WO2015170682A1 - Curable composition, electroconductive material, and connection structure - Google Patents

Curable composition, electroconductive material, and connection structure Download PDF

Info

Publication number
WO2015170682A1
WO2015170682A1 PCT/JP2015/063096 JP2015063096W WO2015170682A1 WO 2015170682 A1 WO2015170682 A1 WO 2015170682A1 JP 2015063096 W JP2015063096 W JP 2015063096W WO 2015170682 A1 WO2015170682 A1 WO 2015170682A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
curable composition
group
curable
connection
Prior art date
Application number
PCT/JP2015/063096
Other languages
French (fr)
Japanese (ja)
Inventor
石澤 英亮
敬士 久保田
秀文 保井
新城 隆
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020167012327A priority Critical patent/KR20170005787A/en
Priority to CN201580004747.7A priority patent/CN105916903A/en
Priority to JP2015524532A priority patent/JP6049879B2/en
Publication of WO2015170682A1 publication Critical patent/WO2015170682A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/24Homopolymers or copolymers of amides or imides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to a curable composition having excellent adhesiveness. Moreover, this invention relates to the electrically-conductive material and connection structure using the said curable composition.
  • a curable composition containing a curable compound is widely used in various applications such as electricity, electronics, architecture, and vehicles.
  • Patent Document 1 discloses a curable composition containing (A) a specific phenoxy resin, (B) an inorganic filler, and (C) a silane coupling agent. Has been.
  • the content of the (C) silane coupling agent is 1% by mass or more and 10% by mass or less with respect to the entire curable composition.
  • Conductive particles may be blended with the curable composition.
  • a curable composition containing conductive particles is called an anisotropic conductive material.
  • the anisotropic conductive material is used for connecting various connection target members to obtain various connection structures.
  • anisotropic conductive material examples include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor chip and glass. It is used for connection with a substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
  • FOG Glass
  • COF Chip on Film
  • touch panels are used in electronic devices such as mobile phones, smartphones, car navigation systems, and personal computers.
  • a touch panel or the like a polyethylene terephthalate (PET) film may be used as a connection target member.
  • PET polyethylene terephthalate
  • a PET film on which a silver electrode or the like is formed and a flexible printed board may be bonded together with a curable composition.
  • the market scale of connection structures using PET films has been expanded.
  • Patent Document 2 discloses a curing agent that generates free radicals by heating, a hydroxyl group-containing resin having a molecular weight of 10,000 or more, a phosphate ester, a radical polymerizable substance, a conductive material.
  • An anisotropic conductive material (curable composition) containing conductive particles is disclosed.
  • Specific examples of the hydroxyl group-containing resin include polymers such as polyvinyl butyral resin, polyvinyl formal, polyamide, polyester, phenol resin, epoxy resin, and phenoxy resin.
  • the conventional curable compositions as described in Patent Documents 1 and 2 have a problem that the adhesion of the connection target member is low.
  • the conventional curable composition has a problem that when the PET film is adhered, the PET film is easily peeled off.
  • An object of the present invention is to provide a curable composition capable of enhancing the adhesion of a connection target member, and to provide a conductive material and a connection structure using the curable composition.
  • a limited object of the present invention is to provide a curable composition that can enhance the adhesion of the PET film, and can suppress the peeling of the PET film even when the PET film is adhered, and the above-mentioned It is providing the electrically-conductive material and connection structure using a curable composition.
  • the curable composition which concerns on this invention is used suitably for adhesion
  • the first compound obtained by the reaction of the compound represented by the following formula (11) and the diol compound is used to add an isocyanate group and an unsaturated double group to the first compound.
  • a curable composition comprising a curable compound obtained by reacting a second compound having a bond and a thermosetting agent.
  • X represents an alkylene group having 2 to 10 carbon atoms or a phenylene group
  • R1 and R2 each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the compound represented by the formula (11) is a compound represented by the following formula (11A).
  • R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the compound represented by the formula (11) is terephthalic acid, terephthalic acid alkyl ester, isophthalic acid, or isophthalic acid alkyl ester.
  • the diol compound includes 1,6-hexanediol, and in another specific aspect, the diol compound includes bisphenol A or bisphenol F, and in another specific aspect, the diol compound includes 1,6-hexanediol and bisphenol A or bisphenol F.
  • the second compound has a (meth) acryloyl group as a group containing an unsaturated double bond, and in another specific aspect, the second compound The compound of 2 is (meth) acryloyloxyalkyloxy isocyanate.
  • the curable compound has a weight average molecular weight of 8000 or more and 50000 or less.
  • the curable composition preferably contains a quaternary ammonium salt compound or a (meth) acrylic compound having a hydroxyl group.
  • the curable composition preferably contains the quaternary ammonium salt compound.
  • the curable composition preferably contains a (meth) acrylic compound having a hydroxyl group.
  • thermosetting agent is a thermal radical generator.
  • the elongation at break of the obtained cured product is 500% or more.
  • the curable composition according to the present invention is preferably used for adhesion of a polyethylene terephthalate film, and is preferably a curable composition for adhesion of a polyethylene terephthalate film.
  • the curable composition according to the present invention is preferably used for bonding a polyethylene terephthalate film in a touch panel, and is preferably a curable composition for bonding a polyethylene terephthalate film in a touch panel.
  • a curable composition containing a curable compound represented by the following formula (1) and a thermosetting agent.
  • R 1 and R 2 each represent a hydrogen atom or a methyl group
  • R 3 and R 4 each represent a hydrogen atom, a methyl group or a phenyl group
  • X represents an alkylene group having 2 to 10 carbon atoms or Represents a polyether group
  • Y represents an alkylene group having 2 to 10 carbon atoms or a phenylene group
  • n1 and n2 each represents 1 or 2
  • m represents the weight of the curable compound represented by the formula (1) It represents an integer having an average molecular weight of 8000 or more and 50000 or less.
  • a conductive material including the curable composition described above and conductive particles.
  • the content of the curable compound is 50% by weight or more.
  • the conductive particles have solder on a conductive outer surface.
  • a first connection target member a second connection target member, and a connection portion connecting the first connection target member and the second connection target member.
  • the first connection target member has a first electrode on the surface
  • the second connection target member has a second electrode on the surface
  • the first electrode and the second electrode are electrically connected by being in contact with each other.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member and the A connection portion connecting to a second connection target member, wherein the connection portion is formed by curing the conductive material described above, and the first electrode and the second electrode are A connection structure that is electrically connected by the conductive particles is provided.
  • the curable composition which concerns on this invention contains a curable compound and a thermosetting agent, and the said curable compound is a 1st compound obtained by reaction with the compound and diol compound which are represented by Formula (11) Can be obtained by reacting the first compound with a second compound having an isocyanate group and an unsaturated double bond, so that the adhesion of the connection target member can be improved.
  • the curable composition according to the present invention includes the curable compound represented by the formula (1) and the thermosetting agent, it is possible to improve the adhesion of the connection target member.
  • FIG. 1 is a front cross-sectional view schematically showing a connection structure obtained using a conductive material containing a curable composition according to a first embodiment of the present invention and conductive particles.
  • FIG. 2 is a front cross-sectional view schematically showing a connection structure obtained by using the curable composition according to the second embodiment of the present invention.
  • FIG. 3 is a front cross-sectional view schematically showing a connection structure obtained using the curable composition according to the third embodiment of the present invention.
  • FIG. 4 is a front sectional view schematically showing an enlarged connection portion between the conductive particles and the electrodes in the connection structure shown in FIG. 1.
  • FIG. 5 is a cross-sectional view showing an example of conductive particles that can be used for the conductive material used in the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a modification of the conductive particles.
  • FIG. 7 is a cross-sectional view showing another modification of the conductive particles.
  • the curable composition according to the present invention uses the first compound obtained by the reaction of a compound represented by the following formula (11) and a diol compound, and the first compound is mixed with an isocyanate group and an unsaturated divalent compound. It preferably contains a curable compound obtained by reacting a second compound having a heavy bond. By the reaction for obtaining this curable compound, for example, a curable compound represented by the formula (1) can be obtained.
  • the curable composition according to the present invention includes a thermosetting agent in order to cure the curable compound.
  • X represents an alkylene group having 2 to 10 carbon atoms or a phenylene group
  • R1 and R2 each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the curable composition concerning this invention contains the curable compound represented by following formula (1).
  • the curable compound represented by the formula (1) includes, for example, a first compound obtained by a reaction between the compound represented by the formula (11) and a diol compound, and the first compound has an isocyanate group. And a method in which a second compound having an unsaturated double bond is reacted.
  • the curable composition according to the present invention includes a thermosetting agent in order to cure the curable compound.
  • R 1 and R 2 each represent a hydrogen atom or a methyl group
  • R 3 and R 4 each represent a hydrogen atom, a methyl group or a phenyl group
  • X represents an alkylene group having 2 to 10 carbon atoms or Represents a polyether group
  • Y represents an alkylene group having 2 to 10 carbon atoms or a phenylene group
  • n1 and n2 each represents 1 or 2
  • m represents the weight of the curable compound represented by the formula (1) It represents an integer having an average molecular weight of 8000 or more and 50000 or less.
  • the adhesion of the connection target member can be improved. This is considered to be because the curable compound has a skeleton structure having appropriate flexibility.
  • the adhesiveness of the polyethylene terephthalate (PET) film can be enhanced particularly due to the structure of the curable compound. This is considered to be because the curable compound not only has a skeleton structure having moderate flexibility, but also has a structure similar to PET.
  • the effect of improving the adhesiveness of the PET film is particularly large, but the effect of improving the adhesiveness of other connection target members is also obtained.
  • connection target member is connected using the curable composition according to the present invention, even if the obtained connection structure is exposed to high temperature or high humidity, peeling hardly occurs.
  • the curable composition contains the thermosetting agent. By curing the curable composition by heating, the adhesion of the connection target member is increased.
  • the curable composition does not contain or contains the photocuring initiator. From the viewpoint of suppressing an excessive flow of the curable composition by curing by heating after curing by light irradiation, the curable composition preferably contains the photocuring initiator. On the other hand, from the viewpoint of further increasing the adhesiveness of the connection target member by increasing the rate of curing by heating, the curable composition may not contain the photocuring initiator. If the photocuring initiator is not used, in order to cure the curable composition, it is possible to perform only heating without irradiating light, so that the manufacturing efficiency of the connection structure is increased.
  • the elongation at break of the obtained cured product is preferably 500% or more, more preferably 700% or more.
  • the curable composition contained in the conductive material described later is cured at 140 ° C. for 10 seconds
  • the elongation at break of the obtained cured product is preferably 500% or more, more preferably 700% or more.
  • the breaking elongation is equal to or more than the lower limit, the adhesion of the connection target member can be further enhanced, and in particular, the adhesion of the PET film can be further enhanced.
  • curable composition contained in the conductive material in the measurement of the elongation at break a curable composition (mixture of components other than conductive particles) used when the conductive material is blended may be used.
  • a curable composition from which the conductive particles are removed may be used.
  • the elongation at break is a value of the elongation ratio of the distance between chucks when the cured product is stretched using a tensile tester under the conditions of 23 ° C., a pulling speed of 1 mm / min and a distance between chucks of 40 mm. .
  • the curable composition according to the present invention preferably contains a quaternary ammonium salt compound or a (meth) acrylic compound having a hydroxyl group.
  • the curable composition according to the present invention may contain both the quaternary ammonium salt compound and the (meth) acrylic compound having a hydroxyl group.
  • the curable composition according to the present invention preferably contains the quaternary ammonium salt compound in order to further suppress peeling at a high temperature.
  • the curable composition according to the present invention preferably contains the (meth) acrylic compound having a hydroxyl group.
  • the curable compound includes a first compound obtained by the reaction of a compound represented by the formula (11) and a diol compound, and the first compound has an isocyanate group and an unsaturated double bond. It is obtained by reacting two compounds.
  • the above reaction is a dehydration condensation reaction or a dealcoholization reaction.
  • the compound represented by the said Formula (11) only 1 type may be used and 2 or more types may be used together.
  • the said diol compound only 1 type may be used and 2 or more types may be used together.
  • only one kind of the first compound may be used, or two or more kinds may be used in combination.
  • only one type of the second compound may be used, or two or more types may be used in combination.
  • the weight average molecular weight of the curable compound is preferably 8000 or more, more preferably 10,000 or more, preferably 50000 or less, more preferably 30000 or less.
  • the weight average molecular weight is not less than the lower limit, the adhesion of the connection target member is further enhanced.
  • the weight average molecular weight is not more than the upper limit, compatibility with other components of the curable compound is increased.
  • the weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the weight average molecular weight can be measured by “Prominence GPC system” manufactured by Shimadzu Corporation with solvent THF, flow rate 1 mL / min, detector: differential refraction.
  • R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R1 and R2 in the above formula (11) may each be a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X in the formula (11) is preferably a phenylene group, and is represented by the formula (11).
  • the compound is preferably a compound represented by the following formula (11A).
  • the curable composition is obtained by a reaction of a compound represented by the following formula (11A) with a diol compound. It is preferable that the 1st compound obtained contains the curable compound obtained by making this 1st compound react with the 2nd compound which has an isocyanate group and an unsaturated double bond.
  • R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the compound represented by the above formula (11) is terephthalic acid, alkyl terephthalate, isophthalic acid, or isophthalic acid.
  • An acid alkyl ester is preferred. That is, the compound represented by the above formula (11) is preferably a compound represented by the following formula (11AA) or the following formula (11AB).
  • R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R1 and R2 in the above formulas (11), (11A), (11AA) and (11AB) are each an alkyl group having 1 to 4 carbon atoms because of excellent reactivity when obtaining a curable compound
  • the carbon number of the alkyl group is preferably 3 or less, more preferably 2 or less (methyl group or ethyl group), and still more preferably 1 (methyl group).
  • Examples of the diol compound for obtaining the first compound include 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, and 1,8-octanediol. Is mentioned.
  • the said curable composition contains the 3rd compound obtained by reaction with the compound represented by following formula (11B), and a diol compound. It is preferable to do.
  • the compound represented by the following formula (11B) is a dicarboxylic acid or a dicarboxylic acid ester.
  • the above reaction is a dehydration condensation reaction or a dealcoholization reaction.
  • the said curable composition uses the 1st compound obtained by reaction with the compound and diol compound which are represented by the said Formula (11A).
  • the reaction of a curable compound obtained by reacting the first compound with a second compound having an isocyanate group and an unsaturated double bond, and a compound represented by the following formula (11B) and a diol compound A curable compound obtained by reacting the third compound obtained by the above-mentioned reaction with a fourth compound having the isocyanate group and an unsaturated double bond (same type as the second compound).
  • a fifth compound obtained by a reaction of a compound represented by the above formula (11A) with a compound represented by the following formula (11B) and a diol compound The compound preferably contains a sixth compound (second compound of the same kind) curable compound obtained by reacting a having an isocyanate group and an unsaturated double bond.
  • R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • X represents an alkylene group having 2 to 10 carbon atoms.
  • the first compound 1 and the third compound may be synthesized and mixed separately, and the third compound may be reacted with the compound represented by the above formula (11A) during the reaction. . It is preferable to react with the compound represented by the above formula (11A) during the reaction.
  • more preferable compounds are compounds in which R1 and R2 represent a hydrogen atom or a methyl group, and X represents an alkylene group having 3 to 5 carbon atoms, and more preferable.
  • R1 and R2 represent a methyl group
  • X represents a C4 alkylene group.
  • the diol compound for obtaining the first compound is a compound represented by the following formula (12), A compound having a (meth) acryloyl group, a polyester polyol compound or a polyether polyol compound is preferable, and a compound represented by the following formula (12) or a polyether polyol compound is more preferable.
  • the diol compound for obtaining the first compound is a compound represented by the following formula (12). It is preferable to include.
  • R represents an alkylene group having 2 to 10 carbon atoms or a polyether group.
  • R may represent an alkylene group having 2 to 10 carbon atoms.
  • R in the above formula (12) include ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonalene group and decalene group.
  • the carbon number of R in the above formula (12) is preferably 6. That is, the compound represented by the above formula (12) is preferably a compound represented by the following formula (12A). That is, it is particularly preferable that the diol compound for obtaining the first compound and the diol compound for obtaining the third compound contain 1,6-hexanediol.
  • the second compound has a (meth) acryloyl group as a group containing an unsaturated double bond. Is preferred.
  • Examples of the diol compound for obtaining the first compound include bisphenol A and bisphenol F.
  • the diol compound preferably contains bisphenol A or bisphenol F from the viewpoint of further improving the adhesiveness of the connection target member, and in particular, further improving the adhesiveness of the PET film.
  • the diol compound preferably contains 1,6-hexanediol and bisphenol A or bisphenol F. In this preferred form, only bisphenol A may be used, only bisphenol F may be used, or bisphenol A and bisphenol F may be used in combination.
  • diol compound examples include polyether polyol compounds.
  • the polyether polyol is preferably a bifunctional alkylene glycol such as propylene glycol or ethylene glycol.
  • the molecular weight of the polyether polyol compound is preferably 500 or more, more preferably 600 or more, preferably 2000 or less, more preferably 1500 or less.
  • Examples of the diol compound include polyester polyol compounds.
  • the polyester polyol compound can be obtained by dehydrating condensation of a carboxylic acid and a polyhydric alcohol.
  • carboxylic acid adipic acid and phthalic acid are preferable.
  • polyhydric alcohol ethylene glycol, 1,4-butanediol, and 1,6-hexanediol are preferable.
  • the molecular weight of the polyester polyol compound is preferably 500 or more, more preferably 600 or more, preferably 2000 or less, and more preferably 1500 or less.
  • the diol compound may be separately reacted with a compound represented by the formula (11A), a compound represented by the above formula (11B), mixed and a compound represented by the formula (11A), or the above You may make it react with the compound represented by Formula (11B).
  • the content of the compound represented by the formula (12) or 1,6-hexanediol is preferably 0% by weight (unused) or more. Preferably it is 10 weight% or more, More preferably, it is 20 weight% or more, Preferably it is 100 weight% (total amount) or less, More preferably, it is 80 weight% or less.
  • the content of bisphenol A and bisphenol F is preferably 0% by weight (unused) or more, more preferably 20% by weight or more, preferably 100% by weight. (Total amount) or less, more preferably 80% by weight or less.
  • the second compound is not particularly limited as long as it has an isocyanate group and an unsaturated double bond.
  • Specific examples of the second compound include (meth) acryloyloxyalkyloxyisocyanate, 1,1- (bisacryloyloxymethyl) ethylisocyanate, and 2- (2-isocyanatoethylyl) ethyl methacrylate.
  • the second compound is (meth) acryloyloxyalkyloxyisocyanate, 2- (2-isocyanatoethylyl) ethyl methacrylate. 2- (2-isocyanatoethyloxy) ethyl methacrylate is more preferable.
  • the curable compound represented by the above formula (1) is, for example, a first compound obtained by a reaction between a compound represented by the formula (11) and a diol compound, and the first compound is isocyanate. It can be obtained by a method of reacting a second compound having a group and an unsaturated double bond. In this case, the compound represented by the formula (11), the diol compound, the second reactant, and the like are appropriately selected so that the curable compound represented by the formula (1) is obtained.
  • the curable compound represented by the above formula (1) is, for example, a first compound obtained by a reaction between a compound represented by the formula (11) and a diol compound, and the first compound is isocyanate. It may be obtained by a method other than the method of reacting the second compound having a group and an unsaturated double bond.
  • X in the above formula (1) is preferably an alkylene group, and preferably a polyether group.
  • the curable compound represented by the above formula (1) preferably contains an alkylene group as X in the above formula (1), and also preferably contains a polyether group.
  • Examples of the alkylene group of X in the above formula (1) include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonalene group, and a decalene group. From the viewpoint of increasing flexibility, a hexylene group is preferred.
  • Examples of the polyether group X in the above formula (1) include a polyether group represented by the following formula (2).
  • R3 is a linear alkylene group having 1 to 6 carbon atoms
  • q is a weight average molecular weight of the curable compound represented by the formula (1) of 8000 to 50,000. Represents an integer.
  • the molecular weight of q in the above formula (2) is preferably 650 or more, more preferably 1000 or more, and preferably 2000 or less.
  • the number of carbon atoms in R3 is preferably 2 or more, and preferably 4 or less.
  • the plurality of —R3-0- groups may be the same or different.
  • the curable compound represented by the above formula (1) Preferably has a polyether group as X in the formula (1).
  • the connection structure may be exposed to low temperatures.
  • the proportion of the polyether group structure portion (for example, the proportion of the structure portion represented by the formula (2)) is preferably 17% by weight or more, preferably Is 41% by weight or less, more preferably 23% by weight or less.
  • Y in the above formula (1) represents an alkylene group having 2 to 10 carbon atoms or a phenylene group.
  • the plurality of Y may be the same or different.
  • the curable compound represented by the above formula (1) may have both an alkylene group having 2 to 10 carbon atoms and a phenyl group as Y in the above formula (1).
  • the curable compound represented by the above formula (1) preferably has a butylene group as Y in the above formula (1).
  • examples of Y include a group represented by the following formula (3A) or the following formula (3B).
  • the curable compound represented by the above formula (1) preferably has a group represented by the following formula (3A) as Y in the above formula (1).
  • thermosetting agent is an imidazole curing agent, an amine curing agent, a phenol curing agent, a polythiol curing agent, an acid anhydride, a thermal cation initiator, and a thermal radical generator as the thermosetting agent for thermosetting the curable compound. Etc. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.
  • an imidazole curing agent, a polythiol curing agent, or an amine curing agent is preferable because the curable composition can be cured more rapidly at a low temperature.
  • a latent curing agent is preferable.
  • the latent curing agent is preferably a latent imidazole curing agent, a latent polythiol curing agent or a latent amine curing agent.
  • the said thermosetting agent may be coat
  • the thermosetting agent is preferably a thermal radical generator.
  • the thermal radical generator By using the thermal radical generator, the adhesiveness of the PET film is particularly effectively increased.
  • the 1-minute half-life decomposition temperature of the thermal radical generator is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, preferably 150 ° C. or lower, more preferably 130 ° C. or lower.
  • the 1 minute half-life temperature is equal to or higher than the lower limit, the storage stability of the composition is further improved.
  • the 1-minute half-life temperature is less than or equal to the above upper limit, the PET film as the adherend is less likely to be deformed and deteriorated due to the temperature during curing.
  • the imidazole curing agent is not particularly limited, and 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.
  • the polythiol curing agent is not particularly limited, and examples thereof include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate. .
  • the amine curing agent is not particularly limited, and hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5].
  • examples include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, and diaminodiphenylsulfone.
  • thermal cation curing agent examples include iodonium cation curing agents, oxonium cation curing agents, and sulfonium cation curing agents.
  • examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate.
  • examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate.
  • the sulfonium-based cationic curing agent examples include tri-p-tolylsulfonium hexafluorophosphate.
  • the thermal radical generator is not particularly limited, and examples thereof include azo compounds and organic peroxides. As for the said thermal radical generator, only 1 type may be used and 2 or more types may be used together.
  • Examples of the azo compound include 2,2′-azobisisobutyronitrile, 1,1 ′-(cyclohexane-1-carbonitrile), 2,2′-azobis (2-cyclopropylpropionitrile), 2, Examples thereof include 2′-azobis (2,4-dimethylvaleronitrile) and dimethyl-2,2′-azobis (2-methylpropionate).
  • Examples of the organic peroxide include hydroperoxide and dialkyl peroxide.
  • Examples of the hydroperoxide include diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, tert-hexyl hydroperoxide, and tert-butyl hydroperoxide.
  • Examples of the dialkyl peroxide include ⁇ , ⁇ '-bis (tert-butylperoxy-m-isopropyl) benzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane.
  • Tert-butyl cumyl peroxide di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexyne-3, and the like.
  • the content of the thermosetting agent is not particularly limited.
  • Each content of the thermosetting agent and the thermal radical generator is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less with respect to 100 parts by weight of the curable compound. More preferably, it is 100 parts by weight or less, and still more preferably 75 parts by weight or less.
  • each content of the said thermosetting agent and the said thermal radical generator is more than the said minimum, it is easy to fully harden a curable composition.
  • each content of the thermosetting agent and the thermal radical generator is not more than the above upper limit, an excessive thermosetting agent that does not participate in curing after curing is difficult to remain, and the heat resistance of the cured product is further increased. Get higher.
  • the photocuring initiator is not particularly limited, and is not limited to acetophenone photocuring initiator (acetophenone photoradical generator), benzophenone photocuring initiator (benzophenone photoradical generator), thioxanthone, ketal photocuring initiator (ketal photoradical). Generator), halogenated ketones, acyl phosphinoxides, acyl phosphonates, and the like.
  • acetophenone photocuring initiator acetophenone photoradical generator
  • benzophenone photocuring initiator benzophenone photoradical generator
  • thioxanthone thioxanthone
  • ketal photocuring initiator ketal photoradical. Generator
  • halogenated ketones acyl phosphinoxides
  • acyl phosphonates and the like.
  • acetophenone photocuring initiator examples include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, methoxy Examples include acetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 2-hydroxy-2-cyclohexylacetophenone.
  • ketal photocuring initiator examples include benzyldimethyl ketal.
  • the content of the photocuring initiator is not particularly limited.
  • the content of the photocuring initiator is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, preferably 2 parts by weight or less, more preferably 100 parts by weight of the curable compound. 1 part by weight or less. It is easy to fully harden a curable composition as content of the said photocuring initiator is more than the said minimum. Moreover, the flow of a curable composition can be suppressed by irradiating light to a curable composition and B-stage-izing. If the content of the photocuring initiator is not more than the above upper limit, it is difficult for the surplus photocuring initiator that did not participate in curing after curing to remain.
  • the adhesion of the connection target member is further enhanced. Further, the use of the quaternary ammonium salt compound makes it even more difficult for peeling to occur even when exposed to high temperatures. As for the said quaternary ammonium salt compound, only 1 type may be used and 2 or more types may be used together.
  • the quaternary ammonium salt compound preferably has an alkyl group having 8 to 18 carbon atoms.
  • the quaternary ammonium salt compound is preferably a compound represented by the following formula (31).
  • R1, R2 and R3 each represent a methyl group or an ethyl group
  • R4 represents an alkyl group having 8 to 18 carbon atoms
  • X represents a bromine atom or a chlorine atom.
  • Examples of the quaternary ammonium salt compound include n-octyl trimethyl chloride, n-octyl trimethyl bromide, nonyl trimethyl bromide, decyl trimethyl bromide, dodecyl trimethyl chloride, dodecyl trimethyl bromide, tetradecyl trimethyl chloride, hexadecyl trimethyl chloride, hexa Examples include decyl trimethyl bromide, ethyl hexadecyl dimethyl bromide, heptadecyl trimethyl bromide, octadecyl trimethyl chloride, and octadecyl trimethyl bromide.
  • the total content of the quaternary ammonium salt compound and the (meth) acrylic compound having a hydroxyl group is preferably 0.1 parts by weight with respect to a total of 100 parts by weight of the curable compound and the thermosetting agent. More preferably 3 parts by weight or more, more preferably 5 parts by weight or more, preferably 50 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 30 parts by weight or less, and 8 parts by weight or less. It may be 5 parts by weight or less.
  • the total content of the quaternary ammonium salt compound and the (meth) acrylic compound having a hydroxyl group is not less than the above lower limit and not more than the above upper limit, the adhesion of the adhesion target member is further enhanced.
  • the content of the quaternary ammonium salt compound is 0 part by weight (not contained) or more, preferably 0.1 part by weight or more, more preferably 100 parts by weight in total of the curable compound and the thermosetting agent. Is 3 parts by weight or more, preferably 50 parts by weight or less, more preferably 8 parts by weight or less, and still more preferably 5 parts by weight or less.
  • the quaternary ammonium salt compound is used and the content of the quaternary ammonium salt compound is not less than the above lower limit and not more than the above upper limit, the adhesion of the member to be bonded is further enhanced, and peeling at a high temperature is possible. It is further suppressed.
  • (Meth) acrylic compound having a hydroxyl group The use of the (meth) acrylic compound having a hydroxyl group further increases the adhesion of the connection target member. Only 1 type may be used for the said (meth) acrylic compound which has a hydroxyl group, and 2 or more types may be used together.
  • hydroxyl group-containing (meth) acrylic compound examples include hydroxyethyl methacrylate phosphate, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, N- (2 -Hydroxyethyl) (meth) acrylamide, N- (hydroxymethyl) (meth) acrylamide, N- (4-hydroxyphenyl) (meth) acrylamide, epoxy (meth) acrylate and the like.
  • the viscosity of a curable composition using the above curable compound tends to be relatively high.
  • the curable compound preferably contains an epoxy (meth) acrylate.
  • epoxy (meth) acrylate only 1 type may be used and 2 or more types may be used together.
  • the epoxy (meth) acrylate examples include EBECRYL 3701 (manufactured by Daicel Ornex), EBECRYL 3703 (manufactured by Daicel Ornex), or EBECRYL 3708 (manufactured by Daicel Ornex).
  • the epoxy acrylate may be an epoxy acrylate having a structure in which 2-hydroxyethyl acrylate is added to caprolactone at the molecular end and a structure in which the diglycidyl group of bisphenol A is opened as a main skeleton.
  • the content of the (meth) acrylic compound having a hydroxyl group is 0 part by weight (not included) or more, preferably 0.1 part by weight or more with respect to 100 parts by weight of the total of the curable compound and the thermosetting agent. More preferably, it is 3 parts by weight or more, more preferably 5 parts by weight or more, preferably 50 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 30 parts by weight or less.
  • the adhesion of the bonding target member is further enhanced.
  • the curable compound preferably includes a (meth) acrylic compound from the viewpoint of further enhancing the adhesiveness of the glass and PET.
  • the (meth) acrylic compound include phosphoric acid ester type (meth) acrylates such as acryloylmorpholine, imide (meth) acrylate, and urethane (meth) acrylate.
  • the (meth) acrylic compound is a compound other than the curable compound described above.
  • the (meth) acrylic compound is a compound having a (meth) acryloyl group. As for the said (meth) acryl compound, only 1 type may be used and 2 or more types may be used together.
  • the curable composition may be, for example, a flux, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, and an ultraviolet absorber, as necessary.
  • Various additives such as an agent, a lubricant, an antistatic agent and a flame retardant may be included.
  • the curable composition preferably contains a flux.
  • the flux By using the flux, the oxide film on the surface of the electrode can be removed, and the conduction reliability between the electrodes can be improved. Details of the flux are described in the column of the conductive material described later.
  • the curable composition preferably contains a filler.
  • a filler By using the filler, the thermal expansion coefficient of the cured product is lowered.
  • Specific examples of the filler include silica, aluminum nitride, alumina, glass, boron nitride, silicon nitride, silicone, carbon, graphite, graphene, and talc.
  • a filler only 1 type may be used and 2 or more types may be used together. When a filler having a high thermal conductivity is used, the main curing time is shortened.
  • the curable composition may contain a solvent.
  • the solvent include ethyl acetate, methyl cellosolve, toluene, acetone, methyl ethyl ketone, cyclohexane, n-hexane, tetrahydrofuran and diethyl ether.
  • the conductive material according to the present invention includes the above-described curable composition and conductive particles.
  • the conductive material according to the present invention includes the curable compound obtained by reacting the second compound with the first compound, the thermosetting agent, and conductive particles.
  • the curable composition containing conductive particles is referred to as a conductive material.
  • the conductive material preferably contains a flux.
  • the flux By using the flux, the oxide film on the surface of the conductive particles and the surface of the electrode can be removed, and the conduction reliability between the electrodes can be improved.
  • the viscosity of the conductive material at 25 ° C. is preferably 100 Pa ⁇ s or higher, more preferably 200 Pa ⁇ s or higher, preferably 800 Pa ⁇ s or lower, more preferably. Is 600 Pa ⁇ s or less.
  • the viscosity can be easily adjusted as appropriate to the type and amount of the compounding ingredients. Further, the use of a filler can make the viscosity relatively high.
  • the viscosity can be measured, for example, using an E-type viscometer TVE-22 apparatus (manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 2.5 rpm.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material can be used as a conductive paste and a conductive film.
  • the conductive material is a conductive film, a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles.
  • the conductive material is preferably a paste-like conductive paste.
  • the conductive material is preferably used for electrical connection between electrodes.
  • the conductive material is preferably a circuit connection material.
  • the content of the curable compound obtained by reacting the first compound with the first compound in 100% by weight of the conductive material is preferably 50% by weight or more, more preferably 60% by weight or more. More preferably, it is 75 weight% or more, Preferably it is 100 weight% or less, More preferably, it is 95 weight% or less.
  • the content of the curable compound is not less than the above lower limit, the adhesion of the connection target member is further enhanced, and in particular, the adhesion of the PET film is further enhanced.
  • the content of the curable compound is not more than the above upper limit, the content of the conductive particles can be relatively increased, and the conduction reliability between the electrodes is further enhanced.
  • the content of the conductive particles is preferably 0.1% by weight or more, more preferably 1% by weight or more, still more preferably 2% by weight or more, and further preferably 10% by weight or more. Even more preferably 20% by weight or more, particularly preferably 25% by weight or more, most preferably 30% by weight or more, preferably 80% by weight or less, more preferably 60% by weight or less, still more preferably 50% by weight or less, particularly preferably Is 45% by weight or less, most preferably 35% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, it is easy to arrange many conductive particles between the electrodes, and the conduction reliability is further enhanced. Moreover, since content of a sclerosing
  • Examples of the conductive particles include conductive particles formed entirely of a conductive material, and conductive particles having base material particles and a conductive layer disposed on the surface of the base material particles. It is done.
  • the conductive particles are preferably conductive particles whose outer surface is solder.
  • the outer surface of the conductive portion is preferably solder. In this case, the adhesiveness between the connection portion formed by curing the conductive material derived from the solder and the connection target member connected by the connection portion is further enhanced.
  • solder particles particles including a base particle and a solder layer disposed on the surface of the base particle
  • solder particles it is preferable to use solder particles.
  • solder particles By using solder particles, high-speed transmission and metal bonding strength can be further improved.
  • solder particles may be gathered between the first electrode, the second electrode, and the electrode. At least the conductive particles whose outer surface is solder have the property that, when heated, the conductive particles that existed in the region where no electrode is formed gather between the first electrode and the second electrode. It may be.
  • FIG. 5 is a cross-sectional view showing an example of conductive particles that can be used for the conductive material used in the first embodiment of the present invention.
  • the conductive particles are preferably conductive particles 21 which are solder particles as shown in FIG.
  • the conductive particles 21 are formed only by solder.
  • the conductive particles 21 do not have base particles in the core and are not core-shell particles.
  • particles including base particles and a solder layer disposed on the surface of the base particles may be used.
  • the conductive particle 1 includes a base particle 2 and a conductive layer 3 disposed on the surface of the base particle 2.
  • the conductive layer 3 covers the surface of the base particle 2.
  • the conductive particle 1 is a coated particle in which the surface of the base particle 2 is coated with the conductive layer 3.
  • the conductive layer 3 has a second conductive layer 3A and a solder layer 3B (first conductive layer) disposed on the surface of the second conductive layer 3A.
  • the conductive particle 1 includes a second conductive layer 3A between the base particle 2 and the solder layer 3B. Therefore, the conductive particles 1 include the base particle 2, the second conductive layer 3A disposed on the surface of the base particle 2, and the solder layer 3B disposed on the surface of the second conductive layer 3A. Is provided.
  • the conductive layer 3 may have a multilayer structure, or may have a laminated structure of two or more layers.
  • the conductive layer 3 in the conductive particle 1 has a two-layer structure.
  • the conductive particles 11 may have a solder layer 12 as a single conductive layer.
  • the conductive particles 11 include base material particles 2 and a solder layer 12 disposed on the surface of the base material particles 2.
  • the solder layer 12 may be disposed on the surface of the base particle 2 so as to contact the base particle 2.
  • the conductive particles 1 and 11 are more preferable among the conductive particles 1, 11 and 21 because the thermal conductivity of the conductive material tends to be further lowered.
  • the conductive particles 21 are preferable.
  • the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the base particles are preferably base particles excluding metal, and are resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the substrate particles may be copper particles.
  • the substrate particles are preferably not metal particles.
  • the base material particles are preferably resin particles formed of a resin.
  • electroconductive particle is compressed by crimping
  • the substrate particles are resin particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction
  • the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, Polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamide Bromide, polyether ether ketone, polyether sulfone, divinyl benzene polymer, and diviny
  • polyolefin resins such as polyethylene, polypropylene,
  • the divinylbenzene copolymer examples include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.
  • the monomer having the ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer. And a polymer.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanure And silane
  • examples of inorganic substances for forming the substrate particles include silica and carbon black.
  • the inorganic substance is preferably not a metal.
  • the particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the substrate particles are metal particles
  • examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the metal particles are preferably copper particles.
  • the substrate particles are preferably not metal particles.
  • the melting point of the substrate particles is preferably higher than the melting point of the solder layer.
  • the melting point of the substrate particles is preferably higher than 160 ° C, more preferably higher than 300 ° C, still more preferably higher than 400 ° C, and particularly preferably higher than 450 ° C.
  • the melting point of the substrate particles may be less than 400 ° C.
  • the melting point of the substrate particles may be 160 ° C. or less.
  • the softening point of the substrate particles is preferably 260 ° C. or higher.
  • the softening point of the substrate particles may be less than 260 ° C.
  • the conductive particles may have a single solder layer.
  • the conductive particles may have a plurality of conductive layers (solder layer, second conductive layer). That is, in the conductive particles, two or more conductive layers may be stacked.
  • the solder particles may be particles formed of a plurality of layers.
  • the solder for forming the solder layer and the solder for forming solder particles are preferably low melting point metals having a melting point of 450 ° C. or lower.
  • the solder layer is preferably a low melting point metal layer having a melting point of 450 ° C. or lower.
  • the low melting point metal layer is a layer containing a low melting point metal.
  • the solder particles are preferably low melting point metal particles having a melting point of 450 ° C. or lower.
  • the low melting point metal particles are particles containing a low melting point metal.
  • the low melting point metal is a metal having a melting point of 450 ° C. or lower.
  • the melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower.
  • the solder layer and the solder particles preferably contain tin.
  • the tin content is preferably 30% by weight or more, more preferably 40% by weight or more, and even more preferably 70% by weight. Above, particularly preferably 90% by weight or more.
  • the content of tin in the solder layer and the solder particles is equal to or higher than the lower limit, the connection reliability between the conductive particles and the electrodes is further enhanced.
  • the tin content is determined using a high-frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). It can be measured.
  • ICP-AES high-frequency inductively coupled plasma emission spectrometer
  • EDX-800HS fluorescent X-ray analyzer
  • solder particles and the conductive particles having the solder on the conductive surface are used, so that the solder is melted and joined to the electrodes, and the solder conducts between the electrodes. For example, since the solder and the electrode are not in point contact but in surface contact, the connection resistance is lowered.
  • the use of conductive particles having solder on the conductive surface increases the bonding strength between the solder and the electrode. As a result, peeling between the solder and the electrode is further less likely to occur, and conduction reliability and connection reliability are improved. Effectively high.
  • the low melting point metal constituting the solder layer and the solder particles is not particularly limited.
  • the low melting point metal is preferably tin or an alloy containing tin.
  • the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy.
  • the low melting point metal is preferably tin, a tin-silver alloy, a tin-silver-copper alloy, a tin-bismuth alloy, or a tin-indium alloy because of its excellent wettability with respect to the electrode. More preferred are a tin-bismuth alloy and a tin-indium alloy.
  • the material constituting the solder is preferably a filler material having a liquidus of 450 ° C. or lower based on JIS Z3001: welding terms.
  • the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. Of these, a tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic) which is low-melting and lead-free is preferable. That is, the solder preferably does not contain lead, and is preferably a solder containing tin and indium or a solder containing tin and bismuth.
  • the solder layer and the solder particles may contain phosphorus and tellurium, and nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, A metal such as germanium, cobalt, bismuth, manganese, chromium, molybdenum, or palladium may be included.
  • the solder layer and the solder particles preferably contain nickel, copper, antimony, aluminum, or zinc.
  • the content of these metals for increasing the bonding strength is 100 wt% of the solder layer or 100 wt% of the solder particles, preferably 0. 0.0001% by weight or more, preferably 1% by weight or less.
  • the melting point of the second conductive layer is preferably higher than the melting point of the solder layer.
  • the melting point of the second conductive layer is preferably above 160 ° C, more preferably above 300 ° C, even more preferably above 400 ° C, even more preferably above 450 ° C, particularly preferably above 500 ° C, most preferably Preferably it exceeds 600 degreeC. Since the solder layer has a low melting point, it melts during conductive connection.
  • the second conductive layer is preferably not melted at the time of conductive connection.
  • the conductive particles are preferably used after melting solder, preferably used after melting the solder layer, and used without melting the second conductive layer while melting the solder layer. It is preferred that Since the melting point of the second conductive layer is higher than the melting point of the solder layer, only the solder layer can be melted without melting the second conductive layer at the time of conductive connection.
  • the absolute value of the difference between the melting point of the solder layer and the melting point of the second conductive layer exceeds 0 ° C, preferably 5 ° C or more, more preferably 10 ° C or more, still more preferably 30 ° C or more, particularly preferably Is 50 ° C. or higher, most preferably 100 ° C. or higher.
  • the second conductive layer preferably contains a metal.
  • the metal constituting the second conductive layer is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
  • ITO tin-doped indium oxide
  • the second conductive layer is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer or a gold layer, and even more preferably a copper layer.
  • the conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer or a gold layer, and still more preferably have a copper layer.
  • the average particle diameter of the conductive particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 50 ⁇ m or less, and particularly preferably 40 ⁇ m or less.
  • the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode is sufficiently large, and aggregated conductive particles are formed when the conductive layer is formed. It becomes difficult. Moreover, it becomes a size suitable for the conductive particles in the conductive material, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base particle.
  • the particle diameter of the conductive particles indicates a number average particle diameter.
  • the average particle diameter of the conductive particles is determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
  • the thickness of the solder layer is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.3 ⁇ m or less.
  • the thickness of the solder layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting the electrodes. . Further, the thinner the solder layer is, the easier it is to lower the thermal conductivity of the conductive material. From the viewpoint of sufficiently reducing the thermal conductivity of the conductive material, the thickness of the solder layer is preferably 4 ⁇ m or less, more preferably 2 ⁇ m or less.
  • the thickness of the second conductive layer is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and still more preferably 0.3 ⁇ m or less.
  • the thickness of the second conductive layer is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes is further reduced.
  • the thinner the second conductive layer is, the easier it is to reduce the thermal conductivity of the conductive material. From the viewpoint of sufficiently reducing the thermal conductivity of the conductive material, the thickness of the second conductive layer is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the thickness of the solder layer is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the conductive particles have a conductive layer different from the solder layer and the other conductive layer (such as the second conductive layer) as the conductive layer, the solder layer and the other conductive layer different from the solder layer
  • the total thickness is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the conductive material preferably contains a flux.
  • the flux is not particularly limited.
  • the flux generally used for soldering etc. can be used.
  • As for the said flux only 1 type may be used and 2 or more types may be used together.
  • Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Etc.
  • Examples of the molten salt include ammonium chloride.
  • Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid.
  • Examples of the pine resin include activated pine resin and non-activated pine resin.
  • the flux is preferably an organic acid having two or more carboxyl groups, pine resin.
  • the flux may be an organic acid having two or more carboxyl groups, or pine resin. By using an organic acid having two or more carboxyl groups, pine resin, the conduction reliability between the electrodes is further enhanced.
  • the above rosins are rosins whose main component is abietic acid.
  • the flux is preferably rosins, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.
  • the melting point of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 160 ° C. or lower, even more preferably 150 ° C. or lower, still more preferably. 140 ° C. or lower.
  • the melting point of the flux is preferably 80 ° C. or higher and 190 ° C. or lower.
  • the melting point of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
  • Examples of the flux having a melting point of 80 ° C. or higher and 190 ° C. or lower include succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point 104 ° C.), suberic acid
  • Examples thereof include dicarboxylic acids such as (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), and malic acid (melting point 130 ° C.).
  • the melting point of the flux is preferably lower than the melting point of the solder in the solder particles, more preferably 5 ° C. or more, more preferably 10 ° C. or more. Is more preferable.
  • the melting point of the flux is preferably lower than the reaction start temperature of the thermosetting agent, more preferably 5 ° C. or more, and more preferably 10 ° C. or less. More preferably.
  • the flux may be dispersed in the curable composition or the conductive material, or may adhere to the surface of the conductive particles or solder particles.
  • the content of the flux is 0% by weight (unused) or more, preferably 0.5% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less.
  • the conductive material may not contain flux.
  • the flux content is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode, and the oxide film formed on the surface of the solder and the electrode is more effective. Can be removed.
  • connection structure can be obtained by connecting a connection object member using the curable composition mentioned above or the said electrically-conductive material.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first connection target member and the second connection target member.
  • the connection part is formed by curing the curable composition described above or curing the conductive material.
  • FIG. 1 is a front cross-sectional view schematically showing a connection structure obtained using a conductive material containing a curable composition according to a first embodiment of the present invention and conductive particles.
  • a connection structure 51 shown in FIG. 1 is a connection that connects a first connection target member 52, a second connection target member 53, and the first connection target member 52 and the second connection target member 53.
  • the connection part 54 is a cured product layer and is formed by curing a conductive material including the conductive particles 1.
  • the conductive particles 11 or the conductive particles 21 may be used.
  • the first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface).
  • the second connection target member 53 has a plurality of second electrodes 53a on the surface (lower surface).
  • the first electrode 52 a and the second electrode 53 a are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1.
  • FIG. 4 is an enlarged front sectional view showing a connection portion between the conductive particles 1 and the first and second electrodes 52a and 53a in the connection structure 51 shown in FIG.
  • the connection structure 51 after the solder layer 3B in the conductive particles 1 is melted, the melted solder layer portion 3Ba is in sufficient contact with the first and second electrodes 52a and 53a. That is, by using the conductive particles 1 whose surface layer is the solder layer 3B, compared to the case where the conductive particles whose surface layer is a metal such as nickel, gold or copper are used, the conductive particles The contact area between 1 and the first and second electrodes 52a and 53a is increased.
  • electrical_connection reliability and connection reliability of the connection structure 51 can be improved.
  • the flux generally deactivates gradually due to heating. Further, from the viewpoint of further improving the conduction reliability, it is preferable to bring the second conductive layer 3A into contact with the first electrode 52a, and it is preferable to bring the second conductive layer 3A into contact with the second electrode 53a. .
  • FIG. 2 is a front cross-sectional view schematically showing a connection structure obtained by using the curable composition according to the second embodiment of the present invention.
  • connection structure 61 shown in FIG. 2 is a connection that connects the first connection target member 62, the second connection target member 63, and the first connection target member 62 and the second connection target member 63.
  • the connection part 64 is a hardened
  • the first connection object member 62 has a plurality of first electrodes 62a on the surface (upper surface).
  • the second connection target member 63 has a plurality of second electrodes 63a on the surface (lower surface).
  • the first electrode 62a and the second electrode 63a are, for example, bump electrodes.
  • the first electrode 62a and the second electrode 63a are electrically connected to each other without being in contact with conductive particles. Accordingly, the first and second connection target members 62 and 63 are electrically connected.
  • FIG. 3 is a front cross-sectional view schematically showing a connection structure obtained by using the curable composition according to the third embodiment of the present invention.
  • connection structure 71 shown in FIG. 3 is a connection that connects the first connection target member 72, the second connection target member 73, and the first connection target member 72 and the second connection target member 73.
  • the connection part 74 is a hardened
  • the electrodes are not electrically connected.
  • the use of the said curable composition is not limited to the use to which an electrode is electrically connected.
  • the manufacturing method of the connection structure is not particularly limited. As an example of the manufacturing method of this connection structure, after arrange
  • the pressurizing pressure is about 9.8 ⁇ 10 4 to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 to 220 ° C.
  • the first and second connection target members are not particularly limited.
  • the first and second connection target members include electronic / electric parts such as metal members, resin members and film members, electronic / electric parts such as electric semiconductor chips, capacitors and diodes, and printed circuit boards.
  • electronic / electrical components such as circuit boards such as flexible printed boards, glass epoxy boards, FFCs (flexible flat cables) and glass boards.
  • the first and second connection target members are preferably electronic / electrical components.
  • the electronic / electrical component is a member constituting an electronic / electrical device.
  • the connection structure is preferably an electronic / electrical component connection structure.
  • the connection structure is preferably an electronic / electrical device.
  • the first and second connection target members are preferably touch panel connection target members. It is preferable that at least one of the first and second connection target members is a PET film, because the effect of improving adhesiveness is greatly obtained by using the curable composition and the conductive material.
  • the curable composition and the conductive material are preferably used for bonding a PET film and FFC (flexible flat cable), and are preferably a curable composition for bonding a PET film and FFC (flexible flat cable).
  • the said curable composition and the said electrically-conductive material are used suitably for adhesion
  • the curable composition and the conductive material are preferably used not only for bonding a PET film but also for bonding a resin film for display and a flexible printed board.
  • the curable composition and the conductive material are not only suitably used for bonding an FFC (flexible flat cable), but also suitably used for bonding a rigid substrate and an FFC (flexible flat cable).
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a silver electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • Example 1 Preparation of conductive paste 90 parts by weight of curable compound (1) obtained in Synthesis Example 1, 10 parts by weight of acrylic compound (1) (“ACMO” manufactured by Kojin Film Chemicals), solder particles ( “DS-10” manufactured by Mitsui Mining & Smelting Co., Ltd., 30 parts by weight of SnBi eutectic, melting point 139 ° C., average particle size 12 ⁇ m, and thermosetting agent (“Perocta O” manufactured by NOF Corporation, 1 minute half-life temperature 124.3 ° C) 0.2 parts by weight and 0.2 part by weight of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., polymer type polyfunctional aminosilane coupling agent “X-12-972A”) A conductive paste was obtained.
  • ACMO acrylic compound (1)
  • solder particles “DS-10” manufactured by Mitsui Mining & Smelting Co., Ltd., 30 parts by weight of SnBi eutectic, melting point 139 ° C
  • connection structure (1) On the adherend 1, 3 mg of anisotropic conductive paste was applied with an air dispenser.
  • the adherend 2 is overlapped with an anisotropic conductive paste so that the adherend 2 has an overlap width of 3 mm and the electrode patterns of the adherend 1 and the adherend 2 match each other. It was. Then, it joined at 140 degreeC for 10 second and the pressure of 1 MPa, and obtained the connection structure (1).
  • Example 2 An anisotropic conductive paste and connection structure in the same manner as in Example 1 except that the curable compound (1) obtained in Synthesis Example 1 was changed to the curable compound (2) obtained in Synthesis Example 2. Body (1) was obtained.
  • (meth) acrylic compound (2) “Ebecryl8413” manufactured by Daicel Ornex, Inc., aliphatic urethane acrylate (meth) acrylic compound (3): “Ebecryl3708” manufactured by Daicel Ornex, Inc., 2-hydroxyethyl acrylate was added to caprolactone Epoxy acrylate (meth) acrylic compound (4) having a structure at the molecular end and a structure in which the diglycidyl group of bisphenol A is ring-opened as a main skeleton, such as “Ebecryl 168” manufactured by Daicel Ornex, hydroxyethyl methacrylate phosphate, etc.
  • connection structure (3) Connection was made in the same manner as connection structure (1) except that the obtained anisotropic conductive paste was used for bonding at 140 ° C. for 5 seconds at a pressure of 1 MPa. A structure (3) was obtained.
  • connection structure (4) Connection was made in the same manner as connection structure (2) except that the obtained anisotropic conductive paste was used for bonding at 140 ° C. for 5 seconds at a pressure of 1 MPa. A structure (4) was obtained.
  • Example 1 An anisotropic conductive paste was obtained in the same manner as in Example 1 except that the type of the curable compound was changed to the bisphenol A type epoxy compound. Using the obtained anisotropic conductive paste, a connection structure (1) was obtained in the same manner as in Example 1, and a connection structure (2) was obtained in the same manner as in Example 3. In the same manner as in Example 11, a connection structure (3) and a connection structure (4) were obtained.
  • connection structure Adhesiveness under high temperature and high humidity
  • the obtained connection structure was allowed to stand for 500 hours in an atmosphere of 85 ° C. and a humidity of 85%.
  • the 90 ° peel strength D was measured for the connection structure after being left in the same manner as in the above (1) evaluation of adhesiveness.
  • the adhesiveness under high temperature and high humidity was determined according to the following criteria.
  • Average value of connection resistance is 50 m ⁇ or less ⁇ : Average value of connection resistance exceeds 50 m ⁇ , 75 m ⁇ or less ⁇ : Average value of connection resistance exceeds 75 m ⁇ , 100 m ⁇ or less ⁇ : Average value of connection resistance exceeds 100 m ⁇
  • Example 12 88.5 parts by weight of the curable compound (6) obtained in Synthesis Example 6, 10 parts by weight of 4-hydroxybutyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.), a thermosetting agent (“Perocta O” manufactured by NOF Corporation) After blending 1.5 parts by weight with a 1 minute half-life temperature of 124.3 ° C., a curable composition was obtained by mixing and defoaming with a planetary stirrer.
  • 4-hydroxybutyl acrylate manufactured by Tokyo Chemical Industry Co., Ltd.
  • a thermosetting agent (“Perocta O” manufactured by NOF Corporation)
  • Example 13 to 35 A curable composition was obtained in the same manner as in Example 1 except that the types and blending amounts of the blending components were changed as shown in Tables 2 and 3 below.
  • Adhesiveness The adhesion test piece was created in the following procedures. A curable composition is applied on a SUS substrate (2 cm ⁇ 7 cm), a PET film is placed on the SUS substrate, and the curable composition is pressed with a smooth plate from above to form a curable composition having a constant thickness (80 ⁇ m). Thus, a laminate was obtained.
  • the obtained laminate was thermally cured at 130 ° C. for 10 seconds under a pressure of 1 MPa to obtain an adhesion test piece.
  • 180 ° peel strength is 1.5 N / mm or more ⁇ : 180 ° peel strength is 1.0 / mm or more and less than 1.5 N / mm ⁇ : 180 ° peel strength is 0.5 N / mm or more, Less than 1.0 N / mm ⁇ : 180 ° peel strength is 0.25 N / mm or more and less than 0.5 N / mm ⁇ : 180 ° peel strength is less than 0.25 N / mm
  • Curability (%) (180 ° peel strength when curing time is 10 seconds) ⁇ 100/180 ° peel strength when curing time is 30 seconds
  • Example 36 98.5 parts by weight of the curable compound (9) obtained in Synthesis Example 9 and 1.5 parts by weight of a thermosetting agent (“Perocta O” manufactured by NOF Corporation, 1 minute half-life temperature 124.3 ° C.) After blending, the mixture was mixed and defoamed with a planetary stirrer to obtain a curable composition.
  • a thermosetting agent (“Perocta O” manufactured by NOF Corporation, 1 minute half-life temperature 124.3 ° C.)
  • Example 37 to 45 A curable composition was obtained in the same manner as in Example 1 except that the types and amounts of the ingredients were changed as shown in Table 4 below.
  • Glass transition temperature (Tg) A 0.5 mm thick cured product was prepared using a 0.5 mm spacer and a hot press. About the obtained hardened
  • Adhesiveness An adhesive test piece was prepared by the following procedure. A curable composition is applied on a SUS substrate (2 cm ⁇ 7 cm), a PET film is placed on the SUS substrate, and the curable composition is pressed with a smooth plate from above to form a curable composition having a constant thickness (80 ⁇ m). Thus, a laminate was obtained.
  • the obtained laminate was thermally cured at 130 ° C. for 10 seconds under a pressure of 1 MPa to obtain an adhesion test piece.
  • the 180 ° peel strength was measured in an atmosphere of 23 ° C. at a pulling speed of 300 mm / min by peeling off with “Micro Autograph MST-I” manufactured by Shimadzu Corporation using the obtained adhesion test piece.
  • the initial adhesiveness was determined according to the following criteria.
  • 180 ° peel strength is 1.5 N / mm or more ⁇ : 180 ° peel strength is 1.0 / mm or more and less than 1.5 N / mm ⁇ : 180 ° peel strength is 0.5 N / mm or more, Less than 1.0 N / mm ⁇ : 180 ° peel strength is 0.25 N / mm or more and less than 0.5 N / mm ⁇ : 180 ° peel strength is less than 0.25 N / mm
  • test piece was prepared in the same manner as the adhesive evaluation method except that the test piece was prepared under two conditions of 10 seconds and 30 seconds, and the 180 ° peel strength was measured.
  • the curability was evaluated according to the following formula.
  • Curability (%) (180 ° peel strength when curing time is 10 seconds) ⁇ 100/180 ° peel strength when curing time is 30 seconds

Abstract

Provided is a curable composition with which the adhesiveness of a member to be connected can be enhanced. This curable composition comprises: a curable compound obtained by using a first compound obtained by a reaction between a compound represented by formula (11) and a diol compound and causing a second compound having an isocyanate group and an unsaturated double bond to react with the first compound; and a thermal curing agent and/or photo-curing initiator. In formula (11), X represents a C2-10 alkylene group or phenylene group, and R1 and R2 each represent a hydrogen atom or C1-4 alkyl group.

