WO2015168905A1 - 一种偏振旋转器 - Google Patents

一种偏振旋转器 Download PDF

Info

Publication number
WO2015168905A1
WO2015168905A1 PCT/CN2014/077037 CN2014077037W WO2015168905A1 WO 2015168905 A1 WO2015168905 A1 WO 2015168905A1 CN 2014077037 W CN2014077037 W CN 2014077037W WO 2015168905 A1 WO2015168905 A1 WO 2015168905A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
stage
level
width
polarization rotator
Prior art date
Application number
PCT/CN2014/077037
Other languages
English (en)
French (fr)
Inventor
周林杰
谢安邦
王涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/077037 priority Critical patent/WO2015168905A1/zh
Priority to CN201480078711.9A priority patent/CN106461870B/zh
Publication of WO2015168905A1 publication Critical patent/WO2015168905A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means

Definitions

  • Embodiments of the present invention relate to integrated optical technologies, and more particularly to a polarization rotator. Background technique
  • silicon on Insulator Silicon on Insulator
  • SOI-based optical devices have been extensively studied. However, due to the large structural birefringence of SOI, SOI-based optical devices have problems of large polarization dependence, polarization mode dispersion, and polarization dependent loss.
  • the SOI-based optical device has better performance for various polarized lights by adjusting the polarization state of the light.
  • the Polarization Rotator (PR) is an important device in the polarization diversity system due to its simple structure and low cost.
  • the waveguide is divided into two layers, and the waveguide is twisted by designing the two layers into a reverse tapered structure (one layer is gradually narrowed and the other layer is gradually widened).
  • the plane of polarization of the incident light is gradually rotated, and finally a 90° polarization rotation is achieved at the output waveguide.
  • the structure of the structure is complicated and is not conducive to the processing design. Summary of the invention
  • Embodiments of the present invention provide a polarization rotator that is simple in process and easy to process.
  • an embodiment of the present invention provides a polarization rotator, including: a first stage waveguide and a second stage waveguide cascading with the first stage waveguide, where
  • the first stage waveguide and the second stage waveguide have the same thickness
  • the first stage waveguide includes a first stage upper layer waveguide and a first stage lower layer waveguide along the first stage a direction of the waveguide to the second-stage waveguide, the width of the first-stage upper-layer waveguide is gradually narrowed from a first predetermined width to a second predetermined width, and a width of the first-stage lower-layer waveguide remains unchanged;
  • the second stage waveguide includes a second stage upper layer waveguide and a second stage lower layer waveguide, wherein the thickness of the second stage upper layer waveguide is the same as the thickness of the first stage upper layer waveguide, along the first stage waveguide to the The direction of the second-stage waveguide, the width of the second-stage lower-layer waveguide is gradually narrowed by the first predetermined width to the second predetermined width, and the width of the second-stage upper-layer waveguide remains unchanged.
  • the first-stage waveguide is configured to be a symmetric structure for an end surface coupled to the outer waveguide, and the second-stage waveguide is configured to be coupled to the outer waveguide
  • the end face is a symmetrical structure.
  • the direction of the first-stage waveguide to the second-stage waveguide maintains the first predetermined width unchanged.
  • the second stage upper layer is along a direction of the first stage waveguide to the second stage waveguide
  • the width of the waveguide remains the same as the second predetermined width.
  • any one of the first to third possible implementation manners of the first aspect in a fourth possible implementation manner of the first aspect, the polarization rotator adopts the following etching technology One or more of them are obtained:
  • Electron beam etching, plasma etching or photolithography Electron beam etching, plasma etching or photolithography.
  • the polarization rotator comprises a three-layer structure, respectively a base structure, an intermediate layer structure, and an outer layer structure coated on an outer surface of the intermediate layer structure; wherein the material of the base structure is silicon dioxide, the material of the intermediate layer structure is silicon, and the outer layer The material of the structure is silica.
  • the widths of the first-stage upper-layer waveguide and the second-stage lower-layer waveguide are all determined by the first preset.
  • the width is gradually narrowed to the second preset width, which eliminates the sharp corner structure in the existing PR, thereby greatly reducing the process difficulty and being easy to process; and the polarization rotator has a fixed thickness, which is advantageous for the polarization rotator and the polarization diversity system. Integration of devices. DRAWINGS
  • FIG. 1 is a schematic view showing a three-dimensional structure of a polarization rotator in the prior art
  • FIG. 2 is a schematic view showing a three-dimensional structure of a first embodiment of a polarization rotator of the present invention
  • FIG. 3 is a plan view of a second embodiment of a polarization rotator of the present invention.
  • Figure 4 is a cross-sectional view showing the cascading portion of the second embodiment of the polarization rotator of the present invention.
  • FIG. 5 is a schematic view showing a three-dimensional structure of a third embodiment of a polarization rotator of the present invention.
  • FIG. 6 is a diagram showing an example of a three-dimensional structure based on an asymmetric cross section
  • Figure 7 is a diagram showing an example of loss of a conventional mode evolution structure at different wavelengths in the C-band
  • FIG. 8 is a diagram showing an example of loss at different wavelengths of the C-band of the third embodiment of the polarization rotator of the present invention
  • FIG. 9 is a diagram showing an example of loss at different wavelengths of the C-band of the asymmetric cross-section structure
  • Figure 10 is a diagram showing an example of etching depth tolerance of an asymmetric cross-sectional structure
  • Figure 1 is an example of a width tolerance of an asymmetric cross-section structure
