WO2015169513A1 - Agencement et procédé pour réaliser un placage par couches successives - Google Patents

Agencement et procédé pour réaliser un placage par couches successives Download PDF

Info

Publication number
WO2015169513A1
WO2015169513A1 PCT/EP2015/057063 EP2015057063W WO2015169513A1 WO 2015169513 A1 WO2015169513 A1 WO 2015169513A1 EP 2015057063 W EP2015057063 W EP 2015057063W WO 2015169513 A1 WO2015169513 A1 WO 2015169513A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
building material
energy sources
arrangement according
sources
Prior art date
Application number
PCT/EP2015/057063
Other languages
German (de)
English (en)
Inventor
Bernd Burbaum
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2015169513A1 publication Critical patent/WO2015169513A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys

Definitions

  • the invention relates to an arrangement and method for the layered creation of a coating layer of highly heat-resistant superalloy comprising a substrate, wherein a high heat resistant superalloy-containing building material is applied to the substrate.
  • Blades of gas turbines are exposed to high temperatures and heavy mechanical loads during operation.
  • preference is given to using highly heat-resistant nickel-base superalloys which can be strengthened by precipitating a ⁇ 'phase.
  • cracks can occur in the blades that continue to expand over time. Such cracks can arise, for example, due to the extreme mechanical stress during the operation of a gas turbine, but they can also already occur during the production process. Since the production of turbine blades and other workpieces from such superalloys is expensive and expensive, it is endeavored to produce as little waste as possible in the production and to ensure a long life of the products produced.
  • Gas turbine blades in operation are regularly serviced and, if necessary, exchanged if due to operational stress proper functioning can no longer be readily ensured. In order to enable a further use of exchanged turbine blades, they are worked up again as far as possible. They can then be used again in a gas turbine.
  • a cladding of a building material onto the damaged ⁇ -like workpiece in the damaged areas can for example be necessary to restore the original wall thickness or shape of the workpiece again manufacture. This can optionally be done after removal of the damaged area, for example by milling.
  • Turbine blades that have already cracked during the manufacturing process can also be used in this way.
  • Cladding be made ready for use, so that the Committee can be reduced during manufacture.
  • the first object is achieved by specifying a Anord ⁇ voltage for layerwise create a coating layer made of highly heat-resistant superalloy article comprising a substrate with a highly heat-resistant superalloy containing structure Mate ⁇ rial is applied to the substrate, applied to the portion ⁇ comprise generating a molten bath in the Building material a plurality of individual pointing in the direction of the applied building material energy sources are annular symmet ⁇ rically arranged around at least one pointing in the direction of the applied building material energy source, all energy sources are separately controlled.
  • the second object is achieved by specifying a procedural ⁇ proceedings for layerwise create a coating layer made of highly heat-resistant super alloy on a substrate, wherein a highly heat-resistant superalloy containing build material is applied to the substrate, by several, a ⁇ zelne in the direction of the applied building material a ring-shaped bath in the applied build-up material is generated in sections, with all Energyquel ⁇ len are driven separately, so that there is a nikförmi ⁇ ge processing zone for the molten bath.
  • a plurality of individual energy sources are arranged in an annular symmetrical manner around at least one energy source pointing in the direction of the applied build-up material, resulting in a circular processing zone for a molten bath.
  • annular energy sources may also be arranged to provide a first annular array of above ⁇ be written energy source.
  • the energy sources can emit laser radiation, which overlap coaxially.
  • laser power laser power
  • the power sources are evenly ⁇ ring-shaped symmetrically arranged one facing in the direction of the listed attached build material source of energy to at least.
  • the energy sources can also be arranged in an annular symmetrical manner about at least one energy source pointing in the direction of the applied build-up material, wherein the annular ones symmetrical about at least one oriented in the direction of the applied building material energy source arranged energy ⁇ sources may have a uniform distance to this at least one energy source.
  • a pendant overall strategy is felbearbeitungszone possible by the individual control of the La ⁇ serstrahl provoken, whereby lateral movement of the machine tool is unnecessary.
  • Pendelbewe ⁇ supply a constantly changing solidification function is generated, whereby the grain growth is interrupted during the solidification of the melt and the microstructure solidifies fine grained.
  • the fine graininess of the microstructure distributes the remaining residual welding stresses to the grain boundaries so that cracks in the weld or in the weld metal are avoided.
  • the invention can now be dispensed with a lateral acceleration of the machine technology (machine tool), which is a prerequisite for the implementation of a Pendeltechnolo- technology.
  • the energy sources in particular the laser beam sources ⁇ , pointing in the direction of the applied laser beams on the building material, wherein the energy sources are arranged so reasonable that mutually coaxial energy rays arise.
  • the energy beams may overlap.
  • the energy sources Laserstrahlquel ⁇ len. These preferably have a maximum laser power of 50-100 W. Laser beam sources with a maximum laser power of 50-100 W, which are particularly cost-effective, are used.
  • a controller for controlling the Energy sources comprises energy beams pointing in the direction of the applied build-up material, with a propagation center axis and a diameter, the diameter being variable.
  • a controller for controlling the individual energy sources and / or for modulating the power of the individual energy sources may be provided.
  • the diameter of the individual energy sources can be adjustable, for example, by means of the zoom telescope.
  • the energy sources in the direction of the applied building material comprise energy beams pointing with a propagation center axis.
