WO2015170588A1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
WO2015170588A1
WO2015170588A1 PCT/JP2015/062166 JP2015062166W WO2015170588A1 WO 2015170588 A1 WO2015170588 A1 WO 2015170588A1 JP 2015062166 W JP2015062166 W JP 2015062166W WO 2015170588 A1 WO2015170588 A1 WO 2015170588A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel injection
nozzle
injection
injection valve
Prior art date
Application number
PCT/JP2015/062166
Other languages
French (fr)
Japanese (ja)
Inventor
石井 英二
正典 石川
一樹 吉村
秀治 江原
清隆 小倉
威生 三宅
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2015170588A1 publication Critical patent/WO2015170588A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the present invention relates to a fuel injection valve used in an internal combustion engine such as a gasoline engine, in which fuel leakage is prevented by contacting the valve seat, and fuel injection is performed by separating the valve from the valve seat. Regarding the valve.
  • Patent Document 1 is a background art in this technical field.
  • the surface roughness in the vicinity of the outlet side of the fuel injection hole is formed to be rough, and the sectional area of the outlet side of the fuel injection hole is formed to be larger than the sectional area of the inlet side. Deposits are volumed to prevent deposits from adhering to the fuel inlet side (metering section).
  • Patent Document 2 Another background art is, for example, Patent Document 2.
  • an oil repellent coating is continuously coated from the front end surface to the outer peripheral surface of the fuel injection hole, and the injection hole in the front end region of the fuel injection hole is formed in a stepped shape so that the injection hole near the valve seat
  • the fuel spray flow is prevented from adhering to the inner wall of the nozzle hole in the nozzle hole tip region, thereby preventing the occurrence of deposits.
  • the surface roughness in the vicinity of the outlet side of the fuel injection hole is formed to be rough, and the sectional area of the outlet side of the fuel injection hole is made larger than the sectional area of the inlet side.
  • the deposit is made to be volumetric to prevent deposits from adhering to the fuel inlet side (metering section).
  • this technique has a problem in that the deposit grows so as to block the injection nozzle outlet due to the structure in which the deposit is attached to the injection nozzle outlet, and as a result, the spray shape and the injection flow rate change over time.
  • an oil repellent coating is continuously coated from the front end surface to the outer peripheral surface of the fuel injection hole, and the injection hole in the front end region of the fuel injection hole is formed in a stepped shape so that the injection hole near the valve seat
  • the fuel spray flow is prevented from adhering to the inner wall of the nozzle hole in the nozzle hole tip region, thereby preventing the occurrence of deposits.
  • the fuel scattered from the spray remains in the stepped shape portion provided in the tip region of the fuel nozzle hole due to the surface tension effect of the step corner portion. Therefore, as a result, deposits are generated in the stepped shape portion, which causes a problem of causing a change with time in the spray shape and the injection flow rate.
  • An object of the present invention is to reduce the fuel remaining in the vicinity of the injection nozzle outlet, thereby preventing deposits generated in the injection nozzle and in the vicinity of the injection nozzle outlet, so that there is no change with time in the spray shape and the injection flow rate. Is to provide.
  • the object of the present invention is achieved, for example, by forming a predetermined spot facing on the outlet side of the injection nozzle and providing a step portion between the nozzle and the spot facing.
  • the present invention it is possible to improve the exhaust performance and the fuel consumption performance by preventing the deposit generated in the injection nozzle and in the vicinity of the injection nozzle outlet and realizing the fuel injection device in which the spray shape and the injection flow rate do not change with time.
  • An internal combustion engine can be realized.
  • FIG. 4 is a diagram illustrating a mechanism for reducing residual fuel in the vicinity of the injection nozzle outlet in the injection nozzle of FIG. 3. It is a residual fuel distribution near the injection nozzle outlet in the conventional injection nozzle structure. In the conventional injection nozzle structure, it is a residual fuel distribution in the vicinity of the injection nozzle outlet when a concave portion is provided on the orifice cup surface located at the downstream outlet of the spot facing portion.
  • Example of this invention it is the example which used the R part of the downstream exit of the spot facing part as the chamfering part (2nd Example).
  • the R portion at the downstream outlet of the spot facing portion is eliminated (third embodiment).
  • the concave portion provided on the surface of the orifice cup located at the downstream outlet of the spot facing portion is removed (fourth embodiment).
  • the outer peripheral side end face of the concave portion provided on the orifice cup surface located at the downstream outlet of the spot facing portion is configured by a curved surface (fifth embodiment).
  • Example of this invention it is an example which formed the hollow in the outer peripheral side of the recessed part provided in the orifice cup surface located in the downstream exit of a spot facing part (6th Example).
  • the first embodiment of the present invention is an example in which the spot facing portion is asymmetric with respect to the injection nozzle central axis (seventh embodiment).
  • 1st Example of this invention it is an example which used the side wall of the spot facing part as the curved surface (8th Example).
  • a fuel injection valve according to a first embodiment of the present invention will be described below with reference to FIGS. (Explanation of basic operation of injection valve)
  • fuel is supplied from a fuel supply port 112 and is supplied into the fuel injection valve.
  • the electromagnetic fuel injection valve 100 shown in FIG. 1 is a normally closed electromagnetic drive type, and when the coil 108 is not energized, the valve body 101 is urged by the spring 110 and pressed against the seat member 102. The fuel is sealed.
  • the supplied fuel pressure is in the range of about 1 MPa to 35 MPa.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the injection nozzle provided at the tip of the valve body.
  • the valve body 101 keeps the fuel seal by contacting the valve seat surface 203 formed of a conical surface provided on the seat member 102 joined to the nozzle body 104 by welding or the like. It is like that.
  • the contact portion on the valve body 101 side is formed by the spherical surface 202, and the contact between the conical valve seat surface 203 and the spherical surface 202 is in a substantially line contact state.
  • FIG. 3 is an enlarged cross-sectional view of the vicinity of the injection nozzle 201 of FIG. (Flow, effect explanation)
  • FIG. 4 is a diagram illustrating a mechanism for preventing residual fuel near the injection nozzle outlet in the injection nozzle of the first embodiment.
  • fuel flows into the injection nozzle 201 from the direction of the arrow 301 shown in FIG.
  • the fuel that has passed through the injection nozzle 201 is injected into the spot facing portion 206.
  • the fuel exits the injection nozzle 201, and at the same time, breaks into droplets and changes into a spray form. After passing through the spot facing portion, the fuel is injected into the air.
  • the first feature of the present embodiment is that the diameter of the spot facing 206 is formed so as to go downstream.
