WO2015170831A1 - 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치 - Google Patents

무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치 Download PDF

Info

Publication number
WO2015170831A1
WO2015170831A1 PCT/KR2015/003389 KR2015003389W WO2015170831A1 WO 2015170831 A1 WO2015170831 A1 WO 2015170831A1 KR 2015003389 W KR2015003389 W KR 2015003389W WO 2015170831 A1 WO2015170831 A1 WO 2015170831A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
tim
information
frame
power save
Prior art date
Application number
PCT/KR2015/003389
Other languages
English (en)
French (fr)
Inventor
박기원
류기선
김정기
조한규
김서욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020167031088A priority Critical patent/KR20170003558A/ko
Priority to US15/309,415 priority patent/US9974022B2/en
Priority to JP2017511125A priority patent/JP6322766B2/ja
Publication of WO2015170831A1 publication Critical patent/WO2015170831A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for operating based on a power save mode in a wireless local area network (WLAN).
  • WLAN wireless local area network
  • a power save mechanism (or a power save mode) may be used to increase the lifetime of a WLAN STA.
  • the STA operating based on the power saving mode may operate in an awake state or a doze state for power saving.
  • the awake state is a state in which normal operation of the STA such as transmission or reception of a frame or channel scanning is possible.
  • the doze state dramatically reduces power consumption, making it impossible to transmit or receive a frame and to perform channel scanning.
  • the STA operating in the power saving mode may be in the doze state and, if necessary, switch to the awake state to reduce power consumption.
  • the STA may operate by acquiring information on the existence of a frame pending at the AP and periodically switching to an awake state to receive the frame held at the AP.
  • the AP may obtain information on the awake state operation timing of the STA, and transmit information on the presence or absence of a frame pending to the AP according to the awake state operation timing of the STA.
  • the STA in the doze state may receive a beacon frame by periodically switching from the doze state to the awake state in order to receive information on the existence of a frame to be received from the AP.
  • the AP may inform about the existence of a frame to be transmitted to each STA based on a traffic indication map (TIM) included in the beacon frame.
  • TIM is used to inform the existence of a unicast frame to be transmitted to the STA
  • DTIM delivery traffic indication map
  • An object of the present invention is to provide a power save mode based operation method in a WLAN.
  • Still another object of the present invention is to provide an operation device based on a power save mode in a WLAN.
  • An STA station
  • An STA is a power save mode based on an access point (AP) and a traffic indication map (TIM).
  • the STA operating in the TIM based power save mode is an awake state in a doze state based on a transmission period of a beacon frame
  • Receiving a first downlink frame from the AP receiving, by the STA, operation mode configuration information instructing to switch from the TIM based power save mode to an active mode from the AP; and STA may include receiving a second downlink frame from the AP based on the active mode, wherein the first downlink frame and the second The downlink frame includes data for a live video streaming service, and the operation mode setting information may be generated based on network state information between the STA and the AP.
  • a station (station) operating in a power save mode is implemented with a radio frequency (RF) unit for transmitting or receiving a radio signal; And a processor operatively connected to the RF unit, wherein the processor performs an initial configuration procedure for setting an AP and a TIM based power save mode. And operate in the TIM-based power save mode based on the initial configuration procedure to switch from a doze state to an awake state based on a transmission period of a beacon frame, thereby performing a first downlink from the AP. Receives a frame and receives operation mode setting information indicating the transition from the TIM-based power save mode to an active mode from the AP.
  • RF radio frequency
  • the operation mode setting information may be generated based on network state information between the STA and the AP.
  • Real-time video streaming service may be possible while saving power of the STA.
  • WLAN wireless local area network
  • FIG. 2 is a conceptual diagram illustrating a scanning method in a WLAN.
  • FIG. 3 is a conceptual diagram illustrating an authentication procedure and a combined procedure performed after a scanning procedure of an AP and an STA.
  • FIG. 4 is a conceptual diagram illustrating a beacon frame-based power save method.
  • FIG. 5 is a conceptual diagram illustrating a beacon frame-based power save method.
  • FIG. 6 is a conceptual diagram illustrating a real-time video streaming method to an STA according to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram illustrating an initial operation for a TIM based power save mode operation of an STA according to an embodiment of the present invention.
  • FIG. 8 is a conceptual diagram illustrating a method of determining a network state according to an embodiment of the present invention.
  • FIG. 9 is a conceptual diagram illustrating a method of setting an operation mode of an STA by an AP according to an embodiment of the present invention.
  • FIG. 10 is a conceptual diagram illustrating a method of setting an operation mode of an STA by an AP according to an embodiment of the present invention.
  • FIG. 11 is a conceptual diagram illustrating a method of setting an operation mode of an STA according to an embodiment of the present invention.
  • FIG. 12 is a conceptual diagram illustrating a method of setting an operation mode of an STA according to an embodiment of the present invention.
  • FIG. 13 is a conceptual diagram illustrating a method of setting an operation mode of an STA according to an embodiment of the present invention.
  • FIG. 14 is a conceptual diagram illustrating a frame for setting an operation mode of an STA according to an embodiment of the present invention.
  • 15 is a conceptual diagram illustrating a PPDU format for delivering a frame according to an embodiment of the present invention.
  • 16 is a block diagram illustrating a wireless device to which an embodiment of the present invention can be applied.
  • WLAN wireless local area network
  • FIG. 1 shows the structure of an infrastructure BSS (Basic Service Set) of the Institute of Electrical and Electronic Engineers (IEEE) 802.11.
  • BSS Basic Service Set
  • IEEE Institute of Electrical and Electronic Engineers 802.11
  • the WLAN system may include one or more infrastructure BSSs 100 and 105 (hereinafter, BSS).
  • BSSs 100 and 105 are a set of APs and STAs such as an access point 125 and a STA1 (station 100-1) capable of successfully synchronizing and communicating with each other, and do not indicate a specific area.
  • the BSS 105 may include one or more joinable STAs 105-1 and 105-2 to one AP 130.
  • the BSS may include at least one STA, APs 125 and 130 that provide a distribution service, and a distribution system DS that connects a plurality of APs.
  • the distributed system 110 may connect several BSSs 100 and 105 to implement an extended service set (ESS) 140 which is an extended service set.
  • ESS 140 may be used as a term indicating one network in which one or several APs 125 and 230 are connected through the distributed system 110.
  • APs included in one ESS 140 may have the same service set identification (SSID).
  • the portal 120 may serve as a bridge for connecting the WLAN network (IEEE 802.11) with another network (for example, 802.X).
  • a network between the APs 125 and 130 and a network between the APs 125 and 130 and the STAs 100-1, 105-1 and 105-2 may be implemented. However, it may be possible to perform communication by setting up a network even between STAs without the APs 125 and 130.
  • a network that performs communication by establishing a network even between STAs without APs 125 and 130 is defined as an ad-hoc network or an independent basic service set (BSS).
  • FIG. 1 is a conceptual diagram illustrating an IBSS.
  • the IBSS is a BSS operating in an ad-hoc mode. Since IBSS does not contain an AP, there is no centralized management entity. That is, in the IBSS, the STAs 150-1, 150-2, 150-3, 155-4, and 155-5 are managed in a distributed manner. In the IBSS, all STAs 150-1, 150-2, 150-3, 155-4, and 155-5 may be mobile STAs, and access to a distributed system is not allowed, thus making a self-contained network. network).
  • a STA is any functional medium that includes a medium access control (MAC) and physical layer interface to a wireless medium that is compliant with the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard. May be used to mean both an AP and a non-AP STA (Non-AP Station).
  • MAC medium access control
  • IEEE Institute of Electrical and Electronics Engineers
  • the STA may include a mobile terminal, a wireless device, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile subscriber unit ( It may also be called various names such as a mobile subscriber unit or simply a user.
  • WTRU wireless transmit / receive unit
  • UE user equipment
  • MS mobile station
  • UE mobile subscriber unit
  • It may also be called various names such as a mobile subscriber unit or simply a user.
  • the data (or frame) transmitted from the AP to the STA is downlink data (or downlink frame), and the data (or frame) transmitted from the STA to the AP is uplink data (or uplink frame).
  • the transmission from the AP to the STA may be expressed in terms of downlink transmission, and the transmission from the STA to the AP may be expressed in terms of uplink transmission.
  • FIG. 2 is a conceptual diagram illustrating a scanning method in a WLAN.
  • a scanning method may be classified into passive scanning 200 and active scanning 250.
  • the passive scanning 200 may be performed by the beacon frame 230 periodically broadcasted by the AP 200.
  • the AP 200 of the WLAN broadcasts the beacon frame 230 to the non-AP STA 240 every specific period (for example, 100 msec).
  • the beacon frame 230 may include information about the current network.
  • the non-AP STA 240 receives the beacon frame 230 that is periodically broadcast to receive the network information to perform scanning for the AP 210 and the channel to perform the authentication / association (authentication / association) process Can be.
  • the passive scanning method 200 only needs to receive the beacon frame 230 transmitted from the AP 210 without requiring the non-AP STA 240 to transmit the frame.
  • passive scanning 200 has the advantage that the overall overhead incurred by the transmission / reception of data in the network is small.
  • scanning can be performed manually in proportion to the period of the beacon frame 230, the time taken to perform scanning is relatively increased compared to the active scanning method.
  • beacon frame For a detailed description of the beacon frame, see IEEE Draft P802.11-REVmb TM / D12, November 2011 'IEEE Standard for Information Technology Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (hereinafter referred to as IEEE 802.11) 'are described in 8.3.3.2 beacon frame.
  • IEEE 802.11 ai may additionally use other formats of beacon frames, and these beacon frames may be referred to as fast initial link setup (FILS) beacon frames.
  • a measurement pilot frame may be used in a scanning procedure as a frame including only some information of a beacon frame. Measurement pilot frames are disclosed in the IEEE 802.11 8.5.8.3 measurement pilot format.
  • a FILS discovery frame may be defined.
  • the FILS discovery frame is a frame transmitted between transmission periods of a beacon frame at each AP and may be a frame transmitted with a shorter period than the beacon frame. That is, the FILS discovery frame is a frame transmitted with a period smaller than the transmission period of the beacon frame.
  • the FILS discovery frame may include identifier information (SSID, BSSID) of the AP transmitting the detection frame.
  • the FILS discovery frame may be transmitted before the beacon frame is transmitted to the STA to allow the STA to detect in advance that the AP exists in the corresponding channel.
  • the interval at which a FILS discovery frame is transmitted from one AP is called a FILS discovery frame transmission interval.
  • the FILS discovery frame may include part of information included in the beacon frame and be transmitted.
  • the non-AP STA 290 may transmit the probe request frame 270 to the AP 260 to proactively perform scanning.
  • the AP 260 After receiving the probe request frame 270 from the non-AP STA 290, the AP 260 waits for a random time to prevent frame collision, and then includes network information in the probe response frame 280. may transmit to the non-AP STA 290. The non-AP STA 290 may obtain network information based on the received probe response frame 280 and stop the scanning process.
  • the probe request frame 270 is disclosed in IEEE 802.11 8.3.3.9 and the probe response frame 280 is disclosed in IEEE 802.11 8.3.3.10.
  • the AP and the non-AP STA may perform an authentication procedure and an association procedure.
  • FIG. 3 is a conceptual diagram illustrating an authentication procedure and a combined procedure performed after a scanning procedure of an AP and an STA.
  • an authentication procedure and a combining procedure with one of the scanned APs may be performed.
  • Authentication and association procedures can be performed, for example, via two-way handshaking.
  • the left side of FIG. 3 is a conceptual diagram illustrating an authentication and combining procedure after passive scanning, and the right side of FIG. 3 is a conceptual diagram showing an authentication and combining procedure after active scanning.
  • the authentication procedure and the association procedure are based on an authentication request frame 310 / authentication response frame 320 and an association request frame 330 regardless of whether active scanning method or passive scanning is used.
  • / Association response frame 340 may be equally performed by exchanging an association response frame 340 between the AP 300, 350 and the non-AP STA 305, 355.
  • the non-AP STAs 305 and 355 may transmit the authentication request frame 310 to the APs 300 and 350.
  • the AP 300 or 350 may transmit the authentication response frame 320 to the non-AP STAs 305 and 355 in response to the authentication request frame 310.
  • Authentication frame format is disclosed in IEEE 802.11 8.3.3.11.
  • the non-AP STAs 305 and 355 may transmit an association request frame 330 to the APs 300 and 305.
  • the APs 305 and 355 may transmit the association response frame 340 to the non-AP STAs 300 and 350.
  • the association request frame 330 transmitted to the AP includes information on the capabilities of the non-AP STAs 305 and 355. Based on the performance information of the non-AP STAs 305 and 355, the APs 300 and 350 may determine whether support for the non-AP STAs 305 and 355 is possible.
  • the APs 300 and 350 may transmit the combined response frame 340 to the non-AP STAs 305 and 355.
  • the association response frame 340 may include whether or not to accept the association request frame 340, and the capability information that can be supported by the association response frame 340.
  • Association frame format is disclosed in IEEE 802.11 8.3.3.5/8.3.3.6.
  • association procedure After the association procedure is performed between the AP and the non-AP STA, normal data transmission and reception may be performed between the AP and the non-AP STA. If the association procedure between the AP and the non-AP STA fails, the association procedure with the AP may be performed again or the association procedure with another AP may be performed again based on the reason for the association failure.
  • the STA When the STA is associated with the AP, the STA may be assigned an association identifier (AID) from the AP.
  • the AID assigned to the STA may be a unique value within one BSS, and the current AID may be one of 1 to 2007. 14bit is allocated for AID and can be used as the value of AID up to 16383. However, the value of 2008 ⁇ 16383 is reserved.
  • a power save mechanism (power save mode) is provided to increase the lifespan of an STA in a WLAN.
  • the STA operating based on the power save mode may increase the operating life of the STA by reducing power consumption of the STA while operating by switching between an awake state and a doze state.
  • An STA operating based on the active mode may maintain an awake state.
  • the active mode may include a TXOP power save mode for switching between an awake state and a doze state based on information on a transmission opportunity (TXOP), but for convenience of description, an STA operating in an active mode maintains an awake state.
  • TXOP transmission opportunity
  • the STA in the awake state may perform normal operations such as transmission or reception of a frame and channel scanning.
  • the STA in the doze state does not transmit or receive a frame and does not perform channel scanning to reduce power consumption.
  • the STA operating in the power save mode may remain in the doze state to reduce power consumption and, if necessary, switch to an awake state (or transition) to communicate with the AP.
  • the power consumption of the STA may decrease and the lifetime of the STA may also increase.
  • transmission or reception of the frame of the STA is impossible. If there is an uplink frame pending in the STA, the STA operating in the power save mode switches to the active state from the doze state, or the STA operating in the power save mode switches from the power save mode to the active mode to change the uplink frame. Can transmit to the AP. On the contrary, if there is a pending frame to be transmitted to the STA in the doze state, the AP cannot transmit the frame to the STA until the STA switches to the awake state.
  • the STA operating in the power save mode may occasionally switch from the doze state to the awake state and receive information on whether there is a frame pending for the STA from the AP.
  • the AP may transmit information on the existence of downlink data pending for the STA to the STA in consideration of the transition time to the awake state of the STA operating in the power save mode.
  • an STA operating in a power save mode may periodically switch from a doze state to an awake state to receive a beacon frame in order to receive information on the existence of a frame pending for the STA.
  • the beacon frame is a frame used for passive scanning of the STA and may include information on the capability of the AP.
  • the AP may transmit a beacon frame to the STA periodically (eg, 100 msec).
  • FIG. 4 is a conceptual diagram illustrating a beacon frame-based power save method.
  • the AP may periodically transmit a beacon frame
  • the STA operating in the power save mode may periodically switch from the doze state to the awake state to receive the beacon frame in consideration of the transmission timing of the beacon frame.
  • the beacon frame-based power save method may also be expressed in terms of a TIM-based power save mode.
  • the beacon frame may include a traffic indication map element (TIM element).
  • the TIM element may be used to transmit information on downlink data for the STA pending to the AP.
  • the TIM element may include information on downlink data pending for the STA on a bitmap basis.
  • the TIM element may be divided into a TIM or a delivery TIM (DTIM).
  • the TIM may indicate the presence of pending downlink data to be transmitted to the STA on unicast basis.
  • the DTIM may indicate the presence of pending downlink data to be transmitted on a broadcast / multicast basis.
  • FIG. 4 discloses a method in which an AP transmits a downlink frame based on an immediate response to a power saving (poll) -poll frame.
  • the STA may receive information on the existence of downlink data pending for the STA from the AP based on the TIM of the beacon frame 400.
  • the STA may transmit the PS-poll frame 410 to the AP.
  • the AP may receive the PS-poll frame 410 from the STA and transmit the downlink frame 420 to the STA in an immediate response to the PS-poll frame 410.
  • the immediate response to the PS-poll frame of the AP may be performed after receiving the PS-poll frame and short interframe space (SIFS).
  • SIFS short interframe space
  • the STA may transmit the ACK frame 430 in response to the downlink frame.
  • the STA operating in the power save mode may be switched back to the doze state (or transition).
  • FIG. 4 shows a method of transmitting a downlink frame of an AP based on a deferred response to a PS-poll frame.
  • the STA may receive information about the existence of downlink data pending for the STA from the AP based on the TIM of the beacon frame 440.
  • the STA may transmit the PS-poll frame 450 to the AP.
  • the AP may receive the PS-poll frame 450 from the STA and transmit the ACK frame 460 to the STA in response to the PS-poll frame 450.
  • the AP may transmit a downlink frame 470 including the pending downlink data to the STA after transmission of the ACK frame 460.
  • the STA may monitor the downlink frame 470 transmitted by the AP to the STA after receiving the ACK frame 460.
  • the STA operating in the power save mode may be switched (or transitioned) from the awake state to the doze state again.
  • FIG. 5 is a conceptual diagram illustrating a beacon frame-based power save method.
  • the DTIM is transmitted through the beacon frame 500.
  • Beacon frame 500 may include a DTIM.
  • the DTIM may indicate the presence of pending downlink data to be transmitted on a broadcast / multicast basis.
  • the AP may transmit a beacon frame 500 including the DTIM to the STA.
  • the STA may maintain the awake state without transmitting the PS-poll frame and monitor the transmission of the downlink frame 520.
  • the AP may transmit the downlink frame 520 to the STA through a multicast method or a broadcast method.
  • the transmission from the AP to the STA may be expressed by the term downlink transmission.
