WO2015166537A1 - Robot hand, device for controlling robot hand, and method for controlling robot hand - Google Patents

Robot hand, device for controlling robot hand, and method for controlling robot hand Download PDF

Info

Publication number
WO2015166537A1
WO2015166537A1 PCT/JP2014/061891 JP2014061891W WO2015166537A1 WO 2015166537 A1 WO2015166537 A1 WO 2015166537A1 JP 2014061891 W JP2014061891 W JP 2014061891W WO 2015166537 A1 WO2015166537 A1 WO 2015166537A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw shaft
robot hand
screw
position detector
claw member
Prior art date
Application number
PCT/JP2014/061891
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 健生
有永 雄司
康 吉田
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2014/061891 priority Critical patent/WO2015166537A1/en
Publication of WO2015166537A1 publication Critical patent/WO2015166537A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the disclosed embodiment relates to a robot hand, a robot hand control device, and a robot hand control method.
  • Patent Document 1 describes a robot hand that has three fingers that can be opened and closed, and each finger is independently driven by a motor with an encoder. The rotation angle of each finger is measured by an encoder, and the torque acting on the joint portion of each finger is measured by a torque sensor.
  • the robot hand of the above prior art uses two types of sensors, a motor encoder and a torque sensor, for force control, and thus there is a problem that the configuration becomes complicated, for example, it is necessary to prepare two types of sensor power supply and cable. It was.
  • the present invention has been made in view of such problems, and an object thereof is to provide a robot hand, a robot hand control device, and a robot hand control method capable of performing force control with a simple configuration. .
  • the first screw shaft and the first screw shaft are disposed on substantially the same axis, and the first screw shaft and the direction of the screw groove are arranged.
  • a second screw shaft that is in the opposite direction, a first claw member that moves in the axial direction by rotation of the first screw shaft, and a second claw that moves in the axial direction by rotation of the second screw shaft
  • a member an elastic connecting member having elasticity in a torsional direction around the axis, and connecting the first screw shaft and the second screw shaft; and at least one of the first screw shaft and the second screw shaft
  • a robot hand comprising: a motor having an output shaft coupled to be capable of transmitting a rotational driving force; and a detecting means for detecting a torsion amount generated between the first screw shaft and the second screw shaft.
  • the first screw shaft and the first screw shaft are disposed substantially on the same axis, and the first screw shaft and the screw groove are opposite in direction.
  • a second claw member that moves in the axial direction by rotation of the first screw shaft; a second claw member that moves in the axial direction by rotation of the second screw shaft; and the shaft
  • An elastic connecting member that has elasticity in a torsional direction around the center and connects the first screw shaft and the second screw shaft; and a rotational driving force on at least one of the first screw shaft and the second screw shaft.
  • a robot hand control device for controlling the force of a robot hand having an output shaft coupled so as to be able to transmit, the amount of twist occurring between the first screw shaft and the second screw shaft
  • a torsion amount detection unit configured to detect Having a grip force calculating section configured to calculate a gripping force by the first pawl member and the second pawl member on the basis of the torsion amount issued, the control unit of the robot hand is applied.
  • the first screw shaft and the first screw shaft are disposed substantially on the same axis, and the first screw shaft and the screw groove are in opposite directions.
  • An elastic coupling member that has elasticity in a torsional direction around an axis and connects the first screw shaft and the second screw shaft; and a rotational driving force on at least one of the first screw shaft and the second screw shaft
  • a motor having an output shaft coupled so as to be able to transmit the force, and a robot hand control method for controlling the force of the robot hand, wherein the twist generated between the first screw shaft and the second screw shaft Detecting the amount, and based on the twist amount, the first claw member and the Calculating the gripping force by the second claw member has a control method of the robot hand is applied.
  • the force control of the robot hand can be performed with a simple configuration.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. It is a side view showing an example of composition of a robot hand concerning an embodiment. It is a top view showing an example of composition of a sensor substrate unit. It is a side view showing an example of composition of a sensor substrate unit. It is sectional drawing showing an example of a structure of a torsion joint.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is explanatory drawing showing an example of the structure in the middle of the assembly of the robot hand which concerns on embodiment. It is a block diagram showing an example of a functional structure of a control apparatus.
  • the configuration of the robot hand 100 according to the present embodiment will be described with reference to FIGS.
  • the robot hand 100 has two claw members, and grips and releases the workpiece, for example, by operating them so as to move away from each other.
  • the robot hand 100 includes a first screw shaft 1, a second screw shaft 2, and a first screw moving in an axial direction (a direction parallel to the axial center AX) by the rotation of the first screw shaft 1.
  • the claw member 34 and the second claw member 35 that moves in the axial direction by the rotation of the second screw shaft 2 are provided.
  • the first screw shaft 1 and the second screw shaft 2 are screw shafts having screws formed on the outer periphery, and for example, a ball screw or a slide screw is used.
  • the first screw shaft 1 and the second screw shaft 2 are arranged so as to be substantially on the same axis with respect to the axis AX.
  • “substantially on the same axis” here is not on the same axis in a strict sense, but on design, manufacturing tolerances, deviation or inclination of the axis due to error is allowed, It means that.
  • the directions of the screw grooves 1a and the screw grooves 2a are opposite to each other.
  • the second screw shaft 2 is a left-hand screw.
  • first screw shaft 1 and the second screw shaft 2 have the same screw pitch and screw diameter will be described as an example, but the present invention is not limited to this.
  • Bearings 3 and 4 are respectively attached to the outer end of the first screw shaft 1 and the outer end of the second screw shaft 2.
  • the bearings 3 and 4 for example, end-row angular bearings are used, but are not limited thereto.
  • the outer races of the bearings 3 and 4 are fixed to the side plate 6 and the side plate 7 of the robot hand 100 by bonding or the like.
  • the first screw shaft 1 and the second screw shaft 2 are rotatably supported by the side plate 6 and the side plate 7 via bearings 3 and 4.
  • the inner end of the first screw shaft 1 and the inner end of the second screw shaft 2 are connected by a torsion joint 5. Details of the torsion joint 5 will be described later.
  • a screw nut 8 and a screw nut 10 are attached to the first screw shaft 1 and the second screw shaft 2 via screw grooves, respectively.
  • the first screw mover 9 and the second screw mover 11 are fixed to the screw nut 8 and the screw nut 10, respectively.
  • the first claw member 34 and the second claw member 35 are fixed to the first screw mover 9 and the second screw mover 11, respectively.
  • the 1st claw member 34 and the 2nd claw member 35 are the 1st screw shaft 1 and the 2nd screw shaft 2 via the 1st screw mover 9 and the 2nd screw mover 11, and the screw nut 8 and the screw nut 10, respectively. It is attached to.
  • linear guides 12 and 13 are provided on the hand base 50 of the robot hand 100 substantially in parallel along the direction of the axis AX.
  • the first screw mover 9 is supported by two linear nuts 14 and 14 on the linear guides 12 and 13
  • the second screw mover 11 is supported by two linear nuts 15 and 15 on the linear guides 12 and 13. Supported by The first screw moving element 9 and the second screw moving element 11 move along the linear guides 12 and 13 in the directions approaching each other by the rotation of the first screw shaft 1 and the second screw shaft 2.
  • the robot hand 100 includes a motor 18 having an output shaft 18a.
  • the motor 18 is supported by the side plate 17 of the robot hand 100.
  • the robot hand 100 includes a drive pulley 19 connected to the output shaft 18 a of the motor 18, a driven pulley 16 connected to the end of the first screw shaft 1, and a drive pulley 19.
  • an endless timing belt 20 (an example of an endless belt) bridged around the driven pulley 16.
  • the side plate 6 that supports the first screw shaft 1 and the side plate 17 that supports the motor 18 have a structure that can be separated by a boundary 40.
  • the driven pulley 16 has the same diameter as the drive pulley 19 and the same number of teeth will be described as an example, but the present invention is not limited to this.
  • the driven pulley 16, the drive pulley 19, and the timing belt 20 are covered with a protective cover during the final assembly process.
  • the torque transmission mechanism from the motor 18 to the first screw shaft 1 and the second screw shaft 2 is not limited to the one using the pulley and the endless belt as described above.
  • other torque transmission mechanisms such as a gear mechanism using a plurality of gears may be used.
  • the rotational torque of the motor 18 is transmitted to the first screw shaft 1.
  • the present invention is not limited to this, and may be configured to be transmitted to the second screw shaft 2.
  • the first screw shaft 1 and the second screw shaft 2 may be transmitted to both.
  • the first position detector 27 ⁇ / b> A detects the rotational position of the first screw shaft 1 driven by the motor 18 by detecting the rotational position of the motor 18.
  • the first position detector 27A is a position detector of the motor 18 and is an encoder
  • the present invention is not limited to this.
  • a resolver that detects a rotation angle by a coil is used. Etc. can also be used.
  • the first position detector 27 ⁇ / b> A is configured to emit light to the first rotating disk 28 and the first rotating disk 28 connected to the end of the output shaft 18 a of the motor 18 opposite to the drive pulley 19.
  • the first light source 29 made of, for example, an LED, and the first encoder boards 30, 31, 32 are included.
  • the first rotating disk 28, the first light source 29, and the first encoder boards 30 to 32 are unitized as encoder units, but those not unitized may be used.
  • the first position detector 27A irradiates the first rotating disk 28 with light from the first light source 29, receives the light transmitted through the first rotating disk 28 with the first encoder substrate 30 which is a light receiving substrate, and receives the received light.
  • the rotational position of the motor 18, that is, the rotational position of the first screw shaft 1 is detected from the pattern.
  • the first position detector 27A is not limited to the position detector of the motor 18.
  • a position detector provided at the end of the first screw shaft 1 may be used as the first position detector.
  • the case where the 1st position detector 27A is a position detector of the motor 18 is demonstrated for convenience of explanation.
  • the second position detector 27B (an example of a detection unit) detects the rotational position of the second screw shaft 2 that is rotated by the first screw shaft 1 via the torsion joint 5.
  • the second position detector 27B is an encoder
  • the present invention is not limited to this.
  • a resolver or the like can be used.
  • the second position detector 27B includes a second rotating disk 21 connected to the second screw shaft 2, a second light source 22 made of, for example, an LED configured to emit light to the second rotating disk 21, and Second encoder boards 24, 25, 26.
  • the second light source 22 is attached to the side plate 7 of the robot hand 100, and the second rotating disk 21 is attached to the end of the second screw shaft 2 extending outward from the side plate 7.
  • two second encoder boards 25 and 26 excluding the second encoder board 24 which is a light receiving board are configured as a sensor board unit 23 (an example of a board unit), It is provided separately from the second rotating disk 21.
  • the second encoder substrate 24 that is a light receiving substrate is provided inside the support portion 36 c that is bent in the axial center AX direction from the unit base 36 of the sensor substrate unit 23 outside the side plate 7.
  • the configuration of the second position detector 27B is not limited to the above.
  • the second position detector 27B may be unitized as an encoder unit and attached to the end of the second screw shaft 2.
  • the sensor substrate unit 23 and the others are arranged separately to reduce the protrusion from the side plate 7, and the second rotary disk 21 and the second encoder substrate which is the light receiving substrate. It is easy to adjust the gap g between them.
  • the second encoder boards 25 and 26 may not be unitized as a board unit.
  • the second rotating disk 21, the second light source 22, and the second encoder boards 24, 25, and 26 of the second position detector 27B are the first rotating disk 28 and the first encoder of the first position detector 27A, respectively.
  • the light source 29 and the first encoder boards 30, 31, 32 are exactly the same.