  • the outer edge of the spray coming out of the spray nozzle 201 comes into slight contact with the inner wall surface of the spot facing 206, and as a result, the cleaning 404 of the inner wall of the spot facing can be performed. It is possible to prevent foreign matter from adhering to the wall surface and residual fuel 405. Further, as a merit of forming the spot facing portion 206, even if the plate thickness of the orifice cup 102 is the same, the length of the injection nozzle 201 can be freely changed by changing the depth of the spot facing portion 206. . Since the length of the injection nozzle 201 greatly affects the spray shape, it is a great merit that the length of the injection nozzle 201 can be freely changed.
  • a step portion 205 is provided between the spray nozzle 201 and the spot facing portion 206, and the spray generation position is fixed by the step portion 205, thereby realizing stable spray formation with little shot variation. Is done. Further, the step 205 makes it possible to reduce fuel dripping just before the valve body 101 is closed. This is because the fuel that has been slowed down just before the valve is closed is trapped by the surface tension effect (meniscus effect) generated in the step portion 205.
  • the width of the stepped portion 205 is smaller than the inner diameter of the injection nozzle 201 (preferably 15% or less), and a small amount of fuel is trapped.
  • an R portion 207 is formed at the downstream outlet of the spot facing portion 206, and oil repellent coatings 302 and 303 are formed upstream from the R portion or the chamfered portion. Further, a recess 208 is provided for each spray nozzle 201 on the surface of the orifice cup 102 located at the downstream outlet of the spot facing 206 for each spray nozzle 201. Due to the former effect, the fuel 401 remains only in the injection nozzle, and the fuel interface is formed as in 403.
  • the cleaning 404 when there is residual fuel in the vicinity of the exit of the spot facing portion 206 and in the concave portion 208 on the surface of the orifice cup 102, the residual fuel is caused by the surface tension effect (meniscus effect) generated in the outer edge groove portion 209 of the concave portion 208.
  • the liquid film 402 is formed at a position away from the outlet of the spot facing 206 by being drawn toward the outer edge groove 209 of the recess 208.
  • FIG. 5 shows that the nozzle hole in the tip region of the fuel nozzle has a stepped shape and the diameter of the nozzle hole in the tip portion is larger than the nozzle hole near the valve seat so that the fuel spray flow is generated in the nozzle hole tip region It prevents it from adhering to the inner wall.
  • the fuel scattered from the spray remains in the stepped shape portion provided in the tip region of the spray fuel nozzle hole due to the surface tension effect of the step angle portion, and finally in the nozzle hole.
  • the interface shape of the fuel 501 is formed in the vicinity of the counterbore portion outlet as indicated by 503. As a result, there is a problem that deposits occur in the spot facing portion.
  • the counterbore portion outlet is an edge 504. Since the fuel is attracted to the edge portion 504 due to the surface tension effect, there is a problem that a liquid film 501 of residual fuel is generated around the counterbore portion outlet and is deposited.
  • the oil repellent coating is continuously coated from the front end surface to the outer peripheral surface of the spot facing portion, the residual fuel generated on the inner wall of the spot facing portion cannot move to the outer peripheral surface, and there is a problem that the residual fuel further increases. is there.
  • FIG. 6 shows the residual fuel distribution in the case where a concave portion centered on the injection nozzle is formed on the orifice cup surface located at the downstream outlet of the spot facing portion.
  • the fuel remaining in the recess is trapped by the outer edge 209 of the recess and the edge 504 at the exit of the spot facing portion, so that there is a problem that the liquid film 601 grows larger than that of the liquid film 402 in FIG.
  • the injection nozzle structure shown in the present embodiment is described by taking a fuel injection device for a cylinder injection engine as an example, but an effect can also be obtained in a fuel injection device for a port injection engine. The same applies to the embodiments described hereinafter.
  • FIG. 7 shows a second embodiment.
  • the R portion 207 is changed to a chamfered portion 701 to facilitate the processing, and the residual fuel is the same as in the first embodiment. Can be prevented.
  • FIG. 8 shows a third embodiment.
  • the processing is facilitated by eliminating the R portion at the downstream outlet of the spot facing portion.
  • the effect of preventing residual fuel can be obtained.
  • FIG. 9 shows a fourth embodiment, which is an example in which machining is facilitated by eliminating the recess 208 on the surface of the orifice cup. Similar to the first embodiment, the effect of preventing residual fuel in the spot facing portion is obtained. It is done.
  • FIG. 10 shows a fifth embodiment, in which the outer peripheral side end surface of the recess 208 on the orifice cup surface is configured by a curved surface 1001, and the effect of preventing residual fuel can be obtained as in the first embodiment.
  • FIG. 11 shows a sixth embodiment, which is an example in which a depression 1101 is formed on the outer peripheral side of a recess provided on the orifice cup surface located at the downstream outlet of the spot facing portion.
  • FIG. 12 shows a seventh embodiment, in which the spot facing portion is asymmetric with respect to the central axis of the injection nozzle.
  • the spray from the injection nozzle 201 is often asymmetric with respect to the central axis of the nozzle.
  • the inner wall of the spot facing portion 206 is matched to the spray shape of the spray nozzle. Ideally, the degree of taper is changed. This shape provides a further effect of preventing residual fuel.
  • FIG. 13 shows an eighth embodiment.
  • the inner wall of the spot facing portion is formed by a curved surface, and the inner wall and the R portion of the spot facing portion are processed consistently. As in the first embodiment, FIG. The effect of preventing residual fuel can be obtained.
  • the above-described embodiment can be described as follows. That is, it has a seat part that contacts the valve body and seats the fuel and a plurality of nozzles in the seat part, and a spot facing part is formed on the outlet side of the nozzle, and the diameter of the spot facing part increases toward the downstream. And a step portion is provided between the nozzle and the spot facing portion. Also, the opening angle of the spot facing can be made different for a plurality of nozzles. Thereby, a more accurate spray shape can be designed.
  • Electromagnetic fuel injection valve 101 ... Valve body 102 ... Valve seat member 103 ... Guide member 104 ... Nozzle body 105 ... Valve body guide 106 ... Movable element 107 ... Magnetic core 108 ... Coil 109 ... Yoke 110 ... Biasing spring 111 ... Connector 112 ... Fuel supply port 201 ... Injection nozzle 202 ... Spherical surface 203 of the valve element ... Valve seat surface 204 ... Vertical axis 205 of fuel injection valve ... Stepped portion 206 ... Counterbore portion 207 ... R portion 208 ... Recessed portion 209 ... Outer edge portion 301 ... Fuel inflow direction 302 ...
  • oil repellent coating 303 oil repellent coating 304 ... surface 401 without oil repellent coating ... fuel 402 in the injection nozzle ... liquid film 403 ... in the injection nozzle
  • the liquid film interface 404 of the counterbore by fuel spray Cleaning effect of inner wall 405 Foreign matter adhesion to the inner wall surface of the spot facing and residual fuel 501 ... Liquid film 502 ... Residual fuel 503 in the injection nozzle and spot facing 503 ... Residual of the spot facing Fuel interface 504 ... Edge of counterbore part 601 ... Liquid film 701 ... Chamfered part 801 ...
