 describes that a composite oxide containing a rare earth metal such as Ce, an alkaline earth metal such as Ba, Zr, and a noble metal is used as an exhaust gas purification catalyst. . For example, a composite oxide represented by (Ce, Zr) O 2 , a composite oxide represented by BaCeO 3 , a composite oxide represented by BaZrO 3 , and a Ba (Zr, Ce) O 3 A powder containing Pt in a solid solution is disclosed.

但し、上記Baを含有する複合酸化物は、CeZr複合酸化物を酢酸バリウム溶液に添加し、得られたスラリーを乾燥・焼成することによって得るようにされている。また、Ba以外のアルカリ土類金属を含有する複合酸化物についての実施例は開示されていない。当該粉末にPdやRhを担持する実施例も開示されていない。   However, the composite oxide containing Ba is obtained by adding the CeZr composite oxide to a barium acetate solution and drying and firing the resulting slurry. Moreover, the Example about complex oxide containing alkaline-earth metal other than Ba is not disclosed. An example in which Pd or Rh is supported on the powder is not disclosed.

また、特許文献2には、排気ガス浄化用触媒として、Zrと、希土類金属及びアルカリ土類金属から選択され且つCeを含む少なくとも一つの金属元素との複合酸化物にPtを担持させたものを用いることが記載されている。例えば、Pt/CeO−ZrO−Y−BaOなる排気ガス浄化用触媒が開示されている。アルカリ土類金属としては、貴金属及びその酸化物との相互作用が強く親和性が大きい傾向にあるという観点からMg、Ca、Baが好ましいとされ、このような電気陰性度の低いアルカリ土類金属元素は、貴金属との相互作用が強いため、酸化雰囲気において酸素を介して貴金属と結合し、貴金属の蒸散やシンタリングを抑制し、活性点である貴金属の劣化を十分に抑制することができるとされている。 Patent Document 2 discloses an exhaust gas purifying catalyst in which Pt is supported on a composite oxide of Zr and at least one metal element selected from rare earth metals and alkaline earth metals and containing Ce. The use is described. For example, an exhaust gas purification catalyst of Pt / CeO 2 —ZrO 2 —Y 2 O 3 —BaO is disclosed. As the alkaline earth metal, Mg, Ca, Ba are preferred from the viewpoint of strong interaction with noble metals and their oxides and high affinity, and such alkaline earth metals with low electronegativity are preferred. Since the element has a strong interaction with the noble metal, it binds to the noble metal through oxygen in an oxidizing atmosphere, suppresses the transpiration and sintering of the noble metal, and can sufficiently suppress the deterioration of the noble metal that is the active site. Has been.

但し、上記Baを含有する複合酸化物は、CeO−ZrO−Y複合酸化物に酢酸バリウム溶液に含浸させ、焼成することによって得るようにされている。また、Ba以外のアルカリ土類金属を含有する複合酸化物についての実施例は開示されていない。複合酸化物にPdやRhを担持した実施例も開示されていない。
特開2006−346587号公報 特開2007−289921号公報
However, the complex oxide containing Ba is obtained by impregnating a CeO 2 —ZrO 2 —Y 2 O 3 complex oxide with a barium acetate solution and baking it. Moreover, the Example about complex oxide containing alkaline-earth metal other than Ba is not disclosed. An example in which Pd or Rh is supported on a composite oxide is not disclosed.
JP 2006-346587 A JP 2007-289921 A

上述の如く、Baを含有する複合酸化物は知られ、また、そのような複合酸化物に貴金属を担持することも特許文献2に記載されているように知られている。しかし、CeZr系複合酸化物にBa溶液を含浸して焼成した場合、イオン半径の大きなBaは、CeZr系複合酸化物粒子の表面に、Ba酸化物となって担持され、或いはBaとCe又はZrとの複合酸化物となって担持され、粒子内部に分散固溶するとは考えられない。また、貴金属といっても、その種類によって触媒機能は異なり、Pdは酸化状態(PdO)と還元状態(金属Pd)と間で変化することにより、主としてHCやCOの酸化浄化に寄与し、Rhは還元状態(金属Rh)であるときに、主としてNOxの還元浄化に寄与する。   As described above, complex oxides containing Ba are known, and it is also known in Patent Document 2 that noble metals are supported on such complex oxides. However, when the CeZr-based composite oxide is impregnated with a Ba solution and fired, Ba having a large ionic radius is supported on the surface of the CeZr-based composite oxide particles as Ba oxide, or Ba and Ce or Zr. It is not considered to be dispersed as a solid oxide in the particles. Further, even if it is a noble metal, the catalytic function differs depending on the type, and Pd changes between the oxidation state (PdO) and the reduction state (metal Pd), thereby contributing mainly to the oxidation purification of HC and CO, and Rh Contributes mainly to the reduction and purification of NOx when in the reduced state (metal Rh).

従って、特許文献2に記載されているような電気陰性度の小さなBaに酸素を介してPtを結合させる、つまり複合酸化物粒子表面においてPt酸化物を形成するという触媒構成は、Ptには妥当するとしても、PdやRhでは、これを必ずしも好ましいとは云うことができない。   Therefore, the catalyst configuration in which Pt is bonded via oxygen to Ba having a low electronegativity as described in Patent Document 2, that is, the Pt oxide is formed on the surface of the composite oxide particle is appropriate for Pt. Even so, Pd and Rh cannot always be preferred.

そこで、本発明は、触媒金属としてPd及びRhを採用し、それらをCeZr系の複合酸化物に担持してなる排気ガス浄化用触媒に関し、その触媒性能の改善を図ることを課題とする。   Accordingly, the present invention relates to an exhaust gas purification catalyst that employs Pd and Rh as catalyst metals and supports them on a CeZr-based composite oxide, and an object thereof is to improve the catalyst performance.

本発明は、上記課題を解決するために、CeZr系複合酸化物にアルカリ土類金属を固溶させた。   In the present invention, in order to solve the above problems, an alkaline earth metal is dissolved in the CeZr-based composite oxide.

すなわち、本発明は、担体上に積層された複数の触媒層を備えている排気ガス浄化用触媒であって、
上記複数の触媒層として、CeとZrとを含む第一複合酸化物と、該第一複合酸化物に担持されたPdとを含有する下触媒層と、CeとZrとを含む第二複合酸化物と、該第二複合酸化物に担持されたRhとを含有する上触媒層とを備え、
上記第一複合酸化物及び第二複合酸化物の少なくとも一方にはCa、Sr及びMgのうちから選ばれる少なくとも1種のアルカリ土類金属が固溶していることを特徴とする。
That is, the present invention is an exhaust gas purifying catalyst comprising a plurality of catalyst layers stacked on a carrier,
As the plurality of catalyst layers, a first composite oxide containing Ce and Zr, a lower catalyst layer containing Pd supported on the first composite oxide, and a second composite oxide containing Ce and Zr And an upper catalyst layer containing Rh supported on the second composite oxide,
At least one alkaline earth metal selected from Ca, Sr and Mg is dissolved in at least one of the first composite oxide and the second composite oxide.

従って、本発明によれば、第一複合酸化物及び第二複合酸化物の少なくとも一方は、上記アルカリ土類金属が酸素の出し入れを促進するように働くことにより、また、このアルカリ土類金属の固溶によって結晶歪みが大きくなることにより、酸素吸蔵放出性能や酸素交換反応性が高くなる。   Therefore, according to the present invention, at least one of the first composite oxide and the second composite oxide acts so that the alkaline earth metal promotes oxygen in / out, and the alkaline earth metal When the crystal distortion increases due to the solid solution, oxygen storage / release performance and oxygen exchange reactivity increase.

そうして、本発明の重要な特徴は、上記アルカリ土類金属の固溶によって、当該複合酸化物のNOx吸着特性が改善され、低温度域でのNOxの脱離量が増大する点にある。すなわち、NOxは、複合酸化物にNO又はNO となって吸着するが、NOとして脱離するので、NOが脱離した後の複合酸化物の粒子表面には酸素が残存吸着した状態になり、低温度域でも、複合酸化物粒子表面の酸化能力ないしは活性が高くなる。 Thus, an important feature of the present invention is that the NOx adsorption property of the composite oxide is improved by the solid solution of the alkaline earth metal, and the amount of NOx desorbed in a low temperature region is increased. . That is, NOx is adsorbed as NO 2 or NO 3 − on the composite oxide, but is desorbed as NO, so that oxygen remains adsorbed on the particle surface of the composite oxide after NO is desorbed. Thus, the oxidation ability or activity of the surface of the composite oxide particles is increased even in a low temperature range.