Description

硬化性組成物、導電材料及び接続構造体Curable composition, conductive material and connection structure
 本発明は、接着性に優れた硬化性組成物に関する。また、本発明は、上記硬化性組成物を用いた導電材料及び接続構造体に関する。 The present invention relates to a curable composition having excellent adhesiveness. Moreover, this invention relates to the electrically-conductive material and connection structure using the said curable composition.
 硬化性化合物を含む硬化性組成物は、電気、電子、建築及び車両等の各種用途に広く用いられている。 A curable composition containing a curable compound is widely used in various applications such as electricity, electronics, architecture, and vehicles.
 上記硬化性組成物の一例として、下記の特許文献1には、(A)特定のフェノキシ樹脂と、(B)無機充填剤と、(C)シランカップリング剤とを含む硬化性組成物が開示されている。該硬化性組成物全体に対して、上記(C)シランカップリング剤の含有量は1質量%以上、10質量%以下である。 As an example of the curable composition, Patent Document 1 below discloses a curable composition containing (A) a specific phenoxy resin, (B) an inorganic filler, and (C) a silane coupling agent. Has been. The content of the (C) silane coupling agent is 1% by mass or more and 10% by mass or less with respect to the entire curable composition.
 上記硬化性組成物に、導電性粒子が配合されることがある。導電性粒子を含む硬化性組成物は、異方性導電材料と呼ばれている。上記異方性導電材料は、様々な接続対象部材を接続して、各種の接続構造体を得るために用いられている。 Conductive particles may be blended with the curable composition. A curable composition containing conductive particles is called an anisotropic conductive material. The anisotropic conductive material is used for connecting various connection target members to obtain various connection structures.
 上記異方性導電材料は、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。 Examples of the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor chip and glass. It is used for connection with a substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
 また、近年、タッチパネルを搭載した電子機器の使用が増加している。例えば、携帯電話、スマートフォン、カーナビゲーション及びパーソナルコンピューター等の電子機器においては、タッチパネルが用いられている。タッチパネル等では、接続対象部材として、ポリエチレンテレフタレート(PET)フィルムが用いられることがある。具体的には、タッチパネルでは、銀電極などが周囲に形成されたPETフィルムと、フレキシブルプリント基板とが、硬化性組成物により接合されることがある。近年、PETフィルムを用いた接続構造体の市場規模が拡大している。 In recent years, the use of electronic devices equipped with touch panels has increased. For example, touch panels are used in electronic devices such as mobile phones, smartphones, car navigation systems, and personal computers. In a touch panel or the like, a polyethylene terephthalate (PET) film may be used as a connection target member. Specifically, in a touch panel, a PET film on which a silver electrode or the like is formed and a flexible printed board may be bonded together with a curable composition. In recent years, the market scale of connection structures using PET films has been expanded.
 上記異方性導電材料の一例として、下記の特許文献2には、加熱により遊離ラジカルを発生する硬化剤と、分子量10000以上の水酸基含有樹脂と、リン酸エステルと、ラジカル重合性物質と、導電性粒子とを含む異方性導電材料(硬化性組成物)が開示されている。上記水酸基含有樹脂としては、具体的には、ポリビニルブチラール樹脂、ポリビニルホルマール、ポリアミド、ポリエステル、フェノール樹脂、エポキシ樹脂及びフェノキシ樹脂などのポリマーが挙げられている。 As an example of the anisotropic conductive material, Patent Document 2 below discloses a curing agent that generates free radicals by heating, a hydroxyl group-containing resin having a molecular weight of 10,000 or more, a phosphate ester, a radical polymerizable substance, a conductive material. An anisotropic conductive material (curable composition) containing conductive particles is disclosed. Specific examples of the hydroxyl group-containing resin include polymers such as polyvinyl butyral resin, polyvinyl formal, polyamide, polyester, phenol resin, epoxy resin, and phenoxy resin.
特開2013-23503号公報JP 2013-23503 A 特開2005-314696号公報JP 2005-314696 A
 特許文献1,2に記載のような従来の硬化性組成物では、接続対象部材の接着性が低いという問題がある。特に、従来の硬化性組成物では、PETフィルムを接着したときに、PETフィルムが容易に剥離しやすいという問題がある。 The conventional curable compositions as described in Patent Documents 1 and 2 have a problem that the adhesion of the connection target member is low. In particular, the conventional curable composition has a problem that when the PET film is adhered, the PET film is easily peeled off.
 本発明の目的は、接続対象部材の接着性を高めることができる硬化性組成物を提供すること、並びに上記硬化性組成物を用いた導電材料及び接続構造体を提供することである。 An object of the present invention is to provide a curable composition capable of enhancing the adhesion of a connection target member, and to provide a conductive material and a connection structure using the curable composition.
 また、本発明の限定的な目的は、PETフィルムの接着性を高めることができ、PETフィルムを接着したとしても、PETフィルムの剥離を抑えることができる硬化性組成物を提供すること、並びに上記硬化性組成物を用いた導電材料及び接続構造体を提供することである。なお、本発明に係る硬化性組成物は、PETフィルムの接着に好適に用いられるが、本発明に係る硬化性組成物の用途は、PETフィルムの接着に限定されない。 Further, a limited object of the present invention is to provide a curable composition that can enhance the adhesion of the PET film, and can suppress the peeling of the PET film even when the PET film is adhered, and the above-mentioned It is providing the electrically-conductive material and connection structure using a curable composition. In addition, although the curable composition which concerns on this invention is used suitably for adhesion | attachment of PET film, the use of the curable composition which concerns on this invention is not limited to adhesion | attachment of PET film.
 本発明の広い局面によれば、下記式(11)で表される化合物とジオール化合物との反応により得られる第1の化合物を用いて、前記第1の化合物に、イソシアネート基及び不飽和二重結合を有する第2の化合物を反応させることにより得られる硬化性化合物と、熱硬化剤とを含む、硬化性組成物が提供される。 According to a wide aspect of the present invention, the first compound obtained by the reaction of the compound represented by the following formula (11) and the diol compound is used to add an isocyanate group and an unsaturated double group to the first compound. There is provided a curable composition comprising a curable compound obtained by reacting a second compound having a bond and a thermosetting agent.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記式(11)中、Xは、炭素数2~10のアルキレン基又はフェニレン基を表し、R1及びR2はそれぞれ、水素原子又は炭素数1~4のアルキル基を表す。 In the formula (11), X represents an alkylene group having 2 to 10 carbon atoms or a phenylene group, and R1 and R2 each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 本発明に係る硬化性組成物のある特定の局面では、前記式(11)で表される化合物が、下記式(11A)で表される化合物である In a specific aspect of the curable composition according to the present invention, the compound represented by the formula (11) is a compound represented by the following formula (11A).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記式(11A)中、R1及びR2はそれぞれ、水素原子又は炭素数1~4のアルキル基を表す。 In the formula (11A), R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 本発明に係る硬化性組成物のある特定の局面では、前記式(11)で表される化合物が、テレフタル酸、テレフタル酸アルキルエステル、イソフタル酸、又はイソフタル酸アルキルエステルである。 In a specific aspect of the curable composition according to the present invention, the compound represented by the formula (11) is terephthalic acid, terephthalic acid alkyl ester, isophthalic acid, or isophthalic acid alkyl ester.
 本発明に係る硬化性組成物のある特定の局面では、前記ジオール化合物が、1,6-ヘキサンジオールを含み、他の特定の局面では、前記ジオール化合物が、ビスフェノールA又はビスフェノールFを含み、更に他の特定の局面では、前記ジオール化合物が、1,6-ヘキサンジオールと、ビスフェノールA又はビスフェノールFとを含む。 In a specific aspect of the curable composition according to the present invention, the diol compound includes 1,6-hexanediol, and in another specific aspect, the diol compound includes bisphenol A or bisphenol F, and In another specific aspect, the diol compound includes 1,6-hexanediol and bisphenol A or bisphenol F.
 本発明に係る硬化性組成物のある特定の局面では、前記第2の化合物が、不飽和二重結合を含む基として、(メタ)アクリロイル基を有し、他の特定の局面では、前記第2の化合物が、(メタ)アクリロイルオキシアルキルオキシイソシアネートである。 In a specific aspect of the curable composition according to the present invention, the second compound has a (meth) acryloyl group as a group containing an unsaturated double bond, and in another specific aspect, the second compound The compound of 2 is (meth) acryloyloxyalkyloxy isocyanate.
 本発明に係る硬化性組成物のある特定の局面では、前記硬化性化合物の重量平均分子量が8000以上、50000以下である。 In a specific aspect of the curable composition according to the present invention, the curable compound has a weight average molecular weight of 8000 or more and 50000 or less.
 前記硬化性組成物は、四級アンモニウム塩化合物又は水酸基を有する(メタ)アクリル化合物を含むことが好ましい。前記硬化性組成物は、前記四級アンモニウム塩化合物を含むことが好ましい。前記硬化性組成物は、前記水酸基を有する(メタ)アクリル化合物を含むことが好ましい。 The curable composition preferably contains a quaternary ammonium salt compound or a (meth) acrylic compound having a hydroxyl group. The curable composition preferably contains the quaternary ammonium salt compound. The curable composition preferably contains a (meth) acrylic compound having a hydroxyl group.
 本発明に係る硬化性組成物のある特定の局面では、前記熱硬化剤が、熱ラジカル発生剤である。 In a specific aspect of the curable composition according to the present invention, the thermosetting agent is a thermal radical generator.
 本発明に係る硬化性組成物のある特定の局面では、前記硬化性組成物を140℃及び10秒で硬化させたときに、得られる硬化物の破断伸びが500%以上である。 In a specific aspect of the curable composition according to the present invention, when the curable composition is cured at 140 ° C. for 10 seconds, the elongation at break of the obtained cured product is 500% or more.
 本発明に係る硬化性組成物は、ポリエチレンテレフタレートフィルムの接着に好適に用いられ、ポリエチレンテレフタレートフィルム接着用の硬化性組成物であることが好ましい。本発明に係る硬化性組成物は、タッチパネルにおいて、ポリエチレンテレフタレートフィルムの接着に好適に用いられ、タッチパネルにおけるポリエチレンテレフタレートフィルム接着用の硬化性組成物であることが好ましい。 The curable composition according to the present invention is preferably used for adhesion of a polyethylene terephthalate film, and is preferably a curable composition for adhesion of a polyethylene terephthalate film. The curable composition according to the present invention is preferably used for bonding a polyethylene terephthalate film in a touch panel, and is preferably a curable composition for bonding a polyethylene terephthalate film in a touch panel.
 本発明の広い局面によれば、下記式(1)で表される硬化性化合物と、熱硬化剤とを含む、硬化性組成物が提供される。 According to a wide aspect of the present invention, there is provided a curable composition containing a curable compound represented by the following formula (1) and a thermosetting agent.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記式(1)中、R1、R2はそれぞれ、水素原子又はメチル基を表し、R3及びR4はそれぞれ、水素原子、メチル基又はフェニル基を表し、Xは、炭素数2~10のアルキレン基又はポリエーテル基を表し、Yは炭素数2~10のアルキレン基又はフェニレン基を表し、n1及びn2はそれぞれ、1又は2を表し、mは、式(1)で表される硬化性化合物の重量平均分子量が8000以上、50000以下になる整数を表す。 In the formula (1), R 1 and R 2 each represent a hydrogen atom or a methyl group, R 3 and R 4 each represent a hydrogen atom, a methyl group or a phenyl group, and X represents an alkylene group having 2 to 10 carbon atoms or Represents a polyether group, Y represents an alkylene group having 2 to 10 carbon atoms or a phenylene group, n1 and n2 each represents 1 or 2, and m represents the weight of the curable compound represented by the formula (1) It represents an integer having an average molecular weight of 8000 or more and 50000 or less.
 本発明の広い局面によれば、上述した硬化性組成物と、導電性粒子とを含む、導電材料が提供される。 According to a wide aspect of the present invention, there is provided a conductive material including the curable composition described above and conductive particles.
 本発明に係る導電材料のある特定の局面では、前記硬化性化合物の含有量が、50重量%以上である。 In a specific aspect of the conductive material according to the present invention, the content of the curable compound is 50% by weight or more.
 本発明に係る導電材料のある特定の局面では、前記導電性粒子が、はんだを導電性の外表面に有する。 In a specific aspect of the conductive material according to the present invention, the conductive particles have solder on a conductive outer surface.
 本発明の広い局面によれば、第1の接続対象部材と、第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、上述した硬化性組成物を硬化させることにより形成されている、接続構造体が提供される。 According to a wide aspect of the present invention, a first connection target member, a second connection target member, and a connection portion connecting the first connection target member and the second connection target member. Provided is a connection structure in which the connection portion is formed by curing the curable composition described above.
 本発明に係る接続構造体のある特定の局面では、前記第1の接続対象部材が第1の電極を表面に有し、前記第2の接続対象部材が第2の電極を表面に有し、前記第1の電極と前記第2の電極とが、接触することで、電気的に接続されている。 In a specific aspect of the connection structure according to the present invention, the first connection target member has a first electrode on the surface, and the second connection target member has a second electrode on the surface, The first electrode and the second electrode are electrically connected by being in contact with each other.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、上述した導電材料を硬化させることにより形成されており、前記第1の電極と前記第2の電極とが、前記導電性粒子により電気的に接続されている、接続構造体が提供される。 According to a wide aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the A connection portion connecting to a second connection target member, wherein the connection portion is formed by curing the conductive material described above, and the first electrode and the second electrode are A connection structure that is electrically connected by the conductive particles is provided.
 本発明に係る硬化性組成物は、硬化性化合物と、熱硬化剤とを含み、上記硬化性化合物が、式(11)で表される化合物とジオール化合物との反応により得られる第1の化合物を用いて、該第1の化合物に、イソシアネート基及び不飽和二重結合を有する第2の化合物を反応させることにより得られるので、接続対象部材の接着性を高めることができる。 The curable composition which concerns on this invention contains a curable compound and a thermosetting agent, and the said curable compound is a 1st compound obtained by reaction with the compound and diol compound which are represented by Formula (11) Can be obtained by reacting the first compound with a second compound having an isocyanate group and an unsaturated double bond, so that the adhesion of the connection target member can be improved.
 本発明に係る硬化性組成物は、式(1)で表される硬化性化合物と、熱硬化剤とを含むので、接続対象部材の接着性を高めることができる。 Since the curable composition according to the present invention includes the curable compound represented by the formula (1) and the thermosetting agent, it is possible to improve the adhesion of the connection target member.
図1は、本発明の第1の実施形態に係る硬化性組成物と、導電性粒子とを含む導電材料を用いて得られる接続構造体を模式的に示す正面断面図である。FIG. 1 is a front cross-sectional view schematically showing a connection structure obtained using a conductive material containing a curable composition according to a first embodiment of the present invention and conductive particles. 図2は、本発明の第2の実施形態に係る硬化性組成物を用いて得られる接続構造体を模式的に示す正面断面図である。FIG. 2 is a front cross-sectional view schematically showing a connection structure obtained by using the curable composition according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る硬化性組成物を用いて得られる接続構造体を模式的に示す正面断面図である。FIG. 3 is a front cross-sectional view schematically showing a connection structure obtained using the curable composition according to the third embodiment of the present invention. 図4は、図1に示す接続構造体における導電性粒子と電極との接続部分を拡大して模式的に示す正面断面図である。FIG. 4 is a front sectional view schematically showing an enlarged connection portion between the conductive particles and the electrodes in the connection structure shown in FIG. 1. 図5は、本発明の第1の実施形態で用いた導電材料に使用可能な導電性粒子の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of conductive particles that can be used for the conductive material used in the first embodiment of the present invention. 図6は、導電性粒子の変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modification of the conductive particles. 図7は、導電性粒子の他の変形例を示す断面図である。FIG. 7 is a cross-sectional view showing another modification of the conductive particles.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 (硬化性組成物)
 本発明に係る硬化性組成物は、下記式(11)で表される化合物とジオール化合物との反応により得られる第1の化合物を用いて、該第1の化合物に、イソシアネート基及び不飽和二重結合を有する第2の化合物を反応させることにより得られる硬化性化合物を含むことが好ましい。この硬化性化合物を得るための反応により、例えば、式(1)で表される硬化性化合物などを得ることが可能である。本発明に係る硬化性組成物は、上記硬化性化合物を硬化させるために、熱硬化剤を含む。
(Curable composition)
The curable composition according to the present invention uses the first compound obtained by the reaction of a compound represented by the following formula (11) and a diol compound, and the first compound is mixed with an isocyanate group and an unsaturated divalent compound. It preferably contains a curable compound obtained by reacting a second compound having a heavy bond. By the reaction for obtaining this curable compound, for example, a curable compound represented by the formula (1) can be obtained. The curable composition according to the present invention includes a thermosetting agent in order to cure the curable compound.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(11)中、Xは、炭素数2~10のアルキレン基又はフェニレン基を表し、R1及びR2はそれぞれ、水素原子又は炭素数1~4のアルキル基を表す。 In the above formula (11), X represents an alkylene group having 2 to 10 carbon atoms or a phenylene group, and R1 and R2 each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 また、本発明に係る硬化性組成物は、下記式(1)で表される硬化性化合物を含むことが好ましい。式(1)で表される硬化性化合物は、例えば、式(11)で表される化合物とジオール化合物との反応により得られる第1の化合物を用いて、該第1の化合物に、イソシアネート基及び不飽和二重結合を有する第2の化合物を反応させる方法などにより得ることが可能である。本発明に係る硬化性組成物は、上記硬化性化合物を硬化させるために、熱硬化剤を含む。 Moreover, it is preferable that the curable composition concerning this invention contains the curable compound represented by following formula (1). The curable compound represented by the formula (1) includes, for example, a first compound obtained by a reaction between the compound represented by the formula (11) and a diol compound, and the first compound has an isocyanate group. And a method in which a second compound having an unsaturated double bond is reacted. The curable composition according to the present invention includes a thermosetting agent in order to cure the curable compound.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(1)中、R1、R2はそれぞれ、水素原子又はメチル基を表し、R3及びR4はそれぞれ、水素原子、メチル基又はフェニル基を表し、Xは、炭素数2~10のアルキレン基又はポリエーテル基を表し、Yは炭素数2~10のアルキレン基又はフェニレン基を表し、n1及びn2はそれぞれ、1又は2を表し、mは、式(1)で表される硬化性化合物の重量平均分子量が8000以上、50000以下になる整数を表す。 In the above formula (1), R 1 and R 2 each represent a hydrogen atom or a methyl group, R 3 and R 4 each represent a hydrogen atom, a methyl group or a phenyl group, and X represents an alkylene group having 2 to 10 carbon atoms or Represents a polyether group, Y represents an alkylene group having 2 to 10 carbon atoms or a phenylene group, n1 and n2 each represents 1 or 2, and m represents the weight of the curable compound represented by the formula (1) It represents an integer having an average molecular weight of 8000 or more and 50000 or less.
 本発明に係る硬化性組成物では、上述した組成が採用されているので、接続対象部材の接着性を高めることができる。これは、上記硬化性化合物が、適度な柔軟性を有する骨格構造を有するためであると考えられる。 In the curable composition according to the present invention, since the above-described composition is employed, the adhesion of the connection target member can be improved. This is considered to be because the curable compound has a skeleton structure having appropriate flexibility.
 さらに、本発明に係る硬化性組成物では、上述した組成が採用されているので、特に上記硬化性化合物の構造に起因して、ポリエチレンテレフタレート(PET)フィルムの接着性を高めることができる。これは、上記硬化性化合物が、適度な柔軟性を有する骨格構造を有するだけでなく、PETと類似した構造を有するためであると考えらえる。 Furthermore, since the above-described composition is employed in the curable composition according to the present invention, the adhesiveness of the polyethylene terephthalate (PET) film can be enhanced particularly due to the structure of the curable compound. This is considered to be because the curable compound not only has a skeleton structure having moderate flexibility, but also has a structure similar to PET.
 本発明に係る硬化性組成物では、特にPETフィルムの接着性の向上効果が大きく得られるが、他の接続対象部材の接着性の向上効果も得られる。 In the curable composition according to the present invention, the effect of improving the adhesiveness of the PET film is particularly large, but the effect of improving the adhesiveness of other connection target members is also obtained.
 また、本発明に係る硬化性組成物を用いて接続対象部材を接続したときに、得られる接続構造体が高温下又は高湿下に晒されても、剥離が生じ難くなる。 In addition, when the connection target member is connected using the curable composition according to the present invention, even if the obtained connection structure is exposed to high temperature or high humidity, peeling hardly occurs.
 上記硬化性組成物は、上記熱硬化剤を含む。上記硬化性組成物を加熱により硬化させることで、接続対象部材の接着性が高くなる。上記硬化性組成物は、上記光硬化開始剤を含まないか又は含む。光の照射により硬化を進行させた後に、加熱により硬化させることで、硬化性組成物の過度の流動を抑える観点からは、上記硬化性組成物は、上記光硬化開始剤を含むことが好ましい。一方で、加熱による硬化の割合を増やして、接続対象部材の接着性をより一層高める観点からは、上記硬化性組成物は、上記光硬化開始剤を含まなくてもよい。上記光硬化開始剤を用いなければ、上記硬化性組成物を硬化させるために、光の照射を行わず、加熱のみを行うことができるので、接続構造体の製造効率が高くなる。 The curable composition contains the thermosetting agent. By curing the curable composition by heating, the adhesion of the connection target member is increased. The curable composition does not contain or contains the photocuring initiator. From the viewpoint of suppressing an excessive flow of the curable composition by curing by heating after curing by light irradiation, the curable composition preferably contains the photocuring initiator. On the other hand, from the viewpoint of further increasing the adhesiveness of the connection target member by increasing the rate of curing by heating, the curable composition may not contain the photocuring initiator. If the photocuring initiator is not used, in order to cure the curable composition, it is possible to perform only heating without irradiating light, so that the manufacturing efficiency of the connection structure is increased.
 上記硬化性組成物を140℃及び10秒で硬化させたときに、得られる硬化物の破断伸びは好ましくは500%以上、より好ましくは700%以上である。また、後述する導電材料に含まれる硬化性組成物を140℃及び10秒で硬化させたときに、得られる硬化物の破断伸びは好ましくは500%以上、より好ましくは700%以上である。上記破断伸びが上記下限以上であると、接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高めることができる。なお、上記破断伸びの測定における導電材料に含まれる硬化性組成物に関しては、導電材料の配合時に用いる硬化性組成物(導電性粒子を除く各配合成分の混合物)を用いてもよく、導電材料から導電性粒子を除去した硬化性組成物を用いてもよい。 When the curable composition is cured at 140 ° C. for 10 seconds, the elongation at break of the obtained cured product is preferably 500% or more, more preferably 700% or more. Moreover, when the curable composition contained in the conductive material described later is cured at 140 ° C. for 10 seconds, the elongation at break of the obtained cured product is preferably 500% or more, more preferably 700% or more. When the breaking elongation is equal to or more than the lower limit, the adhesion of the connection target member can be further enhanced, and in particular, the adhesion of the PET film can be further enhanced. In addition, regarding the curable composition contained in the conductive material in the measurement of the elongation at break, a curable composition (mixture of components other than conductive particles) used when the conductive material is blended may be used. A curable composition from which the conductive particles are removed may be used.
 上記破断伸びは、引張試験機を用いて、上記硬化物を23℃及び引張り速度1mm/分及びチャック間距離40mmの条件で引き伸ばしたときの破断した際のチャック間距離の伸び率の値である。 The elongation at break is a value of the elongation ratio of the distance between chucks when the cured product is stretched using a tensile tester under the conditions of 23 ° C., a pulling speed of 1 mm / min and a distance between chucks of 40 mm. .
 接着性をより一層高めるために、本発明に係る硬化性組成物は、四級アンモニウム塩化合物又は水酸基を有する(メタ)アクリル化合物を含むことが好ましい。この場合に、接着性を効果的に高めるために、本発明に係る硬化性組成物は、上記四級アンモニウム塩化合物と上記水酸基を有する(メタ)アクリル化合物との双方を含んでいてもよい。接着性をより一層高めるために、更に高温下での剥離を抑えるために、本発明に係る硬化性組成物は、上記四級アンモニウム塩化合物を含むことが好ましい。接着性をより一層高めるために、本発明に係る硬化性組成物は、上記水酸基を有する(メタ)アクリル化合物を含むことが好ましい。 In order to further improve the adhesiveness, the curable composition according to the present invention preferably contains a quaternary ammonium salt compound or a (meth) acrylic compound having a hydroxyl group. In this case, in order to effectively improve the adhesiveness, the curable composition according to the present invention may contain both the quaternary ammonium salt compound and the (meth) acrylic compound having a hydroxyl group. In order to further improve the adhesiveness, the curable composition according to the present invention preferably contains the quaternary ammonium salt compound in order to further suppress peeling at a high temperature. In order to further improve the adhesiveness, the curable composition according to the present invention preferably contains the (meth) acrylic compound having a hydroxyl group.
 以下、本発明に係る硬化性組成物に用いることができる各成分の詳細を説明する。 Hereinafter, the detail of each component which can be used for the curable composition which concerns on this invention is demonstrated.
 [硬化性化合物]
 上記硬化性化合物は、式(11)で表される化合物とジオール化合物との反応により得られる第1の化合物を用いて、該第1の化合物に、イソシアネート基及び不飽和二重結合を有する第2の化合物を反応させることにより得られる。上記反応は、脱水縮合反応又は脱アルコール反応である。上記式(11)で表される化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記ジオール化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記硬化性化合物を得るために、上記第1の化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記硬化性化合物を得るために、上記第2の化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curable compound]
The curable compound includes a first compound obtained by the reaction of a compound represented by the formula (11) and a diol compound, and the first compound has an isocyanate group and an unsaturated double bond. It is obtained by reacting two compounds. The above reaction is a dehydration condensation reaction or a dealcoholization reaction. As for the compound represented by the said Formula (11), only 1 type may be used and 2 or more types may be used together. As for the said diol compound, only 1 type may be used and 2 or more types may be used together. In order to obtain the curable compound, only one kind of the first compound may be used, or two or more kinds may be used in combination. In order to obtain the curable compound, only one type of the second compound may be used, or two or more types may be used in combination.
 上記硬化性化合物の重量平均分子量は好ましくは8000以上、より好ましくは10000以上、好ましくは50000以下、より好ましくは30000以下である。上記重量平均分子量が上記下限以上であると、接続対象部材の接着性がより一層高くなる。上記重量平均分子量が上記上限以下であると、硬化性化合物の他の成分との相溶性が高くなる。 The weight average molecular weight of the curable compound is preferably 8000 or more, more preferably 10,000 or more, preferably 50000 or less, more preferably 30000 or less. When the weight average molecular weight is not less than the lower limit, the adhesion of the connection target member is further enhanced. When the weight average molecular weight is not more than the upper limit, compatibility with other components of the curable compound is increased.
 上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。上記重量平均分子量は、島津製作所社製「Prominence GPCシステム」にて、溶媒THF、流量1mL/min、検出器:示差屈折にて測定することができる。 The weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC). The weight average molecular weight can be measured by “Prominence GPC system” manufactured by Shimadzu Corporation with solvent THF, flow rate 1 mL / min, detector: differential refraction.
 上記式(11)中のR1及びR2はそれぞれ、水素原子又は炭素数1~4のアルキル基を表す。上記式(11)中のR1及びR2はそれぞれ、水素原子であってもよく、炭素数1~4のアルキル基であってもよい。 In the above formula (11), R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R1 and R2 in the above formula (11) may each be a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記式(11)中のXはフェニレン基であることが好ましく、上記式(11)で表される化合物は、下記式(11A)で表される化合物であることが好ましい。接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記硬化性組成物は、下記式(11A)で表される化合物とジオール化合物との反応により得られる第1の化合物を用いて、該第1の化合物に、イソシアネート基及び不飽和二重結合を有する第2の化合物を反応させることにより得られる硬化性化合物を含むことが好ましい。 From the viewpoint of further improving the adhesion of the connection target member, and in particular, further enhancing the adhesion of the PET film, X in the formula (11) is preferably a phenylene group, and is represented by the formula (11). The compound is preferably a compound represented by the following formula (11A). From the viewpoint of further improving the adhesiveness of the connection target member, particularly further improving the adhesiveness of the PET film, the curable composition is obtained by a reaction of a compound represented by the following formula (11A) with a diol compound. It is preferable that the 1st compound obtained contains the curable compound obtained by making this 1st compound react with the 2nd compound which has an isocyanate group and an unsaturated double bond.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(11A)中、R1及びR2はそれぞれ、水素原子又は炭素数1~4のアルキル基を表す。 In the above formula (11A), R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記式(11)で表される化合物は、テレフタル酸、テレフタル酸アルキルエステル、イソフタル酸、又はイソフタル酸アルキルエステルであることが好ましい。すなわち、上記式(11)で表される化合物は、下記式(11AA)又は下記式(11AB)で表される化合物であることが好ましい。 From the viewpoint of further improving the adhesion of the member to be connected, and particularly further improving the adhesion of the PET film, the compound represented by the above formula (11) is terephthalic acid, alkyl terephthalate, isophthalic acid, or isophthalic acid. An acid alkyl ester is preferred. That is, the compound represented by the above formula (11) is preferably a compound represented by the following formula (11AA) or the following formula (11AB).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(11AA)中、R1及びR2はそれぞれ、水素原子又は炭素数1~4のアルキル基を表す。 In the above formula (11AA), R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(11AB)中、R1及びR2はそれぞれ、水素原子又は炭素数1~4のアルキル基を表す。 In the above formula (11AB), R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 硬化性化合物を得る際の反応性に優れることから、上記式(11)、(11A)、(11AA)及び(11AB)中のR1及びR2はそれぞれ、炭素数1~4のアルキル基である場合に、アルキル基の炭素数は好ましくは3以下、より好ましくは2以下(メチル基又はエチル基)、更に好ましくは1(メチル基)である。 In the case where R1 and R2 in the above formulas (11), (11A), (11AA) and (11AB) are each an alkyl group having 1 to 4 carbon atoms because of excellent reactivity when obtaining a curable compound Further, the carbon number of the alkyl group is preferably 3 or less, more preferably 2 or less (methyl group or ethyl group), and still more preferably 1 (methyl group).