  • a recess 1201 on the outer peripheral side .... the counterbore 1301 asymmetric with respect to the central axis of the injection nozzle .... the inner wall of the spot facing is a curved surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The present invention addresses the problem of preventing fuel remaining near the outlet of an injection nozzle from carbonizing, adhering as deposits, and changing the shape of spray and the flow rate of injection. This fuel injection valve is provided with: a circular conical seat surface coming into contact with a valve body and sealing fuel; and fuel injection nozzles having fuel injection hole inlet openings formed in the circular conical seat surface, the injection nozzles being configured so that injection hole axes which each connect the centers of the inlet and outlet of each of the fuel injection holes are configured to extend along different circular conical surfaces. The injection valve is characterized in that: the injection nozzles each have formed on the outlet side thereof a counterbore which does not function as an injection nozzle (that is, which does not function to control both the shape of spray and flow rate); the diameter of the opening of the counterbore is formed so as to increase toward the downstream side; and a stepped section is formed between the injection nozzle and the counterbore.

Description

燃料噴射弁Fuel injection valve
 本発明は、ガソリンエンジン等の内燃機関に用いられる燃料噴射弁であって、弁が弁座と当接することで燃料の漏洩を防止し、弁が弁座から離れることによって噴射を行なう、燃料噴射弁に関する。 The present invention relates to a fuel injection valve used in an internal combustion engine such as a gasoline engine, in which fuel leakage is prevented by contacting the valve seat, and fuel injection is performed by separating the valve from the valve seat. Regarding the valve.
 本技術分野の背景技術としては例えば特許文献1がある。本公報には、燃料噴孔の出口側近傍の面粗度を粗く形成し、燃料噴孔の出口側の断面積を入口側の断面積よりも大きく形成することで、出口部に積極的にデポジットを体積させ、燃料入口側(計量部)へのデポジット付着を抑制している。 For example, Patent Document 1 is a background art in this technical field. In this publication, the surface roughness in the vicinity of the outlet side of the fuel injection hole is formed to be rough, and the sectional area of the outlet side of the fuel injection hole is formed to be larger than the sectional area of the inlet side. Deposits are volumed to prevent deposits from adhering to the fuel inlet side (metering section).
 また別の背景技術としては例えば特許文献2がある。本公報には、燃料噴孔の先端面から外周面にかけて連続的に撥油被膜で被覆し、かつ燃料噴孔の先端領域の噴孔を段付き形状にして、弁座寄りの噴口に対して先端部の噴口の口径を大きくすることで、燃料噴霧流が噴孔先端領域で噴口内壁に付着しないようにして、デポジットの発生を防止している。 Another background art is, for example, Patent Document 2. In this publication, an oil repellent coating is continuously coated from the front end surface to the outer peripheral surface of the fuel injection hole, and the injection hole in the front end region of the fuel injection hole is formed in a stepped shape so that the injection hole near the valve seat By increasing the diameter of the nozzle hole at the tip, the fuel spray flow is prevented from adhering to the inner wall of the nozzle hole in the nozzle hole tip region, thereby preventing the occurrence of deposits.
特開2007-321592号公報JP 2007-315992 A 特開2007-32421号公報JP 2007-32421 A
 自動車エンジン用燃料噴射装置では、燃料噴射中もしくは噴射後に、噴射ノズル出口近傍に残留した燃料が炭化してデポジットとして付着する問題がある。このデポジットは、噴射装置の使用時間と伴に噴射ノズルの出口の一部を塞ぐぐらいまで成長し、噴霧形状や噴射流量の変化を引き起こす。そこで、燃料噴射中もしくは噴射後に、噴射ノズル出口近傍に残留する燃料を低減する必要がある。 In a fuel injection device for an automobile engine, there is a problem that fuel remaining in the vicinity of the injection nozzle outlet is carbonized and deposited as a deposit during or after fuel injection. This deposit grows to the extent that it closes a part of the outlet of the injection nozzle with the use time of the injection device, and causes changes in the spray shape and the injection flow rate. Therefore, it is necessary to reduce the fuel remaining in the vicinity of the injection nozzle outlet during or after fuel injection.
 上記特許文献1では、燃料噴孔の出口側近傍の面粗度を粗く形成し、燃料噴孔の出口側の断面積を入口側の断面積よりも大きく形成することで、出口部に積極的にデポジットを体積させ、燃料入口側(計量部)へのデポジット付着を抑制している。しかしこの技術では、噴射ノズル出口にデポジットを付着させる構造ために、徐々にデポジットが噴射ノズル出口を塞ぐように成長し、結果として噴霧形状や噴射流量の経時変化を引き起こすという課題がある。 In the above-mentioned Patent Document 1, the surface roughness in the vicinity of the outlet side of the fuel injection hole is formed to be rough, and the sectional area of the outlet side of the fuel injection hole is made larger than the sectional area of the inlet side. The deposit is made to be volumetric to prevent deposits from adhering to the fuel inlet side (metering section). However, this technique has a problem in that the deposit grows so as to block the injection nozzle outlet due to the structure in which the deposit is attached to the injection nozzle outlet, and as a result, the spray shape and the injection flow rate change over time.
 また特許文献2では、燃料噴孔の先端面から外周面にかけて連続的に撥油被膜で被覆し、かつ燃料噴孔の先端領域の噴孔を段付き形状にして、弁座寄りの噴口に対して先端部の噴口の口径を大きくすることで、燃料噴霧流が噴孔先端領域で噴口内壁に付着しないようにして、デポジットの発生を防止している。しかしこの技術では、燃料噴孔の先端領域に設けた段付き形状部に、噴霧から飛散した燃料が段角部の表面張力効果で残留する。そのため結果として段付き形状部にデポジットが発生して、噴霧形状や噴射流量の経時変化を引き起こす課題がある。 Further, in Patent Document 2, an oil repellent coating is continuously coated from the front end surface to the outer peripheral surface of the fuel injection hole, and the injection hole in the front end region of the fuel injection hole is formed in a stepped shape so that the injection hole near the valve seat By increasing the diameter of the nozzle hole at the tip, the fuel spray flow is prevented from adhering to the inner wall of the nozzle hole in the nozzle hole tip region, thereby preventing the occurrence of deposits. However, in this technique, the fuel scattered from the spray remains in the stepped shape portion provided in the tip region of the fuel nozzle hole due to the surface tension effect of the step corner portion. Therefore, as a result, deposits are generated in the stepped shape portion, which causes a problem of causing a change with time in the spray shape and the injection flow rate.