  • Each of the PPDUs, frames, and data transmitted through downlink transmission may be represented by the terms downlink PPDU, downlink frame, and downlink data.
  • the PPDU may be a data unit including a PPDU header and a physical layer service data unit (PSDU) (or MAC protocol data unit (MPDU)).
  • PSDU physical layer service data unit
  • MPDU MAC protocol data unit
  • the PPDU header may include a PHY header and a PHY preamble
  • the PSDU (or MPDU) may include or indicate a frame.
  • the PHY header may be referred to as a physical layer convergence protocol (PLCP) header in another term, and the PHY preamble may be expressed as a PLCP preamble in another term.
  • PLCP physical layer convergence protocol
  • the transmission from the STA to the AP may be expressed by the term uplink transmission.
  • Each of the PPDUs, frames, and data transmitted through uplink transmission may be expressed in terms of uplink PPDU, uplink frame, and uplink data.
  • a real-time video streaming method from the AP to the STA is disclosed.
  • the real-time video streaming from the AP to the STA is assumed and described, but the real-time video streaming from the STA to the AP in the opposite direction is also possible, and such an embodiment may also be included in the scope of the present invention.
  • Video streaming for transmission of video data may be classified into a buffered video streaming method and a live video streaming method.
  • playback of video data may be performed before completion of transmission of the entire video data.
  • New video data may be received by the STA, decoded, and played on the STA while playback of the video data received by the STA is performed for seamless video streaming.
  • video data may be received in advance (prebuffered) before playback. Therefore, even when network congestion occurs for a certain time, continuous video data may be reproduced.
  • Real-time video streaming may be divided into live interactive video transmission and live non-interactive video transmission.
  • Real-time interactive video transmission may be used for two-way communication, such as video conferencing, and real-time non-interactive video transmission may be used for transmission of video data in one direction.
  • the delay for transmitting and playing video data should be less than 150ms.
  • Delays for the transmission and playback of video data may include one-way delays, end-to-end delays, video encoding, delays for network transmission and video decoding, and the like.
  • a certain amount of lag may be allowed between the generation of video data through the capture of live events and the playback of the video data generated at the receiving end.
  • a delay enough to receive and play video data to be played back in advance is not allowed. Therefore, the quality of real-time video streaming may be determined according to network congestion.
  • video data transmitted through downlink may be data for 30 frames per second.
  • the STA may operate based on a TIM-based power save mode using a PS-poll frame.
  • TIM-based power save mode can also be expressed in terms of PS-poll power save mode.
  • the STA operating in the TIM-based power save mode may be switched to the awake state in the transmission period of the beacon frame to receive the video data from the AP and then to the doze state.
  • the STA may decode and play the received video data until transmission of the next beacon frame, and switch to the awake state again when receiving the next beacon frame to receive the video data from the AP.
  • Network congestion must be low for real-time video streaming of an STA operating in a TIM-based power save mode. If the congestion of the network is high, the STA may not receive video data from the AP due to congestion of the network after switching to an awake state, and continuous video streaming may not be possible.
  • An embodiment of the present invention discloses an operation of a TIM based power save mode or an active mode of an STA in consideration of network congestion. For example, when the network congestion is low, the STA operates in a TIM-based power save mode to transition between the awake state and the doze state. On the contrary, when the network congestion is high, the STA operates in the active mode and awake. Can be maintained.
  • the STA may perform an operation by switching the TIM based power save mode and the active mode according to the network congestion degree.
  • Network congestion may be determined based on wide area network (WAN) metric information transmitted by the AP.
  • the WAN metric information may be generated based on an access network query protocol (ANQP) and transmitted to the AP.
  • ANQP may be a protocol for transmitting information on network status to an STA (or AP).
  • the STA (or AP) may obtain information about the network state by querying the information about the network based on the ANQP.
  • the information about the network may include information about network congestion, capability of the network, authentication type, and the like.
  • the STA assumes an STA that receives a real-time video streaming service.
  • FIG. 6 is a conceptual diagram illustrating a real-time video streaming method to an STA according to an embodiment of the present invention.
  • FIG. 6 illustrates a real-time video streaming method from an AP to an STA.
  • an application for real-time video streaming may be executed on the STA.
  • the STA may detect an operation for real-time video streaming and set the operation mode to the TIM based power save mode.
  • the STA may perform an initialization procedure for operating in a TIM based power save mode (step S600).
  • An initial operation for a TIM-based power save mode operation of an STA may be performed based on transmission and reception of an ADDTS request frame (ADDTS) request frame and an ADDTS response frame between the STA and the AP. have.
  • An initial operation for the TIM based power save mode of the STA will be described in detail later.
  • the STA may switch or maintain the operation mode based on the network congestion level (step S610).
  • An AP that transmits video data to an STA based on real-time video streaming may detect and predict network congestion.
  • the AP may transmit information about network congestion to the STA.
  • the AP may transmit information about network congestion to the STA through a beacon frame.
  • the STA may determine whether to switch from the TIM-based power save mode to the active mode based on the information on network congestion. If it is determined that the network congestion is high, the STA may switch from the TIM-based power save mode to the active mode and receive video data. On the contrary, if it is determined that the network congestion is low, the STA may receive the video data from the AP by maintaining the TIM-based power save mode.
  • the AP may directly indicate an operation mode of the STA. For example, when the network congestion is high, the AP may instruct (or request) to switch the operation mode of the STA from the TIM based power save mode to the active mode. In contrast, when the network congestion is low, the AP may instruct (or request) to maintain the operating mode of the STA in the TIM based power save mode. Alternatively, the AP may transmit information about network congestion to the STA and allow the operation mode to be switched according to the operation mode switching request of the STA. This will be described later in detail.
  • FIG. 7 is a conceptual diagram illustrating an initial operation for a TIM based power save mode operation of an STA according to an embodiment of the present invention.
  • a TIM based power save mode is set based on an ADDTS request frame and an ADDTS response frame.
  • the ADDTS request frame may include a TSPEC element as an information element.
  • the TSPEC element of the ADDTS request frame is the IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY). It is described in 8.4.2.29 TSPEC element of the specification (hereinafter IEEE 802.11 spec).
  • TS info field 700 included in the TSPEC element is also disclosed in Figure 8-197 of the 8.4.2.29 TSPEC element of the IEEE 802.11 spec.
  • the STA may set the TIM-based power save mode based on the automatic power save delivery (APSD) field 710 and the schedule field 720 included in the TS info field 700.
  • APSD automatic power save delivery
  • the STA sends an ADDTS request frame including a TS info field 700 including an APSD field 710 set to 0 and a schedule field 720 set to 0 and a power save field 730 set to 1 in a MAC header to the AP.
  • Can transmit The structure of the MAC header is described in 8.2.4.1 frame control field of the IEEE 802.11 specification.
  • the STA may request an operation in the TIM based power save mode by transmitting an ADDTS request frame including the field configured as described above.
  • the AP may receive an ADDTS request frame including the field configured as described above from the STA and determine whether the STA operates in a TIM-based power save mode.
  • the AP may determine an operation of the STA in a TIM based power save mode and transmit an ADDTS response frame to the STA.
  • the ADDTS response frame may also include a TSPEC element.
  • the AP sends an ADDTS response frame including a TS info field 700 including an APSD field 710 set to 0 and a schedule field 720 set to 0, and a power save field 730 set to 1 in a MAC header to the STA. Can transmit
  • the STA may receive an ADDTS response frame from the AP and operate in a TIM based power save mode.
  • FIG. 8 is a conceptual diagram illustrating a method of determining a network state according to an embodiment of the present invention.
  • a method of determining a network state (eg, network congestion) of an STA and / or an AP is disclosed.
  • BSS load information may be used to determine the network state.
  • the AP and / or STA may determine network congestion based on BSS load information, WAN metric information, and the like.
  • the BSS load information may include channel utilization information and STA count information.
  • the channel utilization information may include information about the time when the channel is busy.
  • the channel utilization information may include information about a ratio of time when the channel is busy sensed during a time corresponding to a specific beacon transmission interval.
  • the STA count information may include information on the total number of STAs coupled to the current BSS.
  • the WAN metric information includes WAN information 800, downlink speed information 810, uplink speed information 820, downlink load information 830, uplink load information 840, and local measurement duration information 850. It may include.
  • the WAN information 800 may include information about an up / down / test link status and a symmetric link.
  • the downlink speed information 810 may include information about the downlink speed in the WAN.
  • the uplink speed information 820 may include information about uplink speed in the WAN.
  • the downlink load information 830 may include information about a rate at which WAN downlink is used.
  • the uplink load information 840 may include information about a rate at which WAN uplink is used.
  • the local measurement duration information 850 may include information on the duration of the downlink load and the uplink load.
  • the AP may transmit the above BSS load information and / or WAN metric information to the STA through a beacon frame.
  • the STA may determine the network congestion based on the BSS load information and / or the WAN metric information and determine the transition between the TIM based power save mode and the active mode.
  • the AP may determine network congestion based on BSS load information and / or WAN metric information and determine switching between a TIM based power save mode and an active mode.
  • the AP may determine network congestion based on the BSS load information as follows.
  • the AP may be said to have a high network congestion rate when the ratio of time when the channel acquired based on the channel utilization information is busy is more than a predetermined threshold.
  • the AP may say that network congestion is high when the total number of STAs coupled to the current BSS acquired based on the STA count information is greater than or equal to a predetermined threshold value.
  • the AP may determine network congestion based on WAN metric information as follows.
  • each of the downlink speed information and the uplink speed obtained based on the downlink speed information uplink speed information is greater than each of the set threshold values, and the downlink load information and the uplink load information are both If it is smaller than each of the set thresholds, it may be determined that network congestion is low.
  • the AP is said to have low network congestion when the downlink speed obtained based on the downlink speed information is greater than each of the set thresholds and the downlink load information is less than each of the set thresholds. You can judge.
  • Each of the thresholds for determining network congestion may be set to a fixed value in advance in the AP, or may be a value set differently according to implementation in the AP.
  • FIG. 9 is a conceptual diagram illustrating a method of setting an operation mode of an STA by an AP according to an embodiment of the present invention.
  • FIG. 9 a method of setting an operating state (TIM-based power save mode or active mode) of an STA by an AP is disclosed.
  • the AP may set an operation state of the STA through a power management bitmap 920 corresponding to the TIM bitmap 900.
  • Each bit included in the power management bitmap 920 may correspond to each bit of the TIM bitmap 900 indicating information about data held for the STA.
  • the power save mode eg, For example, the operation of the TIM based power save mode
  • an 8-bit TIM bitmap 900 and an 8-bit power management bitmap 920 corresponding to the 8-bit TIM bitmap 900 may be defined.
  • the 8-bit TIM bitmap 900 may indicate the presence of pending downlink data for each of STA1 to STA8 as '11110000'.
  • the 8-bit TIM bitmap 900 may indicate downlink data pending on each of the STA1, the STA2, the STA3, and the STA4.
  • the 8-bit power management bitmap 920 may correspond to the TIM bitmap 900 as '11001111' and may indicate an operation state of each of the STA1 to STA8. That is, the 8-bit power management bitmap 920 may indicate that STA1 and STA2 operate in the power save mode and STA3 and STA4 operate in the active mode among the STA1 to STA4 having the pending downlink data.
  • the AP may generate an 8-bit TIM bitmap 900 in consideration of existence of downlink data pending for each of STA1 to STA8.
  • the AP is a power management bitmap 920 for setting an operation state of each STA (STA1 to STA4) having the pending downlink data and each STA having the pending downlink data in consideration of channel congestion between the APs. Can be generated.
  • the STA1 and STA2 may be instructed to perform the operation in the power save mode through the power management bitmap 920.
  • the STA3 and STA4 may be instructed to perform the operation in the active mode through the power management bitmap 920.
  • the AP may set to operate in a power save mode for STAs (eg, STA5 to STA8) that do not include data held through the power management bitmap 920.
  • STAs eg, STA5 to STA8
  • the power management bitmap 920 may be used for setting an operation mode of an STA indicated to include pending downlink data based on the TIM bitmap 900.
  • the power management bitmap 920 is set to '1100' as 4 bits, and the power management bitmap 920 '1100' includes downlink data that is pending based on the TIM bitmap 900. It may correspond to each of the indicated STA1 to STA4.
  • the STA may receive the TIM bitmap 900 and the power management bitmap 920 and set an operating state.
  • the STA having the pending uplink data to be transmitted to the AP through the uplink may maintain the active mode and transmit the pending uplink data to the AP even when the STA is set to the power save mode.
  • FIG. 10 is a conceptual diagram illustrating a method of setting an operation mode of an STA by an AP according to an embodiment of the present invention.
  • FIG. 10 a method of setting an operation mode (TIM-based power save mode or active mode) of an STA by an AP is disclosed.
  • a virtual TIM bitmap 1000 that receives video data based on real-time video streaming is defined.
  • the AP may set an operation mode of an STA through a power management bitmap 1020 corresponding to the virtual TIM bitmap 1000.
  • the virtual TIM bitmap 1000 may be a bitmap defined separately for an STA that receives data streamed in real time video.
  • each of the bits of the virtual TIM bitmap 1000 may correspond to each of a plurality of STAs receiving a real-time video streaming service.
  • an STA that receives a real time video streaming service may be expressed in terms of a real time streaming service STA.
  • the virtual TIM bitmap 1000 may include information about presence or absence of pending downlink data for each of the real-time streaming service STAs.
  • the power management bitmap 1020 may include information for setting an operation mode of each of the real-time streaming service STAs corresponding to the virtual TIM bitmap 1000.
  • the virtual TIM bitmap 1000 may be '01110001'.
  • the virtual TIM bitmap 1000 may indicate the presence of pending downlink data for each of the real-time streaming services STA2, STA3, STA4, and STA8.
  • the power management bitmap 1020 may be '00110000'.
  • the power management bitmap 1020 may instruct an operation of the real time streaming services STA3 and STA4 in a power save mode and may instruct an operation of the real time streaming services STA2 and STA8 in an active mode.
  • the AP may generate a power management bitmap 1020 based on information on channel congestion between the real-time streaming service STA and the AP.
  • the AP determines an operation mode of each of the real-time streaming service STAs having the downlink data and the real-time streaming service STAs having the downlink data pending based on information about the network state (eg, network congestion) between the APs. Can be set.
  • the network state eg, network congestion
  • FIG. 11 is a conceptual diagram illustrating a method of setting an operation mode of an STA according to an embodiment of the present invention.
  • an STA receives a real-time video streaming service from an AP by setting an initial operation mode to a TIM-based power save mode, and the STA transitions from the TIM-based power save mode to an active mode by the AP.
  • the STA may transmit an ADDTS request frame to the AP to set the initial operation mode to the TIM based power save mode (step S1100).
  • the ADDTS request frame may include an APSD field set to 0 on the TSPEC information element, a scheduling field set to 0, and a power management field set to 1 included on the MAC header. Based on the setting of each field included in the ADDTS request frame as described above, the STA may request the TIM based power save mode to the AP as an initial operation mode.
  • the AP may transmit an ADDTS response frame to the STA in response to the ADDTS request frame (step S1120).
  • the STA that transmits the ADDTS request frame may obtain information on whether the STA permits the TIM based power save mode operation through the ADDTS response frame transmitted by the AP.
  • the ADDTS response frame transmitted by the AP to allow TIM based power save mode operation includes an APSD field set to 0 on the TSPEC information element, a scheduling field set to 0, and a power management field set to 1 included on the MAC header. It may include.
  • the STA may receive the ADDTS response frame and operate in a TIM based power save mode to receive a real-time video streaming service.
  • the AP may receive WAN metric information based on ANQP while providing a real time video streaming service to the STA.
  • the AP may determine whether the STA maintains the TIM-based power save mode by determining a network state (eg, network congestion) based on the received WAN metric information.
  • a network state eg, network congestion
  • the AP may determine to switch from the TIM based power save mode of the STA to the active mode. On the contrary, if it is possible to maintain the TIM based power save mode of the STA due to low network congestion, the AP may determine to maintain the TIM based power save mode of the STA.
  • the AP may transmit, to the STA, information on switching to the active mode of the STA or maintaining the TIM based power save mode based on the power management bitmap (step S1140).
  • the AP determines the transition from the TIM based power save mode of the STA to the active mode due to high network congestion.
  • the AP may transmit a power management bitmap corresponding to the TIM bitmap or a power management bitmap corresponding to the virtual bitmap through the beacon frame.
  • the power management bitmap may include bit information for switching from the power save mode of the STA to the active mode.
  • the STA may switch from the TIM based power save mode to the active mode.
  • the STA may receive a real time video streaming service from the AP in the active mode.
  • FIG. 12 is a conceptual diagram illustrating a method of setting an operation mode of an STA according to an embodiment of the present invention.
  • FIG. 12 a method in which a STA starts a TIM based power save mode to receive a real time video streaming service from an AP and transitions from the TIM based power save mode to an active mode by the AP is disclosed.
  • FIG. 12 discloses a case in which an initial operation mode of the STA is performed based on a beacon frame transmitted by the AP.
  • the STA may receive network state information from the AP (step S1200).
  • the AP may receive WAN metric information based on the ANQP, and the STA may receive WAN metric information through a beacon frame transmitted by the AP.
  • the STA may operate in a TIM-based power save mode to receive a real time streaming service.
  • the STA may operate in an active mode to receive a real time streaming service.
  • FIG. 12 a case where a STA receives a real-time video streaming service by setting an initial operation mode to a TIM based power save mode is disclosed.
