WO2015173039A1 - VERFAHREN ZUR BESTIMMUNG EINES SCHLIEßZEITPUNKTES EINES KRAFTSTOFFINJEKTORS - Google Patents

VERFAHREN ZUR BESTIMMUNG EINES SCHLIEßZEITPUNKTES EINES KRAFTSTOFFINJEKTORS Download PDF

Info

Publication number
WO2015173039A1
WO2015173039A1 PCT/EP2015/059650 EP2015059650W WO2015173039A1 WO 2015173039 A1 WO2015173039 A1 WO 2015173039A1 EP 2015059650 W EP2015059650 W EP 2015059650W WO 2015173039 A1 WO2015173039 A1 WO 2015173039A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
fuel injector
piezo
valve needle
current
Prior art date
Application number
PCT/EP2015/059650
Other languages
English (en)
French (fr)
Inventor
Holger Rapp
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP15722133.4A priority Critical patent/EP3143268A1/de
Priority to KR1020167031663A priority patent/KR20170007292A/ko
Priority to CN201580025216.6A priority patent/CN106460700A/zh
Publication of WO2015173039A1 publication Critical patent/WO2015173039A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for determining a closing time of a fuel injector having a piezo actuator and a valve needle.
  • Piezo fuel injectors are used for fuel injection in internal combustion engines.
  • Piezo fuel injectors consist of a valve element, which is closed by means of a valve needle.
  • a piezo actuator is used to control the valve needle. By applying a voltage to the piezo actuator this is charged and thereby causes an opening of the valve needle. If the piezo actuator is discharged, the valve needle closes again.
  • the linear expansion of a piezo actuator influences the relationship between actuator voltage and charge. This relationship can be described in a simplified manner in that the piezoactuator absorbs an increasing charge with increasing linear expansion for a given voltage. It follows that the expansion speed of the piezo actuator influences the actuator current either at a constant voltage or a gradient of the voltage when the actuator current is constant. Theoretically, the current lift and the momentary force of the piezo actuator can be calculated from the voltage and charge of the piezo actuator at any time.
  • a correct replica of the piezo actuator includes a non-linear hysteresis model and the piezo actuators have scattering copy properties, especially with respect to these hysteresis properties.
  • the signals are from Current and voltage due to parasitic effects always superimposed noise, which can cause errors in the calculation of stroke and force.
  • the piezo actuator is used for direct actuation of a nozzle needle of a fuel! Used njektors, the time thus detected conclusions on characteristic times in the course of injection, such as the injection end or the closing time, the achievement of a Huban- stroke or the start of injection or the opening time, too.
  • the actuator current is kept constant, there is a largely linear relationship between the gradient of the voltage and the expansion speed, the transmission factor in this case being superimposed negatively, and the gradient of the voltage being superimposed on an offset dependent on the constant actuator current.
  • a sudden change in the expansion rate is therefore reflected in this case in a rapid change in the gradient of the voltage, ie, for example, a rapid bending of the temporal voltage curve.
  • This method can be used to detect a stroke stop time, as opening the valve needle is triggered by the piezo actuator charging, the stroke stop is usually reached after charging, and the actuator current is always constant at zero after the charging process is complete lies. While the valve needle is still opening, the piezo actuator continues to expand and the actuator voltage returns.
  • this method can be used to determine the closing time of the valve needle, since the closing of the valve needle is triggered by the active discharge of the piezo actuator and this closing time therefore follows the discharge process.
  • the actuator also has a negative speed and a negative actuator current flows. If the valve needle reaches the seat and is braked there, the expansion speed of the actuator also returns to zero and the negative actuator current collapses. This significant feature in the actuator current can be detected and the associated time used as the value for the closing time.
  • Determining the closing timing of the valve needle of a piezo fuel injector also allows, if the closing time before the end of a
  • a method according to the invention is suitable for determining a closing time of a fuel injector having a piezoactuator and a valve needle.
  • a discharging of the piezoelectric actuator is carried out to close the valve needle of the fuel injector, thereby detecting an extension of the piezoelectric actuator characteristic size at the piezoelectric actuator.
  • the unloading is interrupted for a time interval and, from a course of the variable characterizing the extent of the piezoactuator, the closing time is determined during the time interval.
  • a further advantage is that, in order to carry out a method according to the invention, no additional resources, in particular in the power electronics, for example in a control unit via which the fuel injector is driven, are necessary, since only a changed activation behavior is implemented. Furthermore, it can even add more energy be fed back via a driving output stage as in a method according to the prior art, whereby a load on the components is reduced.
  • a constant value, in particular zero, is specified for a current, in particular a discharge current, of the piezoactuator during the time interval.
  • a current in particular a discharge current
  • the actuator current is kept constant, there is a largely linear relationship between a gradient of the voltage and the expansion speed of the actuator.
  • a constant actuator current with zero value during the time interval can be realized in a simple manner, since this state can be produced, for example, by blocking all power electronic switches of a control device output stage.
  • the size indicative of the size of the piezoactuator detected at the piezoactuator is an electrical quantity.
  • the size which characterizes the extent of the piezoactuator and which is detected at the piezoactuator is a voltage, and in particular the closing time is determined from a characteristic feature in the course of the voltage.
  • a sudden change in the expansion rate is reflected in a rapid change in the gradient of the voltage, ie, for example, a rapid bending of the temporal voltage curve.
  • the discharging is interrupted after a predetermined period of time and / or when the variable characterizing the extent of the piezoactuator reaches a threshold value. In this way it can be ensured that unloading is not too early, i. if the valve needle is still open too far, and thus unnecessarily interrupted. Suitable durations and / or threshold values can be determined, for example, by calculations, simulations and / or test runs.
  • the threshold value is preferably predetermined or changed as a function of a fuel pressure applied in the fuel injector. This allows a, in particular temporally, more targeted interruption of the discharge depending on Pressure applied in the fuel injector, since the closing process, in particular its speed depends on the pressure.