 本発明の目的は、噴射ノズル出口近傍に残留する燃料を低減することにより、噴射ノズル内および噴射ノズル出口近傍に発生するデポジットを防止して、噴霧形状や噴射流量の経時変化が無い燃料噴射装置を提供することである。 An object of the present invention is to reduce the fuel remaining in the vicinity of the injection nozzle outlet, thereby preventing deposits generated in the injection nozzle and in the vicinity of the injection nozzle outlet, so that there is no change with time in the spray shape and the injection flow rate. Is to provide.
 本発明の目的は、例えば噴射ノズルの出口側に所定の座グリを形成し、ノズルと座グリとの間に段部を設けることで達成される。 The object of the present invention is achieved, for example, by forming a predetermined spot facing on the outlet side of the injection nozzle and providing a step portion between the nozzle and the spot facing.
 本発明によれば、噴射ノズル内および噴射ノズル出口の近傍に発生するデポジットを防止して、噴霧形状や噴射流量の経時変化が無い燃料噴射装置を実現することで、排気性能や燃費性能を高めた内燃機関を実現することが可能となる。 According to the present invention, it is possible to improve the exhaust performance and the fuel consumption performance by preventing the deposit generated in the injection nozzle and in the vicinity of the injection nozzle outlet and realizing the fuel injection device in which the spray shape and the injection flow rate do not change with time. An internal combustion engine can be realized.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明に係る燃料噴射弁の実施例を示す断面図である。It is sectional drawing which shows the Example of the fuel injection valve which concerns on this invention. 本発明の第1実施例に係る燃料噴射弁の弁体先端の近傍を拡大した断面図である。It is sectional drawing to which the vicinity of the valve body front-end | tip of the fuel injection valve which concerns on 1st Example of this invention was expanded. 図2の噴射ノズル近傍を拡大した断面図である(第1実施例)。It is sectional drawing to which the injection nozzle vicinity of FIG. 2 was expanded (1st Example). 図3の噴射ノズルにおいて、噴射ノズル出口近傍の残留燃料を低減するメカニズムを説明する図である。FIG. 4 is a diagram illustrating a mechanism for reducing residual fuel in the vicinity of the injection nozzle outlet in the injection nozzle of FIG. 3. 従来の噴射ノズル構造における、噴射ノズル出口近傍の残留燃料分布である。It is a residual fuel distribution near the injection nozzle outlet in the conventional injection nozzle structure. 従来の噴射ノズル構造において、座グリ部の下流側出口に位置するオリフィスカップ表面に凹部を設けた場合の、噴射ノズル出口近傍の残留燃料分布である。In the conventional injection nozzle structure, it is a residual fuel distribution in the vicinity of the injection nozzle outlet when a concave portion is provided on the orifice cup surface located at the downstream outlet of the spot facing portion. 本発明の第1実施例において、座グリ部の下流側出口のR部を面取り部とした例である(第2実施例)。In 1st Example of this invention, it is the example which used the R part of the downstream exit of the spot facing part as the chamfering part (2nd Example). 本発明の第1実施例において、座グリ部の下流側出口のR部を無くした例である(第3実施例)。In the first embodiment of the present invention, the R portion at the downstream outlet of the spot facing portion is eliminated (third embodiment). 本発明の第1実施例において、座グリ部の下流側出口に位置するオリフィスカップ表面に設けた凹部を取り除いた例である(第4実施例)。In the first embodiment of the present invention, the concave portion provided on the surface of the orifice cup located at the downstream outlet of the spot facing portion is removed (fourth embodiment). 本発明の第1実施例において、座グリ部の下流側出口に位置するオリフィスカップ表面に設けた凹部の外周側端面を曲面で構成した例である(第5実施例)。In the first embodiment of the present invention, it is an example in which the outer peripheral side end face of the concave portion provided on the orifice cup surface located at the downstream outlet of the spot facing portion is configured by a curved surface (fifth embodiment). 本発明の第1実施例において、座グリ部の下流側出口に位置するオリフィスカップ表面に設けた凹部の外周側に窪みを形成した例である(第6実施例)。In 1st Example of this invention, it is an example which formed the hollow in the outer peripheral side of the recessed part provided in the orifice cup surface located in the downstream exit of a spot facing part (6th Example). 本発明の第1実施例において、座グリ部を前記噴射ノズル中心軸に対して非対称とした例である(第7実施例)。The first embodiment of the present invention is an example in which the spot facing portion is asymmetric with respect to the injection nozzle central axis (seventh embodiment). 本発明の第1実施例において、座グリ部の側壁を曲面とした例である(第8実施例)。In 1st Example of this invention, it is an example which used the side wall of the spot facing part as the curved surface (8th Example).
 本発明の第1の実施例に係わる燃料噴射弁について、図1乃至図6を用いて以下説明する。
(噴射弁基本動作説明)
 図1において、燃料は燃料供給口112から供給され、燃料噴射弁の内部に供給される。図1に示す電磁式燃料噴射弁100は、通常時閉型の電磁駆動式であって、コイル108に通電がないときには、弁体101がスプリング110によって付勢されてシート部材102に押し付けられ、燃料がシールされるようになっている。このとき、筒内噴射用燃料噴射弁では、供給される燃料圧力がおよそ1MPa乃至35MPaの範囲である。
A fuel injection valve according to a first embodiment of the present invention will be described below with reference to FIGS.
(Explanation of basic operation of injection valve)
In FIG. 1, fuel is supplied from a fuel supply port 112 and is supplied into the fuel injection valve. The electromagnetic fuel injection valve 100 shown in FIG. 1 is a normally closed electromagnetic drive type, and when the coil 108 is not energized, the valve body 101 is urged by the spring 110 and pressed against the seat member 102. The fuel is sealed. At this time, in the in-cylinder fuel injection valve, the supplied fuel pressure is in the range of about 1 MPa to 35 MPa.