  • the STA may transmit the ADDTS request frame to the AP in order to receive the real-time video streaming service by setting the initial operation mode to the TIM based power save mode (step S1220).
  • the ADDTS request frame may include an APSD field set to 0 on the TSPEC information element, a scheduling field set to 0, and a power management field set to 1 included on the MAC header. Based on the setting of the field included in the ADDTS request frame as described above, the STA may request the TIM based power save mode to the AP as an initial operation mode.
  • the AP may transmit an ADDTS response frame to the STA in response to the ADDTS request frame (step S1240).
  • the STA may transmit information on whether the STA permits the TIM based power save mode operation through the ADDTS response frame.
  • the ADDTS response frame transmitted by the AP to allow TIM based power save mode operation includes an APSD field set to 0 on the TSPEC information element, a scheduling field set to 0, and a power management field set to 1 included on the MAC header. It may include.
  • the STA may receive the ADDTS response frame and operate in a TIM based power save mode to receive a real-time video streaming service.
  • the AP may receive WAN metric information based on ANQP while providing a real time video streaming service to the STA.
  • the AP may determine whether the STA maintains the TIM-based power save mode by determining a network state (eg, network congestion) based on the received WAN metric information.
  • a network state eg, network congestion
  • the AP may determine the transition from the TIM based power save mode of the STA to the active mode. On the contrary, if it is possible to maintain the TIM based power save mode due to low network congestion, the AP may determine to maintain the TIM based power save mode of the STA.
  • the AP may transmit information to the STA about switching to the active mode of the STA or maintaining the TIM based power save mode based on the power management bitmap.
  • the AP determines the operation mode of the STA from the TIM based power save mode to the active mode due to high network congestion.
  • the AP may transmit a power management bitmap corresponding to the TIM bitmap or a power management bitmap corresponding to the virtual bitmap through the beacon frame (step S1260).
  • the power management bitmap may include bit information for switching from the power save mode of the STA to the active mode.
  • the STA may switch from the TIM based power save mode to the active mode.
  • the STA may receive a real time video streaming service from the AP based on the active mode.
  • an STA receives WAN metric information through a beacon frame in order to receive a real time streaming service.
  • the STA may receive the WAN metric information through the generic advertisement service (GAS) protocol instead of the beacon frame.
  • GAS may be used to convey information about the external network to the STA.
  • the GAS may be used for obtaining information about the STA's network service before association of the STA to the AP.
  • the STA may transmit a GAS query frame to the AP and the AP may transmit a GAS response frame to the STA.
  • the GAS response frame transmitted by the AP may include WAN metric information.
  • FIG. 13 is a conceptual diagram illustrating a method of setting an operation mode of an STA according to an embodiment of the present invention.
  • FIG. 13 a method of switching an STA from a active mode to a TIM-based power save mode while receiving a real-time streaming service is disclosed.
  • the STA may receive network state information from the AP (step S1300).
  • the AP may receive WAN metric information based on the ANQP, and the STA may receive WAN metric information through a beacon frame transmitted by the AP.
  • the AP may receive WAN metric information based on ANQP while providing a real time streaming service to the STA.
  • the AP may determine whether the STA can maintain the active mode by determining a network state (eg, network congestion) based on the received WAN metric information.
  • a network state eg, network congestion
  • the AP may determine to maintain the active mode of the STA. In contrast, when the network congestion is low, the AP may determine to switch from the active mode of the STA to the TIM based power save mode.
  • the AP may transmit, to the STA, information on maintaining the active mode of the STA or switching to the TIM based power save mode based on the power management bitmap.
  • the AP may transmit a power management bitmap corresponding to the TIM bitmap or a power management bitmap corresponding to the virtual bitmap through the beacon frame.
  • the power management bitmap may include bit information for switching from the active mode of the STA to the power save mode.
  • the STA may switch from the active mode to the power save mode.
  • the STA may transmit the ADDTS request frame to the AP in order to receive the real-time video streaming service by setting the initial operation mode to the TIM based power save mode (step S1320).
  • the ADDTS request frame may include an APSD field set to 0 on the TSPEC information element, a scheduling field set to 0, and a power management field set to 1 included on the MAC header. Based on the setting of the field included in the ADDTS request frame as described above, the STA may request the TIM based power save mode to the AP as an initial operation mode.
  • the AP may transmit an ADDTS response frame to the STA in response to the ADDTS request frame (step S1340).
  • the STA may transmit information on whether the STA permits the TIM based power save mode operation through the ADDTS response frame.
  • the ADDTS response frame transmitted by the AP to allow TIM based power save mode operation includes an APSD field set to 0 on the TSPEC information element, a scheduling field set to 0, and a power management field set to 1 included on the MAC header. It may include.
  • the STA may receive the ADDTS response frame and operate in a TIM based power save mode to receive a real-time video streaming service.
  • the STA may receive a live streaming service from the AP in the power save mode.
  • FIG. 14 is a conceptual diagram illustrating a frame for setting an operation mode of an STA according to an embodiment of the present invention.
  • a separate frame may be defined instead of the ADDTS request frame and the ADDTS response frame for the TIM based power save mode.
  • an operation mode request frame and an operation mode response frame which are available for an initial operation mode setting of the STA and a request for changing the operation mode are disclosed.
  • FIG. 14 is a conceptual diagram illustrating an operation mode request frame.
  • the operation mode request frame may include a request operation mode field 1400, a reception data category field 1410, and a reception condition field 1420.
  • the request operation mode field 1400 may include information on a requesting operation mode.
  • the requesting mode of operation may be a TIM based power save mode or an active mode.
  • the value of the request operation mode field 1400 is 0, a TIM based power save mode is requested, and when the value of the request operation mode field 1400 is 1, an active mode may be requested.
  • the request operation mode field 1400 may be used for requesting various operation modes of the STA as well as a TIM based power save mode and an active mode.
  • the received data category field 1410 may include information on characteristics of data that the STA wants to receive. For example, the received data category field 1410 may include information on whether data that the STA intends to receive is real-time video streaming data or buffered video streaming data. Alternatively, the received data category field 1410 may include information about an access category of data received on the STA. An access category of data received on the STA may be classified into one of an access category (AC) _VO (voice), an AC_VI (video), an AC_BK (background), or an AC_BE (best effort).
  • AC access category
  • AC_VO voice
  • AC_VI video
  • AC_BK background
  • AC_BE best effort
  • the reception condition field 1420 may include information on a reception condition of data transmitted to the STA for an application executed in the STA.
  • the reception condition field 1420 may include information about a threshold size of a reception delay, a threshold error rate of received data, or a critical channel state for normal operation of the application.
  • FIG. 14 is a conceptual diagram illustrating an operation mode response frame.
  • the operation mode response frame may include an operation mode setting field 1450, a transmission data category field 1460, and a transmission condition field 1470.
  • the operation mode setting field 1450 may include information on whether to allow setting of a requested operation mode with respect to an operation mode request of the STA. When the operation mode of the requested STA is allowed based on the operation mode setting field 1450, the operation mode setting field 1450 is set to 1 and the operation mode of the requested STA based on the operation mode setting field 1450. If is not allowed, the operation mode setting field 1450 may be set to zero.
  • the transmission data category field 1460 may include information on characteristics of data to be transmitted to the STA.
  • the transmission data category field 1460 may include information on whether data to be transmitted by the AP is real-time video streaming data or buffered video streaming data.
  • the transmission data category field 1460 may include information about an access category of data to be transmitted on the STA.
  • An access category of data received on the STA may be classified into one of an access category (AC) _VO (voice), an AC_VI (video), an AC_BK (background), or an AC_BE (best effort).
  • the transmission condition field 1470 may include information about a transmission condition of data transmitted to the STA.
  • the transmission condition field 1470 may include information about an expected delay of the data to be transmitted, an expected error rate, or an expected channel state for data transmission.
  • an operation mode of the STA may be set based on transmission and reception of the operation mode request frame and the operation mode response frame.
  • 15 is a conceptual diagram illustrating a PPDU format for delivering a frame according to an embodiment of the present invention.
  • the PPDU may include a PPDU header and a MAC protocol data unit (MPDU) (or a physical layer service data unit (PSDU)).
  • MPDU MAC protocol data unit
  • PSDU physical layer service data unit
  • the frame may correspond to an MPDU.
  • the PPDU header in the PPDU format may be used to mean a PHY header and a PHY preamble of the PPDU.
  • the PPDU format disclosed in FIG. 15 delivers the aforementioned frames (eg, ADDTS request frame, ADDTS response frame, beacon frame, downlink frame for real-time video streaming service, operation mode request frame, operation mode response frame, etc.).
  • aforementioned frames eg, ADDTS request frame, ADDTS response frame, beacon frame, downlink frame for real-time video streaming service, operation mode request frame, operation mode response frame, etc..
  • the PPDU header of the downlink PPDU may include a legacy short training field (L-STF), a legacy long training field (L-LTF), a legacy-signal (L-SIG), and an HE-SIG A.
  • L-STF legacy short training field
  • L-LTF legacy long training field
  • L-SIG legacy-signal
  • HE-SIG A high efficiency-signal A
  • HE-STF high efficiency-short training field
  • HE-LTF high efficiency-long training field
  • HE-SIG B high efficiency-signal-B
  • the L-STF 1500 may include a short training orthogonal frequency division multiplexing symbol.
  • the L-STF 1500 may be used for frame detection, automatic gain control (AGC), diversity detection, and coarse frequency / time synchronization.
  • AGC automatic gain control
  • the L-LTF 1510 may include a long training orthogonal frequency division multiplexing symbol.
  • the L-LTF 1510 may be used for fine frequency / time synchronization and channel prediction.
  • the L-SIG 1520 may be used to transmit control information.
  • the L-SIG 1520 may include information about a data rate and a data length.
  • the HE-SIG A 1530 may include identification information of a STA for indicating a target STA to receive a downlink PPDU.
  • the STA may determine whether to receive the information included in the HE-SIG A 1530 based on the identifier information of the target STA.
  • the STA may perform additional decoding on the downlink PPDU.
  • the HE-SIG A 1530 may be configured to receive downlink data (frequency resources (or subbands) based on orthogonal frequency division multiplexing (OFDMA) or space time stream resources (MIMO (multiple input multiple output) based). Information may be included).
  • OFDMA orthogonal frequency division multiplexing
  • MIMO multiple input multiple output
  • the HE-SIG A 1530 modulates MCS for color bit information, bandwidth information, tail bits, CRC bits, and HE-SIG B 1560 for BSS identification. and coding scheme), symbol number information for the HE-SIG B 1560, and cyclic prefix (CP) (or guard interval (GI)) length information.
  • CP cyclic prefix
  • GI guard interval
  • the HE-SIG A 1530 may include information on a request operation mode of the STA, information on a characteristic of the request data of the STA, and information on a reception condition of the STA.
  • the HE-SIG A 1530 may include information on an operation mode of an STA configured by the AP and information on characteristics of transmission data transmitted by the AP.
  • the HE-STF 1540 may be used to improve automatic gain control estimation in a MIMO environment or an OFDMA environment.
  • the HE-LTF 1550 may be used to estimate a channel in a MIMO environment or an OFDMA environment.
  • the HE-SIG B 1560 may include information about a length MCS (modulation and coding scheme) of a physical layer service data unit (PSDU) for each STA, and tail bits.
  • MCS modulation and coding scheme
  • PSDU physical layer service data unit
  • the size of the inverse fast fourier transform (IFFT) applied to the fields after the HE-STF 1540 and the HE-STF 1540 and the size of the IFFT applied to the field before the HE-STF 1540 may be different.
  • the size of the IFFT applied to the field after the HE-STF 1540 and the HE-STF 1540 may be four times larger than the size of the IFFT applied to the field before the HE-STF 1540.
  • the STA may be determined whether to decode the field.
  • the STA when the identifier information of the target STA included in the HE-SIG A 1530 indicates the identifier of the STA, the STA is based on the FFT size changed from the fields after the HE-STF 1540 and the HE-STF 1540. Decoding can be performed.
  • the STA may stop decoding and configure a network allocation vector (NAV).
  • NAV network allocation vector
  • the cyclic prefix (CP) of the HE-STF 1540 may have a larger size than the CP of another field, and during this CP period, the STA may perform decoding on the downlink PPDU by changing the FFT size.
  • the order of fields constituting the format of the PPDU disclosed at the top of FIG. 15 may vary.
  • the HE-SIG B 1515 of the HE portion may be located immediately after the HE-SIG A 1505, as disclosed in the interruption of FIG. 15.
  • the STA may decode up to the HE-SIG A 1505 and the HE-SIG B 1515, receive necessary control information, and set NAV.
  • the size of the IFFT applied to the fields after the HE-STF 1525 and the HE-STF 1525 may be different from the size of the IFFT applied to the fields before the HE-STF 1525.
  • the STA may receive the HE-SIG A 1505 and the HE-SIG B 1515. If reception of the downlink PPDU is indicated by the identifier of the target STA of the HE-SIG A 1505, the STA may perform decoding on the downlink PPDU by changing the FFT size from the HE-STF 1525. On the contrary, when the STA receives the HE-SIG A 1405 and is not instructed to receive the downlink PPDU based on the HE-SIG A 1505, the STA may configure the NAV.
  • a downlink PPDU format for downlink (DL) multi-user (MU) transmission is disclosed.
  • the downlink PPDU may be transmitted to the STA through different downlink transmission resources (frequency resources or spatial streams) based on OFDMA. That is, downlink data may be transmitted to a plurality of STAs through a plurality of subbands based on a downlink PPDU format for DL MU transmission.
  • the AP may transmit downlink data to the plurality of STAs based on the DL MU downlink PPDU format.
  • the previous field of the HE-SIG B 1545 on the downlink PPDU may be transmitted in a duplicated form in each of different downlink transmission resources.
  • the HE-SIG B 1545 may be transmitted in encoded form on all transmission resources.
  • the field after the HE-SIG B 1545 may include individual information for each of the plurality of STAs receiving the downlink PPDU.
  • the CRC for each field may be included in the downlink PPDU.
  • the CRC for each field may not be included in the downlink PPDU.
  • the downlink PPDU format for DL MU transmission can reduce the CRC overhead of the downlink frame by using the HE-SIG B 1545 encoded in the entire transmission resource.
  • the downlink PPDU format for DL MU transmission may be encoded based on an IFFT size different from the field before the HE-STF 1555 and the field after the HE-STF 1555. Accordingly, when the STA receives the HE-SIG A 1535 and the HE-SIG B 1545 and is instructed to receive the downlink PPDU based on the HE-SIG A 1535, the STA starts from the HE-STF 1555. Decoding of the downlink PPDU may be performed by changing the FFT size.
  • 16 is a block diagram illustrating a wireless device to which an embodiment of the present invention can be applied.
  • the wireless device 1600 may be an STA capable of implementing the above-described embodiment and may be an AP 1600 or a non-AP STA (or STA) 1650.
  • the AP 1600 includes a processor 1610, a memory 1620, and an RF unit 1630.
  • the RF unit 1630 may be connected to the processor 1610 to transmit / receive a radio signal.
  • the processor 1610 may implement the functions, processes, and / or methods proposed in the present invention.
  • the processor 1610 may be implemented to perform the operation of the wireless device according to the embodiment of the present invention described above.
  • the processor may perform an operation of the wireless device disclosed in the embodiment of FIGS. 1 to 15.
  • the processor 1610 may obtain network state information and transmit operation mode setting information for setting an operation mode of the STA based on the network state information.
  • the operation mode setting information may include a power management bitmap.
  • the processor 1610 receives a request for setting the TIM based power save mode of the STA and determines whether to allow the setting request for the TIM based power save mode to include whether to permit the operation based on the TIM based power save mode. You can send a response frame.
  • the STA 1650 includes a processor 1660, a memory 1670, and a radio frequency unit (RF) 1680.
  • RF radio frequency unit
  • the RF unit 1680 may be connected to the processor 1660 to transmit / receive a radio signal.
  • the processor 1660 may implement the functions, processes, and / or methods proposed in the present invention.
  • the processor 1660 may be implemented to perform the operation of the wireless device according to the embodiment of the present invention described above.
  • the processor may perform the operation of the wireless device in the embodiment of FIGS. 1 to 15.
  • the processor 1660 performs an initial setup procedure for setting the TIM-based power save mode with the AP, and operates in the TIM-based power save mode based on the initial setup procedure, based on the transmission period of the beacon frame. In the doze state, an awake state is switched to receive the first downlink frame from the AP.
  • the processor 1660 may be configured to receive operation mode setting information indicating the transition from the TIM based power save mode to the active mode from the AP, and receive a second downlink frame from the AP based on the active mode.
  • the first downlink frame and the second downlink frame may include data for a live video streaming service, and operation mode setting information may be generated based on network state information between the STA and the AP. .
  • the operation mode setting information may be transmitted based on a power management bitmap on a beacon frame transmitted by the AP.
  • Each of the plurality of bits included in the power management bitmap indicates whether an operation mode of each of the plurality of STAs including the STA coupled to the AP is set to a TIM-based power save mode or an active mode, and the power management bitmap
  • Each of the plurality of bits included in the T1 bitmap corresponds to each of the plurality of bits included in the TIM bitmap, and the TIM bitmap may indicate whether or not there is pending downlink data for each of the plurality of STAs.
  • Network status information is obtained by the AP based on ANQP, the network status information includes WAN metric information, the WAN metric information about the transmission rate of data transmitted over the channel between the AP and the STA and the load of the channel May contain information.
  • Processors 1610 and 1660 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memories 1620 and 1670 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media and / or other storage devices.
  • the RF unit 1630 and 1680 may include one or more antennas for transmitting and / or receiving a wireless signal.
  • Modules may be stored in memories 1620 and 1670 and executed by processors 1610 and 1660.
  • the memories 1620 and 1670 may be inside or outside the processors 1610 and 1660, and may be connected to the processors 1610 and 1660 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치가 개시되어 있다. 무선랜에서 파워 세이브 모드 기반의 동작 방법은 STA이 AP와 TIM 기반 파워 세이브 모드의 설정을 위한 초기 설정 절차를 수행하는 단계, STA이 초기 설정 절차를 기반으로 TIM 기반 파워 세이브 모드로 동작하여 비콘 프레임의 전송 주기를 기반으로 도즈 상태에서 어웨이크 상태로 전환되어 AP로부터 제1 하향링크 프레임을 수신하는 단계, STA이 AP로부터 TIM 기반 파워 세이브 모드에서 액티브 모드로의 전환을 지시하는 동작 모드 설정 정보를 수신하는 단계와 STA이 액티브 모드를 기반으로 AP로부터 제2 하향링크 프레임을 수신하는 단계를 포함할 수 있다.

