WO2015167055A1 - 무선 전력 중계 장치 및 무선 전력 전송 시스템 - Google Patents

무선 전력 중계 장치 및 무선 전력 전송 시스템 Download PDF

Info

Publication number
WO2015167055A1
WO2015167055A1 PCT/KR2014/003981 KR2014003981W WO2015167055A1 WO 2015167055 A1 WO2015167055 A1 WO 2015167055A1 KR 2014003981 W KR2014003981 W KR 2014003981W WO 2015167055 A1 WO2015167055 A1 WO 2015167055A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
coils
relay coil
coil
wireless power
Prior art date
Application number
PCT/KR2014/003981
Other languages
English (en)
French (fr)
Inventor
류성한
김영선
박운규
Original Assignee
엘에스전선 주식회사
류성한
김영선
박운규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사, 류성한, 김영선, 박운규 filed Critical 엘에스전선 주식회사
Priority to US15/308,180 priority Critical patent/US10158252B2/en
Priority to PCT/KR2014/003981 priority patent/WO2015167055A1/ko
Priority to CN201480078445.XA priority patent/CN106464019B/zh
Publication of WO2015167055A1 publication Critical patent/WO2015167055A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves

Definitions

  • One embodiment of the present invention relates to a wireless power relay apparatus and a wireless power transmission system using the same.
  • Wireless power transfer refers to a technology for supplying power to home appliances or electric vehicles wirelessly instead of wired power lines, which can be charged wirelessly without using a power cable to connect a device that requires power to a power outlet. Therefore, related research is being actively conducted.
  • the wireless power transmission technology is largely classified into magnetic induction, magnetic resonance and microwave.
  • the microwave method is a technology for transmitting power by radiating microwaves such as microwaves through an antenna, and long distance wireless power transmission is possible, but safety issues due to electromagnetic waves should be considered.
  • Magnetic induction is a technique using magnetic induction coupling between adjacent coils. The distance between two transmitting / receiving coils is within several cm, and the transmission efficiency is largely determined by the arrangement condition of the two coils.
  • the magnetic resonance method is a technology in which non-radiative magnetic field energy is transmitted between two resonators separated from each other by resonant coupling, and wireless power transmission is possible at a distance of 1 to 2 m between transmission and reception coils. In comparison, the two coils are more flexible in alignment, and the wireless charging range can be extended by using a relay coil.
  • the invention disclosed in Korean Patent Laid-Open No. 2012-0040779 relates to a wireless power transmission device for transmitting and receiving a power signal in a magnetic resonance method, comprising a base coil and a plurality of relay coils, the number of turns of the relay coil Many configurations are disclosed relative to the number of turns of the base coil.
  • Korean Patent Laid-Open Publication No. 2012-0040779 is a structure using a plurality of identical relay coils, and does not recognize a problem and a solution thereof in which power is not transmitted or drops rapidly in an arbitrary position on the relay coil system. .
  • Korean Patent No. 1118471 relates to wireless power transmission of a magnetic induction method, and refers to the configuration of a transmission / reception coil composed of two kinds of conductive lines.
  • the transmission and reception coil of the invention of Korean Patent No. 1118471 is not a relay coil, and does not recognize a problem in which power is not transmitted or a sudden drop in efficiency at any position on the relay coil system and a solution thereof.
  • the invention of Japanese Patent Application Laid-Open No. 2012-075304 relates to a relay element of a self-resonant wireless power transmission, and discloses a structure in which a plurality of relay coils are arranged in a plane direction, and its main purpose is to improve relay efficiency. .
  • the main object of the present invention is that of the plurality of relay coils than other relay coils
  • a wireless power repeater and a wireless power transmission system capable of preventing a sudden drop in power transmission efficiency in a transmission efficiency reduction section by placing a relay coil having a higher transmission efficiency than other relay coils in a transmission efficiency reduction section where transmission efficiency is lower.
  • the wireless power relay device for relaying a magnetic field generated by the wireless power transmission device
  • the wireless power relay device is a plurality of relay coils to collect and relay the magnetic field
  • the transmission efficiency of the second relay coil wherein the transmission efficiency of the first relay coil of the relay coils spaced apart from the wireless power transmitter is disposed farther than the first relay coil adjacent to the first relay coil.
  • at least one relay coil disposed in the transmission efficiency reduction interval among the plurality of relay coils may be configured to provide the magnetic field differently from the phase of the magnetic field to which another adjacent relay coil is relayed. You can relay.
  • the at least one relay coil may be disposed adjacent to the other relay coil.
  • the at least one relay coil may have a larger coupling coefficient than the other relay coil.
  • the at least one relay coil may be composed of a plurality of coils.
  • the at least one relay coil is composed of a plurality of coils having different inner diameters, and an inner coil having a smaller inner diameter than another coil among the plurality of coils having different inner diameters is disposed inside the outer coil having a larger inner diameter than the other coils. Can be deployed.
  • the transmission efficiency reduction interval is a relay coil disposed immediately before the relay coil disposed farthest from the wireless power transmitter.
  • the at least one relay coil may be located in the transmission efficiency reduction section.
  • the at least one relay coil may have a larger coupling coefficient than the other relay coil.
  • the at least one relay coil may be composed of a plurality of coils.
  • the at least one relay coil is composed of a plurality of coils having different inner diameters, and an inner coil having a smaller inner diameter than another coil among the plurality of coils having different inner diameters is disposed inside the outer coil having a larger inner diameter than the other coils. Can be arranged.
  • the transmission efficiency reduction interval is a relay coil is disposed spaced apart by an odd hop from the relay coil closest to the wireless power transmission apparatus is located
  • the at least one relay coil may be located in the transmission efficiency reduction section.
  • the at least one relay coil may have a larger coupling coefficient than the other relay coil.
  • the at least one relay coil may be composed of a plurality of coils.
  • the at least one relay coil is composed of a plurality of coils having different inner diameters, and an inner coil having a smaller inner diameter than another coil among the plurality of coils having different inner diameters is disposed inside the outer coil having a larger inner diameter than the other coils. Can be deployed.
  • Wireless power transmission system a wireless power transmission device for transmitting power through a magnetic field; And a wireless power relay device including a plurality of relay coils for capturing and relaying the magnetic fields, wherein transmission efficiency of the first relay coils spaced apart from the wireless power transmitter among the relay coils is equal to the first relay coil. At least one of the plurality of relay coils disposed in the transmission efficiency reduction interval when a transmission efficiency reduction interval that is lower than the transmission efficiency of the second relay coil disposed farther than the first relay coil adjacent to The relay coil may relay the magnetic field differently from the phase of the magnetic field relayed by another relay coil.
  • the at least one relay coil may be disposed adjacent to the other relay coil.
  • the at least one relay coil may have a larger coupling coefficient than the other relay coil.
  • the at least one relay coil may be composed of a plurality of coils.
  • the at least one relay coil is composed of a plurality of coils having different inner diameters, and an inner coil having a smaller inner diameter than another coil among the plurality of coils having different inner diameters is disposed inside the outer coil having a larger inner diameter than the other coils. Can be deployed.