その結果、第一複合酸化物にアルカリ土類金属が固溶しているケースでは、ストイキよりも酸素が不足した雰囲気でも、Pdは第一複合酸化物から放出される活性の高い酸素によって酸化され易くなり、また、ストイキよりも酸素過剰の雰囲気でも、電気陰性度が小さいアルカリ土類金属からPdへの電子供与により、該Pdは、その電子密度が増大して酸素(O)原子との共有結合性が強くなり、酸化された状態を保ちやすくなる。このため、酸化状態のPdは、HCやCOを酸化することによって一旦は還元状態となっても、NOxを還元することにより、酸化された状態に戻ろうとする。つまり、Pdは、PdO(酸化された状態)と金属Pd(還元された状態)との間で状態変化を生じ易くなり、活性が高い状態が維持される。その結果、比較的低い温度域であっても、HC及びCOの酸化とNOxの還元とが効率良く進み、触媒の早期活性化が図れる。   As a result, in the case where the alkaline earth metal is dissolved in the first composite oxide, Pd is oxidized by the highly active oxygen released from the first composite oxide even in an atmosphere where oxygen is insufficient compared to stoichiometry. In addition, even in an oxygen-excess atmosphere as compared with stoichiometry, electron donation from an alkaline earth metal having a low electronegativity to Pd causes the Pd to increase its electron density and share with oxygen (O) atoms. The bondability becomes stronger and it becomes easier to keep the oxidized state. For this reason, Pd in the oxidized state tries to return to the oxidized state by reducing NOx even though it is once reduced by oxidizing HC and CO. That is, Pd is likely to undergo a state change between PdO (oxidized state) and metal Pd (reduced state), and a high activity state is maintained. As a result, even in a relatively low temperature range, oxidation of HC and CO and reduction of NOx proceed efficiently and early activation of the catalyst can be achieved.

一方、第二複合酸化物にアルカリ土類金属が固溶しているケースでは、ストイキよりも酸素が不足した雰囲気において還元状態にある金属Rhは、酸素過剰の雰囲気になっても、電気陰性度が小さいアルカリ土類金属の働きにより、活性が高い還元状態を保ち易くなり、比較的低い温度域であっても、NOxの脱離によって活性が高くなった複合酸化物粒子表面において、RhによるNOxの還元が効率良く進み、触媒の早期活性化が図れることになる。   On the other hand, in the case where the alkaline earth metal is dissolved in the second composite oxide, the metal Rh in a reduced state in an atmosphere in which oxygen is insufficient as compared with stoichiometry has an electronegativity even in an oxygen-excess atmosphere. It is easy to maintain a reduced state with high activity due to the action of an alkaline earth metal having a small NO, and even in a relatively low temperature range, NOx by Rh is present on the surface of the composite oxide particle that has become highly active due to NOx desorption. The reduction of the catalyst proceeds efficiently, and the catalyst can be activated early.

上記アルカリ土類金属としては、Baに比べてイオン半径が小さなCa、Sr及びMgのうちから選ばれる少なくとも1種であることが好ましい。Baの場合は、Ca、Sr及びMgに比べてイオン半径が大きいので、第一及び第二の複合酸化物へ固溶し難く、複合酸化物の塩基性を高める効果が低いことから、Pdの酸化状態又はRhの還元状態を作り難いためである。   The alkaline earth metal is preferably at least one selected from Ca, Sr and Mg having a smaller ionic radius than Ba. In the case of Ba, since the ionic radius is larger than that of Ca, Sr and Mg, it is difficult to dissolve in the first and second composite oxides, and the effect of increasing the basicity of the composite oxide is low. This is because it is difficult to make an oxidized state or a reduced state of Rh.

上記第一複合酸化物及び第二複合酸化物が共にZrを主成分として含み、各々のCeOに対するZrOの質量比は、第一複合酸化物よりも第二複合酸化物の方が大きいことが好ましい。すなわち、Ce及びZrを含む複合酸化物は、そのZrOの含有率が高くなるほど、その耐熱性が高くなる。そうして、上触媒層は下触媒層に比べて排気ガスによって加熱され易いところ、上触媒層の第二複合酸化物は耐熱性が高いことから、熱劣化を生じ難く、また、下触媒層は上触媒層によって排気ガスの熱から保護されるため、熱劣化を生じ難く、全体として触媒の耐久性が高くなる。 Both the first composite oxide and the second composite oxide contain Zr as a main component, and the mass ratio of ZrO 2 to each CeO 2 is larger in the second composite oxide than in the first composite oxide. Is preferred. That is, the composite oxide containing Ce and Zr has higher heat resistance as the ZrO 2 content increases. Thus, the upper catalyst layer is more easily heated by the exhaust gas than the lower catalyst layer, and the second composite oxide of the upper catalyst layer has high heat resistance, so that it is difficult to cause thermal degradation. Is protected from the heat of the exhaust gas by the upper catalyst layer, so that thermal deterioration hardly occurs, and the durability of the catalyst as a whole becomes high.

以上のように本発明によれば、下触媒層では、CeとZrとを含む第一複合酸化物にPdが担持され、上触媒層では、CeとZrとを含む第二複合酸化物にRhが担持され、この第一複合酸化物及び第二複合酸化物の少なくとも一方に、Ca、Sr及びMgのうちから選ばれる少なくとも1種のアルカリ土類金属が固溶している触媒構成を採用したから、第一複合酸化物及び第二複合酸化物の少なくとも一方では、酸素吸蔵放出性能や酸素交換反応性が高くなるとともに、低温度域でNOxの脱離量が増大して複合酸化物粒子表面の活性が高くなり、排気ガス浄化性能が高くなる。   As described above, according to the present invention, Pd is supported on the first composite oxide containing Ce and Zr in the lower catalyst layer, and Rh is added to the second composite oxide containing Ce and Zr in the upper catalyst layer. And a catalyst structure in which at least one alkaline earth metal selected from Ca, Sr and Mg is dissolved in at least one of the first composite oxide and the second composite oxide is employed. From at least one of the first composite oxide and the second composite oxide, the oxygen storage / release performance and the oxygen exchange reactivity are increased, and the NOx desorption amount is increased in the low temperature range, thereby increasing the surface of the composite oxide particles. As a result, the exhaust gas purification performance increases.

以下、本発明の実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

図1において、1は自動車の排気ガスを浄化するための三元触媒を構成するハニカム担体のセル壁であり、その表面に下触媒層2と上触媒層3とが積層されている。下触媒層2は、CeとZrとを含む第一複合酸化物粒子と、該第一複合酸化物粒子に担持されたPdとを含有し、上触媒層3は、CeとZrとを含む第二複合酸化物粒子と、該第二複合酸化物粒子に担持されたRhとを含有する。第一複合酸化物及び第二複合酸化物の少なくとも一方にはアルカリ土類金属が固溶している。   In FIG. 1, reference numeral 1 denotes a cell wall of a honeycomb carrier constituting a three-way catalyst for purifying automobile exhaust gas, and a lower catalyst layer 2 and an upper catalyst layer 3 are laminated on the surface thereof. The lower catalyst layer 2 contains first composite oxide particles containing Ce and Zr and Pd supported on the first composite oxide particles, and the upper catalyst layer 3 contains a first composite oxide particle containing Ce and Zr. Two composite oxide particles and Rh supported on the second composite oxide particles are contained. An alkaline earth metal is dissolved in at least one of the first composite oxide and the second composite oxide.