 上記第1の化合物を得るための上記ジオール化合物としては、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール及び1,8-オクタンジオール等が挙げられる。 Examples of the diol compound for obtaining the first compound include 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, and 1,8-octanediol. Is mentioned.
 また、本発明に係る硬化性組成物のある特定の局面では、上記硬化性組成物は、下記式(11B)で表される化合物と、ジオール化合物との反応により得られる第3の化合物を含有することが好ましい。下記式(11B)で表される化合物は、ジカルボン酸又はジカルボン酸エステルである。上記反応は、脱水縮合反応又は脱アルコール反応である。また、本発明に係る硬化性組成物のある特定の局面では、上記硬化性組成物は、上記式(11A)で表される化合物とジオール化合物との反応により得られる第1の化合物を用いて、該第1の化合物に、イソシアネート基及び不飽和二重結合を有する第2の化合物を反応させることにより得られる硬化性化合物と、下記式(11B)で表される化合物とジオール化合物との反応により得られる第3の化合物を用いて、該第3の化合物に、イソシアネート基及び不飽和二重結合を有する第4の化合物(第2の化合物と同種)を反応させることにより得られる硬化性化合物とを含有するか、又は、上記式(11A)で表される化合物と下記式(11B)で表される化合物とジオール化合物との反応により得られる第5の化合物を用いて、該第5の化合物に、イソシアネート基及び不飽和二重結合を有する第6の化合物(第2の化合物と同種)を反応させることにより得られる硬化性化合物を含有することが好ましい。これらの2種の硬化性化合物の使用により、接続対象部材の接着性を効果的に高め、特にPETフィルムの接着性を効果的に高めることができる。 Moreover, on a specific situation with the curable composition which concerns on this invention, the said curable composition contains the 3rd compound obtained by reaction with the compound represented by following formula (11B), and a diol compound. It is preferable to do. The compound represented by the following formula (11B) is a dicarboxylic acid or a dicarboxylic acid ester. The above reaction is a dehydration condensation reaction or a dealcoholization reaction. Moreover, on the specific situation with the curable composition which concerns on this invention, the said curable composition uses the 1st compound obtained by reaction with the compound and diol compound which are represented by the said Formula (11A). The reaction of a curable compound obtained by reacting the first compound with a second compound having an isocyanate group and an unsaturated double bond, and a compound represented by the following formula (11B) and a diol compound A curable compound obtained by reacting the third compound obtained by the above-mentioned reaction with a fourth compound having the isocyanate group and an unsaturated double bond (same type as the second compound). Or a fifth compound obtained by a reaction of a compound represented by the above formula (11A) with a compound represented by the following formula (11B) and a diol compound, The compound preferably contains a sixth compound (second compound of the same kind) curable compound obtained by reacting a having an isocyanate group and an unsaturated double bond. By using these two kinds of curable compounds, it is possible to effectively increase the adhesion of the connection target member, and in particular, it is possible to effectively increase the adhesion of the PET film.
 R1OOC-X-COOR2 ・・・式(11B) R1OOC-X-COOR2 ... Formula (11B)
 上記式(11B)中、R1及びR2はそれぞれ、水素原子、又は炭素数1~4のアルキル基を表し、Xは、炭素数2~10のアルキレン基を表す。 In the above formula (11B), R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and X represents an alkylene group having 2 to 10 carbon atoms.
 第1の化合物1及び第3の化合物は、別々に合成して、混合してもよく、反応時に、第3の化合物を上記式(11A)で表される化合物と一緒に反応させてもよい。反応時に上記式(11A)で表される化合物と一緒に反応させる方が好ましい。 The first compound 1 and the third compound may be synthesized and mixed separately, and the third compound may be reacted with the compound represented by the above formula (11A) during the reaction. . It is preferable to react with the compound represented by the above formula (11A) during the reaction.
 上記式(11B)で表される化合物に関して、より好ましい化合物としては、R1及びR2が、水素原子又はメチル基を表し、Xが、炭素数3~5のアルキレン基を表す化合物であり、更に好ましい化合物としては、R1及びR2が、メチル基を表し、Xが、炭素数4のアルキレン基を表す化合物である。 Regarding the compound represented by the above formula (11B), more preferable compounds are compounds in which R1 and R2 represent a hydrogen atom or a methyl group, and X represents an alkylene group having 3 to 5 carbon atoms, and more preferable. As the compound, R1 and R2 represent a methyl group, and X represents a C4 alkylene group.
 接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記第1の化合物を得るための上記ジオール化合物は、下記式(12)で表される化合物、(メタ)アクリロイル基を有する化合物、ポリエステルポリオール化合物又はポリエーテルポリオール化合物であることが好ましく、下記式(12)で表される化合物又はポリエーテルポリオール化合物であることがより好ましい。接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記第1の化合物を得るための上記ジオール化合物は、下記式(12)で表される化合物を含むことが好ましい。 From the viewpoint of further improving the adhesiveness of the connection target member, in particular, further improving the adhesiveness of the PET film, the diol compound for obtaining the first compound is a compound represented by the following formula (12), A compound having a (meth) acryloyl group, a polyester polyol compound or a polyether polyol compound is preferable, and a compound represented by the following formula (12) or a polyether polyol compound is more preferable. From the viewpoint of further improving the adhesion of the connection target member, and in particular, further improving the adhesion of the PET film, the diol compound for obtaining the first compound is a compound represented by the following formula (12). It is preferable to include.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(12)中、Rは炭素数2~10のアルキレン基又はポリエーテル基を表す。上記式(12)中、Rは炭素数2~10のアルキレン基を表していてもよい。上記式(12)中のRとしては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノナレン基及びデカレン基等が挙げられる。接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記式(12)中のRの炭素数は6であることが好ましい。すなわち、上記式(12)で表される化合物は、下記式(12A)で表される化合物であることが好ましい。すなわち、上記第1の化合物を得るための上記ジオール化合物及び上記第3の化合物を得るための上記ジオール化合物は、1,6-ヘキサンジオールを含むことが特に好ましい。 In the above formula (12), R represents an alkylene group having 2 to 10 carbon atoms or a polyether group. In the above formula (12), R may represent an alkylene group having 2 to 10 carbon atoms. Examples of R in the above formula (12) include ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonalene group and decalene group. From the viewpoint of further improving the adhesiveness of the connection target member, and in particular, further improving the adhesiveness of the PET film, the carbon number of R in the above formula (12) is preferably 6. That is, the compound represented by the above formula (12) is preferably a compound represented by the following formula (12A). That is, it is particularly preferable that the diol compound for obtaining the first compound and the diol compound for obtaining the third compound contain 1,6-hexanediol.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記第2の化合物が、不飽和二重結合を含む基として、(メタ)アクリロイル基を有することが好ましい。 From the viewpoint of further improving the adhesion of the connection target member, and in particular, further enhancing the adhesion of the PET film, the second compound has a (meth) acryloyl group as a group containing an unsaturated double bond. Is preferred.
 上記第1の化合物を得るための上記ジオール化合物としては、ビスフェノールA又はビスフェノールF等も挙げられる。接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記ジオール化合物は、ビスフェノールA又はビスフェノールFを含むことが好ましい。接続対象部材の接着性を更に一層高め、特にPETフィルムの接着性を更に一層高める観点からは、上記ジオール化合物は、1,6-ヘキサンジオールと、ビスフェノールA又はビスフェノールFとを含むことが好ましい。この好ましい形態において、ビスフェノールAのみが用いられてもよく、ビスフェノールFのみが用いられてもよく、ビスフェノールAとビスフェノールFとが併用されてもよい。 Examples of the diol compound for obtaining the first compound include bisphenol A and bisphenol F. The diol compound preferably contains bisphenol A or bisphenol F from the viewpoint of further improving the adhesiveness of the connection target member, and in particular, further improving the adhesiveness of the PET film. From the viewpoint of further improving the adhesion of the connection target member, and particularly further improving the adhesion of the PET film, the diol compound preferably contains 1,6-hexanediol and bisphenol A or bisphenol F. In this preferred form, only bisphenol A may be used, only bisphenol F may be used, or bisphenol A and bisphenol F may be used in combination.
 上記ジオール化合物としては、ポリエーテルポリオール化合物等も挙げられる。ポリエーテルポリオールとしては、プロピレングリコールや、エチレングリコール等の2官能アルキレングリコールが好ましい。また、上記ポリエーテルポリオール化合物の分子量は、好ましくは500以上、より好ましくは600以上、好ましくは2000以下、より好ましくは1500以下である。 Examples of the diol compound include polyether polyol compounds. The polyether polyol is preferably a bifunctional alkylene glycol such as propylene glycol or ethylene glycol. The molecular weight of the polyether polyol compound is preferably 500 or more, more preferably 600 or more, preferably 2000 or less, more preferably 1500 or less.
 上記ジオール化合物として、ポリエステルポリオール化合物も挙げられる。ポリエステルポリオール化合物は、カルボン酸と多価アルコールとを脱水縮合させることにより得られる。カルボン酸としては、アジピン酸、フタル酸が好ましい。多価アルコールとしては、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールが好ましい。また、ポリエステルポリオール化合物の分子量は、好ましくは500以上、より好ましくは600以上、好ましくは2000以下、より好ましくは1500以下である。 Examples of the diol compound include polyester polyol compounds. The polyester polyol compound can be obtained by dehydrating condensation of a carboxylic acid and a polyhydric alcohol. As the carboxylic acid, adipic acid and phthalic acid are preferable. As the polyhydric alcohol, ethylene glycol, 1,4-butanediol, and 1,6-hexanediol are preferable. The molecular weight of the polyester polyol compound is preferably 500 or more, more preferably 600 or more, preferably 2000 or less, and more preferably 1500 or less.
 上記ジオール化合物は、別々に式(11A)で表される化合物や、上記式(11B)で表される化合物と反応させてもよく、混合して式(11A)で表される化合物や、上記式(11B)で表される化合物と反応させてもよい。 The diol compound may be separately reacted with a compound represented by the formula (11A), a compound represented by the above formula (11B), mixed and a compound represented by the formula (11A), or the above You may make it react with the compound represented by Formula (11B).
 上記第1の化合物を得るための上記ジオール化合物100重量%中、上記式(12)で表される化合物又は1,6-ヘキサンジオールの含有量は好ましくは0重量%(未使用)以上、より好ましくは10重量%以上、更に好ましくは20重量%以上、好ましくは100重量%(全量)以下、より好ましくは80重量%以下である。上記第1の化合物を得るための上記ジオール化合物100重量%中、ビスフェノールA及びビスフェノールFの含有量は好ましくは0重量%(未使用)以上、より好ましくは20重量%以上、好ましくは100重量%(全量)以下、より好ましくは80重量%以下である。 In 100% by weight of the diol compound for obtaining the first compound, the content of the compound represented by the formula (12) or 1,6-hexanediol is preferably 0% by weight (unused) or more. Preferably it is 10 weight% or more, More preferably, it is 20 weight% or more, Preferably it is 100 weight% (total amount) or less, More preferably, it is 80 weight% or less. In 100% by weight of the diol compound for obtaining the first compound, the content of bisphenol A and bisphenol F is preferably 0% by weight (unused) or more, more preferably 20% by weight or more, preferably 100% by weight. (Total amount) or less, more preferably 80% by weight or less.
 上記第2の化合物としては、イソシアネート基及び不飽和二重結合を有していれば特に限定されない。上記第2の化合物の具体例としては、(メタ)アクリロイルオキシアルキルオキシイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート、及び2-(2-isocyanatoethyloxy) ethyl methacrylate等が挙げられる。 The second compound is not particularly limited as long as it has an isocyanate group and an unsaturated double bond. Specific examples of the second compound include (meth) acryloyloxyalkyloxyisocyanate, 1,1- (bisacryloyloxymethyl) ethylisocyanate, and 2- (2-isocyanatoethylyl) ethyl methacrylate.
 接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記第2の化合物が、(メタ)アクリロイルオキシアルキルオキシイソシアネート、2-(2-isocyanatoethyloxy) ethyl methacrylateであることが好ましく、2-(2-isocyanatoethyloxy) ethyl methacrylateであることがより好ましい。 From the viewpoint of further improving the adhesiveness of the connection target member, and in particular, further improving the adhesiveness of the PET film, the second compound is (meth) acryloyloxyalkyloxyisocyanate, 2- (2-isocyanatoethylyl) ethyl methacrylate. 2- (2-isocyanatoethyloxy) ethyl methacrylate is more preferable.
 上記式(1)で表される硬化性化合物は、例えば、式(11)で表される化合物とジオール化合物との反応により得られる第1の化合物を用いて、該第1の化合物に、イソシアネート基及び不飽和二重結合を有する第2の化合物を反応させる方法などにより得ることが可能である。この場合に、式(1)で表される硬化性化合物が得られるように、式(11)で表される化合物、ジオール化合物及び第2の反応物などは適宜選択される。上記式(1)で表される硬化性化合物は、例えば、式(11)で表される化合物とジオール化合物との反応により得られる第1の化合物を用いて、該第1の化合物に、イソシアネート基及び不飽和二重結合を有する第2の化合物を反応させる方法以外の方法で得られていてもよい。 The curable compound represented by the above formula (1) is, for example, a first compound obtained by a reaction between a compound represented by the formula (11) and a diol compound, and the first compound is isocyanate. It can be obtained by a method of reacting a second compound having a group and an unsaturated double bond. In this case, the compound represented by the formula (11), the diol compound, the second reactant, and the like are appropriately selected so that the curable compound represented by the formula (1) is obtained. The curable compound represented by the above formula (1) is, for example, a first compound obtained by a reaction between a compound represented by the formula (11) and a diol compound, and the first compound is isocyanate. It may be obtained by a method other than the method of reacting the second compound having a group and an unsaturated double bond.
 上記式(1)中のXは、アルキレン基であることが好ましく、ポリエーテル基であることも好ましい。上記式(1)で表される硬化性化合物は、上記式(1)中のXとして、アルキレン基を含むことが好ましく、ポリエーテル基を含むことも好ましい。 X in the above formula (1) is preferably an alkylene group, and preferably a polyether group. The curable compound represented by the above formula (1) preferably contains an alkylene group as X in the above formula (1), and also preferably contains a polyether group.
 上記式(1)中のXのアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノナレン基又はデカレン基等が挙げられる。柔軟性を高める観点からは、ヘキシレン基が好ましい。 Examples of the alkylene group of X in the above formula (1) include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonalene group, and a decalene group. From the viewpoint of increasing flexibility, a hexylene group is preferred.
 上記式(1)中のXのポリエーテル基としては、下記式(2)で表されるポリエーテル基が挙げられる。 Examples of the polyether group X in the above formula (1) include a polyether group represented by the following formula (2).
 -(R3-O)q- ・・・(2) -(R3-O) q -... (2)
 上記式(2)中、R3は、炭素数1~6の直鎖状アルキレン基であり、qは、式(1)で表される硬化性化合物の重量平均分子量が8000以上、50000以下になる整数を表す。上記式(2)中のqの分子量は好ましくは650以上、より好ましくは1000以上、好ましくは2000以下である。柔軟性を高める観点から、上記式(2)中のR3が直鎖状アルキレン基である場合に、R3の炭素数は好ましくは2以上、好ましくは4以下である。また、複数の-R3-0-基は、同じであってもよく、異なっていてもよい。 In the above formula (2), R3 is a linear alkylene group having 1 to 6 carbon atoms, and q is a weight average molecular weight of the curable compound represented by the formula (1) of 8000 to 50,000. Represents an integer. The molecular weight of q in the above formula (2) is preferably 650 or more, more preferably 1000 or more, and preferably 2000 or less. From the viewpoint of enhancing flexibility, when R3 in the above formula (2) is a linear alkylene group, the number of carbon atoms in R3 is preferably 2 or more, and preferably 4 or less. The plurality of —R3-0- groups may be the same or different.
 硬化物のガラス転移温度をより一層低くし、更に低温での引張弾性率を充分に低くし、かつ低温でより一層速やかに硬化させる観点からは、上記式(1)で表される硬化性化合物は、上記式(1)中のXとして、ポリエーテル基を有することが好ましい。接続構造体は、低温下に晒されることがある。低温での引張弾性率を低くすることで、低温での硬化物の柔軟性が高くなり、低温での剥離がより一層生じ難くなる。 From the viewpoint of further lowering the glass transition temperature of the cured product, sufficiently lowering the tensile modulus at low temperature, and curing more rapidly at low temperature, the curable compound represented by the above formula (1) Preferably has a polyether group as X in the formula (1). The connection structure may be exposed to low temperatures. By lowering the tensile elastic modulus at low temperature, the flexibility of the cured product at low temperature becomes high, and peeling at low temperature becomes even less likely to occur.
 上記式(1)で表される硬化性化合物100重量%中、上記ポリエーテル基構造部分の割合(例えば式(2)で表される構造部分の割合)は、好ましくは17重量%以上、好ましくは41重量%以下、より好ましくは23重量%以下である。 In 100% by weight of the curable compound represented by the formula (1), the proportion of the polyether group structure portion (for example, the proportion of the structure portion represented by the formula (2)) is preferably 17% by weight or more, preferably Is 41% by weight or less, more preferably 23% by weight or less.
 上記式(1)中のYは炭素数2~10のアルキレン基又はフェニレン基を表す。複数のYは、同じであってもよく、異なっていてもよい。耐酸性を高める観点からは、上記式(1)で表される硬化性化合物は、上記式(1)中のYとして、炭素数2~10のアルキレン基とフェニル基との双方を有することが好ましい。柔軟性を高める観点からは、上記式(1)で表される硬化性化合物は、上記式(1)中のYとして、ブチレン基を有することが好ましい。上記式(1)中のYがフェニレン基である場合に、Yとしては、下記式(3A)又は下記式(3B)で表される基が挙げられる。上記式(1)で表される硬化性化合物は、上記式(1)中のYとして、下記式(3A)で表される基を有することが好ましい。 Y in the above formula (1) represents an alkylene group having 2 to 10 carbon atoms or a phenylene group. The plurality of Y may be the same or different. From the viewpoint of enhancing acid resistance, the curable compound represented by the above formula (1) may have both an alkylene group having 2 to 10 carbon atoms and a phenyl group as Y in the above formula (1). preferable. From the viewpoint of enhancing flexibility, the curable compound represented by the above formula (1) preferably has a butylene group as Y in the above formula (1). When Y in the above formula (1) is a phenylene group, examples of Y include a group represented by the following formula (3A) or the following formula (3B). The curable compound represented by the above formula (1) preferably has a group represented by the following formula (3A) as Y in the above formula (1).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 [熱硬化剤]
 上記熱硬化剤は、上記硬化性化合物を熱硬化させる上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤、酸無水物、熱カチオン開始剤及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Thermosetting agent]
The thermosetting agent is an imidazole curing agent, an amine curing agent, a phenol curing agent, a polythiol curing agent, an acid anhydride, a thermal cation initiator, and a thermal radical generator as the thermosetting agent for thermosetting the curable compound. Etc. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.
 なかでも、硬化性組成物を低温でより一層速やかに硬化可能であるので、イミダゾール硬化剤、ポリチオール硬化剤又はアミン硬化剤が好ましい。また、加熱により硬化可能な硬化性化合物と上記熱硬化剤とを混合したときに保存安定性が高くなるので、潜在性の硬化剤が好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性ポリチオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。 Among these, an imidazole curing agent, a polythiol curing agent, or an amine curing agent is preferable because the curable composition can be cured more rapidly at a low temperature. Moreover, since a storage stability becomes high when the curable compound curable by heating and the thermosetting agent are mixed, a latent curing agent is preferable. The latent curing agent is preferably a latent imidazole curing agent, a latent polythiol curing agent or a latent amine curing agent. In addition, the said thermosetting agent may be coat | covered with polymeric substances, such as a polyurethane resin or a polyester resin.
 接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記熱硬化剤は、熱ラジカル発生剤であることが好ましい。熱ラジカル発生剤の使用により、特にPETフィルムの接着性が効果的に高くなる。 From the viewpoint of further improving the adhesiveness of the connection target member, and particularly further improving the adhesiveness of the PET film, the thermosetting agent is preferably a thermal radical generator. By using the thermal radical generator, the adhesiveness of the PET film is particularly effectively increased.
 熱ラジカル発生剤の1分半減期分解温度は好ましくは100℃以上、より好ましくは110℃以上、好ましくは150℃以下、より好ましくは130℃以下である。上記1分半減期温度が上記下限以上であると、組成物の貯蔵安定性がより一層良好になる。上記1分半減期温度が上記上限以下であると、被着体であるPETフィルムが、硬化時の温度により変形及び劣化し難くなる。 The 1-minute half-life decomposition temperature of the thermal radical generator is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, preferably 150 ° C. or lower, more preferably 130 ° C. or lower. When the 1 minute half-life temperature is equal to or higher than the lower limit, the storage stability of the composition is further improved. When the 1-minute half-life temperature is less than or equal to the above upper limit, the PET film as the adherend is less likely to be deformed and deteriorated due to the temperature during curing.
 上記イミダゾール硬化剤としては、特に限定されず、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。 The imidazole curing agent is not particularly limited, and 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.
 上記ポリチオール硬化剤としては、特に限定されず、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。 The polythiol curing agent is not particularly limited, and examples thereof include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate. .
 上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。 The amine curing agent is not particularly limited, and hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5]. Examples include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, and diaminodiphenylsulfone.
 上記熱カチオン硬化剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ-p-トリルスルホニウムヘキサフルオロホスファート等が挙げられる。 Examples of the thermal cation curing agent include iodonium cation curing agents, oxonium cation curing agents, and sulfonium cation curing agents. Examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate. Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate. Examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.
 上記熱ラジカル発生剤としては、特に限定されず、アゾ化合物及び有機過酸化物等が挙げられる。上記熱ラジカル発生剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The thermal radical generator is not particularly limited, and examples thereof include azo compounds and organic peroxides. As for the said thermal radical generator, only 1 type may be used and 2 or more types may be used together.
 上記アゾ化合物としては、2,2’-アゾビスイソブチロニトリル、1,1’-(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、及びジメチル-2,2’-アゾビス(2-メチルプロピオネート)等が挙げられる。 Examples of the azo compound include 2,2′-azobisisobutyronitrile, 1,1 ′-(cyclohexane-1-carbonitrile), 2,2′-azobis (2-cyclopropylpropionitrile), 2, Examples thereof include 2′-azobis (2,4-dimethylvaleronitrile) and dimethyl-2,2′-azobis (2-methylpropionate).
 上記有機過酸化物としては、ハイドロパーオキサイド及びジアルキルパーオキサイド等が挙げられる。上記ハイドロパーオキサイドとしては、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、キュメンハイドロパーオキサイド、tert-ヘキシルハイドロパーオキサイド及びtert-ブチルハイドロパーオキサイド等が挙げられる。上記ジアルキルパーオキサイドとしては、α,α’-ビス(tert-ブチルペルオキシ-m-イソプロピル)ベンゼン、ジキュミルパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン、tert-ブチルキュミルパーオキサイド、ジ-tert-ブチルパーオキシド及び2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキシン-3等が挙げられる。 Examples of the organic peroxide include hydroperoxide and dialkyl peroxide. Examples of the hydroperoxide include diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, tert-hexyl hydroperoxide, and tert-butyl hydroperoxide. . Examples of the dialkyl peroxide include α, α'-bis (tert-butylperoxy-m-isopropyl) benzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane. Tert-butyl cumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexyne-3, and the like.
 上記熱硬化剤の含有量は特に限定されない。上記硬化性化合物100重量部に対して、上記熱硬化剤及び上記熱ラジカル発生剤の各含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上、好ましくは200重量部以下、より好ましくは100重量部以下、更に好ましくは75重量部以下である。上記熱硬化剤及び上記熱ラジカル発生剤の各含有量が上記下限以上であると、硬化性組成物を充分に硬化させることが容易である。上記熱硬化剤及び上記熱ラジカル発生剤の各含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。 The content of the thermosetting agent is not particularly limited. Each content of the thermosetting agent and the thermal radical generator is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less with respect to 100 parts by weight of the curable compound. More preferably, it is 100 parts by weight or less, and still more preferably 75 parts by weight or less. When each content of the said thermosetting agent and the said thermal radical generator is more than the said minimum, it is easy to fully harden a curable composition. When each content of the thermosetting agent and the thermal radical generator is not more than the above upper limit, an excessive thermosetting agent that does not participate in curing after curing is difficult to remain, and the heat resistance of the cured product is further increased. Get higher.
 [光硬化開始剤]
 上記光硬化開始剤としては、特に限定されず、アセトフェノン光硬化開始剤(アセトフェノン光ラジカル発生剤)、ベンゾフェノン光硬化開始剤(ベンゾフェノン光ラジカル発生剤)、チオキサントン、ケタール光硬化開始剤(ケタール光ラジカル発生剤)、ハロゲン化ケトン、アシルホスフィノキシド及びアシルホスフォナート等が挙げられる。上記光硬化開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Photocuring initiator]
The photocuring initiator is not particularly limited, and is not limited to acetophenone photocuring initiator (acetophenone photoradical generator), benzophenone photocuring initiator (benzophenone photoradical generator), thioxanthone, ketal photocuring initiator (ketal photoradical). Generator), halogenated ketones, acyl phosphinoxides, acyl phosphonates, and the like. As for the said photocuring initiator, only 1 type may be used and 2 or more types may be used together.
 上記アセトフェノン光硬化開始剤の具体例としては、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、メトキシアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、及び2-ヒドロキシ-2-シクロヘキシルアセトフェノン等が挙げられる。上記ケタール光硬化開始剤の具体例としては、ベンジルジメチルケタール等が挙げられる。 Specific examples of the acetophenone photocuring initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, methoxy Examples include acetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 2-hydroxy-2-cyclohexylacetophenone. Specific examples of the ketal photocuring initiator include benzyldimethyl ketal.
 上記光硬化開始剤の含有量は特に限定されない。上記硬化性化合物100重量部に対して、上記光硬化開始剤の含有量は、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、好ましくは2重量部以下、より好ましくは1重量部以下である。上記光硬化開始剤の含有量が上記下限以上であると、硬化性組成物を充分に硬化させることが容易である。また、硬化性組成物に光を照射し、Bステージ化することにより、硬化性組成物の流動を抑制できる。上記光硬化開始剤の含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の光硬化開始剤が残存し難くなる。 The content of the photocuring initiator is not particularly limited. The content of the photocuring initiator is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, preferably 2 parts by weight or less, more preferably 100 parts by weight of the curable compound. 1 part by weight or less. It is easy to fully harden a curable composition as content of the said photocuring initiator is more than the said minimum. Moreover, the flow of a curable composition can be suppressed by irradiating light to a curable composition and B-stage-izing. If the content of the photocuring initiator is not more than the above upper limit, it is difficult for the surplus photocuring initiator that did not participate in curing after curing to remain.
 [四級アンモニウム塩化合物]
 上記四級アンモニウム塩化合物の使用により、接続対象部材の接着性がより一層高くなる。また、上記四級アンモニウム塩化合物の使用により、高温下に晒されても、剥離がより一層生じ難くなる。上記四級アンモニウム塩化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Quaternary ammonium salt compound]
By using the quaternary ammonium salt compound, the adhesion of the connection target member is further enhanced. Further, the use of the quaternary ammonium salt compound makes it even more difficult for peeling to occur even when exposed to high temperatures. As for the said quaternary ammonium salt compound, only 1 type may be used and 2 or more types may be used together.
 接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記四級アンモニウム塩化合物は、炭素数8~18のアルキル基を有することが好ましい。接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記四級アンモニウム塩化合物は、下記式(31)で表される化合物であることが好ましい。 From the viewpoint of further improving the adhesiveness of the connection target member, particularly further improving the adhesiveness of the PET film, the quaternary ammonium salt compound preferably has an alkyl group having 8 to 18 carbon atoms. From the viewpoint of further improving the adhesiveness of the connection target member, and in particular, further improving the adhesiveness of the PET film, the quaternary ammonium salt compound is preferably a compound represented by the following formula (31).
 R1R2R3R4N …式(31) R1R2R3R4N + X Formula (31)
 上記式(31)中、R1、R2及びR3はそれぞれ、メチル基又はエチル基を表し、R4は、炭素数8~18のアルキル基を表し、Xは臭素原子又は塩素原子を表す。 In the above formula (31), R1, R2 and R3 each represent a methyl group or an ethyl group, R4 represents an alkyl group having 8 to 18 carbon atoms, and X represents a bromine atom or a chlorine atom.
 上記四級アンモニウム塩化合物としては、例えば、n-オクチルトリメチルクロリド、n-オクチルトリメチルブロミド、ノニルトリメチルブロミド、デシルトリメチルブロミド、ドデシルトリメチルクロリド、ドデシルトリメチルブロミド、テトラデシルトリメチルクロリド、ヘキサデシルトリメチルクロリド、ヘキサデシルトリメチルブロミド、エチルヘキサデシルジメチルブロミド、ヘプタデシルトリメチルブロミド、オクタデシルトリメチルクロリド、及びオクタデシルトリメチルブロミド等が挙げられる。 Examples of the quaternary ammonium salt compound include n-octyl trimethyl chloride, n-octyl trimethyl bromide, nonyl trimethyl bromide, decyl trimethyl bromide, dodecyl trimethyl chloride, dodecyl trimethyl bromide, tetradecyl trimethyl chloride, hexadecyl trimethyl chloride, hexa Examples include decyl trimethyl bromide, ethyl hexadecyl dimethyl bromide, heptadecyl trimethyl bromide, octadecyl trimethyl chloride, and octadecyl trimethyl bromide.