  • the discharge is interrupted for at least one further time interval before the end of unloading.
  • the unloading process is interrupted a number of times, whereby the individual time intervals for the respective interruptions can be shorter.
  • the fuel injector is provided for injecting fuel from a high-pressure accumulator into an internal combustion engine.
  • a high-pressure accumulator into an internal combustion engine.
  • the most accurate possible recognition of the closing time and thus of the end of the injection is desirable.
  • the performance of the internal combustion engine can be optimized and pollutant emissions can be reduced.
  • An arithmetic unit according to the invention e.g. a control device of a motor vehicle is, in particular programmatically, configured to perform a method according to the invention.
  • Suitable data carriers for providing the computer program are, in particular, floppy disks, hard disks, flash memories, EEPROMs, CD-ROMs, DVDs and the like. It is also possible to download a program via computer networks (Internet, intranet, etc.).
  • FIG. 1 schematically shows a piezo fuel injector which can be operated by means of a method according to the invention in a preferred embodiment.
  • FIG. 2 shows a discharge process of a piezo fuel injector according to the prior art.
  • FIG. 3 shows a charging process of a piezo fuel injector according to the prior art.
  • FIG. 4 shows a discharge process of a piezo fuel injector according to a method according to the invention in a preferred embodiment.
  • FIG. 1 shows a schematic illustration of a fuel injector 100 embodied as a piezo fuel injector, as is known from the prior art and was also mentioned at the outset.
  • the piezo fuel injector 100 comprises a piezoactuator 110, which is controlled by a computer unit 200 designed as a control unit.
  • the control device 200 corresponding means such as, an output stage.
  • the piezoelectric actuator 1 10 controls a valve element 120 with a valve needle 130.
  • the coupling between the piezoelectric actuator 1 10 and the valve element 120 is through the reference numeral 215 is described.
  • the coupling 215 is carried out directly, ie without a so-called servo valve.
  • the piezoactuator 110 and the valve element 120 with the valve needle 130 are part of the piezo fuel injector 100. If a current I is fed into the piezoactuator 110 by the control device 200, a voltage U builds up and it builds up becomes a length of the piezo actuator
  • the piezo actuator 1 10 is changed, i. the piezo actuator 1 10 expands. By the moving piezoelectric actuator 1 10 and the valve needle 130 is moved and thereby opened.
  • FIG. 2 shows a diagram in which curves of the voltage U in V and the current I in A of a piezoactuator during a charging and discharging process, as known from the prior art and already explained above, are shown in FIG Time t are shown in s.
  • the current is controlled by clocking the control unit output stage, resulting in the sawtooth shape of the current waveform.
  • the current I here a discharge current, has a value of -9 A on average.
  • the voltage U drops starting from a value of 140 V, while the piezo actuator is shortened, ie has a negative expansion rate.
  • the piezo actuator is short-circuited via an output stage in the control unit, the current I has a constant value of about -8.5 A in the following.
  • the expansion speed of the piezoelectric actuator abruptly decreases, which can be seen on the characteristic feature M s in the course of the current I, namely a kink or a suddenly changing slope of the current waveform.
  • a piezo fuel injector 100 with direct needle control can be determined in this way the closing time t s of the valve needle 130, since the closing of the valve needle 130 is triggered by the active discharge of the piezo-actuator 1 10 and the closing time t s consequently on the discharge follows.
  • the piezoelectric actuator 1 10 has a negative expansion rate and it flows a negative current I.
  • the valve needle 130 reaches the seat and is decelerated there, so is the expansion speed of the piezo-actuator 1 10 on Zero back and the negative current I breaks down.
  • This significant feature M s in the course of the current I can be detected and the associated time can be used as the value for the closing time t s .
  • FIG. 3 shows a diagram in which characteristics of voltage U in V and current I in A of a piezoactuator during a charging process, as known from the prior art and already explained in the introduction, over time t in s are shown.
  • I a charging current
  • the current I decreases on average continuously. This course results at a constant setpoint specification due to the constant switch-off delay time of the clocking output stage. The steeper the current gradient when switching off, the higher the overshoot above the setpoint. In principle, however, the current setpoint can also be set continuously increasing or decreasing.
  • Voltage U begins to increase from 0V as the piezo actuator expands.
  • the output stage is deactivated in the control unit, the current I thus reaches a constant value of 0 A and the voltage U goes back initially, since the piezo-actuator 1 10 expands even further.
  • the expansion speed of the piezo actuator abruptly increases. which is recognizable by the characteristic feature M 0 in the course of the voltage U, namely a minimum.
  • FIG. 4 shows a diagram in which curves of voltage U in V and
  • the current I is set to a value of 0 A.
  • the value of 0 A is maintained for a time interval ⁇ t.
  • a predetermined period of time which has elapsed since the start of the discharging process, can be taken into account, after which the discharging process is interrupted.
  • the threshold value U m or the predetermined time duration can be selected such that the discharging process is almost completely completed or the
  • Valve needle is almost completely closed.
  • the corresponding values can be determined, for example, by test runs or else calculated from mathematical models or from simulations. Accordingly, during the time interval At, the movement of the piezoactuator 1 10, while the charge remains constant, only affects the voltage U. First, the piezo actuator 1 10 is still shortened, which can be seen on the rising voltage U. However, as soon as the valve needle 130 closes the piezo fuel injector, the expansion speed of the piezoactuator 1 10 returns virtually abruptly. Thus, the voltage U changes its course, it also goes back or at least does not continue to increase. This characteristic feature M s in the course of the voltage, a maximum, thus indicates the closing time t s of the valve needle 130 of the piezo fuel injector 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung eines Schließzeitpunktes (tS) eines einen Piezo-Aktor und eine Ventilnadel aufweisenden Kraftstoffinjektors, wobei zum Schließen der Ventilnadel des Kraftstoffinjektors ein Entladen des Piezo-Aktors durchgeführt wird;wobei eine eine Ausdehnung des Piezo-Aktors (110) kennzeichnende Größe (U) am Piezo-Aktor erfasst wird; wobei vor dem Ende des Entladens das Entladen für ein Zeitintervall (∆t) unterbrochen wird; und wobei aus einem Verlauf der ersten Größe (U) während des Zeitintervalls (∆t) der Schließzeitpunkt (tS) ermittelt wird