  • the same type of sensor can be used for the first position detector 27A and the second position detector 27B, and only one type of sensor power supply or cable is required. Therefore, the configuration can be simplified.
  • the power supply voltage, frequency, and current value can be made the same by using the same type of sensor, even if the cables of the first position detector 27A and the second position detector 27B are arranged close to each other, noise interference is caused. There is no concern.
  • the parts of both detectors 27A and 27B can be shared, and the cost can be reduced.
  • the present invention is not limited to the above, and the first position detector 27A and the second position detector 27B may be different sensors, or different parts may be used.
  • the first position detector 27A and the second position detector 27B are not limited to the transmissive encoder.
  • the first position detector 27A and the second position detector 27B may be reflective encoders in which the light source and the light receiving substrate are arranged on the same side with respect to the rotating disk.
  • the case where the 1st position detector 27A and the 2nd position detector 27B are transmission type encoders is demonstrated for convenience of explanation.
  • the means for detecting the amount of twist between the first screw shaft 1 and the second screw shaft 2 includes a first position detector 27A for detecting the rotational position of the first screw shaft 1 and the rotational position of the second screw shaft 2. It is not limited to two position detectors, such as the second position detector 27B for detecting the. For example, when a twist amount can be detected with a single detector, such a detector may be used. However, in this embodiment, for convenience of explanation, a case will be described in which the amount of twist is detected using two of the first position detector 27A and the second position detector 27B.
  • the sensor substrate unit 23 is provided on the unit base 36.
  • the unit base 36 is made of, for example, a material having noise resistance and insulation.
  • both edges 36a are pressed inside the side plates 37 and 38 of the robot hand 100, and the flat portion 36b of the unit base 36 is held between the side plates 37 and 38 by the frictional force. It has a structure.
  • the flat part 36b of the unit base 36 has the first screw moving element 9 and the second screw moving element 11 that translate parallelly below the sensor cable 39 drawn from the sensor board unit 23, and the first screw shaft 1 that rotates.
  • the torsion joint 5 and the second screw shaft 2 are prevented from coming into contact with each other.
  • a tunnel 47 is formed in the flat portion 36b of the unit base 36 provided with the sensor substrate unit 23, and two long screw holes 48 are formed.
  • the second encoder board 24 provided on the support portion 36 c of the unit base 36 and the second encoder boards 25 and 26 provided on the sensor board unit 23 are connected by a signal cable (not shown) passed through the tunnel 47. .
  • the sensor board unit 23 is fixed to the board mounting seat 49 (see FIG. 1) of the side plate 7 by two screws (not shown) inserted through the two long screw holes 48.
  • the adjustment of the gap g between the second rotary disk 21 and the second encoder substrate 24 is performed by shifting the screw within the long screw hole 48. Since the edge 36 a of the unit base 36 is pressed against the side plate 37 and the side plate 38, the sensor substrate unit 23 moves only in the surface direction of the side plates 37 and 38. For this reason, the adjustment work of the gap g is easy.
  • FIG. 5A and FIG. 5B show an example of the configuration of the torsion joint 5.
  • a first screw flange 41 and a first screw boss 42 are provided at the inner end of the first screw shaft 1, and similarly, a second screw flange is provided at the inner end of the second screw shaft 2.
  • 43 and a second screw boss 44 are provided.
  • a slight gap is provided between the first screw boss 42 of the first screw shaft 1 and the second screw boss 44 of the second screw shaft 2 that are arranged to face each other.
  • a torsion spring 45 (an example of an elastic connecting member) is disposed between the first screw flange 41 and the second screw flange 43 so as to cover the outer periphery of the first screw boss 42 and the second screw boss 44.
  • the torsion spring 45 has elasticity in the torsion direction around the axis AX and connects the first screw shaft 1 and the second screw shaft 2.
  • the torsion spring 45 is a spring configured to receive a torsional moment around the spring axis and generate a bending stress in the spring material.
  • the inner diameter of the torsion spring 45 is slightly larger than the outer diameters of the first screw boss 42 and the second screw boss 44.
  • spring arms 45a and 45b are provided by extension members made of a spring material when the spring is molded.
  • the torsion spring 45 is configured such that the spring arms 45a and 45b are inserted into the concave grooves 41a and 43a provided in the first screw flange 41 and the second screw flange 43, respectively. Fixed to.
  • the elastic connecting member that connects the first screw shaft 1 and the second screw shaft 2 is not limited to the torsion spring.
  • a member having elasticity in the twisting direction such as a torsion bar may be used.
  • a torsion spring is used for convenience of explanation.
  • FIG. 6 shows a state during assembly of the robot hand 100 of FIG. Specifically, FIG. 6 shows the first screw shaft 1, the second screw shaft 2, the bearings 3 and 4, the torsion joint 5, the mover 9, and the hand base 50 to which the linear guides 12 and 13 are attached. 11, the side plates 6 and 7 and the side plates 37 and 38 are assembled, and after the second light source 22 and the second rotating disk 21 are attached thereto, the sensor substrate unit 23 is assembled. In this assembled state, the gap g between the second rotary disk 21 and the second encoder board 24 is adjusted. This adjustment operation can be easily performed because the side plate 17 on one side of the boundary line 40 and the side plate 33 on the one side of the boundary line 51 are not assembled.
  • the assembly work is facilitated.
  • the attachment of the side plate 33, the canopy 52, and the claw members 34 and 35 is an operation after adjusting the gap g.
  • the second rotating disk 21, the second light source 22, and the second encoder board 24 are covered with a protective cover (not shown) during the final assembly process.
  • the robot hand 100 is force-controlled by the control device 60.
  • An example of the functional configuration of the control device 60 is shown in FIG. As shown in FIG. 7, the control device 60 includes a twist amount detection unit 61, a gripping force calculation unit 62, a parameter recording unit 63, a current control unit 64, and a subtractor 65.
  • the twist amount detector 61 is based on the rotational position of the first screw shaft 1 input from the first position detector 27A and the rotational position of the second screw shaft 2 input from the second position detector 27B. A twist amount generated between the first screw shaft 1 and the second screw shaft 2, that is, a positional deviation (phase difference) between both rotational positions is calculated, and the calculated twist amount is output to the gripping force calculation unit 62.
  • the gripping force calculation unit 62 calculates and calculates the gripping force of the workpiece by the claw members 34 and 35 based on the twist amount calculated by the twist amount detection unit 61 and the parameters recorded in the parameter recording unit 63. The calculated value of the gripping force is output to the subtracter 65.
  • a plurality of parameters including constants related to the elasticity of the torsion spring 45 are recorded.
  • the plurality of parameters include, for example, the spring constant of the torsion spring 45, the screw pitch and screw diameter of the first screw shaft 1, the screw pitch and screw diameter of the second screw shaft 2, and the like.
  • the subtractor 65 subtracts the gripping force calculation value calculated by the gripping force calculation unit 62 from a gripping force command value (force command) set in advance (or input from a host controller not shown). The deviation of the gripping force is output to the current control unit 64.
  • the current control unit 64 controls the current of the motor 18 based on the deviation of the gripping force input from the subtractor 65 and controls the rotational torque of the motor 18. Thereby, the gripping force by the first claw member 34 and the second claw member 35 of the robot hand 100 is controlled.
  • the control device 60 applies constant thrust to the first screw moving element 9 and the second screw moving element 11 by performing constant torque control in which the rotational torque of the motor 18 is substantially constant, and thereby the first claw member 34 and the second claw member 34 and the second claw member 34.
  • the gripping force by the claw member 35 can be made substantially constant.
  • the rotational torque of the motor 18 may be varied, and the gripping force of the robot hand 100 may be varied according to the situation.
  • processing by the twist amount detection unit 61, the gripping force calculation unit 62, and the parameter recording unit 63 of the control device 60 is not limited to the example of sharing of these processes, and is processed by, for example, fewer processing units. Or may be processed by four or more processing units that are further subdivided.
  • the robot hand 100 includes the first screw shaft 1 and the second screw shaft 2, and the first screw shaft 1 that moves in the axial direction by the rotation of the first screw shaft 1 and the second screw shaft 2.
  • the claw member 34 and the second claw member 35, the torsion spring 45 that connects the first screw shaft 1 and the second screw shaft 2, and the motor 18 are provided.
  • the first screw shaft 1 and the second screw shaft 2 are separated from each other, and are connected by a torsion spring 45 having elasticity in the torsion direction around the axis AX, so that the first claw member 34 and the second claw member 35 When the workpiece is gripped, the torsion spring 45 is deformed in the twisting direction according to the gripping force.
  • the torque of the motor 18 is controlled based on the amount of twist and the force of the robot hand 100 is controlled. Is possible. For this reason, a force sensor for detecting a gripping force is not required, and force control can be performed with a simple configuration.
  • the first position detector 27A for detecting the rotational position of the first screw shaft 1 and the second screw When two position detectors, the second position detector 27B that detects the rotational position of the shaft 2, are used, the positional deviation between the rotational position of the first screw shaft 1 and the rotational position of the second screw shaft 2 is determined. Since the twist amount can be detected based on this, the detection accuracy of the twist amount can be improved.
  • the rotational position of the position detector of the motor 18 and the screw shaft can be changed.
  • the position detector can be shared. Thereby, the number of parts can be reduced and it can be set as a simpler structure. Further, space saving (miniaturization) and cost reduction can be achieved.
  • the position detection accuracy can be improved and the detection signal can be digitally output.
  • the signal processing at is easy.
  • the first position detector 27A is a first encoder having a first rotary disk 28, a first light source 29, and first encoder boards 30 to 32
  • the second position detector 27B is
  • the following effects are obtained. That is, the same type of sensor can be used for the first position detector 27A and the second position detector 27B, and only one type of sensor power source, cable, etc. is required, and the configuration can be further simplified.
  • the second encoder board of the second position detector 27B (specifically, the two boards 25, 26 excluding the board 24 of the second encoder boards 24, 25, 26) is the second encoder board.
  • the following effects are obtained. That is, by unitizing the second encoder boards 25 and 26 in this way, the position of the sensor board unit 23 can be easily adjusted, and the operation of adjusting the gap g between the second rotary disk 21 and the second encoder board 24 is performed. Becomes easy.
  • the driving pulley 19, the timing belt 20, and the driven pulley 16 connected to the output shaft 18a are used as a mechanism for transmitting the rotational torque of the motor 18 to the first screw shaft 1, the motor 18 Can be arranged in parallel with the first screw shaft 1, and the size of the robot hand 100 in the axial direction can be reduced. Further, when the diameters of the drive pulley 19 and the driven pulley 16 are made equal, the output shaft 18a of the motor 18 and the first screw shaft 1 have the same rotation speed. Therefore, the rotational position of the first screw shaft 1 can be accurately detected by the first position detector 27A provided in the motor 18.
  • the elastic connecting member when used as an elastic connecting member for connecting the first screw shaft 1 and the second screw shaft 2, the elastic connecting member can be reduced in weight. Moreover, the fixing structure with each screw shaft 1 and 2 can be simplified.
  • the control device 60 has the parameter recording unit 63
  • the following effects are obtained. That is, for example, when the parts such as the first screw shaft 1, the second screw shaft 2, and the torsion spring 45 are changed according to the specifications required for the robot hand 100, the parameters are recorded in the parameter recording unit 63.
  • the parameter By changing the parameter to an appropriate value, it becomes possible to flexibly cope with the required specifications. Therefore, the degree of freedom in design can be improved.