Description

무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
본 발명은 무선 통신에 관한 것으로 보다 상세하게는 무선랜(wireless local area network, WLAN)에서 파워 세이브 모드를 기반으로 동작하는 방법 및 장치에 관한 것이다.
IEEE 802.11 표준에서는 무선랜 STA(station)의 수명을 증가시키기 위하여 파워 절약 메커니즘(power save mechanism)(또는 파워 절약 모드(power save mode))이 사용될 수 있다. 파워 절약 모드를 기반으로 동작하는 STA은 파워 절약을 위하여 어웨이크 상태(awake state) 또는 도즈 상태(doze state)로 동작할 수 있다. 어웨이크 상태는 프레임의 송신 또는 수신이나 채널 스캐닝과 같은 STA의 정상 동작이 가능한 상태이다. 반면, 도즈 상태는 전력 소모를 극단적으로 줄여서 프레임의 송신 또는 수신이 불가능하며 채널 스캐닝도 불가능한 상태이다. 파워 절약 모드로 동작하는 STA은 도즈 상태에 있다가 필요한 경우, 어웨이크 상태로 전환하여 전력 소모를 줄일 수 있다.
STA이 도즈 상태에서 오래 동작하는 경우, STA의 전력 소모가 줄어든다. 따라서, STA의 수명이 늘어날 수 있다. 그러나 도즈 상태에서는 프레임의 송신 또는 수신이 불가능하다. 따라서, STA은 도즈 상태로 오래 머무를 수 없다. 도즈 상태에서 펜딩된 프레임이 발생한 경우, STA은 어웨이크 상태로 전환하여 프레임을 AP로 전송할 수 있다. 그러나 STA이 도즈 상태에 있고 AP에 STA으로 전송할 펜딩된 프레임이 존재하는 경우, STA은 AP로부터 펜딩된 프레임을 수신할 수 없고, AP에 펜딩된 프레임이 존재한다는 것도 알 수 없다. 따라서 STA은 AP에 펜딩된 프레임의 존재 여부에 대한 정보를 획득하고, AP에 펜딩된 프레임을 수신하기 위해 주기적으로 어웨이크 상태로 전환하여 동작할 수 있다.
AP은 STA의 어웨이크 상태 동작 타이밍에 대한 정보를 획득하고, STA의 어웨이크 상태 동작 타이밍에 맞추어 AP에 펜딩된 프레임의 존재 여부에 대한 정보를 전송할 수 있다.
구체적으로 도즈 상태의 STA은 AP로부터 수신할 프레임의 존재 여부에 대한 정보를 수신하기 위해 주기적으로 도즈 상태에서 어웨이크 상태로 전환하여 비콘 프레임을 수신할 수 있다. AP는 비콘 프레임에 포함된 TIM(traffic indication map)을 기반으로 각 STA으로 전송할 프레임의 존재 여부에 대해 알려줄 수 있다. TIM은 STA으로 전송될 유니캐스트 프레임의 존재를 알려주기 위해 사용되며, DTIM(delivery traffic indication map)은 STA으로 전송될 멀티캐스트 프레임/브로드캐스트 프레임의 존재를 알려주기 위해 사용될 수 있다.
본 발명의 목적은 무선랜에서 파워 세이브 모드 기반의 동작 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 무선랜에서 파워 세이브 모드 기반의 동작 장치를 제공하는 것이다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 일 측면에 따른 무선랜에서 파워 세이브 모드 기반의 동작 방법은 STA(station)이 AP(access point)와 TIM(traffic indication map) 기반의 파워 세이브 모드(power save mode) 동작을 위한 초기 설정 절차를 수행하는 단계, 상기 TIM 기반 파워 세이브 모드로 동작하는 상기 STA이 비콘 프레임의 전송 주기를 기반으로 도즈 상태(doze state)에서 어웨이크 상태(awake state)로 전환되어 상기 AP로부터 제1 하향링크 프레임을 수신하는 단계, 상기 STA이 상기 AP로부터 상기 TIM 기반 파워 세이브 모드에서 액티브 모드(active mode)로의 전환을 지시하는 동작 모드 설정 정보를 수신하는 단계와 상기 STA이 상기 액티브 모드를 기반으로 상기 AP로부터 제2 하향링크 프레임을 수신하는 단계를 포함할 수 있되, 상기 제1 하향링크 프레임 및 상기 제2 하향링크 프레임은 실시간 비디오 스트리밍 서비스(live video streaming service)을 위한 데이터를 포함하고, 상기 동작 모드 설정 정보는 상기 STA과 상기 AP 사이의 네트워크 상태 정보를 기반으로 생성될 수 있다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 다른 측면에 따른 무선랜에서 파워 세이브 모드를 기반으로 동작하는 STA(station)은 무선 신호를 송신 또는 수신하기 위해 구현된 RF(radio frequency)부와 상기 RF부와 동작 가능하도록(operatively) 연결되는 프로세서를 포함하되, 상기 프로세서는 AP(access point)와 TIM(traffic indication map) 기반 파워 세이브 모드(power save mode)의 설정을 위한 초기 설정 절차를 수행하고, 상기 초기 설정 절차를 기반으로 상기 TIM 기반 파워 세이브 모드로 동작하여 비콘 프레임의 전송 주기를 기반으로 도즈 상태(doze state)에서 어웨이크 상태(awake state)로 전환되어 상기 AP로부터 제1 하향링크 프레임을 수신하고, 상기 AP로부터 상기 TIM 기반 파워 세이브 모드에서 액티브 모드(active mode)로의 전환을 지시하는 동작 모드 설정 정보를 수신하고, 상기 액티브 모드를 기반으로 상기 AP로부터 제2 하향링크 프레임을 수신하도록 구현될 수 있되, 상기 제1 하향링크 프레임 및 상기 제2 하향링크 프레임은 실시간 비디오 스트리밍 서비스(live video streaming service)을 위한 데이터를 포함하고, 상기 동작 모드 설정 정보는 상기 STA과 상기 AP 사이의 네트워크 상태 정보를 기반으로 생성될 수 있다.
STA의 전력을 절약하면서 실시간 비디오 스트리밍 서비스가 가능할 수 있다.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.
도 2는 무선랜에서 스캐닝 방법을 나타낸 개념도이다.
도 3은 AP와 STA의 스캐닝 절차 이후에 수행되는 인증 절차 및 결합 절차를 나타낸 개념도이다.
도 4는 비콘 프레임 기반의 파워 세이브 방법을 나타낸 개념도이다.
도 5는 비콘 프레임 기반의 파워 세이브 방법을 나타낸 개념도이다.
도 6은 본 발명의 실시예에 따른 STA으로의 실시간 비디오 스트리밍 방법을 나타낸 개념도이다.
도 7은 본 발명의 실시예에 따른 STA의 TIM 기반 파워 세이브 모드 동작을 위한 초기 동작을 나타낸 개념도이다.
도 8은 본 발명의 실시예에 따른 네트워크 상태의 판단 방법을 나타낸 개념도이다.
도 9는 본 발명의 실시예에 따른 AP에 의한 STA의 동작 모드 설정 방법을 나타낸 개념도이다.
도 10은 본 발명의 실시예에 따른 AP에 의한 STA의 동작 모드 설정 방법을 나타낸 개념도이다.
도 11은 본 발명의 실시예에 따른 STA의 동작 모드의 설정 방법을 나타낸 개념도이다.
도 12는 본 발명의 실시예에 따른 STA의 동작 모드의 설정 방법을 나타낸 개념도이다.
도 13은 본 발명의 실시예에 따른 STA의 동작 모드 설정 방법을 나타낸 개념도이다.
도 14는 본 발명의 실시예에 따른 STA의 동작 모드의 설정을 위한 프레임을 나타낸 개념도이다.
도 15는 본 발명의 실시예에 따른 프레임을 전달하는 PPDU 포맷을 나타낸 개념도이다.
도 16은 본 발명의 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.
도 1의 상단은 IEEE(institute of electrical and electronic engineers) 802.11의 인프라스트럭쳐 BSS(Basic Service Set)의 구조를 나타낸다.
도 1의 상단을 참조하면, 무선랜 시스템은 하나 또는 그 이상의 인프라스트럭쳐 BSS(100, 105)(이하, BSS)를 포함할 수 있다. BSS(100, 105)는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 AP(access point, 125) 및 STA1(Station, 100-1)과 같은 AP와 STA의 집합으로서, 특정 영역을 가리키는 개념은 아니다. BSS(105)는 하나의 AP(130)에 하나 이상의 결합 가능한 STA(105-1, 105-2)을 포함할 수도 있다.
BSS는 적어도 하나의 STA, 분산 서비스(Distribution Service)를 제공하는 AP(125, 130) 및 다수의 AP를 연결시키는 분산 시스템(Distribution System, DS, 110)을 포함할 수 있다.
분산 시스템(110)는 여러 BSS(100, 105)를 연결하여 확장된 서비스 셋인 ESS(extended service set, 140)를 구현할 수 있다. ESS(140)는 하나 또는 여러 개의 AP(125, 230)가 분산 시스템(110)을 통해 연결되어 이루어진 하나의 네트워크를 지시하는 용어로 사용될 수 있다. 하나의 ESS(140)에 포함되는 AP는 동일한 SSID(service set identification)를 가질 수 있다.
포털(portal, 120)은 무선랜 네트워크(IEEE 802.11)와 다른 네트워크(예를 들어, 802.X)와의 연결을 수행하는 브리지 역할을 수행할 수 있다.
도 1의 상단과 같은 BSS에서는 AP(125, 130) 사이의 네트워크 및 AP(125, 130)와 STA(100-1, 105-1, 105-2) 사이의 네트워크가 구현될 수 있다. 하지만, AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 것도 가능할 수 있다. AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 네트워크를 애드-혹 네트워크(Ad-Hoc network) 또는 독립 BSS(independent basic service set, IBSS)라고 정의한다.
도 1의 하단은 IBSS를 나타낸 개념도이다.
도 1의 하단을 참조하면, IBSS는 애드-혹 모드로 동작하는 BSS이다. IBSS는 AP를 포함하지 않기 때문에 중앙에서 관리 기능을 수행하는 개체(centralized management entity)가 없다. 즉, IBSS에서 STA(150-1, 150-2, 150-3, 155-4, 155-5)들은 분산된 방식(distributed manner)으로 관리된다. IBSS에서는 모든 STA(150-1, 150-2, 150-3, 155-4, 155-5)이 이동 STA으로 이루어질 수 있으며, 분산 시스템으로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
STA은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준의 규정을 따르는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리 계층(Physical Layer) 인터페이스를 포함하는 임의의 기능 매체로서, 광의로는 AP와 비-AP STA(Non-AP Station)을 모두 포함하는 의미로 사용될 수 있다.
STA은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 유저(user) 등의 다양한 명칭으로도 불릴 수 있다.
이하, 본 발명의 실시예에서는 AP에서 STA으로 전송되는 데이터(또는 프레임)를 하향링크 데이터(또는 하향링크 프레임), STA에서 AP로 전송되는 데이터(또는 프레임)를 상향링크 데이터(또는 상향링크 프레임)이라는 용어로 표현할 수 있다. 또한, AP에서 STA으로의 전송은 하향링크 전송, STA에서 AP로의 전송은 상향링크 전송이라는 용어로 표현할 수 있다.
도 2는 무선랜에서 스캐닝 방법을 나타낸 개념도이다.
도 2를 참조하면, 스캐닝 방법은 패시브 스캐닝(passive scanning, 200)과 액티브 스캐닝(active scanning, 250)으로 구분될 수 있다.
도 2의 좌측을 참조하면, 패시브 스캐닝(200)은 AP(200)가 주기적으로 브로드캐스트하는 비콘 프레임(230)에 의해 수행될 수 있다. 무선랜의 AP(200)는 비콘 프레임(230)을 특정 주기(예를 들어, 100msec)마다 non-AP STA(240)으로 브로드캐스트 한다. 비콘 프레임(230)에는 현재의 네트워크에 대한 정보가 포함될 수 있다. non-AP STA(240)은 주기적으로 브로드캐스트되는 비콘 프레임(230)을 수신함으로서 네트워크 정보를 수신하여 인증/결합(authentication/association) 과정을 수행할 AP(210)와 채널에 대한 스캐닝을 수행할 수 있다.
패시브 스캐닝 방법(200)은 non-AP STA(240)이 프레임을 전송할 필요가 없이 AP(210)에서 전송되는 비콘 프레임(230)을 수신만 하면 된다. 따라서, 패시브 스캐닝 (200)은 네트워크에서 데이터의 송신/수신에 의해 발생되는 전체적인 오버헤드가 작다는 장점이 있다. 하지만, 비콘 프레임(230)의 주기에 비례하여 수동적으로 스캐닝을 수행할 수 밖에 없기 때문에 스캐닝을 수행하는데 걸리는 시간이 액티브 스캐닝 방법과 비교하여 상대적으로 늘어난다는 단점이 있다. 비콘 프레임에 대한 구체적인 설명은 2011년 11월에 개시된 IEEE Draft P802.11-REVmb™/D12, November 2011 ‘IEEE Standard for Information Technology Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications(이하, IEEE 802.11)’의 8.3.3.2 beacon frame에 개시되어 있다. IEEE 802.11 ai에서는 추가적으로 다른 포맷의 비콘 프레임을 사용할 수도 있고 이러한 비콘 프레임을 FILS(fast initial link setup) 비콘 프레임이라고 할 수 있다. 또한, 측정 파일롯 프레임(measurement pilot frame)은 비콘 프레임의 일부 정보만을 포함하는 프레임으로 스캐닝 절차에서 사용할 수 있다. 측정 파일롯 프레임은 IEEE 802.11 8.5.8.3 measurement pilot format에 개시되어 있다.
또한, FILS 탐색 프레임(FILS discovery frame)이 정의될 수도 있다. FILS 탐색 프레임은 각 AP에서 비콘 프레임의 전송 주기 사이에서 전송되는 프레임으로 비콘 프레임보다 짧은 주기를 가지고 전송되는 프레임일 수 있다. 즉, FILS 탐색 프레임은 비콘 프레임의 전송 주기보다 작은 값의 주기를 가지고 전송되는 프레임이다. FILS 탐색 프레임은 탐지 프레임을 전송하는 AP의 식별자 정보(SSID, BSSID)를 포함할 수 있다. FILS 탐색 프레임은 STA으로 비콘 프레임이 전송되기 전에 전송되어 해당 채널에 AP가 존재함을 STA이 미리 탐색하도록 할 수 있다. 하나의 AP에서 FILS 탐색 프레임이 전송되는 간격을 FILS 탐색 프레임 전송 간격이라고 한다. FILS 탐색 프레임에는 비콘 프레임에 포함되는 정보의 일부가 포함되어 전송될 수 있다.
도 2의 우측을 참조하면, 액티브 스캐닝(250)에서는 non-AP STA(290)이 프로브 요청 프레임(270)을 AP(260)로 전송하여 주도적으로 스캐닝을 수행할 수 있다.
AP(260)에서는 non-AP STA(290)으로부터 프로브 요청 프레임(270)을 수신한 후 프레임 충돌(frame collision)을 방지하기 위해 랜덤 시간 동안 기다린 후 프로브 응답 프레임(280)에 네트워크 정보를 포함하여 non-AP STA(290)으로 전송할 수 있다. non-AP STA(290)은 수신한 프로브 응답 프레임(280)을 기초로 네트워크 정보를 얻고 스캐닝 과정을 중지할 수 있다.
액티브 스캐닝(250)의 경우, non-AP STA(290)이 주도적으로 스캐닝을 수행하므로 스캐닝에 사용되는 시간이 짧다는 장점이 있다. 하지만, non-AP STA(290)이 프로브 요청 프레임(270)을 전송해야 하므로 프레임 송신 및 수신을 위한 네트워크 오버헤드가 증가한다는 단점이 있다. 프로브 요청 프레임(270)은 IEEE 802.11 8.3.3.9 절에 개시되어 있고 프로브 응답 프레임(280)은 IEEE 802.11 8.3.3.10에 개시되어 있다.
스캐닝이 끝난 후 AP와 non-AP STA은 인증(authentication) 절차와 결합(association) 절차를 수행할 수 있다.
도 3은 AP와 STA의 스캐닝 절차 이후에 수행되는 인증 절차 및 결합 절차를 나타낸 개념도이다.
도 3을 참조하면, 패시브/액티브 스캐닝을 수행한 후 스캐닝된 AP 중 하나의 AP와 인증 절차 및 결합 절차를 수행할 수 있다.
인증(authentication) 및 결합(association) 절차는 예를 들어, 2-방향 핸드쉐이킹(2-way handshaking)을 통해 수행될 수 있다. 도 3의 좌측은 패시브 스캐닝 후 인증 및 결합 절차를 나타낸 개념도이고 도 3의 우측은 액티브 스캐닝 후 인증 및 결합 절차를 나타낸 개념도이다.
인증 절차 및 결합 절차는 액티브 스캐닝 방법 또는 패시브 스캐닝을 사용하였는지 여부와 상관없이 인증 요청 프레임(authentication request frame, 310)/인증 응답 프레임(authentication response frame, 320) 및 결합 요청 프레임(association request frame, 330)/결합 응답 프레임(association response frame, 340)을 AP(300, 350)와 non-AP STA(305, 355) 사이에서 교환함으로써 동일하게 수행될 수 있다.
인증 절차에서는 non-AP STA(305, 355)는 인증 요청 프레임(310)을 AP(300, 350)로 전송할 수 있다. AP(300, 350)는 인증 요청 프레임(310)에 대한 응답으로 인증 응답 프레임(320)을 non-AP STA(305, 355)으로 전송할 수 있다. 인증 프레임 포맷(authentication frame format)에 대해서는 IEEE 802.11 8.3.3.11에 개시되어 있다.
결합 절차에서는 non-AP STA(305, 355)은 결합 요청 프레임(association request frame, 330)을 AP(300, 305)로 전송할 수 있다. 결합 요청 프레임(330)에 대한 응답으로 AP(305, 355)는 결합 응답 프레임(340)을 non-AP STA(300, 350)으로 전송할 수 있다. AP로 전송된 결합 요청 프레임(330)에는 non-AP STA(305, 355)의 성능(capability)에 관한 정보가 포함되어 있다. non-AP STA(305, 355)의 성능 정보를 기초로 AP(300, 350)는 non-AP STA(305, 355)에 대한 지원이 가능한지 여부를 판단할 수 있다. non-AP STA(305, 355)에 대한 지원이 가능한 경우 AP(300, 350)는 결합 응답 프레임(340)을 non-AP STA(305, 355)로 전송할 수 있다. 결합 응답 프레임(340)은 결합 요청 프레임(340)에 대한 수락 여부와 그 이유, 자신이 지원 가능한 성능 정보(capability information)를 포함할 수 있다. 결합 프레임 포맷(association frame format)에 대해서는 IEEE 802.11 8.3.3.5/8.3.3.6에 개시되어 있다.
AP와 non-AP STA 사이에서 결합 절차가 수행된 이후, AP와 non-AP STA 사이에서 정상적인 데이터의 송신 및 수신이 수행될 수 있다. AP와 non-AP STA 사이의 결합 절차가 실패한 경우, 결합이 실패한 이유를 기반으로 다시 AP와 결합 절차를 수행하거나 다른 AP와 결합 절차를 수행할 수도 있다.
STA이 AP와 결합되는 경우, STA은 AP로부터 결합 ID(association identifier, AID)를 할당받을 수 있다. STA으로 할당된 AID는 하나의 BSS 내에서는 유일한 값일 수 있고, 현재 AID는 1~2007 중 하나의 값일 수 있다. AID를 위해 14bit가 할당되어 있어서 최대 16383까지 AID의 값으로서 사용 가능하지만 2008~16383의 값은 보존(reserved)되어 있다.
IEEE 802.11 표준에서는 무선랜의 STA의 수명을 증가시키기 위하여 파워 세이브 메커니즘(파워 세이브 모드)이 제공된다.
파워 세이브 모드를 기반으로 동작하는 STA은 어웨이크 상태(awake state)와 도즈 상태(doze state)를 전환하여 동작하면서 STA의 전력 소비를 감소시켜 STA의 동작 수명을 증가시킬 수 있다. 액티브 모드를 기반으로 동작하는 STA은 어웨이크 상태를 유지할 수 있다. 액티브 모드는 TXOP(transmission opportunity)에 대한 정보를 기반으로 어웨이크 상태와 도즈 상태를 전환하는 TXOP 파워 세이브 모드를 포함할 수 있으나, 설명의 편의상 액티브 모드로 동작하는 STA은 어웨이크 상태를 유지하는 것으로 가정한다.
어웨이크 상태의 STA은 프레임의 송신 또는 수신, 채널 스캐닝 등과 같은 정상적인 동작을 수행할 수 있다. 반면, 도즈 상태의 STA은 전력 소모를 줄이기 위해 프레임의 송신 또는 수신을 수행하지 않고 채널 스캐닝도 수행하지 않는다. 파워 세이브 모드로 동작하는 STA은 전력 소모를 줄이기 위해 도즈 상태로 유지되고 필요한 경우, 어웨이크 상태로 전환(또는 천이(transition))되어 AP와 통신을 수행할 수 있다.
STA의 도즈 상태의 유지 시간이 증가할수록 STA의 전력 소모는 감소하고 STA의 수명도 또한 증가할 수 있다. 그러나 도즈 상태에서는 STA의 프레임의 송신 또는 수신이 불가능하다. STA에 펜딩된 상향링크 프레임이 존재하는 경우, 파워세이브 모드로 동작하던 STA이 도즈 상태에서 액티브 상태로 전환하거나, 파워 세이브 모드로 동작하던 STA이 파워 세이브 모드에서 액티브 모드로 전환하여 상향링크 프레임을 AP로 전송할 수 있다. 반대로 AP에 도즈 상태의 STA으로 전송할 펜딩된 프레임이 존재하는 경우, AP는 STA의 어웨이크 상태로의 전환시까지 STA으로 펜딩된 프레임을 전송할 수 없다.
따라서, 파워 세이브 모드로 동작하는 STA은 가끔씩 도즈 상태에서 어웨이크 상태로 전환되고 AP로부터 STA에 대해 펜딩된 프레임이 존재하는지 여부에 대한 정보를 수신할 수 있다. AP는 파워 세이브 모드로 동작하는 STA의 어웨이크 상태로의 전환 시간을 고려하여 STA에 대해 펜딩된 하향링크 데이터의 존재에 대한 정보를 STA으로 전송할 수 있다.
구체적으로 파워 세이브 모드로 동작하는 STA은 STA에 대해 펜딩된 프레임의 존재 여부에 대한 정보를 수신하기 위해 주기적으로 도즈 상태에서 어웨이크 상태로 전환되어 비콘 프레임을 수신할 수 있다. 비콘 프레임은 STA의 패시브 스캐닝을 위해 사용되는 프레임으로서 AP의 능력(capability)에 대한 정보를 포함할 수 있다. AP는 주기적(예를 들어, 100msec)으로 비콘 프레임을 STA으로 전송할 수 있다.
도 4는 비콘 프레임 기반의 파워 세이브 방법을 나타낸 개념도이다.
도 4를 참조하면, AP는 주기적으로 비콘 프레임을 전송할 수 있고, 파워 세이브 모드로 동작하는 STA은 비콘 프레임의 전송 타이밍을 고려하여 주기적으로 도즈 상태에서 어웨이크 상태로 전환되어 비콘 프레임을 수신할 수 있다. 비콘 프레임 기반의 파워 세이브 방법은 TIM 기반의 파워 세이브 모드라는 용어로도 표현될 수 있다.
비콘 프레임은 TIM 요소(traffic indication map element)를 포함할 수 있다. TIM 요소는 AP에 펜딩된 STA에 대한 하향링크 데이터에 대한 정보를 전송하기 위해 사용될 수 있다. 예를 들어, TIM 요소는 STA에 대해 펜딩된 하향링크 데이터에 대한 정보를 비트맵 기반으로 포함할 수 있다. TIM 요소는 TIM 또는 DTIM(delivery TIM)으로 구분될 수 있다. TIM은 STA으로 유니캐스트 기반으로 전송될 펜딩된 하향링크 데이터의 존재를 지시할 수 있다. DTIM은 브로드캐스트/멀티캐스트 기반으로 전송될 펜딩된 하향링크 데이터의 존재를 지시할 수 있다.
도 4의 상단은 AP가 PS(power saving)-poll 프레임에 대해 즉각 응답을 기반으로 하향링크 프레임을 전송하는 방법에 대해 개시한다.
도 4의 상단을 참조하면, STA은 비콘 프레임(400)의 TIM을 기반으로 AP로부터 STA에 대해 펜딩된 하향링크 데이터의 존재에 대한 정보를 수신할 수 있다. STA은 PS-poll 프레임(410)을 AP로 전송할 수 있다. AP는 STA으로부터 PS-poll 프레임(410)을 수신하고, PS-poll 프레임(410)에 대한 즉각 응답(immediate response)으로 하향링크 프레임(420)을 STA으로 전송할 수 있다. AP의 PS-poll 프레임에 대한 즉각 응답은 PS-poll 프레임을 수신하고 SIFS(short interframe space) 후에 수행될 수 있다.
STA은 하향링크 프레임에 대한 응답으로 ACK 프레임(430)을 전송할 수 있다. AP의 STA에 대해 펜딩된 하향링크 데이터의 전송이 종료되는 경우, 파워 세이브 모드로 동작하는 STA은 도즈 상태로 다시 전환(또는 천이(transition))될 수 있다.
도 4의 하단은 PS-poll 프레임에 대해 연기된 응답(deferred response)을 기반으로 한 AP의 하향링크 프레임의 전송 방법을 개시한다.
도 4의 하단을 참조하면, STA은 비콘 프레임(440)의 TIM을 기반으로 AP로부터 STA에 대해 펜딩된 하향링크 데이터의 존재에 대한 정보를 수신할 수 있다. STA은 PS-poll 프레임(450)을 AP로 전송할 수 있다. AP는 STA으로부터 PS-poll 프레임(450)을 수신하고, PS-poll 프레임(450)에 대한 응답으로 ACK 프레임(460)을 STA으로 전송할 수 있다. AP는 ACK 프레임(460)의 전송 이후 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임(470)을 STA으로 전송할 수 있다. STA은 ACK 프레임(460)의 수신 이후에 AP에 의해 STA으로 전송되는 하향링크 프레임(470)을 모니터링할 수 있다.
마찬가지로 AP의 STA에 대해 펜딩된 하향링크 데이터의 전송이 종료되는 경우, 파워 세이브 모드로 동작하는 STA은 어웨이크 상태에서 도즈 상태로 다시 전환(또는 천이(transition))될 수 있다.
도 5는 비콘 프레임 기반의 파워 세이브 방법을 나타낸 개념도이다.
도 5에서는 비콘 프레임(500)을 통해 DTIM이 전송되는 경우가 개시된다. 비콘 프레임(500)은 DTIM을 포함할 수 있다. 전술한 바와 같이 DTIM은 브로드캐스트/멀티캐스트 기반으로 전송될 펜딩된 하향링크 데이터의 존재를 지시할 수 있다.
도 5을 참조하면, AP는 DTIM을 포함하는 비콘 프레임(500)을 STA으로 전송할 수 있다. STA은 DTIM을 포함하는 비콘 프레임(500)을 수신한 후 PS-poll 프레임의 전송없이 어웨이크 상태를 유지하고 하향링크 프레임(520)의 전송을 모니터링할 수 있다. AP는 멀티캐스트 방법 또는 브로드캐스트 방법을 통해 하향링크 프레임(520)을 STA으로 전송할 수 있다.
이하, 본 발명의 실시예에서 AP에서 STA으로의 전송은 하향링크 전송이라는 용어로 표현될 수 있다. 햐향링크 전송을 통해 전송되는 PPDU, 프레임 및 데이터 각각은 하향링크 PPDU, 하향링크 프레임 및 하향링크 데이터라는 용어로 표현될 수 있다. PPDU는 PPDU 헤더와 PSDU(physical layer service data unit)(또는 MPDU(MAC protocol data unit))를 포함하는 데이터 단위일 수 있다. PPDU 헤더는 PHY 헤더와 PHY 프리앰블을 포함할 수 있고, PSDU(또는 MPDU)는 프레임을 포함하거나 프레임을 지시할 수 있다. PHY 헤더는 다른 용어로 PLCP(physical layer convergence protocol) 헤더, PHY 프리앰블은 다른 용어로 PLCP 프리앰블로 표현될 수도 있다.
또한, STA에서 AP로의 전송은 상향링크 전송이라는 용어로 표현될 수 있다. 상향링크 전송을 통해 전송되는 PPDU, 프레임 및 데이터 각각은 상향링크 PPDU, 상향링크 프레임 및 상향링크 데이터라는 용어로 표현될 수 있다.
이하, 본 발명의 실시예에서는 AP로부터 STA으로의 실시간 비디오 스트리밍 방법이 개시된다. 이하, 본 발명의 실시예에서는 AP에서 STA으로의 실시간 비디오 스트리밍이 가정되어 설명되나, 반대 방향으로 STA에서 AP로의 실시간 비디오 스트리밍도 가능하고 이러한 실시예 또한 본 발명의 권리 범위에 포함될 수 있다.
비디오 데이터의 전송을 위한 비디오 스트리밍은 버퍼된 비디오 스트리밍(buffered video streaming) 방법 및 실시간 비디오 스트리밍(live video streaming) 방법 등으로 구분될 수 있다.
버퍼된 비디오 스트리밍이 사용될 경우 비디오 데이터의 재생은 전체 비디오 데이터의 전송 완료 전에 수행될 수 있다. 끊김없는 비디오 스트리밍을 위해 STA에서 수신한 비디오 데이터의 재생이 수행되는 동안 STA으로 새로운 비디오 데이터가 수신되고, 디코딩되어 STA 상에서 재생될 수 있다. 버퍼된 비디오 스트리밍이 사용되는 경우, 비디오 데이터가 재생 전에 미리 수신될(미리 버퍼될) 수 있다. 따라서, 네트워크 혼잡(network congestion)이 일정 시간 발생하는 경우에도 연속적인 비디오 데이터의 재생이 가능할 수 있다.
실시간 비디오 스트리밍은 실시간 인터랙티브 비디오 전송(live interactive video transmission), 실시간 논-인터랙티브 비디오 전송(live non-interactive video transmission)으로 구분될 수 있다. 실시간 인터랙티브 비디오 전송은 화상 회의와 같이 양 방향 통신을 위해 사용되고 실시간 논-인터랙티브 비디오 전송은 일 방향의 비디오 데이터의 전송을 위해 사용될 수 있다.
실시간 인터랙티브 비디오 전송을 위해서는 비디오 데이터의 전송 및 재생을 위한 딜레이가 150ms보다 작아야 한다. 비디오 데이터의 전송 및 재생을 위한 딜레이는 일방향 딜레이(one-way delay), 양 끝 단 딜레이(end-to-end delay), 비디오 인코딩, 네트워크 전송 및 비디오 디코딩을 위한 딜레이 등을 포함할 수 있다.
실시간 논-인터랙티브 비디오 전송을 위해서 실시간 이벤트(live event)의 캡쳐를 통한 비디오 데이터의 생성과 수신 단에서 생성된 비디오 데이터의 재생 사이에 일정한 크기의 지연(lag)이 허용될 수 있다. 그러나, 실시간 비디오 스트리밍의 특성에 따라 미리 재생할 비디오 데이터를 수신하고 재생할 수 있을 정도의 지연은 허용되지 않는다. 따라서, 네트워크 혼잡에 따라 실시간 비디오 스트리밍의 품질이 결정될 수 있다.
실시간 비디오 스트리밍에서 하향링크를 통해 전송되는 비디오 데이터는 초당 30 프레임의 재생을 위한 데이터일 수 있다. 실시간 비디오 스트리밍을 위해 초당 30 프레임이 재생되는 경우, STA은 PS-poll 프레임을 사용한 TIM 기반의 파워 세이브 모드를 기반으로 동작 가능하다. TIM 기반 파워 세이브 모드는 PS-poll 파워 세이브 모드라는 용어로도 표현될 수 있다.
즉, TIM 기반 파워 세이브 모드로 동작하는 STA은 비콘 프레임의 전송 주기에 어웨이크 상태로 전환되어 AP로부터 비디오 데이터를 수신한 후 도즈 상태로 전환될 수 있다. STA은 다음 비콘 프레임의 전송전까지 수신한 비디오 데이터를 디코딩하여 재생하고, 다음 비콘 프레임의 전송시 다시 어웨이크 상태로 전환되어 AP로부터 비디오 데이터를 수신할 수 있다. TIM 기반의 파워 세이브 모드로 동작하는 STA의 실시간 비디오 스트리밍을 위해서는 네트워크 혼잡도가 낮아야 한다. 만약, 네트워크의 혼잡도가 높은 경우, STA은 어웨이크 상태로 전환된 이후 네트워크의 혼잡으로 인해 AP로부터 비디오 데이터를 수신할 수 없고, 연속적인 비디오 스트리밍이 불가능할 수 있다.
본 발명의 실시예에서는 네트워크 혼잡도를 고려한 STA의 TIM 기반 파워 세이브 모드 또는 액티브 모드의 동작에 대해 개시한다. 예를 들어, 네트워크 혼잡도가 낮은 경우, STA은 TIM 기반의 파워 세이브 모드로 동작하여 어웨이크 상태와 도즈 상태를 천이하여 동작하고, 반대로 네트워크 혼잡도가 높은 경우, STA은 액티브 모드로 동작하여 어웨이크 상태를 유지할 수 있다.
즉, STA은 네트워크 혼잡도에 따라 TIM 기반의 파워 세이브 모드와 액티브 모드를 전환하여 동작을 수행할 수 있다. 네트워크 혼잡도는 AP에 의해 전송된 WAN 메트릭(WAN(wide area network) metric) 정보를 기반으로 결정될 수 있다. WAN 메트릭 정보는 ANQP(access network query protocol)를 기반으로 생성되어 AP로 전송될 수 있다. ANQP는 STA(또는 AP)으로 네트워크 상태에 대한 정보를 전송하기 위한 프로토콜일 수 있다. 예를 들어, STA(또는 AP)은 ANQP에 기반하여 네트워크에 대한 정보를 문의하여 네트워크 상태에 대한 정보를 획득할 수 있다. 네트워크에 대한 정보는 네트워크 혼잡도, 네트워크의 능력(capability), 인증 타입(authentication type) 등에 대한 정보를 포함할 수 있다.
이하, STA은 실시간 비디오 스트리밍 서비스를 받는 STA을 가정한다.