  • FIG. 12 is a view showing an example of etching depth tolerance of the third embodiment of the polarization rotator of the present invention
  • FIG. 13 is a view showing an example of width tolerance of the third embodiment of the polarization rotator of the present invention.
  • Embodiments of the present invention provide a polarization rotator for performing polarization rotation of a light wave.
  • a Transverse Electric Wave (referred to as TE) is input at an input end of the polarization rotator, and the polarization rotation is performed.
  • the output of the device outputs a Transverse Magnetic Wave (TM: TM).
  • TM Transverse Magnetic Wave
  • TE is output at the output of the polarization rotator.
  • the polarization rotator 20 includes: a first stage waveguide 21 and a second stage waveguide 22 cascaded with the first stage waveguide 21, wherein the first stage waveguide 21 and the second stage waveguide 22 have the same thickness H
  • the first stage waveguide 21 includes a first stage upper layer waveguide 211 and a first stage lower layer waveguide 212, along the direction of the first stage waveguide 21 to the second stage waveguide 22 (as indicated by the arrow in FIG.
  • the first stage upper layer The width of the waveguide 211 is gradually narrowed from the first predetermined width W to the second predetermined width W-We, the width of the first stage lower layer waveguide 212 remains unchanged;
  • the second stage waveguide 22 includes the second stage upper layer waveguide 221 and the The thickness of the second lower layer waveguide 222, the thickness of the second stage upper layer waveguide 221 is the same as the thickness of the first stage upper layer waveguide 211, and the width of the second stage lower layer waveguide 222 is in the direction of the first stage waveguide 21 to the second stage waveguide 22.
  • a predetermined width W is gradually narrowed to a second predetermined width W-We, and the width of the second-stage upper layer waveguide 221 remains unchanged.
  • the thickness H of the polarization rotator 20 remains constant throughout the structure and is a constant value.
  • the first stage waveguide 21 and the second stage waveguide 22 are arranged in cascade, and the two are integrated structures.
  • the two-stage waveguide can be two parts of a unitary structure, which are divided into a first stage and a second stage for convenience of explanation. The specific meanings of the symbols in Fig. 2 will be described below.
  • the width and thickness of the first-stage lower-layer waveguide 212 remain unchanged along the direction of the first-stage waveguide 21 to the second-order waveguide 22, wherein the first-level lower layer
  • the width of the waveguide 212 is a first predetermined width W, and the thickness of the first stage lower layer waveguide 212 is H-He; the thickness of the first stage upper layer waveguide 211 remains unchanged, being He, but the width of the first stage upper layer waveguide 211 is gradually Narrows to a second preset width W-We.
  • the width and thickness of the second-stage upper-layer waveguide 212 remain unchanged in the direction from the first-stage waveguide 21 to the second-stage waveguide 22, wherein the second-stage upper-layer waveguide 212
  • the width of the second-stage upper-layer waveguide 212 is He; the thickness of the second-stage lower-layer waveguide 222 remains unchanged as H-He, but the width of the second-stage lower-layer waveguide 222 is gradually Narrows to a second preset width W-We.
  • the upper and lower waveguides inside the waveguide are seamlessly connected, which are different parts of a complete material, and are distinguished only for convenience of description.
  • the widths of the first-stage upper-layer waveguide and the second-stage lower-layer waveguide are gradually narrowed from the first predetermined width in the direction from the first-stage waveguide to the second-stage waveguide. Up to the second preset width, eliminating the sharp corner structure in the existing PR, thereby greatly reducing the process difficulty and being easy to process; and the polarization rotator has a fixed thickness, which is advantageous for the polarization rotator and polarization Integration of devices in a diverse system.
  • the bandwidth of the polarization rotator is determined according to the polarization conversion efficiency (Polarization Conversion Efficiency, PCE) of the polarization rotator at different wavelengths.
  • the bandwidth of the polarization rotator may be a wavelength range in which the PCE is greater than a predetermined value (eg, 95%).
  • the end surface of the first-stage waveguide 21 for coupling with the external waveguide is a symmetrical structure.
  • the end face of the second-stage waveguide 22 for coupling with the outer waveguide is of a symmetrical structure.
  • the symmetrical structure may be a regular quadrilateral, and for example, in the embodiment shown in Fig. 2, the symmetrical structure is a rectangle.
  • the cross section of the two may be other shapes, which are not limited by the present invention.
  • the light wave is input on the left side of the structure shown in FIG. 2, and at the input end of the first-stage waveguide 21, the input width of the first-stage upper-layer waveguide 211 and the first-stage lower-layer waveguide 212 are The input width is the same, which is the first preset width W; at the output end of the first-stage waveguide 21, the output width (second preset width W-We) of the first-stage upper-layer waveguide 211 is smaller than that of the first-stage lower-layer waveguide 212 Output width (first preset width W).
  • the input width of the second-stage upper-layer waveguide 221 is the same as the output width of the first-stage upper-layer waveguide 211, and both are the second predetermined width W-We, and the second-stage lower-layer waveguide
  • the input width of 222 is the same as the output width of the first stage lower layer waveguide 212, and is the first predetermined width W; at the output end of the second stage waveguide 22, the output width of the second stage upper layer waveguide 221 and the second stage lower layer waveguide
  • the output width of 222 is the same, and the output width of the second-stage upper layer waveguide 221 is the same as the input width of the second-stage upper layer waveguide 221.
  • the waveguide is a gradation structure, and the entire gradation portion can be regarded as a superposition of an infinite number of asymmetric layers.
  • the polarization direction is gradually changed as the waveguide structure changes.
  • parameters such as We, Lcl and Lc2