Description

Beschreibung
Titel
Verfahren zur Bestimmung eines Schließzeitpunktes eines Kraftstoffinjektors
Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung eines Schließzeitpunktes eines einen Piezo-Aktor und eine Ventilnadel aufweisenden Kraftstoffinjektors.
Stand der Technik
Kraftstoffinjektoren werden zur Kraftstoff-Einspritzung in Brennkraftmaschinen verwendet. Piezo-Kraftstoffinjektoren bestehen aus einem Ventilelement, welches mittels einer Ventilnadel geschlossen wird. Ein Piezo-Aktor dient dazu, die Ventilnadel anzusteuern. Durch das Anlegen einer Spannung an den Piezo-Aktor wird dieser geladen und dadurch ein Öffnen der Ventilnadel bewirkt. Wird der Piezo-Aktor entladen, schließt sich die Ventilnadel wieder.
Die Längenausdehnung eines Piezo-Aktors beeinflusst den Zusammenhang zwischen Aktor-Spannung und -Ladung. Dieser Zusammenhang lässt sich vereinfacht dadurch beschreiben, dass der Piezo-Aktor bei gegebener Spannung mit steigender Längenausdehnung eine zunehmende Ladung aufnimmt. Daraus ergibt sich, dass die Ausdehnungsgeschwindigkeit des Piezo-Aktors entweder bei konstanter Spannung den Aktor-Strom oder bei konstantem Aktor-Strom einen Gradienten der Spannung beeinflusst. Theoretisch lassen sich so aus Spannung und Ladung des Piezo-Aktors zu jedem Zeitpunkt der momentane Hub sowie die momentane Kraft des Piezo-Aktors berechnen.
In der Praxis treten jedoch erhebliche Einschränkungen auf. Eine korrekte Nachbildung des Piezo-Aktors beinhaltet ein nichtlineares Hysterese-Modell und die Piezo-Aktoren weisen streuende Exemplar-Eigenschaften, insbesondere auch bezüglich dieser Hysterese-Eigenschaften, auf. Außerdem sind den Signalen von Strom und Spannung aufgrund parasitärer Effekte stets Störsignale überlagert, die Fehler in der Berechnung von Hub und Kraft hervorrufen können.
In der Praxis ist es deshalb vorteilhaft, sich darauf zu beschränken, signifikante Punkte im Aktor-Bewegungsverlauf, insbesondere plötzliche Geschwindigkeitsänderungen zu detektieren. Wird der Piezo-Aktor zur direkten Betätigung einer Düsennadel eines Kraftstoff! njektors eingesetzt, lassen die so detektierten Zeitpunkte Rückschlüsse auf charakteristische Zeitpunkte im Einspritzverlauf, wie bspw. das Spritzende bzw. den Schließzeitpunkt, das Erreichen eines Huban- schlags oder den Spritzbeginn bzw. den Öffnungszeitpunkt, zu.
Für eine zuverlässige Detektion ist es zudem vorteilhaft, wenigstens eine der beiden elektrischen Größen, Strom und/oder Spannung, während des Detekti- onszeitraums konstant zu halten.
Wird der Aktor-Strom konstant gehalten, so besteht ein weitestgehend linearer Zusammenhang zwischen dem Gradienten der Spannung und der Ausdehnungsgeschwindigkeit, wobei der Übertragungsfaktor in diesem Fall negativ und dem Gradienten der Spannung ein vom konstanten Aktor-Strom abhängiger Off- set überlagert ist. Eine plötzliche Änderung der Ausdehnungsgeschwindigkeit spiegelt sich also in diesem Fall in einer raschen Änderung des Gradienten der Spannung wider, also bspw. einem raschen Abknicken des zeitlichen Spannungsverlaufs. Diese Methode kann für die Erkennung eines Hubanschlagszeitpunkts verwendet werden, da das Öffnen der Ventilnadel durch das Laden des Piezo-Aktors ausgelöst wird, der Hubanschlag üblicherweise im Anschluss an den Ladevorgang erreicht wird und der Aktor-Strom nach dem Ende des Ladevorgangs ohnehin konstant bei Null liegt. Während die Ventilnadel noch öffnet, dehnt sich auch der Piezo-Aktor weiter aus und die Aktor-Spannung geht zurück. So bald die Ventilnadel den Hubanschlag erreicht, endet auch der Spannungsrückgang und die Spannung bleibt entweder konstant oder steigt sogar wieder leicht an, sofern die Ventilnadel am Hubanschlag prellt. Wird die Aktor-Spannung konstant gehalten, so besteht weitestgehend eine Proportionalität zwischen Aktor-Strom und Ausdehnungsgeschwindigkeit des Piezo- Aktors. Eine plötzliche Änderung der Ausdehnungsgeschwindigkeit spiegelt sich also in diesem Fall in einer raschen Änderung des Aktor-Stroms wider. In einem Kraftstoffinjektor mit direkter Nadelsteuerung kann diese Methode zur Ermittlung des Schließzeitpunkts der Ventilnadel verwendet werden, da das Schließen der Ventilnadel durch das aktive Entladen des Piezo-Aktors ausgelöst wird und dieser Schließzeitpunkt folglich auf den Entladevorgang folgt. So lange die Ventilnadel schließt, weist auch der Aktor eine negative Geschwindigkeit auf und es fließt ein negativer Aktor-Strom. Erreicht die Ventilnadel den Sitz und wird dort abgebremst, so geht auch die Ausdehnungsgeschwindigkeit des Aktors auf Null zurück und der negative Aktor-Strom bricht zusammen. Dieses signifikante Merkmal im Aktor-Strom kann detektiert und der zugehörige Zeitpunkt als Wert für den Schließzeitpunkt verwendet werden.