Abstract

[Problem] To make it possible to control the force of a robot hand using a simple configuration. [Solution] A robot hand (100) has: a first screw axle (1); a second screw axle (2) arranged substantially on the same axis as the first screw axle (1), the second screw axle (2) having thread grooves in the direction opposite that of the thread grooves of the first screw axle (1); a first hook member (34) that moves in the axis direction due to the rotation of the first screw axle (1); a second hook member (35) that moves in the axis direction due to the rotation of the second screw axle (2); a torsion spring (45) having elasticity in the torsion direction about the axis and connecting the first screw axle (1) and the second screw axle (2); a motor (18) provided with an output axle (18a) connected to at least one of the first screw axle (1) and the second screw axle (2) so as to enable transmission of rotational drive force; a first position detection unit (27A) configured so as to detect the rotational position of the first screw axle (1); and a second position detection unit (27B) configured so as to detect the rotational position of the second screw axle (2).

Description

ロボットハンド、ロボットハンドの制御装置、ロボットハンドの制御方法Robot hand, robot hand control device, and robot hand control method
 開示の実施形態は、ロボットハンド、ロボットハンドの制御装置、ロボットハンドの制御方法に関する。 The disclosed embodiment relates to a robot hand, a robot hand control device, and a robot hand control method.
 特許文献1には、3本の指を開閉可能に備え、各指が各々エンコーダ付モータによって独立に駆動されるロボットハンドが記載されている。各指の回転角度はエンコーダによって測定され、各指の関節部に作用するトルクはトルクセンサによって測定される。 Patent Document 1 describes a robot hand that has three fingers that can be opened and closed, and each finger is independently driven by a motor with an encoder. The rotation angle of each finger is measured by an encoder, and the torque acting on the joint portion of each finger is measured by a torque sensor.
特開平6-335886号公報(第3図)JP-A-6-335886 (FIG. 3)
 上記従来技術のロボットハンドは、力制御にモータのエンコーダとトルクセンサの2種類のセンサを使用するので、センサ電源やケーブルを2種類用意する必要がある等、構成が複雑化するという課題があった。 The robot hand of the above prior art uses two types of sensors, a motor encoder and a torque sensor, for force control, and thus there is a problem that the configuration becomes complicated, for example, it is necessary to prepare two types of sensor power supply and cable. It was.
 本発明はこのような問題点に鑑みてなされたものであり、簡易な構成で力制御を行うことができるロボットハンド、ロボットハンドの制御装置、ロボットハンドの制御方法を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a robot hand, a robot hand control device, and a robot hand control method capable of performing force control with a simple configuration. .
 上記課題を解決するため、本発明の一の観点によれば、第1ねじ軸と、前記第1ねじ軸と実質的に同一軸心上に配置され、前記第1ねじ軸とねじ溝の向きが逆向きである第2ねじ軸と、前記第1ねじ軸の回転により前記軸心方向に移動する第1爪部材と、前記第2ねじ軸の回転により前記軸心方向に移動する第2爪部材と、前記軸心周りのねじれ方向に弾性を有し、前記第1ねじ軸と前記第2ねじ軸とを連結する弾性連結部材と、前記第1ねじ軸及び前記第2ねじ軸の少なくとも一方に回転駆動力を伝達可能に連結された出力軸を備えたモータと、前記第1ねじ軸と前記第2ねじ軸との間に生じるねじれ量を検出する検出手段と、を有する、ロボットハンドが適用される。 In order to solve the above-described problem, according to one aspect of the present invention, the first screw shaft and the first screw shaft are disposed on substantially the same axis, and the first screw shaft and the direction of the screw groove are arranged. A second screw shaft that is in the opposite direction, a first claw member that moves in the axial direction by rotation of the first screw shaft, and a second claw that moves in the axial direction by rotation of the second screw shaft A member, an elastic connecting member having elasticity in a torsional direction around the axis, and connecting the first screw shaft and the second screw shaft; and at least one of the first screw shaft and the second screw shaft A robot hand comprising: a motor having an output shaft coupled to be capable of transmitting a rotational driving force; and a detecting means for detecting a torsion amount generated between the first screw shaft and the second screw shaft. Applied.
 また、本発明の別の観点によれば、第1ねじ軸と、前記第1ねじ軸と実質的に同一軸心上に配置され、前記第1ねじ軸とねじ溝の向きが逆向きである第2ねじ軸と、前記第1ねじ軸の回転により前記軸心方向に移動する第1爪部材と、前記第2ねじ軸の回転により前記軸心方向に移動する第2爪部材と、前記軸心周りのねじれ方向に弾性を有し、前記第1ねじ軸と前記第2ねじ軸とを連結する弾性連結部材と、前記第1ねじ軸及び前記第2ねじ軸の少なくとも一方に回転駆動力を伝達可能に連結された出力軸を備えたモータと、を有するロボットハンドの力制御を行うロボットハンドの制御装置であって、前記第1ねじ軸と前記第2ねじ軸との間に生じるねじれ量を検出するように構成されたねじれ量検出部と、前記ねじれ量検出部により検出された前記ねじれ量に基づいて前記第1爪部材及び前記第2爪部材による把持力を算出するように構成された把持力算出部と、を有する、ロボットハンドの制御装置が適用される。 According to another aspect of the present invention, the first screw shaft and the first screw shaft are disposed substantially on the same axis, and the first screw shaft and the screw groove are opposite in direction. A second claw member that moves in the axial direction by rotation of the first screw shaft; a second claw member that moves in the axial direction by rotation of the second screw shaft; and the shaft An elastic connecting member that has elasticity in a torsional direction around the center and connects the first screw shaft and the second screw shaft; and a rotational driving force on at least one of the first screw shaft and the second screw shaft. A robot hand control device for controlling the force of a robot hand having an output shaft coupled so as to be able to transmit, the amount of twist occurring between the first screw shaft and the second screw shaft A torsion amount detection unit configured to detect Having a grip force calculating section configured to calculate a gripping force by the first pawl member and the second pawl member on the basis of the torsion amount issued, the control unit of the robot hand is applied.
 また、本発明のさらに別の観点によれば、第1ねじ軸と、前記第1ねじ軸と実質的に同一軸心上に配置され、前記第1ねじ軸とねじ溝の向きが逆向きである第2ねじ軸と、前記第1ねじ軸の回転により前記軸心方向に移動する第1爪部材と、前記第2ねじ軸の回転により前記軸心方向に移動する第2爪部材と、前記軸心周りのねじれ方向に弾性を有し、前記第1ねじ軸と前記第2ねじ軸とを連結する弾性連結部材と、前記第1ねじ軸及び前記第2ねじ軸の少なくとも一方に回転駆動力を伝達可能に連結された出力軸を備えたモータと、を有するロボットハンドの力制御を行うロボットハンドの制御方法であって、前記第1ねじ軸と前記第2ねじ軸との間に生じるねじれ量を検出することと、前記ねじれ量に基づいて前記第1爪部材及び前記第2爪部材による把持力を算出すること、を有する、ロボットハンドの制御方法が適用される。 According to still another aspect of the present invention, the first screw shaft and the first screw shaft are disposed substantially on the same axis, and the first screw shaft and the screw groove are in opposite directions. A second screw shaft, a first claw member that moves in the axial direction by rotation of the first screw shaft, a second claw member that moves in the axial direction by rotation of the second screw shaft, An elastic coupling member that has elasticity in a torsional direction around an axis and connects the first screw shaft and the second screw shaft; and a rotational driving force on at least one of the first screw shaft and the second screw shaft And a motor having an output shaft coupled so as to be able to transmit the force, and a robot hand control method for controlling the force of the robot hand, wherein the twist generated between the first screw shaft and the second screw shaft Detecting the amount, and based on the twist amount, the first claw member and the Calculating the gripping force by the second claw member has a control method of the robot hand is applied.
 本発明によれば、簡易な構成でロボットハンドの力制御を行うことができる。 According to the present invention, the force control of the robot hand can be performed with a simple configuration.
実施形態に係るロボットハンドの構成の一例を表す断面図である。It is sectional drawing showing an example of a structure of the robot hand which concerns on embodiment. 図1のB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 実施形態に係るロボットハンドの構成の一例を表す側面図である。It is a side view showing an example of composition of a robot hand concerning an embodiment. センサ基板ユニットの構成の一例を表す平面図である。It is a top view showing an example of composition of a sensor substrate unit. センサ基板ユニットの構成の一例を表す側面図である。It is a side view showing an example of composition of a sensor substrate unit. ねじりジョイントの構成の一例を表す断面図である。It is sectional drawing showing an example of a structure of a torsion joint. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 実施形態に係るロボットハンドの組立途中の構成の一例を表す説明図である。It is explanatory drawing showing an example of the structure in the middle of the assembly of the robot hand which concerns on embodiment. 制御装置の機能構成の一例を表すブロック図である。It is a block diagram showing an example of a functional structure of a control apparatus.
 以下、一実施の形態について図面を参照しつつ説明する。 Hereinafter, an embodiment will be described with reference to the drawings.
 <1.ロボットハンドの構成>
 図1~図6を用いて、本実施形態に係るロボットハンド100の構成について説明する。ロボットハンド100は2つの爪部材を有しており、これらを互いに遠近するように動作させることにより、例えばワークの把持及び解放等を行う。
<1. Configuration of Robot Hand>
The configuration of the robot hand 100 according to the present embodiment will be described with reference to FIGS. The robot hand 100 has two claw members, and grips and releases the workpiece, for example, by operating them so as to move away from each other.
  (1-1.ねじ軸及び爪部材)
 図1に示すように、ロボットハンド100は、第1ねじ軸1及び第2ねじ軸2と、第1ねじ軸1の回転により軸心方向(軸心AXに平行な方向)に移動する第1爪部材34と、第2ねじ軸2の回転により軸心方向に移動する第2爪部材35とを有する。
(1-1. Screw shaft and claw member)
As shown in FIG. 1, the robot hand 100 includes a first screw shaft 1, a second screw shaft 2, and a first screw moving in an axial direction (a direction parallel to the axial center AX) by the rotation of the first screw shaft 1. The claw member 34 and the second claw member 35 that moves in the axial direction by the rotation of the second screw shaft 2 are provided.
 第1ねじ軸1及び第2ねじ軸2は、外周にねじが形成されたねじ軸であり、例えばボールねじ、あるいはすべりねじ等が用いられる。これら第1ねじ軸1及び第2ねじ軸2は軸心AXに対し実質的に同一軸心上となるように配置されている。なお、ここでいう「実質的に同一軸心上」とは、厳密な意味での同一軸心上ではなく、設計上、製造上の公差、誤差による軸心のずれや傾斜が許容される、という意味である。第1ねじ軸1及び第2ねじ軸2は、後述する図5Aに示すように、それぞれのねじ溝1a及びねじ溝2aの向きが互いに逆向きである。つまり、例えば第1ねじ軸1が右ねじである場合、第2ねじ軸2は左ねじとなる。本実施形態では、説明の便宜上、第1ねじ軸1と第2ねじ軸2とが、そのねじピッチ、ねじ径が同じである場合を一例として説明するが、これに限定されるものではない。 The first screw shaft 1 and the second screw shaft 2 are screw shafts having screws formed on the outer periphery, and for example, a ball screw or a slide screw is used. The first screw shaft 1 and the second screw shaft 2 are arranged so as to be substantially on the same axis with respect to the axis AX. In addition, “substantially on the same axis” here is not on the same axis in a strict sense, but on design, manufacturing tolerances, deviation or inclination of the axis due to error is allowed, It means that. In the first screw shaft 1 and the second screw shaft 2, as shown in FIG. 5A described later, the directions of the screw grooves 1a and the screw grooves 2a are opposite to each other. That is, for example, when the first screw shaft 1 is a right-hand screw, the second screw shaft 2 is a left-hand screw. In the present embodiment, for convenience of explanation, the case where the first screw shaft 1 and the second screw shaft 2 have the same screw pitch and screw diameter will be described as an example, but the present invention is not limited to this.
 第1ねじ軸1の外側の端部と第2ねじ軸2の外側の端部には、軸受3,4がそれぞれ取り付けられている。軸受3,4としては、例えば端列アンギュラ軸受等が使用されるが、これに限定されるものではない。軸受3,4は、それぞれのアウターレースがロボットハンド100の側板6及び側板7に接着などにより固定されている。第1ねじ軸1及び第2ねじ軸2は、軸受3,4を介して側板6及び側板7に回転自在に支持されている。 Bearings 3 and 4 are respectively attached to the outer end of the first screw shaft 1 and the outer end of the second screw shaft 2. As the bearings 3 and 4, for example, end-row angular bearings are used, but are not limited thereto. The outer races of the bearings 3 and 4 are fixed to the side plate 6 and the side plate 7 of the robot hand 100 by bonding or the like. The first screw shaft 1 and the second screw shaft 2 are rotatably supported by the side plate 6 and the side plate 7 via bearings 3 and 4.
 第1ねじ軸1の内側の端部と第2ねじ軸2の内側の端部は、ねじりジョイント5により連結される。このねじりジョイント5の詳細については後述する。 The inner end of the first screw shaft 1 and the inner end of the second screw shaft 2 are connected by a torsion joint 5. Details of the torsion joint 5 will be described later.