  • the light wave can be deflected by 90 degrees.
  • parameters such as We, Lcl and Lc2 are scanned in their respective preset ranges to obtain the respective values.
  • PCE and loss when each parameter takes a certain value, the PCE is the highest, and the loss is small. At this time, the value of each parameter is the size of the designed polarization rotator.
  • the polarization rotator of the embodiment of the present invention can be obtained by any of the following techniques: electron beam etching, plasma etching, or photolithography. Alternatively, other techniques may be used, which are not limited by the present invention.
  • the formation of the polarization rotator provided by the embodiment of the present invention is illustrated by a specific design process by taking photolithography as an example.
  • FIG. 3 is a top plan view of a second embodiment of a polarization rotator of the present invention.
  • Figure 4 is a cross-sectional view showing the cascade of the second embodiment of the polarization rotator of the present invention.
  • the waveguide is divided into two layers, the thickness of which is He and H-He, respectively, where H represents the thickness of the waveguide, and He represents the thickness of the upper waveguide, that is, the etching depth.
  • the original waveguide is a silicon material having a length of Lcl+Lc2, a width of W, and a thickness of H, wherein the top view of the original waveguide is a broken line frame of the outermost portion in FIG.
  • the upper waveguide is etched on the original waveguide, and the etching depth is He, and the black region in FIG. 3 is obtained, which is equivalent to cutting a pattern of a right-angled trapezoid on the original waveguide, and the upper base of the right-angled trapezoid is Lc2, the right angle
  • the lower base of the trapezoid is a long side of the original waveguide, and the length is Lcl+Lc2.
  • the waist of the right-angled trapezoid is a short-side part of the original waveguide, and the length is We, and the thickness of the right-angled trapezoid is He.
  • the lower layer waveguide is etched to an etching depth of H-He, and the gray area in FIG. 3 is obtained, which is equivalent to cutting off a top view of the structure after the previous operation, which is a right angle triangle.
  • the right-angled side of the triangle is Lc2
  • the other right-angled side of the right-angled triangle is the same as the waist of the right-angled trapezoid, and the right-angled triangle has a thickness of H-He.
  • the outer surface of the etched structure is covered with a layer of silicon dioxide to form an outer layer structure of the polarization rotator.
  • the bottom of the original waveguide includes a base structure, and the material of the base structure may be silicon dioxide. Thereby completing the entire structure.
  • the polarization rotator comprises a three-layer structure, which is a base structure, an intermediate layer structure and an outer layer structure coated on the outer surface of the intermediate layer structure; wherein the material of the base structure is silicon dioxide, and the material of the intermediate layer structure is silicon The material of the outer layer structure is silicon dioxide.
  • the material structure of the polarization rotator provided by the embodiment of the present invention is as shown in FIG. 4, wherein the white portion 42 is silicon (Si) and the dark portion (portions of icons 41 and 43) are all silicon dioxide (Si0 2 ). That is, the silicon structure is first formed by etching, and then the silicon dioxide layer (the dark portion 43 above the dotted line) is covered, and the silicon layer also has a certain thickness of silicon dioxide (the dark portion 41 below the dotted line). Generally, a silicon layer (white portion 42) is applied over the silicon dioxide layer (dark portion 41 below the dashed line), a silicon waveguide structure is formed by etching, and then a layer of two is applied to the structure. Silicon oxide (dark portion 43 above the dashed line).
  • the non-etched portion may be covered by a mask to avoid etching of the non-etched portion to ensure etching accuracy.
  • FIG. 5 is a schematic view showing the three-dimensional structure of the third embodiment of the polarization rotator of the present invention. Also refer to Figure 2 and Fig. 5, wherein the respective dimensions of the polarization rotator are as shown in Table 1. Table 1 It should also be noted that FIG. 6 is a diagram showing an example of a three-dimensional structure based on an asymmetrical cross section. In the structure shown in FIG. 6, the input waveguide, the polarization rotator and the output waveguide are included.
  • the polarization rotator of this technology is generally small in size, and since the mixing modes of the excitation of different wavelengths of the light source into the asymmetric cross-section waveguide are different, the transmission constant and the half-beat length of the mode are also different, so the bandwidth is small; In addition, due to the dependence of the mode field on the cross-sectional size, the device performance is sensitive to the length and width of the slot, resulting in a corresponding tolerance. The PCE and other parameters of the actual device often have a large gap with the simulation results.
  • the polarization rotator structure provided by the embodiments of the present invention has reciprocity.
  • the polarization conversion efficiency is still good after the input and output are interchanged.
  • the polarization conversion efficiency of the polarization rotator in different cases is shown in Table 3.
  • Embodiments of the present invention provide a polarization rotator that provides a good solution to the polarization sensitivity of silicon-based photonic devices and provides a good reference for polarization control of other high refractive index materials.
  • the PR combines various factors such as PCE, loss, bandwidth, and tolerance to achieve a high PCE, low loss, wide bandwidth, and large tolerance polarization rotator; the input mode field is gradually rotated by a two-stage cascaded tapered waveguide structure. For the mode that is perpendicular to it.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种偏振旋转器(20),包括第一级波导(21)和第二级波导(22)。第二级波导(22)与第一级波导(21)级联。第一级波导(21)和第二级波导(22)的厚度相同。第一级波导(21)包括第一级上层波导(211)和第一级下层波导(212)。沿第一级波导(21)到第二级波导(22)的方向,第一级上层波导(211)的宽度由第一预设宽度(W)逐渐变窄至第二预设宽度(W-We),第一级下层波导(212)的宽度保持不变。第二级波导(22)包括第二级上层波导(221)和第二级下层波导(222)。第二级上层波导(221)的厚度与第一级上层波导(211)的厚度相同,沿第一级波导(21)到第二级波导(22)的方向,第二级下层波导(221)的宽度由第一预设宽度(W)逐渐变窄至第二预设宽度(W-We),第二级上层波导(221)的宽度保持不变。该偏振旋转器(20)的结构易于加工实现。