Eine zuverlässige Erkennung des Schließzeitpunkts der Ventilnadel funktioniert jedoch nicht, wenn die Ventilnadel so schnell schließt, dass der Schließzeitpunkt noch vor Ende des Entladevorgangs liegt. Während des Entladens ist zwar theoretisch der Aktor-Strom konstant vorgegeben, allerdings wird er unter Verwen- dung einer sehr hochfrequent taktenden Endstufe auf diesen Vorgabewert eingeregelt. Dadurch enthalten sowohl das Aktor-Spannungs- als auch das Strom-Signal nennenswerte, sehr hochfrequente Anteile sowie einen hohen Anteil parasitärer Störanteile, die eine sinnvolle Detektion des Schließzeitpunkts aus der Aktor-Spannung (die ja theoretisch möglich sein müsste) verhindern.
Aus der DE 10 201 1 075 733 A1 ist ein Verfahren zum Betreiben eines Einspritzventils bekannt, bei dem eine Erkennung eines Schließzeitpunkts verbessert wird, indem ein erfasstes Signal um Störsignale bereinigt wird. Es ist daher wünschenswert, eine Möglichkeit anzugeben, die eine zuverlässige
Bestimmung des Schließzeitpunkts der Ventilnadel eines Piezo-Kraftstoffinjektors auch dann ermöglicht, wenn der Schließzeitpunkt vor dem Ende eines
Entladevorgangs des Piezo-Aktors liegt. Offenbarung der Erfindung
Erfindungsgemäß wird ein Verfahren zur Bestimmung eines Schließzeitpunktes eines Kraftstoffinjektors mit den Merkmalen des Patentanspruchs 1 vorgeschla- gen. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung.
Vorteile der Erfindung Ein erfindungsgemäßes Verfahren eignet sich zur Bestimmung eines Schließzeitpunktes eines einen Piezo-Aktor und eine Ventilnadel aufweisenden Kraftstoffinjektors. Dabei wird zum Schließen der Ventilnadel des Kraftstoffinjektors ein Entladen des Piezo-Aktors durchgeführt und dabei eine eine Ausdehnung des Piezo-Aktors kennzeichnende Größe am Piezo-Aktor erfasst. Vor dem Ende des Entladens wird das Entladen für ein Zeitintervall unterbrochen und dabei aus einem Verlauf der die Ausdehnung des Piezo-Aktors kennzeichnenden Größe während des Zeitintervalls der Schließzeitpunkt ermittelt.
Auf diese Weise wird eine Möglichkeit bereitgestellt, einen Schließzeitpunkt der Ventilnadel bei einem Kraftstoffinjektor mit Piezo-Aktor auch dann zuverlässig zu erkennen, wenn der Schließzeitpunkt vor dem Ende des Entladevorgangs liegt, da mögliche Störeinflüsse auf die erfasste Größe durch das Unterbrechen des Entladevorgangs des Piezo-Aktors vermieden oder zumindest sehr stark reduziert werden.
Weiterhin werden Auslegungsmöglichkeiten für derartige Kraftstoffinjektoren erweitert, da nicht mehr darauf geachtet werden muss, dass der Schließzeitpunkt so weit nach dem Ende des Entladevorgangs liegt, dass eine sichere Erkennung gemäß Stand der Technik möglich ist. Ein weiterer Vorteil ist, dass zur Durchfüh- rung eines erfindungsgemäßen Verfahrens keine zusätzlichen Ressourcen, insbesondere in der Leistungselektronik, etwa in einem Steuergerät, über welches der Kraftstoffinjektor angesteuert wird, nötig sind, da lediglich ein verändertes Ansteuerverhalten umgesetzt wird. Weiterhin kann sogar etwas mehr Energie über eine ansteuernde Endstufe zurückgespeist werden als bei einem Verfahre gemäß Stand der Technik, wodurch eine Belastung der Bauteile reduziert wird.
Vorzugsweise wird für einen Strom, insbesondere einen Entlade-Strom, des Piezo-Aktors während des Zeitintervalls ein konstanter Wert, insbesondere Null, vorgegeben. Wird der Aktor-Strom konstant gehalten, so besteht ein weitestgehend linearer Zusammenhang zwischen einem Gradienten der Spannung und der Ausdehnungsgeschwindigkeit des Aktors. Ein konstanter Aktor-Strom mit Wert Null während des Zeitintervalls ist auf einfache Weise zu realisieren, da sich dieser Zustand bspw. durch ein Sperren aller leistungselektronischen Schalter einer Steuergeräte-Endstufe herstellen lässt.
Vorteilhafterweise ist die die Ausdehnung des Piezo-Aktors kennzeichnende Größe, die am Piezo-Aktor erfasst wird, eine elektrische Größe.
Vorteilhafterweise ist die die Ausdehnung des Piezo-Aktors kennzeichnende Größe, die am Piezo-Aktor erfasst wird, eine Spannung und es wird insbesondere der Schließzeitpunkt aus einem charakteristischen Merkmal im Verlauf der Spannung ermittelt. Eine plötzliche Änderung der Ausdehnungsgeschwindigkeit spiegelt sich nämlich in einer raschen Änderung des Gradienten der Spannung wider, also bspw. einem raschen Abknicken des zeitlichen Spannungsverlaufs.
Es ist von Vorteil, wenn das Entladen nach einer vorgegebenen Zeitdauer und/oder wenn die die Ausdehnung des Piezo-Aktors kennzeichnende Größe einen Schwellwert erreicht, unterbrochen wird. Auf diese Weise kann gewährleistet werden, dass das Entladen nicht zu früh, d.h. wenn die Ventilnadel noch zu weit geöffnet ist, und damit unnötig unterbrochen wird. Geeignete Zeitdauern und/oder Schwellwerte können dabei bspw. durch Berechnungen, Simulationen und/oder Testläufe bestimmt werden.
Vorzugsweise wird der Schwellwert in Abhängigkeit von einem im Kraftstoffinjektor anliegenden Kraftstoff druck vorgegeben oder verändert. Dies ermöglicht eine, insbesondere zeitlich, gezieltere Unterbrechung des Entladens abhängig vom Druck, der im Kraftstoffinjektor anliegt, da der Schließvorgang, insbesondere dessen Geschwindigkeit vom Druck abhängt.