 第1ねじ軸1及び第2ねじ軸2には、ネジナット8及びネジナット10がそれぞれねじ溝を介して装着される。また、ネジナット8及びネジナット10には、第1ねじ移動子9及び第2ねじ移動子11がそれぞれ固定される。さらに、第1ねじ移動子9及び第2ねじ移動子11には、第1爪部材34及び第2爪部材35がそれぞれ固定される。これにより、第1爪部材34及び第2爪部材35は、第1ねじ移動子9及び第2ねじ移動子11並びにネジナット8及びネジナット10を介してそれぞれ第1ねじ軸1及び第2ねじ軸2に装着される。 A screw nut 8 and a screw nut 10 are attached to the first screw shaft 1 and the second screw shaft 2 via screw grooves, respectively. The first screw mover 9 and the second screw mover 11 are fixed to the screw nut 8 and the screw nut 10, respectively. Further, the first claw member 34 and the second claw member 35 are fixed to the first screw mover 9 and the second screw mover 11, respectively. Thereby, the 1st claw member 34 and the 2nd claw member 35 are the 1st screw shaft 1 and the 2nd screw shaft 2 via the 1st screw mover 9 and the 2nd screw mover 11, and the screw nut 8 and the screw nut 10, respectively. It is attached to.
 図1及び図2に示すように、ロボットハンド100のハンドベース50上には、軸心AXの方向に略沿ってリニアガイド12,13が略平行に設けられている。第1ねじ移動子9は、リニアガイド12,13上の2個のリニアナット14,14に支えられ、第2ねじ移動子11は、リニアガイド12,13上の2個のリニアナット15,15に支えられている。第1ねじ移動子9と第2ねじ移動子11とは、第1ねじ軸1及び第2ねじ軸2の回転により、リニアガイド12,13に沿って互いに遠近する方向に移動する。 As shown in FIGS. 1 and 2, linear guides 12 and 13 are provided on the hand base 50 of the robot hand 100 substantially in parallel along the direction of the axis AX. The first screw mover 9 is supported by two linear nuts 14 and 14 on the linear guides 12 and 13, and the second screw mover 11 is supported by two linear nuts 15 and 15 on the linear guides 12 and 13. Supported by The first screw moving element 9 and the second screw moving element 11 move along the linear guides 12 and 13 in the directions approaching each other by the rotation of the first screw shaft 1 and the second screw shaft 2.
  (1-2.モータ及びトルク伝達機構)
 図1に示すように、ロボットハンド100は、出力軸18aを備えたモータ18を有する。モータ18は、ロボットハンド100の側板17により支持されている。図1及び図3に示すように、ロボットハンド100は、モータ18の出力軸18aに連結された駆動プーリ19と、第1ねじ軸1の端部に連結された従動プーリ16と、駆動プーリ19と従動プーリ16とに架け渡された無端のタイミングベルト20(無端ベルトの一例)とを有する。第1ねじ軸1を支持する側板6とモータ18を支持する側板17は、境線40にて分離できる構造となっている。本実施形態では、説明の便宜上、従動プーリ16が駆動プーリ19と径が等しく、同じ歯数を有する場合を一例として説明するが、これに限定されるものではない。また、図示は省略するが、従動プーリ16、駆動プーリ19及びタイミングベルト20は、組立最終工程時に保護カバーにより覆われる。
(1-2. Motor and torque transmission mechanism)
As shown in FIG. 1, the robot hand 100 includes a motor 18 having an output shaft 18a. The motor 18 is supported by the side plate 17 of the robot hand 100. As shown in FIGS. 1 and 3, the robot hand 100 includes a drive pulley 19 connected to the output shaft 18 a of the motor 18, a driven pulley 16 connected to the end of the first screw shaft 1, and a drive pulley 19. And an endless timing belt 20 (an example of an endless belt) bridged around the driven pulley 16. The side plate 6 that supports the first screw shaft 1 and the side plate 17 that supports the motor 18 have a structure that can be separated by a boundary 40. In the present embodiment, for convenience of explanation, the case where the driven pulley 16 has the same diameter as the drive pulley 19 and the same number of teeth will be described as an example, but the present invention is not limited to this. Although not shown, the driven pulley 16, the drive pulley 19, and the timing belt 20 are covered with a protective cover during the final assembly process.
 モータ18により駆動プーリ19が回転されると、タイミングベルト20を介して従動プーリ16に回転トルク及び回転方向が伝えられる。これにより、第1ねじ軸1及び第2ねじ軸2が回転し、第1爪部材34及び第2爪部材35が互いに遠近するように動作する。これにより、ロボットハンド100は、爪部材34,35によるワークの把持及び解放を行うことが可能である。 When the drive pulley 19 is rotated by the motor 18, the rotational torque and the rotation direction are transmitted to the driven pulley 16 through the timing belt 20. Thereby, the 1st screw shaft 1 and the 2nd screw shaft 2 rotate, and it operates so that the 1st claw member 34 and the 2nd claw member 35 may come close to each other. Thereby, the robot hand 100 can hold and release the workpiece by the claw members 34 and 35.
 なお、モータ18から第1ねじ軸1及び第2ねじ軸2へのトルク伝達機構は、上記のようにプーリ及び無端ベルトを用いたものに限定されるものではない。例えば、複数の歯車を用いたギア機構等、その他のトルク伝達機構としてもよい。また、本実施形態では、モータ18の回転トルクが第1ねじ軸1に伝達される構成としたが、これに限定されるものではなく、第2ねじ軸2に伝達される構成としてもよいし、第1ねじ軸1と第2ねじ軸2の両方に伝達される構成としてもよい。 In addition, the torque transmission mechanism from the motor 18 to the first screw shaft 1 and the second screw shaft 2 is not limited to the one using the pulley and the endless belt as described above. For example, other torque transmission mechanisms such as a gear mechanism using a plurality of gears may be used. In the present embodiment, the rotational torque of the motor 18 is transmitted to the first screw shaft 1. However, the present invention is not limited to this, and may be configured to be transmitted to the second screw shaft 2. The first screw shaft 1 and the second screw shaft 2 may be transmitted to both.
  (1-3.ねじ軸の回転位置を検出する位置検出器)
 第1位置検出器27A(検出手段の一例)は、モータ18の回転位置を検出することによって、モータ18により駆動される第1ねじ軸1の回転位置を検出する。本実施形態では、第1位置検出器27Aがモータ18の位置検出器であり、エンコーダである場合を一例として説明するが、これに限定されるものではなく、例えばコイルにより回転角度を検出するレゾルバ等を使用することもできる。
(1-3. Position detector that detects the rotational position of the screw shaft)
The first position detector 27 </ b> A (an example of a detection unit) detects the rotational position of the first screw shaft 1 driven by the motor 18 by detecting the rotational position of the motor 18. In the present embodiment, the case where the first position detector 27A is a position detector of the motor 18 and is an encoder will be described as an example. However, the present invention is not limited to this. For example, a resolver that detects a rotation angle by a coil is used. Etc. can also be used.
 第1位置検出器27Aは、モータ18の出力軸18aの駆動プーリ19とは反対側の端部に連結された第1回転ディスク28と、第1回転ディスク28に光を出射するように構成された、例えばLEDからなる第1光源29と、第1エンコーダ基板30,31,32と、を有する。この例では、第1回転ディスク28、第1光源29、及び第1エンコーダ基板30~32は、エンコーダユニットとしてユニット化されているが、ユニット化されていないものを使用してもよい。第1位置検出器27Aは、第1光源29から第1回転ディスク28に光を照射し、第1回転ディスク28を透過した光を受光基板である第1エンコーダ基板30で受光し、受光した受光パターンからモータ18の回転位置、すなわち第1ねじ軸1の回転位置を検出する。 The first position detector 27 </ b> A is configured to emit light to the first rotating disk 28 and the first rotating disk 28 connected to the end of the output shaft 18 a of the motor 18 opposite to the drive pulley 19. The first light source 29 made of, for example, an LED, and the first encoder boards 30, 31, 32 are included. In this example, the first rotating disk 28, the first light source 29, and the first encoder boards 30 to 32 are unitized as encoder units, but those not unitized may be used. The first position detector 27A irradiates the first rotating disk 28 with light from the first light source 29, receives the light transmitted through the first rotating disk 28 with the first encoder substrate 30 which is a light receiving substrate, and receives the received light. The rotational position of the motor 18, that is, the rotational position of the first screw shaft 1 is detected from the pattern.
 なお、第1位置検出器27Aは、モータ18の位置検出器に限定されるものではない。例えば、第2位置検出器27Bと同様に、第1位置検出器として第1ねじ軸1の端部に設けられた位置検出器を用いてもよい。但し、本実施形態では、説明の便宜上、第1位置検出器27Aがモータ18の位置検出器である場合について説明する。 The first position detector 27A is not limited to the position detector of the motor 18. For example, as with the second position detector 27B, a position detector provided at the end of the first screw shaft 1 may be used as the first position detector. However, in this embodiment, the case where the 1st position detector 27A is a position detector of the motor 18 is demonstrated for convenience of explanation.
 第2位置検出器27B(検出手段の一例)は、第1ねじ軸1によってねじりジョイント5を介して回転される第2ねじ軸2の回転位置を検出する。本実施形態では、第2位置検出器27Bがエンコーダである場合を一例として説明するが、これに限定されるものではなく、例えばレゾルバ等を使用することもできる。 The second position detector 27B (an example of a detection unit) detects the rotational position of the second screw shaft 2 that is rotated by the first screw shaft 1 via the torsion joint 5. In the present embodiment, the case where the second position detector 27B is an encoder will be described as an example. However, the present invention is not limited to this. For example, a resolver or the like can be used.
 第2位置検出器27Bは、第2ねじ軸2に連結された第2回転ディスク21と、第2回転ディスク21に光を出射するように構成された、例えばLEDからなる第2光源22と、第2エンコーダ基板24,25,26と、を有する。第2光源22は、ロボットハンド100の側板7に取り付けられ、第2回転ディスク21は、側板7の外方に延出した第2ねじ軸2の端部に取り付けられている。この例では、第2エンコーダ基板24,25,26のうち受光基板である第2エンコーダ基板24除く2つの第2エンコーダ基板25,26は、センサ基板ユニット23(基板ユニットの一例)として構成され、第2回転ディスク21と分離して設けられる。受光基板である第2エンコーダ基板24は、側板7の外方においてセンサ基板ユニット23のユニットベース36から軸心AX方向に折曲した支持部36cの内側に設けられる。 The second position detector 27B includes a second rotating disk 21 connected to the second screw shaft 2, a second light source 22 made of, for example, an LED configured to emit light to the second rotating disk 21, and Second encoder boards 24, 25, 26. The second light source 22 is attached to the side plate 7 of the robot hand 100, and the second rotating disk 21 is attached to the end of the second screw shaft 2 extending outward from the side plate 7. In this example, of the second encoder boards 24, 25 and 26, two second encoder boards 25 and 26 excluding the second encoder board 24 which is a light receiving board are configured as a sensor board unit 23 (an example of a board unit), It is provided separately from the second rotating disk 21. The second encoder substrate 24 that is a light receiving substrate is provided inside the support portion 36 c that is bent in the axial center AX direction from the unit base 36 of the sensor substrate unit 23 outside the side plate 7.
 なお、第2位置検出器27Bの構成態様は上記に限定されるものではない。例えば、第1位置検出器27Aと同様に第2位置検出器27Bをエンコーダユニットとしてユニット化し、第2ねじ軸2の端部に取り付けてもよい。但し、本実施形態のようにセンサ基板ユニット23とそれ以外とを分離して配置することで、側板7からの出っ張りを少なくし、且つ、第2回転ディスク21と受光基板である第2エンコーダ基板24との間のギャップgの調整が容易となる。また、第2エンコーダ基板25,26は基板ユニットとしてユニット化されていなくてもよい。 Note that the configuration of the second position detector 27B is not limited to the above. For example, similarly to the first position detector 27A, the second position detector 27B may be unitized as an encoder unit and attached to the end of the second screw shaft 2. However, as in the present embodiment, the sensor substrate unit 23 and the others are arranged separately to reduce the protrusion from the side plate 7, and the second rotary disk 21 and the second encoder substrate which is the light receiving substrate. It is easy to adjust the gap g between them. The second encoder boards 25 and 26 may not be unitized as a board unit.
 本実施形態では、第2位置検出器27Bの第2回転ディスク21、第2光源22、第2エンコーダ基板24,25,26は、それぞれ第1位置検出器27Aの第1回転ディスク28、第1光源29、第1エンコーダ基板30,31,32と、まったく同じものを用いている。これにより、第1位置検出器27Aと第2位置検出器27Bに同種のセンサを使用することができ、センサ電源やケーブルは1種類で済む。したがって、構成を簡易化できる。また、同種のセンサを用いることにより、電源電圧、周波数、電流値を同じにできるので、第1位置検出器27Aと第2位置検出器27Bのケーブルを近接して配線しても、ノイズ干渉の懸念がない。さらに、両検出器27A,27Bの部品を共有化でき、低コスト化できる。但し、上記に限定されるものではなく、第1位置検出器27Aと第2位置検出器27Bとを異なるセンサとしてもよく、異なる部品を用いてもよい。 In the present embodiment, the second rotating disk 21, the second light source 22, and the second encoder boards 24, 25, and 26 of the second position detector 27B are the first rotating disk 28 and the first encoder of the first position detector 27A, respectively. The light source 29 and the first encoder boards 30, 31, 32 are exactly the same. As a result, the same type of sensor can be used for the first position detector 27A and the second position detector 27B, and only one type of sensor power supply or cable is required. Therefore, the configuration can be simplified. In addition, since the power supply voltage, frequency, and current value can be made the same by using the same type of sensor, even if the cables of the first position detector 27A and the second position detector 27B are arranged close to each other, noise interference is caused. There is no concern. Furthermore, the parts of both detectors 27A and 27B can be shared, and the cost can be reduced. However, the present invention is not limited to the above, and the first position detector 27A and the second position detector 27B may be different sensors, or different parts may be used.