Description

一种偏振旋转器
技术领域
本发明实施例涉及集成光学技术, 尤其涉及一种偏振旋转器。 背景技术
随着硅基光子学的发展, 基于绝缘体上硅 (Silicon on Insulator, 简称:
SOI) 的光器件得到大量研究。 然而, 由于 SOI 具有较大的结构双折射, 造 成基于 SOI的光器件具有较大的偏振相关性、 偏振模色散和偏振相关损耗等 问题。
为避免上述问题, 引入偏振多样性系统, 通过对光偏振态的调节, 使基 于 SOI 的光器件对各种偏振光都具有较好的性能。 其中, 偏振旋转器 (Polarization Rotator, 简称: PR) , 由于其结构简单和成本低廉, 成为偏振 多样性系统中的重要器件。
在现有技术中, PR采用如图 1所示的传统模式演变结构。具体参阅图 1, 其中, x、 y和 z相互垂直, 分别代表该三维结构的三个方向, 该三维结构在 波导输入端横截面(宽度 *厚度 =200nm*400nm)和波导输出端横截面(宽度 * 厚度 =400nm*200nm)采用对称型波导, 将波导分为两层, 通过将两层设计成 反向锥形结构 (一层逐渐变窄, 另一层逐渐展宽) , 使波导扭曲, 从而使入 射光的偏振面逐渐旋转, 最终在输出波导处实现 90° 的偏振旋转。 然而, 该 结构的工艺复杂, 不利于加工设计。 发明内容
本发明实施例提供一种偏振旋转器, 该偏振旋转器工艺简单, 易于加工 实现。 第一方面, 本发明实施例提供一种偏振旋转器, 包括: 第一级波导和与 所述第一级波导级联的第二级波导, 其中,
所述第一级波导和所述第二级波导的厚度相同;
所述第一级波导包括第一级上层波导和第一级下层波导, 沿所述第一级 波导到所述第二级波导的方向, 所述第一级上层波导的宽度由第一预设宽度 逐渐变窄至第二预设宽度, 所述第一级下层波导的宽度保持不变;
所述第二级波导包括第二级上层波导和第二级下层波导, 所述第二级上 层波导的厚度与所述第一级上层波导的厚度相同, 沿所述第一级波导到所述 第二级波导的方向, 所述第二级下层波导的宽度由所述第一预设宽度逐渐变 窄至所述第二预设宽度, 所述第二级上层波导的宽度保持不变。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述第一级波 导用于与外部波导耦合的端面为对称型结构, 所述第二级波导用于与外部波 导耦合的端面为对称型结构。
结合第一方面或第一方面的第一种可能的实现方式, 在第一方面的第二 种可能的实现方式中, 沿所述第一级波导到所述第二级波导的方向, 所述第 一级下层波导的宽度保持所述第一预设宽度不变。
结合第一方面的第二种可能的实现方式, 在第一方面的第三种可能的实 现方式中, 沿所述第一级波导到所述第二级波导的方向, 所述第二级上层波 导的宽度保持所述第二预设宽度不变。
结合第一方面、第一方面的第一种至第三种可能的实现方式中任意一种, 在第一方面的第四种可能的实现方式中,所述偏振旋转器通过采用以下刻蚀 技术中任一种或多种获得:
电子束刻蚀、 等离子体刻蚀或者光刻。
结合第一方面、第一方面的第一种至第四种可能的实现方式中任意一种, 在第一方面的第五种可能的实现方式中, 所述偏振旋转器包括三层结构, 分 别为基底结构, 中间层结构和包覆在所述中间层结构外表面的外层结构; 其中,所述基底结构的材料为二氧化硅,所述中间层结构的材料为硅, 所述外层结构的材料为二氧化硅。
本发明实施例在保持了波导为渐变结构的同时, 沿偏振旋转器的第一级 波导到第二级波导的方向, 第一级上层波导和第二级下层波导的宽度均由第 一预设宽度逐渐变窄至第二预设宽度, 消除了现有 PR 中的尖角结构, 从而 大大降低了工艺难度, 易于加工实现; 且偏振旋转器的厚度固定, 利于偏振 旋转器与偏振多样性系统中器件的集成。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中偏振旋转器的三维结构示意图;
图 2为本发明偏振旋转器实施例一的三维结构示意图;
图 3为本发明偏振旋转器实施例二的俯视图;
图 4为本发明偏振旋转器实施例二的级联处的截面图;
图 5为本发明偏振旋转器实施例三的三维结构示意图;
图 6为基于不对称截面的三维结构示例图;
图 7为传统模式演变结构在 C波段不同波长下的损耗示例图;