Vorteilhafterweise wird vor dem Ende des Entladens das Entladen für wenigstens ein weiteres Zeitintervall unterbrochen. Somit wird der Entladevorgang insgesamt mehrmals unterbrochen, wodurch die einzelnen Zeitintervalle für die jeweiligen Unterbrechungen kürzer ausfallen können.
Es ist von Vorteil, wenn der Kraftstoffinjektor zur Einspritzung von Kraftstoff aus einem Hochdruckspeicher in eine Brennkraftmaschine vorgesehen ist. Wie bereits eingangs erläutert, ist insbesondere bei Brennkraftmaschinen mit Hochdruckspeichern, also sog. Common-Rail-Systemen, eine möglichst genaue Erkennung des Schließzeitpunktes und somit des Einspritzendes wünschenswert. Damit kann bspw. die Leistung der Brennkraftmaschine optimiert und der Schadstoffausstoß reduziert werden.
Eine erfindungsgemäße Recheneinheit, z.B. ein Steuergerät eines Kraftfahrzeugs, ist, insbesondere programmtechnisch, dazu eingerichtet, ein erfindungsgemäßes Verfahren durchzuführen.
Auch die Implementierung des Verfahrens in Form von Software ist vorteilhaft, da dies besonders geringe Kosten verursacht, insbesondere wenn ein ausführendes Steuergerät noch für weitere Aufgaben genutzt wird und daher ohnehin vorhanden ist. Geeignete Datenträger zur Bereitstellung des Computerprogramms sind insbesondere Disketten, Festplatten, Flash-Speicher, EEPROMs, CD-ROMs, DVDs u.a.m. Auch ein Download eines Programms über Computernetze (Internet, Intranet usw.) ist möglich.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung.
Es versteht sich, dass die vorstehend genannten und die nachfolgend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, son- dem auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Die Erfindung ist anhand eines Ausführungsbeispiels in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung ausführlich beschrieben.
Kurze Beschreibung der Zeichnungen
Figur 1 zeigt schematisch einen mittels eines erfindungsgemäßen Verfahrens in einer bevorzugten Ausführungsform betreibbaren Piezo- Kraftstoffinjektor.
Figur 2 zeigt einen Entladevorgang eines Piezo-Kraftstoffinjektors gemäß Stand der Technik.
Figur 3 zeigt einen Ladevorgang eines Piezo-Kraftstoffinjektors gemäß Stand der Technik.
Figur 4 zeigt einen Entladevorgang eines Piezo-Kraftstoffinjektors gemäß eines erfindungsgemäßen Verfahrens in einer bevorzugten Ausführungsform.
Ausführungsform(en) der Erfindung
In Figur 1 ist in schematischer Darstellung ein als Piezo-Kraftstoffinjektor ausgebildeter Kraftstoffinjektor 100 gezeigt, wie er aus dem Stand der Technik bekannt ist und auch eingangs erwähnt wurde. Der Piezo-Kraftstoffinjektor 100 umfasst einen Piezo-Aktor 1 10, der von einer als Steuergerät ausgebildeten Recheneinheit 200 angesteuert wird. Dazu weist das Steuergerät 200 entsprechende Mittel wie bspw. eine Endstufe auf.
Der Piezo-Aktor 1 10 steuert ein Ventilelement 120 mit einer Ventilnadel 130. Die Kopplung zwischen dem Piezo-Aktor 1 10 und dem Ventilelement 120 ist durch das Bezugszeichen 215 beschrieben. Die Kopplung 215 ist dabei direkt ausgeführt, d.h. ohne ein sog. Servo-Ventil. Der Piezo-Aktor 1 10 und das Ventilelement 120 mit der Ventilnadel 130 sind dabei Bestandteil des Piezo-Kraftstoffinjektors 100. Wird durch das Steuergerät 200 ein Strom I in den Piezo-Aktor 1 10 einge- speist, baut sich eine Spannung U auf und es wird eine Länge des Piezo-Aktors
1 10 verändert, d.h. der Piezo-Aktor 1 10 dehnt sich aus. Durch den sich bewegenden Piezo-Aktor 1 10 wird auch die Ventilnadel 130 bewegt und dabei geöffnet. Wird das Steuergerät 200 wieder inaktiv, d.h. prägt es den Strom I = 0 A in den Piezo-Aktor 1 10 ein, so behält der Piezo-Aktor 1 10 eine konstante Ladung bei. Erst bei aktivem Einspeisen eines negativen Stroms, d.h. eines
Entladestroms, wird der Piezo-Aktor 1 10 entladen und die Ventilnadel 130 wird geschlossen.
In Figur 2 ist ein Diagramm gezeigt, in dem Verläufe der Spannung U in V und des Stroms I in A eines Piezo-Aktors bei einem Lade- und Entladevorgang, wie sie aus dem Stand der Technik bekannt sind und eingangs bereits erläutert wurden, über der Zeit t in s dargestellt sind. Die Stromregelung erfolgt durch Takten der Steuergeräte-Endstufe, wodurch sich die Sägezahnform des Stromverlaufs ergibt.
Der Entladevorgang (negativer Strom I) beginnt im dargestellten Beispiel bei einer Zeit von in etwa t = 180 s und schließt sich an den Ladevorgang (positiver Strom I) an, der hier nicht erläutert wird. Für den Ladevorgang wird auf Figur 3 verwiesen.