 上記硬化性化合物、及び上記熱硬化剤の合計100重量部に対して、上記四級アンモニウム塩化合物と上記水酸基を有する(メタ)アクリル化合物との合計の含有量は、好ましくは0.1重量部以上、より好ましくは3重量部以上、更に好ましくは5重量部以上、好ましくは50重量部以下、より好ましくは40重量部以下、更に好ましくは30重量部以下であり、8重量部以下であってもよく、5重量部以下であってもよい。上記四級アンモニウム塩化合物と上記水酸基を有する(メタ)アクリル化合物との合計の含有量が上記下限以上及び上記上限以下であると、接着対象部材の接着性がより一層高くなる。 The total content of the quaternary ammonium salt compound and the (meth) acrylic compound having a hydroxyl group is preferably 0.1 parts by weight with respect to a total of 100 parts by weight of the curable compound and the thermosetting agent. More preferably 3 parts by weight or more, more preferably 5 parts by weight or more, preferably 50 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 30 parts by weight or less, and 8 parts by weight or less. It may be 5 parts by weight or less. When the total content of the quaternary ammonium salt compound and the (meth) acrylic compound having a hydroxyl group is not less than the above lower limit and not more than the above upper limit, the adhesion of the adhesion target member is further enhanced.
 上記硬化性化合物、及び上記熱硬化剤の合計100重量部に対して、上記四級アンモニウム塩化合物の含有量は、0重量部(未含有)以上、好ましくは0.1重量部以上、より好ましくは3重量部以上、好ましくは50重量部以下、より好ましくは8重量部以下、更に好ましくは5重量部以下である。上記四級アンモニウム塩化合物が使用され、かつ上記四級アンモニウム塩化合物の含有量が上記下限以上及び上記上限以下であると、接着対象部材の接着性がより一層高くなり、高温下での剥離がより一層抑えられる。 The content of the quaternary ammonium salt compound is 0 part by weight (not contained) or more, preferably 0.1 part by weight or more, more preferably 100 parts by weight in total of the curable compound and the thermosetting agent. Is 3 parts by weight or more, preferably 50 parts by weight or less, more preferably 8 parts by weight or less, and still more preferably 5 parts by weight or less. When the quaternary ammonium salt compound is used and the content of the quaternary ammonium salt compound is not less than the above lower limit and not more than the above upper limit, the adhesion of the member to be bonded is further enhanced, and peeling at a high temperature is possible. It is further suppressed.
 [水酸基を有する(メタ)アクリル化合物]
 上記水酸基を有する(メタ)アクリル化合物の使用により、接続対象部材の接着性がより一層高くなる。上記水酸基を有する(メタ)アクリル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[(Meth) acrylic compound having a hydroxyl group]
The use of the (meth) acrylic compound having a hydroxyl group further increases the adhesion of the connection target member. Only 1 type may be used for the said (meth) acrylic compound which has a hydroxyl group, and 2 or more types may be used together.
 上記水酸基含有(メタ)アクリル化合物としては、例えば、ヒドロキシエチルメタクリレートホスフェート、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(ヒドロキシメチル)(メタ)アクリルアミド、N-(4-ヒドロキシフェニル)(メタ)アクリルアミド又はエポキシ(メタ)アクリレート等が挙げられる。 Examples of the hydroxyl group-containing (meth) acrylic compound include hydroxyethyl methacrylate phosphate, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, N- (2 -Hydroxyethyl) (meth) acrylamide, N- (hydroxymethyl) (meth) acrylamide, N- (4-hydroxyphenyl) (meth) acrylamide, epoxy (meth) acrylate and the like.
 上記硬化性化合物を用いた硬化性組成物の粘度は比較的高くなりやすい。硬化性組成物の粘度を低くする観点からは、上記硬化性化合物は、エポキシ(メタ)アクリレートを含むことが好ましい。エポキシ(メタ)アクリレートは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The viscosity of a curable composition using the above curable compound tends to be relatively high. From the viewpoint of reducing the viscosity of the curable composition, the curable compound preferably contains an epoxy (meth) acrylate. As for epoxy (meth) acrylate, only 1 type may be used and 2 or more types may be used together.
 エポキシ(メタ)アクリレートとしては、具体的には、EBECRYL3701(ダイセル・オルネクス社製)、EBECRYL3703(ダイセル・オルネクス社製)又はEBECRYL3708(ダイセル・オルネクス社製)等が挙げられる。上記エポキシアクリレートは、2-ヒドロキシエチルアクリレートがカプロラクトンに付加した構造を分子末端に有し、かつビスフェノールAのジグリシジ基が開環した構造を主骨格として有するエポキシアクリレートであってもよい。 Specific examples of the epoxy (meth) acrylate include EBECRYL 3701 (manufactured by Daicel Ornex), EBECRYL 3703 (manufactured by Daicel Ornex), or EBECRYL 3708 (manufactured by Daicel Ornex). The epoxy acrylate may be an epoxy acrylate having a structure in which 2-hydroxyethyl acrylate is added to caprolactone at the molecular end and a structure in which the diglycidyl group of bisphenol A is opened as a main skeleton.
 接着対象部材の接着性をより一層高める観点からは、(メタ)アクリル酸4-ヒドロキシブチル、EBECRYL3701(ダイセル・オルネクス社製)又はEBECRYL3708(ダイセル・オルネクス社製)が好ましい。 From the viewpoint of further improving the adhesion of the member to be bonded, 4-hydroxybutyl (meth) acrylate, EBECRYL3701 (manufactured by Daicel Ornex) or EBECRYL3708 (manufactured by Daicel Ornex) is preferable.
 上記硬化性化合物、及び上記熱硬化剤の合計100重量部に対して、上記水酸基を有する(メタ)アクリル化合物の含有量は、0重量部(未含有)以上、好ましくは0.1重量部以上、より好ましくは3重量部以上、更に好ましくは5重量部以上、好ましくは50重量部以下、より好ましくは40重量部以下、更に好ましくは30重量部以下である。上記水酸基を有する(メタ)アクリル化合物が使用され、かつ上記水酸基を有する(メタ)アクリル化合物の含有量が上記下限以上及び上記上限以下であると、接着対象部材の接着性がより一層高くなる。 The content of the (meth) acrylic compound having a hydroxyl group is 0 part by weight (not included) or more, preferably 0.1 part by weight or more with respect to 100 parts by weight of the total of the curable compound and the thermosetting agent. More preferably, it is 3 parts by weight or more, more preferably 5 parts by weight or more, preferably 50 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 30 parts by weight or less. When the (meth) acrylic compound having a hydroxyl group is used and the content of the (meth) acrylic compound having a hydroxyl group is not less than the above lower limit and not more than the above upper limit, the adhesion of the bonding target member is further enhanced.
 [他の成分]
 接続対象部材がガラス、PET(ポリエチレンテレフタレート)を含む場合に、ガラス、PETの接着性をより一層高める観点からは、上記硬化性化合物は(メタ)アクリル化合物を含むことが好ましい。上記(メタ)アクリル化合物としては、アクリロイルモルフォリン、イミド(メタ)アクリレート、ウレタン(メタ)アクリレート等のリン酸エステル型(メタ)アクリレート等が挙げられる。上記(メタ)アクリル化合物は上述した硬化性化合物以外の化合物である。上記(メタ)アクリル化合物は、(メタ)アクリロイル基を有する化合物である。上記(メタ)アクリル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Other ingredients]
In the case where the connection target member includes glass and PET (polyethylene terephthalate), the curable compound preferably includes a (meth) acrylic compound from the viewpoint of further enhancing the adhesiveness of the glass and PET. Examples of the (meth) acrylic compound include phosphoric acid ester type (meth) acrylates such as acryloylmorpholine, imide (meth) acrylate, and urethane (meth) acrylate. The (meth) acrylic compound is a compound other than the curable compound described above. The (meth) acrylic compound is a compound having a (meth) acryloyl group. As for the said (meth) acryl compound, only 1 type may be used and 2 or more types may be used together.
 上記硬化性組成物は、必要に応じて、例えば、フラックス、フィラー、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 The curable composition may be, for example, a flux, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, and an ultraviolet absorber, as necessary. Various additives such as an agent, a lubricant, an antistatic agent and a flame retardant may be included.
 上記硬化性組成物は、フラックスを含むことが好ましい。フラックスの使用により、電極の表面の酸化膜を除去し、電極間の導通信頼性を高めることができる。フラックスの詳細は、後述する導電材料の欄で記載する。 The curable composition preferably contains a flux. By using the flux, the oxide film on the surface of the electrode can be removed, and the conduction reliability between the electrodes can be improved. Details of the flux are described in the column of the conductive material described later.
 上記硬化性組成物は、フィラーを含むことが好ましい。フィラーの使用により、硬化物の熱線膨張率が低くなる。上記フィラーの具体例としては、シリカ、窒化アルミニウム、アルミナ、ガラス、窒化ボロン、窒化ケイ素、シリコーン、カーボン、グラファイト、グラフェン及びタルク等が挙げられる。フィラーは1種のみが用いられてもよく、2種以上が併用されてもよい。熱伝導率が高いフィラーを用いると、本硬化時間が短くなる。 The curable composition preferably contains a filler. By using the filler, the thermal expansion coefficient of the cured product is lowered. Specific examples of the filler include silica, aluminum nitride, alumina, glass, boron nitride, silicon nitride, silicone, carbon, graphite, graphene, and talc. As for a filler, only 1 type may be used and 2 or more types may be used together. When a filler having a high thermal conductivity is used, the main curing time is shortened.
 上記硬化性組成物は、溶剤を含んでいてもよい。該溶剤の使用により、硬化性組成物の粘度を容易に調整できる。上記溶剤としては、例えば、酢酸エチル、メチルセロソルブ、トルエン、アセトン、メチルエチルケトン、シクロヘキサン、n-ヘキサン、テトラヒドロフラン及びジエチルエーテル等が挙げられる。 The curable composition may contain a solvent. By using the solvent, the viscosity of the curable composition can be easily adjusted. Examples of the solvent include ethyl acetate, methyl cellosolve, toluene, acetone, methyl ethyl ketone, cyclohexane, n-hexane, tetrahydrofuran and diethyl ether.
 (導電材料)
 本発明に係る導電材料は、上述した硬化性組成物と導電性粒子とを含む。具体的には、本発明に係る導電材料は、上記第1の化合物に上記第2の化合物を反応させることにより得られる上記硬化性化合物と、上記熱硬化剤と、導電性粒子とを含む。本明細書では、導電性粒子を含む硬化性組成物を、導電材料と呼ぶ。本発明に係る導電材料を用いることによって、接続対象部材の接着性、並びに電極間の導通信頼性を高めることができる。
(Conductive material)
The conductive material according to the present invention includes the above-described curable composition and conductive particles. Specifically, the conductive material according to the present invention includes the curable compound obtained by reacting the second compound with the first compound, the thermosetting agent, and conductive particles. In this specification, the curable composition containing conductive particles is referred to as a conductive material. By using the conductive material according to the present invention, it is possible to improve the adhesion of the connection target member and the conduction reliability between the electrodes.
 上記導電材料は、フラックスを含むことが好ましい。フラックスの使用により、導電性粒子の表面及び電極の表面の酸化膜を除去し、電極間の導通信頼性を高めることができる。 The conductive material preferably contains a flux. By using the flux, the oxide film on the surface of the conductive particles and the surface of the electrode can be removed, and the conduction reliability between the electrodes can be improved.
 導電性粒子を電極上により一層効率的に配置する観点からは、導電材料の25℃での粘度は好ましくは100Pa・s以上、より好ましくは200Pa・s以上、好ましくは800Pa・s以下、より好ましくは600Pa・s以下である。 From the viewpoint of more efficiently disposing the conductive particles on the electrode, the viscosity of the conductive material at 25 ° C. is preferably 100 Pa · s or higher, more preferably 200 Pa · s or higher, preferably 800 Pa · s or lower, more preferably. Is 600 Pa · s or less.
 上記粘度は、配合成分の種類及び配合量に容易に適宜調整可能である。また、フィラーの使用により、粘度を比較的高くすることができる。 The viscosity can be easily adjusted as appropriate to the type and amount of the compounding ingredients. Further, the use of a filler can make the viscosity relatively high.
 上記粘度は、例えば、E型粘度計TVE-22装置(東機産業社製)を用いて、25℃及び2.5rpmの条件で測定可能である。 The viscosity can be measured, for example, using an E-type viscometer TVE-22 apparatus (manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 2.5 rpm.
 上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。接続対象部材の接着性をより一層高め、特にPETフィルムの接着性をより一層高める観点からは、上記導電材料は、ペースト状の導電ペーストであることが好ましい。上記導電材料は、電極間の電気的な接続に用いられることが好ましい。上記導電材料は、回路接続材料であることが好ましい。 The conductive material is preferably an anisotropic conductive material. The conductive material can be used as a conductive paste and a conductive film. When the conductive material is a conductive film, a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles. From the viewpoint of further improving the adhesion of the connection target member, and in particular, further improving the adhesion of the PET film, the conductive material is preferably a paste-like conductive paste. The conductive material is preferably used for electrical connection between electrodes. The conductive material is preferably a circuit connection material.
 上記導電材料100重量%中、上記第1の化合物に上記第2の化合物を反応させることにより得られる上記硬化性化合物の含有量は、好ましくは50重量%以上、より好ましくは60重量%以上、更に好ましくは75重量%以上、好ましくは100重量%以下、より好ましくは95重量%以下である。上記硬化性化合物の含有量が上記下限以上であると、接続対象部材の接着性がより一層高くなり、特にPETフィルムの接着性がより一層高くなる。上記硬化性化合物の含有量が上記上限以下であると、導電性粒子の含有量を相対的に多くすることができ、電極間の導通信頼性がより一層高くなる。 The content of the curable compound obtained by reacting the first compound with the first compound in 100% by weight of the conductive material is preferably 50% by weight or more, more preferably 60% by weight or more. More preferably, it is 75 weight% or more, Preferably it is 100 weight% or less, More preferably, it is 95 weight% or less. When the content of the curable compound is not less than the above lower limit, the adhesion of the connection target member is further enhanced, and in particular, the adhesion of the PET film is further enhanced. When the content of the curable compound is not more than the above upper limit, the content of the conductive particles can be relatively increased, and the conduction reliability between the electrodes is further enhanced.
 上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.1重量%以上、より好ましくは1重量%以上、より一層好ましくは2重量%以上、更に好ましくは10重量%以上、更に一層好ましくは20重量%以上、特に好ましくは25重量%以上、最も好ましくは30重量%以上、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは50重量%以下、特に好ましくは45重量%以下、最も好ましくは35重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子を多く配置することが容易であり、導通信頼性がより一層高くなる。また、硬化性化合物などの含有量が適度になることから、電極間の導通信頼性がより一層高くなる。 In 100% by weight of the conductive material, the content of the conductive particles is preferably 0.1% by weight or more, more preferably 1% by weight or more, still more preferably 2% by weight or more, and further preferably 10% by weight or more. Even more preferably 20% by weight or more, particularly preferably 25% by weight or more, most preferably 30% by weight or more, preferably 80% by weight or less, more preferably 60% by weight or less, still more preferably 50% by weight or less, particularly preferably Is 45% by weight or less, most preferably 35% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, it is easy to arrange many conductive particles between the electrodes, and the conduction reliability is further enhanced. Moreover, since content of a sclerosing | hardenable compound etc. becomes moderate, the conduction | electrical_connection reliability between electrodes becomes still higher.
 以下、本発明に係る導電材料に用いることができる各成分の詳細を説明する。 Hereinafter, details of each component that can be used in the conductive material according to the present invention will be described.
 [導電性粒子]
 上記導電性粒子としては、全体が導電性を有する材料により形成されている導電性粒子、並びに、基材粒子と該基材粒子の表面上に配置された導電層とを有する導電性粒子が挙げられる。
[Conductive particles]
Examples of the conductive particles include conductive particles formed entirely of a conductive material, and conductive particles having base material particles and a conductive layer disposed on the surface of the base material particles. It is done.
 上記導電性粒子は、少なくとも外表面がはんだである導電性粒子であることが好ましい。導電性部分の外表面が、はんだであることが好ましい。この場合には、はんだに由来して、導電材料を硬化させることにより形成された接続部と、該接続部により接続された接続対象部材との接着性がより一層高くなる。 The conductive particles are preferably conductive particles whose outer surface is solder. The outer surface of the conductive portion is preferably solder. In this case, the adhesiveness between the connection portion formed by curing the conductive material derived from the solder and the connection target member connected by the connection portion is further enhanced.
 上記少なくとも外表面がはんだである導電性粒子として、はんだ粒子や、基材粒子と該基材粒子の表面上に配置されたはんだ層とを備える粒子等を用いることができる。中でも、はんだ粒子を用いることが好ましい。はんだ粒子を用いることにより、高速伝送や金属接合強度をより一層向上させることができる。また、少なくとも外表面がはんだである導電性粒子を用いる場合に、第1の電極と第2の電極と電極間にはんだ粒子を寄り集めさせてもよい。少なくとも外表面がはんだである導電性粒子は、加熱時に、電極が形成されていない領域に存在していた導電性粒子が、第1の電極と第2の電極との間に集まる性質を有していてもよい。 As the conductive particles having at least an outer surface of the solder, solder particles, particles including a base particle and a solder layer disposed on the surface of the base particle can be used. Among these, it is preferable to use solder particles. By using solder particles, high-speed transmission and metal bonding strength can be further improved. Further, in the case where conductive particles whose outer surface is solder are used, solder particles may be gathered between the first electrode, the second electrode, and the electrode. At least the conductive particles whose outer surface is solder have the property that, when heated, the conductive particles that existed in the region where no electrode is formed gather between the first electrode and the second electrode. It may be.
 図5は、本発明の第1の実施形態で用いた導電材料に使用可能な導電性粒子の一例を示す断面図である。 FIG. 5 is a cross-sectional view showing an example of conductive particles that can be used for the conductive material used in the first embodiment of the present invention.
 上記導電性粒子は、図5に示すように、はんだ粒子である導電性粒子21であることが好ましい。導電性粒子21は、はんだのみにより形成されている。導電性粒子21は、基材粒子をコアに有さず、コア-シェル粒子ではない。導電性粒子21は、中心部分及び外表面のいずれも、はんだにより形成されている。 The conductive particles are preferably conductive particles 21 which are solder particles as shown in FIG. The conductive particles 21 are formed only by solder. The conductive particles 21 do not have base particles in the core and are not core-shell particles. As for the electroconductive particle 21, both a center part and an outer surface are formed with the solder.
 接続対象部材間の接続距離をより一層均一に保持する観点からは、基材粒子と、該基材粒子の表面上に配置されたはんだ層とを備える粒子を用いてもよい。 From the viewpoint of more uniformly maintaining the connection distance between the connection target members, particles including base particles and a solder layer disposed on the surface of the base particles may be used.
 図6に示す変形例では、導電性粒子1は、基材粒子2と、基材粒子2の表面上に配置された導電層3とを備える。導電層3は、基材粒子2の表面を被覆している。導電性粒子1は、基材粒子2の表面が導電層3により被覆された被覆粒子である。 6, the conductive particle 1 includes a base particle 2 and a conductive layer 3 disposed on the surface of the base particle 2. The conductive layer 3 covers the surface of the base particle 2. The conductive particle 1 is a coated particle in which the surface of the base particle 2 is coated with the conductive layer 3.
 導電層3は、第2の導電層3Aと、第2の導電層3Aの表面上に配置されたはんだ層3B(第1の導電層)とを有する。導電性粒子1は、基材粒子2と、はんだ層3Bとの間に、第2の導電層3Aを備える。従って、導電性粒子1は、基材粒子2と、基材粒子2の表面上に配置された第2の導電層3Aと、第2の導電層3Aの表面上に配置されたはんだ層3Bとを備える。このように、導電層3は、多層構造を有していてもよく、2層以上の積層構造を有していてもよい。 The conductive layer 3 has a second conductive layer 3A and a solder layer 3B (first conductive layer) disposed on the surface of the second conductive layer 3A. The conductive particle 1 includes a second conductive layer 3A between the base particle 2 and the solder layer 3B. Therefore, the conductive particles 1 include the base particle 2, the second conductive layer 3A disposed on the surface of the base particle 2, and the solder layer 3B disposed on the surface of the second conductive layer 3A. Is provided. Thus, the conductive layer 3 may have a multilayer structure, or may have a laminated structure of two or more layers.
 上記のように、導電性粒子1における導電層3は2層構造を有する。図7に示す他の変形例のように、導電性粒子11は、単層の導電層として、はんだ層12を有していてもよい。導電性粒子11は、基材粒子2と、基材粒子2の表面上に配置されたはんだ層12とを備える。基材粒子2に接触するように、基材粒子2の表面上にはんだ層12が配置されていてもよい。 As described above, the conductive layer 3 in the conductive particle 1 has a two-layer structure. As in another modification shown in FIG. 7, the conductive particles 11 may have a solder layer 12 as a single conductive layer. The conductive particles 11 include base material particles 2 and a solder layer 12 disposed on the surface of the base material particles 2. The solder layer 12 may be disposed on the surface of the base particle 2 so as to contact the base particle 2.
 導電材料の熱伝導率がより一層低くなりやすいことから、導電性粒子1,11,21のうち、導電性粒子1,11がより好ましい。基材粒子と、該基材粒子の表面上に配置されたはんだ層とを備える導電性粒子の使用により、導電材料の熱伝導率をより一層低くすることが容易である。接続信頼性及び電極間の導通信頼性をより一層高める観点からは、導電性粒子21が好ましい。 The conductive particles 1 and 11 are more preferable among the conductive particles 1, 11 and 21 because the thermal conductivity of the conductive material tends to be further lowered. By using conductive particles including base particles and a solder layer disposed on the surface of the base particles, it is easy to further reduce the thermal conductivity of the conductive material. From the viewpoint of further improving the connection reliability and the conduction reliability between the electrodes, the conductive particles 21 are preferable.
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。導電性粒子を電極上により一層効率的に配置する観点からは、上記基材粒子は、金属を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることが好ましい。上記基材粒子は、銅粒子であってもよい。上記基材粒子は金属粒子ではないことが好ましい。 Examples of the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. From the viewpoint of more efficiently disposing the conductive particles on the electrode, the base particles are preferably base particles excluding metal, and are resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles. Preferably there is. The substrate particles may be copper particles. The substrate particles are preferably not metal particles.
 上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。導電性粒子を用いて電極間を接続する際には、導電性粒子を電極間に配置した後、圧着することにより導電性粒子を圧縮させる。上記基材粒子が樹脂粒子であると、上記圧着の際に導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性がより一層高くなる。 The base material particles are preferably resin particles formed of a resin. When connecting between electrodes using electroconductive particle, after arrange | positioning electroconductive particle between electrodes, electroconductive particle is compressed by crimping | bonding. When the substrate particles are resin particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction | electrical_connection reliability between electrodes becomes still higher.
 上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are suitably used as the resin for forming the resin particles. Examples of the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, Polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamide Bromide, polyether ether ketone, polyether sulfone, divinyl benzene polymer, and divinylbenzene copolymer, and the like. Examples of the divinylbenzene copolymer include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.
 上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合には、該エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a monomer having an ethylenically unsaturated group, the monomer having the ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer. And a polymer.
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom-containing (meth) acrylates; Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and propyl vinyl ether; Vinyl acetates such as vinyl acetate, vinyl butyrate, vinyl laurate and vinyl stearate Esters; Unsaturated hydrocarbons such as ethylene, propylene, isoprene and butadiene; Halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride and chlorostyrene Is mentioned.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanure And silane-containing monomers such as divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane, etc. Can be mentioned.
 上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 In the case where the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal, examples of inorganic substances for forming the substrate particles include silica and carbon black. The inorganic substance is preferably not a metal. The particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle | grains obtained by performing are mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。上記基材粒子が金属粒子である場合に、該金属粒子は銅粒子であることが好ましい。但し、上記基材粒子は金属粒子ではないことが好ましい。 When the substrate particles are metal particles, examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium. When the base material particles are metal particles, the metal particles are preferably copper particles. However, the substrate particles are preferably not metal particles.
 上記基材粒子の融点は、上記はんだ層の融点よりも高いことが好ましい。上記基材粒子の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、更に好ましくは400℃を超え、特に好ましくは450℃を超える。なお、上記基材粒子の融点は、400℃未満であってもよい。上記基材粒子の融点は、160℃以下であってもよい。上記基材粒子の軟化点は260℃以上であることが好ましい。上記基材粒子の軟化点は260℃未満であってもよい。 The melting point of the substrate particles is preferably higher than the melting point of the solder layer. The melting point of the substrate particles is preferably higher than 160 ° C, more preferably higher than 300 ° C, still more preferably higher than 400 ° C, and particularly preferably higher than 450 ° C. The melting point of the substrate particles may be less than 400 ° C. The melting point of the substrate particles may be 160 ° C. or less. The softening point of the substrate particles is preferably 260 ° C. or higher. The softening point of the substrate particles may be less than 260 ° C.
 上記導電性粒子は、単層のはんだ層を有していてもよい。上記導電性粒子は、複数の層の導電層(はんだ層,第2の導電層)を有していてもよい。すなわち、上記導電性粒子では、導電層を2層以上積層してもよい。場合によっては、はんだ粒子も、複数の層により形成されている粒子であってもよい。 The conductive particles may have a single solder layer. The conductive particles may have a plurality of conductive layers (solder layer, second conductive layer). That is, in the conductive particles, two or more conductive layers may be stacked. In some cases, the solder particles may be particles formed of a plurality of layers.
 上記はんだ層を形成するはんだ、並びに、はんだ粒子を形成するはんだは、融点が450℃以下である低融点金属であることが好ましい。上記はんだ層は、融点が450℃以下である低融点金属層であることが好ましい。上記低融点金属層は、低融点金属を含む層である。上記はんだ粒子は、融点が450℃以下である低融点金属粒子であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。また、上記はんだ層及び上記はんだ粒子は錫を含むことが好ましい。上記はんだ層に含まれる金属100重量%中及び上記はんだ粒子に含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ層及び上記はんだ粒子における錫の含有量が上記下限以上であると、導電性粒子と電極との接続信頼性がより一層高くなる。 The solder for forming the solder layer and the solder for forming solder particles are preferably low melting point metals having a melting point of 450 ° C. or lower. The solder layer is preferably a low melting point metal layer having a melting point of 450 ° C. or lower. The low melting point metal layer is a layer containing a low melting point metal. The solder particles are preferably low melting point metal particles having a melting point of 450 ° C. or lower. The low melting point metal particles are particles containing a low melting point metal. The low melting point metal is a metal having a melting point of 450 ° C. or lower. The melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower. The solder layer and the solder particles preferably contain tin. In 100% by weight of the metal contained in the solder layer and 100% by weight of the metal contained in the solder particles, the tin content is preferably 30% by weight or more, more preferably 40% by weight or more, and even more preferably 70% by weight. Above, particularly preferably 90% by weight or more. When the content of tin in the solder layer and the solder particles is equal to or higher than the lower limit, the connection reliability between the conductive particles and the electrodes is further enhanced.
 なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定可能である。 The tin content is determined using a high-frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). It can be measured.
 上記はんだ粒子及びはんだを導電性の表面に有する導電性粒子を用いることで、はんだが溶融して電極に接合し、はんだが電極間を導通させる。例えば、はんだと電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだを導電性の表面に有する導電性粒子の使用により、はんだと電極との接合強度が高くなる結果、はんだと電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性が効果的に高くなる。 The solder particles and the conductive particles having the solder on the conductive surface are used, so that the solder is melted and joined to the electrodes, and the solder conducts between the electrodes. For example, since the solder and the electrode are not in point contact but in surface contact, the connection resistance is lowered. In addition, the use of conductive particles having solder on the conductive surface increases the bonding strength between the solder and the electrode. As a result, peeling between the solder and the electrode is further less likely to occur, and conduction reliability and connection reliability are improved. Effectively high.
 上記はんだ層及び上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。なかでも、電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金であることが好ましい。錫-ビスマス合金、錫-インジウム合金であることがより好ましい。 The low melting point metal constituting the solder layer and the solder particles is not particularly limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy. Of these, the low melting point metal is preferably tin, a tin-silver alloy, a tin-silver-copper alloy, a tin-bismuth alloy, or a tin-indium alloy because of its excellent wettability with respect to the electrode. More preferred are a tin-bismuth alloy and a tin-indium alloy.
 上記はんだ(はんだ層及び上記はんだ粒子)を構成する材料は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウムなどを含む金属組成が挙げられる。なかでも低融点で鉛フリーである錫-インジウム系(117℃共晶)、又は錫-ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むはんだ、又は錫とビスマスとを含むはんだであることが好ましい。 The material constituting the solder (solder layer and solder particles) is preferably a filler material having a liquidus of 450 ° C. or lower based on JIS Z3001: welding terms. Examples of the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. Of these, a tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic) which is low-melting and lead-free is preferable. That is, the solder preferably does not contain lead, and is preferably a solder containing tin and indium or a solder containing tin and bismuth.