 なお、第1位置検出器27A及び第2位置検出器27Bは、透過型エンコーダに限定されるものではない。例えば、第1位置検出器27A及び第2位置検出器27Bを、回転ディスクに対し光源と受光基板とが同じ側に配置される反射型エンコーダとしてもよい。但し、本実施形態では、説明の便宜上、第1位置検出器27A及び第2位置検出器27Bが透過型エンコーダである場合について説明する。 The first position detector 27A and the second position detector 27B are not limited to the transmissive encoder. For example, the first position detector 27A and the second position detector 27B may be reflective encoders in which the light source and the light receiving substrate are arranged on the same side with respect to the rotating disk. However, in this embodiment, the case where the 1st position detector 27A and the 2nd position detector 27B are transmission type encoders is demonstrated for convenience of explanation.
 また、第1ねじ軸1と第2ねじ軸2とのねじれ量を検出する手段は、第1ねじ軸1の回転位置を検出する第1位置検出器27Aと、第2ねじ軸2の回転位置を検出する第2位置検出器27Bとの、2つの位置検出器に限定されるものではない。例えば、単一の検出器でねじれ量が検出できる場合には、そのような検出器を用いてもよい。但し、本実施形態では、説明の便宜上、第1位置検出器27A及び第2位置検出器27Bの2つを用いてねじれ量を検出する場合について説明する。 The means for detecting the amount of twist between the first screw shaft 1 and the second screw shaft 2 includes a first position detector 27A for detecting the rotational position of the first screw shaft 1 and the rotational position of the second screw shaft 2. It is not limited to two position detectors, such as the second position detector 27B for detecting the. For example, when a twist amount can be detected with a single detector, such a detector may be used. However, in this embodiment, for convenience of explanation, a case will be described in which the amount of twist is detected using two of the first position detector 27A and the second position detector 27B.
  (1-4.センサ基板ユニット)
 図1及び図2に示すように、センサ基板ユニット23は、ユニットベース36上に設けられている。ユニットベース36は、例えば耐ノイズ性と絶縁性を有した材料で構成される。図2に示すように、ユニットベース36は、両エッジ36aがロボットハンド100の側板37,38の内側に押し付けられ、その摩擦力によりユニットベース36の平坦部36bが側板37,38の間に保持される構造となっている。ユニットベース36の平坦部36bは、センサ基板ユニット23から引き出されたセンサーケーブル39が垂れ下がり、下方で平行移動する第1ねじ移動子9と第2ねじ移動子11、及び回転する第1ねじ軸1、ねじりジョイント5、第2ねじ軸2に接触するのを防ぐ役割をしている。
(1-4. Sensor board unit)
As shown in FIGS. 1 and 2, the sensor substrate unit 23 is provided on the unit base 36. The unit base 36 is made of, for example, a material having noise resistance and insulation. As shown in FIG. 2, in the unit base 36, both edges 36a are pressed inside the side plates 37 and 38 of the robot hand 100, and the flat portion 36b of the unit base 36 is held between the side plates 37 and 38 by the frictional force. It has a structure. The flat part 36b of the unit base 36 has the first screw moving element 9 and the second screw moving element 11 that translate parallelly below the sensor cable 39 drawn from the sensor board unit 23, and the first screw shaft 1 that rotates. The torsion joint 5 and the second screw shaft 2 are prevented from coming into contact with each other.
 図4A及び図4Bに示すように、センサ基板ユニット23を設けたユニットベース36の平坦部36bには、トンネル47が形成されるとともに、2つの長ねじ穴48が成形されている。ユニットベース36の支持部36cに設けられた第2エンコーダ基板24と、センサ基板ユニット23に設けられた第2エンコーダ基板25及び26とは、トンネル47に通された図示しない信号ケーブルにより接続される。また、センサ基板ユニット23は、2つの長ねじ穴48に挿通された図示しない2個のねじにより、側板7の基板取付け座49(図1参照)に固定される。その際、第2回転ディスク21と第2エンコーダ基板24とのギャップgの調整は、ねじを長ねじ穴48内でずらすことにより行われる。ユニットベース36のエッジ36aは、側板37及び側板38に押し付けられた構成であるから、センサ基板ユニット23は側板37,38の面方向にしか移動しない。このため、ギャップgの調整作業は容易である。 As shown in FIGS. 4A and 4B, a tunnel 47 is formed in the flat portion 36b of the unit base 36 provided with the sensor substrate unit 23, and two long screw holes 48 are formed. The second encoder board 24 provided on the support portion 36 c of the unit base 36 and the second encoder boards 25 and 26 provided on the sensor board unit 23 are connected by a signal cable (not shown) passed through the tunnel 47. . The sensor board unit 23 is fixed to the board mounting seat 49 (see FIG. 1) of the side plate 7 by two screws (not shown) inserted through the two long screw holes 48. At that time, the adjustment of the gap g between the second rotary disk 21 and the second encoder substrate 24 is performed by shifting the screw within the long screw hole 48. Since the edge 36 a of the unit base 36 is pressed against the side plate 37 and the side plate 38, the sensor substrate unit 23 moves only in the surface direction of the side plates 37 and 38. For this reason, the adjustment work of the gap g is easy.
  (1-5.ねじりジョイント)
 図5A及び図5Bに、ねじりジョイント5の構成の一例を示す。図5Aに示すように、第1ねじ軸1の内側の端部に第1ねじフランジ41と第1ねじボス42が設けられ、同様に第2ねじ軸2の内側の端部に第2ねじフランジ43と第2ねじボス44が設けられている。互いに対向して配置された第1ねじ軸1の第1ねじボス42と第2ねじ軸2の第2ねじボス44との間には、わずかに隙間が設けられている。第1ねじフランジ41と第2ねじフランジ43との間には、第1ねじボス42と第2ねじボス44の外周を覆うようにねじりばね45(弾性連結部材の一例)が配置されている。ねじりばね45は、軸心AX周りのねじれ方向に弾性を有し、第1ねじ軸1と第2ねじ軸2とを連結する。このねじりばね45は、ばね軸周りにねじりモーメントを受け、ばね素材に曲げ応力が生じるように構成されたばねである。ねじりばね45の内径は、第1ねじボス42と第2ねじボス44の外径よりわずかに大きい。
(1-5. Torsion joint)
FIG. 5A and FIG. 5B show an example of the configuration of the torsion joint 5. As shown in FIG. 5A, a first screw flange 41 and a first screw boss 42 are provided at the inner end of the first screw shaft 1, and similarly, a second screw flange is provided at the inner end of the second screw shaft 2. 43 and a second screw boss 44 are provided. A slight gap is provided between the first screw boss 42 of the first screw shaft 1 and the second screw boss 44 of the second screw shaft 2 that are arranged to face each other. A torsion spring 45 (an example of an elastic connecting member) is disposed between the first screw flange 41 and the second screw flange 43 so as to cover the outer periphery of the first screw boss 42 and the second screw boss 44. The torsion spring 45 has elasticity in the torsion direction around the axis AX and connects the first screw shaft 1 and the second screw shaft 2. The torsion spring 45 is a spring configured to receive a torsional moment around the spring axis and generate a bending stress in the spring material. The inner diameter of the torsion spring 45 is slightly larger than the outer diameters of the first screw boss 42 and the second screw boss 44.
 ねじりばね45の両端には、ばねを成形するときにばね素材の延長部材によってばねアーム45a,45bが設けられている。ねじりばね45は、ばねアーム45a,45bが第1ねじフランジ41及び第2ねじフランジ43に設けられた凹溝41a,43aにそれぞれ挿入されることにより、第1ねじ軸1及び第2ねじ軸2に固定される。このようにねじりジョイント5を構成することによって、第1ねじ軸1の回転トルクはねじりばね45を介して第2ねじ軸2に伝達され、第1ねじ軸1及び第2ねじ軸2が同方向に回転される。 At both ends of the torsion spring 45, spring arms 45a and 45b are provided by extension members made of a spring material when the spring is molded. The torsion spring 45 is configured such that the spring arms 45a and 45b are inserted into the concave grooves 41a and 43a provided in the first screw flange 41 and the second screw flange 43, respectively. Fixed to. By configuring the torsion joint 5 in this way, the rotational torque of the first screw shaft 1 is transmitted to the second screw shaft 2 via the torsion spring 45, and the first screw shaft 1 and the second screw shaft 2 are in the same direction. To be rotated.
 なお、第1ねじ軸1と第2ねじ軸2とを連結する弾性連結部材は、ねじりばねに限定されるものではない。例えばトーションバー等、ねじれ方向に弾性を有する部材であればよい。但し、本実施形態では、説明の便宜上、ねじりばねを用いる場合について説明する。 Note that the elastic connecting member that connects the first screw shaft 1 and the second screw shaft 2 is not limited to the torsion spring. For example, a member having elasticity in the twisting direction such as a torsion bar may be used. However, in this embodiment, the case where a torsion spring is used is demonstrated for convenience of explanation.
  (1-6.ロボットハンドの組立手順)
 図6に、図1のロボットハンド100の組み立て途中の状態を示す。具体的には、図6は、リニアガイド12,13が取り付けられたハンドベース50を基準に、第1ねじ軸1、第2ねじ軸2、軸受3,4、ねじりジョイント5、移動子9,11、側板6,7、及び側板37,38が組み立てられ、これに第2光源22と第2回転ディスク21が取り付けられた後、センサ基板ユニット23が組み付けられた状態を示している。この組み立て状態において、第2回転ディスク21と第2エンコーダ基板24とのギャップgの調整が行われる。この調整作業は、境線40より一方側の側板17と境線51より一方側の側板33が組み立てられていないので、容易に行うことができる。すなわち、爪部材34,35を移動させる機構及びセンサ基板ユニット23の取り付けと、その後の作業である側板17に取り付けられるモータ18の取り付けとを分離できるので、組み立て作業が容易となる。側板33と天蓋52、爪部材34,35の取り付けは、ギャップgの調整後の作業となる。なお、第2回転ディスク21、第2光源22、第2エンコーダ基板24は、組立最終工程時に図示しない保護カバーにより覆われる。
(1-6. Robot hand assembly procedure)
FIG. 6 shows a state during assembly of the robot hand 100 of FIG. Specifically, FIG. 6 shows the first screw shaft 1, the second screw shaft 2, the bearings 3 and 4, the torsion joint 5, the mover 9, and the hand base 50 to which the linear guides 12 and 13 are attached. 11, the side plates 6 and 7 and the side plates 37 and 38 are assembled, and after the second light source 22 and the second rotating disk 21 are attached thereto, the sensor substrate unit 23 is assembled. In this assembled state, the gap g between the second rotary disk 21 and the second encoder board 24 is adjusted. This adjustment operation can be easily performed because the side plate 17 on one side of the boundary line 40 and the side plate 33 on the one side of the boundary line 51 are not assembled. That is, since the attachment of the mechanism for moving the claw members 34 and 35 and the sensor substrate unit 23 and the attachment of the motor 18 attached to the side plate 17 as the subsequent work can be separated, the assembly work is facilitated. The attachment of the side plate 33, the canopy 52, and the claw members 34 and 35 is an operation after adjusting the gap g. The second rotating disk 21, the second light source 22, and the second encoder board 24 are covered with a protective cover (not shown) during the final assembly process.
 <2.制御装置の機能構成>
 ロボットハンド100は、制御装置60により力制御される。この制御装置60の機能構成の一例を図7に示す。図7に示すように、制御装置60は、ねじれ量検出部61と、把持力算出部62と、パラメータ記録部63と、電流制御部64と、減算器65とを備える。
<2. Functional configuration of control device>
The robot hand 100 is force-controlled by the control device 60. An example of the functional configuration of the control device 60 is shown in FIG. As shown in FIG. 7, the control device 60 includes a twist amount detection unit 61, a gripping force calculation unit 62, a parameter recording unit 63, a current control unit 64, and a subtractor 65.
 ねじれ量検出部61は、第1位置検出器27Aから入力される第1ねじ軸1の回転位置と、第2位置検出器27Bから入力される第2ねじ軸2の回転位置とに基づいて、第1ねじ軸1と第2ねじ軸2との間に生じるねじれ量、すなわち両回転位置の位置偏差(位相差)を算出し、算出したねじれ量を把持力算出部62に出力する。 The twist amount detector 61 is based on the rotational position of the first screw shaft 1 input from the first position detector 27A and the rotational position of the second screw shaft 2 input from the second position detector 27B. A twist amount generated between the first screw shaft 1 and the second screw shaft 2, that is, a positional deviation (phase difference) between both rotational positions is calculated, and the calculated twist amount is output to the gripping force calculation unit 62.
 把持力算出部62は、ねじれ量検出部61により算出されたねじれ量と、パラメータ記録部63に記録されたパラメータとに基づいて、爪部材34,35によるワークの把持力を算出し、算出した把持力の算出値を減算器65に出力する。 The gripping force calculation unit 62 calculates and calculates the gripping force of the workpiece by the claw members 34 and 35 based on the twist amount calculated by the twist amount detection unit 61 and the parameters recorded in the parameter recording unit 63. The calculated value of the gripping force is output to the subtracter 65.
 パラメータ記録部63には、ねじりばね45の弾性に関わる定数を含む複数のパラメータが記録されている。複数のパラメータには、例えば、ねじりばね45のばね定数、第1ねじ軸1のねじピッチ及びねじ径、第2ねじ軸2のねじピッチ及びねじ径等が含まれる。 In the parameter recording unit 63, a plurality of parameters including constants related to the elasticity of the torsion spring 45 are recorded. The plurality of parameters include, for example, the spring constant of the torsion spring 45, the screw pitch and screw diameter of the first screw shaft 1, the screw pitch and screw diameter of the second screw shaft 2, and the like.
 減算器65は、予め設定された(あるいは図示しない上位コントローラより入力された)把持力の指令値(力指令)から、把持力算出部62により算出された把持力の算出値を減算し、生成した把持力の偏差を電流制御部64に出力する。 The subtractor 65 subtracts the gripping force calculation value calculated by the gripping force calculation unit 62 from a gripping force command value (force command) set in advance (or input from a host controller not shown). The deviation of the gripping force is output to the current control unit 64.