  • a material supply treadmill is intended, wherein the material feed is arranged coaxially to Ausbreitungsmit ⁇ center axis.
  • the energy beams are guided through the material feed coaxial.
  • the material supply is a Pul ⁇ verdüse. The jets are therefore coupled coaxially through a powder nozzle into the molten bath. This has a compact design to the advantage.
  • the energy sources comprise energy beams pointing in the direction of the applied build-up material, the energy beams at least partially overlapping at least on the applied build-up material. This means that the intensity distributions can overlap area ⁇ pen. As a result, different intensity distributions can be produced.
  • the energy sources in the direction of the applied building material include facing energy beams, wherein do not overlap the energy beams on the applied build material.
  • nickel- or cobalt-based superalloys are used as the substrate. This is particularly well suited for use in power plants, especially turbines.
  • the welding process can be remelting or build-up welding. There is one for both methods
  • a separate control of the individual energy sources nen ⁇ a local heat treatment in particular a preheating and / or reheating of the building material allows.
  • a local heat treatment in particular with regard to
  • Preheating / reheating possible.
  • preheating / reheating for example, a structure formation with application-specific properties can be secured.
  • Preferably is influenced by a separate control of the individual energy sources and pointing in the direction of the applied building material energy beam locally the intensity ⁇ distribution at the zone of interaction of the energy beams with the applied building material.
  • the substrate is preferably a gas turbine blade, wherein the applied building material is applied to a tip of the gas turbine blade or on an upper or Sei ⁇ ten Design a blade platform of the gas turbine blade.
  • the tip of a gas turbine blade and the blade platform are exposed to the greatest wear during operation of a gas turbine.
  • FIG. 1 shows a plan view of an inventive arrangement
  • Figure 2 shows a cross section of an inventive arrangement.
  • FIGS 1 and 2 show an arrangement of a welding process, in particular a laser welding process, by means of which the invention is explained in a non-limited way.
  • the arrangement and the method are therefore not restricted to laser welding methods, but also apply to electron welding methods and other plasma welding methods with corresponding energy sources.
  • a lateral acceleration Be ⁇ machine technology (machine tool) is necessary. Due to the acceleration of the machine tool holding the opportunities used a pendulum Techno logy ⁇ (frequency / amplitude) can be greatly limited. 1 shows a coating technology according to the invention.
  • FIG 1 shows an arrangement for a layer-wise to create a plating layer 6 (Figure 2) of highly heat-resistant superalloy comprising a substrate 3 (FIG 2), applying a high temperature resistant Superle ⁇ Government containing building material (FIG 2) on the substrate 3 (FIG 2) , Several individual Laserstrahlquel ⁇ len 1 (FIG 2) are arranged into the annular symmetrical laser beams 2, which at at least one point in the direction of the applied building material 8 laser beam 2 are grouped, so that a circular machining ⁇ zone 4 gives a molten bath.
  • the laser beam sources 1 have in the direction of the applied build material 8 facing laser beams 2, wherein the laser beam sources 1 are arranged so as to give each other coaxial laser beams 2.
  • the energy beams may overlap. Of course, the laser beams 2 can not overlap.
  • Low-cost laser Radiation sources 1 (FIG 2) with a maximum laser power of 50-100 W.
  • each individual laser steel source 1 and thus each laser power can be controlled separately, so that lo ⁇ cal influence on the intensity distribution at the interaction zone laser radiation / applied build material 8 (FIG. 2) can be influenced.
  • a pendulum strategy of the total machining zone is made possible by the individual control of the laser beam sources 1 (FIG. 2); Thus, a la ⁇ terale movement of the machine tool is unnecessary.
  • the laser beam deposition welding by the control of the individual laser beam sources, a local heat treatment, in particular a preheating and / or reheating possible. This can for example be better
  • a weld bead 6 as part of the build-up weld has already been produced.
  • the welding bead represents the remelted area.
  • the material 8 is supplied in the form of powder, but can also be supplied as a wire.
  • the laser beams 2 are in particular pulsed.
  • a powder nozzle 14 with egg ⁇ ner powder nozzle feeder 10 as a material supply leads to powder 8, wherein the powder 8 is melted.
  • a molten bath 7 is present.
  • the laser beams 2 are arranged symmetrically annular.
  • the laser beams 2 can be generated, for example, by means of a laser beam source 1 and deflecting mirrors 9.
  • Low-cost laser beam sources with a maximum laser power of 50-100 W are used.
  • the beams 2 are coupled coaxially through the powder nozzle 14 into the molten bath 7. The advantages of this arrangement are that each individual laser beam source 1 can be driven separately.
  • the surface to be welded is built up from several side by side and optionally superimposed weld beads.
  • a pendulum strategy of the overall processing zone is made possible ⁇ light by the individual control of the laser beam sources, whereby a lateral movement of the machine tool is unnecessary.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un agencement permettant de réaliser par couches successives un placage en superalliage résistant aux hautes températures, comprenant un substrat (3) sur lequel un matériau de construction (8) renfermant le superalliage résistant aux hautes températures est déposé. Selon l'invention, pour permettre de réaliser par endroits un bain de fusion (7) dans le matériau de construction (8), plusieurs sources d'énergie orientées en direction du matériau de construction (8) sont agencées en anneau de façon symétrique autour d'au moins une source d'énergie orientée en direction du matériau de construction, toutes les sources d'énergie pouvant être commandées de manière séparée. L'invention concerne également un procédé pour réaliser un placage par couches successives.
PCT/EP2015/057063 2014-05-06 2015-03-31 Agencement et procédé pour réaliser un placage par couches successives WO2015169513A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014208435.0 2014-05-06
DE102014208435.0A DE102014208435A1 (de) 2014-05-06 2014-05-06 Anordnung und Verfahren zum schichtweisen Erstellen einer Auftragschicht