Der Strom I, hier ein Entlade-Strom, weist einen Wert von im Mittel -9 A auf. Die Spannung U fällt von einem Wert von 140 V ausgehend ab, während sich der Piezo-Aktor verkürzt, d.h. eine negative Ausdehnungsgeschwindigkeit aufweist. Zum Zeitpunkt t = 260 s wird der Piezo-Aktor über eine Endstufe im Steuergerät kurzgeschlossen, der Strom I weist im Folgenden einen konstanten Wert von in etwa -8,5 A auf. Zum Zeitpunkt ts geht die Ausdehnungsgeschwindigkeit des Piezo-Aktors schlagartig zurück, was an dem charakteristischen Merkmal Ms im Verlauf des Stroms I erkennbar ist, nämlich einem Knick bzw. einer sich plötzlich ändernden Steigung des Stromverlaufs. In einem Piezo-Kraftstoffinjektor 100 mit direkter Nadelsteuerung kann auf diese Art der Schließzeitpunkt ts der Ventilnadel 130 ermittelt werden, da das Schließen der Ventilnadel 130 durch das aktive Entladen des Piezo-Aktors 1 10 ausgelöst wird und der Schließzeitpunkt ts folglich auf den Entladevorgang folgt. So lange die Ventilnadel 130 schließt, weist auch der Piezo-Aktor 1 10 eine negative Ausdehnungsgeschwindigkeit auf und es fließt ein negativer Strom I. Erreicht die Ventilnadel 130 den Sitz und wird dort abgebremst, so geht auch die Ausdehnungsgeschwindigkeit des Piezo-Aktors 1 10 auf Null zurück und der negative Strom I bricht zusammen. Dieses signifikante Merkmal Ms im Verlauf des Stroms I kann detektiert und der zugehörige Zeitpunkt als Wert für den Schließzeitpunkt ts verwendet werden.
Dabei sei jedoch angemerkt, dass, wie auch bereits eingangs erwähnt, dieses Verfahren nur dann hinreichend gut funktioniert, wenn der Schließzeitpunkt ts nach dem Ende des Entladevorgangs liegt.
In Figur 3 ist ein Diagramm gezeigt, in dem Verläufe von Spannung U in V und Strom I in A eines Piezo-Aktors bei einem Ladevorgang, wie er aus dem Stand der Technik bekannt ist und eingangs bereits erläutert wurde, über der Zeit t in s dargestellt sind.
Der Piezo-Aktor wird durch einen Strom I, hier einen Lade-Strom, von einem Wert von in etwa 9 A bei t = 0 s beginnend geladen. Während des Ladens nimmt der Strom I im Mittel kontinuierlich ab. Dieser Verlauf ergibt sich bei konstanter Sollwertvorgabe auf Grund der konstanten Abschaltverzögerungszeit der taktenden Endstufe. Je steiler der Stromgradient beim Abschalten ist, desto höher ist der Überschwinger über den Sollwert. Grundsätzlich kann der Stromsollwert aber auch kontinuierlich steigend oder fallend vorgegeben werden. Die Spannung U beginnt von 0 V an zu steigen, während sich der Piezo-Aktor ausdehnt. Zum Zeitpunkt t = 300 s wird die Endstufe im Steuergerät deaktiviert, der Strom I erreicht damit einen konstanten Wert von 0 A und die Spannung U geht zunächst zurück, da sich der Piezo-Aktor 1 10 noch weiter ausdehnt. Zum Zeitpunkt t0 geht die Ausdehnungsgeschwindigkeit des Piezo-Aktors schlagartig zu- rück, was an dem charakteristischen Merkmal M0 im Verlauf der Spannung U erkennbar ist, nämlich einem Minimum.
Auf diese Weise kann ein Hubanschlagszeitpunkt t0 in einem Piezo- Kraftstoffinjektor 100 mit direkter Nadelsteuerung erkannt werden, da das Öffnen der Ventilnadel 130 durch das Laden des Piezo-Aktors 1 10 ausgelöst wird, der Hubanschlag im Anschluss an den Ladevorgang erreicht wird und der Strom I nach dem Ende des Ladevorgangs konstant bei 0 A liegt. Während die Ventilnadel 130 noch öffnet, dehnt sich auch der Piezo-Aktor 1 10 weiter aus und die Spannung U geht zurück. So bald die Ventilnadel 130 den Hubanschlag erreicht, endet auch der Spannungsrückgang und die Spannung U bleibt entweder konstant oder steigt sogar wieder leicht an, sofern die Ventilnadel 130 am Hubanschlag prellt, wie in Figur 3 zu sehen. In Figur 4 ist ein Diagramm gezeigt, in dem Verläufe von Spannung U in V und
Strom I in A eines Piezo-Aktors bei einem Entladevorgang gemäß einem erfindungsgemäßen Verfahren in einer bevorzugten Ausführungsform über der Zeit t in s dargestellt sind. Der Entladevorgang beginnt wie auch aus dem Stand der Technik bekannt.
Demzufolge entsprechen die Verläufe von Strom I und Spannung U zu Beginn des Entladevorgangs ab t = 20 μβ denen aus Figur 2, dort ab t = 170 μβ. Sobald jedoch die Spannung U den Schwellwert Um erreicht hat, wird der Strom I auf einen Wert von 0 A gesetzt. Der Wert von 0 A wird für ein Zeitintervall At beibehal- ten. Alternativ oder zusätzlich kann auch eine vorgegebene Zeitdauer, die seit dem Beginn des Entladevorgangs verstrichen ist, berücksichtigt werden, nach welcher der Entladevorgang unterbrochen wird.
Der Schwellwert Um bzw. die vorgegebene Zeitdauer können dabei so gewählt werden, dass der Entladevorgang nahezu vollständig abgeschlossen ist bzw. die
Ventilnadel nahezu vollständig geschlossen ist. Die entsprechenden Werte können bspw. durch Testläufe ermittelt oder aber aus mathematischen Modellen oder aus Simulationen berechnet werden. Während des Zeitintervalls At wirkt sich demnach die Bewegung des Piezo- Aktors 1 10 bei gleichbleibender Ladung nur auf die Spannung U aus. Zunächst verkürzt sich der Piezo-Aktor 1 10 noch, was an der ansteigenden Spannung U zu sehen ist. Sobald jedoch die Ventilnadel 130 den Piezo-Kraftstoffinjektor verschließt, geht die Ausdehnungsgeschwindigkeit des Piezo-Aktors 1 10 praktisch schlagartig zurück. Somit ändert auch die Spannung U ihren Verlauf, sie geht auch zurück oder steigt zumindest nicht weiter an. Dieses charakteristische Merkmal Ms im Verlauf der Spannung, ein Maximum, zeigt also den Schließzeitpunkt ts der Ventilnadel 130 des Piezo-Kraftstoffinjektors 100 an.
Nach Ablauf des Zeitintervalls At wird der Entladevorgang des Piezo-Aktors 1 10 fortgesetzt und beendet. Auf diese Weise kann nun ein Schließzeitpunkt ts der Ventilnadel 130 auch dann erkannt werden, wenn dieser zeitlich vor dem Ende des Entladevorgangs liegt.

