WO2019207753A1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
WO2019207753A1
WO2019207753A1 PCT/JP2018/017136 JP2018017136W WO2019207753A1 WO 2019207753 A1 WO2019207753 A1 WO 2019207753A1 JP 2018017136 W JP2018017136 W JP 2018017136W WO 2019207753 A1 WO2019207753 A1 WO 2019207753A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
valve
nozzle hole
valve seat
injection valve
Prior art date
Application number
PCT/JP2018/017136
Other languages
French (fr)
Japanese (ja)
Inventor
啓祐 伊藤
章男 新宮
範久 福冨
恭輔 渡邉
学 平井
宗実 毅
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880092538.6A priority Critical patent/CN111989480B/en
Priority to JP2020515420A priority patent/JPWO2019207753A1/en
Priority to PCT/JP2018/017136 priority patent/WO2019207753A1/en
Publication of WO2019207753A1 publication Critical patent/WO2019207753A1/en
Priority to PH12020551753A priority patent/PH12020551753A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the present application relates to a fuel injection valve used for supplying fuel to an internal combustion engine of an automobile, and more particularly to a fuel injection valve that promotes atomization in spray characteristics.
  • a plunger driven by a solenoid device, a valve seat disposed on the downstream side thereof, having an opening, a radial depression having a branching portion, an introducing portion, a cylindrical portion, and a swiveling portion are upstream.
  • the valve main body which is a tip part of the fuel injection valve, having an injection hole plate in which an injection hole opens on the downstream side of the cylindrical portion, and the injection hole plate is coupled to the downstream side of the valve seat.
  • a fuel injection valve attached to an intake passage upstream of the combustion chamber is arranged close to the combustion chamber to reduce fuel adhesion to the intake passage in order to more accurately control the amount of fuel entering the combustion chamber. It is desirable.
  • the above-described combustion injection valve of Patent Document 1 has a problem when placed close to the combustion chamber. That is, the valve body that is the tip part of the fuel injection valve has a large surface area that is exposed to the high-temperature gas blown back from the combustion chamber, so that it tends to be hot, and the injection hole plate or valve seat attached inside the valve body is the valve body. Heat is transferred from the radial end close to the center toward the center.
  • an object of the present invention is to provide a fuel injection valve in which the spray characteristic or the flow rate characteristic is maintained in a good state.
  • a fuel injection valve disclosed in the present application includes a valve seat having a valve seat portion and a valve seat opening, and an outflow of fuel from the valve seat opening in contact with the valve seat portion of the valve seat A valve body that is separated from the valve seat and allows fuel to flow out of the valve seat opening, and is fixed to the downstream end face of the valve seat and flows out of the valve seat opening.
  • a fuel injection valve having a plurality of injection holes for injecting the fuel to the outside, wherein the injection holes are opened on the upstream end face of the injection hole plate so as to communicate with the fuel.
  • a swirl chamber that imparts fuel to the swirl chamber, and the swirl chamber and the fuel passage are configured by side walls having a tapered shape that widens toward the upstream side. The swivel chamber and the fuel passage are included in the downstream end surface And it has a recess to pass.
  • a high temperature in the vicinity of the injection hole can be suppressed, and the fuel temperature in the swirl chamber or the fuel passage can be reduced, and the spray characteristics or the flow characteristics are maintained in a good state.
  • the fuel injection valve which can be obtained can be obtained.
  • FIG. 1 is a cross-sectional view showing a fuel injection valve according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view (a) showing a tip portion of the fuel injection valve according to the first embodiment and a cross-sectional view (b) taken along line AA of the cross-sectional view (a).
  • FIG. 6 is an enlarged view (a) showing an upstream end face of the nozzle hole plate in the fuel injection valve according to the first and second embodiments, and a sectional view (b) taken along the line BB of the enlarged view (a).
  • FIG. 10 is an enlarged view (a) showing an upstream end face of a nozzle hole plate in a fuel injection valve according to a seventh embodiment, and a sectional view (b) taken along line CC of the enlarged view (a).
  • FIG. 1 is a side view showing a fuel injection valve according to Embodiment 1.
  • FIG. 2A is a cross-sectional view showing a tip portion of the fuel injection valve according to Embodiment 1
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • 100 indicates a fuel injection valve.
  • 4 is a solenoid device
  • 5 is a metal brate which is a yoke part of the magnetic circuit
  • a cylindrical core 6 which is a fixed core part of the magnetic circuit
  • 7 is a coil wound around a bobbin 1 disposed on the outer periphery of the core 6.
  • 8 is a cylindrical armature whose arm upper end surface 8b is in contact with and separated from the lower end surface of the core 6 and is a movable iron core portion of a magnetic circuit, and has a sliding surface 8a that slides in a valve holder 11 described later.
  • the armature 8 is slidable in the axial direction within the valve holder 11.
  • Reference numeral 9 denotes a valve device.
  • the valve device 9 includes a valve body 10, a valve holder 11, and a valve seat 12.
  • the metal braid 5 is arrange
  • the upstream end of the valve holder 11 is welded after being pressed into the outer periphery of the core 6.
  • the cylindrical armature 8 is pressed into the upstream end of the valve body 10 and then welded, so that the armature 8 and the valve body 10 move integrally in the axial direction.
  • a nozzle hole plate 13 is joined to the lower end surface of the valve seat 12 by welding at a welded portion 50, and the valve seat 12 and the nozzle hole plate 13 are integrally formed and attached to the inside of the downstream end of the valve holder 11. .
  • the nozzle hole plate 13 is provided with a plurality of nozzle holes 14 penetrating in the plate thickness direction.
  • a ball 15 having a chamfered portion 15 a is fixed to the downstream end portion of the valve body 10, and the ball 15 is seated and separated from the valve seat portion 12 a of the valve seat 12.
  • a compression spring 16 that presses the valve body 10 in a direction in which the ball 15 is pressed against the valve seat portion 12 a of the valve seat 12 is inserted into the cylindrical core 6.
  • An adjuster 2 for adjusting the load of the compression spring 16 is fixed in the cylindrical core 6.
  • the filter 3 is inserted into the upper end portion of the cylindrical core 6 serving as a fuel introduction portion.
  • the valve holder 11, the core 6, the coil 5, and the metal plate 5 are integrally formed in the resin housing 22.
  • the resin housing 22 is provided with a connector portion 22a, and a terminal 23 electrically connected to the coil 5 is drawn into the connector portion 22a.
  • the fuel passage 17 includes a side wall 20 having a tapered shape that widens toward the upstream side, and a recess 30 is formed in a region including the swirl chamber 18 and the fuel passage 17 on the downstream end face of the nozzle hole plate 13.
  • the nozzle hole 14 is provided near the center of the swirl chamber 18. The fuel passage 17 communicates with the valve seat opening 12b.
  • valve body 10 slides with the guide portion on the inner peripheral surface of the valve holder 11 on the sliding surface 8 a of the armature 8, and the armature upper surface 8 b of the armature 8 abuts on the bottom surface of the core 6 in the valve open state.
  • the swivel force is imparted to the fuel by recessing the upstream end face of the nozzle hole plate 13.
  • a plurality of swirl chambers 18 are formed.
  • the nozzle holes 14 are respectively provided in the vicinity of the center of the swirl chamber 18.
  • a fuel passage 17 for introducing fuel into the swirl chamber 18 is provided.
  • the fuel passage 17 communicates with the valve seat opening 12b.
  • the fuel that has flowed from the valve seat opening 12b into the swirl chamber 18 through the fuel passage 17 flows into the nozzle hole 14 while generating a swirl flow. Since the swirl flow is also maintained inside the nozzle hole 14, a thin liquid film is formed along the inner wall of the nozzle hole 14, and the thin liquid film is injected into the hollow cone shape from the nozzle hole 14 to form fine fuel particles. Is promoted.
  • the valve holder 11 that is the tip part of the fuel injection valve 1 has a large surface area that is exposed to the high-temperature gas blown back from the combustion chamber, so that the temperature tends to be high. 11 is transmitted from the end of the nozzle hole plate 13 attached to the inside of the nozzle 11 or the outer peripheral part of the valve seat 12 to the central part of the nozzle hole plate 13, and the vicinity of the nozzle hole 14 becomes high temperature. There is concern about deterioration of spray atomization or changes in the injection flow rate due to being fixed to the inner surface of the injection hole 14. Further, the fuel in the swirl chamber 18 and the fuel passage 17 becomes high temperature, and there is a concern that the atomization of the spray may be deteriorated or the injection flow rate may be changed due to cavitation.
  • the side wall 20 forming the swirl chamber 18 and the fuel passage 17 is formed in a tapered shape that widens toward the upstream side. Accordingly, since the surface area of the side wall 20 in contact with the fuel is increased as compared with the case where the shape is not tapered as in Patent Document 1, the cooling effect by the fuel is enhanced, and the temperature in the vicinity of the injection hole 14 can be reduced.
  • the projection is projected on the downstream end face of the nozzle hole plate 13 when the vertical direction of the downstream end face is viewed from the downstream side of the nozzle hole plate 13 of the arrow S1.
  • a recess 30 is provided in a region including the swirl chamber 18 and the fuel passage 17 to make the plate thickness of the nozzle hole plate 13 thinner than the end of the nozzle hole plate 13.
  • FIG. 3A is an enlarged view showing the upstream end face of the nozzle hole plate in the fuel injection valve according to the second embodiment
  • FIG. 3B is a BB line in FIG. 3A of the second embodiment.
  • FIG. 4A is a cross-sectional view showing the tip of the fuel injection valve according to the third embodiment
  • FIG. 4B is a view from the direction of arrow S1 on the downstream side of the nozzle hole plate in the fuel injection valve according to the third embodiment.
  • the nozzle hole plate 13 is welded to the downstream side of the valve seat 12 in a ring shape, and the welded portion 50 is provided on the outer side in the radial direction from the concave portion 30 provided on the downstream end face of the nozzle hole plate 13. It is possible to suppress thermal deformation caused by welding rather than providing it at a portion where the plate thickness is thin.
  • the nozzle hole plate 13 can be increased and the durability can be improved as compared with the case where it is provided in the thin portion in the recess 30.
  • FIG. 5A is a cross-sectional view showing the tip of the fuel injection valve according to the fourth embodiment
  • FIG. 5B is a view from the direction of arrow S2 on the downstream side of the nozzle hole plate in the fuel injection valve according to the fourth embodiment.
  • the attached fuel near the outlet of the injection hole 14 is difficult to spread in the radial direction of the injection hole plate 13 and is difficult to peel off from the downstream end face.
  • the adhering fuel is fixed by the surrounding high-temperature gas and closes the outlet portion of the injection hole 14, and there is a concern that the atomization of the spray is deteriorated or the injection flow rate is changed.
  • the side wall 40 that forms the recess 30 provided on the downstream end face of the nozzle hole plate 13 is provided in a tapered shape that widens toward the downstream side, as compared with the first embodiment described above.
  • FIG. 6 (a) is a cross-sectional view showing the tip of the fuel injection valve according to the fifth embodiment
  • FIG. 6 (b) is a view from the direction of arrow S3 on the downstream side of the nozzle hole plate in the fuel injection valve according to the fifth embodiment.
  • the swirl chamber 18 and the fuel passage 17 on the downstream end face of the nozzle hole plate 13 have a shape that rises to the downstream side with respect to the bottom surface of the recess 30, so that injection is further performed than in the above-described fourth embodiment.
  • Part of the fuel is less likely to stay in the vicinity of the outlet of the nozzle hole 14 and easily peels off from the downstream end face, so that the outlet part of the nozzle hole 14 is not blocked due to the adhering fuel adhering. A change in flow rate can be suppressed.
  • FIG. 7A is a cross-sectional view showing the tip of the fuel injection valve according to the sixth embodiment
  • FIG. 7B is a view from the direction of arrow S4 on the downstream side of the nozzle hole plate in the fuel injection valve according to the sixth embodiment.
  • the concave portion 30 when the concave portion 30 is provided in a wide range of the downstream end face of the nozzle hole plate 13, the thickness of the nozzle hole plate 13 is reduced in a wide range, and durability due to insufficient strength of the nozzle hole plate 13. There is concern about the deterioration of sex.
  • the swirl chamber 18 and the fuel passage 17 projected when the vertical direction of the downstream end surface is viewed from the downstream side of the nozzle hole plate 13 as the concave portion provided on the downstream end surface of the nozzle hole plate 13. are provided at two locations, a concave region 30a1 including the concave region 30b1 on the radially outer side.
  • the nozzle hole plate 13 is compared with the case where one concave portion is provided in a wide range. While maintaining the strength of the nozzle hole 13, it is possible to reduce the thermal conductivity from the end of the nozzle hole plate 13 to the nozzle hole 14 part to suppress the high temperature of the nozzle hole 14 part. A change in flow rate can be suppressed.
  • FIG. 8A is an enlarged view showing the upstream end face of the injection hole plate in the fuel injection valve according to the seventh embodiment
  • FIG. 8B is a CC line in FIG. 8A of the seventh embodiment.
  • the side wall 20 forming the fuel passage 17 is formed only on the side 17a farther away from the injection hole 14 and has a taper shape extending toward the upstream side on the side 17b closer to the injection hole 14. Therefore, the fuel that is further rectified in the fuel passage 17 and flows into the swirl chamber 18 is difficult to enter directly into the nozzle hole 14, so that the swirl flow generated in the nozzle hole 14 is not weakened and atomization of the spray is prevented. Can be maintained.
  • the present application is suitable for realizing a highly reliable fuel injection valve capable of suppressing deterioration of spray atomization or change in injection flow rate.
  • valve device 100 fuel injection valve, 9 valve device, 10 valve element, 11 valve holder, 12 valve seat, 12a valve seat portion, 12b valve seat opening, 13 injection hole plate, 14 injection hole, 17 fuel passage, 18 swirl chamber, 20 side walls, 30 recesses, 40 side walls, 50 welds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A fuel injection valve (100) is provided with: a valve seat (12) having a valve-seat seat section (12a) and a valve-seat opening section (12b); a valve body (10) brought into contact with the valve-seat seat section (12a) of the valve seat (12) to prevent the outflow of fuel from the valve-seat opening section (12b) and separated from the valve-seat seat section (12a) to allow the outflow of the fuel from the valve-seat opening section (12b); and injection hole plate (13) affixed to the downstream end surface of the valve seat (12) and having a plurality of injection holes (14) for ejecting to the outside the fuel flowing out from the valve-seat opening section (12b). The upstream end surface of the injection hole plate (13) has a swirl chamber (18) to which the injection holes (14) are open and connected and which applies a swirling force to fuel, and a fuel passage (17) which introduces fuel into the swirl chamber (18). The swirl chamber (18) and the fuel passage (17) comprise side walls (20) having a tapered shape which widens toward the upstream side, and the downstream end surface of the injection hole plate (13) has a recess (30) in a region including the swirl chamber (18) and the fuel passage (17).

Description

燃料噴射弁Fuel injection valve
 本願は、自動車の内燃機関などへの燃料供給に使用される燃料噴射弁に係り、特に噴霧特性における微粒化の促進を図った燃料噴射弁に関するものである。 The present application relates to a fuel injection valve used for supplying fuel to an internal combustion engine of an automobile, and more particularly to a fuel injection valve that promotes atomization in spray characteristics.
 近年、自動車の内燃機関などの排出ガス規制が強化される中、燃料噴射弁から噴射される燃料噴霧の微粒化が求められており、旋回流れを利用して微粒化を図る方式に関して様々な検討がなされている。 In recent years, as exhaust gas regulations for automobile internal combustion engines and the like have been tightened, atomization of fuel spray injected from a fuel injection valve has been demanded, and various studies have been made regarding methods for atomizing using a swirl flow Has been made.
 特許文献1では、ソレノイド装置で駆動されるプランジャと、その下流側に配置され、開口部を有している弁座と、分岐部と導入部と円筒部と旋回部を有する放射状の窪みが上流側に加工され、前記円筒部の下流側には噴孔が開口する噴孔プレートを有し、その噴孔プレートが弁座の下流側に結合されて燃料噴射弁の先端部品である弁本体の内部に取り付けられる構造が記載されている。 In Patent Document 1, a plunger driven by a solenoid device, a valve seat disposed on the downstream side thereof, having an opening, a radial depression having a branching portion, an introducing portion, a cylindrical portion, and a swiveling portion are upstream. Of the valve main body, which is a tip part of the fuel injection valve, having an injection hole plate in which an injection hole opens on the downstream side of the cylindrical portion, and the injection hole plate is coupled to the downstream side of the valve seat. A structure to be mounted inside is described.
WO2017/060945号公報WO2017 / 060945
 一般的に燃焼室の上流側の吸気通路に取り付けられる燃料噴射弁は、燃焼室内に入る燃料量をより正確に制御するために、燃焼室に近接配置して吸気通路への燃料付着を低減することが望ましい。 In general, a fuel injection valve attached to an intake passage upstream of the combustion chamber is arranged close to the combustion chamber to reduce fuel adhesion to the intake passage in order to more accurately control the amount of fuel entering the combustion chamber. It is desirable.
 上述した特許文献1の燃焼噴射弁では、燃焼室に近接配置した場合に問題がある。すなわち、燃料噴射弁の先端部品である弁本体は燃焼室から吹き返される高温ガスにさらされる表面積が大きいため高温になり易く、その弁本体の内部に取り付けられる噴孔プレートあるいは弁座は、弁本体に近い径方向の端部から中央部に向けて熱が伝わっていく。 The above-described combustion injection valve of Patent Document 1 has a problem when placed close to the combustion chamber. That is, the valve body that is the tip part of the fuel injection valve has a large surface area that is exposed to the high-temperature gas blown back from the combustion chamber, so that it tends to be hot, and the injection hole plate or valve seat attached inside the valve body is the valve body. Heat is transferred from the radial end close to the center toward the center.
 特許文献1の噴孔プレートは上流側に形成される放射状の窪み部以外の板厚が均一なため、噴孔プレートの端部から中央部の噴孔近傍に熱が伝わり易く、噴孔部が高温になり、噴孔内の残留ガソリンが噴孔の内面に固着して噴霧微粒化の悪化あるいは噴射流量の変化が懸念されるという問題があった。 Since the thickness of the nozzle hole plate of Patent Document 1 is uniform except for the radial depression formed on the upstream side, heat is easily transmitted from the end of the nozzle hole plate to the vicinity of the nozzle hole in the central part, There is a problem that the temperature becomes high and residual gasoline in the nozzle hole adheres to the inner surface of the nozzle hole, which may cause deterioration in atomization of the spray or change in the injection flow rate.
 本願は、上記のような課題を解決するための技術を開示するものであり、その目的は、燃料噴射弁を燃焼室に近接配置した場合でも、噴孔部が高温化し難い噴孔プレート形状にすることで、噴霧特性あるいは流量特性が良好な状態で維持される燃料噴射弁を提供することを目的とする。 The present application discloses a technique for solving the above-described problems. The purpose of the present application is to form an injection hole plate shape in which the injection hole portion is not easily heated even when the fuel injection valve is arranged close to the combustion chamber. Thus, an object of the present invention is to provide a fuel injection valve in which the spray characteristic or the flow rate characteristic is maintained in a good state.
 本願に開示される燃料噴射弁は、弁座シート部と弁座開口部とを有する弁座と、前記弁座の前記弁座シート部に当接されて前記弁座開口部からの燃料の流出を阻止するとともに、前記弁座シート部から離されて前記弁座開口部からの燃料の流出を許容する弁体と、前記弁座の下流側端面に固定され、前記弁座開口部から流出された燃料を外部へ噴射する複数の噴孔を有する噴孔プレートとを備えた燃料噴射弁であって、前記噴孔プレートの上流側端面には前記噴孔が開口して連通し燃料に旋回力を付与する旋回室と、前記旋回室に燃料を導入する燃料通路とを有し、前記旋回室および前記燃料通路は上流側に向けて広がるテーパー形状を有する側壁により構成され、前記噴孔プレートの下流側端面には前記旋回室および前記燃料通路を含む領域に凹部を有するものである。 A fuel injection valve disclosed in the present application includes a valve seat having a valve seat portion and a valve seat opening, and an outflow of fuel from the valve seat opening in contact with the valve seat portion of the valve seat A valve body that is separated from the valve seat and allows fuel to flow out of the valve seat opening, and is fixed to the downstream end face of the valve seat and flows out of the valve seat opening. A fuel injection valve having a plurality of injection holes for injecting the fuel to the outside, wherein the injection holes are opened on the upstream end face of the injection hole plate so as to communicate with the fuel. A swirl chamber that imparts fuel to the swirl chamber, and the swirl chamber and the fuel passage are configured by side walls having a tapered shape that widens toward the upstream side. The swivel chamber and the fuel passage are included in the downstream end surface And it has a recess to pass.
 本願に開示される燃料噴射弁によれば、噴孔近傍の高温化を抑制でき、また旋回室内あるいは燃料通路内の燃料温度の低減が可能となり、噴霧特性あるいは流量特性が良好な状態で維持することができる燃料噴射弁を得ることができる。 According to the fuel injection valve disclosed in the present application, a high temperature in the vicinity of the injection hole can be suppressed, and the fuel temperature in the swirl chamber or the fuel passage can be reduced, and the spray characteristics or the flow characteristics are maintained in a good state. The fuel injection valve which can be obtained can be obtained.
[規則91に基づく訂正 10.05.2018] 
実施の形態1による燃料噴射弁を示す断面図である。 実施の形態1による燃料噴射弁における先端部を示す断面図(a)および断面図(a)のA-A線における断面図(b)である。 実施の形態1,2による燃料噴射弁における噴孔プレートの上流側端面を示す拡大図(a)および拡大図(a)のB-B線における断面図(b)である。 実施の形態1,3による燃料噴射弁における先端部を示す断面図(a)および燃料噴射弁における噴孔プレートの下流側の矢印S1方向から見た図(b)である。 実施の形態4による燃料噴射弁における先端部を示す断面図(a)および燃料噴射弁における噴孔プレートの下流側の矢印S2方向から見た図(b)である。 実施の形態5による燃料噴射弁における先端部を示す断面図(a)および燃料噴射弁における噴孔プレートの下流側の矢印S3方向から見た図(b)である。 実施の形態6による燃料噴射弁における先端部を示す断面図(a)および燃料噴射弁における噴孔プレートの下流側の矢印S4方向から見た図(b)である。 実施の形態7による燃料噴射弁における噴孔プレートの上流側端面を示す拡大図(a)および拡大図(a)のC-C線における断面図(b)である。
[Correction based on Rule 91 10.05.2018]
1 is a cross-sectional view showing a fuel injection valve according to Embodiment 1. FIG. FIG. 2 is a cross-sectional view (a) showing a tip portion of the fuel injection valve according to the first embodiment and a cross-sectional view (b) taken along line AA of the cross-sectional view (a). FIG. 6 is an enlarged view (a) showing an upstream end face of the nozzle hole plate in the fuel injection valve according to the first and second embodiments, and a sectional view (b) taken along the line BB of the enlarged view (a). It is sectional drawing (a) which shows the front-end | tip part in the fuel injection valve by Embodiment 1, 3, and the figure (b) seen from the arrow S1 direction of the downstream of the nozzle hole plate in a fuel injection valve. It is sectional drawing (a) which shows the front-end | tip part in the fuel injection valve by Embodiment 4, and the figure (b) seen from the arrow S2 direction of the downstream of the nozzle hole plate in a fuel injection valve. It is sectional drawing (a) which shows the front-end | tip part in the fuel injection valve by Embodiment 5, and the figure (b) seen from the arrow S3 direction of the downstream of the nozzle hole plate in a fuel injection valve. It is sectional drawing (a) which shows the front-end | tip part in the fuel injection valve by Embodiment 6, and the figure (b) seen from the arrow S4 direction of the downstream of the nozzle hole plate in a fuel injection valve. FIG. 10 is an enlarged view (a) showing an upstream end face of a nozzle hole plate in a fuel injection valve according to a seventh embodiment, and a sectional view (b) taken along line CC of the enlarged view (a).
実施の形態1.
 図1は実施の形態1による燃料噴射弁を示す側面図である。図2(a)は実施の形態1による燃料噴射弁における先端部を示す断面図であり、図2(b)は図2(a)のA-A線における断面図である。
Embodiment 1 FIG.
1 is a side view showing a fuel injection valve according to Embodiment 1. FIG. 2A is a cross-sectional view showing a tip portion of the fuel injection valve according to Embodiment 1, and FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
 100は燃料噴射弁を示している。4はソレノイド装置、5は磁気回路のヨーク部分である金属ブレート、磁気回路の固定鉄心部分である円筒状のコア6と、7はコア6の外周に配置されたボビン1に巻着されたコイル、8はアマチュア上端面8bがコア6の下端面に接離され、磁気回路の可動鉄心部分である円筒状のアマチュアであり、後述する弁ホルダー11内を摺動する摺動面8aを有し、アマチュア8は弁ホルダー11内で軸方向に摺動可能となっている。9は弁装置であり、弁装置9は弁体10と弁ホルダー11と弁座12で構成されている。なお、金属ブレート5は、コア6の外周面と弁ホルダー11の外周面に跨って配置され、溶接により固定されている。 100 indicates a fuel injection valve. 4 is a solenoid device, 5 is a metal brate which is a yoke part of the magnetic circuit, a cylindrical core 6 which is a fixed core part of the magnetic circuit, and 7 is a coil wound around a bobbin 1 disposed on the outer periphery of the core 6. , 8 is a cylindrical armature whose arm upper end surface 8b is in contact with and separated from the lower end surface of the core 6 and is a movable iron core portion of a magnetic circuit, and has a sliding surface 8a that slides in a valve holder 11 described later. The armature 8 is slidable in the axial direction within the valve holder 11. Reference numeral 9 denotes a valve device. The valve device 9 includes a valve body 10, a valve holder 11, and a valve seat 12. In addition, the metal braid 5 is arrange | positioned ranging over the outer peripheral surface of the core 6, and the outer peripheral surface of the valve holder 11, and is being fixed by welding.
 弁ホルダー11の上流側端部はコア6の外周部に圧入された後、溶接されている。円筒状のアマチュア8は弁体10の上流側端部に圧入された後、溶接され、アマチュア8と弁体10は軸方向へ一体に移動する。弁座12の下端面には噴孔プレート13が溶接により溶接部50で結合され、弁座12と噴孔プレート13とは一体構造で弁ホルダー11の下流側端部の内部に取り付けられている。噴孔プレート13には板厚方向に貫通する複数の噴孔14が設けられている。 The upstream end of the valve holder 11 is welded after being pressed into the outer periphery of the core 6. The cylindrical armature 8 is pressed into the upstream end of the valve body 10 and then welded, so that the armature 8 and the valve body 10 move integrally in the axial direction. A nozzle hole plate 13 is joined to the lower end surface of the valve seat 12 by welding at a welded portion 50, and the valve seat 12 and the nozzle hole plate 13 are integrally formed and attached to the inside of the downstream end of the valve holder 11. . The nozzle hole plate 13 is provided with a plurality of nozzle holes 14 penetrating in the plate thickness direction.
 弁体10の下流側端部には面取り部15aが形成されたボール15が固定され、ボール15は弁座12の弁座シート部12aに着座・離座される。円筒状のコア6内には、ボール15を弁座12の弁座シート部12aに押し付ける方向へ弁体10を押圧する圧縮ばね16が挿入されている。また、円筒状のコア6内には、圧縮ばね16の荷重を調整するアジャスタ2が固定されている。さらに、燃料の導入部となる円筒状のコア6の上端部には、フィルタ3が挿入されている。そして、弁ホルダー11、コア6、コイル5および金属ブレート5は、樹脂製ハウジング22に一体成型されている。樹脂製ハウジング22には、コネクタ部22aが設けられ、コネクタ部22a内にはコイル5に電気的に接続されたターミナル23が引き出されている。 A ball 15 having a chamfered portion 15 a is fixed to the downstream end portion of the valve body 10, and the ball 15 is seated and separated from the valve seat portion 12 a of the valve seat 12. A compression spring 16 that presses the valve body 10 in a direction in which the ball 15 is pressed against the valve seat portion 12 a of the valve seat 12 is inserted into the cylindrical core 6. An adjuster 2 for adjusting the load of the compression spring 16 is fixed in the cylindrical core 6. Further, the filter 3 is inserted into the upper end portion of the cylindrical core 6 serving as a fuel introduction portion. The valve holder 11, the core 6, the coil 5, and the metal plate 5 are integrally formed in the resin housing 22. The resin housing 22 is provided with a connector portion 22a, and a terminal 23 electrically connected to the coil 5 is drawn into the connector portion 22a.
 噴孔プレート13の上流側端面には噴孔14が開口して連通し燃料に旋回力を付与する旋回室18と、旋回室18に燃料を導入する燃料通路17とを有し、旋回室18および燃料通路17は上流側に向けて広がるテーパー形状を有する側壁20により構成され、噴孔プレート13の下流側端面には旋回室18および燃料通路17を含む領域に凹部30を形成している。噴孔14は、旋回室18の中央近傍に設けられている。燃料通路17は、弁座開口部12bと連通している。 On the upstream end face of the nozzle hole plate 13, there is a swirl chamber 18 that opens and communicates with the nozzle hole 14, and a fuel passage 17 that introduces fuel into the swirl chamber 18. The fuel passage 17 includes a side wall 20 having a tapered shape that widens toward the upstream side, and a recess 30 is formed in a region including the swirl chamber 18 and the fuel passage 17 on the downstream end face of the nozzle hole plate 13. The nozzle hole 14 is provided near the center of the swirl chamber 18. The fuel passage 17 communicates with the valve seat opening 12b.
 次に動作について説明する。エンジンの制御装置より、燃料噴射弁1の駆動回路に動作信号が送られると、燃料噴射弁1のコイル7に電流が通電され、アマチュア8、コア6、ハウジング5、弁ホルダー11で構成される磁気回路に磁束が発生し、アマチュア8はコア6側へ吸引動作し、アマチュア8と一体構造である弁体10が弁座シート部12aから離れて隙間が形成されると、燃料は弁体10の先端部に溶接されたボール15の面取部15aから弁座シート部12aと弁体10との隙間を通って、複数の噴孔14からエンジンの吸気通路に噴射される。 Next, the operation will be described. When an operation signal is sent from the engine control device to the drive circuit of the fuel injection valve 1, a current is passed through the coil 7 of the fuel injection valve 1, and the arm 8, the core 6, the housing 5, and the valve holder 11 are configured. When magnetic flux is generated in the magnetic circuit, the armature 8 is attracted to the core 6 side, and when the valve body 10 that is integral with the armature 8 is separated from the valve seat portion 12a and a gap is formed, the fuel is supplied to the valve body 10. From the chamfered portion 15a of the ball 15 welded to the front end portion of the valve 15 through the gap between the valve seat portion 12a and the valve body 10, the fuel is injected from the plurality of nozzle holes 14 into the intake passage of the engine.
 次に、エンジンの制御装置より、燃料噴射弁1の駆動回路に動作の停止信号が送られると、コイル7の電流の通電が停止し、磁気回路中の磁束が減少して、弁体10を閉弁方向に押している圧縮ばね16により弁体10と弁座シート部12aとの間の隙間は閉じ状態となり、燃料噴射が終了する。弁体10はアマチュア8の摺動面8aで弁ホルダー11の内周面のガイド部と摺動し、開弁状態ではアマチュア8のアマチュア上面8bがコア6の下面と当接する。 Next, when an operation stop signal is sent from the engine control device to the drive circuit of the fuel injection valve 1, the energization of the current of the coil 7 is stopped, the magnetic flux in the magnetic circuit is reduced, and the valve body 10 is The gap between the valve element 10 and the valve seat portion 12a is closed by the compression spring 16 pushed in the valve closing direction, and fuel injection is completed. The valve body 10 slides with the guide portion on the inner peripheral surface of the valve holder 11 on the sliding surface 8 a of the armature 8, and the armature upper surface 8 b of the armature 8 abuts on the bottom surface of the core 6 in the valve open state.
 実施の形態1では、図2(a),(b)、図3(a),(b)のように、噴孔プレート13の上流側端面を窪ませることにより、燃料に旋回力を付与する複数の旋回室18が形成されている。噴孔14は、旋回室18の中央近傍にそれぞれ設けられている。旋回室18に対応して、旋回室18に燃料を導入する燃料通路17が設けられている。燃料通路17は、弁座開口部12bと連通している。 In the first embodiment, as shown in FIGS. 2 (a), 2 (b), 3 (a), and 3 (b), the swivel force is imparted to the fuel by recessing the upstream end face of the nozzle hole plate 13. A plurality of swirl chambers 18 are formed. The nozzle holes 14 are respectively provided in the vicinity of the center of the swirl chamber 18. Corresponding to the swirl chamber 18, a fuel passage 17 for introducing fuel into the swirl chamber 18 is provided. The fuel passage 17 communicates with the valve seat opening 12b.
 これにより、弁座開口部12bから燃料通路17を通して旋回室18へ流れ込んだ燃料は、旋回流れを生じながら噴孔14へ流れ込む。噴孔14の内部においても旋回流れが保たれることで、噴孔14の内壁に沿った薄い液膜が形成され、薄い液膜を噴孔14から中空円錐状に噴射することで燃料の微粒化が促進される。 Thus, the fuel that has flowed from the valve seat opening 12b into the swirl chamber 18 through the fuel passage 17 flows into the nozzle hole 14 while generating a swirl flow. Since the swirl flow is also maintained inside the nozzle hole 14, a thin liquid film is formed along the inner wall of the nozzle hole 14, and the thin liquid film is injected into the hollow cone shape from the nozzle hole 14 to form fine fuel particles. Is promoted.
 燃料噴射弁1を燃焼室に近接配置した場合、燃料噴射弁1の先端部品である弁ホルダー11は燃焼室から吹き返される高温ガスにさらされる表面積が大きいため高温になり易く、その熱が弁ホルダー11の内部に取付けられる噴孔プレート13の端部あるいは弁座12の外周部から噴孔プレート13の中央部に伝わり、噴孔14の近傍が高温になるため、噴孔14内の残留ガソリンが噴孔14の内面に固着して噴霧微粒化の悪化あるいは噴射流量の変化が懸念される。また、旋回室18内および燃料通路17内の燃料が高温となり、キャビテーションの発生による噴霧微粒化の悪化あるいは噴射流量の変化が懸念される。 When the fuel injection valve 1 is disposed close to the combustion chamber, the valve holder 11 that is the tip part of the fuel injection valve 1 has a large surface area that is exposed to the high-temperature gas blown back from the combustion chamber, so that the temperature tends to be high. 11 is transmitted from the end of the nozzle hole plate 13 attached to the inside of the nozzle 11 or the outer peripheral part of the valve seat 12 to the central part of the nozzle hole plate 13, and the vicinity of the nozzle hole 14 becomes high temperature. There is concern about deterioration of spray atomization or changes in the injection flow rate due to being fixed to the inner surface of the injection hole 14. Further, the fuel in the swirl chamber 18 and the fuel passage 17 becomes high temperature, and there is a concern that the atomization of the spray may be deteriorated or the injection flow rate may be changed due to cavitation.
 そこで、実施の形態1では、旋回室18および燃料通路17を形成する側壁20を上流側に向けて広がるテーパ―形状で形成している。これにより特許文献1のようなテーパ―形状でない場合に対して、燃料に接する側壁20の表面積が増加するので燃料による冷却効果が高まり、噴孔14の近傍の温度を低減することができる。 Therefore, in the first embodiment, the side wall 20 forming the swirl chamber 18 and the fuel passage 17 is formed in a tapered shape that widens toward the upstream side. Accordingly, since the surface area of the side wall 20 in contact with the fuel is increased as compared with the case where the shape is not tapered as in Patent Document 1, the cooling effect by the fuel is enhanced, and the temperature in the vicinity of the injection hole 14 can be reduced.
 さらに、図4(a),(b)のように、噴孔プレート13の下流側端面には、矢印S1の噴孔プレート13の下流側から下流側端面の垂直方向を見たときに投影される旋回室18および燃料通路17を含む領域に凹部30を設けて、噴孔プレート13の板厚を噴孔プレート13の端部に対して薄肉化している。 Further, as shown in FIGS. 4A and 4B, the projection is projected on the downstream end face of the nozzle hole plate 13 when the vertical direction of the downstream end face is viewed from the downstream side of the nozzle hole plate 13 of the arrow S1. A recess 30 is provided in a region including the swirl chamber 18 and the fuel passage 17 to make the plate thickness of the nozzle hole plate 13 thinner than the end of the nozzle hole plate 13.
 これにより、弁ホルダー11の内部に取り付けられる噴孔プレート13の端部から噴孔14の近傍に熱が伝わるのを低減できるので、燃料噴射弁を燃焼室に近接して配置する場合でも、噴孔14の近傍の高温化が抑制され、噴孔14の内面に残留ガソリンが固着することを抑えることが可能となり、また、旋回室18内あるいは燃料通路17内の燃料温度も低減できるので、キャビテーションの発生を抑制することが可能となり、噴霧微粒化の悪化あるいは噴射流量の変化を抑制することができる。 As a result, heat transfer from the end of the injection hole plate 13 attached to the inside of the valve holder 11 to the vicinity of the injection hole 14 can be reduced, so that even when the fuel injection valve is arranged close to the combustion chamber, the injection Since the high temperature in the vicinity of the hole 14 is suppressed, it becomes possible to prevent the residual gasoline from adhering to the inner surface of the injection hole 14, and the fuel temperature in the swirl chamber 18 or the fuel passage 17 can also be reduced. It is possible to suppress the occurrence of spraying, and it is possible to suppress the deterioration of spray atomization or the change in the injection flow rate.
実施の形態2. 
 図3(a)は実施の形態2による燃料噴射弁における噴孔プレートの上流側端面を示す拡大図であり、図3(b)は実施の形態2の図3(a)のB-B線における断面図である。
Embodiment 2. FIG.
3A is an enlarged view showing the upstream end face of the nozzle hole plate in the fuel injection valve according to the second embodiment, and FIG. 3B is a BB line in FIG. 3A of the second embodiment. FIG.
 燃料噴射弁1の中心軸に垂直な平面に燃料通路17および噴孔14を投影した場合、燃料通路17の底部の幅および深さを各々H、Vとし、側壁20の深さ方向に対する傾き角度をθとし、また、燃料通路17の底部の中心軸から噴孔14の中心までの距離をLとすると、H/2+V・tanθ<Lの関係式が成り立つ構成となっている。 When the fuel passage 17 and the injection hole 14 are projected on a plane perpendicular to the central axis of the fuel injection valve 1, the width and depth of the bottom of the fuel passage 17 are H and V, respectively, and the inclination angle of the side wall 20 with respect to the depth direction. Is θ, and the distance from the central axis of the bottom of the fuel passage 17 to the center of the injection hole 14 is L, a relational expression of H / 2 + V · tan θ <L holds.
 これにより、燃料通路17を形成する側壁20が上流側に向けて広がるテーパ―形状であっても、燃料通路17で整流化されて旋回室18に流入する燃料が噴孔14に直入し難くなるため、噴孔14の内部に生じる旋回流れが弱まることがなく、噴霧の微粒化を維持することができる。 Thereby, even if the side wall 20 forming the fuel passage 17 has a tapered shape that widens toward the upstream side, the fuel that is rectified in the fuel passage 17 and flows into the swirl chamber 18 becomes difficult to directly enter the injection hole 14. Therefore, the swirl flow generated inside the nozzle hole 14 is not weakened and atomization of the spray can be maintained.
実施の形態3. 
 図4(a)は実施の形態3による燃料噴射弁における先端部を示す断面図であり、図4(b)は実施の形態3による燃料噴射弁における噴孔プレートの下流側の矢印S1方向から見た図である。
Embodiment 3 FIG.
FIG. 4A is a cross-sectional view showing the tip of the fuel injection valve according to the third embodiment, and FIG. 4B is a view from the direction of arrow S1 on the downstream side of the nozzle hole plate in the fuel injection valve according to the third embodiment. FIG.
 噴孔プレート13は弁座12の下流側にリング状に溶接され、その溶接部50は噴孔プレート13の下流側端面に設ける凹部30よりも径方向の外側に設けているので、凹部30内の板厚の薄い部分に設けるよりも、溶接により生じる熱変形を抑制できる。 The nozzle hole plate 13 is welded to the downstream side of the valve seat 12 in a ring shape, and the welded portion 50 is provided on the outer side in the radial direction from the concave portion 30 provided on the downstream end face of the nozzle hole plate 13. It is possible to suppress thermal deformation caused by welding rather than providing it at a portion where the plate thickness is thin.
 したがって、弁座12と噴孔プレート13の間に熱変形に伴う隙間などが生じることがなく、燃料が燃料通路17および旋回室18の内部を正常に流れて、噴孔14内に良好な旋回流れを生じさせることができるので、噴霧微粒化の悪化あるいは噴射流量の変化を抑制することができる。 Therefore, there is no gap or the like due to thermal deformation between the valve seat 12 and the nozzle hole plate 13, and the fuel normally flows in the fuel passage 17 and the swirl chamber 18, so that a good swirl in the nozzle hole 14 is achieved. Since the flow can be generated, it is possible to suppress the deterioration of spray atomization or the change in the injection flow rate.
 また、燃料噴射時に、噴孔プレート13には、燃料圧力による負荷が加わり、特に溶接部50近傍に応力集中が生じるが、溶接部50を噴孔プレート13の板厚の厚い部分に設けているので、凹部30内の板厚の薄い部分に設けるよりも、噴孔プレート13の強度を上げることができ、耐久性を向上することができる。 Further, during fuel injection, a load due to fuel pressure is applied to the nozzle hole plate 13, and stress concentration occurs particularly in the vicinity of the welded part 50, but the welded part 50 is provided in a thick part of the nozzle hole plate 13. Therefore, the strength of the nozzle hole plate 13 can be increased and the durability can be improved as compared with the case where it is provided in the thin portion in the recess 30.
実施の形態4. 
 図5(a)は実施の形態4による燃料噴射弁における先端部を示す断面図であり、図5(b)は実施の形態4による燃料噴射弁における噴孔プレートの下流側の矢印S2方向から見た図である。
Embodiment 4 FIG.
FIG. 5A is a cross-sectional view showing the tip of the fuel injection valve according to the fourth embodiment, and FIG. 5B is a view from the direction of arrow S2 on the downstream side of the nozzle hole plate in the fuel injection valve according to the fourth embodiment. FIG.
 噴孔14から噴射される燃料の一部は噴孔14の出口近傍に付着するが、上述した実施の形態1のように、噴孔プレート13の下流側端面に設けられた凹部30の側壁20が、凹部30の底面に対して垂直に形成される場合、噴孔14の出口近傍の付着燃料が噴孔プレート13の径方向に広がり難く、下流側端面から剥れ難くなる。その結果、周囲の高温ガスによって付着燃料が固着して噴孔14の出口部を塞ぎ、噴霧微粒化の悪化あるいは噴射流量の変化が懸念される。 A part of the fuel injected from the nozzle hole 14 adheres to the vicinity of the outlet of the nozzle hole 14, but the side wall 20 of the recess 30 provided on the downstream end face of the nozzle hole plate 13 as in the first embodiment described above. However, when it is formed perpendicular to the bottom surface of the recess 30, the attached fuel near the outlet of the injection hole 14 is difficult to spread in the radial direction of the injection hole plate 13 and is difficult to peel off from the downstream end face. As a result, the adhering fuel is fixed by the surrounding high-temperature gas and closes the outlet portion of the injection hole 14, and there is a concern that the atomization of the spray is deteriorated or the injection flow rate is changed.
 そこで、実施の形態4では、上述した実施の形態1に対して、噴孔プレート13の下流側端面に設ける凹部30を形成する側壁40を下流側に向けて広がるテーパ―形状で設けている。 Therefore, in the fourth embodiment, the side wall 40 that forms the recess 30 provided on the downstream end face of the nozzle hole plate 13 is provided in a tapered shape that widens toward the downstream side, as compared with the first embodiment described above.
 これにより噴孔14から噴射される燃料の一部が噴孔14の出口近傍に付着しても、噴孔プレート13の径方向に広がり易く、下流側端面から剥れ易くなり、付着燃料の固着により噴孔14の出口部を塞ぐことがなくなり、噴霧微粒化の悪化あるいは噴射流量の変化を抑制することができる。 As a result, even if a part of the fuel injected from the nozzle hole 14 adheres to the vicinity of the outlet of the nozzle hole 14, it easily spreads in the radial direction of the nozzle hole plate 13 and easily peels from the downstream end face, and the adhered fuel adheres. As a result, the outlet of the nozzle hole 14 is not blocked, and deterioration of spray atomization or change in the injection flow rate can be suppressed.
実施の形態5.
 図6(a)は実施の形態5による燃料噴射弁における先端部を示す断面図であり、図6(b)は実施の形態5による燃料噴射弁における噴孔プレートの下流側の矢印S3方向から見た図である。
Embodiment 5. FIG.
6 (a) is a cross-sectional view showing the tip of the fuel injection valve according to the fifth embodiment, and FIG. 6 (b) is a view from the direction of arrow S3 on the downstream side of the nozzle hole plate in the fuel injection valve according to the fifth embodiment. FIG.
 実施の形態5では、上述した実施の形態4に対して噴孔プレート13の下流側端面に設ける凹部30を、矢印の噴孔プレート13の下流側から下流側端面の垂直方向を見たときに投影される旋回室18および燃料通路17を含む領域以外の部分に設けている。 In the fifth embodiment, when the concave portion 30 provided on the downstream end face of the nozzle hole plate 13 is viewed from the downstream side of the nozzle hole plate 13 indicated by the arrow in the vertical direction of the downstream end face in the fourth embodiment described above. It is provided in a portion other than the region including the swirl chamber 18 and the fuel passage 17 to be projected.
 これにより、噴孔プレート13の下流側端面の旋回室18および燃料通路17の部分のみ凹部30の底面に対して下流側に盛り上がる形状となるため、上述した実施の形態4よりも更に噴射される燃料の一部が噴孔14の出口近傍に留まり難くなり、下流側端面から剥れ易くなるため、付着燃料の固着により噴孔14の出口部を塞ぐことがなくなり、噴霧微粒化の悪化あるいは噴射流量の変化を抑制することができる。 Thus, only the swirl chamber 18 and the fuel passage 17 on the downstream end face of the nozzle hole plate 13 have a shape that rises to the downstream side with respect to the bottom surface of the recess 30, so that injection is further performed than in the above-described fourth embodiment. Part of the fuel is less likely to stay in the vicinity of the outlet of the nozzle hole 14 and easily peels off from the downstream end face, so that the outlet part of the nozzle hole 14 is not blocked due to the adhering fuel adhering. A change in flow rate can be suppressed.
実施の形態6. 
 図7(a)は実施の形態6による燃料噴射弁における先端部を示す断面図であり、図7(b)は実施の形態6による燃料噴射弁における噴孔プレートの下流側の矢印S4方向から見た図である。
Embodiment 6 FIG.
FIG. 7A is a cross-sectional view showing the tip of the fuel injection valve according to the sixth embodiment, and FIG. 7B is a view from the direction of arrow S4 on the downstream side of the nozzle hole plate in the fuel injection valve according to the sixth embodiment. FIG.
 上述した実施の形態1,4は噴孔プレート13の下流側端面の広い範囲に凹部30を設ける場合、噴孔プレート13の板厚が広い範囲で薄くなり、噴孔プレート13の強度不足による耐久性の悪化が懸念される。 In the first and fourth embodiments described above, when the concave portion 30 is provided in a wide range of the downstream end face of the nozzle hole plate 13, the thickness of the nozzle hole plate 13 is reduced in a wide range, and durability due to insufficient strength of the nozzle hole plate 13. There is concern about the deterioration of sex.
 そこで、実施の形態6では、噴孔プレート13の下流側端面に設ける凹部として、噴孔プレート13の下流側から下流側端面の垂直方向を見たときに投影される旋回室18および燃料通路17を含む凹部領域30a1と、その径方向外側の凹部領域30b1の2箇所に設けている。 Therefore, in the sixth embodiment, the swirl chamber 18 and the fuel passage 17 projected when the vertical direction of the downstream end surface is viewed from the downstream side of the nozzle hole plate 13 as the concave portion provided on the downstream end surface of the nozzle hole plate 13. Are provided at two locations, a concave region 30a1 including the concave region 30b1 on the radially outer side.
 このように、噴孔プレート13の下流側端面に複数の凹部領域30a1,30b1を設けて、変形し難い凸凹形状にすることにより、凹部を広い範囲で1つ設ける場合に対して噴孔プレート13の強度を維持しつつ、噴孔プレート13の端部から噴孔14部への熱伝導性を低減して噴孔14部の高温化を抑制することが可能となり、噴霧微粒化の悪化あるいは噴射流量の変化を抑制することができる。 In this way, by providing a plurality of concave regions 30a1 and 30b1 on the downstream end face of the nozzle hole plate 13 and forming a concave and convex shape that is difficult to deform, the nozzle hole plate 13 is compared with the case where one concave portion is provided in a wide range. While maintaining the strength of the nozzle hole 13, it is possible to reduce the thermal conductivity from the end of the nozzle hole plate 13 to the nozzle hole 14 part to suppress the high temperature of the nozzle hole 14 part. A change in flow rate can be suppressed.
実施の形態7. 
 図8(a)は実施の形態7による燃料噴射弁における噴孔プレートの上流側端面を示す拡大図であり、図8(b)は実施の形態7の図8(a)のC-C線における断面図である。
Embodiment 7 FIG.
FIG. 8A is an enlarged view showing the upstream end face of the injection hole plate in the fuel injection valve according to the seventh embodiment, and FIG. 8B is a CC line in FIG. 8A of the seventh embodiment. FIG.
 上述した実施の形態2に対して、燃料通路17を形成する側壁20は、上流側に向けて広がるテーパ―形状が噴孔14から遠い側17aのみに形成され、噴孔14から近い側17bには形成されないので、さらに燃料通路17で整流化されて旋回室18に流入する燃料が噴孔14に直入し難くなるため、噴孔14の内部に生じる旋回流れが弱まることがなく噴霧の微粒化を維持することができる。 In contrast to the second embodiment described above, the side wall 20 forming the fuel passage 17 is formed only on the side 17a farther away from the injection hole 14 and has a taper shape extending toward the upstream side on the side 17b closer to the injection hole 14. Therefore, the fuel that is further rectified in the fuel passage 17 and flows into the swirl chamber 18 is difficult to enter directly into the nozzle hole 14, so that the swirl flow generated in the nozzle hole 14 is not weakened and atomization of the spray is prevented. Can be maintained.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may be applied to particular embodiments. The present invention is not limited to this, and can be applied to the embodiments alone or in various combinations.
Accordingly, countless variations that are not illustrated are envisaged within the scope of the technology disclosed herein. For example, the case where at least one component is deformed, the case where the component is added or omitted, the case where the at least one component is extracted and combined with the component of another embodiment are included.
 本願は、噴霧微粒化の悪化あるいは噴射流量の変化を抑制することができる信頼性の高い燃料噴射弁の実現に好適である。 The present application is suitable for realizing a highly reliable fuel injection valve capable of suppressing deterioration of spray atomization or change in injection flow rate.
 100 燃料噴射弁、9 弁装置、10 弁体、11 弁ホルダー、12 弁座、12a 弁座シート部、12b 弁座開口部、13 噴孔プレート、14 噴孔、17 燃料通路、18 旋回室、20 側壁、30 凹部、40 側壁、50 溶接部 100 fuel injection valve, 9 valve device, 10 valve element, 11 valve holder, 12 valve seat, 12a valve seat portion, 12b valve seat opening, 13 injection hole plate, 14 injection hole, 17 fuel passage, 18 swirl chamber, 20 side walls, 30 recesses, 40 side walls, 50 welds

Claims (7)

  1.  弁座シート部と弁座開口部とを有する弁座と、
    前記弁座の前記弁座シート部に当接されて前記弁座開口部からの燃料の流出を阻止するとともに、前記弁座シート部から離されて前記弁座開口部からの燃料の流出を許容する弁体と、
     前記弁座の下流側端面に固定され、前記弁座開口部から流出された燃料を外部へ噴射する複数の噴孔を有する噴孔プレートとを備えた燃料噴射弁であって、
     前記噴孔プレートの上流側端面には前記噴孔が開口して連通し燃料に旋回力を付与する旋回室と、前記旋回室に燃料を導入する燃料通路とを有し、
     前記旋回室および前記燃料通路は上流側に向けて広がるテーパー形状を有する側壁により構成され、
     前記噴孔プレートの下流側端面には前記旋回室および前記燃料通路を含む領域に凹部を有することを特徴とする燃料噴射弁。
    A valve seat having a valve seat and a valve seat opening;
    The valve seat is in contact with the valve seat portion to prevent fuel from flowing out of the valve seat opening, and is separated from the valve seat portion to allow fuel to flow out of the valve seat opening. A valve body to
    A fuel injection valve comprising: a nozzle plate fixed to a downstream end surface of the valve seat, and having a plurality of nozzle holes for injecting the fuel flowing out from the valve seat opening to the outside;
    An upstream end face of the nozzle hole plate, the nozzle hole is opened and communicated with each other, and a swirling chamber that imparts a swirling force to the fuel; and a fuel passage that introduces fuel into the swirling chamber;
    The swirl chamber and the fuel passage are configured by side walls having a tapered shape that widens toward the upstream side,
    A fuel injection valve having a recess in a region including the swirl chamber and the fuel passage on a downstream end face of the nozzle hole plate.
  2.  前記燃料噴射弁の中心軸に垂直な平面に前記燃料通路および前記噴孔を投影したとき、前記燃料通路の底部の幅をHとし、前記燃料通路の底部の深さをVとし、前記側壁の深さ方向に対する傾き角度をθとし、前記燃料通路の底部の中心軸から前記噴孔の中心までの距離をLとすると、H/2+V・tanθ<Lの関係としたことを特徴とする請求項1に記載の燃料噴射弁。 When the fuel passage and the injection hole are projected on a plane perpendicular to the central axis of the fuel injection valve, the width of the bottom of the fuel passage is H, the depth of the bottom of the fuel passage is V, The relationship of H / 2 + V · tan θ <L is established, where θ is an inclination angle with respect to the depth direction, and L is a distance from the central axis of the bottom of the fuel passage to the center of the nozzle hole. The fuel injection valve according to 1.
  3.  前記噴孔プレートは、前記弁座の下流側に溶接され、前記凹部は溶接部よりも内周側に設けられることを特徴とする請求項1または請求項2に記載の燃料噴射弁。 3. The fuel injection valve according to claim 1, wherein the nozzle hole plate is welded to a downstream side of the valve seat, and the concave portion is provided on an inner peripheral side with respect to a welded portion.
  4.  前記凹部は、下流側に向けて広がるテーパ―形状を有する側壁により構成されることを特徴とする請求項1から請求項3のいずれか1項に記載の燃料噴射弁。 The fuel injection valve according to any one of claims 1 to 3, wherein the concave portion is constituted by a side wall having a tapered shape spreading toward the downstream side.
  5.  前記凹部は、前記噴孔プレートの下流側端面に投影される前記旋回室および前記燃料通路以外の部分に設けられることを特徴とする請求項1から請求項4のいずれか1項に記載の燃料噴射弁。 5. The fuel according to claim 1, wherein the recess is provided in a portion other than the swirl chamber and the fuel passage projected onto a downstream end surface of the nozzle hole plate. Injection valve.
  6.  前記凹部は、前記噴孔プレートの下流側端面に複数設けられることを特徴とする請求項1から請求項5のいずれか1項に記載の燃料噴射弁。 The fuel injection valve according to any one of claims 1 to 5, wherein a plurality of the recesses are provided on a downstream end surface of the nozzle hole plate.
  7.  前記燃料通路を形成する側壁は、前記噴孔に遠い側のみ上流側に向けて広がるテーパ―形状を有することを特徴とする請求項1から請求項6のいずれか1項に記載の燃料噴射弁。 The fuel injection valve according to any one of claims 1 to 6, wherein the side wall forming the fuel passage has a tapered shape that widens toward the upstream side only on the side far from the nozzle hole. .
PCT/JP2018/017136 2018-04-27 2018-04-27 Fuel injection valve WO2019207753A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880092538.6A CN111989480B (en) 2018-04-27 2018-04-27 Fuel injection valve
JP2020515420A JPWO2019207753A1 (en) 2018-04-27 2018-04-27 Fuel injection valve
PCT/JP2018/017136 WO2019207753A1 (en) 2018-04-27 2018-04-27 Fuel injection valve
PH12020551753A PH12020551753A1 (en) 2018-04-27 2020-10-22 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017136 WO2019207753A1 (en) 2018-04-27 2018-04-27 Fuel injection valve

Publications (1)

Publication Number Publication Date
WO2019207753A1 true WO2019207753A1 (en) 2019-10-31

Family

ID=68294508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017136 WO2019207753A1 (en) 2018-04-27 2018-04-27 Fuel injection valve

Country Status (4)

Country Link
JP (1) JPWO2019207753A1 (en)
CN (1) CN111989480B (en)
PH (1) PH12020551753A1 (en)
WO (1) WO2019207753A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068788A (en) * 2002-08-09 2004-03-04 Denso Corp Fuel injection device
JP2006194136A (en) * 2005-01-13 2006-07-27 Suruga Seiki Kk Method of manufacturing orifice plate with step for fuel injection valve
JP2011196328A (en) * 2010-03-23 2011-10-06 Hitachi Automotive Systems Ltd Fuel injection valve
JP2017198080A (en) * 2016-04-25 2017-11-02 株式会社ケーヒン Electromagnetic fuel injection valve

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546428A1 (en) * 1995-12-13 1997-06-19 Bosch Gmbh Robert Engine injection valve with seal round plastics-encased valve housing
JP3715253B2 (en) * 2002-05-17 2005-11-09 株式会社ケーヒン Fuel injection valve
JP4906466B2 (en) * 2006-10-16 2012-03-28 日立オートモティブシステムズ株式会社 Fuel injection valve and fuel injection device for internal combustion engine equipped with the same
JP2012211532A (en) * 2011-03-31 2012-11-01 Hitachi Automotive Systems Ltd Fuel injection valve
JP2012215135A (en) * 2011-04-01 2012-11-08 Hitachi Automotive Systems Ltd Fuel injection valve
MY191785A (en) * 2014-10-23 2022-07-15 Mitsubishi Electric Corp Valve device for fuel injection valve
JP6594713B2 (en) * 2015-09-15 2019-10-23 日立オートモティブシステムズ株式会社 Fuel injection valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068788A (en) * 2002-08-09 2004-03-04 Denso Corp Fuel injection device
JP2006194136A (en) * 2005-01-13 2006-07-27 Suruga Seiki Kk Method of manufacturing orifice plate with step for fuel injection valve
JP2011196328A (en) * 2010-03-23 2011-10-06 Hitachi Automotive Systems Ltd Fuel injection valve
JP2017198080A (en) * 2016-04-25 2017-11-02 株式会社ケーヒン Electromagnetic fuel injection valve

Also Published As

Publication number Publication date
CN111989480B (en) 2022-05-06
CN111989480A (en) 2020-11-24
PH12020551753A1 (en) 2021-07-19
JPWO2019207753A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US9291135B2 (en) Electromagnetic fuel injection valve
US8967500B2 (en) Fuel injection valve
US9303608B2 (en) Fuel injector
JPWO2008117459A1 (en) Fuel injection valve
US20130299610A1 (en) Gas fuel injection valve
JP6205482B2 (en) Solenoid valve
US8919674B2 (en) Fuel injection valve
JP2004278464A (en) Fuel injection valve
JP5336451B2 (en) Fuel injection valve
US20140374512A1 (en) Electromagnetic fuel injection valve
US9464612B2 (en) Fuel injection valve
KR20070103077A (en) Fuel injection valve
JP5893110B1 (en) Fuel injection valve
US7931217B2 (en) Fuel injection valve
JP4782804B2 (en) Fuel injection valve
US10344726B2 (en) Fuel injection valve
JP2015078603A (en) Fuel injection valve
WO2019207753A1 (en) Fuel injection valve
US7080796B2 (en) Fuel injection valve
US20070215114A1 (en) Fuel Injection Valve
JP4138778B2 (en) Fuel injection valve
PH12015502333B1 (en) Fuel injection valve
CN109891083B (en) Fuel injection valve
JP6190917B1 (en) Fuel injection valve
WO2018155091A1 (en) Fuel injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515420

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916679

Country of ref document: EP

Kind code of ref document: A1