图 8为本发明偏振旋转器实施例三在 C波段不同波长下的损耗示例图; 图 9为不对称截面结构在 C波段不同波长下的损耗示例图;
图 10为不对称截面结构的刻蚀深度容差示例图;
图 1 1为不对称截面结构的宽度容差示例图;
图 12为本发明偏振旋转器实施例三的刻蚀深度容差示例图; 图 13为本发明偏振旋转器实施例三的宽度容差示例图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、完整地描述, 显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
图 2为本发明偏振旋转器实施例一的三维结构示意图。 本发明实施例提 供一种偏振旋转器, 该偏振旋转器用于实现光波的偏振旋转, 例如, 在该偏 振旋转器的输入端输入横电波(Transverse Electric Wave, 简称: TE ) , 则在 该偏振旋转器的输出端输出横磁波(Transverse Magnetic Wave , 简称: TM) ·' 或,在该偏振旋转器的输入端输入 TM,则在该偏振旋转器的输出端输出 TE。 如图 2所示, 偏振旋转器 20包括: 第一级波导 21和与第一级波导 21级 联的第二级波导 22, 其中, 第一级波导 21和第二级波导 22的厚度 H相同; 第一级波导 21包括第一级上层波导 211和第一级下层波导 212, 沿第一级波 导 21到第二级波导 22的方向 (如图 2中箭头所指方向) , 第一级上层波导 211的宽度由第一预设宽度 W逐渐变窄至第二预设宽度 W-We, 第一级下层 波导 212的宽度保持不变;第二级波导 22包括第二级上层波导 221和第二级 下层波导 222, 第二级上层波导 221 的厚度与第一级上层波导 211 的厚度相 同, 沿第一级波导 21到第二级波导 22的方向, 第二级下层波导 222的宽度 由第一预设宽度 W逐渐变窄至第二预设宽度 W- We, 第二级上层波导 221的 宽度保持不变。
该实施例中, 由图 2可见, 偏振旋转器 20的厚度 H在整个结构中保持 不变, 为一恒定值。 第一级波导 21和第二级波导 22级联设置, 二者为一体 化结构。 例如, 两级波导可以为一整体结构的两部分, 为便于说明分为第一 级和第二级。 以下对图 2中各符号具体含义进行说明。
其中, 在第一级波导 21的长度 Lcl范围内, 沿第一级波导 21到第二级 波导 22的方向, 第一级下层波导 212的宽度和厚度均保持不变, 其中, 第一 级下层波导 212 的宽度为第一预设宽度 W, 第一级下层波导 212 的厚度为 H-He; 第一级上层波导 211的厚度保持不变, 为 He, 但第一级上层波导 211 的宽度逐渐变窄至第二预设宽度 W-We。
在第二级波导 22的长度 Lc2范围内, 沿第一级波导 21到第二级波导 22 的方向, 第二级上层波导 212的宽度和厚度均保持不变, 其中, 第二级上层 波导 212的宽度为第二预设宽度 W-We, 第二级上层波导 212的厚度为 He; 第二级下层波导 222的厚度保持不变, 为 H-He, 但第二级下层波导 222的宽 度逐渐变窄至第二预设宽度 W-We。
另外, 在第一级波导 21和第二级波导 22中, 波导内部的上下层波导之 间无缝连接, 为一完整材质的不同部分, 仅为便于描述进行区分。
本发明实施例在保持了波导为渐变结构的同时, 沿第一级波导到第二级 波导的方向, 第一级上层波导和第二级下层波导的宽度均由第一预设宽度逐 渐变窄至第二预设宽度, 消除了现有 PR 中的尖角结构, 从而大大降低了工 艺难度, 易于加工实现; 且偏振旋转器的厚度固定, 利于偏振旋转器与偏振 多样性系统中器件的集成。
补充说明的是, 偏振旋转器的带宽是根据不同波长下偏振旋转器的偏振 转换效率 (Polarization Conversion Efficiency, 简称: PCE) 确定的。 例如, 偏振旋转器的带宽可以以 PCE大于某个预设值(如 95%) 的波长范围大小来 在上述实施例中,第一级波导 21用于与外部波导耦合的端面为对称型结 构, 第二级波导 22用于与外部波导耦合的端面为对称型结构。 举例来说, 该 对称型结构可以为规则四边形, 又例如, 在图 2所示实施例中, 该对称型结 构为矩形。 可选地, 二者的横截面还可以为其它形状, 本发明不对其进行限 制。