도 6은 본 발명의 실시예에 따른 STA으로의 실시간 비디오 스트리밍 방법을 나타낸 개념도이다.
도 6에서는 AP에서 STA으로의 실시간 비디오 스트리밍 방법이 개시된다.
도 6을 참조하면, STA 상에서 실시간 비디오 스트리밍을 위한 어플리케이션이 실행될 수 있다.
STA은 실시간 비디오 스트리밍을 위한 동작(operation)을 탐지하고 동작 모드를 TIM 기반의 파워 세이브 모드로 설정할 수 있다.
STA은 TIM 기반의 파워 세이브 모드로 동작하기 위한 초기(initiation) 설정 절차를 수행할 수 있다(단계 S600).
STA의 TIM 기반의 파워 세이브 모드 동작을 위한 초기 동작은 STA과 AP 간의 ADDTS 요청 프레임(ADDTS(add traffic stream) request frame) 및 ADDTS 응답 프레임(ADDTS response frame)의 송신 및 수신을 기반으로 수행될 수 있다. STA의 TIM 기반의 파워 세이브 모드를 위한 초기 동작은 구체적으로 후술한다.
STA은 네트워크 혼잡도를 기반으로 동작 모드를 전환 또는 유지할 수 있다(단계 S610).
비디오 데이터를 실시간 비디오 스트리밍을 기반으로 STA으로 전송하는 AP는 네트워크 혼잡도에 대해 탐지하고 예측할 수 있다. 또한, AP는 네트워크 혼잡도에 대한 정보를 STA으로 전송할 수 있다. 예를 들어, AP는 네트워크 혼잡도에 대한 정보를 비콘 프레임을 통해 STA으로 전송할 수 있다.
STA은 네트워크 혼잡도에 대한 정보를 기반으로 TIM 기반의 파워 세이브 모드에서 액티브 모드로의 전환 여부를 결정할 수 있다. 네트워크 혼잡도가 높다고 판단되는 경우, STA은 TIM 기반의 파워 세이브 모드에서 액티브 모드로 전환되어 비디오 데이터를 수신할 수 있다. 반대로 네트워크 혼잡도가 낮다고 판단되는 경우, STA은 TIM 기반의 파워 세이브 모드를 유지하여 비디오 데이터를 AP로부터 수신할 수 있다.
또는 AP가 직접적으로 STA의 동작 모드를 지시할 수도 있다. 예를 들어, AP는 네트워크 혼잡도가 높은 경우, STA의 동작 모드를 TIM 기반 파워 세이브 모드에서 액티브 모드로 전환할 것을 명령(또는 요청)할 수 있다. 반대로, AP는 네트워크 혼잡도가 낮은 경우, STA의 동작 모드를 TIM 기반 파워 세이브 모드를 유지할 것을 명령(또는 요청)할 수 있다. 또는 AP는 STA으로 네트워크 혼잡도에 대한 정보를 전송하고 STA의 동작 모드 전환 요청에 따라 동작 모드 전환을 허락할 수도 있다. 이에 대해서는 구체적으로 후술한다.

도 7은 본 발명의 실시예에 따른 STA의 TIM 기반 파워 세이브 모드 동작을 위한 초기 동작을 나타낸 개념도이다.
도 7에서는 ADDTS 요청 프레임 및 ADDTS 응답 프레임을 기반으로 한 TIM 기반 파워 세이브 모드의 설정이 개시된다.
도 7을 참조하면, ADDTS 요청 프레임은 정보 요소로서 TSPEC 요소를 포함할 수 있다.
ADDTS 요청 프레임의 TSPEC 요소는 2013년 10월에 개시된 IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) Specifications(이하, IEEE 802.11 spec)의 8.4.2.29 TSPEC element에 개시되어 있다.
또한, TSPEC 요소에 포함된 TS info 필드(700)에 포함된 정보 또한 IEEE 802.11 spec의 8.4.2.29 TSPEC element의 Figure 8-197에 개시되어 있다.
STA은 TS info 필드(700)에 포함된 APSD(automatic power save delivery) 필드(710) 및 스케쥴 필드(720)를 기반으로 TIM 기반의 파워 세이브 모드를 설정할 수 있다.
STA은 0으로 설정된 APSD 필드(710) 및 0으로 설정된 스케쥴 필드(720)를 포함하는 TS info 필드(700) 및 MAC 헤더에 1로 설정된 파워 세이브 필드(730)를 포함하는 ADDTS 요청 프레임을 AP로 전송할 수 있다. MAC 헤더의 구조는 IEEE 802.11 spec의 8.2.4.1 frame control field에 개시되어 있다.
STA은 위와 같이 설정된 필드를 포함하는 ADDTS 요청 프레임을 전송함으로써 TIM 기반의 파워 세이브 모드로의 동작을 요청할 수 있다.
AP는 STA으로부터 위와 같이 설정된 필드를 포함하는 ADDTS 요청 프레임을 수신하고 STA의 TIM 기반의 파워 세이브 모드로의 동작 여부를 결정할 수 있다. AP는 STA의 TIM 기반의 파워 세이브 모드로의 동작을 결정하고 ADDTS 응답 프레임을 STA으로 전송할 수 있다. ADDTS 응답 프레임 또한 TSPEC 요소를 포함할 수 있다. AP는 0으로 설정된 APSD 필드(710) 및 0으로 설정된 스케쥴 필드(720)를 포함하는 TS info 필드(700) 및 MAC 헤더에 1로 설정된 파워 세이브 필드(730)를 포함하는 ADDTS 응답 프레임을 STA으로 전송할 수 있다.
STA은 AP로부터 ADDTS 응답 프레임을 수신하고 TIM 기반의 파워 세이브 모드로 동작할 수 있다.

도 8은 본 발명의 실시예에 따른 네트워크 상태의 판단 방법을 나타낸 개념도이다.
도 8에서는 STA 및/또는 AP의 네트워크 상태(예를 들어, 네트워크 혼잡도)의 판단 방법이 개시된다.
네트워크 상태의 판단을 위해서는 BSS 부하 정보(BSS load information), WAN 메트릭 정보 등이 사용될 수 있다. 예를 들어, AP 및/또는 STA은 BSS 부하 정보, WAN 메트릭 정보 등을 기반으로 네트워크 혼잡도를 판단할 수 있다.
BSS 부하 정보는 채널 활용 정보(channel utilization information), STA 카운트(STA count) 정보를 포함할 수 있다.
채널 활용 정보는 채널이 비지한 시간에 대한 정보를 포함할 수 있다. 예를 들어, 채널 활용 정보는 특정 비콘 전송 인터벌에 대응되는 시간 동안 채널이 비지로 센싱된 시간의 비율에 대한 정보를 포함할 수 있다.
STA 카운트 정보는 현재 BSS에 결합된 STA의 전체 개수에 대한 정보를 포함할 수 있다.
WAN 메트릭 정보는 WAN 정보(800), 하향링크 스피드 정보(810), 상향링크 스피드 정보(820), 하향링크 부하 정보(830), 상향링크 부하 정보(840) 및 로컬 측정 듀레이션 정보(850)를 포함할 수 있다.
WAN 정보(800)는 Up/Down/Test 링크 상태(link status), 대칭 링크(symmetric link)인지 여부 등에 대한 정보를 포함할 수 있다.
하향링크 스피드 정보(810)는 WAN에서 하향링크 스피드에 대한 정보를 포함할 수 있다.
상향링크 스피드 정보(820)는 WAN에서 상향링크 스피드에 대한 정보를 포함할 수 있다.
하향링크 부하 정보(830)는 WAN 하향링크가 사용되는 비율에 대한 정보를 포함할 수 있다.
상향링크 부하 정보(840)는 WAN 상향링크가 사용되는 비율에 대한 정보를 포함할 수 있다.
로컬 측정 듀레이션 정보(850)는 하향링크 부하 및 상향링크 부하가 측정된 듀레이션에 대한 정보를 포함할 수 있다.
AP는 위와 같은 BSS 부하 정보 및/또는 WAN 메트릭 정보를 비콘 프레임을 통해 STA으로 전송할 수 있다.
STA은 BSS 부하 정보 및/또는 WAN 메트릭 정보를 기반으로 네트워크 혼잡도를 판단하고 TIM 기반 파워 세이브 모드와 액티브 모드 사이에서 전환을 결정할 수 있다. 또는 AP에 의해 STA의 동작 상태가 설정되는 경우, AP가 BSS 부하 정보 및/또는 WAN 메트릭 정보를 기반으로 네트워크 혼잡도를 판단하고 TIM 기반 파워 세이브 모드와 액티브 모드 사이에서 전환을 결정할 수도 있다.
예를 들어, AP는 BSS 부하 정보를 기반으로 아래와 같이 네트워크 혼잡도를 판단할 수 있다. AP는 채널 활용 정보를 기반으로 획득한 채널이 비지로 센싱된 시간의 비율이 일정 임계값 이상인 경우, 네트워크 혼잡도가 높다고 할 수 있다. 또는 AP는 STA 카운트 정보를 기반으로 획득한 현재 BSS에 결합된 STA의 전체 개수가 일정 임계 값 이상인 경우, 네트워크 혼잡도가 높다고 할 수 있다.
예를 들어, AP는 WAN 메트릭 정보를 기반으로 아래와 같이 네트워크 혼잡도를 판단할 수 있다.
AP는 인터랙티브 실시간 비디오 스트리밍인 경우, 하향링크 스피드 정보 상향링크 스피드 정보를 기반으로 획득한 하향링크 스피드 및 상향링크 스피드 각각이 설정된 임계값 각각보다 크고, 하향링크 부하 정보 및 상향링크 부하 정보 각각이 모두 설정된 임계값 각각보다 작은 경우, 네트워크 혼잡도를 낮다고 판단할 수 있다. 또한, AP는 논-인터랙티브 실시간 비디오 스트리밍인 경우, 하향링크 스피드 정보를 기반으로 획득한 하향링크 스피드가 설정된 임계값 각각보다 크고, 하향링크 부하 정보가 설정된 임계값 각각보다 작은 경우, 네트워크 혼잡도를 낮다고 판단할 수 있다.
네트워크 혼잡도를 판단하기 위한 임계값 각각은 AP에서 미리 고정된 값으로 설정되어 있거나, AP에 구현에 따라 다르게 설정된 값일 수 있다.