  • the transmission efficiency reduction interval is a relay coil disposed immediately before the relay coil disposed farthest from the wireless power transmitter.
  • the at least one relay coil may be located in the transmission efficiency reduction section.
  • the at least one relay coil may have a larger coupling coefficient than the other relay coil.
  • the at least one relay coil may be composed of a plurality of coils.
  • the at least one relay coil is composed of a plurality of coils having different inner diameters, and an inner coil having a smaller inner diameter than another coil among the plurality of coils having different inner diameters is disposed inside the outer coil having a larger inner diameter than the other coils. Can be deployed.
  • the transmission efficiency reduction interval is a relay coil is disposed spaced apart by an odd hop from the relay coil closest to the wireless power transmission apparatus is located
  • the at least one relay coil may be located in the transmission efficiency reduction section.
  • the at least one relay coil may have a larger coupling coefficient than the other relay coil.
  • the at least one relay coil may be composed of a plurality of coils.
  • the at least one relay coil is composed of a plurality of coils having different inner diameters, and an inner coil having a smaller inner diameter than another coil among the plurality of coils having different inner diameters is disposed inside the outer coil having a larger inner diameter than the other coils. Can be deployed.
  • FIG. 1 is a simplified schematic diagram of a wireless power transfer system according to an embodiment of the present invention.
  • FIGS. 2A and 2B are diagrams illustrating an internal configuration and a configuration circuit of a relay coil in a wireless power relay device according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a wireless power relay apparatus in which a wireless power transmitter and a first relay coil unit are arranged in a line.
  • 4A and 4B illustrate an example of an internal configuration of a phase variable relay coil in a wireless power relay device according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a wireless power transmission system including a wireless power relay device arranged in one dimension.
  • FIG. 6 is a diagram illustrating a wireless power transmission system including a wireless power relay device arranged in two dimensions.
  • FIG. 7 is a diagram schematically showing a position where relay coils are arranged in a 4 ⁇ 4 arrangement.
  • one component when one component is referred to as “connected” or “connected” with another component, the one component may be directly connected or directly connected to the other component, but in particular It is to be understood that, unless there is an opposite substrate, it may be connected or connected via another component in the middle.
  • the wireless power receiver is an electric / electronic device equipped with a rechargeable battery or a device connected to an external electric / electronic device to supply charging power, and includes a mobile phone, a smart phone, a notebook computer ( It may be a mobile terminal such as a laptop computer), a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation device, or an electronic device such as a wall-mounted TV, a stand, an electronic frame, a cleaner, or the like. Can be.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • a navigation device or an electronic device such as a wall-mounted TV, a stand, an electronic frame, a cleaner, or the like.
  • FIG. 1 briefly illustrates a wireless power transfer system according to an embodiment of the present invention.
  • the wireless power transmission system of the present invention includes a wireless power transmission device 100 and a wireless power relay device 200 including one or more relay coils.
  • the wireless power repeater 200 is disposed on a path from the wireless power transmitter 100 to the wireless power receiver 300 to relay a power signal to the wireless power receiver 300 using a magnetic resonance method.
  • the wireless power transmitter 100 generates a magnetic field for power transmission, and the wireless power repeater 200 relays the magnetic field to the wireless power receiver 300 using a plurality of relay coils that are magnetically resonant with the magnetic field. .
  • the wireless power receiver 300 is coupled to the magnetic field relayed by the wireless power repeater 200 to generate output power stored or consumed therein.
  • the wireless power transmitter 100, the wireless power repeater 200, and the wireless power receiver 300 are configured in a mutual resonance relationship at a specific frequency, and when resonant frequencies between adjacent devices are the same or approximate, power transmission between the two is performed.
  • the efficiency is inversely proportional to the square of the adjacent distance.
  • the apparatus 100 for transmitting power wirelessly includes a power transmission coil 110 as a power transmission means, converts an external input power source 10 into an RF power signal of a desired frequency, and then applies the power transmission coil 110 to the power transmission coil 110 to transmit power.
  • a magnetic field is generated around the coil 110.
  • the wireless power receiver 300 includes a power receiver coil 310 as a power receiver, and a power receiver coupled to the relay coil of the power transmission coil 110 or the adjacent wireless power repeater 200 in a resonance state at a specific frequency.
  • the RF 310 receives an RF power signal from the magnetic field.
  • the received RF power signal is converted into a DC power output and used as driving power of the wireless power receiver 300, or is supplied to a battery or an external load device 400.
  • Wireless power relay device 200 is composed of one or more relay coils, each of the relay coils may be arranged at regular intervals. The diameter and the number of turns of the relay coil may be implemented to maximize the transmission efficiency of the wireless power transmission.
  • Each relay coil may be configured as a coil 210 wound with an arbitrary number of turns as shown in FIG. 2A and a capacitor 220 connected in parallel to the coil for resonance and impedance matching.
  • FIG. 2B shows an equivalent circuit including the coil 210 of FIG. 2A, its internal resistance 230, and a capacitor 220.
  • the resonant frequency at which the relay coil operates may be set by adjusting the L value of the coil 210 and the C value of the capacitor 220. For example, after measuring the L value of the coil 210 and determining the desired resonant frequency, the C value of the capacitor 220 may be adjusted to set the resonant frequency to the desired frequency.
  • the wireless power relay apparatus 200 when configured using a plurality of relay coils, a phenomenon in which charging efficiency is lowered in some relay coils may be generated due to the influence of the peripheral coils.
  • the location where the charging efficiency is lowered is called a transmission efficiency reduction section or a relay hole. In the transmission efficiency reduction section, charging may be delayed or impossible because sufficient power for charging is not transmitted to the wireless power receiver 300. .
  • the transmission efficiency reduction interval is flux in some relay coils due to the influence from the surrounding relay coils, for example, the Q value of the relay coils, the frequency of the wireless power receiver 300, or the arrangement of the peripheral relay coils. This can occur as the sum of the flux is small.
  • Table 1 shows the transmission efficiency in the wireless power relay device in which the relay coils are arranged in a line as shown in FIG. 3.
  • the wireless power repeater 20 is composed of ten relay coils (20-1, 20-2, ..., 20-10), of the wireless power repeater 20
  • the wireless power transmission apparatus 100 may be disposed at one side. That is, the relay coil 20-1 is disposed closest to the wireless power transmitter 100, and the relay coils 20 are arranged in a line from the relay coil 20-1 in a direction away from the wireless power transmitter 100. -2, ..., 20-10) can be arranged.
  • the ten relay coils 20-1, 20-2,..., 20-10 that make up the wireless power repeater 20 may all have the same number of turns, impedance, capacitance, and coupling coefficient.
  • the wireless power transmission efficiency of each of the relay coils 20-1, 20-2,..., 20-10 decreases sequentially as it is spaced apart from the wireless power transmitter 100 as shown in Table 1. Able to know.