需要说明的是, 上述实施例中, 光波在如图 2所示结构的左侧输入, 在 第一级波导 21的输入端,第一级上层波导 211的输入宽度与第一级下层波导 212的输入宽度相同, 均为第一预设宽度 W; 在第一级波导 21的输出端, 第 一级上层波导 211 的输出宽度 (第二预设宽度 W-We) 小于第一级下层波导 212的输出宽度 (第一预设宽度 W) 。
进一歩地, 在第二级波导 22输入端, 第二级上层波导 221的输入宽度与第 一级上层波导 211的输出宽度相同, 均为第二预设宽度 W-We, 第二级下层波 导 222的输入宽度与第一级下层波导 212的输出宽度相同, 均为第一预设宽度 W; 在第二级波导 22的输出端, 第二级上层波导 221的输出宽度与第二级下层 波导 222的输出宽度相同, 且第二级上层波导 221的输出宽度与第二级上层波 导 221的输入宽度相同。
在上述实施例中, 波导为渐变结构, 可以将整个渐变部分看做无数个不 对称层的叠加。 当光波输入该波导后, 随着波导结构的改变逐渐改变偏振方 向。 实际应用时, 通过合理设计 We、 Lcl和 Lc2等参数, 可以使得光波偏转 90 度, 例如, 仿真时对 We、 Lcl 和 Lc2 等参数在各自的预设范围内分别进行 扫描, 获得各个取值下的 PCE和损耗, 当各参数分别取某个值时, PCE最高, 而损耗较小, 此时各参数取值即为所设计的偏振旋转器的尺寸。
具体地, 本发明实施例的偏振旋转器可以采用以下任一技术获得: 电子 束刻蚀、 等离子体刻蚀或者光刻。 可选地, 还可以采用其他技术获得, 本发 明不对其进行限制。 以下以光刻为例, 通过具体的设计过程说明本发明实施例提供的偏振旋 转器的形成。
图 3为本发明偏振旋转器实施例二的俯视图。 图 4为本发明偏振旋转器实 施例二的级联处的截面图。 如图 3和图 4所示, 波导分为两层, 其厚度分别为 He与 H-He, 其中, H代表波导的厚度, He代表上层波导厚度, 即刻蚀深度。
刻蚀之前, 原波导为一长度为 Lcl+Lc2, 宽度为 W, 厚度为 H的硅材料, 其中, 原波导的俯视图为图 3中最外部分的虚线框。 首先, 在上述原波导上刻 蚀上层波导, 刻蚀深度为 He, 得到图 3中黑色区域, 相当于在原波导上切除一 俯视图为直角梯形的图形, 该直角梯形的上底为 Lc2, 该直角梯形的下底为原 波导的一长边, 长度为 Lcl+Lc2, 该直角梯形的腰为原波导的一短边的部分, 长度为 We, 该直角梯形的厚度为 He。 其次, 在上一歩的基础上, 刻蚀下层波 导, 刻蚀深度为 H-He, 得到图 3中灰色区域, 相当于在上一歩操作之后的结 构上切除一俯视图为直角三角形的图形, 该直角三角形的一直角边为 Lc2, 该 直角三角形的另一直角边与上述直角梯形的腰相同, 该直角三角形的厚度为 H-He。 最后, 在上述刻蚀的结构外表面覆盖一层二氧化硅, 形成该偏振旋转 器的外层结构, 另外, 上述原波导的底部包括一基底结构, 该基底结构的材 料可以为二氧化硅, 从而完成整个结构。
这样, 偏振旋转器包括三层结构, 分别为基底结构, 中间层结构和包覆 在中间层结构外表面的外层结构; 其中, 基底结构的材料为二氧化硅, 中间 层结构的材料为硅, 外层结构的材料为二氧化硅。
本发明实施例提供的偏振旋转器的材料结构如图 4所示, 其中, 白色部分 42为硅 (Si ) , 深色部分 (图标为 41和 43的部分) 均为二氧化硅 (Si02) , 即先通过刻蚀形成硅结构, 然后覆盖二氧化硅层(虚线以上的深色部分 43 ) , 而硅层下面也有一定厚度的二氧化硅(虚线以下的深色部分 41 ) 。 一般来说, 硅层(白色部分 42)是在二氧化硅层(虚线以下的深色部分 41 )上面涂覆的, 通过刻蚀形成硅波导结构, 然后再在这个结构上涂覆一层二氧化硅 (虚线以 上的深色部分 43 ) 。
上述刻蚀过程中, 可以采用掩模板覆盖非刻蚀部分, 以避免非刻蚀部分 被刻蚀, 保证刻蚀准确度。
图 5为本发明偏振旋转器实施例三的三维结构示意图。 同时参考图 2和 图 5, 其中, 偏振旋转器的各个尺寸如表 1所示。 表 1
Figure imgf000009_0001