 図2は弁体の先端に設けられた噴射ノズルの近傍を拡大した断面図である。燃料噴射弁が閉弁状態にあるときには、弁体101はノズル体104に溶接などで接合されたシート部材102に設けられた円錐面からなる弁座面203と当接することによって燃料のシールを保つようになっている。このとき、弁体101側の接触部は球面202によって形成されており、円錐面の弁座面203と球面202の接触はほぼ線接触の状態になっている。図1に示したコイル108に通電されると、電磁弁の磁気回路を構成するコア107、ヨーク109、アンカー106に磁束密度を生じて、空隙のあるコア107とアンカー106の間に磁気吸引力を生じる。磁気吸引力が、スプリング110の付勢力と前述の燃料圧力による力よりも大きくなると、弁体101はガイド部材103、弁体ガイド105にガイドされながらアンカー106によってコア107側に吸引され、開弁状態となる。 FIG. 2 is an enlarged cross-sectional view of the vicinity of the injection nozzle provided at the tip of the valve body. When the fuel injection valve is in the closed state, the valve body 101 keeps the fuel seal by contacting the valve seat surface 203 formed of a conical surface provided on the seat member 102 joined to the nozzle body 104 by welding or the like. It is like that. At this time, the contact portion on the valve body 101 side is formed by the spherical surface 202, and the contact between the conical valve seat surface 203 and the spherical surface 202 is in a substantially line contact state. When the coil 108 shown in FIG. 1 is energized, a magnetic flux density is generated in the core 107, the yoke 109, and the anchor 106 constituting the magnetic circuit of the solenoid valve, and the magnetic attraction force is generated between the core 107 and the anchor 106 having a gap. Produce. When the magnetic attractive force becomes larger than the force of the biasing force of the spring 110 and the aforementioned fuel pressure, the valve body 101 is attracted to the core 107 side by the anchor 106 while being guided by the guide member 103 and the valve body guide 105 to open the valve. It becomes a state.
 開弁状態となると、弁座面203と弁体の球面部202との間に隙間を生じ、燃料の噴射が開始される。燃料の噴射が開始されると、燃料圧力として与えられたエネルギは運動エネルギに変換されて燃料の噴射ノズル201に至り噴射される。 When the valve is opened, a gap is created between the valve seat surface 203 and the spherical surface portion 202 of the valve body, and fuel injection is started. When the fuel injection is started, the energy given as the fuel pressure is converted into kinetic energy and injected to the fuel injection nozzle 201.
 図3は図2の噴射ノズル201近傍を拡大した断面図である。
(流れ、効果説明)
 図4は、第1実施例の噴射ノズルにおいて、噴射ノズル出口近傍の残留燃料を防止するメカニズムを説明する図である。本噴射ノズルでは、図3に示す矢印301の方向から燃料が噴射ノズル201へ流入する。噴射ノズル201を通過した燃料は座グリ部206に噴射される。そして、燃料は噴射ノズル201を出ると同時に液滴へ分裂して噴霧形態に変化し、座グリ部を通過した後、空気中に噴射される。
FIG. 3 is an enlarged cross-sectional view of the vicinity of the injection nozzle 201 of FIG.
(Flow, effect explanation)
FIG. 4 is a diagram illustrating a mechanism for preventing residual fuel near the injection nozzle outlet in the injection nozzle of the first embodiment. In the main injection nozzle, fuel flows into the injection nozzle 201 from the direction of the arrow 301 shown in FIG. The fuel that has passed through the injection nozzle 201 is injected into the spot facing portion 206. The fuel exits the injection nozzle 201, and at the same time, breaks into droplets and changes into a spray form. After passing through the spot facing portion, the fuel is injected into the air.
 本実施例の第1の特徴は、座グリ部206の口径は下流に行くほど大きくなるように形成したことである。 The first feature of the present embodiment is that the diameter of the spot facing 206 is formed so as to go downstream.
 これにより、噴射ノズル201から出た噴霧の外縁が、座グリ部206の内壁面と僅かに接触するようになり、その結果、座グリ部内壁のクリーニング404が可能となり、座グリ部206の内壁面への異物付着や残留燃料405を防ぐことが可能である。また、座グリ部206を形成することのメリットとして、オリフィスカップ102の板厚が同じでも、座グリ部206の深さを変えることで、噴射ノズル201の長さを自在に変更出来ることである。噴射ノズル201の長さは噴霧形状に大きく影響するため、噴射ノズル201の長さを自在に変更出来るのは大きなメリットである。 As a result, the outer edge of the spray coming out of the spray nozzle 201 comes into slight contact with the inner wall surface of the spot facing 206, and as a result, the cleaning 404 of the inner wall of the spot facing can be performed. It is possible to prevent foreign matter from adhering to the wall surface and residual fuel 405. Further, as a merit of forming the spot facing portion 206, even if the plate thickness of the orifice cup 102 is the same, the length of the injection nozzle 201 can be freely changed by changing the depth of the spot facing portion 206. . Since the length of the injection nozzle 201 greatly affects the spray shape, it is a great merit that the length of the injection nozzle 201 can be freely changed.
 第1実施例では、噴射ノズル201と座グリ部206の間には段差部205が設けられており、この段差部205により噴霧発生位置が固定され、ショットバラツキの少ない安定した噴霧の形成が実現される。さらに段差205により、弁体101が閉弁する間際の燃料だれを減らすことが可能である。この理由は、段差部205で生じる表面張力効果(メニスカス効果)で、閉弁間際の低速化した燃料がトラップされるからである。段差部205の幅は、噴射ノズル201の内径よりも小さく(15パーセント以下が望ましい)、トラップされる燃料は僅かである。 In the first embodiment, a step portion 205 is provided between the spray nozzle 201 and the spot facing portion 206, and the spray generation position is fixed by the step portion 205, thereby realizing stable spray formation with little shot variation. Is done. Further, the step 205 makes it possible to reduce fuel dripping just before the valve body 101 is closed. This is because the fuel that has been slowed down just before the valve is closed is trapped by the surface tension effect (meniscus effect) generated in the step portion 205. The width of the stepped portion 205 is smaller than the inner diameter of the injection nozzle 201 (preferably 15% or less), and a small amount of fuel is trapped.
 第1実施例では、座グリ部206の下流側出口にR部207を形成し、かつR部もしくは面取り部より上流側に撥油被膜302および303が形成されている。さらに、座グリ部206の下流側出口に位置するオリフィスカップ102の表面において、噴射ノズル201を中心とした凹部208を、噴射ノズル201毎に設けている。前者の効果により、燃料401は噴射ノズル内にのみ残留し、燃料界面は403のように形成される。また前記のクリーニング404の後に、座グリ部206出口付近およびオリフィスカップ102の表面の凹部208に残留燃料がある場合、残留燃料は凹部208の外縁溝部209で生じる表面張力効果(メニスカス効果)により、凹部208の外縁溝部209の方へ引き寄せられて、座グリ部206の出口から離れた位置に液膜402を形成する。以上の2つの効果により、座グリ部206の内部および出口近傍での残留燃料を防ぐことが可能となり、噴霧形状や噴射流量を変化させるデポジットの防止が出来る。 In the first embodiment, an R portion 207 is formed at the downstream outlet of the spot facing portion 206, and oil repellent coatings 302 and 303 are formed upstream from the R portion or the chamfered portion. Further, a recess 208 is provided for each spray nozzle 201 on the surface of the orifice cup 102 located at the downstream outlet of the spot facing 206 for each spray nozzle 201. Due to the former effect, the fuel 401 remains only in the injection nozzle, and the fuel interface is formed as in 403. Further, after the cleaning 404, when there is residual fuel in the vicinity of the exit of the spot facing portion 206 and in the concave portion 208 on the surface of the orifice cup 102, the residual fuel is caused by the surface tension effect (meniscus effect) generated in the outer edge groove portion 209 of the concave portion 208. The liquid film 402 is formed at a position away from the outlet of the spot facing 206 by being drawn toward the outer edge groove 209 of the recess 208. With the above two effects, it is possible to prevent residual fuel in the spot facing portion 206 and in the vicinity of the outlet, and it is possible to prevent deposits that change the spray shape and the injection flow rate.