 上記はんだと電極との接合強度をより一層高めるために、上記はんだ層及び上記はんだ粒子は、リン、テルルを含んでいてもよく、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、ゲルマニウム、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだと電極との接合強度をさらに一層高める観点からは、上記はんだ層及び上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ層又ははんだ粒子と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ層100重量%中又ははんだ粒子100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。 In order to further increase the bonding strength between the solder and the electrode, the solder layer and the solder particles may contain phosphorus and tellurium, and nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, A metal such as germanium, cobalt, bismuth, manganese, chromium, molybdenum, or palladium may be included. Moreover, from the viewpoint of further increasing the bonding strength between the solder and the electrode, the solder layer and the solder particles preferably contain nickel, copper, antimony, aluminum, or zinc. From the viewpoint of further increasing the bonding strength between the solder layer or solder particles and the electrode, the content of these metals for increasing the bonding strength is 100 wt% of the solder layer or 100 wt% of the solder particles, preferably 0. 0.0001% by weight or more, preferably 1% by weight or less.
 上記第2の導電層の融点は、上記はんだ層の融点よりも高いことが好ましい。上記第2の導電層の融点は好ましくは160℃を超え、より好ましくは300℃を超え、更に好ましくは400℃を超え、更に一層好ましくは450℃を超え、特に好ましくは500℃を超え、最も好ましくは600℃を超える。上記はんだ層は融点が低いために導電接続時に溶融する。上記第2の導電層は導電接続時に溶融しないことが好ましい。上記導電性粒子は、はんだを溶融させて用いられることが好ましく、上記はんだ層を溶融させて用いられることが好ましく、上記はんだ層を溶融させてかつ上記第2の導電層を溶融させずに用いられることが好ましい。上記第2の導電層の融点が上記はんだ層の融点をよりも高いことによって、導電接続時に、上記第2の導電層を溶融させずに、上記はんだ層のみを溶融させることができる。 The melting point of the second conductive layer is preferably higher than the melting point of the solder layer. The melting point of the second conductive layer is preferably above 160 ° C, more preferably above 300 ° C, even more preferably above 400 ° C, even more preferably above 450 ° C, particularly preferably above 500 ° C, most preferably Preferably it exceeds 600 degreeC. Since the solder layer has a low melting point, it melts during conductive connection. The second conductive layer is preferably not melted at the time of conductive connection. The conductive particles are preferably used after melting solder, preferably used after melting the solder layer, and used without melting the second conductive layer while melting the solder layer. It is preferred that Since the melting point of the second conductive layer is higher than the melting point of the solder layer, only the solder layer can be melted without melting the second conductive layer at the time of conductive connection.
 上記はんだ層の融点と上記第2の導電層との融点との差の絶対値は、0℃を超え、好ましくは5℃以上、より好ましくは10℃以上、更に好ましくは30℃以上、特に好ましくは50℃以上、最も好ましくは100℃以上である。 The absolute value of the difference between the melting point of the solder layer and the melting point of the second conductive layer exceeds 0 ° C, preferably 5 ° C or more, more preferably 10 ° C or more, still more preferably 30 ° C or more, particularly preferably Is 50 ° C. or higher, most preferably 100 ° C. or higher.
 上記第2の導電層は、金属を含むことが好ましい。上記第2の導電層を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。 The second conductive layer preferably contains a metal. The metal constituting the second conductive layer is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
 上記第2の導電層は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層又は金層であることがより好ましく、銅層であることが更に好ましい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層又は金層を有することがより好ましく、銅層を有することが更に好ましい。これらの好ましい導電層を有する導電性粒子を電極間の接続に用いることにより、電極間の接続抵抗がより一層低くなる。また、これらの好ましい導電層の表面には、はんだ層をより一層容易に形成できる。 The second conductive layer is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer or a gold layer, and even more preferably a copper layer. The conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer or a gold layer, and still more preferably have a copper layer. By using the conductive particles having these preferable conductive layers for the connection between the electrodes, the connection resistance between the electrodes is further reduced. In addition, a solder layer can be more easily formed on the surface of these preferable conductive layers.
 上記導電性粒子の平均粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは80μm以下、更に好ましくは50μm以下、特に好ましくは40μm以下である。導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電材料における導電性粒子に適した大きさとなり、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。 The average particle diameter of the conductive particles is preferably 0.1 μm or more, more preferably 1 μm or more, preferably 100 μm or less, more preferably 80 μm or less, still more preferably 50 μm or less, and particularly preferably 40 μm or less. When the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode is sufficiently large, and aggregated conductive particles are formed when the conductive layer is formed. It becomes difficult. Moreover, it becomes a size suitable for the conductive particles in the conductive material, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base particle.
 上記導電性粒子の粒子径は、数平均粒子径を示す。上記導電性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The particle diameter of the conductive particles indicates a number average particle diameter. The average particle diameter of the conductive particles is determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
 上記はんだ層の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.3μm以下である。はんだ層の厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が充分に変形する。また、上記はんだ層の厚みが薄いほど、導電材料の熱伝導率を低くすることが容易である。導電材料の熱伝導率を十分に低くする観点からは、上記はんだ層の厚みは、好ましくは4μm以下、より好ましくは2μm以下である。 The thickness of the solder layer is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, and even more preferably 0.3 μm or less. When the thickness of the solder layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting the electrodes. . Further, the thinner the solder layer is, the easier it is to lower the thermal conductivity of the conductive material. From the viewpoint of sufficiently reducing the thermal conductivity of the conductive material, the thickness of the solder layer is preferably 4 μm or less, more preferably 2 μm or less.
 上記第2の導電層の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.3μm以下である。上記第2の導電層の厚みが上記下限以上及び上記上限以下であると、電極間の接続抵抗がより一層低くなる。また、上記第2の導電層の厚みが薄いほど、導電材料の熱伝導率を低くすることが容易である。導電材料の熱伝導率を十分に低くする観点からは、上記第2の導電層の厚みは、好ましくは3μm以下、より好ましくは1μm以下である。 The thickness of the second conductive layer is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, and still more preferably 0.3 μm or less. When the thickness of the second conductive layer is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes is further reduced. In addition, the thinner the second conductive layer is, the easier it is to reduce the thermal conductivity of the conductive material. From the viewpoint of sufficiently reducing the thermal conductivity of the conductive material, the thickness of the second conductive layer is preferably 3 μm or less, more preferably 1 μm or less.
 上記導電性粒子が導電層として、はんだ層のみを有する場合には、上記はんだ層の厚みは、好ましくは10μm以下、より好ましくは5μm以下である。上記導電性粒子が導電層として、はんだ層とはんだ層とは異なる他の導電層(第2の導電層など)とを有する場合には、はんだ層とはんだ層とは異なる他の導電層との合計の厚みは、好ましくは10μm以下、より好ましくは5μm以下である。 When the conductive particles have only a solder layer as a conductive layer, the thickness of the solder layer is preferably 10 μm or less, more preferably 5 μm or less. When the conductive particles have a conductive layer different from the solder layer and the other conductive layer (such as the second conductive layer) as the conductive layer, the solder layer and the other conductive layer different from the solder layer The total thickness is preferably 10 μm or less, more preferably 5 μm or less.
 [フラックス]
 上記導電材料は、フラックスを含むことが好ましい。該フラックスは特に限定されない。上記フラックスとして、はんだ接合等に一般的に用いられているフラックスを使用できる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。
[flux]
The conductive material preferably contains a flux. The flux is not particularly limited. As said flux, the flux generally used for soldering etc. can be used. As for the said flux, only 1 type may be used and 2 or more types may be used together.
 上記フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。 Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Etc. Examples of the molten salt include ammonium chloride. Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid. Examples of the pine resin include activated pine resin and non-activated pine resin. The flux is preferably an organic acid having two or more carboxyl groups, pine resin. The flux may be an organic acid having two or more carboxyl groups, or pine resin. By using an organic acid having two or more carboxyl groups, pine resin, the conduction reliability between the electrodes is further enhanced.
 上記松脂はアビエチン酸を主成分とするロジン類である。フラックスは、ロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。 The above rosins are rosins whose main component is abietic acid. The flux is preferably rosins, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.
 上記フラックスの融点は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上、好ましくは200℃以下、より好ましくは160℃以下、より一層好ましくは150℃以下、更に好ましくは140℃以下である。上記フラックスの融点が上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだ粒子が電極上により一層効率的に配置される。上記フラックスの融点は80℃以上、190℃以下であることが好ましい。上記フラックスの融点は80℃以上、140℃以下であることが特に好ましい。 The melting point of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 160 ° C. or lower, even more preferably 150 ° C. or lower, still more preferably. 140 ° C. or lower. When the melting point of the flux is not less than the above lower limit and not more than the above upper limit, the flux effect is more effectively exhibited and the solder particles are more efficiently arranged on the electrode. The melting point of the flux is preferably 80 ° C. or higher and 190 ° C. or lower. The melting point of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
 融点が80℃以上、190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、リンゴ酸(融点130℃)等が挙げられる。 Examples of the flux having a melting point of 80 ° C. or higher and 190 ° C. or lower include succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point 104 ° C.), suberic acid Examples thereof include dicarboxylic acids such as (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), and malic acid (melting point 130 ° C.).
 はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記はんだ粒子におけるはんだの融点よりも、低いことが好ましく、5℃以上低いことがより好ましく、10℃以上低いことが更に好ましい。 From the viewpoint of more efficiently arranging the solder on the electrode, the melting point of the flux is preferably lower than the melting point of the solder in the solder particles, more preferably 5 ° C. or more, more preferably 10 ° C. or more. Is more preferable.
 はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、低いことが好ましく、5℃以上低いことがより好ましく、10℃以上低いことが更に好ましい。 From the viewpoint of more efficiently arranging the solder on the electrode, the melting point of the flux is preferably lower than the reaction start temperature of the thermosetting agent, more preferably 5 ° C. or more, and more preferably 10 ° C. or less. More preferably.
 上記フラックスは、上記硬化性組成物又は上記導電材料中に分散されていてもよく、導電性粒子又ははんだ粒子の表面上に付着していてもよい。 The flux may be dispersed in the curable composition or the conductive material, or may adhere to the surface of the conductive particles or solder particles.
 上記導電材料100重量%中、上記フラックスの含有量は0重量%(未使用)以上、好ましくは0.5重量%以上、好ましくは30重量%以下、より好ましくは25重量%以下である。上記導電材料は、フラックスを含んでいなくてもよい。フラックスの含有量が上記下限以上及び上記上限以下であると、はんだ及び電極の表面に酸化膜がより一層形成され難くなり、さらに、はんだ及び電極の表面に形成された酸化膜をより一層効果的に除去できる。 In 100% by weight of the conductive material, the content of the flux is 0% by weight (unused) or more, preferably 0.5% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less. The conductive material may not contain flux. When the flux content is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode, and the oxide film formed on the surface of the solder and the electrode is more effective. Can be removed.
 (接続構造体)
 上述した硬化性組成物又は上記導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(Connection structure)
A connection structure can be obtained by connecting a connection object member using the curable composition mentioned above or the said electrically-conductive material.
 上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、上記第1の接続対象部材と上記第2の接続対象部材を接続している接続部とを備える。上記接続部が、上述した硬化性組成物を硬化させたり、上記導電材料を硬化させたりすることにより形成されている。 The connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first connection target member and the second connection target member. The connection part is formed by curing the curable composition described above or curing the conductive material.
 図1は、本発明の第1の実施形態に係る硬化性組成物と、導電性粒子とを含む導電材料を用いて得られる接続構造体を模式的に示す正面断面図である。 FIG. 1 is a front cross-sectional view schematically showing a connection structure obtained using a conductive material containing a curable composition according to a first embodiment of the present invention and conductive particles.
 図1に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1の接続対象部材52と第2の接続対象部材53とを接続している接続部54とを備える。接続部54は、硬化物層であり、導電性粒子1を含む導電材料を硬化させることにより形成されている。導電性粒子1にかえて、導電性粒子11又は導電性粒子21を用いてもよい。また、導電性粒子1,11,21以外の導電性粒子を用いてもよい。 A connection structure 51 shown in FIG. 1 is a connection that connects a first connection target member 52, a second connection target member 53, and the first connection target member 52 and the second connection target member 53. Part 54. The connection part 54 is a cured product layer and is formed by curing a conductive material including the conductive particles 1. Instead of the conductive particles 1, the conductive particles 11 or the conductive particles 21 may be used. Moreover, you may use electroconductive particle other than electroconductive particle 1,11,21.
 第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。 The first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface). The second connection target member 53 has a plurality of second electrodes 53a on the surface (lower surface). The first electrode 52 a and the second electrode 53 a are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1.
 図4に、図1に示す接続構造体51における導電性粒子1と第1,第2の電極52a,53aとの接続部分を拡大して正面断面図で示す。図4に示すように、接続構造体51では、導電性粒子1におけるはんだ層3Bが溶融した後、溶融したはんだ層部分3Baが第1,第2の電極52a,53aと十分に接触する。すなわち、表面層がはんだ層3Bである導電性粒子1を用いることにより、導電層の表面層がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、導電性粒子1と第1,第2の電極52a,53aとの接触面積が大きくなる。このため、接続構造体51の導通信頼性及び接続信頼性を高めることができる。なお、フラックスを用いた場合には、加熱により、一般にフラックスは次第に失活する。また、導通信頼性をより一層高める観点からは、第2の導電層3Aを第1の電極52aに接触させることが好ましく、第2の導電層3Aを第2の電極53aに接触させることが好ましい。 FIG. 4 is an enlarged front sectional view showing a connection portion between the conductive particles 1 and the first and second electrodes 52a and 53a in the connection structure 51 shown in FIG. As shown in FIG. 4, in the connection structure 51, after the solder layer 3B in the conductive particles 1 is melted, the melted solder layer portion 3Ba is in sufficient contact with the first and second electrodes 52a and 53a. That is, by using the conductive particles 1 whose surface layer is the solder layer 3B, compared to the case where the conductive particles whose surface layer is a metal such as nickel, gold or copper are used, the conductive particles The contact area between 1 and the first and second electrodes 52a and 53a is increased. For this reason, the conduction | electrical_connection reliability and connection reliability of the connection structure 51 can be improved. When flux is used, the flux generally deactivates gradually due to heating. Further, from the viewpoint of further improving the conduction reliability, it is preferable to bring the second conductive layer 3A into contact with the first electrode 52a, and it is preferable to bring the second conductive layer 3A into contact with the second electrode 53a. .
 図2は、本発明の第2の実施形態に係る硬化性組成物を用いて得られる接続構造体を模式的に示す正面断面図である。 FIG. 2 is a front cross-sectional view schematically showing a connection structure obtained by using the curable composition according to the second embodiment of the present invention.
 図2に示す接続構造体61は、第1の接続対象部材62と、第2の接続対象部材63と、第1の接続対象部材62と第2の接続対象部材63とを接続している接続部64とを備える。接続部64は、硬化物層であり、導電性粒子を含まない硬化性組成物を硬化させることにより形成されている。 The connection structure 61 shown in FIG. 2 is a connection that connects the first connection target member 62, the second connection target member 63, and the first connection target member 62 and the second connection target member 63. Part 64. The connection part 64 is a hardened | cured material layer, and is formed by hardening the curable composition which does not contain electroconductive particle.
 第1の接続対象部材62は表面(上面)に、複数の第1の電極62aを有する。第2の接続対象部材63は表面(下面)に、複数の第2の電極63aを有する。第1の電極62aと第2の電極63aとは、例えばバンプ電極である。第1の電極62aと第2の電極63aとが、導電性粒子を介さずに、互いに接することで電気的に接続されている。従って、第1,第2の接続対象部材62,63が電気的に接続されている。 The first connection object member 62 has a plurality of first electrodes 62a on the surface (upper surface). The second connection target member 63 has a plurality of second electrodes 63a on the surface (lower surface). The first electrode 62a and the second electrode 63a are, for example, bump electrodes. The first electrode 62a and the second electrode 63a are electrically connected to each other without being in contact with conductive particles. Accordingly, the first and second connection target members 62 and 63 are electrically connected.
 図3は、本発明の第3の実施形態に係る硬化性組成物を用いて得られる接続構造体を模式的に示す正面断面図である。 FIG. 3 is a front cross-sectional view schematically showing a connection structure obtained by using the curable composition according to the third embodiment of the present invention.
 図3に示す接続構造体71は、第1の接続対象部材72と、第2の接続対象部材73と、第1の接続対象部材72と第2の接続対象部材73とを接続している接続部74とを備える。接続部74は、硬化物層であり、導電性粒子を含まない硬化性組成物を硬化させることにより形成されている。接続構造体71では、電極が電気的に接続されていない。上記硬化性組成物の用途は、電極が電気的に接続される用途に限定されない。 The connection structure 71 shown in FIG. 3 is a connection that connects the first connection target member 72, the second connection target member 73, and the first connection target member 72 and the second connection target member 73. Part 74. The connection part 74 is a hardened | cured material layer, and is formed by hardening the curable composition which does not contain electroconductive particle. In the connection structure 71, the electrodes are not electrically connected. The use of the said curable composition is not limited to the use to which an electrode is electrically connected.
 上記接続構造体の製造方法は特に限定されない。該接続構造体の製造方法の一例としては、上記第1の接続対象部材と上記第2の接続対象部材との間に上記導電材料又は上記硬化性組成物を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10~4.9×10Pa程度である。上記加熱の温度は、120~220℃程度である。 The manufacturing method of the connection structure is not particularly limited. As an example of the manufacturing method of this connection structure, after arrange | positioning the said electrically-conductive material or the said curable composition between the said 1st connection object member and the said 2nd connection object member, and obtaining a laminated body And a method of heating and pressurizing the laminate. The pressurizing pressure is about 9.8 × 10 4 to 4.9 × 10 6 Pa. The heating temperature is about 120 to 220 ° C.
 上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、金属部材、樹脂部材及び膜部材等の電子・電気部品、電気半導体チップ、コンデンサ及びダイオード等の電子・電気部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板、FFC(フレキシブルフラットケーブル)及びガラス基板等の回路基板などの電子・電気部品等が挙げられる。上記第1,第2の接続対象部材は、電子・電気部品であることが好ましい。上記電子・電気部品は、電子・電気機器を構成する部材である。上記接続構造体は、電子・電気部品接続構造体であることが好ましい。上記接続構造体は、電子・電気機器であることが好ましい。 The first and second connection target members are not particularly limited. Specifically, the first and second connection target members include electronic / electric parts such as metal members, resin members and film members, electronic / electric parts such as electric semiconductor chips, capacitors and diodes, and printed circuit boards. And electronic / electrical components such as circuit boards such as flexible printed boards, glass epoxy boards, FFCs (flexible flat cables) and glass boards. The first and second connection target members are preferably electronic / electrical components. The electronic / electrical component is a member constituting an electronic / electrical device. The connection structure is preferably an electronic / electrical component connection structure. The connection structure is preferably an electronic / electrical device.
 上記第1,第2の接続対象部材は、タッチパネル用接続対象部材であることが好ましい。上記硬化性組成物及び上記導電材料の使用により接着性向上効果が大きく得られることから、上記第1,第2の接続対象部材の内の少なくとも一方が、PETフィルムであることが好ましい。 The first and second connection target members are preferably touch panel connection target members. It is preferable that at least one of the first and second connection target members is a PET film, because the effect of improving adhesiveness is greatly obtained by using the curable composition and the conductive material.
 上記硬化性組成物及び上記導電材料は、PETフィルム、FFC(フレキシブルフラットケーブル)の接着に好適に用いられ、PETフィルム、FFC(フレキシブルフラットケーブル)接着用の硬化性組成物であることが好ましい。上記硬化性組成物及び上記導電材料は、タッチパネルにおいて、PETフィルムの接着に好適に用いられ、タッチパネルにおけるPETフィルム接着用の硬化性組成物であることが好ましい。 The curable composition and the conductive material are preferably used for bonding a PET film and FFC (flexible flat cable), and are preferably a curable composition for bonding a PET film and FFC (flexible flat cable). The said curable composition and the said electrically-conductive material are used suitably for adhesion | attachment of PET film in a touch panel, and it is preferable that it is a curable composition for PET film adhesion | attachment in a touch panel.
 また、上記硬化性組成物及び上記導電材料は、PETフィルムの接着に好適に用いられるだけでなく、ディスプレイ用樹脂フィルムとフレキシブルプリント基板との接着にも好適に用いられる。 Further, the curable composition and the conductive material are preferably used not only for bonding a PET film but also for bonding a resin film for display and a flexible printed board.
 また、上記硬化性組成物及び上記導電材料は、FFC(フレキシブルフラットケーブル)の接着に好適に用いられるだけでなく、リジッド基板とFFC(フレキシブルフラットケーブル)との接着にも好適に用いられる。 Further, the curable composition and the conductive material are not only suitably used for bonding an FFC (flexible flat cable), but also suitably used for bonding a rigid substrate and an FFC (flexible flat cable).
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a silver electrode, a molybdenum electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (第1の試験例)
 (合成例1)
 硬化性化合物(1)の合成:
 ジメチルイソフタル酸40gと、1,6-ヘキサンジオール100gと、触媒としてジブチル錫オキサイド0.2gとを3つ口フラスコに秤量し、真空条件下、ディーン・スターク・トラップにより脱水しながら、120℃で4時間反応させた。その後、2-イソシアナトエチルメタクリレート9gと、ジブチルラウリル酸ジブチル錫0.05gとを添加し、120℃で4時間反応させることにより、硬化性化合物を得た。得られた硬化性化合物の重量平均分子量は15000であった。
(First test example)
(Synthesis Example 1)
Synthesis of curable compound (1):
40 g of dimethylisophthalic acid, 100 g of 1,6-hexanediol and 0.2 g of dibutyltin oxide as a catalyst are weighed in a three-necked flask and dehydrated in a Dean-Stark trap under vacuum conditions at 120 ° C. The reaction was performed for 4 hours. Thereafter, 9 g of 2-isocyanatoethyl methacrylate and 0.05 g of dibutyltin dibutyllaurate were added and reacted at 120 ° C. for 4 hours to obtain a curable compound. The weight average molecular weight of the obtained curable compound was 15000.
 (合成例2)
 硬化性化合物(2)の合成:
 ジメチルイソフタル酸37g及びジメチルテレフタル酸3gと、1,6-ヘキサンジオール100gと、触媒としてジブチル錫オキサイド0.2gとを3つ口フラスコに秤量し、真空条件下、ディーン・スターク・トラップにより脱水しながら、120℃で4時間反応させた。その後、2-イソシアナトエチルメタクリレート9gと、ジブチルラウリル酸ジブチル錫0.05gとを添加し、120℃で4時間反応させることにより、硬化性化合物を得た。得られた硬化性化合物の重量平均分子量は15000であった。
(Synthesis Example 2)
Synthesis of curable compound (2):
37 g of dimethyl isophthalic acid and 3 g of dimethyl terephthalic acid, 100 g of 1,6-hexanediol and 0.2 g of dibutyltin oxide as a catalyst are weighed in a three-necked flask and dehydrated in a Dean-Stark trap under vacuum conditions. The reaction was carried out at 120 ° C. for 4 hours. Thereafter, 9 g of 2-isocyanatoethyl methacrylate and 0.05 g of dibutyltin dibutyllaurate were added and reacted at 120 ° C. for 4 hours to obtain a curable compound. The weight average molecular weight of the obtained curable compound was 15000.
 (合成例3)
 硬化性化合物(3)の合成:
 ジメチルイソフタル酸40gと、1,6-ヘキサンジオール20gと、ビスフェノールF15gと、触媒としてジブチル錫オキサイド0.2gとを3つ口フラスコに秤量し、真空条件下、ディーン・スターク・トラップにより脱水しながら、120℃で4時間反応させた。その後、2-イソシアナトエチルメタクリレート9gと、ジブチルラウリル酸ジブチル錫0.05gとを添加し、120℃で4時間反応させることにより、硬化性化合物を得た。得られた硬化性化合物の重量平均分子量は12000であった。
(Synthesis Example 3)
Synthesis of curable compound (3):
Weigh 40 g of dimethylisophthalic acid, 20 g of 1,6-hexanediol, 15 g of bisphenol F, and 0.2 g of dibutyltin oxide as a catalyst into a three-necked flask, and dehydrate in a Dean-Stark trap under vacuum conditions. , And reacted at 120 ° C. for 4 hours. Thereafter, 9 g of 2-isocyanatoethyl methacrylate and 0.05 g of dibutyltin dibutyllaurate were added and reacted at 120 ° C. for 4 hours to obtain a curable compound. The weight average molecular weight of the obtained curable compound was 12000.
 (合成例4)
 硬化性化合物(4)の合成:
 ジメチルイソフタル酸15gと、ジメチルアジピン酸25gと、1,6-ヘキサンジオール20gと、ビスフェノールF15gと、触媒としてジブチル錫オキサイド0.2gとを3つ口フラスコに秤量し、真空条件下、ディーン・スターク・トラップにより脱水しながら、120℃で4時間反応させた。その後、2-イソシアナトエチルメタクリレート9gと、ジブチルラウリル酸ジブチル錫0.05gとを添加し、120℃で4時間反応させることにより、硬化性化合物を得た。得られた硬化性化合物の重量平均分子量は16000であった。
(Synthesis Example 4)
Synthesis of curable compound (4):
15 g of dimethylisophthalic acid, 25 g of dimethyladipic acid, 20 g of 1,6-hexanediol, 15 g of bisphenol F and 0.2 g of dibutyltin oxide as a catalyst were weighed into a three-necked flask and subjected to Dean Stark under vacuum conditions. -It was made to react at 120 degreeC for 4 hours, dehydrating with a trap. Thereafter, 9 g of 2-isocyanatoethyl methacrylate and 0.05 g of dibutyltin dibutyllaurate were added and reacted at 120 ° C. for 4 hours to obtain a curable compound. The weight average molecular weight of the obtained curable compound was 16000.
 (合成例5)
 硬化性化合物(5)の合成:
 ジメチルイソフタル酸15gと、ジメチルアジピン酸25gと、1,6-ヘキサンジオール20gと、分子量650のポリテトラメチレングリコール15gと、触媒としてジブチル錫オキサイド0.2gとを3つ口フラスコに秤量し、真空条件下、ディーン・スターク・トラップにより脱水しながら、120℃で4時間反応させた。その後、2-イソシアナトエチルメタクリレート9gと、ジブチルラウリル酸ジブチル錫0.05gとを添加し、120℃で4時間反応させることにより、硬化性化合物を得た。得られた硬化性化合物の重量平均分子量は20000であった。
(Synthesis Example 5)
Synthesis of curable compound (5):
15 g of dimethylisophthalic acid, 25 g of dimethyladipic acid, 20 g of 1,6-hexanediol, 15 g of polytetramethylene glycol having a molecular weight of 650, and 0.2 g of dibutyltin oxide as a catalyst are weighed in a three-necked flask and vacuumed. Under the conditions, the reaction was carried out at 120 ° C. for 4 hours while dehydrating with a Dean-Stark trap. Thereafter, 9 g of 2-isocyanatoethyl methacrylate and 0.05 g of dibutyltin dibutyllaurate were added and reacted at 120 ° C. for 4 hours to obtain a curable compound. The weight average molecular weight of the obtained curable compound was 20000.
 (実施例1)
 (1)導電ペーストの調製
 合成例1で得られた硬化性化合物(1)90重量部と、アクリル化合物(1)(興人フィルム・ケミカルズ社製「ACMO」)10重量部と、はんだ粒子(三井金属鉱業社製「DS-10」、SnBi共晶、融点139℃、平均粒径12μm)30重量部と、熱硬化剤(日油社製「パーオクタO」、1分半減期温度124.3℃)0.2重量部と、シランカップリング剤(信越化学工業社製、ポリマー型多官能アミノシランカップリング剤「X-12-972A」)0.2重量部とを配合して、異方性導電ペーストを得た。
Example 1
(1) Preparation of conductive paste 90 parts by weight of curable compound (1) obtained in Synthesis Example 1, 10 parts by weight of acrylic compound (1) (“ACMO” manufactured by Kojin Film Chemicals), solder particles ( “DS-10” manufactured by Mitsui Mining & Smelting Co., Ltd., 30 parts by weight of SnBi eutectic, melting point 139 ° C., average particle size 12 μm, and thermosetting agent (“Perocta O” manufactured by NOF Corporation, 1 minute half-life temperature 124.3 ° C) 0.2 parts by weight and 0.2 part by weight of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., polymer type polyfunctional aminosilane coupling agent “X-12-972A”) A conductive paste was obtained.
 (2)接続構造体(1)の作製
 被着体1として、基材PETフィルム上に、L/S=200/200μmのアルミニウム配線を40本形成した回路基板を用意した。被着体2として、基材ポリイミドフィルム上に、L/S=200/200μmのCu配線上に下地NiとしてAu無電解メッキにより配線を40本形成したFPCを用意した。
(2) Preparation of connection structure (1) As the adherend 1, a circuit board was prepared in which 40 aluminum wirings of L / S = 200/200 μm were formed on a base PET film. As the adherend 2, an FPC was prepared in which 40 wires were formed by Au electroless plating as a base Ni on a Cu wire of L / S = 200/200 μm on a base polyimide film.
 被着体1上に、エアーディスペンサーにて異方性導電ペースト3mgを塗布した。被着体2を重ね合わせ幅3mmとして、被着体1と被着体2との電極パターンが合うように、被着体1と被着体2とを異方性導電ペーストを介して重ね合わせた。その後、140℃で10秒、圧力1MPaにて接合し、接続構造体(1)を得た。 On the adherend 1, 3 mg of anisotropic conductive paste was applied with an air dispenser. The adherend 2 is overlapped with an anisotropic conductive paste so that the adherend 2 has an overlap width of 3 mm and the electrode patterns of the adherend 1 and the adherend 2 match each other. It was. Then, it joined at 140 degreeC for 10 second and the pressure of 1 MPa, and obtained the connection structure (1).
 (実施例2)