还需说明的是, 图 6为基于不对称截面的三维结构示例图。 在图 6所示结 构中, 包括输入波导、 偏振旋转器和输出波导三部分。 该技术下的偏振旋转 器一般尺寸较小, 且由于不同波长的光源打入截面不对称的波导后激发的混 合模式不同, 导致模式的传输常数和半拍长也不同, 因此其带宽很小; 另外, 由于模场对截面尺寸的依赖性, 器件性能对于槽的长宽敏感, 导致相应容差 较小, 实际器件的 PCE以及其他参数往往和仿真结果有较大差距。
将图 5所示的本发明实施例中的偏振旋转器的 PCE、 损耗和尺寸等指标 与如图 1所示的传统模式演变结构及图 6所示的不对称截面结构对比, 对比 结果如表 2所示。 表 2
另外, 对比不对称截面结构和本发明偏振旋转器结构的容差, 如图 10-图 13所示, 可以明显看出, 本发明偏振旋转器结构的刻蚀深度和宽度的容差得 到了很大程度的提高, 这为实际工艺提供了很大的便利性。
此外, 本发明实施例所提供的偏振旋转器结构具有互易性。 即将输入端 和输出端互换后依然具有良好的偏振转换效率。 该偏振旋转器在不同情况下 的偏振转换效率如表 3所示。
Figure imgf000010_0001
Figure imgf000010_0002
本发明实施例提供一种偏振旋转器, 对于硅基光子器件的偏振敏感性这 个问题提供了一个良好的解决方案, 并为其他高折射率差材料的偏振控制提 供了较好的借鉴。 该 PR综合考虑 PCE、 损耗、 带宽和容差等各个因素, 实现 高 PCE、 低损耗、 宽带宽和大容差的偏振旋转器; 通过两级级联的渐变波导 结构, 使得输入模场逐渐旋转为与其垂直的模式。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种偏振旋转器, 其特征在于, 所述偏振旋转器包括: 第一级波导和 与所述第一级波导级联的第二级波导, 其中,
所述第一级波导和所述第二级波导的厚度相同;
所述第一级波导包括第一级上层波导和第一级下层波导, 沿所述第一级 波导到所述第二级波导的方向, 所述第一级上层波导的宽度由第一预设宽度 逐渐变窄至第二预设宽度, 所述第一级下层波导的宽度保持不变;
所述第二级波导包括第二级上层波导和第二级下层波导, 所述第二级上 层波导的厚度与所述第一级上层波导的厚度相同, 沿所述第一级波导到所述 第二级波导的方向, 所述第二级下层波导的宽度由所述第一预设宽度逐渐变 窄至所述第二预设宽度, 所述第二级上层波导的宽度保持不变。
2、 根据权利要求 1所述的偏振旋转器, 其特征在于, 所述第一级波导用 于与外部波导耦合的端面为对称型结构, 所述第二级波导用于与外部波导耦 合的端面为对称型结构。
3、 根据权利要求 1或 2所述的偏振旋转器, 其特征在于, 沿所述第一级 波导到所述第二级波导的方向, 所述第一级下层波导的宽度保持所述第一预 设宽度不变。
4、 根据权利要求 3所述的偏振旋转器, 其特征在于, 沿所述第一级波导 到所述第二级波导的方向, 所述第二级上层波导的宽度保持所述第二预设宽 度不变。
5、 根据权利要求 1-4任一项所述的偏振旋转器, 其特征在于, 所述偏振 旋转器通过采用以下刻蚀技术中任一种或多种获得:
电子束刻蚀、 等离子体刻蚀或者光刻。
6、 根据权利要求 1-5任一项所述的偏振旋转器, 其特征在于, 所述偏振 旋转器包括三层结构, 分别为基底结构, 中间层结构和包覆在所述中间层 结构外表面的外层结构;
其中,所述基底结构的材料为二氧化硅,所述中间层结构的材料为硅, 所述外层结构的材料为二氧化硅。
PCT/CN2014/077037 2014-05-08 2014-05-08 一种偏振旋转器 WO2015168905A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/077037 WO2015168905A1 (zh) 2014-05-08 2014-05-08 一种偏振旋转器
CN201480078711.9A CN106461870B (zh) 2014-05-08 2014-05-08 一种偏振旋转器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077037 WO2015168905A1 (zh) 2014-05-08 2014-05-08 一种偏振旋转器