<酸素吸蔵放出性能>
CeとZrとNdとを含む複合酸化物CZNにPdを担持させてなるPd/CZN触媒粉末と、上記CZNにアルカリ土類金属としてのCaが固溶した複合酸化物CZN−CaにPdを担持させてなるPd/CZN−Ca触媒粉末とを準備し、各々をコージェライト製ハニカム担体(容量25mL)に担持させた供試触媒を調製した。上記CZN及びCZN−Caの担持量はそれぞれ73g/Lであり、触媒粉末のPd担持量は複合酸化物に対して2.7質量%である。CZN及びCZN−Caの各複合酸化物は共沈法によって調製した。以下、CZN−Caの調製法を説明する。
<Oxygen storage and release performance>
Pd / CZN catalyst powder in which Pd is supported on a composite oxide CZN containing Ce, Zr, and Nd, and Pd is supported on a composite oxide CZN-Ca in which Ca as an alkaline earth metal is dissolved in the CZN. A Pd / CZN—Ca catalyst powder was prepared, and a test catalyst was prepared in which each was supported on a cordierite honeycomb carrier (capacity: 25 mL). The supported amount of CZN and CZN-Ca is 73 g / L, and the supported amount of Pd in the catalyst powder is 2.7% by mass with respect to the composite oxide. Each composite oxide of CZN and CZN-Ca was prepared by a coprecipitation method. Hereinafter, the preparation method of CZN-Ca is demonstrated.

すなわち、オキシ硝酸ジルコニウム、硝酸第一セリウム、硝酸ネオジム(III)含水、及び硝酸カルシウム各々の所定量と水とを混合して原料溶液(酸性)とした。この原料溶液に塩基性溶液として濃度7%のアンモニア水を添加し(苛性ソーダ水溶液など他の塩基性溶液を採用することもできる。)、白濁した溶液を一昼夜放置し、生成したケーキを遠心分離器にかけ、十分に水洗した。この水洗したケーキを約150℃の温度で乾燥させた後、400℃の温度に5時間保持し、次いで500℃の温度に2時間保持するという条件で焼成した。以上により得られたCZN−Caは、Caが複合酸化物の結晶格子、原子間又は酸素欠損部に配置された構造となる。このCZN−CaのCaを除く組成比は、CeO:ZrO:Nd=23:67:10(質量比)である。Caの固溶量は、CaOに換算してCZN−Ca全体の10質量%とした。 That is, a predetermined amount of each of zirconium oxynitrate, cerium nitrate, neodymium (III) nitrate, and calcium nitrate was mixed with water to obtain a raw material solution (acidic). 7% ammonia water as a basic solution is added to this raw material solution (other basic solutions such as caustic soda aqueous solution can also be used), and the cloudy solution is left for a day and night, and the resulting cake is centrifuged. And washed thoroughly with water. The cake washed with water was dried at a temperature of about 150 ° C. and then calcined under the condition that it was kept at a temperature of 400 ° C. for 5 hours and then kept at a temperature of 500 ° C. for 2 hours. CZN—Ca obtained as described above has a structure in which Ca is arranged in the crystal lattice, interatomic or oxygen deficient portion of the composite oxide. The composition ratio of CZN—Ca excluding Ca is CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio). The solid solution amount of Ca was 10% by mass of CZN—Ca in terms of CaO.

上記CZNは、CZN−Caの調製法において、硝酸カルシウムを添加せずに同様の共沈法で調製したものであり、組成比はCeO:ZrO:Nd=23:67:10(質量比)である。 The above CZN was prepared by the same coprecipitation method without adding calcium nitrate in the preparation method of CZN-Ca, and the composition ratio was CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10. (Mass ratio).

上記各供試触媒にエージング(O;2質量%,HO;10質量%,残;Nの雰囲気において、800℃の温度に24時間保持)を行なった後、酸素吸蔵放出性能を調べた。すなわち、供試触媒を固定床ガス流通装置に取り付け、その触媒前後にOセンサーを配置し、初めはA/F=14.4(ストイキ)の模擬排気ガスを流しておき、その模擬排気ガスをA/F=13.2(リッチ)に変化させたときの、触媒前(上流側)のA/F値の変化に対する触媒後(下流側)のA/F値の変化の応答性を調べた。模擬排気ガス温度は450℃とし、空間速度は60000h−1とした。結果を図2に示す。 After performing aging (O 2 ; 2% by mass, H 2 O; 10% by mass, remaining: N 2 atmosphere at a temperature of 800 ° C. for 24 hours) on each of the above test catalysts, the oxygen storage / release performance was measured. Examined. That is, a test catalyst is attached to a fixed bed gas flow device, an O 2 sensor is arranged before and after the catalyst, and a simulated exhaust gas of A / F = 14.4 (Stoichi) is first flowed, and the simulated exhaust gas. The response of the change in the A / F value after the catalyst (downstream side) to the change in the A / F value before the catalyst (upstream side) when the A is changed to A / F = 13.2 (rich) It was. The simulated exhaust gas temperature was 450 ° C., and the space velocity was 60000 h −1 . The results are shown in FIG.

同図によれば、いずれの供試触媒も、触媒前A/F値の下降変化に対して、触媒後のA/F値が応答遅れをもって下降変化しているが、その応答遅れの程度が相違する。すなわち、Caを含むPd/CZN−Caは、Caを含まないPd/CZNよりも大きな応答遅れをもって触媒後のA/F値が下降変化している。応答遅れが大きいということは、雰囲気の酸素濃度が低下したときに、CeZr系複合酸化物粒子から酸素が速やかに放出されていること、つまり、酸素放出速度が速いことを意味する。   According to the figure, in all of the test catalysts, the A / F value after the catalyst changes with a delay in response to the decrease in the A / F value before the catalyst. Is different. That is, the P / CZN-Ca containing Ca has a greater response delay than the Pd / CZN not containing Ca, and the A / F value after the catalyst changes downward. A large response delay means that oxygen is rapidly released from the CeZr-based composite oxide particles when the oxygen concentration in the atmosphere is lowered, that is, the oxygen release rate is fast.

A/Fが14.4から13.2に切り換わった後における触媒前後のA/F値の差は酸素放出速度の指標となる。そこで、上記A/Fの切換えから1秒間の触媒前後のA/F値の差を積算すると、Pd/CZN−Ca=4.88、Pd/CZN=4.58となった。Pd/CZN−Caの値はPd/CZNの約1.07倍である。つまり、Pd/CZN−Caの酸素放出速度はPd/CZNの約1.07倍であるということができる。この差は、CeZr系複合酸化物にCaが固溶したことによる効果である。   The difference in the A / F value before and after the catalyst after the A / F is switched from 14.4 to 13.2 is an indicator of the oxygen release rate. Therefore, when the difference between the A / F values before and after the catalyst for 1 second from the A / F switching is integrated, Pd / CZN-Ca = 4.88 and Pd / CZN = 0.58. The value of Pd / CZN-Ca is about 1.07 times that of Pd / CZN. That is, it can be said that the oxygen release rate of Pd / CZN—Ca is about 1.07 times that of Pd / CZN. This difference is an effect due to the solid solution of Ca in the CeZr-based composite oxide.

また、図2によれば、上記A/Fの切換えから、触媒後A/F値が触媒前A/F値に略等しくなるまでの間の上記A/F値の差を積算した場合でも、その積算値は、Pd/CZN−Caの方がPd/CZNよりも大きいことが明らかであるから、Pd/CZN−Caの触媒粉末は、CaのCeZr系複合酸化物粒子への固溶により、酸素吸蔵量も多くなっていると認められる。   Further, according to FIG. 2, even when the difference between the A / F values from the switching of the A / F until the post-catalyst A / F value becomes substantially equal to the pre-catalyst A / F value is integrated, Since it is clear that the integrated value of Pd / CZN—Ca is larger than that of Pd / CZN, the catalyst powder of Pd / CZN—Ca is obtained by solid solution of Ca into CeZr-based composite oxide particles. It is recognized that the oxygen storage amount is also increasing.