도 9는 본 발명의 실시예에 따른 AP에 의한 STA의 동작 모드 설정 방법을 나타낸 개념도이다.
도 9에서는 AP에 의한 STA의 동작 상태(TIM 기반 파워 세이브 모드 또는 액티브 모드)의 설정 방법이 개시된다.
도 9를 참조하면, AP는 TIM 비트맵(900)과 대응되는 파워 관리 비트맵(920)을 통해 STA의 동작 상태를 설정할 수 있다.
파워 관리 비트맵(920)에 포함되는 각 비트는 STA에 대해 펜딩된 데이터에 대한 정보를 지시하는 TIM 비트맵(900)의 각 비트와 대응될 수 있다. 파워 관리 비트 맵(920)에 포함되는 비트의 값이 0인 경우, 액티브 모드로의 동작을 지시하고, 파워 관리 비트 맵(920)에 포함되는 비트의 값이 1인 경우, 파워 세이브 모드(예를 들어, TIM 기반의 파워 세이브 모드의 동작)를 지시할 수 있다.
예를 들어, 8비트의 TIM 비트맵(900) 및 8비트의 TIM 비트맵(900)에 대응되는 8비트의 파워 관리 비트맵(920)이 정의될 수 있다.
8비트의 TIM 비트맵(900)은 ‘11110000’으로 STA1 내지 STA8 각각에 대해 펜딩된 하향링크 데이터의 존재를 지시할 수 있다. 8비트의 TIM 비트맵(900)이 ‘11110000’인 경우, STA1, STA2, STA3 및 STA4 각각에 펜딩된 하향링크 데이터를 지시할 수 있다. 8비트의 파워 관리 비트맵(920)은 ‘11001111’으로 TIM 비트맵(900)과 대응되어 STA1 내지 STA8 각각의 동작 상태를 지시할 수 있다. 즉, 8비트의 파워 관리 비트맵(920)은 펜딩된 하향링크 데이터를 가진 STA1 내지 STA4 중 STA1 및 STA2은 파워 세이브 모드로 동작하고 STA3 및 STA4는 액티브 모드로 동작할 것을 지시할 수 있다.
AP는 STA1 내지 STA8 각각에 대해 펜딩된 하향링크 데이터의 존재 여부를 고려하여 8비트의 TIM 비트맵(900)을 생성할 수 있다. 또한, AP는 펜딩된 하향링크 데이터를 가진 STA(STA1 내지 STA4) 각각과 AP 사이의 채널 혼잡도를 고려하여 펜딩된 하향링크 데이터를 가진 STA 각각의 동작 상태의 설정을 위한 파워 관리 비트맵(920)을 생성할 수 있다.
STA1과 STA2 각각과 AP 사이의 채널 혼잡도가 높을 경우, 파워 세이브 모드로 동작을 수행할 것을 파워 관리 비트맵(920)을 통해 STA1 및 STA2 각각으로 지시할 수 있다. 반대로 STA3과 STA4 각각과 AP 사이의 채널 혼잡도가 낮은 경우, 액티브 모드로 동작을 수행할 것을 파워 관리 비트맵(920)을 통해 STA3 및 STA4 각각으로 지시할 수 있다.
AP는 파워 관리 비트맵(920)을 통해 펜딩된 데이터를 포함하지 않는 STA(예를 들어, STA5 내지 STA8)에 대해서는 파워 세이브 모드로 동작할 것을 설정할 수도 있다.
또는 본 발명의 실시예에 따르면, 파워 관리 비트맵(920)은 TIM 비트맵(900)을 기반으로 펜딩된 하향링크 데이터를 포함하는 것으로 지시된 STA의 동작 모드의 설정을 위해서 사용될 수 있다. 예를 들어, 파워 관리 비트맵(920)은 4비트로 ‘1100’으로 설정되고, 파워 관리 비트맵(920) ‘1100’은 TIM 비트맵(900)을 기반으로 펜딩된 하향링크 데이터를 포함하는 것으로 지시된 STA1 내지 STA4 각각에 대응될 수도 있다.
STA은 TIM 비트맵(900) 및 파워 관리 비트맵(920)을 수신하고 동작 상태를 설정할 수 있다. STA 중 상향링크를 통해 AP로 전송할 펜딩된 상향링크 데이터를 가진 STA은 AP에 의해 파워 세이브 모드로 설정된 경우에도 액티브 모드를 유지하고 펜딩된 상향링크 데이터를 AP로 전송할 수도 있다.

도 10은 본 발명의 실시예에 따른 AP에 의한 STA의 동작 모드 설정 방법을 나타낸 개념도이다.
도 10에서는 AP에 의한 STA의 동작 모드(TIM 기반 파워 세이브 모드 또는 액티브 모드)의 설정 방법이 개시된다. 특히, 도 10에서는 실시간 비디오 스트리밍을 기반으로 비디오 데이터를 수신하는 가상 TIM 비트맵(1000)이 정의된다.
도 10을 참조하면, AP는 가상 TIM 비트맵(1000)과 대응되는 파워 관리 비트맵(1020)을 통해 STA의 동작 모드를 설정할 수 있다.
가상 TIM 비트맵(1000)은 실시간 비디오 스트리밍되는 데이터를 수신하는 STA만을 위해 별도로 정의된 비트맵일 수 있다.
즉, 가상 TIM 비트맵(1000)의 비트 각각과 실시간 비디오 스트리밍 서비스를 받는 복수의 STA 각각이 대응될 수 있다. 이하, 실시간 비디오 스트리밍 서비스를 받는 STA은 실시간 스트리밍 서비스 STA이라는 용어로 표현될 수 있다.
가상 TIM 비트맵(1000)은 실시간 스트리밍 서비스 STA 각각에 대해 펜딩된 하향링크 데이터의 존재 여부에 대한 정보를 포함할 수 있다.
파워 관리 비트맵(1020)은 가상 TIM 비트맵(1000)에 대응되어 실시간 스트리밍 서비스 STA 각각의 동작 모드의 설정을 위한 정보를 포함할 수 있다.
예를 들어, 가상 TIM 비트맵(1000)은 ‘01110001’일 수 있다. 가상 TIM 비트맵(1000)은 실시간 스트리밍 서비스 STA2, STA3, STA4 및 STA8 각각에 대해 펜딩된 하향링크 데이터의 존재를 지시할 수 있다.
파워 관리 비트맵(1020)은 ‘00110000’일 수 있다. 파워 관리 비트맵(1020)은 실시간 스트리밍 서비스 STA3 및 STA4의 파워 세이브 모드로의 동작을 지시하고, 실시간 스트리밍 서비스 STA2 및 STA8의 액티브 모드로의 동작을 지시할 수 있다.
AP는 실시간 스트리밍 서비스 STA과 AP 사이의 채널 혼잡도에 대한 정보를 기반으로 파워 관리 비트맵(1020)을 생성할 수 있다.
AP는 펜딩된 하향링크 데이터를 가진 실시간 스트리밍 서비스 STA 각각과 AP 사이의 네트워크 상태(예를 들어, 네트워크 혼잡도)에 대한 정보를 기반으로 펜딩된 하향링크 데이터를 가진 실시간 스트리밍 서비스 STA 각각의 동작 모드를 설정할 수 있다.

도 11은 본 발명의 실시예에 따른 STA의 동작 모드의 설정 방법을 나타낸 개념도이다.
도 11에서는 STA이 초기 동작 모드를 TIM 기반 파워 세이브 모드로 설정하여 AP로부터 실시간 비디오 스트리밍 서비스를 받고 STA이 AP에 의해 TIM 기반 파워 세이브 모드에서 액티브 모드로의 천이되는 방법이 개시된다.
도 11을 참조하면, STA은 초기 동작 모드를 TIM 기반 파워 세이브 모드로 설정하기 위해 ADDTS 요청 프레임을 AP로 전송할 수 있다(단계 S1100).
ADDTS 요청 프레임은 TSPEC 정보 요소 상에 0으로 설정된 APSD 필드, 0으로 설정된 스케줄링 필드를 포함하고 MAC 헤더 상에 포함되는 1로 설정된 파워 관리 필드를 포함할 수 있다. 위와 같은 ADDTS 요청 프레임에 포함되는 각 필드의 설정을 기반으로 STA은 초기 동작 모드로서 TIM 기반 파워 세이브 모드를 AP로 요청할 수 있다.
AP는 ADDTS 요청 프레임에 대한 응답으로 ADDTS 응답 프레임을 STA으로 전송할 수 있다(단계 S1120).
ADDTS 요청 프레임을 전송한 STA은 AP에 의해 전송된 ADDTS 응답 프레임을 통해 STA의 TIM 기반 파워 세이브 모드 동작의 허용 여부에 대한 정보를 획득할 수 있다.
TIM 기반 파워 세이브 모드 동작의 허용을 위해 AP에 의해 전송되는 ADDTS 응답 프레임은 TSPEC 정보 요소 상에 0으로 설정된 APSD 필드, 0으로 설정된 스케줄링 필드를 포함하고 MAC 헤더 상에 포함되는 1로 설정된 파워 관리 필드를 포함할 수 있다.
STA은 ADDTS 응답 프레임을 수신하고 TIM 기반 파워 세이브 모드로 동작하여 실시간 비디오 스트리밍 서비스를 받을 수 있다.
AP는 실시간 비디오 스트리밍 서비스를 STA으로 제공하는 도중 ANQP를 기반으로 WAN 메트릭 정보를 수신할 수 있다. AP는 수신한 WAN 메트릭 정보를 기반으로 네트워크 상태(예를 들어, 네트워크 혼잡도)를 판단하여 STA의 TIM 기반 파워 세이브 모드의 유지 가능 여부에 대해 판단할 수 있다.
높은 네트워크 혼잡도로 인해 STA의 TIM 기반 파워 세이브 모드의 유지가 불가능한 경우, AP는 STA의 TIM 기반 파워 세이브 모드에서 액티브 모드로의 전환을 결정할 수 있다. 반대로 낮은 네트워크 혼잡도로 인해 STA의 TIM 기반 파워 세이브 모드의 유지가 가능한 경우, AP는 STA의 TIM 기반 파워 세이브 모드의 유지를 결정할 수 있다.
AP는 파워 관리 비트맵을 기반으로 STA의 액티브 모드로의 전환 또는 TIM 기반 파워 세이브 모드의 유지에 대한 정보를 STA으로 전송할 수 있다(단계 S1140).
도 11에서는 높은 네트워크 혼잡도로 인해 AP가 STA의 TIM 기반 파워 세이브 모드에서 액티브 모드로의 전환을 결정한 경우가 가정된다.
AP는 비콘 프레임을 통해 TIM 비트맵과 대응되는 파워 관리 비트맵 또는 가상 비트맵과 대응되는 파워 관리 비트맵을 전송할 수 있다.
파워 관리 비트맵은 STA의 동작 모드의 파워 세이브 모드에서 액티브 모드로의 전환을 위한 비트 정보를 포함할 수 있다.
AP로부터 STA의 동작 모드의 파워 세이브 모드에서 액티브 모드로의 전환을 위한 비트 정보를 포함하는 파워 관리 비트맵을 수신한 STA은 TIM 기반 파워 세이브 모드에서 액티브 모드로 동작 모드를 전환할 수 있다. STA은 액티브 모드 상태에서 실시간 비디오 스트리밍 서비스를 AP로부터 받을 수 있다.

도 12는 본 발명의 실시예에 따른 STA의 동작 모드의 설정 방법을 나타낸 개념도이다.
도 12에서는 STA이 TIM 기반 파워 세이브 모드를 시작하여 AP로부터 실시간 비디오 스트리밍 서비스를 받고 AP에 의해 TIM 기반 파워 세이브 모드에서 액티브 모드로 천이하는 방법이 개시된다. 도 12에서는 특히, STA의 초기 동작 모드의 설정이 AP에 의해 전송된 비콘 프레임을 기반으로 수행되는 경우가 개시된다.
도 12를 참조하면, STA은 AP로부터 네트워크 상태 정보를 수신할 수 있다(단계 S1200).
AP는 ANQP를 기반으로 WAN 메트릭 정보를 수신할 수 있고, STA은 AP에 의해 전송되는 비콘 프레임을 통해 WAN 메트릭 정보를 수신할 수 있다.
STA은 WAN 메트릭 정보를 기반으로 판단한 결과, 네트워크 혼잡도가 낮은 경우, 실시간 스트리밍 서비스를 받기 위해 TIM 기반의 파워 세이브 모드로 동작할 수 있다. 반대로 STA은 WAN 메트릭 정보를 기반으로 판단한 결과, 네트워크 혼잡도가 높은 경우, 실시간 스트리밍 서비스를 받기 위해 액티브 모드로 동작할 수 있다.
도 12에서는 STA이 초기 동작 모드를 TIM 기반 파워 세이브 모드로 설정하여 실시간 비디오 스트리밍 서비스를 받는 경우가 개시된다.
STA은 초기 동작 모드를 TIM 기반 파워 세이브 모드로 설정하여 실시간 비디오 스트리밍 서비스를 받기 위해 ADDTS 요청 프레임을 AP로 전송할 수 있다(단계 S1220).
ADDTS 요청 프레임은 TSPEC 정보 요소 상에 0으로 설정된 APSD 필드, 0으로 설정된 스케줄링 필드를 포함하고 MAC 헤더 상에 포함되는 1로 설정된 파워 관리 필드를 포함할 수 있다. 위와 같은 ADDTS 요청 프레임에 포함되는 필드의 설정을 기반으로 STA은 초기 동작 모드로서 TIM 기반 파워 세이브 모드를 AP로 요청할 수 있다.
AP는 ADDTS 요청 프레임에 대한 응답으로 ADDTS 응답 프레임을 STA으로 전송할 수 있다(단계 S1240).
ADDTS 요청 프레임을 수신한 STA은 ADDTS 응답 프레임을 통해 STA의 TIM 기반 파워 세이브 모드 동작의 허용 여부에 대한 정보를 전송할 수 있다.
TIM 기반 파워 세이브 모드 동작의 허용을 위해 AP에 의해 전송되는 ADDTS 응답 프레임은 TSPEC 정보 요소 상에 0으로 설정된 APSD 필드, 0으로 설정된 스케줄링 필드를 포함하고 MAC 헤더 상에 포함되는 1로 설정된 파워 관리 필드를 포함할 수 있다.
STA은 ADDTS 응답 프레임을 수신하고 TIM 기반 파워 세이브 모드로 동작하여 실시간 비디오 스트리밍 서비스를 받을 수 있다.
AP는 실시간 비디오 스트리밍 서비스를 STA으로 제공하는 도중 ANQP를 기반으로 WAN 메트릭 정보를 수신할 수 있다. AP는 수신한 WAN 메트릭 정보를 기반으로 네트워크 상태(예를 들어, 네트워크 혼잡도)를 판단하여 STA의 TIM 기반 파워 세이브 모드의 유지 가능 여부에 대해 판단할 수 있다.
높은 네트워크 혼잡도로 인해 TIM 기반 파워 세이브 모드의 유지가 불가능한 경우, AP는 STA의 동작 모드의 TIM 기반 파워 세이브 모드에서 액티브 모드로의 전환을 결정할 수 있다. 반대로 낮은 네트워크 혼잡도로 인해 TIM 기반 파워 세이브 모드의 유지가 가능한 경우, AP는 STA의 TIM 기반 파워 세이브 모드의 유지를 결정할 수 있다.
AP는 파워 관리 비트맵을 기반으로 STA의 액티브 모드로의 전환 또는 TIM 기반 파워 세이브 모드의 유지에 대한 정보를 STA으로 전송할 수 있다.
도 12에서는 높은 네트워크 혼잡도로 인해 AP가 STA의 동작 모드를 TIM 기반 파워 세이브 모드에서 액티브 모드로의 전환을 결정한 경우를 가정한다.
AP는 비콘 프레임을 통해 TIM 비트맵과 대응되는 파워 관리 비트맵 또는 가상 비트맵과 대응되는 파워 관리 비트맵을 전송할 수 있다(단계 S1260).
파워 관리 비트맵은 STA의 동작 모드의 파워 세이브 모드에서 액티브 모드로의 전환을 위한 비트 정보를 포함할 수 있다.
AP로부터 STA의 동작 모드의 파워 세이브 모드에서 액티브 모드로의 전환을 위한 비트 정보를 포함하는 파워 관리 비트맵을 수신한 STA은 TIM 기반 파워 세이브 모드에서 액티브 모드로 동작 모드를 전환할 수 있다. STA은 액티브 모드를 기반으로 실시간 비디오 스트리밍 서비스를 AP로부터 받을 수 있다.
도 12에서는 실시간 스트리밍 서비스를 받기 위해 STA이 비콘 프레임을 통해 WAN 메트릭 정보를 수신하는 경우를 가정하였다. 하지만, STA은 비콘 프레임이 아닌 GAS(generic advertisement service) 프로토콜을 통해 WAN 메트릭 정보를 수신할 수도 있다. GAS는 STA으로 외부 네트워크에 대한 정보를 전달하기 위해 사용될 수 있다. GAS는 STA의 AP로의 결합(association) 전에 STA의 네트워크 서비스에 대한 정보의 획득을 위해 사용될 수 있다. STA은 AP로 GAS 쿼리(query) 프레임을 전송하고 AP는 STA으로 GAS 응답(response) 프레임을 전송할 수 있다. AP에 의해 전송되는 GAS 응답 프레임은 WAN 메트릭 정보를 포함할 수 있다.