 図5と図6を用いて、従来構造での残留燃料分布について説明する。
図5は、燃料噴孔の先端領域の噴孔を段付き形状にして、弁座寄りの噴口に対して先端部の噴口の口径を大きくすることで、燃料噴霧流が噴孔先端領域で噴口内壁に付着しないようにしている。しかし燃料噴射が繰り返されると、噴霧の燃料噴孔の先端領域に設けた段付き形状部に、噴霧から飛散した燃料が段角部の表面張力効果で残留していき、最終的に噴孔内の燃料501の界面形状は503のように座グリ部出口近傍に形成される。この結果、座グリ部にデポジットが発生してしまう課題がある。また図5の形状では、座グリ部出口がエッジ504になっている。表面張力効果により、燃料はエッジ部504に引き寄せられるため、座グリ部出口周囲に残留燃料の液膜501が生成されてデポジット化する課題がある。
The residual fuel distribution in the conventional structure will be described with reference to FIGS.
FIG. 5 shows that the nozzle hole in the tip region of the fuel nozzle has a stepped shape and the diameter of the nozzle hole in the tip portion is larger than the nozzle hole near the valve seat so that the fuel spray flow is generated in the nozzle hole tip region It prevents it from adhering to the inner wall. However, when fuel injection is repeated, the fuel scattered from the spray remains in the stepped shape portion provided in the tip region of the spray fuel nozzle hole due to the surface tension effect of the step angle portion, and finally in the nozzle hole. The interface shape of the fuel 501 is formed in the vicinity of the counterbore portion outlet as indicated by 503. As a result, there is a problem that deposits occur in the spot facing portion. In the shape of FIG. 5, the counterbore portion outlet is an edge 504. Since the fuel is attracted to the edge portion 504 due to the surface tension effect, there is a problem that a liquid film 501 of residual fuel is generated around the counterbore portion outlet and is deposited.
 また、座グリ部の先端面から外周面にかけて連続的に撥油被膜で被覆してしまうと、座グリ部内壁に生じた残留燃料が外周面へ移動出来ず、さらに残留燃料が増加する課題がある。 Further, if the oil repellent coating is continuously coated from the front end surface to the outer peripheral surface of the spot facing portion, the residual fuel generated on the inner wall of the spot facing portion cannot move to the outer peripheral surface, and there is a problem that the residual fuel further increases. is there.
 図6は、座グリ部の下流側出口に位置するオリフィスカップ表面において、噴射ノズルを中心とした凹部を形成した場合の残留燃料分布を示したものである。この形状では、凹部に残留した燃料は、凹部外縁209と座グリ部出口のエッジ504にトラップされるため、液膜601は図4の液膜402ものより大きく成長する課題がある。 FIG. 6 shows the residual fuel distribution in the case where a concave portion centered on the injection nozzle is formed on the orifice cup surface located at the downstream outlet of the spot facing portion. In this shape, the fuel remaining in the recess is trapped by the outer edge 209 of the recess and the edge 504 at the exit of the spot facing portion, so that there is a problem that the liquid film 601 grows larger than that of the liquid film 402 in FIG.
 本実施例で示した噴射ノズル構造は、筒内噴射エンジン用の燃料噴射装置を例として記載されているが、ポート噴射エンジン用の燃料噴射装置においても効果が得られる。以後説明する実施例に関しても同様である。 The injection nozzle structure shown in the present embodiment is described by taking a fuel injection device for a cylinder injection engine as an example, but an effect can also be obtained in a fuel injection device for a port injection engine. The same applies to the embodiments described hereinafter.
 図7は第2実施例を示すものであり、本発明の第1実施例において、R部207を面取り部701に変えることで加工を容易にしたもので、第1実施例と同様に残留燃料の防止効果が得られる。 FIG. 7 shows a second embodiment. In the first embodiment of the present invention, the R portion 207 is changed to a chamfered portion 701 to facilitate the processing, and the residual fuel is the same as in the first embodiment. Can be prevented.
 図8は第3実施例を示すものであり、本発明の第1実施例において、座グリ部の下流側出口のR部を無くすことで加工を容易にした例であり、第1実施例と同様に残留燃料の防止効果が得られる。図8では座グリ部206出口にエッジ部801があるが、凹部208の外縁部にあるエッジ209の方が表面張力効果(メニスカス効果)が大きいので、液膜は図4の402のように形成される。 FIG. 8 shows a third embodiment. In the first embodiment of the present invention, the processing is facilitated by eliminating the R portion at the downstream outlet of the spot facing portion. Similarly, the effect of preventing residual fuel can be obtained. In FIG. 8, there is an edge 801 at the exit of the spot facing 206, but the edge 209 at the outer edge of the recess 208 has a larger surface tension effect (meniscus effect), so the liquid film is formed as 402 in FIG. Is done.
 図9は第4実施例を示すものであり、オリフィスカップ表面の凹部208を無くすことで加工を容易にした例であり、第1実施例と同様に座グリ部内の残留燃料の防止効果が得られる。 FIG. 9 shows a fourth embodiment, which is an example in which machining is facilitated by eliminating the recess 208 on the surface of the orifice cup. Similar to the first embodiment, the effect of preventing residual fuel in the spot facing portion is obtained. It is done.
 図10は第5実施例を示すものであり、オリフィスカップ表面の凹部208の外周側端面を曲面1001で構成した例であり、第1実施例と同様に残留燃料の防止効果が得られる。 FIG. 10 shows a fifth embodiment, in which the outer peripheral side end surface of the recess 208 on the orifice cup surface is configured by a curved surface 1001, and the effect of preventing residual fuel can be obtained as in the first embodiment.
 図11は第6実施例を示すものであり、座グリ部の下流側出口に位置するオリフィスカップ表面に設けた凹部の外周側に窪み1101を形成した例である。これにより、凹部の残留燃料を凹部の外周側に引き寄せる効果が強くすることが出来、更なる残留燃料の防止効果が得られる。図11では、凹部の外周端面は曲面となっているが、図3の209のようにエッジ状でもよい。 FIG. 11 shows a sixth embodiment, which is an example in which a depression 1101 is formed on the outer peripheral side of a recess provided on the orifice cup surface located at the downstream outlet of the spot facing portion. Thereby, the effect of attracting the residual fuel in the concave portion toward the outer peripheral side of the concave portion can be strengthened, and a further effect of preventing the residual fuel can be obtained. In FIG. 11, the outer peripheral end surface of the concave portion is a curved surface, but it may be an edge shape as indicated by 209 in FIG.