 電流制御部64は、減算器65より入力された把持力の偏差に基づいてモータ18の電流を制御し、モータ18の回転トルクを制御する。これにより、ロボットハンド100の第1爪部材34及び第2爪部材35による把持力が制御される。 The current control unit 64 controls the current of the motor 18 based on the deviation of the gripping force input from the subtractor 65 and controls the rotational torque of the motor 18. Thereby, the gripping force by the first claw member 34 and the second claw member 35 of the robot hand 100 is controlled.
 制御装置60は、モータ18の回転トルクを略一定とする定トルク制御を行うことにより、第1ねじ移動子9と第2ねじ移動子11に一定推力を働かせ、第1爪部材34及び第2爪部材35による把持力を略一定とすることができる。但し、モータ18の回転トルクを可変させ、ロボットハンド100の把持力を状況に応じて可変させてもよい。 The control device 60 applies constant thrust to the first screw moving element 9 and the second screw moving element 11 by performing constant torque control in which the rotational torque of the motor 18 is substantially constant, and thereby the first claw member 34 and the second claw member 34 and the second claw member 34. The gripping force by the claw member 35 can be made substantially constant. However, the rotational torque of the motor 18 may be varied, and the gripping force of the robot hand 100 may be varied according to the situation.
 なお、制御装置60のねじれ量検出部61、把持力算出部62及びパラメータ記録部63による処理等は、これらの処理の分担の例に限定されるものではなく、例えばより少ない処理部で処理されたり、更に細分化された4以上の処理部により処理されてもよい。 Note that the processing by the twist amount detection unit 61, the gripping force calculation unit 62, and the parameter recording unit 63 of the control device 60 is not limited to the example of sharing of these processes, and is processed by, for example, fewer processing units. Or may be processed by four or more processing units that are further subdivided.
 <3.本実施形態による効果の例>
 以上説明したように、本実施形態のロボットハンド100は、第1ねじ軸1及び第2ねじ軸2と、第1ねじ軸1及び第2ねじ軸2の回転により軸心方向に移動する第1爪部材34及び第2爪部材35と、第1ねじ軸1と第2ねじ軸2とを連結するねじりばね45と、モータ18とを有する。第1ねじ軸1と第2ねじ軸2とは分離されており、軸心AX周りのねじれ方向に弾性を有するねじりばね45により連結されるので、第1爪部材34及び第2爪部材35によりワークを把持すると、その把持力に応じてねじりばね45がねじれ方向に変形する。このときに第1ねじ軸1と第2ねじ軸2との間に生じるねじれ量を検出することにより、該ねじれ量に基づいてモータ18のトルクを制御し、ロボットハンド100の力制御を行うことが可能である。このため、把持力を検出するための力センサが不要となり、簡易な構成で力制御を行うことができる。
<3. Examples of effects according to this embodiment>
As described above, the robot hand 100 according to this embodiment includes the first screw shaft 1 and the second screw shaft 2, and the first screw shaft 1 that moves in the axial direction by the rotation of the first screw shaft 1 and the second screw shaft 2. The claw member 34 and the second claw member 35, the torsion spring 45 that connects the first screw shaft 1 and the second screw shaft 2, and the motor 18 are provided. The first screw shaft 1 and the second screw shaft 2 are separated from each other, and are connected by a torsion spring 45 having elasticity in the torsion direction around the axis AX, so that the first claw member 34 and the second claw member 35 When the workpiece is gripped, the torsion spring 45 is deformed in the twisting direction according to the gripping force. At this time, by detecting the amount of twist generated between the first screw shaft 1 and the second screw shaft 2, the torque of the motor 18 is controlled based on the amount of twist and the force of the robot hand 100 is controlled. Is possible. For this reason, a force sensor for detecting a gripping force is not required, and force control can be performed with a simple configuration.
 また、本実施形態において、第1ねじ軸1と第2ねじ軸2とのねじれ量を検出する手段として、第1ねじ軸1の回転位置を検出する第1位置検出器27Aと、第2ねじ軸2の回転位置を検出する第2位置検出器27Bとの、2つの位置検出器を用いる場合には、第1ねじ軸1の回転位置と第2ねじ軸2の回転位置との位置偏差に基づいてねじれ量を検出することができるので、ねじれ量の検出精度を向上できる。 In the present embodiment, as means for detecting the amount of twist between the first screw shaft 1 and the second screw shaft 2, the first position detector 27A for detecting the rotational position of the first screw shaft 1 and the second screw When two position detectors, the second position detector 27B that detects the rotational position of the shaft 2, are used, the positional deviation between the rotational position of the first screw shaft 1 and the rotational position of the second screw shaft 2 is determined. Since the twist amount can be detected based on this, the detection accuracy of the twist amount can be improved.
 また、本実施形態において、第1位置検出器27A(又は第2位置検出器27Bでもよい)としてモータ18の位置検出器を用いる場合には、モータ18の位置検出器とねじ軸の回転位置の位置検出器とを共用することができる。これにより、部品点数を少なくでき、より簡易な構成とすることができる。また、省スペース化(小型化)及び低コスト化することができる。 In this embodiment, when the position detector of the motor 18 is used as the first position detector 27A (or the second position detector 27B), the rotational position of the position detector of the motor 18 and the screw shaft can be changed. The position detector can be shared. Thereby, the number of parts can be reduced and it can be set as a simpler structure. Further, space saving (miniaturization) and cost reduction can be achieved.
 また、本実施形態において、第1位置検出器27A及び第2位置検出器27Bとして、エンコーダを用いる場合には、位置検出の精度を向上できると共に、検出信号のデジタル出力が行えるので制御装置60側での信号処理が容易となる。 In this embodiment, when encoders are used as the first position detector 27A and the second position detector 27B, the position detection accuracy can be improved and the detection signal can be digitally output. The signal processing at is easy.
 また、本実施形態において、第1位置検出器27Aとして、第1回転ディスク28、第1光源29、及び第1エンコーダ基板30~32を有する第1エンコーダを用い、第2位置検出器27Bとして、第2回転ディスク21、第2光源22、第2エンコーダ基板24~26を有する第2エンコーダを用いる場合には、次のような効果を得る。つまり、第1位置検出器27Aと第2位置検出器27Bに同種のセンサを使用することが可能となり、センサ電源やケーブル等が1種類で済むこととなり、構成をさらに簡易化できる。 In the present embodiment, the first position detector 27A is a first encoder having a first rotary disk 28, a first light source 29, and first encoder boards 30 to 32, and the second position detector 27B is When the second encoder having the second rotating disk 21, the second light source 22, and the second encoder boards 24 to 26 is used, the following effects are obtained. That is, the same type of sensor can be used for the first position detector 27A and the second position detector 27B, and only one type of sensor power source, cable, etc. is required, and the configuration can be further simplified.
 また、本実施形態において、第2位置検出器27Bの第2エンコーダ基板(詳細には、第2エンコーダ基板24,25,26のうちの基板24を除く2つの基板25,26)が、第2回転ディスク21と分離されたセンサ基板ユニット23として構成される場合には、次のような効果を得る。つまり、このように第2エンコーダ基板25,26をユニット化することにより、センサ基板ユニット23の位置を調整し易くなり、第2回転ディスク21と第2エンコーダ基板24とのギャップgを調整する作業が容易となる。 In the present embodiment, the second encoder board of the second position detector 27B (specifically, the two boards 25, 26 excluding the board 24 of the second encoder boards 24, 25, 26) is the second encoder board. When configured as a sensor substrate unit 23 separated from the rotating disk 21, the following effects are obtained. That is, by unitizing the second encoder boards 25 and 26 in this way, the position of the sensor board unit 23 can be easily adjusted, and the operation of adjusting the gap g between the second rotary disk 21 and the second encoder board 24 is performed. Becomes easy.
 また、本実施形態において、モータ18の回転トルクを第1ねじ軸1に伝達する機構として、出力軸18aに連結された駆動プーリ19、タイミングベルト20及び従動プーリ16を用いる場合には、モータ18を第1ねじ軸1と並列に配置することが可能となり、ロボットハンド100の軸心方向の寸法を小型化できる。また、駆動プーリ19と従動プーリ16の径を等しくする場合には、モータ18の出力軸18aと第1ねじ軸1とは回転数が等しくなる。したがって、モータ18に備えられた第1位置検出器27Aによって第1ねじ軸1の回転位置を精度良く検出することができる。 In the present embodiment, when the driving pulley 19, the timing belt 20, and the driven pulley 16 connected to the output shaft 18a are used as a mechanism for transmitting the rotational torque of the motor 18 to the first screw shaft 1, the motor 18 Can be arranged in parallel with the first screw shaft 1, and the size of the robot hand 100 in the axial direction can be reduced. Further, when the diameters of the drive pulley 19 and the driven pulley 16 are made equal, the output shaft 18a of the motor 18 and the first screw shaft 1 have the same rotation speed. Therefore, the rotational position of the first screw shaft 1 can be accurately detected by the first position detector 27A provided in the motor 18.
 また、本実施形態において、第1ねじ軸1と第2ねじ軸2とを連結する弾性連結部材としてねじりばね45を使用する場合には、弾性連結部材を軽量化することができる。また、各ねじ軸1,2との固定構造を簡易化することができる。 In this embodiment, when the torsion spring 45 is used as an elastic connecting member for connecting the first screw shaft 1 and the second screw shaft 2, the elastic connecting member can be reduced in weight. Moreover, the fixing structure with each screw shaft 1 and 2 can be simplified.
 また、本実施形態において、制御装置60がパラメータ記録部63を有する場合には、次のような効果を得る。つまり、例えばロボットハンド100に要求される仕様等に応じて、第1ねじ軸1や第2ねじ軸2、ねじりばね45等の部品を変更するような場合に、パラメータ記録部63に記録されたパラメータを適宜の値に変更することで、要求仕様に柔軟に対応することが可能となる。したがって、設計の自由度を向上できる。 Further, in the present embodiment, when the control device 60 has the parameter recording unit 63, the following effects are obtained. That is, for example, when the parts such as the first screw shaft 1, the second screw shaft 2, and the torsion spring 45 are changed according to the specifications required for the robot hand 100, the parameters are recorded in the parameter recording unit 63. By changing the parameter to an appropriate value, it becomes possible to flexibly cope with the required specifications. Therefore, the degree of freedom in design can be improved.
 以上、添付図面を参照しながら一実施の形態について詳細に説明した。しかしながら、特許請求の範囲に記載された技術的思想の範囲は、ここで説明した実施の形態に限定されるものではない。本実施形態の属する技術の分野における通常の知識を有する者であれば、技術的思想の範囲内において、様々な変更や修正、組み合わせなどを行うことに想到できることは明らかである。従って、これらの変更や修正、組み合わせなどが行われた後の技術も、当然に技術的思想の範囲に属するものである。 The embodiment has been described in detail with reference to the accompanying drawings. However, the scope of the technical idea described in the claims is not limited to the embodiment described here. It is obvious that a person having ordinary knowledge in the technical field to which the present embodiment belongs can conceivably make various changes, corrections, combinations, and the like within the scope of the technical idea. Accordingly, the technology after these changes, corrections, combinations, and the like are naturally within the scope of the technical idea.
 なお、以上の説明における「平行」、「等しい」は、厳密な意味ではない。すなわち、「平行」、「等しい」とは、設計上、製造上の公差、誤差が許容され、「実質的に平行」、「実質的に等しい」という意味である。 It should be noted that “parallel” and “equal” in the above description are not strictly defined. That is, “parallel” and “equal” mean “to be substantially parallel” and “substantially equal” because tolerances and errors in manufacturing are allowed in design.
 1         第1ねじ軸
 1a        ねじ溝
 2         第2ねじ軸
 2a        ねじ溝
 16        従動プーリ
 18        モータ
 18a       出力軸
 19        駆動プーリ
 20        タイミングベルト(無端ベルトの一例)
 21        第2回転ディスク
 22        第2光源
 23        センサ基板ユニット(基板ユニットの一例)
 24,25,26  第2エンコーダ基板
 27A       第1位置検出器(検出手段、第1エンコーダの一例)
 27B       第2位置検出器(検出手段、第2エンコーダの一例)
 28        第1回転ディスク
 29        第1光源
 30,31,32  第1エンコーダ基板
 34        第1爪部材
 35        第2爪部材
 45        ねじりばね(弾性連結部材の一例)
 60        制御装置
 61        ねじれ量検出部
 62        把持力算出部
 63        パラメータ記録部
 100       ロボットハンド
 AX        軸心
DESCRIPTION OF SYMBOLS 1 1st screw shaft 1a Thread groove 2 2nd screw shaft 2a Thread groove 16 Driven pulley 18 Motor 18a Output shaft 19 Drive pulley 20 Timing belt (an example of endless belt)
21 Second rotating disk 22 Second light source 23 Sensor substrate unit (an example of substrate unit)
24, 25, 26 Second encoder board 27A First position detector (an example of detection means and first encoder)
27B 2nd position detector (an example of a detection means and a 2nd encoder)
28 First Rotating Disk 29 First Light Source 30, 31, 32 First Encoder Board 34 First Claw Member 35 Second Claw Member 45 Torsion Spring (Example of Elastic Connection Member)
60 Control Device 61 Twist Amount Detection Unit 62 Gripping Force Calculation Unit 63 Parameter Recording Unit 100 Robot Hand AX Axis Center