  • the transmission efficiency (transmission efficiency 15) of the relay coil 20-9 disposed in front of the relay coil 20-10 which is disposed most apart from the wireless power transmitter 100 is transmitted from the wireless power transmitter 100. It can be seen that it is lower than the transmission efficiency (transmission efficiency 48) of the relay coil 20-10 that is spaced most apart. That is, in two relay coils adjacent to each other among the plurality of relay coils 20-1, 20-2,..., 20-10, the relay coil closer to the wireless power transmitter 100 may be replaced by the first relay coil.
  • the relay coil disposed farther from the wireless power transmitter 100 than the first relay coil may be referred to as a second relay coil, wherein two relay coils adjacent to each other may be referred to as two relay coils. It means to be arranged up and down or left and right with each other.
  • the first relay coil 20-9 which is one of the plurality of relay coils is the second relay coil 20-10 disposed adjacent to the first relay coil 20-9. Although disposed closer to the wireless power transmitter 100, it can be seen that the transmission efficiency of the first relay coil 20-9 is lower than the transmission efficiency of the second relay coil 20-10.
  • the sum of the fluxes is affected by the surrounding relay coils in the relay coils 20-9 disposed in front of the relay coils 20-10 that are arranged farthest from the wireless power transmitter 100. This is because it is rapidly decreasing.
  • an offset interference effect is caused by different phase differences of magnetic fields received from two or more relay coils in the vicinity.
  • M in means the mutual inductance between the relay coil in which the relay hole is generated and the adjacent relay coil.
  • the adjustment of the mutual inductance in the transmission efficiency reduction section may be implemented by adjusting the coupling coefficient K for the relay coil in the corresponding section.
  • a relay coil having a coupling coefficient K different from other relay coils in order to control mutual inductance in a transmission efficiency reduction period among a plurality of relay coils constituting the wireless power relay is called a phase variable relay coil. All of the relay coils other than the phase variable relay coil may have the same coupling coefficient (K).
  • the wireless power relay device is composed of a plurality of relay coils, the phase variable relay coil of the plurality of relay coils is different from the phase of the magnetic field relayed by another relay coil in the relay of the magnetic field
  • the magnetic field can be relayed.
  • the phase variable relay coil may have a larger coupling coefficient than the other relay coils so that the phase of the magnetic field relayed by the phase variable relay coil is different from the phase of the magnetic field relayed by the other relay coil.
  • phase variable relay coils 210 and 210 ' show the configuration of the phase variable relay coils 210 and 210 'having a different coupling coefficient K from the adjacent relay coils.
  • the phase variable relay coils 210 and 210 ' are smaller than the inner diameter of the outer coil on the inside in addition to the same coil 210-1 (hereinafter, the outer coil) as the other relay coils.
  • Another coil 210-2 (hereinafter, referred to as an inner coil) may be further disposed.
  • the outer coil 210-1 and the inner coil 210-2 may be implemented in separate coil shapes, or as shown in FIG. 4B, the outer coil 210-1 and the inner coil are not connected.
  • 210-2 may be implemented in a connected form.
  • the outer coil 210-1 and the inner coil 210-2 of the phase variable relay coil 210 may have different coupling coefficients K 1 and K 2 , respectively, and thus, the total coupling of the phase variable relay coil 210.
  • the coefficient net K has a value different from the coupling coefficient of the other relay coil (first relay coil portion).
  • the phase-variable relay coil 210 has been described as having a dual coil structure, but is not necessarily a dual coil, it may be configured in the form of a multi-coil in which three or more coils having different inner diameters overlap.
  • the transmission efficiency reduction section in which the phase variable relay coil 210 is disposed may be generated at different positions according to the arrangement type of the relay coil of the wireless power repeater 200.
  • the wireless power repeater 200 includes a total of N + 1 relay coils 200-1 to 200- (n + 1) in order from the section 200-1 adjacent to the wireless power transmitter 100.
  • N + 1 relay coils 200-1 to 200- (n + 1) Is a (N + 1, 1) relay system, in which case the relay coil 200- in front of the relay coil 200- (n + 1) disposed farthest from the wireless power transmitter 100.
  • n a relay hole is generated. This is because the flux sum due to the reflected wave from the relay coil 200- (n + 1) and the magnetic field from the relay coil 200- (n-1) is drastically reduced.
  • Table 2 shows the transmission efficiency in the wireless power relay device including the first relay coil unit and the phase variable relay coil.
  • the wireless power relay device is composed of ten relay coils arranged in a line, and the relay coils include nine relay coils 200-1, 200-2, 200-3, ..., 200-. 8, 200-10) and one phase variable relay coil 200-9.
  • the phase variable relay coil 200-9 has a different coupling coefficient from other relay coils 200-1, 200-2, 200-3,..., 200-8, 200-10. It may be disposed at the front end of the relay coil 200-10 disposed farthest from the wireless power transmitter 100, which is a section corresponding to the relay hole. As shown in Table 2, it can be seen that the power transmission efficiency does not decrease in the phase-variable relay coil 210-9 disposed in the section corresponding to the relay hole.
  • the wireless power repeater 200 may be a (M, N) relay system arranged in a two-dimensional square or rectangular structure from an interval 200-11 adjacent to the wireless power transmitter 100. .
  • the structure is illustrated as (4, 4).
  • each of the relay coils arranged in two dimensions may be magnetically coupled with at least two relay coils in the vicinity, and thus, the relay holes may be generated in more sections than in the case where the relay coils are arranged in one dimension.
  • the transmission efficiency reduction section in which the relay hole is generated may be a relay coil having an odd number of hops spaced forward, backward, left, and right on the basis of the relay coil 200-11 that is closest to the wireless power transmitter 100.
  • the relay coils 210-12 and 210-21 having the number of hops spaced apart from the relay coil 200-11 and the relay coils 210-14 having the number of hops spaced 3 are separated.
  • 210-23, 210-32, and 210-41, and the positions where the relay coils 210-34 and 210-43 having 5 hops spaced apart from each other are very likely to be a transmission efficiency reduction interval. Therefore, by arranging the phase variable relay coil 210 in the above-mentioned transmission efficiency reduction section, it is possible to suppress the occurrence of the relay hole in the wireless power relay coil 200.
  • Table 3 shows the transmission efficiency of the wireless power relay device in which the relay coils are arranged in a 4 ⁇ 4 array
  • FIG. 7 is a diagram schematically illustrating a position where the relay coils are arranged in a 4 ⁇ 4 array. That is, referring to Table 3 and FIG. 7, the relay coil position 11 is the position closest to the wireless power transmitter 100, and the relay coil positions 12, 13, and 14 are aligned in the relay coil position 11. Are arranged in order. Further, each of the relay coil positions 21, 22, 23, 24 is arranged on the relay coil positions 11, 12, 13, 14, and each of the relay coil positions 31, 32, 33, 34 is a relay coil position. (21, 22, 23, 24), each of the relay coil positions 41, 42, 43, 44 is arranged on the relay coil positions 31, 32, 33, 34.
  • the transmission efficiency 1 is the transmission efficiency at each relay coil 200 when the relay coil 200 is disposed at each of the relay coil positions 11, 12,..., 43, 44.
  • Efficiency 2 is shown in Figure 6, when the phase variable relay coil 210 is disposed in the transmission efficiency reduction interval in which the relay hole is generated and other relay coil 200 is disposed in other positions, each of the other relay Transmission efficiency at coil 200 and phase variable relay coil 210.
  • the wireless power transmitter 100 It can be seen that a transmission hole is reduced by generating a relay hole in the relay coil disposed by an odd hop spaced apart from the nearest relay coil.
  • the wireless power relay device of the present invention can prevent the sudden drop in power transmission efficiency in the corresponding section by arranging the phase-variable relay coil in the transmission efficiency reduction section of the plurality of relay coils.