 図12は第7実施例を示すものであり、座グリ部を前記噴射ノズル中心軸に対して非対称とした例である。噴射ノズル201から出る噴霧は、前記ノズル中心軸に対して非対称である場合が多く、座グリ部206のクリーニング効果を高めるためには、噴射ノズルの噴霧形状に合わせて座グリ部206の内壁のテーパ度を変えるのが理想である。本形状により、更なる残留燃料の防止効果が得られる。 FIG. 12 shows a seventh embodiment, in which the spot facing portion is asymmetric with respect to the central axis of the injection nozzle. The spray from the injection nozzle 201 is often asymmetric with respect to the central axis of the nozzle. In order to enhance the cleaning effect of the spot facing portion 206, the inner wall of the spot facing portion 206 is matched to the spray shape of the spray nozzle. Ideally, the degree of taper is changed. This shape provides a further effect of preventing residual fuel.
 図13は第8実施例を示すものであり、座グリ部の内壁を曲面で形成したことで、座グリ部の内壁とR部を一貫して加工したもので、第1実施例と同様に残留燃料の防止効果が得られる。 FIG. 13 shows an eighth embodiment. The inner wall of the spot facing portion is formed by a curved surface, and the inner wall and the R portion of the spot facing portion are processed consistently. As in the first embodiment, FIG. The effect of preventing residual fuel can be obtained.
 また、上述した実施例は以下のようにも記載できる。すなわち、弁体と接して燃料をシートするシート部とこのシート部に複数のノズルを有し、ノズルの出口側に、座グリ部を形成し、座グリ部の口径は下流に行くほど大きくなるように形成して、かつノズルと座グリ部の間に段差部を設ける。また、座グリの開口角は、複数のノズルで異ならせることもできる。これによりより正確な噴霧形状をデザインできる。 Further, the above-described embodiment can be described as follows. That is, it has a seat part that contacts the valve body and seats the fuel and a plurality of nozzles in the seat part, and a spot facing part is formed on the outlet side of the nozzle, and the diameter of the spot facing part increases toward the downstream. And a step portion is provided between the nozzle and the spot facing portion. Also, the opening angle of the spot facing can be made different for a plurality of nozzles. Thereby, a more accurate spray shape can be designed.
100・・・電磁式燃料噴射弁
101・・・弁体
102・・・弁座部材
103・・・ガイド部材
104・・・ノズル体
105・・・弁体ガイド
106・・・可動子
107・・・磁気コア
108・・・コイル
109・・・ヨーク
110・・・付勢スプリング
111・・・コネクタ
112・・・燃料供給口
201・・・噴射ノズル
202・・・弁体の球面
203・・・弁座面
204・・・燃料噴射弁の鉛直方向の中心軸
205・・・段差部
206・・・座グリ部
207・・・R部
208・・・凹部
209・・・外縁部
301・・・燃料の流入方向
302・・・撥油被膜
303・・・撥油被膜
304・・・撥油被膜の無い表面
401・・・噴射ノズル内の燃料
402・・・液膜
403・・・噴射ノズル内の液膜界面
404・・・燃料噴霧による座グリ部内壁のクリーニング効果
405・・・座グリ部の内壁面への異物付着や残留燃料
501・・・液膜
502・・・噴射ノズルと座グリ部の残留燃料
503・・・座グリ部の残留燃料の界面
504・・・座グリ部出口のエッジ
601・・・液膜
701・・・面取り部
801・・・座グリ部出口のエッジ
1001・・凹部の外周側端面の曲面
1101・・凹部の外周側の窪み
1201・・噴射ノズル中心軸に対して非対称とした座グリ部
1301・・座グリ部の内壁を曲面としてもの
DESCRIPTION OF SYMBOLS 100 ... Electromagnetic fuel injection valve 101 ... Valve body 102 ... Valve seat member 103 ... Guide member 104 ... Nozzle body 105 ... Valve body guide 106 ... Movable element 107 ... Magnetic core 108 ... Coil 109 ... Yoke 110 ... Biasing spring 111 ... Connector 112 ... Fuel supply port 201 ... Injection nozzle 202 ... Spherical surface 203 of the valve element ... Valve seat surface 204 ... Vertical axis 205 of fuel injection valve ... Stepped portion 206 ... Counterbore portion 207 ... R portion 208 ... Recessed portion 209 ... Outer edge portion 301 ... Fuel inflow direction 302 ... oil repellent coating 303 ... oil repellent coating 304 ... surface 401 without oil repellent coating ... fuel 402 in the injection nozzle ... liquid film 403 ... in the injection nozzle The liquid film interface 404 of the counterbore by fuel spray Cleaning effect of inner wall 405 ... Foreign matter adhesion to the inner wall surface of the spot facing and residual fuel 501 ... Liquid film 502 ... Residual fuel 503 in the injection nozzle and spot facing 503 ... Residual of the spot facing Fuel interface 504 ... Edge of counterbore part 601 ... Liquid film 701 ... Chamfered part 801 ... Edge 1001 of counterbore part outlet ··· Curved surface 1101 · · · A recess 1201 on the outer peripheral side .... the counterbore 1301 asymmetric with respect to the central axis of the injection nozzle .... the inner wall of the spot facing is a curved surface.

Claims (10)

  1.  弁体と接して燃料をシートする円錐座面と、前記円錐座面に複数の燃料噴射孔入口開口部を有し、前記燃料噴射孔の入口と出口の中心を結ぶ噴孔軸が、複数の異なる円錐面に沿う様に構成された噴射ノズルにおいて、
     前記噴射ノズルの出口側に、座グリ部を形成し、前記座グリ部の口径は下流に行くほど大きくなるように形成して、かつ前記噴射ノズルと前記座グリ部の間に段差部を設けたことを特徴とする燃料噴射弁。
    A conical seat surface that seats fuel in contact with the valve body; a plurality of fuel injection hole inlet openings in the conical seat surface; and a plurality of injection hole shafts that connect the centers of the inlet and outlet of the fuel injection hole. In an injection nozzle configured to be along different conical surfaces,
    A counterbore part is formed on the outlet side of the injection nozzle, the diameter of the counterbore part is formed so as to go downstream, and a stepped part is provided between the injection nozzle and the counterbore part. A fuel injection valve characterized by that.