Publications (1)

Publication Number Publication Date
WO2015168905A1 true WO2015168905A1 (zh) 2015-11-12

Family

ID=54391991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077037 WO2015168905A1 (zh) 2014-05-08 2014-05-08 一种偏振旋转器

Country Status (2)

Country Link
CN (1) CN106461870B (zh)
WO (1) WO2015168905A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19505996A1 (de) * 1995-02-21 1996-08-22 Konrad Mertens Vorrichtung zur Polarisationskonversion in passiven integriert optischen Streifen-, Rippen-, steifenbelasteten Film-Wellenleitern, o.ä. aus isotropen Materialien
WO1997011396A1 (en) * 1995-09-20 1997-03-27 Philips Electronics N.V. Integrated optical circuit comprising a polarization convertor
CN1708718A (zh) * 2002-10-30 2005-12-14 麻省理工学院 基于空间结构螺旋特性的集成光学偏振转换器
WO2008066159A1 (en) * 2006-12-01 2008-06-05 Nec Corporation Polarization rotator and method for manufacturing the same
CN101320113A (zh) * 2008-07-15 2008-12-10 浙江大学 一种波导型偏振模式转换器
CN103336330A (zh) * 2013-07-05 2013-10-02 中国科学院半导体研究所 一种基于非对称垂直狭缝波导的偏振旋转器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7792403B1 (en) * 2005-09-08 2010-09-07 Infinera Corporation Adiabatic polarization converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19505996A1 (de) * 1995-02-21 1996-08-22 Konrad Mertens Vorrichtung zur Polarisationskonversion in passiven integriert optischen Streifen-, Rippen-, steifenbelasteten Film-Wellenleitern, o.ä. aus isotropen Materialien
WO1997011396A1 (en) * 1995-09-20 1997-03-27 Philips Electronics N.V. Integrated optical circuit comprising a polarization convertor
CN1708718A (zh) * 2002-10-30 2005-12-14 麻省理工学院 基于空间结构螺旋特性的集成光学偏振转换器
WO2008066159A1 (en) * 2006-12-01 2008-06-05 Nec Corporation Polarization rotator and method for manufacturing the same
CN101320113A (zh) * 2008-07-15 2008-12-10 浙江大学 一种波导型偏振模式转换器
CN103336330A (zh) * 2013-07-05 2013-10-02 中国科学院半导体研究所 一种基于非对称垂直狭缝波导的偏振旋转器

Also Published As

Publication number Publication date
CN106461870B (zh) 2019-08-20
CN106461870A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
TWI448752B (zh) 平面偏光旋轉器
WO2015096070A1 (zh) 波导偏振分离和偏振转换器
US9989702B2 (en) Polarization rotator for silicon photonics
CN109407229B (zh) 一种端面耦合器
JP2017129834A (ja) 光導波路素子およびこれを用いた光変調器
JP6369147B2 (ja) 光導波路素子およびこれを用いた光変調器
JP6270936B1 (ja) 光導波路素子
CN112630885B (zh) 一种级联弯曲波导型铌酸锂偏振旋转器
Xu et al. Proposal for compact polarization splitter using asymmetrical three-guide directional coupler
JP2015169766A (ja) 偏波回転回路
CN110780381A (zh) 非对称三波导结构的偏振分束器及其制备方法
CN113740960B (zh) 一种偏振分束器
CN112526675B (zh) 一种基于模式混合原理的w型硅基槽式片上偏振旋转器
JP6338404B2 (ja) 導波路型磁気光学デバイス及びその製造方法
JP6440856B2 (ja) 導波路偏光回転子およびその構成方法
CN117631146A (zh) 一种基于薄膜铌酸锂波导超模演化的偏振转换器
JP6077887B2 (ja) 光導波路モード変換器
WO2016179869A1 (zh) 一种锥形波导及硅基芯片
WO2015168905A1 (zh) 一种偏振旋转器
CN216083169U (zh) 一种偏振分束器
CN106990478B (zh) 一种光偏振旋转器
TWI810493B (zh) 介電光電相移器
JP4415038B2 (ja) 偏波回転素子
Azzam et al. Compact polarization rotator based on SOI platform
WO2018150899A1 (ja) 光導波路素子および光導波路素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891539

Country of ref document: EP

Kind code of ref document: A1