<NOx吸着脱離性能>
上記CaO量の割合が3質量%であるPd/CZN−Caの触媒粉末と、上記Pd/CZN触媒粉末とを準備した。それらのCZNの組成比は、CeO:ZrO:Nd=23:67:10(質量比)である。さらに、組成比がCeO:ZrO:Nd=10:80:10(質量比)である複合酸化物CZNにRhを担持させてなるRh/CZN触媒粉末と、同組成比のCZNにCaが固溶した複合酸化物CZN−CaにRhを担持させてなるRh/CZN−Ca触媒粉末とを準備した。いずれもRh担持量は、CZN、CZN−Ca各々に対して1.2質量%である。また、Rh/CZN−Ca触媒粉末のCaの固溶量は、CaOに換算してCZN−Ca全体の3質量%とした。
<NOx adsorption / desorption performance>
A Pd / CZN—Ca catalyst powder having a CaO content ratio of 3 mass% and a Pd / CZN catalyst powder were prepared. The composition ratio of those CZNs is CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio). Furthermore, a Rh / CZN catalyst powder in which Rh is supported on a composite oxide CZN having a composition ratio of CeO 2 : ZrO 2 : Nd 2 O 3 = 10: 80: 10 (mass ratio), and CZN having the same composition ratio An Rh / CZN-Ca catalyst powder in which Rh is supported on a composite oxide CZN-Ca in which Ca is solid-solved was prepared. In both cases, the amount of Rh supported is 1.2% by mass with respect to each of CZN and CZN-Ca. Moreover, the solid solution amount of Ca in the Rh / CZN-Ca catalyst powder was 3% by mass of the entire CZN-Ca in terms of CaO.

そうして、上記4種類の触媒粉末のNOx吸着脱離性能を調べた。まず、触媒粉末50mgに還元性ガス(H;0.45%,残He,流量;100mL/分)を供給しながら、そのガス温度を30℃/分の速度で室温(25℃)から上昇させ、600℃の温度に10分間保持した後、ガス温度を室温に戻した。次に触媒粉末にNO含有ガス(NO;4000ppm,O;3.0%,残He,流量;100mL/分)を室温で15分間供給し、その後に、Heガス(流量;100mL/分)を供給しながら、ガス温度を20℃/分の速度で600℃まで上昇させることにより、触媒粉末からNOxを脱離させ、その脱離量を測定した。結果を図3及び図4に示す。 Thus, the NOx adsorption / desorption performance of the four types of catalyst powders was examined. First, while supplying reducing gas (H 2 ; 0.45%, residual He, flow rate: 100 mL / min) to 50 mg of catalyst powder, the gas temperature was increased from room temperature (25 ° C.) at a rate of 30 ° C./min. And kept at a temperature of 600 ° C. for 10 minutes, and then the gas temperature was returned to room temperature. Next, NO-containing gas (NO; 4000 ppm, O 2 ; 3.0%, remaining He, flow rate; 100 mL / min) is supplied to the catalyst powder for 15 minutes at room temperature, and then He gas (flow rate; 100 mL / min) is supplied. The NOx was desorbed from the catalyst powder by increasing the gas temperature to 600 ° C at a rate of 20 ° C / min. The results are shown in FIGS.

図3によれば、Pd/CZN−Caの場合、Pd/CZNよりも、210℃以下でのNO脱離量が格段に多くなっており、210℃を越えるとNO脱離量が逆転して、Pd/CZN−CaのNO脱離量は少なくなっている。図4によれば、Rh/CZN−CaとRh/CZNの場合、290℃付近のNO脱離量は略同じであるが、290℃よりも低い温度域及び290℃よりも高い温度域(450℃付近まで)のいずれにおいても、Rh/CZN−CaはRh/CZNよりも、NO脱離量が格段に多くなっている。   According to FIG. 3, in the case of Pd / CZN—Ca, the NO desorption amount at 210 ° C. or less is much higher than that of Pd / CZN, and when it exceeds 210 ° C., the NO desorption amount is reversed. The amount of NO desorbed from Pd / CZN-Ca is small. According to FIG. 4, in the case of Rh / CZN-Ca and Rh / CZN, the NO desorption amount in the vicinity of 290 ° C. is substantially the same, but the temperature range lower than 290 ° C. and the temperature range higher than 290 ° C. (450 Rh / CZN-Ca has a much larger NO desorption amount than Rh / CZN.

Pd/CZN−Caの場合、全NO吸着量は364a.u.であり、温度230℃までのNO脱離量は全NO吸着量の19.6%、すなわち、71.2a.u.であった。これに対して、Pd/CZNの場合は、全NO吸着量は390a.u.であり、温度230℃までのNO脱離量は全NO吸着量の3.2%、すなわち、12.6a.u.であった。   In the case of Pd / CZN-Ca, the total NO adsorption amount is 364 a.u., and the NO desorption amount up to 230 ° C. is 19.6% of the total NO adsorption amount, that is, 71.2 a.u. It was. On the other hand, in the case of Pd / CZN, the total NO adsorption amount is 390 a.u., and the NO desorption amount up to 230 ° C. is 3.2% of the total NO adsorption amount, that is, 12.6 a. u.

一方、Rh/CZN−Caの場合、全NO吸着量は972a.u.であり、温度230℃までのNO脱離量は全NO吸着量の45.3%、すなわち、440a.u.であった。これに対して、Rh/CZNの場合は、全NO吸着量は608a.u.であり、温度230℃までのNO脱離量は全NO吸着量の34.5%、すなわち、210a.u.であった。   On the other hand, in the case of Rh / CZN-Ca, the total NO adsorption amount is 972 a.u., and the NO desorption amount up to a temperature of 230 ° C. is 45.3% of the total NO adsorption amount, that is, 440 a.u. It was. On the other hand, in the case of Rh / CZN, the total NO adsorption amount is 608 a.u., and the NO desorption amount up to a temperature of 230 ° C. is 34.5% of the total NO adsorption amount, that is, 210 a.u. Met.

以上から、CeZr系複合酸化物粒子にCaを固溶すると、少なくとも低温度域でのNO脱離量が増大することがわかる。また、Caが固溶したCeZr系複合酸化物粒子にRhを担持すると、高温度域でのNO脱離量も増大している。   From the above, it can be seen that when Ca is dissolved in CeZr-based composite oxide particles, the amount of NO desorption at least in the low temperature region increases. Further, when Rh is supported on CeZr-based composite oxide particles in which Ca is dissolved, the amount of NO desorption in a high temperature region is also increased.

ここに、排気ガス中のNOxはCeZr系複合酸化物粒子にNO又はNO となって吸着するが、脱離するときはNOとなるので、該複合酸化物粒子の表面には酸素が残存吸着した状態になり、該粒子表面の酸化能力ないしは活性が高くなる。従って、Pd/CZN−Ca及びRh/CZN−Caのいずれも、低温度域での複合酸化物粒子表面の酸化能力ないしは活性が高くなり、HC及びCOの酸化浄化が促進され、触媒の早期活性化が図れることになる。また、Rh/CZN−Caの場合、300℃〜400℃付近でもNOの活発な脱離が見られるから、触媒のライトオフ後においても、複合酸化物粒子表面の酸化能力ないしは活性が高く、HC、CO及びNOxの浄化が効率良く行なわれることが推測される。 Here, NOx in the exhaust gas is adsorbed on the CeZr-based composite oxide particles as NO 2 or NO 3 , but becomes NO when desorbed, so that oxygen is present on the surface of the composite oxide particles. The remaining adsorbed state is obtained, and the oxidation ability or activity of the particle surface is increased. Therefore, both Pd / CZN-Ca and Rh / CZN-Ca have higher oxidation ability or activity on the surface of the composite oxide particles in a low temperature range, promote oxidative purification of HC and CO, and promote early activity of the catalyst. Can be achieved. In addition, in the case of Rh / CZN-Ca, since active desorption of NO is observed even in the vicinity of 300 ° C. to 400 ° C., the oxidation ability or activity on the surface of the composite oxide particles is high even after light-off of the catalyst. It is estimated that CO and NOx are efficiently purified.

<排気ガス浄化性能>
図1に示す下触媒層2及び上触媒層3に種々の触媒粉末を適用した実施例1〜9及び比較例1〜3の各触媒を調製した。なお、これらの触媒の担体としては、セル壁厚さ3.5mil(8.89×10−2mm)、1平方インチ(645.16mm)当たりのセル数600のコージェライト製ハニカム担体(容量1L)を用いた。
<Exhaust gas purification performance>
Catalysts of Examples 1 to 9 and Comparative Examples 1 to 3 in which various catalyst powders were applied to the lower catalyst layer 2 and the upper catalyst layer 3 shown in FIG. 1 were prepared. In addition, as a carrier for these catalysts, a honeycomb carrier made of cordierite having a cell wall thickness of 3.5 mil (8.89 × 10 −2 mm) and 600 cells per square inch (645.16 mm 2 ) (capacity) 1L) was used.