Abstract

본 발명은 다른 증계 코일보다 전송 효을이 높은 증계 코일을 전송 효을 저하구간에 배치하여 복수 개의 증계 코일로 이루어진 무선 전력 증계 장치에서의 급격한 전송 효을 저하 현상을 방지할 수 있다. 보다 구체적으로 본 발명은 무선 전력 증계 장치가 자기장을 포집하여 증계하는 복수 개의 증계 코일을 구비하며, 증계 코일들 증 무선 전력 송신 장치에서 이격되어 배치된 제 1 증계 코일의 전송 효을이 제 1 증계 코일에 인접하여 제 1 증계 코일보다 더 멀리 배치되는 제 2 증계 코일의 전송 효을보다 더 낮아지는 전송 효을 감소 구간이 발생하는 경우, 복수 개의 증계 코일 증 전송 효을 감소 구간에 배치되는 적어도 하나의 증계 코일은 다른 증계 코일이 증계하는 자기장의 위상과 상이하게 자기장을 증계하는 무선 전력 증계 장치를 제공하는데 그특징이 있다.

Description

무선 전력 중계 장치 및 무선 전력 전송 시스템
본 발명의 일 실시예는 무선 전력 중계 장치 및 이를 이용한 무선 전력 전송시스템에 관한 것이다.
무선 전력 전송이란 종래의 유선으로 된 전력선 대신 무선으로 가전기기나 전기자동차에 전원을 공급하는 기술을 말하며, 전원 케이블을 이용하여 전원이 필요한 장치를 전원 콘센트에 연결하지 않고도 무선으로 충전이 가능하다는 장점 때문에 관련 연구가 활발히 진행되고 있다.
무선 전력 전송 기술에는 크게 자기유도방식, 자기공진방식 및 마이크로파 방식이 있다. 마이크로파 방식은 마이크로파와 같은 초고주파의 전자파를 안테나를 통해 방사시켜서 전력을 전송하는 기술로서, 장거리 무선전력전송이 가능하지만 전자파에 의한 안전문제가 고려되어야 한다. 자기유도방식은 근접한 코일 간의 자기유도결합을 이용한 기술로서, 2개의 송/수전 코일 간의 거리는 수 cm 이내이며 두 코일의 배열 조건에 의해서 전송 효율이 크게 좌우된다. 자기공진방식은 공진 결합(resonant coupling)에 의해 서로 떨어진 두 공진기 간에 비방사형 자기장 에너지가 전달되는 기술로서, 송/수전 코일 간의 거리가 1~2m 정도에서 무선전력전송이 가능하며, 자기유도방식에 비해 비교적 두 코일의 정렬이 유연하고, 중계 코일을 이용하여 무선충전 가능범위를 확장할 수 있다는 장점이 있다.
하지만, 중계 코일을 이용하여 무선 전력 송신기에서 생성된 자기장을 무선 전력 수신기로 중계하는 경우에, 코일의 K값, Q값의 특징에 의해 일부 중계 코일에서 플럭스 합(flux sum)이 작아져서 충전이 제대로 되지 않는 경우가 있다.
이와 관련하여, 한국공개특허 제2012-0040779호의 발명은, 자기 공명 방식으로 전원 신호를 송수신하는 무선 전력 전송 장치에 관한 것으로서, 베이스 코일 및 복수의 중계 코일을 구비하고, 상기 중계 코일의 권선수가 상기 베이스 코일의 권선수에 비해 상대적으로 많은 구성이 개시되어 있다.
하지만, 한국공개특허 제2012-0040779호의 발명은 동일한 중계 코일을 복수 개 사용하는 구조로서, 중계 코일 시스템 상의 임의의 위치에서 전력 전송이 되지 않거나 효율이 급격히 떨어지는 문제점 및 이의 해결 방법을 인지하고 있지 않다.
또한, 한국등록특허 제1118471호의 발명은 자기유도 방식의 무선 전력 전송에 관한 것으로서, 송수신 코일을 2종류의 도전성 라인으로 구성한 것을 언급하고 있다.
하지만, 한국등록특허 제1118471호의 발명의 송수신 코일은 중계 코일이 아니며, 중계 코일 시스템 상의 임의의 위치에서 전력 전송이 되지 않거나 효율이 급격히 떨어지는 문제점 및 이의 해결 방법을 인지하고 있지 않다.
또한, 일본공개특허 제2012-075304호의 발명은 자기 공진형 무선 전력 전송의 중계 소자에 관한 것으로서, 다수의 중계 코일이 면방향으로 배열된 구조를 개시하고 있으며, 중계 효율의 향상을 주요한 목적으로 한다.
하지만, 일본공개특허 제2012-075304호의 발명은 중계 코일 시스템 상의 임의의 위치에서 전력 전송이 되지 않거나 효율이 급격히 떨어지는 문제점 및 이의 해결 방법을 인지하고 있지 않다.
본 발명의 주된 목적은 복수 개의 중계 코일 중에서 다른 중계 코일들 보다
전송 효율이 더 낮아지는 전송 효율 감소 구간에 다른 중계 코일보다 전송 효율이 높은 중계 코일을 배치하여 전송 효율 감소 구간에서 전력 전송 효율이 급격히 저하되는 것을 방지할 수 있는 무선 전력 중계 장치 및 무선 전력 전송 시스템을 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 무선 전력 중계 장치는, 무선 전력 송신 장치에서 생성된 자기장을 중계하는 무선 전력 중계 장치에 있어서, 상기 무선 전력 중계 장치는 상기 자기장을 포집하여 중계하는 복수 개의 중계 코일을 구비하며, 중계 코일들 중 상기 무선 전력 송신 장치에서 이격되어 배치된 제1 중계 코일의 전송 효율이 상기 제1 중계 코일에 인접하여 상기 제1 중계 코일보다 더 멀리 배치되는 제2 중계 코일의 전송 효율 보다 더 낮아지는 전송 효율 감소 구간이 발생하는 경우, 상기 복수 개의 중계 코일 중 상기 전송 효율 감소 구간에 배치되는 적어도 하나의 중계 코일은 인접한 다른 중계코일이 중계하는 상기 자기장의 위상과 상이하게 상기 자기장을 중계할 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 상기 다른 중계 코일과 서로 인접하여 배치될 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며, 내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치될 수 있다.
본 발명에 있어서, 상기 무선 전력 송신 장치로부터 상기 복수 개의 중계 코일이 일렬로 배치되는 경우, 상기 전송 효율 감소 구간은 상기 무선 전력 송신 장치로부터 가장 멀리 배치되는 중계 코일의 직전에 배치되는 중계 코일이 위치하는 구간이며, 상기 적어도 하나의 중계 코일은 상기 전송 효율 감소 구간에 위치할 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며, 내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치될 수 있다.
본 발명에 있어서, 상기 복수 개의 중계 코일이 평면 상에 배치되는 경우, 상기 전송 효율 감소 구간은 상기 무선 전력 송신 장치에서 가장 가까운 중계 코일로부터 홀수 홉(hop) 만큼 이격되어 배치된 중계 코일이 위치하는 구간이며, 상기 적어도 하나의 중계 코일은 상기 전송 효율 감소 구간에 위치할 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며, 내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치될 수 있다.
본 발명의 일 실시예에 따른 무선 전력 전송 시스템은, 자기장을 통해 전력을 전송하는 무선 전력 송신 장치; 및 상기 자기장을 포집하여 중계하는 복수 개의 중계 코일로 이루어진 무선 전력 중계 장치;를 포함하고, 중계 코일들 중 상기 무선 전력 송신 장치에서 이격되어 배치된 제1 중계 코일의 전송 효율이 상기 제1 중계 코일에 인접하여 상기 제1 중계 코일보다 더 멀리 배치되는 제2 중계 코일의 전송 효율 보다 더 낮아지는 전송 효율 감소 구간이 발생하는 경우, 상기 복수 개의 중계 코일 중 상기 전송 효율 감소 구간에 배치되는 적어도 하나의 중계 코일은 다른 중계코일이 중계하는 상기 자기장의 위상과 상이하게 상기 자기장을 중계할 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 상기 다른 중계 코일과 서로 인접하여 배치될 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며, 내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치될 수 있다.
본 발명에 있어서, 상기 무선 전력 송신 장치로부터 상기 복수 개의 중계 코일이 일렬로 배치되는 경우, 상기 전송 효율 감소 구간은 상기 무선 전력 송신 장치로부터 가장 멀리 배치되는 중계 코일의 직전에 배치되는 중계 코일이 위치하는 구간이며, 상기 적어도 하나의 중계 코일은 상기 전송 효율 감소 구간에 위치할 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며, 내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치될 수 있다.
본 발명에 있어서, 상기 복수 개의 중계 코일이 평면 상에 배치되는 경우, 상기 전송 효율 감소 구간은 상기 무선 전력 송신 장치에서 가장 가까운 중계 코일로부터 홀수 홉(hop) 만큼 이격되어 배치된 중계 코일이 위치하는 구간이며, 상기 적어도 하나의 중계 코일은 상기 전송 효율 감소 구간에 위치할 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어질 수 있다.