Publications (1)

Publication Number Publication Date
WO2015169513A1 true WO2015169513A1 (fr) 2015-11-12

Family

ID=53724270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/057063 WO2015169513A1 (fr) 2014-05-06 2015-03-31 Agencement et procédé pour réaliser un placage par couches successives

Country Status (2)

Country Link
DE (1) DE102014208435A1 (fr)
WO (1) WO2015169513A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779634A (zh) * 2019-10-29 2020-02-11 江苏科技大学 可控快速切换的激光烧蚀金属熔池测温装置及使用方法
WO2021027659A1 (fr) * 2019-08-14 2021-02-18 方强 Système laser à point lumineux composite basé sur de multiples modules laser de sortie de fibres optiques, et foret de traitement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201418A1 (de) 2016-01-29 2017-08-03 Kjellberg-Stiftung Vorrichtung und Verfahren zur thermischen Bearbeitung
DE102016215006A1 (de) * 2016-08-11 2018-02-15 Siemens Aktiengesellschaft Vorrichtung zum Laserauftragschweißen mit koaxial vorgewärmtem Pulverwerkstoff und Verfahren
CN111545919B (zh) * 2020-04-30 2021-07-16 北京航空航天大学 一种多光束耦合光斑的激光冲击强化装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669863A1 (fr) * 1992-10-22 1995-09-06 RANCOURT, Yvon Procede et appareil de soudage et d'autres traitements thermiques
US20040120050A1 (en) * 2001-12-07 2004-06-24 Koichi Tsukihara Beam irradiator and laser anneal device
DE60204506T2 (de) * 2001-04-12 2006-05-11 General Electric Co. Laser-Reparatur-Verfahren für Superlegierungen auf Nickel-Basis mit hohem Gamma Prime Gehalt
US20070272669A1 (en) * 2004-02-20 2007-11-29 Comley Andrew J Laser Multiplexing
WO2012036664A1 (fr) * 2010-09-13 2012-03-22 Ipg Photonics Corporation Système industriel laser à fibres de grande puissance avec ensemble de surveillance optique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340583A1 (fr) * 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Procédé de refusion ou de soudage par rechargement utilisant le laser
JP2003251480A (ja) * 2002-03-01 2003-09-09 Toyota Motor Corp レーザクラッド装置およびレーザ照射装置
DE20308097U1 (de) * 2003-05-23 2004-09-23 Kuka Schweissanlagen Gmbh Lasereinrichtung
EP2322313A1 (fr) * 2009-11-13 2011-05-18 Siemens Aktiengesellschaft Procédé de soudure de pièces usinées en superalliages résistant aux températures avec un débit particulier du matériau d'apport de soudage
JP5938622B2 (ja) * 2011-12-28 2016-06-22 株式会社村谷機械製作所 レーザ加工装置及びレーザ加工方法
DE102012209628A1 (de) * 2012-06-08 2013-12-12 Jenoptik Laser Gmbh Faserkoppler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669863A1 (fr) * 1992-10-22 1995-09-06 RANCOURT, Yvon Procede et appareil de soudage et d'autres traitements thermiques
DE60204506T2 (de) * 2001-04-12 2006-05-11 General Electric Co. Laser-Reparatur-Verfahren für Superlegierungen auf Nickel-Basis mit hohem Gamma Prime Gehalt
US20040120050A1 (en) * 2001-12-07 2004-06-24 Koichi Tsukihara Beam irradiator and laser anneal device
US20070272669A1 (en) * 2004-02-20 2007-11-29 Comley Andrew J Laser Multiplexing
WO2012036664A1 (fr) * 2010-09-13 2012-03-22 Ipg Photonics Corporation Système industriel laser à fibres de grande puissance avec ensemble de surveillance optique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021027659A1 (fr) * 2019-08-14 2021-02-18 方强 Système laser à point lumineux composite basé sur de multiples modules laser de sortie de fibres optiques, et foret de traitement
CN110779634A (zh) * 2019-10-29 2020-02-11 江苏科技大学 可控快速切换的激光烧蚀金属熔池测温装置及使用方法
CN110779634B (zh) * 2019-10-29 2021-08-10 江苏科技大学 可控快速切换的激光烧蚀金属熔池测温装置及使用方法