−実施例1−
下触媒層2には、Pd担持OSC材としてのPd/23CZN−3%Caと、Pd担持アルミナとを混合して配置した。Pd/23CZN−3%Caは、CeO:ZrO:Nd=23:67:10(質量比)の組成比を有し、CaがCaOに換算して3質量%固溶した複合酸化物(23CZN−3%Ca)に、Pdを2.7質量%担持させた触媒粉末である。Pd担持アルミナは、活性アルミナにPdを8.6質量%担持させた触媒粉末である。担体1L当たりの各触媒粉末の担持量は、Pd/23CZN−3%Caが75g/Lであり、Pd担持アルミナが65g/Lである。
Example 1
In the lower catalyst layer 2, Pd / 23CZN-3% Ca as a Pd-supported OSC material and Pd-supported alumina were mixed and arranged. Pd / 23CZN-3% Ca has a composition ratio of CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio), and Ca is a solid solution of 3 mass% in terms of CaO. This is a catalyst powder in which 2.7% by mass of Pd is supported on an oxide (23CZN-3% Ca). Pd-supported alumina is a catalyst powder in which 8.6% by mass of Pd is supported on activated alumina. The supported amount of each catalyst powder per liter of the carrier is 75 g / L for Pd / 23CZN-3% Ca and 65 g / L for Pd-supported alumina.

上触媒層3には、Rh担持OSC材としてのRh/10CZNと、Rh担持ZrO被覆アルミナとを混合して配置した。Rh/10CZNは、組成比がCeO:ZrO:Nd=10:80:10(質量比)である複合酸化物(10CZN)にRhを1.2質量%担持させてなる触媒粉末である。Rh担持ZrO被覆アルミナは、Laを4質量%含有する活性アルミナ粒子の表面を10質量%の酸化ジルコニウムで被覆してなるサポート材に、Rhを1.2質量%担持させてなる触媒粉末である。担体1L当たりの各触媒粉末の担持量は、Rh/10CZNが35g/Lであり、Rh担持ZrO被覆アルミナが25g/Lである。 In the upper catalyst layer 3, Rh / 10CZN as the Rh-supported OSC material and Rh-supported ZrO 2 coated alumina were mixed and arranged. Rh / 10CZN is a catalyst powder obtained by supporting 1.2% by mass of Rh on a composite oxide (10CZN) having a composition ratio of CeO 2 : ZrO 2 : Nd 2 O 3 = 10: 80: 10 (mass ratio). It is. Rh-supported ZrO 2 -coated alumina is obtained by supporting 1.2% by mass of Rh on a support material obtained by coating the surface of activated alumina particles containing 4% by mass of La 2 O 3 with 10% by mass of zirconium oxide. Catalyst powder. The supported amount of each catalyst powder per liter of support is 35 g / L for Rh / 10CZN and 25 g / L for Rh-supported ZrO 2 -coated alumina.

−実施例2−
下触媒層2のPd担持OSC材をPd/23CZN−3%Srとする他は、実施例1と同じ構成した。Pd/23CZN−3%Srは、CeO:ZrO:Nd=23:67:10(質量比)の組成比を有し、SrがSrOに換算して3質量%固溶した複合酸化物(23CZN−3%Sr)に、Pdを2.7質量%担持させた触媒粉末である。
-Example 2-
The same structure as in Example 1 was used except that the Pd-supported OSC material of the lower catalyst layer 2 was changed to Pd / 23CZN-3% Sr. Pd / 23CZN-3% Sr has a composition ratio of CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio), and Sr is a solid solution of 3 mass% in terms of SrO. This is a catalyst powder in which 2.7% by mass of Pd is supported on an oxide (23CZN-3% Sr).

−実施例3−
下触媒層2のPd担持OSC材をPd/23CZNとし、上触媒層3のRh担持OSC材をRh/10CZN−3%Caとする他は、実施例1と同じ構成した。Pd/23CZNは、CeO:ZrO:Nd=23:67:10(質量比)の複合酸化物(23CZN)に、Pdを2.7質量%担持させた触媒粉末である。Rh/10CZN−3%Caは、CeO:ZrO:Nd=10:80:10(質量比)の組成比を有し、CaがCaOに換算して3質量%固溶した複合酸化物(10CZN−3%Ca)に、Rhを1.2質量%担持させてなる触媒粉末である。
-Example 3-
The same configuration as in Example 1 except that the Pd-supported OSC material of the lower catalyst layer 2 was Pd / 23CZN and the Rh-supported OSC material of the upper catalyst layer 3 was Rh / 10CZN-3% Ca. Pd / 23CZN is a catalyst powder in which 2.7% by mass of Pd is supported on a complex oxide (23CZN) of CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio). Rh / 10CZN-3% Ca has a composition ratio of CeO 2 : ZrO 2 : Nd 2 O 3 = 10: 80: 10 (mass ratio), and Ca is a solid solution of 3 mass% in terms of CaO. This is a catalyst powder in which 1.2% by mass of Rh is supported on an oxide (10CZN-3% Ca).

−実施例4−
上触媒層3のRh担持OSC材をRh/10CZN−6%Caとする他は、実施例3と同じ構成した。Rh/10CZN−6%Caは、上記Rh/10CZN−3%Caにおいて、そのCa固溶量をCaOに換算して6質量%とした触媒粉末である。
Example 4
The same configuration as in Example 3 except that the Rh-supported OSC material of the upper catalyst layer 3 was Rh / 10CZN-6% Ca. Rh / 10CZN-6% Ca is a catalyst powder having a Ca solid solution amount of 6% by mass in terms of CaO in the above Rh / 10CZN-3% Ca.

−実施例5−
上触媒層3のRh担持OSC材をRh/10CZN−9%Caとする他は、実施例3と同じ構成した。Rh/10CZN−9%Caは、上記Rh/10CZN−3%Caにおいて、そのCa固溶量をCaOに換算して9質量%とした触媒粉末である。
-Example 5
The same configuration as in Example 3 was used except that the Rh-supported OSC material of the upper catalyst layer 3 was Rh / 10CZN-9% Ca. Rh / 10CZN-9% Ca is a catalyst powder in which the amount of solid solution of Ca in the above Rh / 10CZN-3% Ca is 9 mass% in terms of CaO.

−実施例6−
上触媒層3のRh担持OSC材をRh/10CZN−3%Mgとする他は、実施例3と同じ構成した。Rh/10CZN−3%Mgは、上記Rh/10CZN−3%Caにおいて、Caに代えてMgをMgOに換算して3質量%固溶させた触媒粉末である。
-Example 6
The same configuration as in Example 3 was used except that the Rh-supported OSC material of the upper catalyst layer 3 was Rh / 10CZN-3% Mg. Rh / 10CZN-3% Mg is a catalyst powder in which, in the above Rh / 10CZN-3% Ca, Mg is converted to MgO instead of Ca and dissolved in 3% by mass.

−実施例7−
上触媒層3のRh担持OSC材をRh/10CZN−3%Srとする他は、実施例3と同じ構成した。Rh/10CZN−3%Srは、上記Rh/10CZN−3%Caにおいて、Caに代えてSrをSrOに換算して3質量%固溶させた触媒粉末である。
-Example 7-
The configuration was the same as that of Example 3 except that the Rh-supported OSC material of the upper catalyst layer 3 was Rh / 10CZN-3% Sr. Rh / 10CZN-3% Sr is a catalyst powder in which 3% by mass of Sr is converted into SrO instead of Ca in the above Rh / 10CZN-3% Ca.

−実施例8−
上触媒層3のRh担持OSC材として上記Rh/10CZN−3%Caを採用する他は実施例1と同じ構成とした。
-Example 8-
The same configuration as in Example 1 was adopted except that the Rh / 10CZN-3% Ca was used as the Rh-supported OSC material of the upper catalyst layer 3.