본 발명에 있어서, 상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며, 내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치될 수 있다.
전술한 본 발명의 과제 해결 수단 중 하나에 의하면, 복수 개의 중계 코일로 이루어진 무선 전력 중계 장치에서 발생하는 급격한 전송 효율 저하를 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 간략한 개요도이다.
도 2a 및 2b는 본 발명의 일 실시예에 따른 무선 전력 중계 장치에서 중계 코일의 내부 구성 및 구성 회로를 도시한 도면이다.
도 3은 무전 전력 송신 장치와 제1 중계 코일부가 일렬로 배열된 무선 전력 중계 장치를 개략적으로 나타내는 도면이다.
도 4a 및 4b는 본 발명의 일 실시예에 따른 무선 전력 중계 장치에서 위상 가변 중계 코일의 내부 구성의 일례를 도시한 도면이다.
도 5는 1차원으로 배치된 무선 전력 중계 장치를 구비하는 무선 전력 전송 시스템을 도시하는 도면이다.
도 6은 2차원으로 배치된 무선 전력 중계 장치를 구비하는 무선 전력 전송 시스템을 도시하는 도면이다.
도 7은 중계 코일이 4 X 4 배열로 배치되는 위치를 개략적으로 나타내는 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.
본 명세서에서, 무선 전력 수신 장치는 충전 가능한 배터리를 장착한 전기/전자 장치이거나 또는 외부의 전기/전자 장치에 연결되어 충전 전력을 공급하는 장치로서, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 내비게이션(Navigation) 등과 같은 이동 가능한 단말일 수 있으며, 또는 벽걸이 TV, 스탠드, 전자 액자, 청소기 등의 전자 기기일 수 있다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시를 위한 구체적인 내용을 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 무선 전력 전송 시스템을 간략하게 도시하고 있다.
도 1에 도시된 바와 같이, 본 발명의 무선 전력 전송 시스템은 무선 전력 송신 장치(100)와 하나 이상의 중계 코일로 된 무선 전력 중계 장치(200)를 포함한다. 무선 전력 중계 장치(200)는 무선 전력 송신 장치(100)로부터 무선 전력 수신 장치(300)로의 경로 상에 배치되어 자기 공진 방식을 이용하여 무선 전력 수신 장치(300)로 전력 신호를 중계한다.
무선 전력 송신 장치(100)는 전력 전송을 위해 자기장을 생성하고, 무선 전력 중계 장치(200)는 상기 자기장에 자기 공진되는 다수의 중계 코일을 이용하여 자기장을 무선 전력 수신 장치(300)로 중계한다. 무선 전력 수신 장치(300)는 상기 무선 전력 중계 장치(200)에 의해 중계된 자기장에 커플링되어 내부에 저장 또는 소비되는 출력 전력을 생성한다.
무선 전력 송신 장치(100)와 무선 전력 중계 장치(200) 및 무선 전력 수신 장치(300)는 특정 주파수에서의 상호 공진 관계로 구성되고, 인접한 장치 간의 공진 주파수가 동일 또는 근사한 경우에, 둘 간의 송전 효율은 인접한 거리의 제곱에 반비례한다.
무선 전력 송신 장치(100)는 전력 전송 수단으로서 송전 코일(110)을 구비하며, 외부의 입력 전원(10)을 원하는 주파수의 RF 전력 신호로 변환한 후 이를 상기 송전 코일(110)에 인가하여 송전 코일(110) 주위에 자기장을 발생시킨다.
무선 전력 수신 장치(300)는 전력 수신 수단으로서 수전 코일(310)을 구비하며, 상기 송전 코일(110) 또는 인접한 무선 전력 중계 장치(200)의 중계 코일과 특정 주파수에서 공진 상태로 커플링된 수전 코일(310)을 통해 상기 자기장으로부터 RF 전력 신호를 수신한다. 수신된 RF 전력 신호는 직류 전력 출력으로 변환되어 무선 전력 수신 장치(300)의 구동 전력으로 사용되거나, 또는 배터리 또는 외부의 부하 장치(400)에 공급된다.
무선 전력 중계 장치(200)는 하나 이상의 중계 코일로 구성되어 있으며, 각각의 중계 코일은 일정한 간격으로 배치될 수 있다. 상기 중계 코일의 직경 및 권선수는 무선 전력 전송의 전송 효율을 최대화할 수 있도록 구현될 수 있다. 각각의 중계 코일은 도 2a에 도시된 바와 같이 임의의 권선수로 감긴 코일(210) 및 코일에 병렬 연결되어 공진 및 임피던스 매칭을 위한 커패시터(220)로 구성될 수 있다.
도 2b에는 상기 도 2a의 코일(210)과 이의 내부 저항(230) 및 커패시터(220)를 포함하는 등가 회로가 도시되어 있다. 중계 코일이 동작하는 공진 주파수는 코일(210)의 L값 및 커패시터(220)의 C값을 조절하여 설정될 수 있다. 예를 들어, 내부의 코일(210)의 L값을 측정하고 원하는 공진 주파수를 결정한 후 커패시터(220)의 C 값을 조절하여 공진 주파수를 원하는 주파수로 설정할 수 있다.
이와 같이, 다수의 중계 코일을 이용하여 무선 전력 중계 장치(200)를 구성하는 경우에, 주변 코일의 영향에 의해 일부의 중계 코일에서 충전 효율이 저하되는 현상이 발생될 수 있다. 이러한 충전 효율이 저하되는 위치를 전송 효율 감소 구간 또는 중계 홀(hole)이라고 하며, 전송 효율 감소 구간에서는 무선 전력 수신 장치(300)로 충전을 위한 충분한 전력이 전송되지 않아서 충전이 지연 또는 불가능할 수 있다.
이러한 전송 효율 감소 구간은 주변의 중계 코일로부터의 영향, 예를 들어, 중계 코일들의 Q값이나 무선 전력 수신 장치(300)의 주파수 또는 주변 중계 코일의 배치 형태 등의 영향을 받아 일부 중계 코일에서 플럭스(flux)의 합(sum)이 작아짐에 따라 발생될 수 있다.
표 1
무선 전력 송신 장치부터의 중계 코일 전송 효율
20-1 68
20-2 66
20-3 65
20-4 64
20-5 62
20-6 58
20-7 54
20-8 50
20-9 15
20-10 48
표 1은 도 3에 도시된 바와 같이 중계 코일이 일렬로 배열된 무선 전력 중계 장치에서의 전송 효율을 나타낸다.
도 3 및 표 1을 참조하면, 무선 전력 중계 장치(20)는 열 개의 중계 코일(20-1, 20-2, ..., 20-10)로 이루어지며, 무선 전력 중계 장치(20)의 일 측에는 무선 전력 송신 장치(100)가 배치될 수 있다. 즉, 무선 전력 송신 장치(100)에 가장 인접하여 중계 코일(20-1)이 배치되며, 무선 전력 송신 장치(100)로부터 멀어지는 방향으로 중계 코일(20-1)에서부터 일렬로 중계 코일들(20-2, ..., 20-10)이 배열될 수 있다. 무선 전력 중계 장치(20)를 이루는 열 개의 중계 코일(20-1, 20-2, ..., 20-10)은 모두 동일한 권선수, 임피던스, 커패시턴스, 결합 계수를 가질 수 있다.
이 경우, 중계 코일들(20-1, 20-2, ..., 20-10) 각각의 무선 전력 전송 효율은 표 1에서와 같이 무선 전력 송신 장치(100)로부터 이격 될수록 순차적으로 감소함을 알 수 있다.
그러나, 무선 전력 송신 장치(100)로부터 가장 이격되어 배치된 중계 코일(20-10) 전단에 배치된 중계 코일(20-9)의 전송 효율(전송 효율 15)이 무선 전력 송신 장치(100)로부터 가장 이격된 중계 코일(20-10)의 전송 효율(전송 효율 48)보다 더 낮아짐을 알 수 있다. 즉, 복수 개의 중계 코일(20-1, 20-2, ..., 20-10) 중 서로 인접한 두 개의 중계 코일에 있어서, 무선 전력 송신 장치(100)에 더 가까운 중계 코일을 제1 중계 코일이라고 할 수 있으며, 상기 제1 중계 코일보다 무선 전력 송신 장치(100)에서 더 멀리 배치되는 중계 코일을 제2 중계 코일이라고 할 수 있으며, 여기서 서로 인접하는 두 개의 중계 코일은 상기 두 개의 중계 코일이 서로 상하 또는 좌우에 배치되는 것을 의미한다.
표 1을 참조하면, 복수 개의 중계 코일 중 어느 하나의 중계 코일인 제1 중계 코일(20-9)은 제1 중계 코일(20-9)에 인접하여 배치되는 제2 중계 코일(20-10)보다 무선 전력 송신 장치(100)에 더 가까이 배치됨에도 불구하고 제2 중계 코일(20-10)의 전송 효율보다 제1 중계 코일(20-9)의 전송 효율이 더 낮아짐을 알 수 있다.
이는 상술한 바와 같이 무선 전력 송신 장치(100)로부터 가장 이격되어 배치된 중계 코일(20-10) 전단에 배치된 중계 코일(20-9)에서 주변의 중계 코일로부터의 영향을 받아 플럭스의 합이 급격히 작아지기 때문이다.
한편, 주변의 둘 이상의 중계 코일로부터 수신되는 자기장들의 서로 다른 위상차에 의해 상쇄 간섭 효과가 발생한다.
(식 1) Zin ∝ ω2·Min 2
여기서 Min 은 중계 홀이 발생되는 중계 코일과 그 인접한 중계 코일 간의 상호 인덕턴스를 의미한다.