Also Published As

Publication number Publication date
DE102014208435A1 (de) 2015-11-12

Similar Documents

Publication Publication Date Title
DE3942051B4 (de) Verfahren zum Herstellen von Triebwerkschaufeln durch Aufbauschweißung
DE102011100456B4 (de) Extremes Hochgeschwindigkeitslaserauftragsschweißverfahren
WO2015169513A1 (fr) Agencement et procédé pour réaliser un placage par couches successives
EP3235580B1 (fr) Procédé et dispositif de fabrication d'au moins une zone d'un composant
EP2280801B1 (fr) Procédé de soudage de pièces d'usinage en alliages superréfractaires
EP3017895A1 (fr) Fabrication d'un composant par fusion laser selective
EP3099446B1 (fr) Soudage par rechargement de super-alliages refractaires avec mouvement oscillant du faisceau d'énergie
EP2311597A1 (fr) Procédé et dispositif de soudure de pièces en superalliages résistant à la chaleur élevée avec contrôle de certains paramètres de soudage pour obtenir une vitesse de refroidissement certaine
DE102019132191A1 (de) Vorrichtung zum Laserauftragschweißen mit mehreren Laserauftragschweißköpfen
WO2015086194A1 (fr) Procédé de soudage oscillant
EP3119551B1 (fr) Procédé pour réaliser de petits alésages dans des pièces par modification d'un paramètre d'usinage au cours d'une impulsion de faisceau
WO2014154408A1 (fr) Procédé permettant de réaliser des structures à gros grains, utilisation du procédé et structure à gros grains
DE102020106822A1 (de) Vorrichtung und Verfahren zum Nachbearbeiten von Schichten aufgetragen durch Laserauftragschweißen
EP3461571A1 (fr) Procédé de rayonnement d'une couche de poudre dans une fabrication additive présentant des paramètres de fabrication définis de manière continue
DE102019132192A1 (de) Vorrichtung und Verfahren zur Optimierung der Schichtdickenverteilung beim Laserauftragschweißen
WO2021228593A1 (fr) Procédé de fabrication additive par irradiation sélective double d'un lit de poudre et préchauffage
DE102010040931B4 (de) Vorrichtung zur Nachbearbeitung von zwei Bauteilen sowie Verfahren
EP3334558B1 (fr) Méthode de soudage par rechargement au laser
DE102017201261A1 (de) Auftragschweißvorrichtung mit magnetischer Beeinflussung und Verfahren zum Auftragschweißen
WO2021000981A1 (fr) Procédé de construction par couches et dispositif de construction par couches destiné à la fabrication additive d'au moins une zone de paroi d'une pièce ainsi que produit programme informatique et pièce
WO2015106833A1 (fr) Procédé de soudage pendulaire
DE102014220183A1 (de) Laserstrahlanlage mit Einzellaserstrahlen und Laserstrahlschweißen
DE102008036450A1 (de) Labyrinth-Dichtungssteg-Reparaturverfahren für Gasturbinen
WO2019211441A1 (fr) Procédé et dispositif de soudage à superposition par rayons laser à une zone superficielle d'un substrat et module soudé par superposition
WO2018197184A1 (fr) Modification de la puissance lors d'une modulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15741881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15741881

Country of ref document: EP

Kind code of ref document: A1