Claims (11)

  1.  第1ねじ軸と、
     前記第1ねじ軸と実質的に同一軸心上に配置され、前記第1ねじ軸とねじ溝の向きが逆向きである第2ねじ軸と、
     前記第1ねじ軸の回転により前記軸心方向に移動する第1爪部材と、
     前記第2ねじ軸の回転により前記軸心方向に移動する第2爪部材と、
     前記軸心周りのねじれ方向に弾性を有し、前記第1ねじ軸と前記第2ねじ軸とを連結する弾性連結部材と、
     前記第1ねじ軸及び前記第2ねじ軸の少なくとも一方に回転駆動力を伝達可能に連結された出力軸を備えたモータと、
     前記第1ねじ軸と前記第2ねじ軸との間に生じるねじれ量を検出する検出手段と、
    を有する、ロボットハンド。
    A first screw shaft;
    A second screw shaft disposed substantially on the same axis as the first screw shaft, wherein the first screw shaft and the screw groove are in opposite directions;
    A first claw member that moves in the axial direction by rotation of the first screw shaft;
    A second claw member that moves in the axial direction by rotation of the second screw shaft;
    An elastic connecting member having elasticity in a torsional direction around the axis and connecting the first screw shaft and the second screw shaft;
    A motor comprising an output shaft coupled to at least one of the first screw shaft and the second screw shaft so as to transmit a rotational driving force;
    Detecting means for detecting an amount of twist generated between the first screw shaft and the second screw shaft;
    Having a robot hand.
  2.  前記検出手段は、
     前記第1ねじ軸の回転位置を検出するように構成された第1位置検出器と、
     前記第2ねじ軸の回転位置を検出するように構成された第2位置検出器と、
    を有する、請求項1に記載のロボットハンド。
    The detection means includes
    A first position detector configured to detect a rotational position of the first screw shaft;
    A second position detector configured to detect a rotational position of the second screw shaft;
    The robot hand according to claim 1, comprising:
  3.  前記第1位置検出器及び前記第2位置検出器のいずれか一方は、前記モータの位置検出器である、請求項2に記載のロボットハンド。 The robot hand according to claim 2, wherein one of the first position detector and the second position detector is a position detector of the motor.
  4.  前記第1位置検出器及び前記第2位置検出器は、エンコーダである、
    請求項3に記載のロボットハンド。
    The first position detector and the second position detector are encoders.
    The robot hand according to claim 3.
  5.  前記第1位置検出器は、
     前記モータの前記出力軸に連結された第1回転ディスクと、
     前記第1回転ディスクに光を出射するように構成された第1光源と、
     第1エンコーダ基板と、を有する第1エンコーダであり、
     前記第2位置検出器は、
     前記第2ねじ軸に連結された第2回転ディスクと、
     前記第2回転ディスクに光を出射するように構成された第2光源と、
     第2エンコーダ基板と、を有する第2エンコーダである、
    請求項4に記載のロボットハンド。
    The first position detector is
    A first rotating disk coupled to the output shaft of the motor;
    A first light source configured to emit light to the first rotating disk;
    A first encoder having a first encoder board,
    The second position detector is
    A second rotating disk coupled to the second screw shaft;
    A second light source configured to emit light to the second rotating disk;
    A second encoder having a second encoder board,
    The robot hand according to claim 4.
  6.  前記第2エンコーダ基板は、
     前記第2回転ディスクと分離された基板ユニットとして構成される、請求項5に記載のロボットハンド。
    The second encoder board is
    The robot hand according to claim 5, wherein the robot hand is configured as a substrate unit separated from the second rotating disk.
  7.  前記モータの前記出力軸に連結された駆動プーリと、
     前記第1ねじ軸に連結され、前記駆動プーリと径が等しい従動プーリと、
     前記駆動プーリと前記従動プーリとに架け渡された無端ベルトと、をさらに有する、
    請求項1~6のいずれか1項に記載のロボットハンド。
    A drive pulley coupled to the output shaft of the motor;
    A driven pulley coupled to the first screw shaft and having the same diameter as the drive pulley;
    An endless belt spanned between the driving pulley and the driven pulley;
    The robot hand according to any one of claims 1 to 6.
  8.  前記弾性連結部材は、
     一端が前記第1ねじ軸に固定されると共に他端が前記第2ねじ軸に固定されたねじりばねである、
    請求項1~7のいずれか1項に記載のロボットハンド。
    The elastic connecting member is
    A torsion spring having one end fixed to the first screw shaft and the other end fixed to the second screw shaft;
    The robot hand according to any one of claims 1 to 7.
  9.  第1ねじ軸と、前記第1ねじ軸と実質的に同一軸心上に配置され、前記第1ねじ軸とねじ溝の向きが逆向きである第2ねじ軸と、前記第1ねじ軸の回転により前記軸心方向に移動する第1爪部材と、前記第2ねじ軸の回転により前記軸心方向に移動する第2爪部材と、前記軸心周りのねじれ方向に弾性を有し、前記第1ねじ軸と前記第2ねじ軸とを連結する弾性連結部材と、前記第1ねじ軸及び前記第2ねじ軸の少なくとも一方に回転駆動力を伝達可能に連結された出力軸を備えたモータと、を有するロボットハンドの力制御を行うロボットハンドの制御装置であって、
     前記第1ねじ軸と前記第2ねじ軸との間に生じるねじれ量を検出するように構成されたねじれ量検出部と、
     前記ねじれ量検出部により検出された前記ねじれ量に基づいて前記第1爪部材及び前記第2爪部材による把持力を算出するように構成された把持力算出部と、
    を有する、ロボットハンドの制御装置。
    A first screw shaft, a second screw shaft that is disposed substantially on the same axis as the first screw shaft, and in which the direction of the first screw shaft and the screw groove is opposite, and the first screw shaft A first claw member that moves in the axial direction by rotation; a second claw member that moves in the axial direction by rotation of the second screw shaft; and an elasticity in a twisting direction around the axis; A motor comprising: an elastic connecting member that connects the first screw shaft and the second screw shaft; and an output shaft that is connected to at least one of the first screw shaft and the second screw shaft so as to transmit a rotational driving force. A robot hand control device for controlling the force of a robot hand having
    A twist amount detector configured to detect a twist amount generated between the first screw shaft and the second screw shaft;
    A gripping force calculator configured to calculate a gripping force by the first claw member and the second claw member based on the twist amount detected by the twist amount detector;
    A robot hand control device.
  10.  前記弾性連結部材の弾性に関わる定数を含むパラメータを記録するように構成されたパラメータ記録部をさらに有し、
     前記把持力算出部は、
     前記ねじれ量と前記パラメータとに基づいて、前記把持力を算出するように構成される、
    請求項9に記載のロボットハンドの制御装置。
    A parameter recording unit configured to record a parameter including a constant related to elasticity of the elastic connecting member;
    The grip force calculation unit
    Configured to calculate the gripping force based on the twist amount and the parameter;
    The robot hand control device according to claim 9.
  11.  第1ねじ軸と、前記第1ねじ軸と実質的に同一軸心上に配置され、前記第1ねじ軸とねじ溝の向きが逆向きである第2ねじ軸と、前記第1ねじ軸の回転により前記軸心方向に移動する第1爪部材と、前記第2ねじ軸の回転により前記軸心方向に移動する第2爪部材と、前記軸心周りのねじれ方向に弾性を有し、前記第1ねじ軸と前記第2ねじ軸とを連結する弾性連結部材と、前記第1ねじ軸及び前記第2ねじ軸の少なくとも一方に回転駆動力を伝達可能に連結された出力軸を備えたモータと、を有するロボットハンドの力制御を行うロボットハンドの制御方法であって、
     前記第1ねじ軸と前記第2ねじ軸との間に生じるねじれ量を検出することと、
     前記ねじれ量に基づいて前記第1爪部材及び前記第2爪部材による把持力を算出することと、
    を有する、ロボットハンドの制御方法。
    A first screw shaft, a second screw shaft that is disposed substantially on the same axis as the first screw shaft, and in which the direction of the first screw shaft and the screw groove is opposite, and the first screw shaft A first claw member that moves in the axial direction by rotation; a second claw member that moves in the axial direction by rotation of the second screw shaft; and an elasticity in a twisting direction around the axis; A motor comprising: an elastic connecting member that connects the first screw shaft and the second screw shaft; and an output shaft that is connected to at least one of the first screw shaft and the second screw shaft so as to transmit a rotational driving force. And a robot hand control method for controlling the force of a robot hand having
    Detecting the amount of twist occurring between the first screw shaft and the second screw shaft;
    Calculating a gripping force by the first claw member and the second claw member based on the twist amount;
    A method for controlling a robot hand.
PCT/JP2014/061891 2014-04-28 2014-04-28 Robot hand, device for controlling robot hand, and method for controlling robot hand WO2015166537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061891 WO2015166537A1 (en) 2014-04-28 2014-04-28 Robot hand, device for controlling robot hand, and method for controlling robot hand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061891 WO2015166537A1 (en) 2014-04-28 2014-04-28 Robot hand, device for controlling robot hand, and method for controlling robot hand