따라서, 중계 홀이 발생되는 전송 효율 감소 구간의 상호 인덕턴스를 적절히 조절함으로써 전송 효율 감소 구간의 발생을 제거할 수 있다. 이 경우, 전송 효율 감소 구간에서의 상호 인덕턴스의 조절은 해당 구간의 중계 코일에 관한 결합 계수(K)를 조절하여 구현될 수 있다.
이와 같이 무선 전력 중계 장치를 이루는 복수 개의 중계 코일 중 전송 효율 감소 구간에서 상호 인덕턴스의 조절을 위해 다른 중계 코일들과 상이한 결합 계수(K)를 갖는 중계 코일을 위상 가변 중계 코일이라고 한다. 위상 가변 중계 코일 이외의 다른 중계 코일은 모두 동일한 결합 계수(K)를 가질 수 있다.
다시 말하며, 본 발명의 실시예에 따른 무선 전력 중계 장치는 복수 개의 중계 코일로 이루어지며, 복수 개의 중계 코일 중 위상 가변 중계 코일은 자기장의 중계에 있어서 다른 중계 코일이 중계하는 자기장의 위상과는 상이하게 상기 자기장을 중계할 수 있다. 위상 가변 중계 코일이 중계하는 자기장의 위상이 다른 중계 코일이 중계하는 자기장의 위상과 상이하게 하기 위해서는 위상 가변 중계 코일이 다른 중계 코일 보다 더 큰 결합 계수를 가질 수 있다.
도 4a 및 4b에는 이와 같이 인접한 중계 코일과 상이한 결합 계수 K를 가지는 위상 가변 중계 코일(210, 210')의 구성이 도시되어 있다. 도 4a 및 4b에 도시된 바와 같이, 위상 가변 중계 코일(210, 210')는 다른 중계 코일과 동일한 코일(210-1)(이하, 외측 코일)에 더하여 내측에 상기 외측 코일의 내경보다 더 작은 다른 코일(210-2)(이하, 내측 코일)이 추가로 배치될 수 있다. 이때, 도 4a와 같이 외측 코일(210-1)과 내측 코일(210-2)이 연결되지 않는 별개의 코일 형상으로 구현될 수 있으며, 또는 도 4b와 같이 외측 코일(210-1)과 내측 코일(210-2)이 연결된 형태로 구현될 수도 있다.
위상 가변 중계 코일(210)의 외부 코일(210-1) 및 내부 코일(210-2)은 각각 상이한 결합 계수 K1, K2 를 가질 수 있으며, 따라서, 위상 가변 중계 코일(210)의 전체 결합 계수(net K)는 다른 중계 코일(제1 중계 코일부)의 결합 계수와 상이한 값을 가지게 된다. 여기서, 위상 가변 중계 코일(210)는 이중 코일 구조를 가지는 것으로 설명하였지만 반드시 이중 코일일 필요는 없으며, 내경이 서로 상이한 셋 이상의 코일이 중첩된 다중 코일 형태로 구성될 수도 있다.
한편, 위상 가변 중계 코일(210)이 배치되는 전송 효율 감소 구간은 무선 전력 중계 장치(200)의 중계 코일의 배치 형태에 따라 상이한 위치에서 발생될 수 있다.
도 5에는 복수의 중계 코일이 1차원으로 배치된 경우의 무선 전력 중계 장치(200)가 도시되어 있다. 도 5를 참조하면, 무선 전력 중계 장치(200)는 무선 전력 송신 장치(100)와 인접한 구간(200-1)으로부터 순서대로 총 N+1 개의 중계 코일(200-1~ 200-(n+1))이 배치되는 (N+1, 1) 중계 시스템이며, 이 경우, 무선 전력 송신 장치(100)로부터 가장 멀리 배치된 중계 코일(200-(n+1))의 전단의 중계 코일(200-n)에서 중계 홀이 발생하게 된다. 이는, 중계 코일(200-(n+1))로부터의 반사파와 중계 코일(200-(n-1))로부터의 자기장에 의한 플럭스 합이 급격히 감소 되기 때문이다.
따라서, 이와 같은 1차원으로 배치된 무선 전력 중계 장치(200)의 경우, 무선 전력 송신 장치(100)로부터 가장 멀리 배치된 중계 코일의 전단의 중계 코일을 위상 가변 중계 코일(210)로 구현함으로써, 무선 전력 중계 장치(200)에서의 중계 홀의 발생을 억제할 수 있다.
표 2
무선 전력 송신 장치부터의 중계 코일 전송 효율
200-1 68
200-2 66
200-3 65
200-4 64
200-5 63
200-6 60
200-7 56
200-8 53
210-9 52
200-10 50
표 2는 제1 중계 코일부와 위상 가변 중계 코일로 이루어진 무선 전력 중계 장치에서의 전송 효율을 나타낸다.
표 2를 참조하면, 무선 전력 중계 장치는 일렬로 배열된 10개의 중계 코일로 이루어지며, 상기 중계 코일은 9개의 중계 코일(200-1, 200-2, 200-3, ..., 200-8, 200-10)과 1개의 위상 가변 중계 코일(200-9)로 이루어질 수 있다. 상술한 바와 같이 위상 가변 중계 코일(200-9)은 다른 중계 코일(200-1, 200-2, 200-3, ..., 200-8, 200-10)과는 상이한 결합 계수를 가지며, 중계 홀에 해당하는 구간인, 무선 전력 송신 장치(100)로부터 가장 멀리 배치된 중계 코일(200-10)의 전단에 배치될 수 있다. 표 2에서와 같이, 중계 홀에 해당하는 구간에 배치된 위상 가변 중계 코일(210-9)에서 전력 전송 효율이 저하되지 않는 것을 확인할 수 있다.
한편, 도 6에는 복수의 중계 코일이 2차원으로 배치된 경우의 무선 전력 중계 장치(200)가 도시되어 있다. 도 6을 참조하면, 무선 전력 중계 장치(200)는 무선 전력 송신 장치(100)와 인접한 구간(200-11)으로부터 2차원의 정사각형 또는 직사각형 구조로 배치되는 (M, N) 중계 시스템일 수 있다. 도 6에서는 설명을 용이하게 하기 위하여 (4, 4) 구조로 도시되어 있다.
이 경우, 2차원으로 배치된 중계 코일 각각은 주변의 적어도 둘 이상의 중계 코일과 자기적으로 커플링될 수 있으며, 따라서, 1차원으로 배치되는 경우에 비해 더 많은 구간에서 중계 홀이 발생할 수 있다.
이 경우, 중계 홀이 발생되는 전송 효율 감소 구간은 무선 전력 송신 장치(100)와 가장 근접한 중계 코일(200-11)을 기준으로 전후 좌우로 이격된 홉(hop) 수가 홀수인 중계 코일일 수 있다. 예를 들어, 도 5의 경우에는 중계 코일(200-11)로부터의 이격된 홉 수가 1인 중계 코일(210-12, 210-21)과, 이격된 홉 수가 3인 중계 코일(210-14), 210-23, 210-32, 210-41)과, 이격된 홉 수가 5인 중계 코일(210-34, 210-43)이 배치되는 위치가 전송 효율 감소 구간이 될 가능성이 매우 높다. 따라서, 상기 언급된 전송 효율 감소 구간에 위상 가변 중계 코일(210)를 배치함으로써, 무선 전력 중계 코일(200)에서의 중계 홀의 발생을 억제할 수 있다.
표 3
중계 코일 위치 전송 효율 1 전송 효율 2
11 62 60
12 26 57
13 58 53
14 24 45
21 28 58
22 58 56
23 25 51
24 55 52
31 56 50
32 33 45
33 52 48
34 20 50
41 23 48
42 54 56
43 15 45
44 50 53
표 3은 중계 코일이 4 X 4 배열로 배치된 무선 전력 중계 장치의 전송 효율을 나타내며, 도 7은 중계 코일이 4 X 4 배열로 배치되는 위치를 개략적으로 나타내는 도면이다. 즉, 표 3 및 도 7을 참조하면, 중계 코일 위치(11)는 무선 전력 송신 장치(100)에 가장 인접한 위치이며, 중계 코일 위치(12, 13, 14)는 중계 코일 위치(11)에서 일렬로 순서대로 배열된다. 또한, 중계 코일 위치(21, 22, 23, 24) 각각은 중계 코일 위치(11, 12, 13, 14) 상에 배열되며, 중계 코일 위치(31, 32, 33, 34) 각각은 중계 코일 위치(21, 22, 23, 24) 상에 배열되고, 중계 코일 위치(41, 42, 43, 44) 각각은 중계 코일 위치(31, 32, 33, 34) 상에 배열된다.
표 3에서 전송 효율 1은 상기 모든 중계 코일 위치(11, 12, ..., 43, 44) 각각에 중계 코일(200)이 배치되는 경우 각각의 중계 코일(200)에서의 전송 효율이며, 전송 효율 2는 도 6에 도시된 바와 같이, 중계 홀이 발생되는 전송 효율 감소 구간에 위상 가변 중계 코일(210)이 배치되고 그 이외의 위치에는 다른 중계 코일(200)이 배치되는 경우 각각의 다른 중계 코일(200) 및 위상 가변 중계 코일(210)에서의 전송 효율이다.
표 3을 참조하면, 모든 중계 코일 위치(11, 12, ..., 43, 44)에 동일한 결합 계수를 갖는 제1 중계 코일부(200)가 배치되는 경우에는 무선 전력 송신 장치(100)에서 가장 가까운 중계 코일로부터 홀수 홉(hop) 만큼 이격되어 배치된 중계 코일에서 중계 홀이 발생하여 전송 효율이 감소됨을 확인할 수 있다.
이에 반하여, 중계 홀이 발생하는 위치에 위상 가변 중계 코일(210)이 배치되는 경우에는 표 3의 전송 효율 2에서 보는 바와 같이 중계 홀에서의 전송 효율 저하가 개선됨을 확인할 수 있다.
이상과 같은 구성을 통해, 본 발명의 무선 전력 중계 장치는 복수 개의 중계 코일 중에서 전송 효율 감소 구간에 위상 가변 중계 코일을 배치하여 해당 구간에서의 전력 전송 효율의 급격한 저하를 방지할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (26)