 合成例1で得られた硬化性化合物(1)を、合成例2で得られた硬化性化合物(2)に変更したこと以外は実施例1と同様にして、異方性導電ペースト及び接続構造体(1)を得た。
(Example 2)
An anisotropic conductive paste and connection structure in the same manner as in Example 1 except that the curable compound (1) obtained in Synthesis Example 1 was changed to the curable compound (2) obtained in Synthesis Example 2. Body (1) was obtained.
 (実施例3)
 接続構造体(2)の作製:
 実施例1で得られた異方性導電ペーストを用いて、被着体1として、FFC(フレキシブルフラットケーブル)、L/S=200/200μmで配線を40本形成した被着体を用いたこと以外は接続構造体(1)と同様にして、接続構造体(2)を得た。
Example 3
Production of connection structure (2):
Using the anisotropic conductive paste obtained in Example 1, as an adherend 1, an adherend in which 40 wires were formed with FFC (flexible flat cable), L / S = 200/200 μm was used. Except for this, a connection structure (2) was obtained in the same manner as the connection structure (1).
 (実施例4~11)
 (1)導電ペーストの調製
 配合成分の種類及び配合量を下記の表1に示すように変更したこと以外は実施例1と同様にして、異方性導電ペーストを得た。
(Examples 4 to 11)
(1) Preparation of conductive paste An anisotropic conductive paste was obtained in the same manner as in Example 1 except that the types and amounts of the compounding components were changed as shown in Table 1 below.
 なお、(メタ)アクリル化合物の詳細は以下の通りである。
 (メタ)アクリル化合物(2):ダイセル・オルネクス社製「Ebecryl8413」、脂肪族ウレタンアクリレート
 (メタ)アクリル化合物(3):ダイセル・オルネクス社製「Ebecryl3708」、2-ヒドロキシエチルアクリレートがカプロラクトンに付加した構造を分子末端に有し、かつビスフェノールAのジグリシジ基が開環した構造を主骨格として有するエポキシアクリレート
 (メタ)アクリル化合物(4):ダイセル・オルネクス社製「Ebecryl168」、ヒドロキシエチルメタクリレートホスフェート等のリン酸エステル型(メタ)アクリレート
 (メタ)アクリル化合物(5):東亜合成社製「M-140」、イミド(メタ)アクリレート
The details of the (meth) acrylic compound are as follows.
(Meth) acrylic compound (2): “Ebecryl8413” manufactured by Daicel Ornex, Inc., aliphatic urethane acrylate (meth) acrylic compound (3): “Ebecryl3708” manufactured by Daicel Ornex, Inc., 2-hydroxyethyl acrylate was added to caprolactone Epoxy acrylate (meth) acrylic compound (4) having a structure at the molecular end and a structure in which the diglycidyl group of bisphenol A is ring-opened as a main skeleton, such as “Ebecryl 168” manufactured by Daicel Ornex, hydroxyethyl methacrylate phosphate, etc. Phosphate ester type (meth) acrylate (meth) acrylic compound (5): “M-140” manufactured by Toa Gosei Co., Ltd., imide (meth) acrylate
 (2)接続構造体(3)の作製
 得られた異方性導電ペーストを用いて、140℃で5秒、圧力1MPaにて接合したこと以外は接続構造体(1)と同様にして、接続構造体(3)を得た。
(2) Preparation of connection structure (3) Connection was made in the same manner as connection structure (1) except that the obtained anisotropic conductive paste was used for bonding at 140 ° C. for 5 seconds at a pressure of 1 MPa. A structure (3) was obtained.
 (3)接続構造体(4)の作製
 得られた異方性導電ペーストを用いて、140℃で5秒、圧力1MPaにて接合したこと以外は接続構造体(2)と同様にして、接続構造体(4)を得た。
(3) Preparation of connection structure (4) Connection was made in the same manner as connection structure (2) except that the obtained anisotropic conductive paste was used for bonding at 140 ° C. for 5 seconds at a pressure of 1 MPa. A structure (4) was obtained.
 (比較例1)
 硬化性化合物の種類をビスフェノールA型エポキシ化合物に変更したこと以外は実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして接続構造体(1)を得て、実施例3と同様にして接続構造体(2)を得て、実施例4~11と同様にして接続構造体(3)及び接続構造体(4)を得た。
(Comparative Example 1)
An anisotropic conductive paste was obtained in the same manner as in Example 1 except that the type of the curable compound was changed to the bisphenol A type epoxy compound. Using the obtained anisotropic conductive paste, a connection structure (1) was obtained in the same manner as in Example 1, and a connection structure (2) was obtained in the same manner as in Example 3. In the same manner as in Example 11, a connection structure (3) and a connection structure (4) were obtained.
 (評価)
 (1)初期の接着性
 得られた接続構造体を用いて、島津製作所社製「マイクロオートグラフMST-I」を用い、剥離を行うことで、90°ピール強度Cを引張り速度50mm/分にて23℃雰囲気下で測定した。初期の接着性を下記の基準で判定した。
(Evaluation)
(1) Initial adhesion Using the obtained connection structure, peeling was performed using “Micro Autograph MST-I” manufactured by Shimadzu Corporation, so that 90 ° peel strength C was increased to a pulling speed of 50 mm / min. And measured in an atmosphere at 23 ° C. The initial adhesiveness was determined according to the following criteria.
 [初期の接着性の判定基準]
 ○○:90°ピール強度Cが20N/cm以上
 ○:90°ピール強度Cが15N/cm以上、20N/cm未満
 △:90°ピール強度Cが10N/cm以上、15Ncm未満
 ×:90°ピール強度Cが10N/cm未満
[Initial adhesion criteria]
○: 90 ° peel strength C is 20 N / cm or more ○: 90 ° peel strength C is 15 N / cm or more and less than 20 N / cm Δ: 90 ° peel strength C is 10 N / cm or more and less than 15 Ncm ×: 90 ° peel Strength C is less than 10 N / cm
 (2)高温高湿下での接着性
 得られた接続構造体を85℃及び湿度85%雰囲気下で500時間静置した。放置後の接続構造体について、上記(1)接着性の評価と同様にして90°ピール強度Dを測定した。高温高湿下での接着性を下記の基準で判定した。
(2) Adhesiveness under high temperature and high humidity The obtained connection structure was allowed to stand for 500 hours in an atmosphere of 85 ° C. and a humidity of 85%. The 90 ° peel strength D was measured for the connection structure after being left in the same manner as in the above (1) evaluation of adhesiveness. The adhesiveness under high temperature and high humidity was determined according to the following criteria.
 [高温高湿下での接着性の判定基準]
 ○○:90°ピール強度Cが20N/cm以上、かつ、ピール強度D/ピール強度C×100が80%以上
 ○:90°ピール強度Cが15N/cm以上、20N/cm未満、かつ、ピール強度D/ピール強度C×100が80%以上
 △:90°ピール強度Cが10N/cm以上、15Ncm未満、かつ、ピール強度D/ピール強度C×100が80%以上
 ×:90°ピール強度Cが10N/cm未満
[Criteria for adhesion under high temperature and high humidity]
○○: 90 ° peel strength C is 20 N / cm or more and peel strength D / peel strength C × 100 is 80% or more ○: 90 ° peel strength C is 15 N / cm or more and less than 20 N / cm Strength D / peel strength C × 100 is 80% or more Δ: 90 ° peel strength C is 10 N / cm or more and less than 15 Ncm, and peel strength D / peel strength C × 100 is 80% or more ×: 90 ° peel strength C Is less than 10 N / cm
 (3)上下の電極間の導通信頼性
 得られた接続構造体(n=15個)において、上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。求めた接続抵抗は、電極1対の重ね合わされた接続部の抵抗とした。
(3) Electrical connection reliability between upper and lower electrodes In the obtained connection structure (n = 15), the connection resistance between the upper and lower electrodes was measured by a four-terminal method. The average value of connection resistance was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The conduction reliability was determined according to the following criteria. The obtained connection resistance was the resistance of the connection portion where the pair of electrodes was overlapped.
 [導通信頼性の判定基準]
 ○○:接続抵抗の平均値が50mΩ以下
 ○:接続抵抗の平均値が50mΩを超え、75mΩ以下
 △:接続抵抗の平均値が75mΩを超え、100mΩ以下
 ×:接続抵抗の平均値が100mΩを超える
[Judgment criteria for conduction reliability]
○○: Average value of connection resistance is 50 mΩ or less ○: Average value of connection resistance exceeds 50 mΩ, 75 mΩ or less Δ: Average value of connection resistance exceeds 75 mΩ, 100 mΩ or less ×: Average value of connection resistance exceeds 100 mΩ
 (4)破断伸び
 実施例及び比較例の各導電ペーストの調製において、導電性粒子のみを配合しなかったこと以外は同様にして、導電性粒子を含まない硬化性組成物を調製した。得られた硬化性組成物を140℃及び10秒硬化させて、硬化物を得た。得られた硬化物を23℃及び引張り速度1mm/分、チャック間距離40mmの条件で引き伸ばして、破断伸びを測定した。
(4) Elongation at break In the preparation of each conductive paste of Examples and Comparative Examples, a curable composition containing no conductive particles was prepared in the same manner except that only the conductive particles were not blended. The obtained curable composition was cured at 140 ° C. for 10 seconds to obtain a cured product. The obtained cured product was stretched under the conditions of 23 ° C., a tensile speed of 1 mm / min, and a distance between chucks of 40 mm, and the elongation at break was measured.
 組成及び結果を下記の表1に示す。 Composition and results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 (第2の試験例)
 (合成例6)
 硬化性化合物(6)の合成:
 ジメチルイソフタル酸64gと、ジメチルアジピン酸19gと、1,6-ヘキサンジオール38gと、分子量650のポリテトラメチレングリコール90gと、触媒としてのテトラブトキシチタン2gとを3つ口フラスコに秤量し、真空条件下、ディーン・スターク・トラップにより脱メタノールしながら、120℃で4時間反応させた。その後、2-イソシアナトエチルアクリレート6gと、ジブチルラウリル酸ジブチル錫0.6gとを添加し、120℃で4時間反応させることにより、硬化性化合物を得た。得られた硬化性化合物の重量平均分子量は27000であった。
(Second test example)
(Synthesis Example 6)
Synthesis of curable compound (6):
64 g of dimethylisophthalic acid, 19 g of dimethyl adipic acid, 38 g of 1,6-hexanediol, 90 g of polytetramethylene glycol having a molecular weight of 650, and 2 g of tetrabutoxytitanium as a catalyst were weighed in a three-necked flask. Then, the reaction was carried out at 120 ° C. for 4 hours while removing methanol with a Dean-Stark trap. Thereafter, 6 g of 2-isocyanatoethyl acrylate and 0.6 g of dibutyltin dibutyllaurate were added and reacted at 120 ° C. for 4 hours to obtain a curable compound. The weight average molecular weight of the obtained curable compound was 27000.
 (合成例7)
 硬化性化合物(7)の合成:
 ジメチルイソフタル酸58gと、ジメチルアジピン酸17gと、1,6-ヘキサンジオール40gと、分子量650のポリテトラメチレングリコール94gと、触媒としてテトラブトキシチタン2gとを3つ口フラスコに秤量し、真空条件下、ディーン・スターク・トラップにより脱メタノールしながら、120℃で4時間反応させた。その後、2-イソシアナトエチルアクリレート23gと、ジブチルラウリル酸ジブチル錫0.6gとを添加し、120℃で4時間反応させることにより、硬化性化合物を得た。得られた硬化性化合物の重量平均分子量は8300であった。
(Synthesis Example 7)
Synthesis of curable compound (7):
Weigh 58 g of dimethylisophthalic acid, 17 g of dimethyladipic acid, 40 g of 1,6-hexanediol, 94 g of polytetramethylene glycol having a molecular weight of 650, and 2 g of tetrabutoxytitanium as a catalyst in a three-necked flask under vacuum conditions. The reaction was carried out at 120 ° C. for 4 hours while removing methanol with a Dean-Stark trap. Thereafter, 23 g of 2-isocyanatoethyl acrylate and 0.6 g of dibutyltin dibutyllaurate were added and reacted at 120 ° C. for 4 hours to obtain a curable compound. The weight average molecular weight of the obtained curable compound was 8300.
 (実施例12)
 合成例6で得られた硬化性化合物(6)88.5重量部と、アクリル酸4-ヒドロキシブチル(東京化成工業社製)10重量部と、熱硬化剤(日油社製「パーオクタO」、1分半減期温度124.3℃)1.5重量部とを配合した後、遊星式撹拌装置で混合および脱泡することにより、硬化性組成物を得た。
Example 12
88.5 parts by weight of the curable compound (6) obtained in Synthesis Example 6, 10 parts by weight of 4-hydroxybutyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.), a thermosetting agent (“Perocta O” manufactured by NOF Corporation) After blending 1.5 parts by weight with a 1 minute half-life temperature of 124.3 ° C., a curable composition was obtained by mixing and defoaming with a planetary stirrer.
 (実施例13~35)
 配合成分の種類及び配合量を下記の表2,3に示すように変更したこと以外は実施例1と同様にして、硬化性組成物を得た。
(Examples 13 to 35)
A curable composition was obtained in the same manner as in Example 1 except that the types and blending amounts of the blending components were changed as shown in Tables 2 and 3 below.
 (評価)
 (1)接着性
 接着試験片は、以下の手順で作成した。SUS基板(2cm×7cm)上に、硬化性組成物を塗布し、その上にPETフィルムをのせ、その上から平滑なプレートで押さえつけて、硬化性組成物が一定の厚さ(80μm)になるようにし、積層体を得た。
(Evaluation)
(1) Adhesiveness The adhesion test piece was created in the following procedures. A curable composition is applied on a SUS substrate (2 cm × 7 cm), a PET film is placed on the SUS substrate, and the curable composition is pressed with a smooth plate from above to form a curable composition having a constant thickness (80 μm). Thus, a laminate was obtained.
 得られた積層体について、130℃で10秒、圧力1MPaの条件で熱硬化させ、接着試験片を得た。 The obtained laminate was thermally cured at 130 ° C. for 10 seconds under a pressure of 1 MPa to obtain an adhesion test piece.
 得られた接着試験片を用いて、島津製作所社製「マイクロオートグラフMST-I」により剥離を行うことで、180°ピール強度を引っ張り速度300mm/分にて23℃又は100℃の雰囲気下で測定した。初期の接着性を下記の基準で判定した。 By using the obtained adhesion test piece and peeling with “Micro Autograph MST-I” manufactured by Shimadzu Corporation, a 180 ° peel strength is obtained at a pulling speed of 300 mm / min in an atmosphere of 23 ° C. or 100 ° C. It was measured. The initial adhesiveness was determined according to the following criteria.
 [初期の接着性の判定基準]
 ○○○:180°ピール強度が1.5N/mm以上
 ○○:180°ピール強度が1.0/mm以上、1.5N/mm未満
 ○:180°ピール強度が0.5N/mm以上、1.0N/mm未満
 △:180°ピール強度が0.25N/mm以上、0.5N/mm未満
 ×:180°ピール強度が0.25N/mm未満
[Initial adhesion criteria]
○○○: 180 ° peel strength is 1.5 N / mm or more ○○: 180 ° peel strength is 1.0 / mm or more and less than 1.5 N / mm ○: 180 ° peel strength is 0.5 N / mm or more, Less than 1.0 N / mm Δ: 180 ° peel strength is 0.25 N / mm or more and less than 0.5 N / mm ×: 180 ° peel strength is less than 0.25 N / mm
 (2)硬化性
 硬化時間を10秒と30秒との2条件で試験片を作成したこと以外は、上記接着性の評価方法と同様に試験片を作成し、180°ピール強度を測定した。下記式に従い硬化性を評価した。
(2) Curability A test piece was prepared in the same manner as the above-described adhesive evaluation method except that the test piece was prepared under two conditions of 10 seconds and 30 seconds, and the 180 ° peel strength was measured. The curability was evaluated according to the following formula.
 硬化性(%)=(硬化時間10秒での180°ピール強度)×100/硬化時間30秒での180°ピール強度 Curability (%) = (180 ° peel strength when curing time is 10 seconds) × 100/180 ° peel strength when curing time is 30 seconds
 [硬化性の判定基準]
 ○○:95%以上
 ○:90%以上、95%未満
 △:85%以上、90%未満
 ×:85%未満
[Criteria for curability]
○○: 95% or more ○: 90% or more, less than 95% △: 85% or more, less than 90% ×: less than 85%
 組成及び結果を下記表2,3に示す。 Compositions and results are shown in Tables 2 and 3 below.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 (第3の試験例)
 (合成例8)式(1)で表される硬化性化合物に相当しない硬化性化合物の合成
 硬化性化合物(8)(直鎖状ポリエステル化合物)の合成:
 ジメチルアジピン酸64.6gと、ジメチルイソフタル酸24.0gと、1,6-ヘキサンジオール61.4と、触媒としてのテトラブトキシチタン0.05gとを3つ口フラスコに秤量し、メタノールを除去しながら140℃で4時間反応後、減圧下、140℃で12時間反応させた。その後、2-イソシアナトエチルアクリレート6.3gと、ジブチルラウリル酸ジブチル錫0.6gとを添加し、70℃で4時間反応させることにより、硬化性化合物(直鎖状ポリエステル化合物)を得た。得られた硬化性化合物の重量平均分子量は8000であった。
(Third test example)
(Synthesis Example 8) Synthesis of curable compound not corresponding to curable compound represented by formula (1) Synthesis of curable compound (8) (linear polyester compound):
Weigh 64.6 g of dimethyladipic acid, 24.0 g of dimethylisophthalic acid, 61.4 of 1,6-hexanediol, and 0.05 g of tetrabutoxytitanium as a catalyst into a three-necked flask to remove methanol. However, after reacting at 140 ° C. for 4 hours, the reaction was carried out at 140 ° C. under reduced pressure for 12 hours. Thereafter, 6.3 g of 2-isocyanatoethyl acrylate and 0.6 g of dibutyltin dibutyllaurate were added and reacted at 70 ° C. for 4 hours to obtain a curable compound (linear polyester compound). The weight average molecular weight of the obtained curable compound was 8000.
 (合成例9)
 硬化性化合物(9)(直鎖状ポリエステル化合物)の合成:
 ジメチルアジピン酸56.7gと、ジメチルイソフタル酸21.1gと、1,6-ヘキサンジオール51.2と、分子量650のポリテトラメチレングリコール(PTMG650)14.8gと、触媒としてのテトラブトキシチタン0.05gとを3つ口フラスコに秤量し、系内からメタノールを除去しながら140℃で4時間反応後、減圧下、140℃で12時間反応させた。その後、2-イソシアナトエチルアクリレート6.4gと、ジブチルラウリル酸ジブチル錫0.6gとを添加し、70℃で4時間反応させることにより、硬化性化合物(直鎖状ポリエステル化合物)を得た。得られた硬化性化合物の重量平均分子量は8500であった。
(Synthesis Example 9)
Synthesis of curable compound (9) (linear polyester compound):
56.7 g of dimethyladipic acid, 21.1 g of dimethylisophthalic acid, 51.2 of 1,6-hexanediol, 14.8 g of polytetramethylene glycol (PTMG650) having a molecular weight of 650, and tetrabutoxytitanium as a catalyst in an amount of 0. 05 g was weighed into a three-necked flask and reacted at 140 ° C. for 4 hours while removing methanol from the system, and then reacted at 140 ° C. under reduced pressure for 12 hours. Thereafter, 6.4 g of 2-isocyanatoethyl acrylate and 0.6 g of dibutyltin dibutyllaurate were added and reacted at 70 ° C. for 4 hours to obtain a curable compound (linear polyester compound). The weight average molecular weight of the obtained curable compound was 8500.
 (合成例10)
 硬化性化合物(10)(直鎖状ポリエステル化合物)の合成:
 ジメチルイソフタル酸56.1gと、ジメチルアジピン酸20.1gと、1,6-ヘキサンジオール50.6gと、分子量1000のポリテトラメチレングリコール(PTMG1000)22.5gと、触媒としてテトラブトキシチタン0.05gとを3つ口フラスコに秤量し、メタノールを除去しながら140℃で4時間反応後、減圧下、140℃で12時間反応させた。その後、2-イソシアナトエチルアクリレート6.4gと、ジブチルラウリル酸ジブチル錫0.6gとを添加し、70℃で4時間反応させることにより、硬化性化合物(直鎖状ポリエステル化合物)を得た。得られた硬化性化合物の重量平均分子量は12000であった。
(Synthesis Example 10)
Synthesis of curable compound (10) (linear polyester compound):
56.1 g of dimethylisophthalic acid, 20.1 g of dimethyladipic acid, 50.6 g of 1,6-hexanediol, 22.5 g of polytetramethylene glycol (PTMG1000) having a molecular weight of 1000, and 0.05 g of tetrabutoxytitanium as a catalyst Were weighed in a three-necked flask, reacted at 140 ° C. for 4 hours while removing methanol, and then reacted at 140 ° C. for 12 hours under reduced pressure. Thereafter, 6.4 g of 2-isocyanatoethyl acrylate and 0.6 g of dibutyltin dibutyllaurate were added and reacted at 70 ° C. for 4 hours to obtain a curable compound (linear polyester compound). The weight average molecular weight of the obtained curable compound was 12000.
 (合成例11)
 硬化性化合物(11)(直鎖状ポリエステル化合物)の合成:
 ジメチルイソフタル酸47.0gと、ジメチルアジピン酸17.5gと、1,6-ヘキサンジオール42.4gと、分子量2000のポリテトラメチレングリコール(PTMG2000)37.8gと、触媒としてテトラブトキシチタン0.05gとを3つ口フラスコに秤量し、メタノールを除去しながら140℃で4時間反応後、減圧下、140℃で12時間反応させた。その後、2-イソシアナトエチルアクリレート5.3gと、ジブチルラウリル酸ジブチル錫0.65gとを添加し、70℃で4時間反応させることにより、硬化性化合物)(直鎖状ポリエステル化合物)を得た。得られた硬化性化合物の重量平均分子量は18000であった。
(Synthesis Example 11)
Synthesis of curable compound (11) (linear polyester compound):
47.0 g of dimethyl isophthalic acid, 17.5 g of dimethyl adipic acid, 42.4 g of 1,6-hexanediol, 37.8 g of polytetramethylene glycol (PTMG 2000) having a molecular weight of 2000, and 0.05 g of tetrabutoxy titanium as a catalyst Were weighed in a three-necked flask, reacted at 140 ° C. for 4 hours while removing methanol, and then reacted at 140 ° C. for 12 hours under reduced pressure. Thereafter, 5.3 g of 2-isocyanatoethyl acrylate and 0.65 g of dibutyltin dibutyllaurate were added and reacted at 70 ° C. for 4 hours to obtain a curable compound (linear polyester compound). . The weight average molecular weight of the obtained curable compound was 18000.
 (合成例12)
 硬化性化合物(12)(直鎖状ポリエステル化合物)の合成:
 ジメチルイソフタル酸41.8gと、ジメチルアジピン酸15.5gと、1,6-ヘキサンジオール37.7gと、分子量3000のポリテトラメチレングリコール(PTMG3000)50.3gと、触媒としてテトラブトキシチタン0.05gとを3つ口フラスコに秤量し、メタノールを除去しながら140℃で4時間反応後、減圧下、140℃で12時間反応させた。その後、2-イソシアナトエチルアクリレート4.7gと、ジブチルラウリル酸ジブチル錫0.4gとを添加し、70℃で4時間反応させることにより、硬化性化合物(直鎖状ポリエステル化合物)を得た。得られた硬化性化合物の重量平均分子量は30000であった。
(Synthesis Example 12)
Synthesis of curable compound (12) (linear polyester compound):
41.8 g of dimethyl isophthalic acid, 15.5 g of dimethyl adipic acid, 37.7 g of 1,6-hexanediol, 50.3 g of polytetramethylene glycol (PTMG 3000) having a molecular weight of 3000, and 0.05 g of tetrabutoxy titanium as a catalyst Were weighed in a three-necked flask, reacted at 140 ° C. for 4 hours while removing methanol, and then reacted at 140 ° C. for 12 hours under reduced pressure. Thereafter, 4.7 g of 2-isocyanatoethyl acrylate and 0.4 g of dibutyltin dibutyllaurate were added and reacted at 70 ° C. for 4 hours to obtain a curable compound (linear polyester compound). The weight average molecular weight of the obtained curable compound was 30000.
 (合成例13)
 硬化性化合物(13)(直鎖状ポリエステル化合物)の合成:
 ジメチルイソフタル酸56.1gと、ジメチルアジピン酸20.1gと、1,6-ヘキサンジオール50.6gと、分子量1000のポリエチレングリコール(PEG1000)22.5gと、触媒としてテトラブトキシチタン0.05gとを3つ口フラスコに秤量し、メタノールを除去しながら140℃で4時間反応後、減圧下、140℃で12時間反応させた。その後、2-イソシアナトエチルアクリレート6.4gと、ジブチルラウリル酸ジブチル錫0.6gとを添加し、70℃で4時間反応させることにより、硬化性化合物(直鎖状ポリエステル化合物)を得た。得られた硬化性化合物の重量平均分子量は12000であった。
(Synthesis Example 13)
Synthesis of curable compound (13) (linear polyester compound):
56.1 g of dimethyl isophthalic acid, 20.1 g of dimethyl adipic acid, 50.6 g of 1,6-hexanediol, 22.5 g of polyethylene glycol (PEG 1000) having a molecular weight of 1000, and 0.05 g of tetrabutoxy titanium as a catalyst. The mixture was weighed into a three-necked flask, reacted at 140 ° C. for 4 hours while removing methanol, and then reacted at 140 ° C. under reduced pressure for 12 hours. Thereafter, 6.4 g of 2-isocyanatoethyl acrylate and 0.6 g of dibutyltin dibutyllaurate were added and reacted at 70 ° C. for 4 hours to obtain a curable compound (linear polyester compound). The weight average molecular weight of the obtained curable compound was 12000.
 (合成例14)
 硬化性化合物(14)(直鎖状ポリエステル化合物)の合成:
 ジメチルイソフタル酸51.9gと、ジメチルアジピン酸19.3gと、1,6-ヘキサンジオール47.8gと、分子量2000のポリテトラメチレングリコール(PTMG2000)25.0gと、触媒としてテトラブトキシチタン0.05gとを3つ口フラスコに秤量し、メタノールを除去しながら140℃で4時間反応後、減圧下、140℃で12時間反応させた。その後、2-イソシアナトエチルアクリレート5.9gと、ジブチルラウリル酸ジブチル錫0.65gとを添加し、70℃で4時間反応させることにより、硬化性化合物(直鎖状ポリエステル化合物)を得た。得られた硬化性化合物の重量平均分子量は18000であった。
(Synthesis Example 14)
Synthesis of curable compound (14) (linear polyester compound):
51.9 g of dimethyl isophthalic acid, 19.3 g of dimethyl adipic acid, 47.8 g of 1,6-hexanediol, 25.0 g of polytetramethylene glycol (PTMG 2000) having a molecular weight of 2000, and 0.05 g of tetrabutoxy titanium as a catalyst Were weighed in a three-necked flask, reacted at 140 ° C. for 4 hours while removing methanol, and then reacted at 140 ° C. for 12 hours under reduced pressure. Thereafter, 5.9 g of 2-isocyanatoethyl acrylate and 0.65 g of dibutyltin dibutyllaurate were added and reacted at 70 ° C. for 4 hours to obtain a curable compound (linear polyester compound). The weight average molecular weight of the obtained curable compound was 18000.
 (合成例15)
 硬化性化合物(15)(直鎖状ポリエステル化合物)の合成:
 ジメチルイソフタル酸38.0gと、ジメチルアジピン酸14.1gと、1,6-ヘキサンジオール32.5gと、分子量2000のポリテトラメチレングリコール(PTMG2000)61.1gと、触媒としてテトラブトキシチタン0.05gとを3つ口フラスコに秤量し、メタノールを除去しながら140℃で4時間反応後、減圧下、140℃で12時間反応させた。その後、2-イソシアナトエチルアクリレート4.3gと、ジブチルラウリル酸ジブチル錫0.4gとを添加し、70℃で4時間反応させることにより、硬化性化合物(直鎖状ポリエステル化合物)を得た。得られた硬化性化合物の重量平均分子量は18000であった。
(Synthesis Example 15)
Synthesis of curable compound (15) (linear polyester compound):
38.0 g of dimethyl isophthalic acid, 14.1 g of dimethyl adipic acid, 32.5 g of 1,6-hexanediol, 61.1 g of polytetramethylene glycol (PTMG 2000) having a molecular weight of 2000, and 0.05 g of tetrabutoxy titanium as a catalyst Were weighed in a three-necked flask, reacted at 140 ° C. for 4 hours while removing methanol, and then reacted at 140 ° C. for 12 hours under reduced pressure. Thereafter, 4.3 g of 2-isocyanatoethyl acrylate and 0.4 g of dibutyltin dibutyllaurate were added and reacted at 70 ° C. for 4 hours to obtain a curable compound (linear polyester compound). The weight average molecular weight of the obtained curable compound was 18000.
 (合成例16)
 硬化性化合物(16)(直鎖状ポリエステル化合物)の合成:
 ジメチルテレフタル酸47.0gと、ジメチルアジピン酸17.5gと、1,6-ヘキサンジオール42.4gと、分子量2000のポリテトラメチレングリコール(PTMG2000)37.8gと、触媒としてテトラブトキシチタン0.05gとを3つ口フラスコに秤量し、メタノールを除去しながら140℃で4時間反応後、減圧下、140℃で12時間反応させた。その後、2-イソシアナトエチルアクリレート5.3gと、ジブチルラウリル酸ジブチル錫0.65gとを添加し、70℃で4時間反応させることにより、硬化性化合物(直鎖状ポリエステル化合物)を得た。得られた硬化性化合物の重量平均分子量は18000であった。
(Synthesis Example 16)
Synthesis of curable compound (16) (linear polyester compound):
47.0 g of dimethyl terephthalic acid, 17.5 g of dimethyl adipic acid, 42.4 g of 1,6-hexanediol, 37.8 g of polytetramethylene glycol (PTMG 2000) having a molecular weight of 2000, and 0.05 g of tetrabutoxy titanium as a catalyst Were weighed in a three-necked flask, reacted at 140 ° C. for 4 hours while removing methanol, and then reacted at 140 ° C. for 12 hours under reduced pressure. Thereafter, 5.3 g of 2-isocyanatoethyl acrylate and 0.65 g of dibutyltin dibutyllaurate were added and reacted at 70 ° C. for 4 hours to obtain a curable compound (linear polyester compound). The weight average molecular weight of the obtained curable compound was 18000.
 (合成例17)
 硬化性化合物(17)(直鎖状ポリエステル化合物)の合成:
 ジメチルアジピン酸63.4gと、1,6-ヘキサンジオール42.9gと、分子量2000のポリテトラメチレングリコール(PTMG2000)38.2gと、触媒としてテトラブトキシチタン0.05gとを3つ口フラスコに秤量し、メタノールを除去しながら140℃で4時間反応後、減圧下、140℃で12時間反応させた。その後、2-イソシアナトエチルアクリレート5.4gと、ジブチルラウリル酸ジブチル錫0.65gとを添加し、70℃で4時間反応させることにより、硬化性化合物(直鎖状ポリエステル化合物)を得た。得られた硬化性化合物の重量平均分子量は18000であった。
(Synthesis Example 17)
Synthesis of curable compound (17) (linear polyester compound):
Weigh 63.4 g of dimethyl adipic acid, 42.9 g of 1,6-hexanediol, 38.2 g of polytetramethylene glycol (PTMG 2000) having a molecular weight of 2000, and 0.05 g of tetrabutoxy titanium as a catalyst in a three-necked flask. Then, after removing the methanol at 140 ° C. for 4 hours, the reaction was carried out at 140 ° C. for 12 hours under reduced pressure. Thereafter, 5.4 g of 2-isocyanatoethyl acrylate and 0.65 g of dibutyltin dibutyllaurate were added and reacted at 70 ° C. for 4 hours to obtain a curable compound (linear polyester compound). The weight average molecular weight of the obtained curable compound was 18000.
 (実施例36)
 合成例9で得られた硬化性化合物(9)98.5重量部と、熱硬化剤(日油社製「パーオクタO」、1分半減期温度124.3℃)1.5重量部とを配合した後、遊星式撹拌装置で混合および脱泡することにより、硬化性組成物を得た。
(Example 36)
98.5 parts by weight of the curable compound (9) obtained in Synthesis Example 9 and 1.5 parts by weight of a thermosetting agent (“Perocta O” manufactured by NOF Corporation, 1 minute half-life temperature 124.3 ° C.) After blending, the mixture was mixed and defoamed with a planetary stirrer to obtain a curable composition.
 (実施例37~45)
 配合成分の種類及び配合量を下記の表4に示すように変更したこと以外は実施例1と同様にして、硬化性組成物を得た。
(Examples 37 to 45)
A curable composition was obtained in the same manner as in Example 1 except that the types and amounts of the ingredients were changed as shown in Table 4 below.
 (評価)
 (1)ガラス転移温度(Tg)
 0.5mmのスペーサー及び熱プレス機を使用して、厚み0.5mmの硬化物を作成した。得られた硬化物について、DMA(粘弾性測定装置)により10℃/minの昇温条件下でガラス転移温度を求めた。
(Evaluation)
(1) Glass transition temperature (Tg)
A 0.5 mm thick cured product was prepared using a 0.5 mm spacer and a hot press. About the obtained hardened | cured material, the glass transition temperature was calculated | required on the temperature rising conditions of 10 degree-C / min with DMA (viscoelasticity measuring apparatus).
 (2)-30℃での引張弾性率
 0.5mmのスペーサー及び熱プレス機を使用して、厚み0.5mmの硬化物を作成した。上記硬化物を所定のサイズ(5.0mm×50mm×0.5mmt)にカットした。-30℃下、万能材料試験機(AND社製「テンシロン」)を用いて引張弾性率を求めた。
(2) Tensile modulus at −30 ° C. A 0.5 mm thick cured product was prepared using a 0.5 mm spacer and a heat press. The cured product was cut into a predetermined size (5.0 mm × 50 mm × 0.5 mmt). The tensile elastic modulus was determined at −30 ° C. using a universal material testing machine (“Tensilon” manufactured by AND).
 (2)接着性
 接着試験片は、以下の手順で作成した。SUS基板(2cm×7cm)上に、硬化性組成物を塗布し、その上にPETフィルムをのせ、その上から平滑なプレートで押さえつけて、硬化性組成物が一定の厚さ(80μm)になるようにし、積層体を得た。
(2) Adhesiveness An adhesive test piece was prepared by the following procedure. A curable composition is applied on a SUS substrate (2 cm × 7 cm), a PET film is placed on the SUS substrate, and the curable composition is pressed with a smooth plate from above to form a curable composition having a constant thickness (80 μm). Thus, a laminate was obtained.
 得られた積層体について、130℃で10秒、圧力1MPaの条件で熱硬化させ、接着試験片を得た。 The obtained laminate was thermally cured at 130 ° C. for 10 seconds under a pressure of 1 MPa to obtain an adhesion test piece.
 得られた接着試験片を用いて、島津製作所社製「マイクロオートグラフMST-I」により剥離を行うことで、180°ピール強度を引っ張り速度300mm/分にて23℃の雰囲気下で測定した。初期の接着性を下記の基準で判定した。 The 180 ° peel strength was measured in an atmosphere of 23 ° C. at a pulling speed of 300 mm / min by peeling off with “Micro Autograph MST-I” manufactured by Shimadzu Corporation using the obtained adhesion test piece. The initial adhesiveness was determined according to the following criteria.
 [初期の接着性の判定基準]
 ○○○:180°ピール強度が1.5N/mm以上
 ○○:180°ピール強度が1.0/mm以上、1.5N/mm未満
 ○:180°ピール強度が0.5N/mm以上、1.0N/mm未満
 △:180°ピール強度が0.25N/mm以上、0.5N/mm未満
 ×:180°ピール強度が0.25N/mm未満
[Initial adhesion criteria]
○○○: 180 ° peel strength is 1.5 N / mm or more ○○: 180 ° peel strength is 1.0 / mm or more and less than 1.5 N / mm ○: 180 ° peel strength is 0.5 N / mm or more, Less than 1.0 N / mm Δ: 180 ° peel strength is 0.25 N / mm or more and less than 0.5 N / mm ×: 180 ° peel strength is less than 0.25 N / mm
 (4)硬化性
 硬化時間を10秒と30秒との2条件で試験片を作成したこと以外は、上記接着性の評価方法と同様に試験片を作成し、180°ピール強度を測定した。下記式に従い硬化性を評価した。
(4) Curability A test piece was prepared in the same manner as the adhesive evaluation method except that the test piece was prepared under two conditions of 10 seconds and 30 seconds, and the 180 ° peel strength was measured. The curability was evaluated according to the following formula.
 硬化性(%)=(硬化時間10秒での180°ピール強度)×100/硬化時間30秒での180°ピール強度 Curability (%) = (180 ° peel strength when curing time is 10 seconds) × 100/180 ° peel strength when curing time is 30 seconds
 [硬化性の判定基準]
 ○○:95%以上
 ○:90%以上、95%未満
 △:85%以上、90%未満
 ×:85%未満
[Criteria for curability]
○○: 95% or more ○: 90% or more, less than 95% △: 85% or more, less than 90% ×: less than 85%
 組成及び結果を下記表4に示す。 Composition and results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 1…導電性粒子
 2…基材粒子
 3…導電層
 3A…第2の導電層
 3B…はんだ層
 3Ba…溶融したはんだ層部分
 11…導電性粒子
 12…はんだ層
 21…導電性粒子
 51,61,71…接続構造体
 52,62,72…第1の接続対象部材
 52a,62a…第1の電極
 53,63,73…第2の接続対象部材
 53a,63a…第2の電極
 54,64,74…接続部
DESCRIPTION OF SYMBOLS 1 ... Conductive particle 2 ... Base material particle 3 ... Conductive layer 3A ... 2nd conductive layer 3B ... Solder layer 3Ba ... Molten solder layer part 11 ... Conductive particle 12 ... Solder layer 21 ... Conductive particle 51,61, 71 ... Connection structure 52, 62, 72 ... 1st connection object member 52a, 62a ... 1st electrode 53, 63, 73 ... 2nd connection object member 53a, 63a ... 2nd electrode 54, 64, 74 ... Connection