Publications (1)

Publication Number Publication Date
WO2015166537A1 true WO2015166537A1 (en) 2015-11-05

Family

ID=54358291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061891 WO2015166537A1 (en) 2014-04-28 2014-04-28 Robot hand, device for controlling robot hand, and method for controlling robot hand

Country Status (1)

Country Link
WO (1) WO2015166537A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105522584A (en) * 2016-01-28 2016-04-27 先驱智能机械(深圳)有限公司 Control method, control device and flexible manipulator system
CN105909934A (en) * 2016-06-12 2016-08-31 深圳电航空技术有限公司 Clamping device and cradle head
CN107458869A (en) * 2017-08-20 2017-12-12 曹学虎 A kind of dixie cup captures collection device
CN108032316A (en) * 2017-12-08 2018-05-15 广西瑞克工业机器人有限公司 A kind of industrial robot hold assembly
CN110403700A (en) * 2019-08-30 2019-11-05 山东威高手术机器人有限公司 Doctor's station
CN112809712A (en) * 2020-12-29 2021-05-18 西安航空职业技术学院 Light workpiece grabbing device for machining
CN110403700B (en) * 2019-08-30 2024-05-03 山东威高手术机器人有限公司 Doctor operation table

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451443U (en) * 1990-09-04 1992-04-30
JPH0538691A (en) * 1991-07-31 1993-02-19 Sankyo Seiki Mfg Co Ltd Chuck device
JP2008055541A (en) * 2006-08-30 2008-03-13 Honda Motor Co Ltd Robot joint mechanism and its driving method
JP2010269412A (en) * 2009-05-22 2010-12-02 Kawasaki Heavy Ind Ltd Robot device
JP2012196760A (en) * 2012-07-02 2012-10-18 Denso Wave Inc Electric hand
JP2013010164A (en) * 2011-06-29 2013-01-17 Denso Wave Inc Electric hand control device and method of controlling the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451443U (en) * 1990-09-04 1992-04-30
JPH0538691A (en) * 1991-07-31 1993-02-19 Sankyo Seiki Mfg Co Ltd Chuck device
JP2008055541A (en) * 2006-08-30 2008-03-13 Honda Motor Co Ltd Robot joint mechanism and its driving method
JP2010269412A (en) * 2009-05-22 2010-12-02 Kawasaki Heavy Ind Ltd Robot device
JP2013010164A (en) * 2011-06-29 2013-01-17 Denso Wave Inc Electric hand control device and method of controlling the same
JP2012196760A (en) * 2012-07-02 2012-10-18 Denso Wave Inc Electric hand

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105522584A (en) * 2016-01-28 2016-04-27 先驱智能机械(深圳)有限公司 Control method, control device and flexible manipulator system
CN105909934A (en) * 2016-06-12 2016-08-31 深圳电航空技术有限公司 Clamping device and cradle head
CN107458869A (en) * 2017-08-20 2017-12-12 曹学虎 A kind of dixie cup captures collection device
CN108032316A (en) * 2017-12-08 2018-05-15 广西瑞克工业机器人有限公司 A kind of industrial robot hold assembly
CN110403700A (en) * 2019-08-30 2019-11-05 山东威高手术机器人有限公司 Doctor's station
CN110403700B (en) * 2019-08-30 2024-05-03 山东威高手术机器人有限公司 Doctor operation table
CN112809712A (en) * 2020-12-29 2021-05-18 西安航空职业技术学院 Light workpiece grabbing device for machining

Similar Documents

Publication Publication Date Title
WO2015166537A1 (en) Robot hand, device for controlling robot hand, and method for controlling robot hand
EP2361736B1 (en) Rotary drive device
JP6816495B2 (en) Robot deflection correction method, robot control device
US10295419B2 (en) Actuator
US20210297018A1 (en) Encoder, driving apparatus, robot apparatus, control system, and its control method
US20120112485A1 (en) Robot hand
US9205556B1 (en) Cogging torque measurement for a robot actuator
JP2012176461A (en) Hand and robot
JP2010064232A (en) Failure detecting method of transport system and failure detecting device
US20170001304A1 (en) Actuator
JP6489067B2 (en) Actuator
JP2011115921A (en) Device and control method
CN109955279B (en) Robot hand, method for controlling the same, method for assembling article, and storage medium
JP4827678B2 (en) Actuator position fluctuation suppression method
JP2005299828A (en) Link operating device
JP2016003947A5 (en)
JP6391252B2 (en) Robot equipment
JP6812718B2 (en) Encoder device, robot
US9209740B2 (en) Actuating apparatus
JP5591180B2 (en) Drive joint mechanism
US8952645B2 (en) Drive device comprising a plurality of drives and regulating system for this overall drive
JP2014238117A (en) Speed reducer-incorporated actuator and articulated robot with the same
JP6277070B2 (en) Electric power steering device
KR20170073351A (en) Motor controlling apparatus and method
JP7414426B2 (en) robot system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14890832

Country of ref document: EP

Kind code of ref document: A1