도 13은 본 발명의 실시예에 따른 STA의 동작 모드 설정 방법을 나타낸 개념도이다.
도 13에서는 STA을 실시간 스트리밍 서비스를 받는 중 액티브 모드에서 TIM 기반 파워 세이브 모드로 전환하는 방법이 개시된다.
도 13을 참조하면, STA은 AP로부터 네트워크 상태 정보를 수신할 수 있다(단계 S1300).
AP는 ANQP를 기반으로 WAN 메트릭 정보를 수신할 수 있고, STA은 AP에 의해 전송되는 비콘 프레임을 통해 WAN 메트릭 정보를 수신할 수 있다.
AP는 실시간 스트리밍 서비스를 STA으로 제공하는 도중 ANQP를 기반으로 WAN 메트릭 정보를 수신할 수 있다. AP는 수신한 WAN 메트릭 정보를 기반으로 네트워크 상태(예를 들어, 네트워크 혼잡도)를 판단하여 STA의 액티브 모드의 유지 가능 여부에 대해 판단할 수 있다.
네트워크 혼잡도가 높은 경우, AP는 STA의 액티브 모드의 유지를 결정할 수 있다. 반대로 네트워크 혼잡도가 낮은 경우, AP는 STA의 액티브 모드에서 TIM 기반 파워 세이브 모드로 전환을 결정할 수 있다.
AP는 파워 관리 비트맵을 기반으로 STA의 액티브 모드의 유지 또는 TIM 기반 파워 세이브 모드로의 전환에 대한 정보를 STA으로 전송할 수 있다.
도 13에서는 낮은 네트워크 혼잡도로 인해 AP가 STA의 동작 모드의 액티브 모드에서 TIM 기반 파워 세이브 모드로의 전환을 결정한 경우가 가정된다.
AP는 비콘 프레임을 통해 TIM 비트맵과 대응되는 파워 관리 비트맵 또는 가상 비트맵과 대응되는 파워 관리 비트맵을 전송할 수 있다.
파워 관리 비트맵은 STA의 동작 모드의 액티브 모드에서 파워 세이브 모드로의 전환을 위한 비트 정보를 포함할 수 있다.
AP로부터 STA의 동작 모드의 액티브 모드에서 파워 세이브 모드로의 전환을 위한 비트 정보를 포함하는 파워 관리 비트맵을 수신한 STA은 액티브 모드에서 파워 세이브 모드로 전환될 수 있다.
STA은 초기 동작 모드를 TIM 기반 파워 세이브 모드로 설정하여 실시간 비디오 스트리밍 서비스를 받기 위해 ADDTS 요청 프레임을 AP로 전송할 수 있다(단계 S1320).
ADDTS 요청 프레임은 TSPEC 정보 요소 상에 0으로 설정된 APSD 필드, 0으로 설정된 스케줄링 필드를 포함하고 MAC 헤더 상에 포함되는 1로 설정된 파워 관리 필드를 포함할 수 있다. 위와 같은 ADDTS 요청 프레임에 포함되는 필드의 설정을 기반으로 STA은 초기 동작 모드로서 TIM 기반 파워 세이브 모드를 AP로 요청할 수 있다.
AP는 ADDTS 요청 프레임에 대한 응답으로 ADDTS 응답 프레임을 STA으로 전송할 수 있다(단계 S1340).
ADDTS 요청 프레임을 수신한 STA은 ADDTS 응답 프레임을 통해 STA의 TIM 기반 파워 세이브 모드 동작의 허용 여부에 대한 정보를 전송할 수 있다.
TIM 기반 파워 세이브 모드 동작의 허용을 위해 AP에 의해 전송되는 ADDTS 응답 프레임은 TSPEC 정보 요소 상에 0으로 설정된 APSD 필드, 0으로 설정된 스케줄링 필드를 포함하고 MAC 헤더 상에 포함되는 1로 설정된 파워 관리 필드를 포함할 수 있다.
STA은 ADDTS 응답 프레임을 수신하고 TIM 기반 파워 세이브 모드로 동작하여 실시간 비디오 스트리밍 서비스를 받을 수 있다. STA은 파워 세이브 모드 상태에서 실시간 스트리밍 서비스를 AP로부터 받을 수 있다.

도 14는 본 발명의 실시예에 따른 STA의 동작 모드의 설정을 위한 프레임을 나타낸 개념도이다.
TIM 기반 파워 세이브 모드를 위해 ADDTS 요청 프레임 및 ADDTS 응답 프레임 대신 별도의 프레임이 정의될 수도 있다.
도 14에서는 STA의 초기 동작 모드 설정 및 동작 모드의 변경의 요청을 위해 사용 가능한 동작 모드 요청 프레임 및 동작 모드 응답 프레임이 개시된다.
도 14의 상단은 동작 모드 요청 프레임을 나타낸 개념도이다.
도 14의 상단을 참조하면, 동작 모드 요청 프레임은 요청 동작 모드 필드(1400) 및 수신 데이터 카테고리 필드(1410), 수신 조건 필드(1420)를 포함할 수 있다.
요청 동작 모드 필드(1400)는 요청하는 동작 모드에 대한 정보를 포함할 수 있다. 예를 들어, 요청하는 동작 모드는 TIM 기반 파워 세이브 모드 또는 액티브 모드일 수 있다. 요청 동작 모드 필드(1400)의 값이 0인 경우, TIM 기반 파워 세이브 모드가 요청되고, 요청 동작 모드 필드(1400)의 값이 1인 경우, 액티브 모드가 요청될 수 있다.
요청 동작 모드 필드(1400)는 TIM 기반 파워 세이브 모드, 액티브 모드뿐만 아니라 STA의 다양한 동작 모드의 요청을 위해 사용될 수 있다.
수신 데이터 카테고리 필드(1410)는 STA이 수신하고자 하는 데이터의 특성에 대한 정보를 포함할 수 있다. 예를 들어, 수신 데이터 카테고리 필드(1410)는 STA이 수신하고자 하는 데이터가 실시간 비디오 스트리밍 데이터인지 버퍼된 비디오 스트리밍 데이터인지 여부에 대한 정보를 포함할 수 있다. 또는 수신 데이터 카테고리 필드(1410)는 STA 상으로 수신되는 데이터의 액세스 카테고리(access category)에 대한 정보 등을 포함할 수 있다. STA 상으로 수신되는 데이터의 액세스 카테고리는 AC(access category)_VO(voice), AC_VI(video), AC_BK(background) 또는 AC_BE(best effort) 중 하나로 분류될 수 있다.
수신 조건 필드(1420)는 STA에서 실행되는 어플리케이션을 위해 STA으로 전송되는 데이터의 수신 조건에 대한 정보를 포함할 수 있다. 예를 들어, 수신 조건 필드(1420)는 어플리케이션의 정상적인 동작을 위한 수신 딜레이의 임계 크기, 수신 데이터의 임계 에러율 또는 임계 채널 상태 등에 대한 정보를 포함할 수 있다.
도 14의 하단은 동작 모드 응답 프레임을 나타낸 개념도이다.
도 14의 하단은 동작 모드 응답 프레임은 동작 모드 설정 필드(1450), 전송 데이터 카테고리 필드(1460) 및 전송 조건 필드(1470)를 포함할 수 있다.
동작 모드 설정 필드(1450)는 STA의 동작 모드 요청에 대하여 요청된 동작 모드의 설정을 허용하는지 여부에 대한 정보를 포함할 수 있다. 동작 모드 설정 필드(1450)를 기반으로 요청된 STA의 동작 모드가 허용되는 경우, 동작 모드 설정 필드(1450)는 1로 설정되고, 동작 모드 설정 필드(1450)를 기반으로 요청된 STA의 동작 모드가 허용되지 않는 경우, 동작 모드 설정 필드(1450)는 0으로 설정될 수 있다.
전송 데이터 카테고리 필드(1460)는 STA으로 전송할 데이터의 특성에 대한 정보를 포함할 수 있다. 예를 들어, 전송 데이터 카테고리 필드(1460)는 AP가 전송하고자 하는 데이터가 실시간 비디오 스트리밍 데이터인지 버퍼된 비디오 스트리밍 데이터인지 여부에 대한 정보를 포함할 수 있다. 또는 전송 데이터 카테고리 필드(1460)는 STA 상으로 전송될 데이터의 액세스 카테고리(access category)에 대한 정보 등을 포함할 수 있다. STA 상으로 수신되는 데이터의 액세스 카테고리는 AC(access category)_VO(voice), AC_VI(video), AC_BK(background) 또는 AC_BE(best effort) 중 하나로 분류될 수 있다.
전송 조건 필드(1470)는 STA으로 전송되는 데이터의 전송 조건에 대한 정보를 포함할 수 있다. 예를 들어, 전송 조건 필드(1470)는 전송될 데이터의 예상 딜레이, 예상 에러율 또는 데이터의 전송을 위한 예상 채널 상태 등에 대한 정보를 포함할 수 있다.
STA과 AP 간의 전술한 ADDTS 요청 프레임 및 ADDTS 응답 프레임의 송신 및 수신 대신에 동작 모드 요청 프레임 및 동작 모드 응답 프레임의 송신 및 수신을 기반으로 STA의 동작 모드가 설정될 수도 있다.

도 15는 본 발명의 실시예에 따른 프레임을 전달하는 PPDU 포맷을 나타낸 개념도이다.
도 15에서는 본 발명의 실시예에 따른 PPDU 포맷에 대해 개시한다. PPDU는 PPDU 헤더 및 MPDU(MAC protocol data unit)(또는 PSDU(physical layer service data unit))를 포함할 수 있다. 프레임은 MPDU에 대응될 수 있다. PPDU 포맷의 PPDU 헤더는 PPDU의 PHY 헤더 및 PHY 프리앰블을 포함하는 의미로 사용될 수 있다.
도 15에 개시되는 PPDU 포맷은 전술한 프레임(예를 들어, ADDTS 요청 프레임, ADDTS 응답 프레임, 비콘 프레임, 실시간 비디오 스트리밍 서비스를 위한 하향링크 프레임, 동작 모드 요청 프레임, 동작 모드 응답 프레임 등)을 전달하기 위해 사용될 수 있다.
도 15의 상단을 참조하면, 하향링크 PPDU의 PPDU 헤더는 L-STF(legacy-short training field), L-LTF(legacy-long training field), L-SIG(legacy-signal), HE-SIG A(high efficiency-signal A), HE-STF(high efficiency-short training field), HE-LTF(high efficiency-long training field), HE-SIG B(high efficiency-signal-B)를 포함할 수 있다. PHY 헤더에서 L-SIG까지는 레가시 부분(legacy part), L-SIG 이후의 HE(high efficiency) 부분(HE part)으로 구분될 수 있다.
L-STF(1500)는 짧은 트레이닝 OFDM 심볼(short training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-STF(1500)는 프레임 탐지(frame detection), AGC(automatic gain control), 다이버시티 탐지(diversity detection), 대략적인 주파수/시간 동기화(coarse frequency/time synchronization)을 위해 사용될 수 있다.
L-LTF(1510)는 긴 트레이닝 OFDM 심볼(long training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-LTF(1510)는 정밀한 주파수/시간 동기화(fine frequency/time synchronization) 및 채널 예측을 위해 사용될 수 있다.
L-SIG(1520)는 제어 정보를 전송하기 위해 사용될 수 있다. L-SIG(1520)는 데이터 전송률(rate), 데이터 길이(length)에 대한 정보를 포함할 수 있다.
HE-SIG A(1530)는 하향링크 PPDU를 수신할 타겟 STA을 지시하기 위한 STA의 식별 정보를 포함할 수 있다. STA은 HE-SIG A(1530)에 포함되는 정보를 타겟 STA의 식별자 정보를 기반으로 PPDU의 수신할지 여부에 대해 결정할 수 있다. 하향링크 PPDU의 HE-SIG A(1530)를 기반으로 STA이 지시된 경우, STA은 하향링크 PPDU에 대한 추가적인 디코딩을 수행할 수 있다. 또한, HE-SIG A(1530)는 하향링크 데이터를 수신할 자원(주파수 자원(또는 서브 밴드)(OFDMA(orthogonal frequency division multiplexing) 기반 전송시) 또는 시공간 스트림 자원(MIMO(multilple input multiple output) 기반 전송시))에 대한 정보를 포함할 수도 있다.
또한, HE-SIG A(1530)는 BSS 식별을 위한 칼라 비트(color bits) 정보, 대역폭(bandwidth) 정보, 테일 비트(tail bit), CRC 비트, HE-SIG B(1560)에 대한 MCS(modulation and coding scheme) 정보, HE-SIG B(1560)를 위한 심볼 개수 정보, CP(cyclic prefix)(또는 GI(guard interval)) 길이 정보를 포함할 수도 있다.
HE-SIG A(1530)는 STA의 요청 동작 모드에 대한 정보, STA의 요청 데이터의 특성에 대한 정보 및 STA의 수신 조건에 대한 정보를 포함할 수 있다.
또한, HE-SIG A(1530)는 AP에 의해 설정된 STA의 동작 모드에 대한 정보, AP에 의해 전송되는 전송 데이터의 특성에 대한 정보를 포함할 수도 있다.
HE-STF(1540)는 MIMO 환경 또는 OFDMA 환경에서 자동 이득 제어 추정(automatic gain control estimation)을 향상시키기 위하여 사용될 수 있다.
HE-LTF(1550)는 MIMO 환경 또는 OFDMA 환경에서 채널을 추정하기 위하여 사용될 수 있다.
HE-SIG B(1560)는 각 STA에 대한 PSDU(Physical layer service data unit)의 길이 MCS(modulation and coding scheme)에 대한 정보 및 테일 비트 등을 포함할 수 있다.
HE-STF(1540) 및 HE-STF(1540) 이후의 필드에 적용되는 IFFT(inverse fast fourier transform)의 크기와 HE-STF(1540) 이전의 필드에 적용되는 IFFT의 크기는 서로 다를 수 있다. 예를 들어, HE-STF(1540) 및 HE-STF(1540) 이후의 필드에 적용되는 IFFT의 크기는 HE-STF(1540) 이전의 필드에 적용되는 IFFT의 크기보다 4배 클 수 있다. STA이 하향링크 프레임을 수신한 경우, STA은 하향링크 프레임의 HE-SIG A(1530)를 디코딩하고 HE-SIG A(1530)에 포함된 타겟 STA의 식별자 정보를 기반으로 HE-SIG A(1530) 이후 필드의 디코딩 여부를 결정할 수 있다. 이러한 경우, HE-SIG A(1530)에 포함된 타겟 STA의 식별자 정보가 STA의 식별자를 지시하는 경우, STA은 HE-STF(1540) 및 HE-STF(1540) 이후 필드부터 변경된 FFT 사이즈를 기반으로 디코딩을 수행할 수 있다. 반대로 HE-SIG A(1530)에 포함된 타겟 STA의 식별자 정보가 STA의 식별자를 지시하지 않는 경우, STA은 디코딩을 중단하고 NAV(network allocation vector) 설정을 할 수 있다. HE-STF(1540)의 CP(cyclic prefix)는 다른 필드의 CP보다 큰 크기를 가질 수 있고, 이러한 CP 구간 동안 STA은 FFT 사이즈를 변화시켜 하향링크 PPDU에 대한 디코딩을 수행할 수 있다.
도 15의 상단에서 개시된 PPDU의 포맷을 구성하는 필드의 순서는 변할 수도 있다. 예를 들어, 도 15의 중단에서 개시된 바와 같이 HE 부분의 HE-SIG B(1515)가 HE-SIG A(1505)의 바로 이후에 위치할 수도 있다. STA은 HE-SIG A(1505) 및 HE-SIG B(1515)까지 디코딩하고 필요한 제어 정보를 수신하고 NAV 설정을 할 수 있다. 마찬가지로 HE-STF(1525) 및 HE-STF(1525) 이후의 필드에 적용되는 IFFT의 크기는 HE-STF(1525) 이전의 필드에 적용되는 IFFT의 크기와 다를 수 있다.
STA은 HE-SIG A(1505) 및 HE-SIG B(1515)를 수신할 수 있다. HE-SIG A(1505)의 타겟 STA의 식별자에 의해 하향링크 PPDU의 수신이 지시되는 경우, STA은 HE-STF(1525)부터는 FFT 사이즈를 변화시켜 하향링크 PPDU에 대한 디코딩을 수행할 수 있다. 반대로 STA은 HE-SIG A(1405)를 수신하고, HE-SIG A(1505)를 기반으로 하향링크 PPDU의 수신이 지시되지 않는 경우, NAV 설정을 할 수 있다.
도 15의 하단을 참조하면, DL(downlink) MU(multi-user) 전송을 위한 하향링크 PPDU 포맷이 개시된다. 하향링크 PPDU는 OFDMA를 기반으로 서로 다른 하향링크 전송 자원(주파수 자원 또는 공간적 스트림)을 통해 STA으로 전송될 수 있다. 즉, DL MU 전송을 위한 하향링크 PPDU 포맷을 기반으로 복수의 서브밴드를 통해 복수의 STA으로 하향링크 데이터가 전송될 수 있다. 전술한 실시예에서는 개시하지 않았으나 AP는 DL MU 하향링크 PPDU 포맷을 기반으로 하향링크 데이터를 복수의 STA으로 전송할 수 있다.
하향링크 PPDU 상에서 HE-SIG B(1545)의 이전 필드는 서로 다른 하향링크 전송 자원 각각에서 듀플리케이트된 형태로 전송될 수 있다. HE-SIG B(1545)는 전체 전송 자원 상에서 인코딩된 형태로 전송될 수 있다. HE-SIG B(1545) 이후의 필드는 하향링크 PPDU를 수신하는 복수의 STA 각각을 위한 개별 정보를 포함할 수 있다.
하향링크 PPDU에 포함되는 필드가 하향링크 전송 자원 각각을 통해 각각 전송되는 경우, 필드 각각에 대한 CRC가 하향링크 PPDU에 포함될 수 있다. 반대로, 하향링크 PPDU에 포함되는 특정 필드가 전체 하향링크 전송 자원 상에서 인코딩되어 전송되는 경우, 필드 각각에 대한 CRC가 하향링크 PPDU에 포함되지 않을 수 있다. 따라서, CRC에 대한 오버 헤드가 감소될 수 있다. 즉, 본 발명의 실시예에 따른 DL MU 전송을 위한 하향링크 PPDU 포맷은 전체 전송 자원 상에서 인코딩된 형태의 HE-SIG B(1545)를 사용함으로써 하향링크 프레임의 CRC 오버헤드를 감소시킬 수 있다.
DL MU 전송을 위한 하향링크 PPDU 포맷도 마찬가지로 HE-STF(1555) 및 HE-STF(1555) 이후의 필드는 HE-STF(1555) 이전의 필드와 다른 IFFT 사이즈를 기반으로 인코딩될 수 있다. 따라서, STA은 HE-SIG A(1535) 및 HE-SIG B(1545)를 수신하고, HE-SIG A(1535)를 기반으로 하향링크 PPDU의 수신을 지시받은 경우, HE-STF(1555)부터는 FFT 사이즈를 변화시켜 하향링크 PPDU에 대한 디코딩을 수행할 수 있다.