  1. 무선 전력 송신 장치에서 생성된 자기장을 중계하는 무선 전력 중계 장치에 있어서,
    상기 무선 전력 중계 장치는 상기 자기장을 포집하여 중계하는 복수 개의 중계 코일을 구비하며,
    중계 코일들 중 상기 무선 전력 송신 장치에서 이격되어 배치된 제1 중계 코일의 전송 효율이 상기 제1 중계 코일에 인접하여 상기 제1 중계 코일보다 더 멀리 배치되는 제2 중계 코일의 전송 효율 보다 더 낮아지는 전송 효율 감소 구간이 발생하는 경우,
    상기 복수 개의 중계 코일 중 상기 전송 효율 감소 구간에 배치되는 적어도 하나의 중계 코일은 다른 중계코일이 중계하는 상기 자기장의 위상과 상이하게 상기 자기장을 중계하는 것을 특징으로 하는 무선 전력 중계 장치.
  2. 제1항에 있어서,
    상기 적어도 하나의 중계 코일은 상기 다른 중계 코일과 서로 인접하여 배치되는 것을 특징으로 하는 무선 전력 중계 장치.
  3. 제1항에 있어서,
    상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가지는 것을 특징으로 하는 무선 전력 중계 장치.
  4. 제3항에 있어서,
    상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어지는 것을 특징으로 하는 무선 전력 중계 장치.
  5. 제4항에 있어서,
    상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며,
    내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치되는 것을 특징으로 하는 무선 전력 중계 장치.
  6. 제2항에 있어서,
    상기 무선 전력 송신 장치로부터 상기 복수 개의 중계 코일이 일렬로 배치되는 경우,
    상기 전송 효율 감소 구간은 상기 무선 전력 송신 장치로부터 가장 멀리 배치되는 중계 코일의 직전에 배치되는 중계 코일이 위치하는 구간이며,
    상기 적어도 하나의 중계 코일은 상기 전송 효율 감소 구간에 위치하는 것을 특징으로 하는 무선 전력 중계 장치.
  7. 제6항에 있어서,
    상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가지는 것을 특징으로 하는 무선 전력 중계 장치.
  8. 제7항에 있어서,
    상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어지는 것을 특징으로 하는 무선 전력 중계 장치.
  9. 제8항에 있어서,
    상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며,
    내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치되는 것을 특징으로 하는 무선 전력 중계 장치.
  10. 제2항에 있어서,
    상기 복수 개의 중계 코일이 평면 상에 배치되는 경우,
    상기 전송 효율 감소 구간은 상기 무선 전력 송신 장치에서 가장 가까운 중계 코일로부터 홀수 홉(hop) 만큼 이격되어 배치된 중계 코일이 위치하는 구간이며,
    상기 적어도 하나의 중계 코일은 상기 전송 효율 감소 구간에 위치하는 것을 특징으로 하는 무선 전력 중계 장치.
  11. 제10항에 있어서,
    상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가지는 것을 특징으로 하는 무선 전력 중계 장치.
  12. 제11항에 있어서,
    상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어지는 것을 특징으로 하는 무선 전력 중계 장치.
  13. 제12항에 있어서,
    상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며,
    내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치되는 것을 특징으로 하는 무선 전력 중계 장치.
  14. 자기장을 통해 전력을 전송하는 무선 전력 송신 장치; 및
    상기 자기장을 포집하여 중계하는 복수 개의 중계 코일로 이루어진 무선 전력 중계 장치;를 포함하고,
    중계 코일들 중 상기 무선 전력 송신 장치에서 이격되어 배치된 제1 중계 코일의 전송 효율이 상기 제1 중계 코일에 인접하여 상기 제1 중계 코일보다 더 멀리 배치되는 제2 중계 코일의 전송 효율 보다 더 낮아지는 전송 효율 감소 구간이 발생하는 경우,
    상기 복수 개의 중계 코일 중 상기 전송 효율 감소 구간에 배치되는 적어도 하나의 중계 코일은 다른 중계코일이 중계하는 상기 자기장의 위상과 상이하게 상기 자기장을 중계하는 것을 특징으로 하는 무선 전력 전송 시스템.
  15. 제14항에 있어서,
    상기 적어도 하나의 중계 코일은 상기 다른 중계 코일과 서로 인접하여 배치되는 것을 특징으로 하는 무선 전력 전송 시스템.
  16. 제15항에 있어서,
    상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가지는 것을 특징으로 하는 무선 전력 전송 시스템.
  17. 제16항에 있어서,
    상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어지는 것을 특징으로 하는 무선 전력 전송 시스템.
  18. 제17항에 있어서,
    상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며,
    내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치되는 것을 특징으로 하는 무선 전력 전송 시스템.
  19. 제15항에 있어서,
    상기 무선 전력 송신 장치로부터 상기 복수 개의 중계 코일이 일렬로 배치되는 경우,
    상기 전송 효율 감소 구간은 상기 무선 전력 송신 장치로부터 가장 멀리 배치되는 중계 코일의 직전에 배치되는 중계 코일이 위치하는 구간이며,
    상기 적어도 하나의 중계 코일은 상기 전송 효율 감소 구간에 위치하는 것을 특징으로 하는 무선 전력 전송 시스템.
  20. 제19항에 있어서,
    상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가지는 것을 특징으로 하는 무선 전력 전송 시스템.
  21. 제20항에 있어서,
    상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어지는 것을 특징으로 하는 무선 전력 전송 시스템.
  22. 제21항에 있어서,
    상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며,
    내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치되는 것을 특징으로 하는 무선 전력 전송 시스템.
  23. 제15항에 있어서,
    상기 복수 개의 중계 코일이 평면 상에 배치되는 경우,
    상기 전송 효율 감소 구간은 상기 무선 전력 송신 장치에서 가장 가까운 중계 코일로부터 홀수 홉(hop) 만큼 이격되어 배치된 중계 코일이 위치하는 구간이며,
    상기 적어도 하나의 중계 코일은 상기 전송 효율 감소 구간에 위치하는 것을 특징으로 하는 무선 전력 전송 시스템.
  24. 제23항에 있어서,
    상기 적어도 하나의 중계 코일은 상기 다른 중계 코일보다 더 큰 결합 계수를 가지는 것을 특징으로 하는 무선 전력 전송 시스템.
  25. 제24항에 있어서,
    상기 적어도 하나의 중계 코일은 복수 개의 코일로 이루어지는 것을 특징으로 하는 무선 전력 전송 시스템.
  26. 제25항에 있어서,
    상기 적어도 하나의 중계 코일은 내경이 상이한 복수 개의 코일로 이루어지며,
    내경이 상이한 상기 복수 개의 코일들 중 다른 코일보다 내경이 작은 내측 코일은 다른 코일보다 내경이 큰 외측 코일 내부에 배치되는 것을 특징으로 하는 무선 전력 전송 시스템.
PCT/KR2014/003981 2014-05-02 2014-05-02 무선 전력 중계 장치 및 무선 전력 전송 시스템 WO2015167055A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/308,180 US10158252B2 (en) 2014-05-02 2014-05-02 Wireless power relay device and wireless power transmission system
PCT/KR2014/003981 WO2015167055A1 (ko) 2014-05-02 2014-05-02 무선 전력 중계 장치 및 무선 전력 전송 시스템
CN201480078445.XA CN106464019B (zh) 2014-05-02 2014-05-02 无线电力中继装置以及无线电力传输系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/003981 WO2015167055A1 (ko) 2014-05-02 2014-05-02 무선 전력 중계 장치 및 무선 전력 전송 시스템