−実施例9−
下触媒層2のPd担持OSC材としてPd/10CZN−3%Caを採用し、上触媒層3のRh担持OSC材としてRh/23CZN−3%Caを採用する他は実施例1と同じ構成とした。Pd/10CZN−3%Caは、10CZN−3%Ca複合酸化物にPdを2.7質量%担持させた触媒粉末である。Rh/23CZN−3%Caは、23CZN−3%Ca複合酸化物にRhを1.2質量%担持させた触媒粉末である。
-Example 9-
The same configuration as in Example 1 except that Pd / 10CZN-3% Ca is adopted as the Pd-supported OSC material of the lower catalyst layer 2, and Rh / 23CZN-3% Ca is adopted as the Rh-supported OSC material of the upper catalyst layer 3. did. Pd / 10CZN-3% Ca is a catalyst powder in which 2.7% by mass of Pd is supported on a 10CZN-3% Ca composite oxide. Rh / 23CZN-3% Ca is a catalyst powder in which 1.2% by mass of Rh is supported on a 23CZN-3% Ca composite oxide.

−比較例1−
下触媒層2のPd担持OSC材として上記Pd/23CZNを採用する他は実施例1と同じ構成とした。
-Comparative Example 1-
The same configuration as in Example 1 was adopted except that the Pd / 23CZN was adopted as the Pd-supported OSC material of the lower catalyst layer 2.

−比較例2−
下触媒層2のPd担持OSC材としてPd/Ca含浸23CZNを採用する他は実施例1と同じ構成とした。Pd/Ca含浸23CZNは、23CZN複合酸化物に硝酸カルシウム溶液をCaOに換算して3質量%含浸させて乾燥・焼成してなる複合酸化物(Ca含浸23CZN)にPdを2.7質量%担持させた触媒粉末である。
-Comparative Example 2-
The same configuration as in Example 1 was adopted except that Pd / Ca impregnated 23CZN was adopted as the Pd-supported OSC material of the lower catalyst layer 2. Pd / Ca-impregnated 23CZN is a composite oxide (Ca-impregnated 23CZN) obtained by impregnating 23CZN composite oxide with 3% by mass of calcium nitrate solution converted to CaO and drying and firing. Catalyst powder.

−比較例3−
上触媒層3のRh担持OSC材としてRh/Ca含浸10CZNを採用する他は実施例3と同じ構成とした。Rh/Ca含浸10CZNは、10CZN複合酸化物に硝酸カルシウム溶液をCaOに換算して3質量%含浸させて乾燥・焼成してなる複合酸化物(Ca含浸10CZN)にRhを1.2質量%担持させた触媒粉末である。
-Comparative Example 3-
The same configuration as in Example 3 was adopted except that Rh / Ca-impregnated 10CZN was adopted as the Rh-supported OSC material of the upper catalyst layer 3. Rh / Ca-impregnated 10CZN is a composite oxide (Ca-impregnated 10CZN) obtained by impregnating 10CZN composite oxide with 3% by mass of calcium nitrate solution converted to CaO and drying and firing. Catalyst powder.

−比較例4−
下触媒層2に関し、Pd担持OSC材に代えてPt担持OSC材とする他は実施例1と同じ構成とした。Pt担持OSC材は、23CZN−3%CaにPtを2.7質量%担持させた触媒粉末である。
-Comparative Example 4-
The lower catalyst layer 2 has the same configuration as that of Example 1, except that the Pt-supported OSC material is used instead of the Pd-supported OSC material. The Pt-supported OSC material is a catalyst powder in which 2.7% by mass of Pt is supported on 23CZN-3% Ca.

−比較例5−
下触媒層2のPd担持OSC材としてPd/23CZN−3%Baを採用する他は実施例1と同じ構成とした。Pd/23CZN−3%Baは、CeO:ZrO:Nd=23:67:10(質量比)の組成比を有し、BaがBaOに換算して3質量%固溶した複合酸化物(23CZN−3%Ba)に、Pdを2.7質量%担持させた触媒粉末である。
-Comparative Example 5-
The same configuration as in Example 1 was adopted except that Pd / 23CZN-3% Ba was adopted as the Pd-supported OSC material of the lower catalyst layer 2. Pd / 23CZN-3% Ba has a composition ratio of CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio), and Ba is a solid solution of 3 mass% in terms of BaO. This is a catalyst powder in which 2.7% by mass of Pd is supported on an oxide (23CZN-3% Ba).

[排気ガス浄化性能の評価]
実施例1〜9及び比較例1〜3の各触媒にベンチエージング処理を施した。これは、各触媒をエンジン排気系に取り付け、(1)A/F=14の排気ガスを15秒間流す→(2)A/F=17の排気ガスを5秒間流す→(3)A/F=14.7の排気ガスを40秒間流す、というサイクルが合計50時間繰り返されるように、且つ触媒入口ガス温度が800℃となるように、エンジンを運転するというものである。
[Evaluation of exhaust gas purification performance]
Each catalyst of Examples 1-9 and Comparative Examples 1-3 was subjected to bench aging treatment. This is because each catalyst is attached to the engine exhaust system, (1) A / F = 14 exhaust gas flows for 15 seconds → (2) A / F = 17 exhaust gas flows for 5 seconds → (3) A / F = 14.7 The exhaust gas flowing for 40 seconds is repeated for a total of 50 hours, and the engine is operated so that the catalyst inlet gas temperature is 800 ° C.

しかる後、各触媒から担体容量25mLのコアサンプルを切り出し、これをモデルガス流通反応装置に取り付け、HC、CO及びNOxの浄化に関するライトオフ温度T50(℃)を測定した。T50(℃)は、触媒に流入するモデルガス温度を常温から漸次上昇させていき、浄化率が50%に達したときの触媒入口のガス温度である。モデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h−1、昇温速度は30℃/分である。A/F=14.7、A/F=13.8及びA/F=15.6のときのガス組成を表1に示し、ライトオフ温度T50の測定結果を表2に示す。なお、表2において、下触媒層の「Pd担持OSC材」欄及び上触媒層の「Rh担持OSC材」欄各々にはOSC材の種類のみを記載した。 Thereafter, a core sample with a carrier volume of 25 mL was cut out from each catalyst, and this was attached to a model gas flow reactor, and a light-off temperature T50 (° C.) relating to purification of HC, CO, and NOx was measured. T50 (° C.) is the gas temperature at the catalyst inlet when the model gas temperature flowing into the catalyst is gradually increased from room temperature and the purification rate reaches 50%. The model gas was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min. The gas composition when A / F = 14.7, A / F = 13.8 and A / F = 15.6 is shown in Table 1, and the measurement result of the light-off temperature T50 is shown in Table 2. In Table 2, only the type of OSC material is described in each of the “Pd-supported OSC material” column of the lower catalyst layer and the “Rh-supported OSC material” column of the upper catalyst layer.

Figure 2010119994
Figure 2010119994

Figure 2010119994
Figure 2010119994

下触媒層のPdを担持するCeZr系複合酸化物について検討するに、実施例1,2では、比較例1に比べて、ライトオフ温度T50が数十℃低下しており、実施例1のライトオフ温度T50の低下が特に大きい。これから、当該CeZr系複合酸化物にCaやSrを固溶すると、触媒の早期活性化が図れること、そして、その固溶による効果はCaが特に大きいことがわかる。また、比較例2はCeZr系複合酸化物にCaを含浸担持させたものであるが、比較例1よりもライトオフ温度が高くなっている。このことと実施例1の結果とから、アルカリ土類金属はCeZr系複合酸化物粒子の表面に担持させただけでは、触媒の早期活性化の効果はなく、その効果を得るにはアルカリ土類金属を固溶させる必要があることがわかる。さらに、比較例5はCeZr系複合酸化物にBaを固溶させたものであるが、ライトオフ温度T50は比較例1と大差がない結果になっている。これは、BaはCeZr系複合酸化物への固溶によってその塩基性を高める効果が低いためであると考えられる。   When examining the CeZr-based composite oxide supporting Pd of the lower catalyst layer, in Examples 1 and 2, the light-off temperature T50 is lower by several tens of degrees C. than in Comparative Example 1, and the light of Example 1 The decrease in the off temperature T50 is particularly large. From this, it can be seen that when Ca or Sr is dissolved in the CeZr-based composite oxide, the catalyst can be activated early, and the effect of the solid solution is particularly large for Ca. In Comparative Example 2, CeZr-based composite oxide is impregnated and supported with Ca, but the light-off temperature is higher than that of Comparative Example 1. From this and the results of Example 1, it was found that the alkaline earth metal was not effective for the early activation of the catalyst only by being supported on the surface of the CeZr-based composite oxide particles, and the alkaline earth metal could be used to obtain the effect. It turns out that the metal needs to be dissolved. Further, Comparative Example 5 is obtained by dissolving Ba in a CeZr-based composite oxide, but the light-off temperature T50 is not significantly different from that of Comparative Example 1. This is presumably because Ba has a low effect of increasing its basicity by solid solution in the CeZr-based composite oxide.