도 16은 본 발명의 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.
도 16을 참조하면, 무선 장치(1600)는 상술한 실시예를 구현할 수 있는 STA로서, AP(1600) 또는 비 AP STA(non-AP station)(또는 STA)(1650)일 수 있다.
AP(1600)는 프로세서(1610), 메모리(1620) 및 RF부(radio frequency unit, 1630)를 포함한다.
RF부(1630)는 프로세서(1610)와 연결하여 무선신호를 송신/수신할 수 있다.
프로세서(1610)는 본 발명에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(1610)는 전술한 본 발명의 실시예에 따른 무선 장치의 동작을 수행하도록 구현될 수 있다. 프로세서는 도 1 내지 15의 실시예에서 개시한 무선 장치의 동작을 수행할 수 있다.
예를 들어, 프로세서(1610)는 네트워크 상태 정보를 획득하고 네트워크 상태 정보를 기반으로 STA의 동작 모드를 설정하기 위한 동작 모드 설정 정보를 전송할 수 있다. 동작 모드 설정 정보는 파워 관리 비트맵을 포함할 수 있다.
또한, 프로세서(1610)는 STA의 TIM 기반 파워 세이브 모드의 설정 요청을 수신하고 TIM 기반 파워 세이브 모드의 설정 요청에 대한 허용 여부를 결정하여 TIM 기반 파워 세이브 모드 기반의 동작에 대한 허용 여부를 포함하는 응답 프레임을 전송할 수 있다.
STA(1650)는 프로세서(1660), 메모리(1670) 및 RF부(radio frequency unit, 1680)를 포함한다.
RF부(1680)는 프로세서(1660)와 연결하여 무선신호를 송신/수신할 수 있다.
프로세서(1660)는 본 발명에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(1660)는 전술한 본 발명의 실시예에 따른 무선 장치의 동작을 수행하도록 구현될 수 있다. 프로세서는 도 1 내지 15의 실시예에서 무선 장치의 동작을 수행할 수 있다.
예를 들어, 프로세서(1660)는 AP와 TIM 기반 파워 세이브 모드의 설정을 위한 초기 설정 절차를 수행하고, 상기 초기 설정 절차를 기반으로 TIM 기반 파워 세이브 모드로 동작하여 비콘 프레임의 전송 주기를 기반으로 도즈 상태에서 어웨이크 상태로 전환되어 AP로부터 제1 하향링크 프레임을 수신할 수 있다. 또한, 프로세서(1660)는 AP로부터 TIM 기반 파워 세이브 모드에서 액티브 모드로의 전환을 지시하는 동작 모드 설정 정보를 수신하고, 액티브 모드를 기반으로 AP로부터 제2 하향링크 프레임을 수신하도록 구현될 수 있다. 제1 하향링크 프레임 및 상기 제2 하향링크 프레임은 실시간 비디오 스트리밍 서비스(live video streaming service)을 위한 데이터를 포함하고, 동작 모드 설정 정보는 STA과 AP 사이의 네트워크 상태 정보를 기반으로 생성될 수 있다.
동작 모드 설정 정보는 AP에 의해 전송되는 비콘 프레임 상의 파워 관리 비트맵(power management bitmap)을 기반으로 전송될 수 있다. 파워 관리 비트맵에 포함되는 복수의 비트 각각은 AP에 결합된 STA을 포함하는 복수의 STA 각각의 동작 모드를 TIM 기반 파워 세이브 모드로 설정할지 액티브 모드로 설정할지 여부를 지시하고, 파워 관리 비트맵에 포함되는 복수의 비트 각각은 TIM 비트맵에 포함되는 복수의 비트 각각과 대응되고, TIM 비트맵은 복수의 STA 각각에 대해 펜딩된 하향링크 데이터의 존재 여부를 지시할 수 있다.
네트워크 상태 정보는 AP에 의해 ANQP를 기반으로 획득되고, 네트워크 상태 정보는 WAN 메트릭 정보를 포함하고, WAN 메트릭 정보는 AP와 STA 사이의 채널을 통해 전송되는 데이터의 전송 속도 및 상기 채널의 부하에 대한 정보를 포함할 수 있다.
프로세서(1610, 1660)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(1620, 1670)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(1630, 1680)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다.
실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(1620, 1670)에 저장되고, 프로세서(1610, 1660)에 의해 실행될 수 있다. 메모리(1620, 1670)는 프로세서(1610, 1660) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1610, 1660)와 연결될 수 있다.

Claims (10)

  1. 무선랜에서 파워 세이브 모드 기반의 동작 방법은,
    STA(station)이 AP(access point)와 TIM(traffic indication map) 기반 파워 세이브 모드(power save mode)의 설정을 위한 초기 설정 절차를 수행하는 단계;
    상기 TIM 기반 파워 세이브 모드로 동작하는 상기 STA이 비콘 프레임의 전송 주기를 기반으로 도즈 상태(doze state)와 어웨이크 상태(awake state) 사이의 전환을 수행하여 상기 AP로부터 제1 하향링크 프레임을 수신하는 단계;
    상기 STA이 상기 AP로부터 상기 TIM 기반 파워 세이브 모드에서 액티브 모드(active mode)로의 전환을 지시하는 동작 모드 설정 정보를 수신하는 단계; 및
    상기 동작 모드 설정 정보를 기반으로 상기 액티브 모드로 동작하는 상기 STA이 상기 전환 없이 상기 어웨이크 상태를 유지하여 상기 AP로부터 제2 하향링크 프레임을 수신하는 단계를 포함하되,
    상기 제1 하향링크 프레임 및 상기 제2 하향링크 프레임은 실시간 비디오 스트리밍 서비스(live video streaming service)을 위한 데이터를 포함하고,
    상기 동작 모드 설정 정보는 상기 STA과 상기 AP 사이의 네트워크 상태 정보를 기반으로 생성되는 방법.
  2. 제1항에 있어서,
    상기 동작 모드 설정 정보는 상기 AP에 의해 전송되는 비콘 프레임을 통해 전송되고,
    상기 동작 모드 설정 정보는 파워 관리 비트맵(power management bitmap)을 기반으로 전송되고,
    상기 파워 관리 비트맵에 포함되는 복수의 비트 각각은 상기 AP에 결합된 상기 STA을 포함하는 복수의 STA 각각의 동작 모드를 상기 TIM 기반 파워 세이브 모드로 설정할지 상기 액티브 모드로 설정할지 여부를 지시하고,
    상기 파워 관리 비트맵에 포함되는 상기 복수의 비트 각각은 TIM 비트맵에 포함되는 복수의 비트 각각과 대응되고,
    상기 TIM 비트맵은 상기 복수의 STA 각각에 대해 펜딩된 하향링크 데이터의 존재 여부를 지시하는 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 네트워크 상태 정보는 상기 AP에 의해 ANQP(access network query protocol)를 기반으로 획득되고,
    상기 네트워크 상태 정보는 WAN 메트릭(wide area network metric) 정보를 포함하고,
    상기 WAN 메트릭 정보는 상기 AP와 상기 STA 사이의 채널을 통해 전송되는 데이터의 전송 속도 및 상기 채널의 부하에 대한 정보를 포함하는 것을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 동작 모드 설정 정보는 상기 AP에 의해 전송되는 비콘 프레임을 통해 전송되고,
    상기 동작 모드 설정 정보는 파워 관리 비트맵(power management bitmap)을 기반으로 전송되고,
    상기 파워 관리 비트맵에 포함되는 복수의 비트 각각은 상기 AP에 결합된 상기 STA을 포함하는 복수의 STA 중 상기 실시간 비디오 스트리밍 서비스를 받는 상기 STA을 포함하는 적어도 하나의 STA 각각의 동작 모드를 상기 TIM 기반 파워 세이브 모드로 설정할지 상기 액티브 모드로 설정할지 여부를 지시하고,
    상기 파워 관리 비트맵에 포함되는 상기 복수의 비트 각각은 가상 TIM 비트맵에 포함되는 복수의 비트 각각과 대응되고,
    상기 가상 TIM 비트맵은 상기 실시간 비디오 스트리밍 서비스를 받는 상기 STA을 포함하는 상기 적어도 하나의 STA 각각에 대해 펜딩된 하향링크 데이터의 존재 여부를 지시하는 것을 특징으로 하는 방법.
  5. 제4항에 있어서,
    상기 네트워크 상태 정보는 상기 AP에 의해 ANQP(access network query protocol)를 기반으로 획득되고,
    상기 네트워크 상태 정보는 WAN 메트릭(wide area network metric) 정보를 포함하고,
    상기 WAN 메트릭 정보는 상기 AP와 상기 STA 사이의 채널을 통해 전송되는 데이터의 전송 속도 및 상기 채널의 부하에 대한 정보를 포함하는 것을 특징으로 하는 방법.
  6. 무선랜에서 파워 세이브 모드를 기반으로 동작하는 STA(station)은,
    무선 신호를 송신 또는 수신하기 위해 구현된 RF(radio frequency)부; 및
    상기 RF부와 동작 가능하도록(operatively) 연결되는 프로세서를 포함하되,
    상기 프로세서는 AP(access point)와 TIM(traffic indication map) 기반 파워 세이브 모드(power save mode)의 설정을 위한 초기 설정 절차를 수행하고,
    상기 TIM 기반 파워 세이브 모드로의 동작 설정에 따라 비콘 프레임의 전송 주기를 기반으로 도즈 상태(doze state)와 어웨이크 상태(awake state) 사이의 전환을 수행하여 상기 AP로부터 제1 하향링크 프레임을 수신하고,
    상기 AP로부터 상기 TIM 기반 파워 세이브 모드에서 액티브 모드(active mode)로의 전환을 지시하는 동작 모드 설정 정보를 수신하고,
    상기 동작 모드 설정 정보를 기반으로 한 상기 액티브 모드로의 동작 설정에 따라 상기 전환 없이 상기 어웨이크 상태를 유지하여 상기 AP로부터 제2 하향링크 프레임을 수신하되,
    상기 제1 하향링크 프레임 및 상기 제2 하향링크 프레임은 실시간 비디오 스트리밍 서비스(live video streaming service)을 위한 데이터를 포함하고,
    상기 동작 모드 설정 정보는 상기 STA과 상기 AP 사이의 네트워크 상태 정보를 기반으로 생성되는 STA.
  7. 제6항에 있어서,
    상기 동작 모드 설정 정보는 상기 AP에 의해 전송되는 비콘 프레임을 통해 전송되고,
    상기 동작 모드 설정 정보는 파워 관리 비트맵(power management bitmap)을 기반으로 전송되고,
    상기 파워 관리 비트맵에 포함되는 복수의 비트 각각은 상기 AP에 결합된 상기 STA을 포함하는 복수의 STA 각각의 동작 모드를 상기 TIM 기반 파워 세이브 모드로 설정할지 상기 액티브 모드로 설정할지 여부를 지시하고,
    상기 파워 관리 비트맵에 포함되는 상기 복수의 비트 각각은 TIM 비트맵에 포함되는 복수의 비트 각각과 대응되고,
    상기 TIM 비트맵은 상기 복수의 STA 각각에 대해 펜딩된 하향링크 데이터의 존재 여부를 지시하는 것을 특징으로 하는 STA.
  8. 제7항에 있어서,
    상기 네트워크 상태 정보는 상기 AP에 의해 ANQP(access network query protocol)를 기반으로 획득되고,
    상기 네트워크 상태 정보는 WAN 메트릭(wide area network metric) 정보를 포함하고,
    상기 WAN 메트릭 정보는 상기 AP와 상기 STA 사이의 채널을 통해 전송되는 데이터의 전송 속도 및 상기 채널의 부하에 대한 정보를 포함하는 것을 특징으로 하는 STA.
  9. 제6항에 있어서,
    상기 동작 모드 설정 정보는 상기 AP에 의해 전송되는 비콘 프레임을 통해 전송되고,
    상기 동작 모드 설정 정보는 파워 관리 비트맵(power management bitmap)을 기반으로 전송되고,
    상기 파워 관리 비트맵에 포함되는 복수의 비트 각각은 상기 AP에 결합된 상기 STA을 포함하는 복수의 STA 중 상기 실시간 비디오 스트리밍 서비스를 받는 상기 STA을 포함하는 적어도 하나의 STA 각각의 동작 모드를 상기 TIM 기반 파워 세이브 모드로 설정할지 상기 액티브 모드로 설정할지 여부를 지시하고,
    상기 파워 관리 비트맵에 포함되는 상기 복수의 비트 각각은 가상 TIM 비트맵에 포함되는 복수의 비트 각각과 대응되고,
    상기 가상 TIM 비트맵은 상기 실시간 비디오 스트리밍 서비스를 받는 상기 STA을 포함하는 상기 적어도 하나의 STA 각각에 대해 펜딩된 하향링크 데이터의 존재 여부를 지시하는 것을 특징으로 하는 STA.
  10. 제9항에 있어서,
    상기 네트워크 상태 정보는 상기 AP에 의해 ANQP(access network query protocol)를 기반으로 획득되고,
    상기 네트워크 상태 정보는 WAN 메트릭(wide area network metric) 정보를 포함하고,
    상기 WAN 메트릭 정보는 상기 AP와 상기 STA 사이의 채널을 통해 전송되는 데이터의 전송 속도 및 상기 채널의 부하에 대한 정보를 포함하는 것을 특징으로 하는 STA.
PCT/KR2015/003389 2014-05-08 2015-04-03 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치 WO2015170831A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167031088A KR20170003558A (ko) 2014-05-08 2015-04-03 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
US15/309,415 US9974022B2 (en) 2014-05-08 2015-04-03 Method and apparatus for power saving mode-based operation in wireless LAN
JP2017511125A JP6322766B2 (ja) 2014-05-08 2015-04-03 無線lanにおけるパワーセーブモードベースの動作方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461990112P 2014-05-08 2014-05-08
US61/990,112 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015170831A1 true WO2015170831A1 (ko) 2015-11-12

Family

ID=54392656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003389 WO2015170831A1 (ko) 2014-05-08 2015-04-03 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치

Country Status (4)

Country Link
US (1) US9974022B2 (ko)
JP (1) JP6322766B2 (ko)
KR (1) KR20170003558A (ko)
WO (1) WO2015170831A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018001036A1 (zh) * 2016-06-30 2018-01-04 华为技术有限公司 一种功率控制方法及装置
WO2018012949A1 (ko) * 2016-07-15 2018-01-18 삼성전자 주식회사 이동 통신 시스템의 단말의 상태 제어 방법 및 장치
CN111541592A (zh) * 2019-02-07 2020-08-14 富士施乐株式会社 用于低功率广域网的系统和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4030712B1 (en) * 2014-06-27 2023-11-08 Samsung Electronics Co., Ltd. Method and device for transmitting data
KR102208438B1 (ko) * 2014-11-26 2021-01-27 삼성전자주식회사 근접 서비스 데이터 송신 방법 및 그 전자 장치
EP3225058B1 (en) * 2014-11-27 2020-11-25 Nokia Technologies Oy Managing operation during absence in wireless network
US11540221B2 (en) * 2017-02-01 2022-12-27 Qualcomm Incorporated Adaptive power save with reinforcement learning
US20200351773A1 (en) * 2017-11-02 2020-11-05 Lg Electronics Inc. Method for communicating in wireless lan system and wireless terminal using same
KR101979671B1 (ko) * 2018-01-02 2019-05-17 (주)에프씨아이 빈번하게 변경되는 비콘 구성요소를 이용한 비콘 신호 처리 최소화 방법 및 장치
EP3847851A1 (en) * 2018-09-07 2021-07-14 Google LLC Enhanced frame pending

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050024760A (ko) * 2003-09-03 2005-03-11 삼성전자주식회사 무선 랜 시스템의 전력 감소 방법 및 그 장치
KR20080033760A (ko) * 2006-10-13 2008-04-17 엘지전자 주식회사 무선 네트워크에서 전력 제어 방법
KR20120041197A (ko) * 2009-07-09 2012-04-30 엘지전자 주식회사 무선랜 시스템에서의 스테이션의 전력 관리 방법 및 이를 지원하는 스테이션
KR20140037892A (ko) * 2011-05-31 2014-03-27 엘지전자 주식회사 파워 세이브 모드 운영을 지원하는 무선랜 시스템에서 ppdu 송신 및 수신 방법 및 이를 지원하는 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155096B1 (en) * 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
JP4528541B2 (ja) * 2004-03-05 2010-08-18 株式会社東芝 通信装置、通信方法、および通信システム
WO2007086812A1 (en) * 2006-01-26 2007-08-02 Nanyang Technological University Methods for transmitting and receiving data and communication devices
US8259618B2 (en) 2006-10-13 2012-09-04 Lg Electronics Inc. Method for managing the power in the wireless network
TWI528756B (zh) * 2007-03-10 2016-04-01 Lg電子股份有限公司 在穿隧直接鏈結(tdls)無線網路中之對等式功率節省模式
US9338277B2 (en) * 2007-03-15 2016-05-10 Google Technology Holdings LLC Method and system for responding to an emergency situation from a mobile communication device
ATE538621T1 (de) * 2007-07-30 2012-01-15 Marvell World Trade Ltd Gleichzeitige aufrechterhaltung von bluetooth- und 802.11-verbindungen für erhöhten datendurchsatz
JP5204191B2 (ja) 2010-10-26 2013-06-05 レノボ・シンガポール・プライベート・リミテッド マジック・パケット・フレームの送信方法および無線端末装置
US8730990B2 (en) * 2011-09-15 2014-05-20 Nokia Corporation Method, apparatus, and computer program product for quiet period management in wireless networks for coexistence
US9735855B2 (en) * 2012-04-18 2017-08-15 Marvell World Trade Ltd. Method and apparatus for relaying communication between an access point and a station in a wireless network
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050024760A (ko) * 2003-09-03 2005-03-11 삼성전자주식회사 무선 랜 시스템의 전력 감소 방법 및 그 장치
KR20080033760A (ko) * 2006-10-13 2008-04-17 엘지전자 주식회사 무선 네트워크에서 전력 제어 방법
KR20120041197A (ko) * 2009-07-09 2012-04-30 엘지전자 주식회사 무선랜 시스템에서의 스테이션의 전력 관리 방법 및 이를 지원하는 스테이션
KR20140037892A (ko) * 2011-05-31 2014-03-27 엘지전자 주식회사 파워 세이브 모드 운영을 지원하는 무선랜 시스템에서 ppdu 송신 및 수신 방법 및 이를 지원하는 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018001036A1 (zh) * 2016-06-30 2018-01-04 华为技术有限公司 一种功率控制方法及装置
US10979973B2 (en) 2016-06-30 2021-04-13 Huawei Technologies Co., Ltd. Power control method and apparatus
WO2018012949A1 (ko) * 2016-07-15 2018-01-18 삼성전자 주식회사 이동 통신 시스템의 단말의 상태 제어 방법 및 장치
US11304145B2 (en) 2016-07-15 2022-04-12 Samsung Electronics Co., Ltd. Method and device for controlling state of terminal in mobile communication system
CN111541592A (zh) * 2019-02-07 2020-08-14 富士施乐株式会社 用于低功率广域网的系统和方法
CN111541592B (zh) * 2019-02-07 2023-06-09 富士胶片商业创新有限公司 用于低功率广域网的系统和方法

Also Published As

Publication number Publication date
US20170195959A1 (en) 2017-07-06
KR20170003558A (ko) 2017-01-09
JP2017519465A (ja) 2017-07-13
JP6322766B2 (ja) 2018-05-09
US9974022B2 (en) 2018-05-15

Similar Documents

Publication Publication Date Title
US10716061B2 (en) Method and device for triggering plurality of PS-poll frames in wireless LAN
WO2015170831A1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
WO2015170942A1 (ko) 무선랜에서 파워 세이브 모드 동작을 위한 방법 및 장치
KR101838419B1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
KR101900064B1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
KR101832642B1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
KR101851490B1 (ko) 무선랜에서 다른 bss에서 전송된 프레임을 기반으로 파워 세이브 모드로 동작하는 방법 및 장치
WO2015186892A1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
JP2017510156A (ja) 無線lanにおけるパワーセーブモードに基づく動作方法及び装置
US10034244B2 (en) Method and apparatus for transmitting and receiving periodic data on basis of power save mode in wireless LAN
KR20160070065A (ko) 무선랜에서 하향링크 프레임을 수신하는 방법 및 장치
WO2015186889A1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
KR20160096641A (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
WO2015122600A1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167031088

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15309415

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017511125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789587

Country of ref document: EP

Kind code of ref document: A1