Claims (23)

  1.  下記式(11)で表される化合物とジオール化合物との反応により得られる第1の化合物を用いて、前記第1の化合物に、イソシアネート基及び不飽和二重結合を有する第2の化合物を反応させることにより得られる硬化性化合物と、
     熱硬化剤とを含む、硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
     前記式(11)中、Xは、炭素数2~10のアルキレン基又はフェニレン基を表し、R1及びR2はそれぞれ、水素原子又は炭素数1~4のアルキル基を表す。
    Using the first compound obtained by the reaction of the compound represented by the following formula (11) and the diol compound, the first compound is reacted with the second compound having an isocyanate group and an unsaturated double bond. A curable compound obtained by
    A curable composition comprising a thermosetting agent.
    Figure JPOXMLDOC01-appb-C000001
    In the formula (11), X represents an alkylene group having 2 to 10 carbon atoms or a phenylene group, and R1 and R2 each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  2.  前記式(11)で表される化合物が、下記式(11A)で表される化合物である、請求項1に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002
     前記式(11A)中、R1及びR2はそれぞれ、水素原子又は炭素数1~4のアルキル基を表す。
    The curable composition of Claim 1 whose compound represented by said Formula (11) is a compound represented by following formula (11A).
    Figure JPOXMLDOC01-appb-C000002
    In the formula (11A), R1 and R2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  3.  前記式(11)で表される化合物が、テレフタル酸、テレフタル酸アルキルエステル、イソフタル酸、又はイソフタル酸アルキルエステルである、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the compound represented by the formula (11) is terephthalic acid, terephthalic acid alkyl ester, isophthalic acid, or isophthalic acid alkyl ester.
  4.  前記ジオール化合物が、1,6-ヘキサンジオールを含む、請求項1~3のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the diol compound comprises 1,6-hexanediol.
  5.  前記ジオール化合物が、ビスフェノールA又はビスフェノールFを含む、請求項1~4のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 4, wherein the diol compound contains bisphenol A or bisphenol F.
  6.  前記ジオール化合物が、1,6-ヘキサンジオールと、ビスフェノールA又はビスフェノールFとを含む、請求項1~5のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, wherein the diol compound comprises 1,6-hexanediol and bisphenol A or bisphenol F.
  7.  前記第2の化合物が、不飽和二重結合を含む基として、(メタ)アクリロイル基を有する、請求項1~6のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 6, wherein the second compound has a (meth) acryloyl group as a group containing an unsaturated double bond.
  8.  前記第2の化合物が、(メタ)アクリロイルオキシアルキルオキシイソシアネートである、請求項7に記載の硬化性組成物。 The curable composition according to claim 7, wherein the second compound is (meth) acryloyloxyalkyloxyisocyanate.
  9.  前記硬化性化合物の重量平均分子量が8000以上、50000以下である、請求項1~8のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 8, wherein the curable compound has a weight average molecular weight of 8000 or more and 50,000 or less.
  10.  四級アンモニウム塩化合物又は水酸基を有する(メタ)アクリル化合物を含む、請求項1~9のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 9, comprising a quaternary ammonium salt compound or a (meth) acrylic compound having a hydroxyl group.
  11.  前記四級アンモニウム塩化合物を含む、請求項10に記載の硬化性組成物。 The curable composition according to claim 10, comprising the quaternary ammonium salt compound.
  12.  前記水酸基を有する(メタ)アクリル化合物を含む、請求項10又は11に記載の硬化性組成物。 The curable composition of Claim 10 or 11 containing the (meth) acrylic compound which has the said hydroxyl group.
  13.  前記熱硬化剤が、熱ラジカル発生剤である、請求項1~12のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 12, wherein the thermosetting agent is a thermal radical generator.
  14.  140℃及び10秒で硬化させたときに、得られる硬化物の破断伸びが500%以上である、請求項1~13のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 13, wherein the cured product obtained has an elongation at break of 500% or more when cured at 140 ° C for 10 seconds.
  15.  ポリエチレンテレフタレートフィルムの接着に用いられ、
     ポリエチレンテレフタレートフィルム接着用の硬化性組成物である、請求項1~14のいずれか1項に記載の硬化性組成物。
    Used for adhesion of polyethylene terephthalate film,
    The curable composition according to any one of claims 1 to 14, which is a curable composition for adhering a polyethylene terephthalate film.
  16.  タッチパネルにおいて、ポリエチレンテレフタレートフィルムの接着に用いられ、
     タッチパネルにおけるポリエチレンテレフタレートフィルム接着用の硬化性組成物である、請求項15に記載の硬化性組成物。
    In the touch panel, used for adhesion of polyethylene terephthalate film,
    The curable composition of Claim 15 which is a curable composition for the polyethylene terephthalate film adhesion | attachment in a touch panel.
  17.  下記式(1)で表される硬化性化合物と、
     熱硬化剤とを含む、硬化性組成物。
    Figure JPOXMLDOC01-appb-C000003
     前記式(1)中、R1、R2はそれぞれ、水素原子又はメチル基を表し、R3及びR4はそれぞれ、水素原子、メチル基又はフェニル基を表し、Xは、炭素数2~10のアルキレン基又はポリエーテル基を表し、Yは炭素数2~10のアルキレン基又はフェニレン基を表し、n1及びn2はそれぞれ、1又は2を表し、mは、式(1)で表される硬化性化合物の重量平均分子量が8000以上、50000以下になる整数を表す。
    A curable compound represented by the following formula (1);
    A curable composition comprising a thermosetting agent.
    Figure JPOXMLDOC01-appb-C000003
    In the formula (1), R 1 and R 2 each represent a hydrogen atom or a methyl group, R 3 and R 4 each represent a hydrogen atom, a methyl group or a phenyl group, and X represents an alkylene group having 2 to 10 carbon atoms or Represents a polyether group, Y represents an alkylene group having 2 to 10 carbon atoms or a phenylene group, n1 and n2 each represents 1 or 2, and m represents the weight of the curable compound represented by the formula (1) It represents an integer having an average molecular weight of 8000 or more and 50000 or less.
  18.  請求項1~16のいずれか1項に記載の硬化性組成物と、
     導電性粒子とを含む、導電材料。
    A curable composition according to any one of claims 1 to 16,
    A conductive material comprising conductive particles.
  19.  前記硬化性化合物の含有量が、50重量%以上である、請求項18に記載の導電材料。 The conductive material according to claim 18, wherein the content of the curable compound is 50% by weight or more.
  20.  前記導電性粒子が、はんだを導電性の外表面に有する、請求項18又は19に記載の導電材料。 The conductive material according to claim 18 or 19, wherein the conductive particles have solder on a conductive outer surface.
  21.  第1の接続対象部材と、
     第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、請求項1~16のいずれか1項に記載の硬化性組成物を硬化させることにより形成されている、接続構造体。
    A first connection target member;
    A second connection target member;
    A connection portion connecting the first connection target member and the second connection target member;
    A connection structure, wherein the connection part is formed by curing the curable composition according to any one of claims 1 to 16.
  22.  前記第1の接続対象部材が第1の電極を表面に有し、
     前記第2の接続対象部材が第2の電極を表面に有し、
     前記第1の電極と前記第2の電極とが、接触することで、電気的に接続されている、請求項21に記載の接続構造体。
    The first connection object member has a first electrode on the surface,
    The second connection object member has a second electrode on the surface,
    The connection structure according to claim 21, wherein the first electrode and the second electrode are electrically connected by being in contact with each other.
  23.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、請求項18~20のいずれか1項に記載の導電材料を硬化させることにより形成されており、
     前記第1の電極と前記第2の電極とが、前記導電性粒子により電気的に接続されている、接続構造体。
    A first connection object member having a first electrode on its surface;
    A second connection target member having a second electrode on its surface;
    A connection portion connecting the first connection target member and the second connection target member;
    The connecting portion is formed by curing the conductive material according to any one of claims 18 to 20,
    A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2015/063096 2014-05-08 2015-05-01 Curable composition, electroconductive material, and connection structure WO2015170682A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167012327A KR20170005787A (en) 2014-05-08 2015-05-01 Curable composition, electroconductive material, and connection structure
CN201580004747.7A CN105916903A (en) 2014-05-08 2015-05-01 Curable composition, electroconductive material, and connection structure
JP2015524532A JP6049879B2 (en) 2014-05-08 2015-05-01 Curable composition, conductive material and connection structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-096835 2014-05-08
JP2014096835 2014-05-08
JP2014146639 2014-07-17
JP2014-146639 2014-07-17