Publications (1)

Publication Number Publication Date
WO2015167055A1 true WO2015167055A1 (ko) 2015-11-05

Family

ID=54358771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003981 WO2015167055A1 (ko) 2014-05-02 2014-05-02 무선 전력 중계 장치 및 무선 전력 전송 시스템

Country Status (3)

Country Link
US (1) US10158252B2 (ko)
CN (1) CN106464019B (ko)
WO (1) WO2015167055A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300211A1 (en) * 2016-09-26 2018-03-28 Industry-Academic Cooperation Foundation Yonsei University Wireless power transmitter device, wireless power receiver device, system for transferring power wirelessly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108604833B (zh) * 2016-03-18 2022-11-08 株式会社村田制作所 无线供电系统及其输电装置
EP3757526B1 (en) * 2019-06-28 2024-03-13 Hitachi Energy Ltd Resonator array sensor arrangement
CN111799900A (zh) * 2020-07-06 2020-10-20 桂林电子科技大学 一种高效的远距离无线电能传输方案
CN113675959B (zh) * 2021-10-22 2022-01-04 成都斯普奥汀科技有限公司 一种用于提升磁感应无线充电收发端耦合强度的天线系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313577A1 (en) * 2011-06-10 2012-12-13 Access Business Group International Llc System and method for detecting, characterizing, and tracking an inductive power receiver
JP2013081367A (ja) * 2010-01-05 2013-05-02 Mitsubishi Electric Corp 電力送信装置
KR20130099103A (ko) * 2010-09-14 2013-09-05 위트리시티 코포레이션 무선 에너지 분산 시스템
KR20130125735A (ko) * 2012-05-09 2013-11-19 삼성전자주식회사 3d 무방향성 무선 전력 전송 방법 및 장치
JP2014064446A (ja) * 2011-12-06 2014-04-10 Sekisui Chem Co Ltd 受電装置、送電装置及び非接触給電システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9544683B2 (en) * 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
AU2009296413A1 (en) 2008-09-27 2010-04-01 Witricity Corporation Wireless energy transfer systems
US20100201201A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
KR101118471B1 (ko) 2009-09-30 2012-03-12 한국전기연구원 스파이럴 안테나 및 스파이럴 안테나를 이용한 무선전력전송장치
US8970070B2 (en) * 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP5717068B2 (ja) 2010-08-30 2015-05-13 国立大学法人 東京大学 無線電力伝送装置
KR101414779B1 (ko) 2010-10-20 2014-07-03 한국전자통신연구원 무선 전력 전송 장치
US10566133B2 (en) * 2011-01-14 2020-02-18 City University Of Hong Kong Apparatus and method for wireless power transfer
KR101212484B1 (ko) * 2011-10-11 2012-12-14 주식회사 비앤알테크널러지 이동통신 단말기용 무선전력 충전장치 및 그 방법
US9842684B2 (en) * 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
KR102042712B1 (ko) * 2013-07-02 2019-11-11 삼성전자주식회사 중계 공진기를 포함하는 무선 전력 전송 방법 및 시스템
CN105518970B (zh) * 2013-08-06 2018-10-26 联发科技(新加坡)私人有限公司 具有并联共振电源路径的无线电源
KR102114402B1 (ko) * 2013-08-07 2020-05-25 삼성전자주식회사 무선 전력 전송 시스템 및 무선 전력 중계 장치
KR20150050024A (ko) * 2013-10-31 2015-05-08 삼성전기주식회사 무선 전력 중계 장치 및 이를 구비하는 케이스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081367A (ja) * 2010-01-05 2013-05-02 Mitsubishi Electric Corp 電力送信装置
KR20130099103A (ko) * 2010-09-14 2013-09-05 위트리시티 코포레이션 무선 에너지 분산 시스템
US20120313577A1 (en) * 2011-06-10 2012-12-13 Access Business Group International Llc System and method for detecting, characterizing, and tracking an inductive power receiver
JP2014064446A (ja) * 2011-12-06 2014-04-10 Sekisui Chem Co Ltd 受電装置、送電装置及び非接触給電システム
KR20130125735A (ko) * 2012-05-09 2013-11-19 삼성전자주식회사 3d 무방향성 무선 전력 전송 방법 및 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300211A1 (en) * 2016-09-26 2018-03-28 Industry-Academic Cooperation Foundation Yonsei University Wireless power transmitter device, wireless power receiver device, system for transferring power wirelessly
US11218033B2 (en) 2016-09-26 2022-01-04 Industry-Academic Cooperation Foundation, Yonsei University Wireless power transmitter device, wireless power receiver device, system for transferring power wirelessly

Also Published As

Publication number Publication date
US10158252B2 (en) 2018-12-18
US20170054329A1 (en) 2017-02-23
CN106464019A (zh) 2017-02-22
CN106464019B (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
WO2015167055A1 (ko) 무선 전력 중계 장치 및 무선 전력 전송 시스템
WO2015167054A1 (ko) 무선 전력 중계 장치 및 무선 전력 전송 시스템
WO2017030289A1 (ko) 안테나유닛 및 이를 포함하는 무선전력 전송모듈
WO2013002516A2 (en) Wireless power repeater and method thereof
WO2017023093A1 (ko) 임피던스 정합을 이용한 무선전력전송 장치 및 시스템
WO2012169769A2 (ko) 무선 전력 전송 장치 및 시스템
WO2013048004A1 (en) Wireless power transmitter, wirless power repeater and wireless power transmission method
WO2016133329A1 (en) Wireless power transmission apparatus and wireless power transmission method
WO2013035986A1 (en) Wireless power repeater
WO2013151259A1 (en) Device and system for wireless power transmission using transmission coil array
WO2014088323A1 (en) Antenna for wireless power transmission and near field communication
WO2013165165A1 (en) Wireless power transmission device, wireless power relay device, and wireless power transmission system
EP3072215A1 (en) Wireless charging apparatus and wireless charging method
WO2013172530A1 (en) Wireless charging apparatus, wireless charging system, and wireless charging method
US10971951B2 (en) Electronic system having power adapter for wired and wireless charging
WO2016114629A1 (ko) 무선 전력 전송 장치
WO2013002488A1 (en) Wireless power transmission apparatus and wireless power transmission method thereof
WO2013035987A1 (en) Wireless power apparatus and operation method thereof
WO2019203445A1 (ko) 무선으로 전력을 공급하는 디스플레이 시스템
CN103124083A (zh) 无线充电式便携式电子装置及相配套的充电装置
WO2013032129A1 (en) Wireless power transmitter and wireless power transmission method
WO2016114637A1 (ko) 무선전력 전송 장치
WO2012141458A2 (en) Power transmitter, repeater, power receiver, and wireless power transmission system
WO2013048036A1 (en) Wireless power repeater and wireless power transmitter
WO2017090964A1 (ko) 무선 전력 송신기 및 무선 전력 수신기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15308180

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890924

Country of ref document: EP

Kind code of ref document: A1