Claims

Ansprüche
1 . Verfahren zur Bestimmung eines Schließzeitpunktes (ts) eines einen Piezo- Aktor (1 10) und eine Ventilnadel (130) aufweisenden Kraftstoffinjektors (100),
wobei zum Schließen der Ventilnadel (130) des Kraftstoffinjektors (100) ein Entladen des Piezo-Aktors (1 10) durchgeführt wird;
wobei eine eine Ausdehnung des Piezo-Aktors (1 10) kennzeichnende Größe (U) am Piezo-Aktor (1 10) erfasst wird;
wobei vor dem Ende des Entladens das Entladen für ein Zeitintervall (At) unterbrochen wird; und
wobei aus einem Verlauf der die Ausdehnung des Piezo-Aktors (1 10) kennzeichnenden Größe (U) während des Zeitintervalls (At) der Schließzeitpunkt (ts) ermittelt wird.
2. Verfahren nach Anspruch 1 , wobei für einen Entladestrom (I) des Piezo- Aktors (1 10) während des Zeitintervalls (At) ein konstanter Wert vorgegeben wird.
3. Verfahren nach Anspruch 2, wobei der konstante Wert des Entlade-Stroms (I) während des Zeitintervalls (At) gleich Null ist.
4. Verfahren nach einem der vorstehenden Ansprüche, wobei die die Ausdehnung des Piezo-Aktors (1 10) kennzeichnende Größe (U) eine Spannung (U) umfasst.
5. Verfahren nach einem der vorstehenden Ansprüche, wobei der Schließzeitpunkt (ts) aus einem charakteristischen Merkmal (Ms) im Verlauf der die Ausdehnung des Piezo-Aktors (1 10) kennzeichnenden Größe (U) ermittelt wird.
6. Verfahren nach Anspruch 5, wobei das charakteristische Merkmal (Ms) ein Maximum umfasst.
7. Verfahren nach einem der vorstehenden Ansprüche, wobei das Entladen nach einer vorgegebenen Zeitdauer und/oder wenn die die Ausdehnung des
Piezo-Aktors (1 10) kennzeichnende Größe (U) einen Schwellwert (Um) erreicht, unterbrochen wird.
8. Verfahren nach Anspruch 7, wobei der Schwellwert in Abhängigkeit von ei- nem im Kraftstoff! njektor (100) anliegenden Kraftstoffdruck vorgegeben oder verändert wird.
9. Verfahren nach einem der vorstehenden Ansprüche, wobei vor dem Ende des Entladens das Entladen für wenigstens ein weiteres Zeitintervall unter- brachen wird.
10. Verfahren nach einem der vorstehenden Ansprüche, wobei der Kraftstoffinjektor (100) zur Einspritzung von Kraftstoff aus einem Hochdruckspeicher in eine Brennkraftmaschine vorgesehen ist.
1 1 . Recheneinheit (200), die dazu eingerichtet ist, ein Verfahren nach einem der vorstehenden Ansprüche durchzuführen.
12. Computerprogramm, das eine Recheneinheit (200) dazu veranlasst, ein Ver- fahren nach einem der Ansprüche 1 bis 10 durchzuführen, wenn es auf der
Recheneinheit (200) ausgeführt wird.
13. Maschinenlesbares Speichermedium mit einem darauf gespeicherten Computerprogramm nach Anspruch 12.
PCT/EP2015/059650 2014-05-16 2015-05-04 VERFAHREN ZUR BESTIMMUNG EINES SCHLIEßZEITPUNKTES EINES KRAFTSTOFFINJEKTORS WO2015173039A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15722133.4A EP3143268A1 (de) 2014-05-16 2015-05-04 VERFAHREN ZUR BESTIMMUNG EINES SCHLIEßZEITPUNKTES EINES KRAFTSTOFFINJEKTORS
KR1020167031663A KR20170007292A (ko) 2014-05-16 2015-05-04 연료 분사기의 폐쇄 시점을 결정하기 위한 방법
CN201580025216.6A CN106460700A (zh) 2014-05-16 2015-05-04 用于确定燃料喷射器的关闭时刻的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014209326.0A DE102014209326A1 (de) 2014-05-16 2014-05-16 Verfahren zur Bestimmung eines Schließzeitpunktes eines Kraftstoffinjektors
DE102014209326.0 2014-05-16

Publications (1)

Publication Number Publication Date
WO2015173039A1 true WO2015173039A1 (de) 2015-11-19

Family

ID=53175464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/059650 WO2015173039A1 (de) 2014-05-16 2015-05-04 VERFAHREN ZUR BESTIMMUNG EINES SCHLIEßZEITPUNKTES EINES KRAFTSTOFFINJEKTORS

Country Status (5)

Country Link
EP (1) EP3143268A1 (de)
KR (1) KR20170007292A (de)
CN (1) CN106460700A (de)
DE (1) DE102014209326A1 (de)
WO (1) WO2015173039A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051956B1 (fr) 2016-05-31 2018-05-25 Continental Automotive France Procede de detection de la defaillance d'une solution logicielle d'estimation de l'instant d'interruption d'une injection de carburant d'un moteur a combustion interne
DE102016112541A1 (de) * 2016-07-08 2018-01-11 Man Diesel & Turbo Se Verfahren und Steuergerät zur Funktionsprüfung eines Gasdosierventils