Publications (1)

Publication Number Publication Date
WO2015170682A1 true WO2015170682A1 (en) 2015-11-12

Family

ID=54392532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063096 WO2015170682A1 (en) 2014-05-08 2015-05-01 Curable composition, electroconductive material, and connection structure

Country Status (5)

Country Link
JP (1) JP6049879B2 (en)
KR (1) KR20170005787A (en)
CN (1) CN105916903A (en)
TW (1) TWI667287B (en)
WO (1) WO2015170682A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11970631B2 (en) 2021-06-18 2024-04-30 Panasonic Intellectual Property Management Co., Ltd. Conductive paste and conductive film formed using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870848B2 (en) * 2017-04-28 2021-05-12 竹本油脂株式会社 Conductive agents for synthetic resins, conductive resin compositions and conductive flooring materials
KR102186521B1 (en) * 2018-02-09 2020-12-03 주식회사 엘지화학 Adhesive composition for semiconductor circuit connection and adhesive film, containing the same
KR20210004943A (en) * 2018-04-26 2021-01-13 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, laminate, semiconductor wafer on which resin composition layer is formed, substrate for semiconductor mounting on which resin composition layer is formed, and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173590A (en) * 1974-11-19 1976-06-25 Basf Ag
JPH04161447A (en) * 1990-10-26 1992-06-04 Dainippon Ink & Chem Inc Polyester resin composition, production thereof and coating using the same
JPH11240931A (en) * 1998-02-25 1999-09-07 Wakayama Prefecture Unsaturated polyester resin composition and its molding
JP2003277342A (en) * 2002-03-19 2003-10-02 Wakayama Prefecture Polyester macromonomer and method for producing the same
JP2006257200A (en) * 2005-03-16 2006-09-28 Hitachi Chem Co Ltd Adhesive composition, adhesive composition for circuit connection and circuit connection structure and semiconductor device using it
WO2011162256A1 (en) * 2010-06-21 2011-12-29 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive material and process for production thereof, and mounting body and process for production thereof
WO2013146604A1 (en) * 2012-03-26 2013-10-03 積水化学工業株式会社 Conductive material and connecting structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4289319B2 (en) 1997-03-31 2009-07-01 日立化成工業株式会社 Circuit connection material, circuit terminal connection structure and connection method
JP5821355B2 (en) 2011-07-15 2015-11-24 住友ベークライト株式会社 Metal base circuit board, laminated board, inverter device and power semiconductor device
JP5382277B2 (en) * 2011-10-19 2014-01-08 Dic株式会社 Active energy ray-curable resin composition, adhesive and laminated film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173590A (en) * 1974-11-19 1976-06-25 Basf Ag
JPH04161447A (en) * 1990-10-26 1992-06-04 Dainippon Ink & Chem Inc Polyester resin composition, production thereof and coating using the same
JPH11240931A (en) * 1998-02-25 1999-09-07 Wakayama Prefecture Unsaturated polyester resin composition and its molding
JP2003277342A (en) * 2002-03-19 2003-10-02 Wakayama Prefecture Polyester macromonomer and method for producing the same
JP2006257200A (en) * 2005-03-16 2006-09-28 Hitachi Chem Co Ltd Adhesive composition, adhesive composition for circuit connection and circuit connection structure and semiconductor device using it
WO2011162256A1 (en) * 2010-06-21 2011-12-29 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive material and process for production thereof, and mounting body and process for production thereof
WO2013146604A1 (en) * 2012-03-26 2013-10-03 積水化学工業株式会社 Conductive material and connecting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11970631B2 (en) 2021-06-18 2024-04-30 Panasonic Intellectual Property Management Co., Ltd. Conductive paste and conductive film formed using the same

Also Published As

Publication number Publication date
TW201546176A (en) 2015-12-16
JP6049879B2 (en) 2016-12-21
TWI667287B (en) 2019-08-01
KR20170005787A (en) 2017-01-16
JPWO2015170682A1 (en) 2017-04-20
CN105916903A (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5897189B2 (en) Curable composition and connection structure
JP5639304B1 (en) Curable composition for electronic parts and connection structure
JP5899117B2 (en) Epoxy compound, mixture of epoxy compound, curable composition, and connection structure
JPWO2018047690A1 (en) Conductive material, connection structure and method of manufacturing connection structure
JP2015004056A (en) Curable composition for electronic component and connection structure
JP6049879B2 (en) Curable composition, conductive material and connection structure
JP5613220B2 (en) Electronic component connection material and connection structure
JP2016004971A (en) Connection structure and manufacturing method for the same
JP2017045541A (en) Conducive material and connection structure
WO2017033931A1 (en) Conductive material and connection structure
JP6533369B2 (en) Conductive material and connection structure
JP6294973B2 (en) Conductive material and connection structure
JP2017045606A (en) Conducive material, connection structure and manufacturing method of connection structure
JP2017045543A (en) Conducive material and connection structure
JP2017045542A (en) Conducive material and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015524532

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167012327

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789446

Country of ref document: EP

Kind code of ref document: A1