また、下触媒層のCeZr系複合酸化物に担持させる貴金属について検討するに、比較例4は、Caを固溶したCeZr系複合酸化物にPtを担持させたものであるが、そのライトオフ温度T50は、貴金属としてPdを採用した実施例1〜9及び比較例1〜3,5のいずれよりも高くなっている。これは、Ptの場合、アルカリ土類金属による電子供与効果によって酸素(O)と結合した酸化状態に安定化してしまい、活性な状態である還元状態を発現し難くなったためと考えられる。すなわち、Ptでは、CeZr系複合酸化物に対するアルカリ土類金属の固溶による触媒活性向上の効果が得られない。   Further, when examining the noble metal supported on the CeZr-based composite oxide of the lower catalyst layer, Comparative Example 4 is one in which Pt is supported on a CeZr-based composite oxide in which Ca is dissolved, and the light-off temperature thereof. T50 is higher than any of Examples 1 to 9 and Comparative Examples 1 to 3 and 5, which employ Pd as a noble metal. This is presumably because in the case of Pt, it was stabilized in an oxidized state combined with oxygen (O) by the electron donating effect of the alkaline earth metal, and it was difficult to express the reduced state which is an active state. That is, with Pt, the effect of improving the catalytic activity due to the solid solution of the alkaline earth metal in the CeZr-based composite oxide cannot be obtained.

次に、上触媒層のRhを担持するCeZr系複合酸化物について検討するに、実施例3〜7は、比較例1に比べて、ライトオフ温度T50が数十℃低下している。従って、当該CeZr系複合酸化物にCa、Sr又はMgを固溶すると、触媒の早期活性化が図れることがわかる。また、比較例3はCeZr系複合酸化物にCaを含浸担持させたものであるが、比較例1よりもライトオフ温度が高くなっている。このことと実施例3の結果とから、アルカリ土類金属はCeZr系複合酸化物粒子の表面に担持させただけでは、触媒の早期活性化の効果はなく、その効果を得るにはアルカリ土類金属を固溶させる必要があることがわかる。   Next, when examining the CeZr-based composite oxide supporting Rh of the upper catalyst layer, the light-off temperature T50 in Examples 3 to 7 is lower by several tens of degrees C than in Comparative Example 1. Therefore, it can be seen that when Ca, Sr or Mg is dissolved in the CeZr-based composite oxide, the catalyst can be activated early. In Comparative Example 3, CeZr-based composite oxide was impregnated and supported with Ca, but the light-off temperature was higher than that of Comparative Example 1. From this and the result of Example 3, it was found that the alkaline earth metal was not effective for the early activation of the catalyst only by being supported on the surface of the CeZr-based composite oxide particles. It turns out that the metal needs to be dissolved.

また、実施例3,6,7の比較から、Caを固溶させた実施例3のライトオフ温度T50の低下が最も大きく、これにSrを固溶させた実施例7が続いている。実施例3〜5のCaO固溶量で比較すると、CaO固溶量が6質量%の実施例4のライトオフ温度が最も低いが、実施例3〜5間に大差はない。これから、アルカリ土類金属の固溶量を酸化物に換算して3質量%以上9質量%以下にすると、触媒の早期活性化を確実に達成できることがわかる。   Moreover, from the comparison of Examples 3, 6, and 7, the decrease in the light-off temperature T50 of Example 3 in which Ca was dissolved was the largest, followed by Example 7 in which Sr was dissolved. When compared with the CaO solid solution amount of Examples 3 to 5, the light-off temperature of Example 4 having a CaO solid solution amount of 6 mass% is the lowest, but there is no significant difference between Examples 3 to 5. From this, it can be seen that the early activation of the catalyst can be reliably achieved when the solid solution amount of the alkaline earth metal is converted to oxide to 3 mass% or more and 9 mass% or less.

実施例8,9は共に、下触媒層及び上触媒層各々のCeZr系複合酸化物にCaを固溶させているが、実施例8は、下触媒層の複合酸化物のCeOに対するZrOの質量比(67/23)よりも上触媒層の複合酸化物の同質量比(80/10)の方が大きく、実施例9は逆に、下触媒層の同質量比の方が上触媒層の同質量比よりも大きくなっている。そうして、ライトオフ温度T50は、実施例8の方が実施例9よりも数十℃低くなっている。 In both Examples 8 and 9, Ca was dissolved in the CeZr-based composite oxide of each of the lower catalyst layer and the upper catalyst layer. In Example 8, ZrO 2 with respect to CeO 2 of the composite oxide of the lower catalyst layer. The mass ratio (80/10) of the composite oxide in the upper catalyst layer is larger than the mass ratio (67/23) of the upper catalyst layer. In Example 9, on the contrary, the same mass ratio of the lower catalyst layer is higher in the upper catalyst layer. It is larger than the same mass ratio of the layers. Thus, the light-off temperature T50 is lower by several tens of degrees Celsius in Example 8 than in Example 9.

これは、上触媒層は下触媒層に比べて排気ガスによって加熱され易いところ、実施例8の上触媒層では、そのCeZr系複合酸化物のZrO質量比が大きく、従って、その耐熱性が高いことから、上記ベンチエージングによる熱劣化が軽度になり、また、下触媒層は上触媒層によって排気ガスの熱から保護されて、熱劣化が軽度になったためと認められる。 This is because the upper catalyst layer is more easily heated by exhaust gas than the lower catalyst layer. In the upper catalyst layer of Example 8, the CeZr-based composite oxide has a large ZrO 2 mass ratio, and therefore its heat resistance is high. Since it is high, the thermal deterioration due to the above-mentioned bench aging becomes mild, and it is recognized that the lower catalyst layer is protected from the heat of the exhaust gas by the upper catalyst layer, and the thermal deterioration becomes mild.

本発明に係る排気ガス浄化用触媒の断面図である。1 is a cross-sectional view of an exhaust gas purifying catalyst according to the present invention. Pd/CZN−Ca触媒粉末及びPd/CZN触媒粉末各々について触媒前A/Fを変化させたときの触媒後A/Fの変化を示すグラフ図である。It is a graph which shows the change of A / F after a catalyst when A / F before a catalyst is changed about each of Pd / CZN-Ca catalyst powder and Pd / CZN catalyst powder. Pd/CZN−Ca触媒粉末及びPd/CZN触媒粉末各々のNO吸着脱離特性を示すグラフ図である。It is a graph which shows NO adsorption / desorption characteristic of each of Pd / CZN-Ca catalyst powder and Pd / CZN catalyst powder. Rh/CZN−Ca触媒粉末及びRh/CZN触媒粉末各々のNO吸着脱離特性を示すグラフ図である。It is a graph which shows the NO adsorption / desorption characteristic of each Rh / CZN-Ca catalyst powder and Rh / CZN catalyst powder.