  2.  請求項1の前記噴射ノズルにおいて、
     前記座グリ部を前記噴射ノズル中心軸に対して非対称としたことを特徴とする燃料噴射弁。
    The injection nozzle of claim 1,
    The fuel injection valve characterized in that the spot facing portion is asymmetric with respect to the central axis of the injection nozzle.
  3.  請求項1もしくは請求項2の前記噴射ノズルにおいて、
     前記座グリ部の下流側出口より上流側に撥油被膜を形成したことを特徴とする燃料噴射弁。
    In the injection nozzle of claim 1 or claim 2,
    A fuel injection valve characterized in that an oil-repellent coating is formed upstream from the downstream outlet of the spot facing portion.
  4.  請求項1もしくは請求項2の前記噴射ノズルにおいて、
    前記座グリ部の下流側出口にR部もしくは面取り部を形成し、かつR部もしくは面取り部より上流側に撥油被膜を形成したことを特徴とする燃料噴射弁。
    In the injection nozzle of claim 1 or claim 2,
    A fuel injection valve characterized in that an R portion or a chamfered portion is formed at a downstream outlet of the spot facing portion, and an oil repellent coating is formed on the upstream side of the R portion or the chamfered portion.
  5.  請求項3もしくは請求項4の燃料噴射弁において、
     前記座グリ部の下流側出口に位置するオリフィスカップ表面において、前記噴射ノズルを中心とした凹部を、前記噴射ノズル毎に設けたことを特徴とする燃料噴射弁。
    In the fuel injection valve according to claim 3 or 4,
    A fuel injection valve characterized in that a recess centered on the injection nozzle is provided for each injection nozzle on the surface of the orifice cup positioned at the downstream outlet of the spot facing portion.
  6.  請求項5の燃料噴射弁において、
     前記凹部において、外周側に窪みを形成したことを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 5,
    A fuel injection valve characterized in that a recess is formed on the outer peripheral side in the recess.
  7.  請求項1の燃料噴射弁において、
     座グリ部の内壁を曲面で形成したことを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 1, wherein
    A fuel injection valve, wherein an inner wall of a spot facing is formed by a curved surface.
  8.  請求項1記載の燃料噴射弁であって、
     前記座グリは、噴射ノズルとしては機能しない、または噴霧の形状制御および流量制御としては機能しないことを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 1,
    The counterbore does not function as an injection nozzle, or does not function as spray shape control and flow rate control.
  9.  弁体と接して燃料をシートするシート部と、
     前記シート部に複数のノズルを有し、
     前記ノズルの出口側に、座グリ部を形成し、前記座グリ部の口径は下流に行くほど大きくなるように形成して、かつ前記ノズルと前記座グリ部の間に段差部を設けたことを特徴とする燃料噴射弁。
    A seat portion that contacts the valve body and seats the fuel;
    The sheet portion has a plurality of nozzles,
    A counterbore part was formed on the outlet side of the nozzle, the diameter of the counterbore part was formed to increase toward the downstream, and a stepped part was provided between the nozzle and the counterbore part. A fuel injection valve characterized by.
  10.  請求項9記載の燃料噴射弁であって、
     前記座グリの開口角は、前記複数のノズルで異なることを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 9, wherein
    An opening angle of the spot facing differs among the plurality of nozzles.
PCT/JP2015/062166 2014-05-08 2015-04-22 Fuel injection valve WO2015170588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-096450 2014-05-08
JP2014096450A JP6266428B2 (en) 2014-05-08 2014-05-08 Fuel injection valve

Publications (1)

Publication Number Publication Date
WO2015170588A1 true WO2015170588A1 (en) 2015-11-12

Family

ID=54392441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062166 WO2015170588A1 (en) 2014-05-08 2015-04-22 Fuel injection valve

Country Status (2)

Country Link
JP (1) JP6266428B2 (en)
WO (1) WO2015170588A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292188B2 (en) * 2015-04-09 2018-03-14 株式会社デンソー Fuel injection device
WO2016163086A1 (en) * 2015-04-09 2016-10-13 株式会社デンソー Fuel injection device
JP6765318B2 (en) * 2017-02-24 2020-10-07 株式会社日立製作所 Fuel injection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172273U (en) * 1983-05-04 1984-11-17 日産自動車株式会社 Hole type fuel injection nozzle
JPS63151970U (en) * 1987-03-27 1988-10-05
JPH09273458A (en) * 1996-04-05 1997-10-21 Keehin:Kk Solenoid type fuel injection valve
JP2009052521A (en) * 2007-08-29 2009-03-12 Aisan Ind Co Ltd Fuel injection nozzle and method for manufacturing the same
JP2010248919A (en) * 2009-04-10 2010-11-04 Hitachi Automotive Systems Ltd Fuel injection valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172273U (en) * 1983-05-04 1984-11-17 日産自動車株式会社 Hole type fuel injection nozzle
JPS63151970U (en) * 1987-03-27 1988-10-05
JPH09273458A (en) * 1996-04-05 1997-10-21 Keehin:Kk Solenoid type fuel injection valve
JP2009052521A (en) * 2007-08-29 2009-03-12 Aisan Ind Co Ltd Fuel injection nozzle and method for manufacturing the same
JP2010248919A (en) * 2009-04-10 2010-11-04 Hitachi Automotive Systems Ltd Fuel injection valve

Also Published As

Publication number Publication date
JP2015214892A (en) 2015-12-03
JP6266428B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP6020380B2 (en) Fuel injection valve
JP4492696B2 (en) Fuel injection valve
JP5875443B2 (en) Fuel injection valve
JP5295319B2 (en) Fuel injection valve
WO2015170588A1 (en) Fuel injection valve
WO2014119471A1 (en) Fuel injection valve
WO2015136974A1 (en) Electromagnetic valve
JP5134063B2 (en) Fuel injection valve
JP2006258035A (en) Fuel injection valve
JP2007321592A (en) Fuel injection valve
JP6559259B2 (en) Fuel injection valve
WO2018154892A1 (en) Fuel injection device
US10344726B2 (en) Fuel injection valve
JP6507890B2 (en) Fuel injection valve
JP2015078603A (en) Fuel injection valve
JP5627742B1 (en) Fluid injection valve and spray generating device
JP2010084755A (en) Fuel jet nozzle
JP2017025926A (en) Fuel injection valve
JP6527763B2 (en) Fuel injection valve
CN114402135B (en) Fuel injection valve and internal combustion engine provided with same
WO2016076007A1 (en) Fuel injection valve
JP2009215981A (en) Fuel injection valve
JP2019124226A (en) Fuel injection valve
CN111356835B (en) Fuel injection valve
WO2019207753A1 (en) Fuel injection valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789128

Country of ref document: EP

Kind code of ref document: A1