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067073A1 (de) * 2002-02-07 2003-08-14 Volkswagen Mechatronic Gmbh & Co. Kg Verfahren und vorrichtung zur detektion von betriebszuständen einer pumpe-düse-einheit
WO2003081007A1 (de) * 2002-03-27 2003-10-02 Siemens Aktiengesellschaft Verfahren und vorrichtung zur detektion des einschlagzeitpunktes der ventilnadel eines piezo-steuerventils
WO2005059339A1 (de) * 2003-12-09 2005-06-30 Siemens Aktiengesellschaft Betriebsverfahren für einen aktor eines einspritzventils
DE102006013166A1 (de) * 2006-03-22 2007-09-27 Robert Bosch Gmbh Verfahren zur Bestimmung einer Öffnungsspannung eines piezoelektrischen Injektors
DE102006059070A1 (de) * 2006-12-14 2008-06-19 Robert Bosch Gmbh Kraftstoffeinspritzsystem und Verfahren zum Ermitteln eines Nadelhubanschlags in einem Kraftstoffeinspritzventil
DE102009000741A1 (de) * 2009-02-10 2010-08-12 Robert Bosch Gmbh Verfahren zum Bestimmen eines Nadelschließens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008027516B3 (de) * 2008-06-10 2010-04-01 Continental Automotive Gmbh Verfahren zur Einspritzmengenabweichungsdetektion und zur Korrektur einer Einspritzmenge sowie Einspritzsystem
DE102011004613A1 (de) * 2011-02-23 2012-08-23 Continental Automotive Gmbh Verfahren zur Überwachung des Zustandes eines Piezoinjektors eines Kraftstoffeinspritzsystems
DE102011075733A1 (de) 2011-05-12 2012-11-15 Robert Bosch Gmbh Verfahren zum Betreiben eines Einspritzventils einer Brennkraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067073A1 (de) * 2002-02-07 2003-08-14 Volkswagen Mechatronic Gmbh & Co. Kg Verfahren und vorrichtung zur detektion von betriebszuständen einer pumpe-düse-einheit
WO2003081007A1 (de) * 2002-03-27 2003-10-02 Siemens Aktiengesellschaft Verfahren und vorrichtung zur detektion des einschlagzeitpunktes der ventilnadel eines piezo-steuerventils
WO2005059339A1 (de) * 2003-12-09 2005-06-30 Siemens Aktiengesellschaft Betriebsverfahren für einen aktor eines einspritzventils
DE102006013166A1 (de) * 2006-03-22 2007-09-27 Robert Bosch Gmbh Verfahren zur Bestimmung einer Öffnungsspannung eines piezoelektrischen Injektors
DE102006059070A1 (de) * 2006-12-14 2008-06-19 Robert Bosch Gmbh Kraftstoffeinspritzsystem und Verfahren zum Ermitteln eines Nadelhubanschlags in einem Kraftstoffeinspritzventil
DE102009000741A1 (de) * 2009-02-10 2010-08-12 Robert Bosch Gmbh Verfahren zum Bestimmen eines Nadelschließens

Also Published As

Publication number Publication date
EP3143268A1 (de) 2017-03-22
KR20170007292A (ko) 2017-01-18
CN106460700A (zh) 2017-02-22
DE102014209326A1 (de) 2015-11-19

Similar Documents

Publication Publication Date Title
DE102011075732B4 (de) Regelverfahren für ein Einspritzventil und Einspritzsystem
DE102011005285B4 (de) Verfahren zur Bestimmung des Leerhubes eines Piezoinjektors mit direkt betätigter Düsennadel
DE112014005317B4 (de) Kraftstoffeinspritzsteuerungsvorrichtung und Kraftstoffeinspritzsystem
EP2681434B1 (de) Verfahren zum bestimmen einer eigenschaft eines kraftstoffs
WO2014131540A1 (de) Verfahren zur steuerung eines einspritzvorgangs eines magnetinjektors
DE102006058742A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzventils
DE102012204272A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems mit Regelung des Einspritzventils zur Erhöhung der Mengengenauigkeit und Kraftstoffeinspritzsystem
DE102014220795A1 (de) Verfahren zur Vorgabe eines Stroms in einem Magnetventil
WO2015074793A1 (de) Verfahren zum betreiben eines piezo-servo-injektors
EP2665906B1 (de) Verfahren zur ansteuerung eines injektors in einer kraftstoffeinspritzanlage in einer brennkraftmaschine
WO2013120797A1 (de) Verfahren zur druckregelung in einem hochdruckbereich einer brennkraftmaschine
DE112018003842B4 (de) Kraftstoffeinspritz-Steuervorrichtung und Verfahren zur Steuerung der Kraftstoffeinspritzung
WO2015173039A1 (de) VERFAHREN ZUR BESTIMMUNG EINES SCHLIEßZEITPUNKTES EINES KRAFTSTOFFINJEKTORS
EP1551065B1 (de) Verfahren und Vorrichtung zur Bestimmung der Ansteuerspannung für einen piezoelektrischen Aktor eines Einspritzventils
DE102005046933B4 (de) Verfahren zum Ansteuern eines piezobetätigten Einspritzventils
DE102014210561A1 (de) Verfahren zur Steuerung von Mehrfacheinspritzungen insbesondere bei einem Kraftstoff-Einspritzsystem einer Brennkraftmaschine
DE102005016279A1 (de) Schaltungsanordnung und Verfahren zum Betätigen eines auf- und entladbaren, elektromechanischen Stellgliedes
DE102007058540A1 (de) Verfahren und Vorrichtung zum Laden und Entladen eines piezoelektrischen Elements
EP3258091B1 (de) Verfahren zum betreiben eines aktors eines injektors sowie ein entsprechender aktor
DE102014204093A1 (de) Verfahren zum Betreiben eines piezoelektrischen Aktors und Mittel zu dessen Implementierung
DE102016209768B3 (de) Verfahren zum Bestimmen eines für den Leerhub eines Kraftstoffinjektors indikativen Werts
DE102007061946A1 (de) Verfahren zum Betreiben einer Kraftstoff-Einspritzvorrichtung
DE102014218859A1 (de) Verfahren zum Erkennen des Zeitpunktes eines charakteristischen Ereignisses
DE102014214233A1 (de) Verfahren zum Betreiben eines Einspritzventils mit direkt schaltendem Piezoaktor
DE102014200872A1 (de) Verfahren zur Steuerung einer Einspritzmenge von Kraftstoff

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15722133

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015722133

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015722133

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167031663

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE