WO2015170501A1 - Humidity conditioner - Google Patents

Humidity conditioner Download PDF

Info

Publication number
WO2015170501A1
WO2015170501A1 PCT/JP2015/055778 JP2015055778W WO2015170501A1 WO 2015170501 A1 WO2015170501 A1 WO 2015170501A1 JP 2015055778 W JP2015055778 W JP 2015055778W WO 2015170501 A1 WO2015170501 A1 WO 2015170501A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
air
particle group
particles
particle
Prior art date
Application number
PCT/JP2015/055778
Other languages
French (fr)
Japanese (ja)
Inventor
伸基 崎川
浦元 嘉弘
康昌 鈴木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580011406.2A priority Critical patent/CN106062484B/en
Priority to JP2016517827A priority patent/JP6266100B2/en
Publication of WO2015170501A1 publication Critical patent/WO2015170501A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature

Definitions

  • the present invention relates to a humidity control apparatus.
  • the “refrigeration cycle type” mainly has a built-in compressor, ie, a compressor, and cools indoor air with an evaporator, ie, an evaporator, to condense and dehumidify the humidity in the air.
  • a zeolite type the moisture in the indoor air is absorbed by the rotor, the high-temperature air generated by the electric heater is applied to the absorbed rotor, and the moisture in the rotor is taken out as high-temperature and high-humidity air, and the air is extracted.
  • By cooling with room air moisture contained in high-temperature and high-humidity air is condensed and extracted.
  • Patent Document 1 JP-A-2003-144833
  • Patent Document 2 JP-A-2001-259349
  • Patent Document 3 A configuration combining both features is described in Japanese Patent Laid-Open No. 2005-34838 (Patent Document 3).
  • JP 2003-144833 A JP 2001-259349 A JP 2005-34838 A JP-A-5-301014 JP 2012-161789 A
  • the particulate environmental stimulus-responsive polymer material has a higher moisture absorption rate as the particle size is smaller, and the moisture absorption rate tends to be higher than the volume of the polymer material. Therefore, the smaller the particle size, the larger the increase rate of the particle radius and the volume increase rate after saturated moisture absorption than before the moisture absorption. As a result of the sudden increase in particle radius, particles may stick together and become clogged after moisture absorption or in the process of moisture absorption.
  • FIG. 34 shows an example of clogging.
  • particles 2a and 2b having the same diameter as the particulate environmental stimulus-responsive polymer material are arranged, and by receiving the air 3 guided from the inlet, it is close to the inlet by the moisture contained in the air 3 It is shown that the side particles 2a swell and become clogged.
  • grains 2a the external shape before swelling is shown as a continuous line, and the external shape expanded by swelling is shown with a dashed-two dotted line.
  • the particles 2b on the side far from the entrance are not swollen.
  • an object of the present invention is to provide a humidity control device that can avoid problems caused by clogging while ensuring sufficient moisture absorption performance.
  • a humidity control apparatus includes a first state in which moisture can be absorbed (sorbed), and a first state in which moisture absorbed (sorbed) in the first state is released. 2 when the environmental condition is satisfied, the first state is changed to the second state, and when the environmental condition is not satisfied, the first state is returned.
  • the passage housing includes an air inlet that takes in air from the outside, and an air outlet that discharges air that has been taken in from the air inlet and passed through the gaps between the particle groups.
  • the particle group includes a first particle group having a first diameter and a second particle group having a second diameter smaller than the first diameter. In the passage housing, the first particle group is disposed closer to the air inlet than the second particle group.
  • the present invention since more particles can each absorb moisture, it is possible to provide a humidity control apparatus capable of avoiding problems due to clogging while ensuring sufficient moisture absorption performance.
  • Embodiment 1 It is a conceptual diagram of the humidity control apparatus in Embodiment 1 based on this invention. It is a conceptual diagram of the humidity control apparatus in Embodiment 2 based on this invention. It is 1st explanatory drawing of the particle group with which the humidity control apparatus in Embodiment 2 based on this invention is equipped. It is 2nd explanatory drawing of the particle group with which the humidity control apparatus in Embodiment 2 based on this invention is equipped. It is a graph which shows the radius increase rate of the particle group with which the humidity control apparatus in Embodiment 2 based on this invention is equipped. It is explanatory drawing of a mode that air passes through the particle group arrange
  • FIG. 25 is a cross-sectional view taken along line XXVI-XXVI in FIG. 24. It is the figure which looked at the dehumidifier in Embodiment 10 based on this invention from the 1st side. It is the figure which looked at the dehumidifier in Embodiment 10 based on this invention from the 2nd side.
  • FIG. 28 is a cross-sectional view taken along the line XXIX-XXIX in FIG. It is a front view of the dehumidifier in Embodiment 11 based on this invention. It is a rear view of the dehumidifier in Embodiment 11 based on this invention.
  • FIG. 28 is a cross-sectional view taken along the line XXIX-XXIX in FIG. It is a front view of the dehumidifier in Embodiment 11 based on this invention. It is a rear view of the dehumidifier in Embodiment 11 based on this invention.
  • FIG. 28 is
  • FIG. 31 is a cross-sectional view taken along the line XXXII-XXXII in FIG. 30. It is explanatory drawing of the reproduction
  • the polymer gel moisture-absorbing material used in the present invention is a so-called stimulus response type sensitive gel.
  • This polymer gel moisture-absorbing material absorbs (sorbs) moisture in the air and discharges water in response to stimulation, thereby condensing water vapor without using supercooling or a large amount of heat. Can be converted to water.
  • the volume phase transition that occurs between water and polymer is utilized between water vapor (gas) and water (liquid).
  • Embodiment 1 With reference to FIG. 1, the humidity control apparatus in Embodiment 1 based on this invention is demonstrated.
  • the humidity control apparatus 101 releases a first state in which moisture can be absorbed (sorbed) and moisture that has been absorbed (sorbed) in the first state.
  • a second state that changes from the first state to the second state when the environmental condition is satisfied, and returns to the first state when the environmental condition is not satisfied.
  • a particle group 20 mainly composed of a polymer gel moisture-absorbing material having properties, and a passage housing 19 for housing the particle group.
  • the passage housing 19 includes an air inlet 17 for taking in air 3 from the outside, an air An air outlet 18 for discharging the air taken in from the inlet 17 and passing through the gap between the particle groups 20, and the particle group 20 includes a first particle group 21 having a first diameter and the first diameter.
  • a second particle group 22 having a small second diameter, and a passage housing 1
  • the inner, first particles 21 are arranged in the air inlet 17 closer than the second particle group 22.
  • FIG. 1 a blower fan for sending air 3 is not shown. Actually, a blower fan is provided at an appropriate position in order to create a flow of air 3 toward the inside of the passage housing 19. In FIG. 1, the size of each particle is exaggerated and enlarged for the convenience of explanation.
  • the first state of the particle group 20 is a hydrophilic state, and the second state is a hydrophobic state.
  • FIG. 1 a structure for keeping the particle group 20 at a desired position in the passage housing 19 is not shown.
  • the particle group 20 is held in a certain section by being sandwiched by mesh members from above and below in the passage housing 19.
  • some of the moisture in the air 3 is first absorbed (sorbed) by the first particle group 21 having a large diameter, and then absorbed (sorption) by the second particle group 22 having a small diameter. Therefore, it can avoid that the particle
  • Embodiment 2 With reference to FIG. 2, the humidity control apparatus in Embodiment 2 based on this invention is demonstrated.
  • the size of the particle diameter is not limited to two stages as described above, and is not less than three stages. May be.
  • the humidity control apparatus 102 includes three particle groups as shown in FIG. In the first particle group 21, the second particle group 22, and the third particle group 23, the particle diameters are different from large, medium, and small. Inside the passage housing 19, the first particle group 21, the second particle group 22, and the third particle group 23 are arranged in order from the side close to the air inlet 17. Other basic configurations of the humidity control apparatus may be the same as those described in the first embodiment.
  • the particles of the particle group having the smaller diameter rapidly absorb (sorb) excessive moisture. Can be avoided. Therefore, it is possible to provide a humidity control apparatus that can avoid problems due to clogging while ensuring sufficient moisture absorption performance.
  • the particle diameter may be four or more. In that case, it arranges in order so that a particle with a large diameter may be located on the side closer to the air inlet 17 and a particle with a smaller diameter on the far side.
  • Particles with a smaller radius r have a larger radius increase rate than those with a larger original radius r. This is shown graphically in FIG.
  • the three curves shown in FIG. 5 are saturated if the time is sufficiently long, and the possibility of the same radius increase rate cannot be denied. However, for practical use, the operation cycle is repeated after a certain period of time. Is realistic. At least within such a realistic range of time, the magnitude relationship of the radius increase rate that is different from the difference in particle size is maintained even after the lapse of time from the start of moisture absorption.
  • FIG. 6 shows a state in which moist air 3 passes when particles having different particle diameters are sequentially arranged in layers.
  • the thickness of the arrow indicates the humidity in the air. Each particle absorbs (sorbs) the same amount of moisture. As the air 3 travels, it comes into contact with a larger number of particles, so the humidity decreases.
  • FIG. 7 shows a so-called regeneration process, that is, a state in which moisture is taken out by sequentially stimulating moisture particles.
  • particles having a large diameter are arranged on the upper side
  • particles having a small diameter are arranged on the lower side
  • water 5 is taken out from the lower side.
  • the thickness of the arrow indicates the amount of moisture that moves.
  • the stimulus here is, for example, any one of heat, light, electricity, and pH. By applying this stimulus, it is assumed that the environmental condition for the particle group to change from the first state to the second state is satisfied.
  • the stimulus is given in order from the layer arranged on the upper side. By doing so, the state changes from the upper layer to the second state in order.
  • the upper layer since the upper layer is already in the second state, even if it touches the water 5 in the liquid state, it cannot be absorbed (sorbed), but the particles in the lower layer are still in the first state. Therefore, the water 5 can be absorbed (sorbed). In this way, water can be sent sequentially to the lower layer. Since almost all the water 5 is collected in the lowermost layer, the water 5 is finally discharged to the outside of the particle group using gravity or centrifugal force.
  • FIG. 8 A graph of the particle surface area / volume ratio and the moisture absorption saturation time with respect to the particle radius is shown in FIG.
  • the smaller the diameter the larger the ratio of the surface area to the volume of the particle, so the time until the moisture absorption reaches a saturated state is shortened. Therefore, it can be said that the small particles tend to reach saturation in a short time, but as shown in the first and second embodiments, the small particles already remove some moisture by the large particles. Since only the conditioned air arrives, the small particles absorb less moisture and as a result can delay the small particles from reaching saturation.
  • Embodiment 3 With reference to FIG. 9, the humidity control apparatus in Embodiment 3 based on this invention is demonstrated.
  • the environmental condition in which the polymer gel moisture-absorbing material changes from the first state to the second state is that the temperature is a certain level or higher. Therefore, the stimulus to be given to satisfy the environmental condition is heat.
  • the passage housing 19 is provided with a heater 30 for applying heat to the particle group 20.
  • Other basic configurations of the humidity control apparatus may be the same as those described in the first or second embodiment.
  • Embodiment 4 With reference to FIG. 10, the humidity control apparatus in Embodiment 4 based on this invention is demonstrated.
  • the passage housing 19 is divided into a plurality of sections arranged in a direction from the air inlet 17 toward the air outlet 18.
  • the particle group 20 is accommodated in the plurality of compartments.
  • the heater 30 includes an outer peripheral heater 31 disposed along the outer periphery of the passage housing 19 so as to individually apply heat to each of the plurality of sections.
  • a particle group 20 having a different particle diameter is accommodated in each of the plurality of compartments.
  • the sections are arranged so that the particle diameters become smaller in order from the air inlet 17 side toward the air outlet 18 side.
  • the humidity control apparatus 104 includes a control mechanism 15 that controls the heater 30 so as to sequentially heat the section on the air inlet 17 side to the section on the air outlet 18 side.
  • a power supply 10 is connected to operate the control mechanism 15 and the heater 30.
  • the particle group 20 is accommodated in a plurality of sections, it is easy to control whether the first state or the second state is set for each section. Therefore, particle groups can be handled efficiently. In addition, since it is divided into a plurality of sections, it is easy to work when exchanging particle groups.
  • the humidity control apparatus 105 in the present embodiment is a modification of the humidity control apparatus 104 shown in the fourth embodiment.
  • the passage housing is not shown.
  • the particle group 20 is arrange
  • the cylindrical passage housing in which the particle group 20 is accommodated is slowly rotated around the central axis 14 by a driving unit (not shown).
  • the passage housing in which the particle group 20 is accommodated is divided into a ventilation region 11 and a non-venting region 12 in plan view.
  • the positional relationship between the vent region 11 and the non-vent region 12 is fixed. Therefore, when the passage housing rotates, the particles in each part pass through the ventilation region 11 and the non-venting region 12 alternately.
  • the wind of the air 3 hits the particle group 20 in at least a part of the ventilation region 11.
  • region 12 the structure which shields so that the air 3 does not hit directly is provided.
  • the particles are heated by a heater (not shown). By the action of the control mechanism 15, heating is performed in order from the top to the bottom.
  • the particles in each part alternately pass through the ventilation region 11 and the non-ventilation region 12 due to the rotation of the passage housing. Therefore, by continuing the rotation of the passage housing while operating the heater, Moisture absorption and regeneration can be repeated alternately. Therefore, in this embodiment, it is not necessary to stop the moisture absorption operation for the regeneration process. Therefore, in this Embodiment, the humidity control apparatus which can be continuously operated is realizable.
  • the humidity control apparatus in the present embodiment has a first state in which moisture can be absorbed (sorbed) and a second state in which moisture absorbed (sorbed) in the first state is released.
  • the polymer gel moisture-absorbing material has a property of changing from the first state to the second state when the environmental condition is satisfied and returning to the first state when the environmental condition is not satisfied.
  • the air inlet 17 and the air outlet 18 are covered with a net-like member having a fineness that does not allow the particle group 20 to pass through.
  • An outer peripheral heater 31 is provided so as to surround the outer periphery of the passage housing 19.
  • the outer peripheral heater 31 is divided into several sections in the vertical direction in FIG. 14, and can be switched ON / OFF separately. Or the structure which can switch ON / OFF separately for each outer periphery heater 31 may be sufficient.
  • all the particles are displayed in the same size, but in practice, it is preferable to provide a difference in the particle diameter as described in the above embodiments.
  • all particles belonging to the particle group 20 in the passage housing 19 are in the first state, that is, in a state where moisture can be absorbed (sorbed).
  • particles in a dry state are displayed as white small circles.
  • the humid air 3 is sent into the passage housing 19 from the air inlet 17 by the blower fan 9.
  • the air 3 is dehumidified by passing through the gaps between the particle groups 20 and exits from the air outlet 18 as dehumidified air 3e.
  • the regeneration step is a step for returning the polymer gel moisture-absorbing material constituting the particle group 20 to a state that can be used again for dehumidification.
  • a portion near the upper end of the outer peripheral heater 31 is turned on.
  • the particles inside the passage housing 19 are heated, so that the region surrounded by the outer peripheral heater 31 that is ON can be regarded as the heating region 41. Since the particles are not heated below the heating region 41, the non-heating region 42 is formed.
  • the heating region 41 the environmental condition is satisfied when the temperature reaches a certain level or more, and as a result, the particles change from the first state to the second state.
  • the absorbed (sorbed) moisture is released, but the particles already heated to the second state do not receive moisture.
  • the particles in the first state because they have not been heated can receive moisture.
  • moisture is sent downward in order.
  • Moisture released from a particle may be absorbed (sorbed) by any of the particles present on the lower side, or moved through the gap between the particles without being absorbed (sorbed) by any particle. May be.
  • the section where the outer peripheral heater 31 is ON is gradually extended downward, and the heating area 41 is expanded.
  • the non-heating area 42 becomes narrower.
  • the heating area 41 expands downward, the discharged water 5 is pushed near the lower end of the passage housing 19, and as shown in FIG. 15, the water 5 that has lost its place in the passage housing 19 is It falls from the air outlet 18 in a liquid state.
  • the temperature at which the particles change from the first state to the second state is set to a temperature slightly higher than room temperature so that the water exuded from the particles does not evaporate immediately. It is preferable that The temperature sensitive point may be 50 ° C., for example.
  • the heater 30 includes an outer peripheral heater 31 provided on the outer periphery and a flat plate heater 32 that separates different sections adjacent in the vertical direction.
  • the flat plate heater 32 has a structure through which water and air can pass.
  • the flat plate heater 32 may have a net shape.
  • the humid air 3 is sent into the passage housing 19 from the air inlet 17 by the blower fan 9.
  • the air 3 is dehumidified by passing through the gaps between the particle groups 20 and exits from the air outlet 18 as dehumidified air 3e.
  • the heaters on the outer peripheral surface and the upper surface of the section are heated simultaneously in a set for each section partitioned in the passage housing 19, so that the inside of the section is efficiently heated. Will release moisture and the moisture will be expelled to the next lower compartment.
  • the heating area 41 expands downward, the discharged water 5 is pushed near the lower end of the passage housing 19, and as shown in FIG. 19, the water 5 that has lost its place in the passage housing 19 is It falls from the air outlet 18 in a liquid state.
  • the moisture stored in the particle group 20 can be pushed down efficiently and reliably.
  • the said heater is a humidity control apparatus containing the net-like flat plate heater arrange
  • casing so that what adjoins among these divisions may be separated.
  • the heater is controlled so as to sequentially heat the plurality of sections from the section disposed on the side farther from the outlet from which water should be discharged to the section disposed on the near side. Water extraction method.
  • the humidity control apparatus in the present embodiment includes an outer peripheral heater 31 provided on the outer periphery as a heater.
  • the passage housing 19 has a cylindrical shape, has a columnar cavity 13 that does not accommodate the particle group 20 along the central axis, and the heater is provided in the particle group 20 from the outer periphery to the inner periphery.
  • the outer periphery heater 31 arrange
  • the wall material that defines the inner surface of the columnar cavity 13 has a net shape.
  • the humid air 3 is sent into the passage housing 19 from the air inlet 17 by the blower fan 9.
  • the air 3 is dehumidified by passing through the gaps between the particle groups 20 disposed inside the passage housing 19 and outside the columnar cavity 13, and exits from the air outlet 18 as dehumidified air 3 e.
  • the outer peripheral heaters 31 are simultaneously turned on over the entire section from the upper end to the lower end. By carrying out like this, it heats up sequentially from the particle
  • the columnar cavity 13 is provided in the passage housing 19, a mechanism for controlling the heaters to be turned on in order for each part is unnecessary.
  • an appropriate material having a higher thermal conductivity than that of the polymer gel moisture-absorbing material for example, a member made of metal, resin, or the like is directed from the outer periphery of the housing to the center side You may arrange
  • the material used here is a metal
  • examples of the metal include aluminum and stainless steel.
  • Aluminum is particularly preferable because of its high thermal conductivity.
  • FIG. 24 shows a view of the dehumidifier 501 in the present embodiment from the front
  • FIG. 25 shows a view from the back.
  • On the front surface 513 of the dehumidifier 501 an air outlet 511 a is provided at the lower part, and an air outlet 511 b is provided at the upper part.
  • the back surface 514 is provided with an intake port, and a filter 512 covers the intake port.
  • FIG. 26 is a cross-sectional view taken along the line XXVI-XXVI in FIG.
  • a first intake fan 516 arranged at the lower part and a second intake fan 517 arranged at the upper part are arranged inside the back surface 514.
  • the internal space of the housing is separated vertically by a condensation plate 518.
  • the end of the condensation plate 518 on the back surface 514 side is bent downward.
  • a polymer hygroscopic material 520 is disposed below the dew condensation plate 518.
  • the polymer hygroscopic material 520 holds the particle group 20 by applying the concept described in the first to eighth embodiments.
  • the polymer hygroscopic material 520 is displayed as a porous block, but this is merely an example and is not necessarily a block.
  • air does not pass from top to bottom as described in Embodiments 1 to 8, but air passes in the lateral direction. Therefore, the direction of the arrangement of the particle group 20 is 90 ° different from that described in the first to eighth embodiments.
  • the polymer hygroscopic material 520 is placed on a table 525.
  • a heat source 521 is disposed below the table 525.
  • the heat source 521 is disposed so that the polymer moisture absorbent 520 can be heated from below via the table 525.
  • a tank 515 for receiving and storing water is disposed at the lowermost part of the dehumidifier 501.
  • the first intake fan 516 is turned on while the heat source 521 and the second intake fan 517 are turned off.
  • the external air 3 is guided to the lower space inside the housing by the first intake fan 516.
  • the air 3 is dehumidified by passing through the polymer hygroscopic material 520, becomes air 3 e, and is discharged from the outlet 511 a below the front surface 511.
  • the first intake fan 516 is turned off, and the heat source 521 and the second intake fan 517 are turned on.
  • the polymer moisture absorbent 520 is heated by the heat source 521, and moisture is released from the polymer moisture absorbent 520.
  • the water that has oozed out in the liquid state is guided to the tank 515 by gravity.
  • Moisture, that is, water vapor 6 released in a gaseous state touches the lower surface of the dew condensation plate 518.
  • the air 3 guided from the outside by the second intake fan 517 passes while cooling the upper surface of the dew condensation plate 518 and exits from the air outlet 511 b on the upper side of the front surface 513.
  • the water vapor 6 that has touched the lower surface of the dew condensation plate 518 is cooled by the dew condensation plate 518 and is condensed to form water 5 in a liquid state. Since one end of the dew condensation plate 518 is inclined, the water 5 adhering to this portion is guided to the lower end of the dew condensation plate 518 by the inclination and falls and is received by the tank 515.
  • the portion near the front surface 513 of the dew condensation plate 518 is displayed as extending horizontally, but actually this portion may also be inclined so as to decrease as it approaches the back surface 514 side. preferable.
  • moisture released as water vapor from the polymer moisture absorbent 520 can also be condensed by the action of the condensation plate 518 and recovered as liquid water.
  • FIG. 27 shows a view of the dehumidifier 502 in the present embodiment from one side
  • FIG. 28 shows a view from the other side.
  • the blower outlet 511 is provided in the lower part.
  • An intake port is provided in the upper part on the same side as the air outlet 511, and the filter 512 covers the intake port.
  • FIG. 29 is a cross-sectional view taken along the line XXIX-XXIX in FIG.
  • a common intake fan 519 is provided at one location.
  • a dew condensation plate 518i is provided so as to vertically separate the internal space of the housing.
  • a polymer hygroscopic material 520 is disposed below the dew condensation plate 518i.
  • a tank 515 for receiving and storing water is disposed at the lowermost part of the dehumidifier 502.
  • a heat source 522 is disposed in a passage connecting the upper space and the lower space of the dew condensation plate 518i.
  • the common intake fan 519 is turned on while the heat source 522 is turned off.
  • the common intake fan 519 guides air 3 from the outside into the housing.
  • the air 3 passes through the upper space of the dew condensation plate 518i, wraps around the lower space, and passes through the polymer hygroscopic material 520.
  • the air 3 is dehumidified by passing through the polymer hygroscopic material 520, and becomes air 3 e and is discharged from the outlet 511 to the outside.
  • the common intake fan 519 is turned on while the heat source 522 is turned on.
  • the common intake fan 519 guides air 3 from the outside into the housing. Since the air 3 is warmed by the heat source 522 and passes through the polymer hygroscopic material 520, the temperature of the particles contained in the polymer hygroscopic material 520 rises to a second state, that is, a hydrophobic state.
  • the water 5 released from the polymer hygroscopic material 520 in a liquid state falls by gravity and is received by the tank 515.
  • the water, that is, the water vapor 6 released from the polymer hygroscopic material 520 in a gaseous state touches the lower surface of the inclined portion of the dew condensation plate 518i.
  • the inclined portion of the dew condensation plate 518i is cooled.
  • the water vapor 6 is cooled by the dew condensation plate 518i, and is condensed to form water 5 in a liquid state.
  • the water 5 adhering to the lower surface of the inclined portion of the dew condensation plate 518i is guided downward by gravity and received by the tank 515.
  • moisture released as water vapor from the polymer hygroscopic material 520 can also be condensed by the action of the condensation plate 518i and recovered as liquid water.
  • the same common intake fan 519 is used for both dehumidification and regeneration, the number of fans installed can be reduced.
  • FIG. 30 shows a view of the dehumidifier 503 in the present embodiment from the front
  • FIG. 31 shows a view from the back.
  • On the front surface 513 of the dehumidifier 501 an air outlet 511 a is provided at the lower part, and an air outlet 511 b is provided at the upper part.
  • the back surface 514 is provided with an intake port, and a filter 512 covers the intake port.
  • FIG. 32 shows a cross-sectional view taken along the line XXXII-XXXII in FIG.
  • a common intake fan 519 is provided at one lower position inside the back surface 514.
  • the internal space of the housing is vertically separated by a condensation plate 518j.
  • the dew condensation plate 518j is curved so as to fall as it approaches the back surface 514 side.
  • the dew condensation plate 518j can move up and down in the casing.
  • a polymer hygroscopic material 520 is disposed below the dew condensation plate 518j in the same manner as described in the ninth embodiment. The point that the polymer hygroscopic material 520 is placed on the stand 525, the point that the heat source 521 and the tank 515 are arranged are the same as those described in the ninth embodiment.
  • the dew condensation plate 518j is disposed at a high position as shown in FIG. 32, and the common intake fan 519 is turned on while the heat source 521 is turned off.
  • the external air 3 is guided to the lower space inside the housing by the common intake fan 519.
  • the air 3 is dehumidified by passing through the polymer hygroscopic material 520, becomes air 3 e, and is discharged from the outlet 511 a below the front surface 511.
  • the dew condensation plate 518j moves downward as shown by an arrow 91 in FIG. 32, and becomes as shown in FIG. That is, the dew condensation plate 518j is disposed at a low position.
  • the heat source 521 and the common intake fan 519 are turned on.
  • the polymer moisture absorbent 520 is heated by the heat source 521, and moisture is released from the polymer moisture absorbent 520.
  • the water that has oozed out in the liquid state is guided to the tank 515 by gravity.
  • Moisture that is, water vapor 6 released in the gaseous state touches the lower surface of the dew condensation plate 518j.
  • the air 3 guided from the outside by the common intake fan 519 passes through the upper surface of the dew condensation plate 518j while cooling and exits from the air outlet 511b on the upper side of the front surface 513.
  • the water vapor 6 that has touched the lower surface of the dew condensation plate 518j is cooled by the dew condensation plate 518j, and is condensed to form water 5 in a liquid state. Since the dew condensation plate 518j is curved, the water 5 adhering to the dew condensation plate 518j is guided to the lower end of the dew condensation plate 518j by the inclination, falls, and is received by the tank 515.
  • the same effect as in the tenth embodiment can be obtained.
  • the passage of air can be clearly switched by the movement of the dew condensation plate 518j, it can operate efficiently.
  • a hygroscopic material whose main material is a polymer gel hygroscopic material that has the property of changing from the state to the second state and returning to the first state when the temperature is not higher than the predetermined temperature;
  • a first blower fan that induces and applies outside air to the hygroscopic material in the first state;
  • a dew plate disposed at a position to receive water vapor released from the moisture absorbent material in the second state;
  • a dehumidifying device comprising: a second blower fan that can apply wind to a surface of the dew condensation plate opposite to the surface that receives the water vapor.
  • the present invention can be used for a humidity control apparatus.

Abstract

A humidity conditioner (101) which comprises groups of particles (20) and a passage case (19) in which the groups of particles (20) are held, the groups of particles (20) comprising, as the main material, a moisture-absorbing polymer gel material having the property of: coming into a first state in which the polymer gel material can absorb (sorb) moisture and a second state in which the polymer gel material releases the moisture; changing from the first state into the second state when surrounding conditions become satisfied; and returning to the first state when the surrounding conditions become unsatisfied. The passage case (19) has both air inlets (17) through which air is introduced externally and air outlets (18) through which the air having passed through interstices among the particles of the groups of particles (20) is discharged. The groups of particles (20) comprise a first group of particles (21) having a first diameter and a second group of particles (22) having a second diameter, which is smaller than the first diameter. In the passage case (19), the first group of particles (21) have been disposed nearer the air inlets (17) than the second group of particles (22).

Description

調湿装置Humidity control device
 本発明は、調湿装置に関するものである。 The present invention relates to a humidity control apparatus.
 除湿および調湿を行なうための装置としては、冷凍サイクル式とゼオライト式とがある。「冷凍サイクル式」は、主にコンプレッサすなわち圧縮機を内蔵し、エバポレータすなわち蒸発器で室内空気を冷却することにより空気内の湿度を結露させ、除湿するものである。「ゼオライト式」は、室内の空気中の水分をロータに吸湿させ、吸湿したロータに電気ヒータで作った高温の風を当て、ロータ内の水分を高温・高湿の空気として取り出し、その空気を室内空気で冷却することにより、高温・高湿の空気に含まれる水分を結露させて取り出すものである。 There are a refrigeration cycle type and a zeolite type as devices for performing dehumidification and humidity control. The “refrigeration cycle type” mainly has a built-in compressor, ie, a compressor, and cools indoor air with an evaporator, ie, an evaporator, to condense and dehumidify the humidity in the air. In the “zeolite type”, the moisture in the indoor air is absorbed by the rotor, the high-temperature air generated by the electric heater is applied to the absorbed rotor, and the moisture in the rotor is taken out as high-temperature and high-humidity air, and the air is extracted. By cooling with room air, moisture contained in high-temperature and high-humidity air is condensed and extracted.
 冷凍サイクル式の例が記載された文献としては、特開2003-144833号公報(特許文献1)を挙げることができる。ゼオライト式の例が記載された文献としては、特開2001-259349号公報(特許文献2)を挙げることができる。両者の特徴を合わせた構成は、特開2005-34838号公報(特許文献3)に記載されている。 JP-A-2003-144833 (Patent Document 1) can be cited as a document describing an example of a refrigeration cycle type. JP-A-2001-259349 (Patent Document 2) can be cited as a document describing examples of the zeolite type. A configuration combining both features is described in Japanese Patent Laid-Open No. 2005-34838 (Patent Document 3).
 大規模空調システムとして、吸湿性を有する素子、すなわち、たとえばゼオライトなどを用いて、この素子による水分の吸着および離脱の現象を利用して冷房などの空調を行なう、いわゆるデシカント空調システムも普及している。地球環境保護の要請から現在も盛んに高効率な調湿システムが開発されている。その一例は、特開平5-301014号公報(特許文献4)に記載されている。 As a large-scale air conditioning system, a so-called desiccant air conditioning system that uses a moisture-absorbing element, for example, zeolite, to perform air conditioning such as cooling by utilizing the phenomenon of moisture adsorption and detachment by this element is also widespread. Yes. Highly efficient humidity control systems are still being developed in response to the demand for protecting the global environment. An example of this is described in Japanese Patent Laid-Open No. 5-301014 (Patent Document 4).
 吸水剤に関しては、特開2012-161789号公報(特許文献5)に記載されている。 The water absorbing agent is described in JP2012-161789 (Patent Document 5).
 ゲル状の高分子が溶媒中におかれた場合の挙動の特徴のひとつとして、溶媒が水である場合にはその吸収速度および放出速度は高分子の大きさの2乗に比例することが知られている。このことに関する文献としては、T. Tanakaらによる"Critical Kinetics of Volume Phase Transition of Gels", Physical Review Letters, Vol.55, No.22, pp.2455-2458, The American Physical Society, (1985)(非特許文献1)を挙げることができる。 One of the characteristics of the behavior when a gel-like polymer is placed in a solvent is that when the solvent is water, the absorption and release rates are proportional to the square of the size of the polymer. It has been. References on this include "Critical Kinetics of Volume Phase Transition of Gels" by T. Tanaka et al., Physical Review Letters, Vol. 55, No. 22, pp. 2455-2458, The American Physical Society, (1985) ( Non-patent document 1).
特開2003-144833号公報JP 2003-144833 A 特開2001-259349号公報JP 2001-259349 A 特開2005-34838号公報JP 2005-34838 A 特開平5-301014号公報JP-A-5-301014 特開2012-161789号公報JP 2012-161789 A
 粒子状の環境刺激応答性高分子材料は粒径が小さいほど吸湿速度が速く、高分子材料の体積に比べて吸湿率が高くなる傾向があった。そのため粒径の小さな粒子ほど、吸湿前に比べて飽和吸湿後の粒子半径の増加率及び体積増加率が大きくなる。このように粒子半径が急激に増加することに起因して、吸湿後または吸湿過程において粒子同士が互いに固着して目詰まりする場合があった。図34に目詰まりの例を示す。ここでは、粒子状の環境刺激応答性高分子材料として同じ径の粒子2a,2bが配列されており、入口から導かれる空気3を受けることによって、空気3に含まれていた水分によって入口に近い側の粒子2aが膨潤し、目詰まりすることが示されている。粒子2aについては、膨潤前の外形を実線で示し、膨潤により拡大した外形を2点鎖線で示す。入口から遠い側の粒子2bは膨潤していない。 The particulate environmental stimulus-responsive polymer material has a higher moisture absorption rate as the particle size is smaller, and the moisture absorption rate tends to be higher than the volume of the polymer material. Therefore, the smaller the particle size, the larger the increase rate of the particle radius and the volume increase rate after saturated moisture absorption than before the moisture absorption. As a result of the sudden increase in particle radius, particles may stick together and become clogged after moisture absorption or in the process of moisture absorption. FIG. 34 shows an example of clogging. Here, particles 2a and 2b having the same diameter as the particulate environmental stimulus-responsive polymer material are arranged, and by receiving the air 3 guided from the inlet, it is close to the inlet by the moisture contained in the air 3 It is shown that the side particles 2a swell and become clogged. About the particle | grains 2a, the external shape before swelling is shown as a continuous line, and the external shape expanded by swelling is shown with a dashed-two dotted line. The particles 2b on the side far from the entrance are not swollen.
 このように目詰まりが生じると、空気の流れが阻害され、圧力損失をもたらす。粒子状の環境刺激応答性高分子材料が充填されて上流から下流へと並ぶ各部位をそれぞれ「層」として把握できるものと仮定すると、ある層で高分子材料の粒子が目詰まりして固着してしまうと、その部位より下流側にある粒子の層への空気の流れは阻害され、全体としての吸湿率は低下する。 If such clogging occurs, the air flow is hindered, resulting in a pressure loss. Assuming that each part from the upstream to the downstream filled with particulate environmental stimulus-responsive polymer material can be grasped as a “layer”, the polymer material particles are clogged and fixed in a certain layer. If this occurs, the flow of air to the particle layer downstream from the site is inhibited, and the overall moisture absorption rate decreases.
 このような除湿効率の低下をもたらす粒子同士の固着を防ぐためには、高分子材料の粒径分布を一定ではなくランダムにすることが考えられる。たとえば、径が大きな粒子(以下「大粒子」という。)と径が小さな粒子(以下「小粒子」という。)とを混在させて配置する。しかし、そのようにしても図35に示すように、大粒子2c同士の間に小粒子2dが入ることで、粒子同士の固着が生じてしまう。 In order to prevent such sticking of particles that cause a decrease in dehumidification efficiency, it is conceivable to make the particle size distribution of the polymer material not constant but random. For example, particles having a large diameter (hereinafter referred to as “large particles”) and particles having a small diameter (hereinafter referred to as “small particles”) are mixed and arranged. However, even if it does in that way, as shown in FIG. 35, when the small particle 2d enters between the large particles 2c, the particles stick to each other.
 また、吸湿による固着を防ぐために比較的大きな粒径、たとえば数mm程度の粒子に揃えるということも考えられる。この場合、体積当たりの表面積が小さくなるため、吸湿速度が低下してしまうという問題がある。 It is also conceivable to arrange particles having a relatively large particle size, for example, about several mm in order to prevent sticking due to moisture absorption. In this case, since the surface area per volume becomes small, there exists a problem that a moisture absorption rate will fall.
 一方、小さな粒径の粒子のみに揃えて粒子同士が固着してしまう前に吸湿工程を終えることができるようなシステムも考えられるが、このようなシステムでは吸湿性能を発揮できる時間が短すぎて、求められる除湿作業に見合うほどの十分な吸湿性能が得られないことが危惧される。 On the other hand, a system that can finish the moisture absorption process before the particles are fixed to each other with only small particles is also conceivable, but such a system has too short a time to exhibit the moisture absorption performance. Therefore, there is a concern that sufficient moisture absorption performance to meet the required dehumidifying work cannot be obtained.
 そこで、本発明は、十分な吸湿性能を確保しつつ、目詰まりによる問題を回避できるような調湿装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a humidity control device that can avoid problems caused by clogging while ensuring sufficient moisture absorption performance.
 上記目的を達成するため、本発明に基づく調湿装置は、水分を吸収(収着)しうる第1の状態と、上記第1の状態のときに吸収(収着)した水分を放出する第2の状態とを有し、環境条件が満たされると上記第1の状態から上記第2の状態へと変化し、かつ、上記環境条件が満たされなくなったときには上記第1の状態に戻る性質を有する高分子ゲル吸湿材料を主材料とする粒子群と、上記粒子群を収容する通路筐体とを備える。上記通路筐体は、外部から空気を取り込む空気入口と、上記空気入口から取り込まれて上記粒子群の隙間を通過した空気を排出する空気出口とを有する。上記粒子群は、第1の径を有する第1粒子群と、上記第1の径より小さな第2の径を有する第2粒子群とを含む。上記通路筐体内において、上記第1粒子群は上記第2粒子群よりも上記空気入口寄りに配置されている。 In order to achieve the above object, a humidity control apparatus according to the present invention includes a first state in which moisture can be absorbed (sorbed), and a first state in which moisture absorbed (sorbed) in the first state is released. 2 when the environmental condition is satisfied, the first state is changed to the second state, and when the environmental condition is not satisfied, the first state is returned. A particle group mainly composed of the polymer gel moisture-absorbing material and a passage housing that accommodates the particle group. The passage housing includes an air inlet that takes in air from the outside, and an air outlet that discharges air that has been taken in from the air inlet and passed through the gaps between the particle groups. The particle group includes a first particle group having a first diameter and a second particle group having a second diameter smaller than the first diameter. In the passage housing, the first particle group is disposed closer to the air inlet than the second particle group.
 本発明によれば、より多くの粒子がそれぞれ吸湿することができるので、十分な吸湿性能を確保しつつ、目詰まりによる問題を回避できるような調湿装置を提供することができる。 According to the present invention, since more particles can each absorb moisture, it is possible to provide a humidity control apparatus capable of avoiding problems due to clogging while ensuring sufficient moisture absorption performance.
本発明に基づく実施の形態1における調湿装置の概念図である。It is a conceptual diagram of the humidity control apparatus in Embodiment 1 based on this invention. 本発明に基づく実施の形態2における調湿装置の概念図である。It is a conceptual diagram of the humidity control apparatus in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における調湿装置に備わる粒子群の第1の説明図である。It is 1st explanatory drawing of the particle group with which the humidity control apparatus in Embodiment 2 based on this invention is equipped. 本発明に基づく実施の形態2における調湿装置に備わる粒子群の第2の説明図である。It is 2nd explanatory drawing of the particle group with which the humidity control apparatus in Embodiment 2 based on this invention is equipped. 本発明に基づく実施の形態2における調湿装置に備わる粒子群の半径増加率を示すグラフである。It is a graph which shows the radius increase rate of the particle group with which the humidity control apparatus in Embodiment 2 based on this invention is equipped. 層状に配置されている粒子群の中を空気が通っていく様子の説明図である。It is explanatory drawing of a mode that air passes through the particle group arrange | positioned at layered form. 層状に配置されている粒子群から水分を取り出す様子の説明図である。It is explanatory drawing of a mode that a water | moisture content is taken out from the particle group arrange | positioned at layer form. 粒子半径に対する粒子表面積/体積比および吸湿飽和時間の関係を示すグラフである。It is a graph which shows the relationship of particle | grain surface area / volume ratio with respect to particle | grain radius, and a moisture absorption saturation time. 本発明に基づく実施の形態3における調湿装置の概念図である。It is a conceptual diagram of the humidity control apparatus in Embodiment 3 based on this invention. 本発明に基づく実施の形態4における調湿装置の概念図である。It is a conceptual diagram of the humidity control apparatus in Embodiment 4 based on this invention. 本発明に基づく実施の形態5における調湿装置の概念図である。It is a conceptual diagram of the humidity control apparatus in Embodiment 5 based on this invention. 本発明に基づく実施の形態6における調湿装置の第1の状態の説明図である。It is explanatory drawing of the 1st state of the humidity control apparatus in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における調湿装置の第2の状態の説明図である。It is explanatory drawing of the 2nd state of the humidity control apparatus in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における調湿装置の第3の状態の説明図である。It is explanatory drawing of the 3rd state of the humidity control apparatus in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における調湿装置の第4の状態の説明図である。It is explanatory drawing of the 4th state of the humidity control apparatus in Embodiment 6 based on this invention. 本発明に基づく実施の形態7における調湿装置の第1の状態の説明図である。It is explanatory drawing of the 1st state of the humidity control apparatus in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における調湿装置の第2の状態の説明図である。It is explanatory drawing of the 2nd state of the humidity control apparatus in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における調湿装置の第3の状態の説明図である。It is explanatory drawing of the 3rd state of the humidity control apparatus in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における調湿装置の第4の状態の説明図である。It is explanatory drawing of the 4th state of the humidity control apparatus in Embodiment 7 based on this invention. 本発明に基づく実施の形態8における調湿装置の第1の状態の説明図である。It is explanatory drawing of the 1st state of the humidity control apparatus in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における調湿装置の第2の状態の説明図である。It is explanatory drawing of the 2nd state of the humidity control apparatus in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における調湿装置の第3の状態の説明図である。It is explanatory drawing of the 3rd state of the humidity control apparatus in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における調湿装置の第4の状態の説明図である。It is explanatory drawing of the 4th state of the humidity control apparatus in Embodiment 8 based on this invention. 本発明に基づく実施の形態9における除湿機の正面図である。It is a front view of the dehumidifier in Embodiment 9 based on this invention. 本発明に基づく実施の形態9における除湿機の背面図である。It is a rear view of the dehumidifier in Embodiment 9 based on this invention. 図24におけるXXVI-XXVI線に関する矢視断面図である。FIG. 25 is a cross-sectional view taken along line XXVI-XXVI in FIG. 24. 本発明に基づく実施の形態10における除湿機を第1の側から見た図である。It is the figure which looked at the dehumidifier in Embodiment 10 based on this invention from the 1st side. 本発明に基づく実施の形態10における除湿機を第2の側から見た図である。It is the figure which looked at the dehumidifier in Embodiment 10 based on this invention from the 2nd side. 図27におけるXXIX-XXIX線に関する矢視断面図である。FIG. 28 is a cross-sectional view taken along the line XXIX-XXIX in FIG. 本発明に基づく実施の形態11における除湿機の正面図である。It is a front view of the dehumidifier in Embodiment 11 based on this invention. 本発明に基づく実施の形態11における除湿機の背面図である。It is a rear view of the dehumidifier in Embodiment 11 based on this invention. 図30におけるXXXII-XXXII線に関する矢視断面図である。FIG. 31 is a cross-sectional view taken along the line XXXII-XXXII in FIG. 30. 本発明に基づく実施の形態11における除湿機で行なわれる再生工程の説明図である。It is explanatory drawing of the reproduction | regeneration process performed with the dehumidifier in Embodiment 11 based on this invention. 従来技術に基づく粒子状の高分子材料を吸湿させたときに生じる目詰まりの説明図である。It is explanatory drawing of the clogging which arises when the particulate polymer material based on a prior art is made to absorb moisture. 従来技術に基づく高分子材料の大粒子と小粒子とを混在させて配置して吸湿させたときに生じる目詰まりの説明図である。It is explanatory drawing of the clogging which arises when the large particle and small particle of polymeric material based on a prior art are mixed and hygroscopically arranged.
 本発明で用いられる高分子ゲル吸湿材料は、いわゆる刺激応答型の感応ゲルである。この高分子ゲル吸湿材料が空気中の水分を吸収(収着)する現象と、刺激に応答して水を吐き出す現象とを利用することで、過冷却や大きな熱量を用いることなく、水蒸気を凝縮水に変換することができる。ここでは、水と高分子との間で起こる体積相転移を水蒸気(気体)と水(液体)との間で利用している。刺激により、高分子ゲル吸湿材料を親水化させたり疎水化させたりすることによって、クラスター状の水分子を高分子ネットワーク内に結合して固定化したり、高分子ネットワークから結合を外して水分子を流動化させたりすることができる。 The polymer gel moisture-absorbing material used in the present invention is a so-called stimulus response type sensitive gel. This polymer gel moisture-absorbing material absorbs (sorbs) moisture in the air and discharges water in response to stimulation, thereby condensing water vapor without using supercooling or a large amount of heat. Can be converted to water. Here, the volume phase transition that occurs between water and polymer is utilized between water vapor (gas) and water (liquid). By making the polymer gel moisture-absorbing material hydrophilic or hydrophobic by stimulation, the cluster-like water molecules are bound and immobilized in the polymer network, or the bonds are removed from the polymer network to remove the water molecules. It can be fluidized.
 (実施の形態1)
 図1を参照して、本発明に基づく実施の形態1における調湿装置について説明する。
(Embodiment 1)
With reference to FIG. 1, the humidity control apparatus in Embodiment 1 based on this invention is demonstrated.
 図1に示すように、本実施の形態における調湿装置101は、水分を吸収(収着)しうる第1の状態と、前記第1の状態のときに吸収(収着)した水分を放出する第2の状態とを有し、環境条件が満たされると前記第1の状態から前記第2の状態へと変化し、かつ、前記環境条件が満たされなくなったときには前記第1の状態に戻る性質を有する高分子ゲル吸湿材料を主材料とする粒子群20と、前記粒子群を収容する通路筐体19とを備え、通路筐体19は、外部から空気3を取り込む空気入口17と、空気入口17から取り込まれて粒子群20の隙間を通過した空気を排出する空気出口18とを有し、粒子群20は、第1の径を有する第1粒子群21と、前記第1の径より小さな第2の径を有する第2粒子群22とを含み、通路筐体19内において、第1粒子群21は第2粒子群22よりも空気入口17寄りに配置されている。 As shown in FIG. 1, the humidity control apparatus 101 according to the present embodiment releases a first state in which moisture can be absorbed (sorbed) and moisture that has been absorbed (sorbed) in the first state. A second state that changes from the first state to the second state when the environmental condition is satisfied, and returns to the first state when the environmental condition is not satisfied. A particle group 20 mainly composed of a polymer gel moisture-absorbing material having properties, and a passage housing 19 for housing the particle group. The passage housing 19 includes an air inlet 17 for taking in air 3 from the outside, an air An air outlet 18 for discharging the air taken in from the inlet 17 and passing through the gap between the particle groups 20, and the particle group 20 includes a first particle group 21 having a first diameter and the first diameter. A second particle group 22 having a small second diameter, and a passage housing 1 The inner, first particles 21 are arranged in the air inlet 17 closer than the second particle group 22.
 図1では、空気3を送り込むための送風ファンは図示省略している。実際には、通路筐体19内に向かう空気3の流れを作り出すために適当な位置に送風ファンが設けられる。図1では、各粒子のサイズは説明の便宜のために誇張して大きく表示している。 In FIG. 1, a blower fan for sending air 3 is not shown. Actually, a blower fan is provided at an appropriate position in order to create a flow of air 3 toward the inside of the passage housing 19. In FIG. 1, the size of each particle is exaggerated and enlarged for the convenience of explanation.
 粒子群20の第1の状態とは親水性の状態であり、第2の状態とは疎水性の状態である。 The first state of the particle group 20 is a hydrophilic state, and the second state is a hydrophobic state.
 図1では、粒子群20を通路筐体19内の所望の位置にとどめておくための構造は図示省略している。たとえば通路筐体19内で上下から網状の部材で挟み込んで粒子群20を一定の区間内に保持することが考えられる。 In FIG. 1, a structure for keeping the particle group 20 at a desired position in the passage housing 19 is not shown. For example, it is conceivable that the particle group 20 is held in a certain section by being sandwiched by mesh members from above and below in the passage housing 19.
 本実施の形態では、径が大きな第1粒子群21によってまず空気3中の水分のいくらかが吸収(収着)され、その後で径が小さな第2粒子群22による吸収(収着)が行なわれるので、第2粒子群22の粒子が過度に膨潤することを避けることができ、より多くの粒子がそれぞれ吸湿することができる。したがって、十分な吸湿性能を確保しつつ、目詰まりによる問題を回避できるような調湿装置を提供することができる。 In the present embodiment, some of the moisture in the air 3 is first absorbed (sorbed) by the first particle group 21 having a large diameter, and then absorbed (sorption) by the second particle group 22 having a small diameter. Therefore, it can avoid that the particle | grains of the 2nd particle group 22 swell excessively, and more particles can each absorb moisture. Therefore, it is possible to provide a humidity control apparatus that can avoid problems due to clogging while ensuring sufficient moisture absorption performance.
 (実施の形態2)
 図2を参照して、本発明に基づく実施の形態2における調湿装置について説明する。
(Embodiment 2)
With reference to FIG. 2, the humidity control apparatus in Embodiment 2 based on this invention is demonstrated.
 実施の形態1では、粒子群20の中に径が異なる2通りの粒子群のみを備える例を示したが、粒子の径の大きさはこのように2段階のみならず3段階以上となっていてもよい。 In the first embodiment, an example in which only two types of particle groups having different diameters are provided in the particle group 20 has been described. However, the size of the particle diameter is not limited to two stages as described above, and is not less than three stages. May be.
 本実施の形態における調湿装置102では、図2に示すように、3つの粒子群を備えている。第1粒子群21、第2粒子群22、第3粒子群23で、粒子の径は大、中、小と異なっている。通路筐体19の内部においては、空気入口17に近い側から順に、第1粒子群21、第2粒子群22、第3粒子群23と並ぶように配置されている。この調湿装置におけるその他の基本的な構成は、実施の形態1で説明したものと同様であってよい。 The humidity control apparatus 102 according to the present embodiment includes three particle groups as shown in FIG. In the first particle group 21, the second particle group 22, and the third particle group 23, the particle diameters are different from large, medium, and small. Inside the passage housing 19, the first particle group 21, the second particle group 22, and the third particle group 23 are arranged in order from the side close to the air inlet 17. Other basic configurations of the humidity control apparatus may be the same as those described in the first embodiment.
 本実施の形態では、外部から取り込まれた空気に対しては、径が大きな粒子群から順に接することとなるので、径が小さな粒子群の粒子が急速に過度な水分を吸収(収着)してしまうことを避けることができる。したがって、十分な吸湿性能を確保しつつ、目詰まりによる問題を回避できるような調湿装置を提供することができる。 In the present embodiment, since the air taken in from the outside comes in contact with the particle group having the larger diameter in order, the particles of the particle group having the smaller diameter rapidly absorb (sorb) excessive moisture. Can be avoided. Therefore, it is possible to provide a humidity control apparatus that can avoid problems due to clogging while ensuring sufficient moisture absorption performance.
 ここでは、粒子径が3通りの例を示したが、粒子径は4通り以上であってもよい。その場合、空気入口17から近い側に径が大きい粒子、遠い側に径が小さい粒子が位置するように順に並べて配置される。 Here, three examples of the particle diameter are shown, but the particle diameter may be four or more. In that case, it arranges in order so that a particle with a large diameter may be located on the side closer to the air inlet 17 and a particle with a smaller diameter on the far side.
 (原理の説明)
 粒径を制御して各粒径ごとに層状に配置した場合の吸湿前後の変化について、図3および図4を参照して説明する。図3に例示するように、幾通りかの異なる径の粒子が層状に配置されているものとする。これらの粒子が全て同様に十分に吸湿した場合、図4に示すように各粒子は膨潤して拡大する。図4では各粒子の膨潤前のサイズを2点鎖線で表示し、膨潤後のサイズを実線で表示している。粒子の半径に注目し、膨潤前の半径をr、膨潤後の半径をr′とすると、半径増加率は(r′-r)/rで定義することができる。元の半径rが大きいものに比べて半径rが小さい粒子の方が半径増加率が大きい。このことは図5にグラフで示される。図5に示した3本の曲線は、十分に時間を長くかければそれぞれ飽和し、同じ半径増加率となる可能性も否定できないが、実用のためには、一定時間で打ち切って動作サイクルを繰り返させることが現実的である。少なくともそのような現実的な時間の長さの範囲内に限って見れば、粒径の違いに相違する半径増加率の大小関係は、吸湿開始から時間が経過しても維持される。
(Description of principle)
The change before and after moisture absorption when the particle diameter is controlled and arranged in layers for each particle diameter will be described with reference to FIGS. As illustrated in FIG. 3, it is assumed that several particles having different diameters are arranged in layers. When all of these particles have sufficiently absorbed moisture as well, each particle swells and expands as shown in FIG. In FIG. 4, the size of each particle before swelling is indicated by a two-dot chain line, and the size after swelling is indicated by a solid line. Paying attention to the radius of the particle, if the radius before swelling is r and the radius after swelling is r ′, the rate of increase in radius can be defined as (r′−r) / r. Particles with a smaller radius r have a larger radius increase rate than those with a larger original radius r. This is shown graphically in FIG. The three curves shown in FIG. 5 are saturated if the time is sufficiently long, and the possibility of the same radius increase rate cannot be denied. However, for practical use, the operation cycle is repeated after a certain period of time. Is realistic. At least within such a realistic range of time, the magnitude relationship of the radius increase rate that is different from the difference in particle size is maintained even after the lapse of time from the start of moisture absorption.
 図4に示したように、空気入口付近では粒子の元の半径rが大きく半径増加率が小さいので、吸湿した後でも粒子の大きさはあまり変わらない。したがって、目詰まりを起こしにくい。空気出口付近の小粒子は半径増加率が大きいが、これらの小粒子が目詰まりを起こす前に吸湿工程を終えればよい。その場合でも、空気の流れが小粒子の層に達する前により上流側に位置する大粒子によって十分に吸湿が行なわれるので、全体としては十分な吸湿性能が発揮される。 As shown in FIG. 4, since the original radius r of the particle is large and the radius increase rate is small near the air inlet, the size of the particle does not change much even after moisture absorption. Therefore, it is difficult to cause clogging. Small particles near the air outlet have a large radius increase rate, but the moisture absorption process may be completed before these small particles are clogged. Even in such a case, sufficient moisture absorption is performed by the large particles positioned on the upstream side before the air flow reaches the small particle layer, so that sufficient moisture absorption performance is exhibited as a whole.
 異なる粒径の粒子が順に層状に配置されている場合に、湿った空気3が通っていく様子を図6に示す。図6においては矢印の太さは空気中の湿度を示す。各粒子は、それぞれ同じ量の水分を吸収(収着)する。空気3は、進行するにつれてより多くの個数の粒子と触れ合うので、湿度が低下していく。 FIG. 6 shows a state in which moist air 3 passes when particles having different particle diameters are sequentially arranged in layers. In FIG. 6, the thickness of the arrow indicates the humidity in the air. Each particle absorbs (sorbs) the same amount of moisture. As the air 3 travels, it comes into contact with a larger number of particles, so the humidity decreases.
 いわゆる再生工程、すなわち、吸湿した粒子群に対して、逐次、刺激を与えて水分を取り出す際の様子を図7に示す。この図では、上側に径が大きい粒子が配置され、下側に径が小さい粒子が配置され、下側から水5を取り出す例を示している。図7においては矢印の太さは移動する水分の量を示す。ここでいう刺激とは、たとえば熱、光、電気、pHのうちのいずれかである。この刺激が与えられることによって、粒子群が第1の状態から第2の状態へと変化するための環境条件が満たされるものとする。図7に示した例では、上側に配置された層から順に刺激を与えている。こうすることによって、上側にある層から順に第2の状態へと変化する。上側の層から下側の層へと順に刺激を与えていく途中のある時点を想定して説明する。刺激を与えられたことによって第2の状態に変化した層は、それまで吸収(収着)していた水分を液体状態の水5として放出する。この時点では、すぐ下側の層の粒子はまだ第1の状態であるのでこの水5を吸収(収着)することができる。このようにして上側の層から下側に隣接する層へと水5を引き渡すことができる。さらに下側の層の粒子にも順次刺激を与えていくと、下側の層においても第1の状態から第2の状態へと変化し、水を保持していることができなくなるので、水は放出される。この時点では上側の層は既に第2の状態であるので、たとえ液体状態の水5に触れてもこれを吸収(収着)することができないが、さらに下側の層の粒子はまだ第1の状態であるので水5を吸収(収着)することができる。このようにして、水を順に下側の層へと送っていくことができる。最下層においては、ほぼ全ての水5が集められるので、重力や遠心力などを利用して、最終的に水5は粒子群の外側に放出される。 FIG. 7 shows a so-called regeneration process, that is, a state in which moisture is taken out by sequentially stimulating moisture particles. In this figure, particles having a large diameter are arranged on the upper side, particles having a small diameter are arranged on the lower side, and water 5 is taken out from the lower side. In FIG. 7, the thickness of the arrow indicates the amount of moisture that moves. The stimulus here is, for example, any one of heat, light, electricity, and pH. By applying this stimulus, it is assumed that the environmental condition for the particle group to change from the first state to the second state is satisfied. In the example shown in FIG. 7, the stimulus is given in order from the layer arranged on the upper side. By doing so, the state changes from the upper layer to the second state in order. A description will be given assuming a certain point in the middle of applying stimulation sequentially from the upper layer to the lower layer. The layer that has changed to the second state due to the stimulation releases the water that has been absorbed (sorbed) up to that time as water 5 in the liquid state. At this time, the particles in the immediately lower layer are still in the first state, so that the water 5 can be absorbed (sorbed). In this way, the water 5 can be delivered from the upper layer to the layer adjacent to the lower side. Further, if the lower layer particles are sequentially stimulated, the lower layer also changes from the first state to the second state, and water cannot be retained. Is released. At this point, since the upper layer is already in the second state, even if it touches the water 5 in the liquid state, it cannot be absorbed (sorbed), but the particles in the lower layer are still in the first state. Therefore, the water 5 can be absorbed (sorbed). In this way, water can be sent sequentially to the lower layer. Since almost all the water 5 is collected in the lowermost layer, the water 5 is finally discharged to the outside of the particle group using gravity or centrifugal force.
 粒子半径に対する粒子表面積/体積比および吸湿飽和時間のグラフを図8に示す。図8に示されるように、径が小さな粒子ほど粒子の体積に対する表面積の割合が大きくなるので、吸湿が飽和状態に達するまでの時間が短くなる。したがって、小粒子は短い時間のうちに飽和に達してしまう傾向があるといえるが、本実施の形態1,2で示したように、小粒子のところには、大粒子によって既にある程度水分を除去された空気が到達するのみであるので、小粒子が吸湿する水分は少なく、その結果、小粒子が飽和に達するのを遅らせることができる。 A graph of the particle surface area / volume ratio and the moisture absorption saturation time with respect to the particle radius is shown in FIG. As shown in FIG. 8, the smaller the diameter, the larger the ratio of the surface area to the volume of the particle, so the time until the moisture absorption reaches a saturated state is shortened. Therefore, it can be said that the small particles tend to reach saturation in a short time, but as shown in the first and second embodiments, the small particles already remove some moisture by the large particles. Since only the conditioned air arrives, the small particles absorb less moisture and as a result can delay the small particles from reaching saturation.
 (実施の形態3)
 図9を参照して、本発明に基づく実施の形態3における調湿装置について説明する。
(Embodiment 3)
With reference to FIG. 9, the humidity control apparatus in Embodiment 3 based on this invention is demonstrated.
 本実施の形態では、高分子ゲル吸湿材料が第1の状態から第2の状態へと変化する環境条件は一定以上の温度であることである。したがって、環境条件を満たすために与えるべき刺激は熱である。図9に示すように、本実施の形態における調湿装置103では、通路筐体19には、粒子群20に熱を加えるためのヒータ30が設けられている。この調湿装置におけるその他の基本的な構成は、実施の形態1または2で説明したものと同様であってよい。 In the present embodiment, the environmental condition in which the polymer gel moisture-absorbing material changes from the first state to the second state is that the temperature is a certain level or higher. Therefore, the stimulus to be given to satisfy the environmental condition is heat. As shown in FIG. 9, in the humidity control apparatus 103 according to the present embodiment, the passage housing 19 is provided with a heater 30 for applying heat to the particle group 20. Other basic configurations of the humidity control apparatus may be the same as those described in the first or second embodiment.
 本実施の形態では、通路筐体19に設けられたヒータ30によって粒子群20に熱を与えることができるので、粒子群20による吸湿工程を終え、粒子群20の再生工程を行なう場合には、ヒータ30を作動させることによって容易に行なうことができる。 In the present embodiment, since heat can be applied to the particle group 20 by the heater 30 provided in the passage housing 19, when the moisture absorption process by the particle group 20 is finished and the regeneration process of the particle group 20 is performed, This can be done easily by operating the heater 30.
 (実施の形態4)
 図10を参照して、本発明に基づく実施の形態4における調湿装置について説明する。
(Embodiment 4)
With reference to FIG. 10, the humidity control apparatus in Embodiment 4 based on this invention is demonstrated.
 本実施の形態における調湿装置104では、図10に示すように、通路筐体19は、空気入口17から空気出口18に向かう方向に並ぶ複数の区画に分かれている。粒子群20は前記複数の区画に分けて収容されている。ヒータ30は、前記複数の区画の各々に個別に熱を加えるように通路筐体19の外周に沿って配置された外周ヒータ31を含む。 In the humidity control apparatus 104 according to the present embodiment, as shown in FIG. 10, the passage housing 19 is divided into a plurality of sections arranged in a direction from the air inlet 17 toward the air outlet 18. The particle group 20 is accommodated in the plurality of compartments. The heater 30 includes an outer peripheral heater 31 disposed along the outer periphery of the passage housing 19 so as to individually apply heat to each of the plurality of sections.
 さらに好ましいことに、本実施の形態では、前記複数の区画の各々には、異なる粒子径の粒子群20が収容されている。図10の右側に引き出して拡大して示すように、各区画は、空気入口17側から空気出口18側に向かって粒子径が順に小さくなるように配列されている。調湿装置104は、空気入口17側の区画から空気出口18側の区画へと順に加熱していくようにヒータ30を制御する制御機構15を備える。制御機構15およびヒータ30を動作させるために、電源10が接続されている。 More preferably, in the present embodiment, a particle group 20 having a different particle diameter is accommodated in each of the plurality of compartments. As shown in an enlarged view on the right side of FIG. 10, the sections are arranged so that the particle diameters become smaller in order from the air inlet 17 side toward the air outlet 18 side. The humidity control apparatus 104 includes a control mechanism 15 that controls the heater 30 so as to sequentially heat the section on the air inlet 17 side to the section on the air outlet 18 side. A power supply 10 is connected to operate the control mechanism 15 and the heater 30.
 本実施の形態では、粒子群20が複数の区画に分けて収容されているので、区画ごとに第1の状態とするか第2の状態とするかを制御しやすい。したがって、粒子群を効率良く扱うことができる。また、複数の区画に分かれていることから、粒子群を交換する際にも作業がしやすい。 In the present embodiment, since the particle group 20 is accommodated in a plurality of sections, it is easy to control whether the first state or the second state is set for each section. Therefore, particle groups can be handled efficiently. In addition, since it is divided into a plurality of sections, it is easy to work when exchanging particle groups.
 (実施の形態5)
 図11を参照して、本発明に基づく実施の形態5における調湿装置について説明する。本実施の形態における調湿装置105は、実施の形態4で示した調湿装置104の変形例である。図11に示した調湿装置105では、通路筐体は図示省略されている。調湿装置105では、円筒形の多層構造として、粒子群20が配置されている。調湿装置105では、粒子群20が収まった円筒形状の通路筐体は、図示しない駆動手段によって中心軸14の周りにゆっくりと回転駆動される。粒子群20が収まった通路筐体は、平面的に見て、通気領域11と非通気領域12とに分けられている。通路筐体の回転にかかわらず、通気領域11と非通気領域12との位置関係は固定されている。したがって、通路筐体が回転することによって、各部位の粒子は、通気領域11と非通気領域12とを交互に通過することとなる。空気3の風は通気領域11の少なくとも一部において粒子群20に当たる。非通気領域12においては、空気3が直接当たらないように遮蔽する構造が設けられている。非通気領域12においては、粒子は図示しないヒータによって加熱される。制御機構15の働きにより、上から下へ順に加熱される。
(Embodiment 5)
With reference to FIG. 11, the humidity control apparatus in Embodiment 5 based on this invention is demonstrated. The humidity control apparatus 105 in the present embodiment is a modification of the humidity control apparatus 104 shown in the fourth embodiment. In the humidity control apparatus 105 shown in FIG. 11, the passage housing is not shown. In the humidity control apparatus 105, the particle group 20 is arrange | positioned as a cylindrical multilayered structure. In the humidity control apparatus 105, the cylindrical passage housing in which the particle group 20 is accommodated is slowly rotated around the central axis 14 by a driving unit (not shown). The passage housing in which the particle group 20 is accommodated is divided into a ventilation region 11 and a non-venting region 12 in plan view. Regardless of the rotation of the passage housing, the positional relationship between the vent region 11 and the non-vent region 12 is fixed. Therefore, when the passage housing rotates, the particles in each part pass through the ventilation region 11 and the non-venting region 12 alternately. The wind of the air 3 hits the particle group 20 in at least a part of the ventilation region 11. In the non-ventilation area | region 12, the structure which shields so that the air 3 does not hit directly is provided. In the non-venting region 12, the particles are heated by a heater (not shown). By the action of the control mechanism 15, heating is performed in order from the top to the bottom.
 本実施の形態では、各部位の粒子は通路筐体の回転によって通気領域11と非通気領域12とを交互に通過するので、ヒータを作動させたままで通路筐体の回転を続けることで、各部位に対する吸湿と再生とを交互に繰り返すことができる。したがって、本実施の形態では、再生工程のために吸湿作業を停止する必要がない。よって、本実施の形態では、連続運転が可能な調湿装置を実現することができる。 In the present embodiment, the particles in each part alternately pass through the ventilation region 11 and the non-ventilation region 12 due to the rotation of the passage housing. Therefore, by continuing the rotation of the passage housing while operating the heater, Moisture absorption and regeneration can be repeated alternately. Therefore, in this embodiment, it is not necessary to stop the moisture absorption operation for the regeneration process. Therefore, in this Embodiment, the humidity control apparatus which can be continuously operated is realizable.
 (実施の形態6)
 図12~図15を参照して、本発明に基づく実施の形態6における調湿装置について説明する。本実施の形態における調湿装置は、水分を吸収(収着)しうる第1の状態と、前記第1の状態のときに吸収(収着)した水分を放出する第2の状態とを有し、環境条件が満たされると前記第1の状態から前記第2の状態へと変化し、かつ、前記環境条件が満たされなくなったときには前記第1の状態に戻る性質を有する高分子ゲル吸湿材料を主材料とする粒子群20と、前記粒子群を収容する通路筐体19とを備え、通路筐体19は、外部から空気3を取り込む空気入口17と、空気入口17から取り込まれて粒子群20の隙間を通過した空気を排出する空気出口18とを有する。空気入口17および空気出口18においては、粒子群20を通過させない程度の目の細かさの網状の部材によって蓋がされている。通路筐体19の外周を取り囲むように外周ヒータ31が設けられている。外周ヒータ31は、図14における上下方向にいくつかの区間に分かれており、それぞれ別個にON/OFFを切り替えることができる。あるいは、外周ヒータ31は1本ずつ別々にON/OFFを切り替えることができる構成であってもよい。
(Embodiment 6)
With reference to FIGS. 12 to 15, a humidity control apparatus according to Embodiment 6 of the present invention will be described. The humidity control apparatus in the present embodiment has a first state in which moisture can be absorbed (sorbed) and a second state in which moisture absorbed (sorbed) in the first state is released. The polymer gel moisture-absorbing material has a property of changing from the first state to the second state when the environmental condition is satisfied and returning to the first state when the environmental condition is not satisfied. And a passage housing 19 that contains the particle group. The passage housing 19 takes in air 3 from the outside, and the particle population is taken in from the air inlet 17. And an air outlet 18 for discharging the air that has passed through the gap 20. The air inlet 17 and the air outlet 18 are covered with a net-like member having a fineness that does not allow the particle group 20 to pass through. An outer peripheral heater 31 is provided so as to surround the outer periphery of the passage housing 19. The outer peripheral heater 31 is divided into several sections in the vertical direction in FIG. 14, and can be switched ON / OFF separately. Or the structure which can switch ON / OFF separately for each outer periphery heater 31 may be sufficient.
 図12では、全ての粒子を同じサイズで表示しているが、実際には、これまでの実施の形態で説明してきたように、粒子径に差を設けていることが好ましい。図12では、通路筐体19内の粒子群20に属する全ての粒子が第1の状態、すなわち、水分を吸収(収着)しうる状態である。図面では、説明の便宜のため、乾燥状態にある粒子を白い小円で表示するものとする。 In FIG. 12, all the particles are displayed in the same size, but in practice, it is preferable to provide a difference in the particle diameter as described in the above embodiments. In FIG. 12, all particles belonging to the particle group 20 in the passage housing 19 are in the first state, that is, in a state where moisture can be absorbed (sorbed). In the drawing, for convenience of explanation, particles in a dry state are displayed as white small circles.
 除湿の工程においては、図12に示すように、送風ファン9によって空気入口17から湿った空気3が通路筐体19の内部に送り込まれる。空気3は、粒子群20の隙間を通過することによって除湿され、除湿済の空気3eとして空気出口18から出ていく。 In the dehumidifying step, as shown in FIG. 12, the humid air 3 is sent into the passage housing 19 from the air inlet 17 by the blower fan 9. The air 3 is dehumidified by passing through the gaps between the particle groups 20 and exits from the air outlet 18 as dehumidified air 3e.
 このように空気3の除湿を続けた結果、ほぼ全ての粒子がある程度の水分を吸収(収着)した状態になる。その状態を図13に示す。図13に示した状態であってもは、必ずしも各粒子が飽和状態であるとは限らないい。図面では、説明の便宜のため、ある程度以上の水分を蓄えた状態にある粒子をドットハッチング付きの小円で表示するものとする。 As a result of continuing the dehumidification of the air 3 in this manner, almost all particles are in a state of absorbing (sorbing) a certain amount of moisture. The state is shown in FIG. Even in the state shown in FIG. 13, each particle is not necessarily saturated. In the drawing, for convenience of explanation, particles in a state where a certain amount of moisture is stored are displayed as small circles with dot hatching.
 次に、再生の工程について説明する。再生の工程とは、粒子群20となっている高分子ゲル吸湿材料を再び除湿に使用可能な状態に戻すための工程である。図14に示すように、外周ヒータ31の上端近傍の一部がONとなる。この部分では通路筐体19の内部の粒子が加熱されるので、ONとなっている外周ヒータ31に囲まれた領域を加熱領域41とみなすことができる。加熱領域41よりも下側では粒子に対する加熱は行なわれていないので、非加熱領域42となっている。加熱領域41では、温度が一定以上に達することによって環境条件が満たされ、その結果、粒子が第1の状態から第2の状態へと変化する。第2状態では、吸収(収着)していた水分を放出するということになるが、既に加熱されて第2の状態になっている粒子は水分を受け取らない。一方、まだ加熱されていないことによって第1の状態である粒子は水分を受け取ることができる。その結果、水分は下方へ順に送られることとなる。ある粒子から放出された水分は下側に存在するいずれかの粒子によって吸収(収着)されてもよいし、いずれの粒子にも吸収(収着)されずに粒子同士の隙間を流れて移動してもよい。 Next, the reproduction process will be described. The regeneration step is a step for returning the polymer gel moisture-absorbing material constituting the particle group 20 to a state that can be used again for dehumidification. As shown in FIG. 14, a portion near the upper end of the outer peripheral heater 31 is turned on. In this portion, the particles inside the passage housing 19 are heated, so that the region surrounded by the outer peripheral heater 31 that is ON can be regarded as the heating region 41. Since the particles are not heated below the heating region 41, the non-heating region 42 is formed. In the heating region 41, the environmental condition is satisfied when the temperature reaches a certain level or more, and as a result, the particles change from the first state to the second state. In the second state, the absorbed (sorbed) moisture is released, but the particles already heated to the second state do not receive moisture. On the other hand, the particles in the first state because they have not been heated can receive moisture. As a result, moisture is sent downward in order. Moisture released from a particle may be absorbed (sorbed) by any of the particles present on the lower side, or moved through the gap between the particles without being absorbed (sorbed) by any particle. May be.
 図15に示すように、外周ヒータ31がONとなっている区間は徐々に下方に向かって延長していき、加熱領域41は拡大していく。加熱領域41が拡大するのと引き換えに非加熱領域42は狭くなっていく。加熱領域41の下方への拡大に伴い、放出された水5は通路筐体19の下端近傍に押しやられ、図15に示されるように、通路筐体19内での行き場を失った水5は液体状態で空気出口18から落下する。 As shown in FIG. 15, the section where the outer peripheral heater 31 is ON is gradually extended downward, and the heating area 41 is expanded. In exchange for the heating area 41 expanding, the non-heating area 42 becomes narrower. As the heating area 41 expands downward, the discharged water 5 is pushed near the lower end of the passage housing 19, and as shown in FIG. 15, the water 5 that has lost its place in the passage housing 19 is It falls from the air outlet 18 in a liquid state.
 本実施の形態では、上から下へと徐々に加熱領域41を拡大することによって、粒子群20に蓄えられていた水分を効率良く下へと押しやることができる。 In this embodiment, by gradually expanding the heating region 41 from top to bottom, the water stored in the particle group 20 can be pushed down efficiently.
 なお、粒子が第1の状態から第2の状態へと変化する温度、すなわち、いわゆる感温点は、粒子からにじみ出た水がすぐには蒸発しないように、常温よりやや高い程度の温度に設定されていることが好ましい。感温点はたとえば50℃であってもよい。 Note that the temperature at which the particles change from the first state to the second state, that is, the so-called temperature sensitive point, is set to a temperature slightly higher than room temperature so that the water exuded from the particles does not evaporate immediately. It is preferable that The temperature sensitive point may be 50 ° C., for example.
 (実施の形態7)
 図16~図19を参照して、本発明に基づく実施の形態7における調湿装置について説明する。本実施の形態における調湿装置では、ヒータ30は、外周に設けられた外周ヒータ31と、上下方向に隣接する異なる区画同士を隔てる平板ヒータ32とを含む。平板ヒータ32は水や空気が通過できるような構造となっている。たとえば平板ヒータ32は網状となっていてもよい。
(Embodiment 7)
With reference to FIGS. 16 to 19, the humidity control apparatus according to the seventh embodiment of the present invention will be described. In the humidity control apparatus in the present embodiment, the heater 30 includes an outer peripheral heater 31 provided on the outer periphery and a flat plate heater 32 that separates different sections adjacent in the vertical direction. The flat plate heater 32 has a structure through which water and air can pass. For example, the flat plate heater 32 may have a net shape.
 除湿の工程においては、図16に示すように、送風ファン9によって空気入口17から湿った空気3が通路筐体19の内部に送り込まれる。空気3は、粒子群20の隙間を通過することによって除湿され、除湿済の空気3eとして空気出口18から出ていく。 In the dehumidifying step, as shown in FIG. 16, the humid air 3 is sent into the passage housing 19 from the air inlet 17 by the blower fan 9. The air 3 is dehumidified by passing through the gaps between the particle groups 20 and exits from the air outlet 18 as dehumidified air 3e.
 このように空気3の除湿を続けた結果、ほぼ全ての粒子がある程度以上の水分を吸収(収着)した状態になる。その状態を図17に示す。図17に示した状態であっても、必ずしも各粒子が飽和状態であるとは限らない。 As a result of continuing the dehumidification of the air 3 in this way, almost all the particles have absorbed (sorbed) a certain amount of moisture. The state is shown in FIG. Even in the state shown in FIG. 17, each particle is not necessarily saturated.
 次に、再生の工程について説明する。図18に示すように、まず最初に、外周ヒータ31の上端近傍の一部と、粒子群20の最上面に位置する平板ヒータ32とがONとなる。このように上から1つ目の区画が外周面と上面とから加熱され、この区画の内部にある粒子群が加熱により環境条件が満たされ、その結果、第1の状態から第2の状態へと変化する。図18では、一番上の1つの区画だけが加熱領域41となっており、他の区画は非加熱領域42となっている。このとき、加熱領域41においては水分が液体状態の水として放出され、この水は1つ下隣りの区画に移動する。このように、通路筐体19内で区切られた各区画に対して、当該区画の外周面および上面のヒータがセットで同時に加熱を行なうことにより、当該区画内は効率良く加熱されるので、粒子は水分を放出して水分は下隣りの区画へと追いやられることとなる。加熱領域41の下方への拡大に伴い、放出された水5は通路筐体19の下端近傍に押しやられ、図19に示されるように、通路筐体19内での行き場を失った水5は液体状態で空気出口18から落下する。 Next, the reproduction process will be described. As shown in FIG. 18, first, a part near the upper end of the outer peripheral heater 31 and the flat plate heater 32 positioned on the uppermost surface of the particle group 20 are turned on. Thus, the first section from the top is heated from the outer peripheral surface and the upper surface, and the particle group inside the section is heated to satisfy the environmental condition, and as a result, from the first state to the second state. And change. In FIG. 18, only the uppermost section is a heating area 41, and the other section is a non-heating area 42. At this time, in the heating region 41, water is released as water in a liquid state, and this water moves to the next lower compartment. As described above, the heaters on the outer peripheral surface and the upper surface of the section are heated simultaneously in a set for each section partitioned in the passage housing 19, so that the inside of the section is efficiently heated. Will release moisture and the moisture will be expelled to the next lower compartment. As the heating area 41 expands downward, the discharged water 5 is pushed near the lower end of the passage housing 19, and as shown in FIG. 19, the water 5 that has lost its place in the passage housing 19 is It falls from the air outlet 18 in a liquid state.
 本実施の形態では、上から下へと区画単位で徐々に加熱領域41を拡大することによって、粒子群20に蓄えられていた水分を効率良く確実に下へと押しやることができる。 In the present embodiment, by gradually expanding the heating region 41 in units of sections from the top to the bottom, the moisture stored in the particle group 20 can be pushed down efficiently and reliably.
 (付記1)
 前記ヒータは、前記複数の区画のうち隣接するもの同士を隔てるように前記通路筐体の内部に配置された網状平板ヒータを含む、調湿装置。
(Appendix 1)
The said heater is a humidity control apparatus containing the net-like flat plate heater arrange | positioned inside the said channel | path housing | casing so that what adjoins among these divisions may be separated.
 (付記2)
 前記複数の区画に対して、水を排出すべき口から遠い側に配置された区画から近い側に配置された区画へと順に加熱していくように前記ヒータを制御する、調湿装置からの水取出し方法。
(Appendix 2)
From the humidity control device, the heater is controlled so as to sequentially heat the plurality of sections from the section disposed on the side farther from the outlet from which water should be discharged to the section disposed on the near side. Water extraction method.
 (実施の形態8)
 図20~図23を参照して、本発明に基づく実施の形態8における調湿装置について説明する。本実施の形態における調湿装置は、ヒータとして外周に設けられた外周ヒータ31を備えている。
(Embodiment 8)
A humidity control apparatus according to Embodiment 8 of the present invention will be described with reference to FIGS. The humidity control apparatus in the present embodiment includes an outer peripheral heater 31 provided on the outer periphery as a heater.
 本実施の形態における調湿装置においては、通路筐体19は筒形であり、中心軸に沿って粒子群20を収容しない柱状空洞13を有し、ヒータは、粒子群20に外周から内周に向かって熱を加えるように通路筐体19の外周に沿って配置された外周ヒータ31を含む。柱状空洞13の内面を規定する壁材は網状となっている。 In the humidity control apparatus according to the present embodiment, the passage housing 19 has a cylindrical shape, has a columnar cavity 13 that does not accommodate the particle group 20 along the central axis, and the heater is provided in the particle group 20 from the outer periphery to the inner periphery. The outer periphery heater 31 arrange | positioned along the outer periphery of the channel | path housing | casing 19 so that heat may be applied toward is included. The wall material that defines the inner surface of the columnar cavity 13 has a net shape.
 除湿の工程においては、図20に示すように、送風ファン9によって空気入口17から湿った空気3が通路筐体19の内部に送り込まれる。空気3は、通路筐体19の内部かつ柱状空洞13の外側に配置された粒子群20の隙間を通過することによって除湿され、除湿済の空気3eとして空気出口18から出ていく。 In the dehumidifying process, as shown in FIG. 20, the humid air 3 is sent into the passage housing 19 from the air inlet 17 by the blower fan 9. The air 3 is dehumidified by passing through the gaps between the particle groups 20 disposed inside the passage housing 19 and outside the columnar cavity 13, and exits from the air outlet 18 as dehumidified air 3 e.
 このように空気3の除湿を続けた結果、ほぼ全ての粒子がある程度以上の水分を吸収(収着)した状態になる。その状態を図21に示す。図21に示した状態であっても、必ずしも各粒子が飽和状態であるとは限らない。 As a result of continuing the dehumidification of the air 3 in this way, almost all the particles have absorbed (sorbed) a certain amount of moisture. The state is shown in FIG. Even in the state shown in FIG. 21, each particle is not necessarily saturated.
 次に、再生の工程について説明する。図22に示すように、上端から下端までの全区間にわたって外周ヒータ31を一斉にONにする。こうすることにより、外周面近傍にある粒子から順に昇温する。昇温した粒子は第2の状態に変化し、蓄えていた水分が放出される。粒子から放出された水分は、より内側にある粒子によって吸収(収着)されるか、または、粒子同士の隙間を通って内側に移動する。外周寄りから内周寄りに向かってこの現象が繰り返されることにより、図23に示すように、柱状空洞13の近傍に水が集まるようになる。さらに、いずれの粒子にも吸収(収着)されなくなって溢れた水5は、柱状空洞13の内面からにじみ出て、重力に従って下方へと落下する。 Next, the reproduction process will be described. As shown in FIG. 22, the outer peripheral heaters 31 are simultaneously turned on over the entire section from the upper end to the lower end. By carrying out like this, it heats up sequentially from the particle | grains in the outer peripheral surface vicinity. The heated particles change to the second state, and the stored water is released. The moisture released from the particles is absorbed (sorbed) by the particles on the inner side, or moves inward through the gaps between the particles. By repeating this phenomenon from the outer periphery toward the inner periphery, water gathers in the vicinity of the columnar cavity 13 as shown in FIG. Further, the overflowing water 5 which is not absorbed (sorbed) by any particle oozes out from the inner surface of the columnar cavity 13 and falls downward according to gravity.
 本実施の形態では、通路筐体19の中に柱状空洞13を有しているので、ヒータを部分ごとに順にONにするように制御するための機構が不要である。本実施の形態では、外周に設けられたヒータの全てをONにするだけで、水を柱状空洞へ向かって徐々に導くことができ、効率良く排出することができる。したがって、吸湿率の小さな吸湿材料を用いた場合であっても、効率的に水の回収が可能となる。 In the present embodiment, since the columnar cavity 13 is provided in the passage housing 19, a mechanism for controlling the heaters to be turned on in order for each part is unnecessary. In the present embodiment, it is possible to gradually guide water toward the columnar cavity by simply turning on all of the heaters provided on the outer periphery, and the water can be efficiently discharged. Therefore, even when a hygroscopic material having a small moisture absorption rate is used, water can be efficiently collected.
 本実施の形態においても、上端から下端までのヒータの全てを一斉にONにする代わりに、ヒータを上から1つずつ順にONとしていく操作、あるいは、ヒータをいくつかのブロックに分けて上から1ブロックごとに順次ONとしていく操作を行なってもよい。 Also in this embodiment, instead of turning on all the heaters from the upper end to the lower end all at once, an operation of turning on the heaters one by one from the top, or dividing the heater into several blocks and starting from the top You may perform operation which turns ON sequentially for every block.
 なお、高分子ゲル吸湿材料を主材料とする粒子群20だけを多数積層した場合、熱伝導が遅くなるおそれもある。そこで、ヒータからの熱の伝導を促進する目的で、高分子ゲル吸湿材料よりも熱伝導率が高い適当な材料、すなわちたとえば金属、樹脂、その他による部材を筐体の外周から中心側に向けて延在するように配置してもよい。ここで用いる材料が金属である場合、その金属の種類としては、たとえばアルミニウム、ステンレスなどが考えられる。特にアルミニウムは熱伝導率が高いので好ましい。筐体の外周から中心側に向けて配置する際には、外周から中心側に向かって枝が複数本それぞれ延在する櫛形の配置が考えられる。櫛形に限らず、さまざまな形状が採用可能である。 In addition, when only a large number of particle groups 20 mainly composed of a polymer gel moisture-absorbing material are stacked, heat conduction may be slowed. Therefore, for the purpose of promoting the conduction of heat from the heater, an appropriate material having a higher thermal conductivity than that of the polymer gel moisture-absorbing material, for example, a member made of metal, resin, or the like is directed from the outer periphery of the housing to the center side You may arrange | position so that it may extend. When the material used here is a metal, examples of the metal include aluminum and stainless steel. Aluminum is particularly preferable because of its high thermal conductivity. When arranging the casing from the outer periphery toward the center, a comb-like arrangement in which a plurality of branches extend from the outer periphery toward the center can be considered. Various shapes can be adopted without being limited to the comb shape.
 (実施の形態9)
 図24~図26を参照して、本発明に基づく実施の形態9における除湿機について説明する。本実施の形態における除湿機501を前から見たところを図24に示し、後ろから見たところを図25に示す。除湿機501の前面513においては、下部に吹出口511a、上部に吹出口511bが設けられている。背面514には吸気口が設けられており、フィルタ512が吸気口を覆っている。
(Embodiment 9)
A dehumidifier according to Embodiment 9 based on the present invention will be described with reference to FIGS. FIG. 24 shows a view of the dehumidifier 501 in the present embodiment from the front, and FIG. 25 shows a view from the back. On the front surface 513 of the dehumidifier 501, an air outlet 511 a is provided at the lower part, and an air outlet 511 b is provided at the upper part. The back surface 514 is provided with an intake port, and a filter 512 covers the intake port.
 図24におけるXXVI-XXVI線に関する矢視断面図を図26に示す。背面514の内側には、下部に配置された第1吸気ファン516と、上部に配置された第2吸気ファン517とが配置されている。筐体の内部空間は結露板518によって上下に隔てられている。結露板518の背面514側の端部は下に向かって曲がっている。結露板518の下側に高分子吸湿材520が配置されている。高分子吸湿材520は、実施の形態1~8で説明した考え方を適用して、粒子群20を保持したものである。図では高分子吸湿材520は多孔質のブロックであるように表示されているがこれはあくまで一例であってブロックとは限らない。高分子吸湿材520においては、実施の形態1~8で説明したように空気が上から下に向かって通過するものではなく、空気が横方向に通過するものである。したがって、粒子群20の配列も、実施の形態1~8で説明したものに比べて方向が90°異なる。 FIG. 26 is a cross-sectional view taken along the line XXVI-XXVI in FIG. Inside the back surface 514, a first intake fan 516 arranged at the lower part and a second intake fan 517 arranged at the upper part are arranged. The internal space of the housing is separated vertically by a condensation plate 518. The end of the condensation plate 518 on the back surface 514 side is bent downward. A polymer hygroscopic material 520 is disposed below the dew condensation plate 518. The polymer hygroscopic material 520 holds the particle group 20 by applying the concept described in the first to eighth embodiments. In the figure, the polymer hygroscopic material 520 is displayed as a porous block, but this is merely an example and is not necessarily a block. In the polymer hygroscopic material 520, air does not pass from top to bottom as described in Embodiments 1 to 8, but air passes in the lateral direction. Therefore, the direction of the arrangement of the particle group 20 is 90 ° different from that described in the first to eighth embodiments.
 高分子吸湿材520は台525に載せられている。台525の下側には熱源521が配置されている。熱源521は台525を介して高分子吸湿材520を下方から加熱することができるように配置されている。除湿機501の最下部には水を受けて溜めるためのタンク515が配置されている。 The polymer hygroscopic material 520 is placed on a table 525. A heat source 521 is disposed below the table 525. The heat source 521 is disposed so that the polymer moisture absorbent 520 can be heated from below via the table 525. A tank 515 for receiving and storing water is disposed at the lowermost part of the dehumidifier 501.
 除湿工程においては、熱源521および第2吸気ファン517はOFFとなっている状態で、第1吸気ファン516がONとなる。第1吸気ファン516によって外部の空気3が筐体内部の下部空間に導かれる。空気3は、高分子吸湿材520を通過することによって除湿され、空気3eとなって前面511の下側の吹出口511aから放出される。 In the dehumidifying process, the first intake fan 516 is turned on while the heat source 521 and the second intake fan 517 are turned off. The external air 3 is guided to the lower space inside the housing by the first intake fan 516. The air 3 is dehumidified by passing through the polymer hygroscopic material 520, becomes air 3 e, and is discharged from the outlet 511 a below the front surface 511.
 再生工程においては、第1吸気ファン516はOFFとなり、熱源521および第2吸気ファン517がONとなる。熱源521によって高分子吸湿材520が加熱され、高分子吸湿材520から水分が放出される。液体状態でにじみ出てきた水は重力によってタンク515に導かれる。気体状態で放出された水分すなわち水蒸気6は、結露板518の下面に触れる。結露板518の上側では、第2吸気ファン517によって外部から導かれた空気3が結露板518の上面を冷やしながら通過し、前面513の上側の吹出口511bから出て行く。結露板518の下面に触れた水蒸気6は結露板518によって冷やされ、結露し、液体状態の水5となる。結露板518の一方の端は傾いているので、この部分に付着している水5は傾斜によって結露板518の下端に誘導され、落下し、タンク515に受けられる。 In the regeneration process, the first intake fan 516 is turned off, and the heat source 521 and the second intake fan 517 are turned on. The polymer moisture absorbent 520 is heated by the heat source 521, and moisture is released from the polymer moisture absorbent 520. The water that has oozed out in the liquid state is guided to the tank 515 by gravity. Moisture, that is, water vapor 6 released in a gaseous state touches the lower surface of the dew condensation plate 518. On the upper side of the dew condensation plate 518, the air 3 guided from the outside by the second intake fan 517 passes while cooling the upper surface of the dew condensation plate 518 and exits from the air outlet 511 b on the upper side of the front surface 513. The water vapor 6 that has touched the lower surface of the dew condensation plate 518 is cooled by the dew condensation plate 518 and is condensed to form water 5 in a liquid state. Since one end of the dew condensation plate 518 is inclined, the water 5 adhering to this portion is guided to the lower end of the dew condensation plate 518 by the inclination and falls and is received by the tank 515.
 図26では結露板518の前面513寄りの部分は水平に延在しているように表示されているが、実際にはこの部分も、背面514側に近づくにつれて下がるように傾斜していることが好ましい。 In FIG. 26, the portion near the front surface 513 of the dew condensation plate 518 is displayed as extending horizontally, but actually this portion may also be inclined so as to decrease as it approaches the back surface 514 side. preferable.
 本実施の形態では、高分子吸湿材520から水蒸気として放出された水分も結露板518の作用によって結露させて液体の水として回収することができる。 In the present embodiment, moisture released as water vapor from the polymer moisture absorbent 520 can also be condensed by the action of the condensation plate 518 and recovered as liquid water.
 (実施の形態10)
 図27~図29を参照して、本発明に基づく実施の形態10における除湿機について説明する。本実施の形態における除湿機502を一方の側から見たところを図27に示し、他方の側から見たところを図28に示す。図28に示すように、下部に吹出口511が設けられている。吹出口511と同じ側の上部には吸気口が設けられており、この吸気口をフィルタ512が覆っている。
(Embodiment 10)
A dehumidifier according to the tenth embodiment of the present invention will be described with reference to FIGS. FIG. 27 shows a view of the dehumidifier 502 in the present embodiment from one side, and FIG. 28 shows a view from the other side. As shown in FIG. 28, the blower outlet 511 is provided in the lower part. An intake port is provided in the upper part on the same side as the air outlet 511, and the filter 512 covers the intake port.
 図27におけるXXIX-XXIX線に関する矢視断面図を図29に示す。除湿機502においては、1ヶ所に共通吸気ファン519が設けられている。筐体の内部空間を上下に隔てるように結露板518iが設けられている。結露板518iの下側に高分子吸湿材520が配置されている。除湿機502の最下部には水を受けて溜めるためのタンク515が配置されている。結露板518iの上側空間と下側空間とをつなぐ通路に熱源522が配置されている。 FIG. 29 is a cross-sectional view taken along the line XXIX-XXIX in FIG. In the dehumidifier 502, a common intake fan 519 is provided at one location. A dew condensation plate 518i is provided so as to vertically separate the internal space of the housing. A polymer hygroscopic material 520 is disposed below the dew condensation plate 518i. A tank 515 for receiving and storing water is disposed at the lowermost part of the dehumidifier 502. A heat source 522 is disposed in a passage connecting the upper space and the lower space of the dew condensation plate 518i.
 除湿工程においては、熱源522はOFFの状態で、共通吸気ファン519がONとなる。共通吸気ファン519によって外部から空気3が筐体内に導かれる。空気3は、結露板518iの上側空間を通過して下側空間に回り込み、高分子吸湿材520を通過する。空気3は、高分子吸湿材520を通過することにより除湿され、空気3eとなって吹出口511から外部に放出される。 In the dehumidifying process, the common intake fan 519 is turned on while the heat source 522 is turned off. The common intake fan 519 guides air 3 from the outside into the housing. The air 3 passes through the upper space of the dew condensation plate 518i, wraps around the lower space, and passes through the polymer hygroscopic material 520. The air 3 is dehumidified by passing through the polymer hygroscopic material 520, and becomes air 3 e and is discharged from the outlet 511 to the outside.
 再生工程においては、熱源522がONの状態で、共通吸気ファン519がONとなる。共通吸気ファン519によって外部から空気3が筐体内に導かれる。空気3は熱源522によって温められた状態で、高分子吸湿材520を通過するので、高分子吸湿材520に含まれる粒子群は温度が上がり、第2の状態すなわち疎水性の状態となる。高分子吸湿材520から液体状態で放出された水5は、重力で落下し、タンク515に受けられる。高分子吸湿材520から気体状態で放出された水すなわち水蒸気6は、結露板518iの傾斜部分の下面に触れる。結露板518iの傾斜部分の上面には共通吸気ファン519によって外部から筐体内に導かれた空気3の一部が分岐して当たっているので、結露板518iの傾斜部分は冷却される。水蒸気6は結露板518iによって冷却され、結露し、液体状態の水5となる。結露板518iの傾斜部分の下面に付着している水5は重力によって下方へ導かれ、タンク515に受けられる。 In the regeneration process, the common intake fan 519 is turned on while the heat source 522 is turned on. The common intake fan 519 guides air 3 from the outside into the housing. Since the air 3 is warmed by the heat source 522 and passes through the polymer hygroscopic material 520, the temperature of the particles contained in the polymer hygroscopic material 520 rises to a second state, that is, a hydrophobic state. The water 5 released from the polymer hygroscopic material 520 in a liquid state falls by gravity and is received by the tank 515. The water, that is, the water vapor 6 released from the polymer hygroscopic material 520 in a gaseous state touches the lower surface of the inclined portion of the dew condensation plate 518i. Since a part of the air 3 introduced into the housing from the outside by the common intake fan 519 is branched and hit on the upper surface of the inclined portion of the dew condensation plate 518i, the inclined portion of the dew condensation plate 518i is cooled. The water vapor 6 is cooled by the dew condensation plate 518i, and is condensed to form water 5 in a liquid state. The water 5 adhering to the lower surface of the inclined portion of the dew condensation plate 518i is guided downward by gravity and received by the tank 515.
 本実施の形態では、高分子吸湿材520から水蒸気として放出された水分も結露板518iの作用によって結露させて液体の水として回収することができる。本実施の形態では、除湿時と再生時の両方で同一の共通吸気ファン519を兼用する構造となっているので、ファンの設置台数を少なく抑えることができる。 In the present embodiment, moisture released as water vapor from the polymer hygroscopic material 520 can also be condensed by the action of the condensation plate 518i and recovered as liquid water. In this embodiment, since the same common intake fan 519 is used for both dehumidification and regeneration, the number of fans installed can be reduced.
 (実施の形態11)
 図30~図33を参照して、本発明に基づく実施の形態11における除湿機について説明する。本実施の形態における除湿機503を前から見たところを図30に示し、後ろから見たところを図31に示す。除湿機501の前面513においては、下部に吹出口511a、上部に吹出口511bが設けられている。背面514には吸気口が設けられており、フィルタ512が吸気口を覆っている。
(Embodiment 11)
A dehumidifier according to Embodiment 11 based on the present invention will be described with reference to FIGS. FIG. 30 shows a view of the dehumidifier 503 in the present embodiment from the front, and FIG. 31 shows a view from the back. On the front surface 513 of the dehumidifier 501, an air outlet 511 a is provided at the lower part, and an air outlet 511 b is provided at the upper part. The back surface 514 is provided with an intake port, and a filter 512 covers the intake port.
 図30におけるXXXII-XXXII線に関する矢視断面図を図32に示す。背面514の内側の下部の1ヶ所に共通吸気ファン519が設けられている。筐体の内部空間は結露板518jによって上下に隔てられている。結露板518jは背面514側に近づくにつれて下がるように湾曲している。結露板518jは筐体内で上下に平行移動できるようになっている。結露板518jの下側には、実施の形態9で説明したのと同様に高分子吸湿材520が配置されている。高分子吸湿材520が台525に載せられている点、熱源521およびタンク515が配置されている点などは、実施の形態9で説明したのと同様である。 FIG. 32 shows a cross-sectional view taken along the line XXXII-XXXII in FIG. A common intake fan 519 is provided at one lower position inside the back surface 514. The internal space of the housing is vertically separated by a condensation plate 518j. The dew condensation plate 518j is curved so as to fall as it approaches the back surface 514 side. The dew condensation plate 518j can move up and down in the casing. A polymer hygroscopic material 520 is disposed below the dew condensation plate 518j in the same manner as described in the ninth embodiment. The point that the polymer hygroscopic material 520 is placed on the stand 525, the point that the heat source 521 and the tank 515 are arranged are the same as those described in the ninth embodiment.
 除湿工程においては、結露板518jは図32に示すように高い位置に配置され、熱源521はOFFとなっている状態で、共通吸気ファン519がONとなる。共通吸気ファン519によって外部の空気3が筐体内部の下部空間に導かれる。空気3は、高分子吸湿材520を通過することによって除湿され、空気3eとなって前面511の下側の吹出口511aから放出される。 In the dehumidification process, the dew condensation plate 518j is disposed at a high position as shown in FIG. 32, and the common intake fan 519 is turned on while the heat source 521 is turned off. The external air 3 is guided to the lower space inside the housing by the common intake fan 519. The air 3 is dehumidified by passing through the polymer hygroscopic material 520, becomes air 3 e, and is discharged from the outlet 511 a below the front surface 511.
 再生工程においては、図32において矢印91で示すように結露板518jが下方に移動し、図33に示すようになる。すなわち、結露板518jは低い位置に配置される。この状態で、熱源521および共通吸気ファン519がONとなる。熱源521によって高分子吸湿材520が加熱され、高分子吸湿材520から水分が放出される。液体状態でにじみ出てきた水は重力によってタンク515に導かれる。気体状態で放出された水分すなわち水蒸気6は、結露板518jの下面に触れる。結露板518jの上側では、共通吸気ファン519によって外部から導かれた空気3が結露板518jの上面を冷やしながら通過し、前面513の上側の吹出口511bから出て行く。結露板518jの下面に触れた水蒸気6は結露板518jによって冷やされ、結露し、液体状態の水5となる。結露板518jは湾曲しているので、結露板518jに付着している水5は傾斜によって結露板518jの下端に誘導され、落下し、タンク515に受けられる。 In the regeneration process, the dew condensation plate 518j moves downward as shown by an arrow 91 in FIG. 32, and becomes as shown in FIG. That is, the dew condensation plate 518j is disposed at a low position. In this state, the heat source 521 and the common intake fan 519 are turned on. The polymer moisture absorbent 520 is heated by the heat source 521, and moisture is released from the polymer moisture absorbent 520. The water that has oozed out in the liquid state is guided to the tank 515 by gravity. Moisture, that is, water vapor 6 released in the gaseous state touches the lower surface of the dew condensation plate 518j. On the upper side of the dew condensation plate 518j, the air 3 guided from the outside by the common intake fan 519 passes through the upper surface of the dew condensation plate 518j while cooling and exits from the air outlet 511b on the upper side of the front surface 513. The water vapor 6 that has touched the lower surface of the dew condensation plate 518j is cooled by the dew condensation plate 518j, and is condensed to form water 5 in a liquid state. Since the dew condensation plate 518j is curved, the water 5 adhering to the dew condensation plate 518j is guided to the lower end of the dew condensation plate 518j by the inclination, falls, and is received by the tank 515.
 本実施の形態においても実施の形態10と同様の効果を得ることができる。本実施の形態では、結露板518jが移動することによって空気の通り道を明確に切り替えることができるので、効率良く作動することができる。 Also in this embodiment, the same effect as in the tenth embodiment can be obtained. In the present embodiment, since the passage of air can be clearly switched by the movement of the dew condensation plate 518j, it can operate efficiently.
 (付記3-1)
 水分を吸収(収着)しうる第1の状態と、前記第1の状態のときに吸収(収着)した水分を放出する第2の状態とを有し、一定温度以上になると前記第1の状態から前記第2の状態へと変化し、かつ、前記一定温度以上ではなくなったときには前記第1の状態に戻る性質を有する高分子ゲル吸湿材料を主材料とする吸湿材と、
 前記第1の状態のときに前記吸湿材に外気を誘導して当てる第1の送風ファンと、
 前記第2の状態のときに前記吸湿材から放出される水蒸気を受ける位置に配置された結露板と、
 前記結露板の前記水蒸気を受ける側の面とは反対側の面に風を当てることができる第2の送風ファンとを備える、除湿装置。
(Appendix 3-1)
It has a first state in which moisture can be absorbed (sorbed) and a second state in which moisture absorbed (sorbed) in the first state is released. A hygroscopic material whose main material is a polymer gel hygroscopic material that has the property of changing from the state to the second state and returning to the first state when the temperature is not higher than the predetermined temperature;
A first blower fan that induces and applies outside air to the hygroscopic material in the first state;
A dew plate disposed at a position to receive water vapor released from the moisture absorbent material in the second state;
A dehumidifying device comprising: a second blower fan that can apply wind to a surface of the dew condensation plate opposite to the surface that receives the water vapor.
 (付記3-2)
 前記第1の送風ファンは前記第2の送風ファンを兼ねている、付記3-1に記載の除湿装置。
(Appendix 3-2)
The dehumidifying device according to appendix 3-1, wherein the first blower fan also serves as the second blower fan.
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。 It should be noted that the above-described embodiment disclosed herein is illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、調湿装置に利用することができる。 The present invention can be used for a humidity control apparatus.
 2a,2b 粒子、2c 大粒子、2d 小粒子、3,3e 空気、5 水、6 水蒸気、9 送風ファン、10 電源、11 通気領域、12 非通気領域、13 柱状空洞、14 中心軸、15 制御機構、17 空気入口、18 空気出口、19 通路筐体、20 粒子群、21 第1粒子群、22 第2粒子群、23 第3粒子群、30 ヒータ、31 外周ヒータ、32 平板ヒータ、41 加熱領域、42 非加熱領域、91 矢印、101,102,103,104,105 調湿装置、501,502,503 除湿機、511,511a,511b 吹出口、512 フィルタ、513 前面、514 背面、515 タンク、516 第1吸気ファン、517 第2吸気ファン、518,518i,518j 結露板、519 共通吸気ファン、520 高分子吸収材、521,522 熱源、525 台。 2a, 2b particles, 2c large particles, 2d small particles, 3, 3e air, 5 water, 6 water vapor, 9 blower fan, 10 power supply, 11 venting area, 12 non-venting area, 13 columnar cavity, 14 central axis, 15 control Mechanism, 17 air inlet, 18 air outlet, 19 passage housing, 20 particle group, 21 first particle group, 22 second particle group, 23 third particle group, 30 heater, 31 peripheral heater, 32 flat plate heater, 41 heating Area, 42 unheated area, 91 arrow, 101, 102, 103, 104, 105 humidity controller, 501, 502, 503 dehumidifier, 511, 511a, 511b outlet, 512 filter, 513 front, 514 back, 515 tank 516, first intake fan, 517, second intake fan, 518, 518i, 518j, condensation plate 519 common intake fan, 520 absorbent polymer material, 521 and 522 heat source, 525 units.

Claims (5)

  1.  水分を吸収しうる第1の状態と、前記第1の状態のときに吸収した水分を放出する第2の状態とを有し、環境条件が満たされると前記第1の状態から前記第2の状態へと変化し、かつ、前記環境条件が満たされなくなったときには前記第1の状態に戻る性質を有する高分子ゲル吸湿材料を主材料とする粒子群と、
     前記粒子群を収容する通路筐体とを備え、
     前記通路筐体は、外部から空気を取り込む空気入口と、前記空気入口から取り込まれて前記粒子群の隙間を通過した空気を排出する空気出口とを有し、
     前記粒子群は、第1の径を有する第1粒子群と、前記第1の径より小さな第2の径を有する第2粒子群とを含み、
     前記通路筐体内において、前記第1粒子群は前記第2粒子群よりも前記空気入口寄りに配置されている、調湿装置。
    A first state capable of absorbing moisture and a second state for releasing moisture absorbed in the first state, and when the environmental condition is satisfied, the second state is changed from the first state to the second state. A group of particles whose main material is a polymer gel hygroscopic material having a property of changing to a state and returning to the first state when the environmental condition is not satisfied;
    A passage housing containing the particle group,
    The passage housing has an air inlet that takes in air from the outside, and an air outlet that discharges air that has been taken in from the air inlet and passed through the gaps between the particle groups,
    The particle group includes a first particle group having a first diameter and a second particle group having a second diameter smaller than the first diameter;
    In the passage housing, the first particle group is disposed closer to the air inlet than the second particle group.
  2.  前記環境条件は一定以上の温度であることであり、前記通路筐体には、前記粒子群に熱を加えるためのヒータが設けられている、請求項1に記載の調湿装置。 The humidity control apparatus according to claim 1, wherein the environmental condition is that the temperature is equal to or higher than a certain level, and the passage housing is provided with a heater for applying heat to the particle group.
  3.  前記通路筐体は、前記空気入口から前記空気出口に向かう方向に並ぶ複数の区画に分かれており、前記粒子群は前記複数の区画に分けて収容されており、前記ヒータは、前記複数の区画の各々に個別に熱を加えるように前記通路筐体の外周に沿って配置された外周ヒータを含む、請求項2に記載の調湿装置。 The passage housing is divided into a plurality of compartments arranged in a direction from the air inlet toward the air outlet, the particle group is accommodated in the plurality of compartments, and the heater is provided in the plurality of compartments. The humidity control apparatus according to claim 2, further comprising an outer peripheral heater disposed along an outer periphery of the passage housing so as to individually apply heat to each of the first and second passages.
  4.  前記複数の区画の各々には、異なる粒子径の前記粒子群が収容されており、各区画は、前記空気入口側から前記空気出口側に向かって粒子径が順に小さくなるように配列されており、前記空気入口側の区画から前記空気出口側の区画へと順に加熱していくように前記ヒータを制御する制御機構を備える、請求項1から3のいずれかに記載の調湿装置。 Each of the plurality of compartments contains the particle group having different particle diameters, and each compartment is arranged so that the particle diameters are sequentially reduced from the air inlet side toward the air outlet side. The humidity control apparatus according to any one of claims 1 to 3, further comprising a control mechanism that controls the heater so as to sequentially heat the section on the air inlet side to the section on the air outlet side.
  5.  前記通路筐体は筒形であり、中心軸に沿って前記粒子群を収容しない柱状空洞を有し、前記ヒータは、前記粒子群に外周から内周に向かって熱を加えるように前記通路筐体の外周に沿って配置された外周ヒータを含む、請求項2から4のいずれかに記載の調湿装置。 The passage housing is cylindrical and has a columnar cavity that does not contain the particle group along a central axis, and the heater applies heat to the particle group from the outer periphery toward the inner periphery. The humidity control apparatus according to any one of claims 2 to 4, comprising an outer peripheral heater disposed along the outer periphery of the body.
PCT/JP2015/055778 2014-05-09 2015-02-27 Humidity conditioner WO2015170501A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580011406.2A CN106062484B (en) 2014-05-09 2015-02-27 Humidity control apparatus
JP2016517827A JP6266100B2 (en) 2014-05-09 2015-02-27 Humidity control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-097526 2014-05-09
JP2014097526 2014-05-09

Publications (1)

Publication Number Publication Date
WO2015170501A1 true WO2015170501A1 (en) 2015-11-12

Family

ID=54392355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055778 WO2015170501A1 (en) 2014-05-09 2015-02-27 Humidity conditioner

Country Status (3)

Country Link
JP (1) JP6266100B2 (en)
CN (1) CN106062484B (en)
WO (1) WO2015170501A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138078A (en) * 2016-02-05 2017-08-10 ダイキン工業株式会社 Dehumidification system
WO2019135352A1 (en) * 2018-01-04 2019-07-11 シャープ株式会社 Humidity control device and humidity control method
KR20190083445A (en) * 2018-01-04 2019-07-12 한국기계연구원 Membrane dehumidification module and dehumidification apparatus using the same
WO2022039149A1 (en) * 2020-08-18 2022-02-24 シャープ株式会社 Water collecting apparatus and water collecting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442688A (en) * 2022-01-21 2022-05-06 深圳大成智能电气科技有限公司 Humidity management device and humidity management method in cabinet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727382A (en) * 1993-07-09 1995-01-27 Matsushita Electric Ind Co Ltd Humidifying/dehumidifying apparatus
JPH0796025A (en) * 1993-08-04 1995-04-11 Astec Internatl:Kk Air cleaning device and air cleaning method
JPH11267445A (en) * 1998-03-25 1999-10-05 Daikin Ind Ltd Deodorizing device and deodorizing machine and air conditioner equipped with same
JP2003042502A (en) * 2001-07-30 2003-02-13 Panahome Corp Ventilation equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE383777B (en) * 1973-07-18 1976-03-29 Munters Ab Carl KIT AND DEVICE FOR AIR COOLING
NL1021812C1 (en) * 2002-04-26 2003-10-28 Oxycell Holding Bv Dew point cooler.
CN103084156A (en) * 2011-11-04 2013-05-08 财团法人工业技术研究院 Dehumidification device and electrifying desorption device thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727382A (en) * 1993-07-09 1995-01-27 Matsushita Electric Ind Co Ltd Humidifying/dehumidifying apparatus
JPH0796025A (en) * 1993-08-04 1995-04-11 Astec Internatl:Kk Air cleaning device and air cleaning method
JPH11267445A (en) * 1998-03-25 1999-10-05 Daikin Ind Ltd Deodorizing device and deodorizing machine and air conditioner equipped with same
JP2003042502A (en) * 2001-07-30 2003-02-13 Panahome Corp Ventilation equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138078A (en) * 2016-02-05 2017-08-10 ダイキン工業株式会社 Dehumidification system
WO2019135352A1 (en) * 2018-01-04 2019-07-11 シャープ株式会社 Humidity control device and humidity control method
KR20190083445A (en) * 2018-01-04 2019-07-12 한국기계연구원 Membrane dehumidification module and dehumidification apparatus using the same
KR102009774B1 (en) * 2018-01-04 2019-08-12 한국기계연구원 Membrane dehumidification module and dehumidification apparatus using the same
WO2022039149A1 (en) * 2020-08-18 2022-02-24 シャープ株式会社 Water collecting apparatus and water collecting method

Also Published As

Publication number Publication date
JP6266100B2 (en) 2018-01-24
CN106062484A (en) 2016-10-26
JPWO2015170501A1 (en) 2017-04-20
CN106062484B (en) 2019-02-15

Similar Documents

Publication Publication Date Title
JP6266100B2 (en) Humidity control device
JP6439157B2 (en) Hygroscopic material, dehumidifying device and dehumidifying method
JP4801197B2 (en) Anti-fog and air conditioning system for electric vehicles
CN106659968B (en) Dehumidifying device
WO2016194407A1 (en) Dehumidification device and dehumidification method
WO2015083732A1 (en) Dehumidifier
US11845039B2 (en) Water extracting device
JP2012166128A5 (en)
JP2012166128A (en) Dehumidifier
WO2011090438A1 (en) A dehumidifier and a method of dehumidification
CN102327728A (en) Reproducible dehumidifier
JP2011143358A (en) Moisture absorption filter and humidifier
JP4529318B2 (en) Dehumidifying device and cold air generator using the dehumidifying device
JP5934009B2 (en) Cooling dehumidification system
JP5628607B2 (en) Air conditioning system
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
CN201625495U (en) Reproducible dehumidifier
JP6443964B2 (en) Humidity control unit
JP2006289258A (en) Dehumidification body and desiccant air-conditioner using the same
JP5844058B2 (en) Dehumidifier and desiccant dehumidifier equipped with the same
JP2012183460A (en) Dehumidification body and desiccant dehumidifier including the same
JP2012179559A (en) Dehumidifying body and desiccant dehumidifying apparatus including the same
CN213314232U (en) Space dehumidification system
CN109475811B (en) Dehumidifying device
JPH01263438A (en) Portable humidifying and dehumidifying device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789624

Country of ref document: EP

Kind code of ref document: A1