符号の説明Explanation of symbols

1 担体
2 下触媒層
3 上触媒層
1 Support 2 Lower catalyst layer 3 Upper catalyst layer

Claims (2)

担体上に積層された複数の触媒層を備えている排気ガス浄化用触媒であって、
上記複数の触媒層として、CeとZrとを含む第一複合酸化物と、該第一複合酸化物に担持されたPdとを含有する下触媒層と、CeとZrとを含む第二複合酸化物と、該第二複合酸化物に担持されたRhとを含有する上触媒層とを備え、
上記第一複合酸化物及び第二複合酸化物の少なくとも一方にはCa、Sr及びMgのうちから選ばれる少なくとも1種のアルカリ土類金属が固溶していることを特徴とする排気ガス浄化用触媒。
An exhaust gas purifying catalyst comprising a plurality of catalyst layers stacked on a carrier,
As the plurality of catalyst layers, a first composite oxide containing Ce and Zr, a lower catalyst layer containing Pd supported on the first composite oxide, and a second composite oxide containing Ce and Zr And an upper catalyst layer containing Rh supported on the second composite oxide,
At least one alkaline earth metal selected from Ca, Sr, and Mg is dissolved in at least one of the first composite oxide and the second composite oxide. catalyst.
請求項1において、
上記第一複合酸化物及び第二複合酸化物は共にZrを主成分として含み、各々のCeOに対するZrOの質量比は、第一複合酸化物よりも第二複合酸化物の方が大きいことを特徴とする排気ガス浄化用触媒。
In claim 1,
Both the first composite oxide and the second composite oxide contain Zr as a main component, and the mass ratio of ZrO 2 to each CeO 2 is larger in the second composite oxide than in the first composite oxide. An exhaust gas purifying catalyst characterized by.
JP2008298390A 2008-11-21 2008-11-21 Exhaust gas purification catalyst Expired - Fee Related JP5391664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298390A JP5391664B2 (en) 2008-11-21 2008-11-21 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298390A JP5391664B2 (en) 2008-11-21 2008-11-21 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2010119994A true JP2010119994A (en) 2010-06-03
JP5391664B2 JP5391664B2 (en) 2014-01-15

Family

ID=42321807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298390A Expired - Fee Related JP5391664B2 (en) 2008-11-21 2008-11-21 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP5391664B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120349A1 (en) 2011-03-10 2012-09-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
US8617496B2 (en) 2011-01-19 2013-12-31 Basf Corporation Three way conversion catalyst with alumina-free rhodium layer
JP2014066510A (en) * 2012-09-26 2014-04-17 General Electric Co <Ge> System and method for employing catalytic reactor coatings
JP2015190427A (en) * 2014-03-28 2015-11-02 マツダ株式会社 Method and device for diagnosing deterioration in exhaust emission control system
WO2022249847A1 (en) 2021-05-28 2022-12-01 株式会社キャタラー Exhaust gas purification catalyst

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284847A (en) * 1991-03-14 1992-10-09 N E Chemcat Corp Exhaust gas purifying catalyst excellent in heat resistance and its preparation
JPH06183740A (en) * 1992-12-14 1994-07-05 Onoda Cement Co Ltd Ion conductor material
JPH11151439A (en) * 1997-11-20 1999-06-08 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JP2001079391A (en) * 1999-09-13 2001-03-27 Toyota Central Res & Dev Lab Inc Catalyst carrier and catalyst for cleaning exhaust gas
JP2002011350A (en) * 1999-05-24 2002-01-15 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2005091228A (en) * 2003-09-18 2005-04-07 Toyota Central Res & Dev Lab Inc Cell for nox detection, manufacturing method therefor, and nox detector equipped with the cell
WO2006030763A1 (en) * 2004-09-16 2006-03-23 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Cerium-zirconium-base composite oxide, process for producing the same, oxygen storage/release material using said cerium-zirconium-base composite oxide, exhaust gas purification catalyst, and exhaust gas purification method
JP2007203256A (en) * 2006-02-03 2007-08-16 Nippon Steel Materials Co Ltd Catalytic converter for cleaning exhaust gas
JP2007289921A (en) * 2006-03-28 2007-11-08 Toyota Central Res & Dev Lab Inc Exhaust-gas cleaning catalyst and its regeneration method
JP2007326735A (en) * 2006-06-07 2007-12-20 Asahi Glass Co Ltd Manufacturing method of fine particle of ceria-zirconia solid solution
WO2008000449A2 (en) * 2006-06-29 2008-01-03 Umicore Ag & Co. Kg Three-way catalyst
JP2008012410A (en) * 2006-07-04 2008-01-24 Cataler Corp Catalyst for purifying exhaust gas
WO2008024708A2 (en) * 2006-08-21 2008-02-28 Basf Catalysts Llc Layered catalyst composite for exhaust gas purification
WO2008093801A1 (en) * 2007-02-02 2008-08-07 Asahi Glass Company, Limited Method for producing solid solution fine particle
JP2008253921A (en) * 2007-04-05 2008-10-23 Cataler Corp Catalyst for cleaning exhaust gas

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284847A (en) * 1991-03-14 1992-10-09 N E Chemcat Corp Exhaust gas purifying catalyst excellent in heat resistance and its preparation
JPH06183740A (en) * 1992-12-14 1994-07-05 Onoda Cement Co Ltd Ion conductor material
JPH11151439A (en) * 1997-11-20 1999-06-08 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JP2002011350A (en) * 1999-05-24 2002-01-15 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001079391A (en) * 1999-09-13 2001-03-27 Toyota Central Res & Dev Lab Inc Catalyst carrier and catalyst for cleaning exhaust gas
JP2005091228A (en) * 2003-09-18 2005-04-07 Toyota Central Res & Dev Lab Inc Cell for nox detection, manufacturing method therefor, and nox detector equipped with the cell
WO2006030763A1 (en) * 2004-09-16 2006-03-23 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Cerium-zirconium-base composite oxide, process for producing the same, oxygen storage/release material using said cerium-zirconium-base composite oxide, exhaust gas purification catalyst, and exhaust gas purification method
JP2007203256A (en) * 2006-02-03 2007-08-16 Nippon Steel Materials Co Ltd Catalytic converter for cleaning exhaust gas
JP2007289921A (en) * 2006-03-28 2007-11-08 Toyota Central Res & Dev Lab Inc Exhaust-gas cleaning catalyst and its regeneration method
JP2007326735A (en) * 2006-06-07 2007-12-20 Asahi Glass Co Ltd Manufacturing method of fine particle of ceria-zirconia solid solution
WO2008000449A2 (en) * 2006-06-29 2008-01-03 Umicore Ag & Co. Kg Three-way catalyst
JP2008012410A (en) * 2006-07-04 2008-01-24 Cataler Corp Catalyst for purifying exhaust gas
WO2008024708A2 (en) * 2006-08-21 2008-02-28 Basf Catalysts Llc Layered catalyst composite for exhaust gas purification
WO2008093801A1 (en) * 2007-02-02 2008-08-07 Asahi Glass Company, Limited Method for producing solid solution fine particle
JP2008253921A (en) * 2007-04-05 2008-10-23 Cataler Corp Catalyst for cleaning exhaust gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617496B2 (en) 2011-01-19 2013-12-31 Basf Corporation Three way conversion catalyst with alumina-free rhodium layer
WO2012120349A1 (en) 2011-03-10 2012-09-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
US8796172B2 (en) 2011-03-10 2014-08-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
JP2014066510A (en) * 2012-09-26 2014-04-17 General Electric Co <Ge> System and method for employing catalytic reactor coatings
JP2015190427A (en) * 2014-03-28 2015-11-02 マツダ株式会社 Method and device for diagnosing deterioration in exhaust emission control system
WO2022249847A1 (en) 2021-05-28 2022-12-01 株式会社キャタラー Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP5391664B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP6206327B2 (en) Exhaust gas purification catalyst and method for producing the same
KR101391005B1 (en) Nox storage materials and traps resistant to thermal aging
JP5719294B2 (en) NOx storage materials and traps resistant to thermal aging
EP3277406B1 (en) Lean nox trap with enhanced high and low temperature performance
JP5176727B2 (en) Exhaust gas purification catalyst material manufacturing method and exhaust gas purification catalyst
JP2006334490A (en) Catalyst for cleaning exhaust gas
JP2004523686A (en) Catalyst and method for removing NOx and SOx from gas streams
JP5458973B2 (en) Exhaust gas purification catalyst
JP5218092B2 (en) Exhaust gas purification catalyst
JP6748590B2 (en) Exhaust gas purification catalyst
JP2009226349A (en) Exhaust gas purifying catalyst
JP5391664B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JP2002143683A (en) Catalyst for purification of exhaust gas and method for manufacturing the same
JP4941731B2 (en) Exhaust gas purification system
JP2016203116A (en) Catalyst for exhaust gas purification
JP2011183319A (en) Catalyst and method for cleaning exhaust gas
JP2011220123A (en) Exhaust purification catalyst
JP2006043541A (en) Catalyst for cleaning exhaust gas
JP2009233580A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP5328133B2 (en) Exhaust gas purification catalyst
JP2013072334A (en) Exhaust gas purifying device and exhaust gas purifying catalyst unit
JP2008229546A (en) Catalyst for purifying exhaust gas and its manufacturing method
JP5549453B2 (en) Exhaust gas purification catalyst
JP2010051847A (en) Catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5391664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees