WO2015165335A1 - 一种平面电动机驱动的磁悬浮粗微动一体掩模台 - Google Patents
一种平面电动机驱动的磁悬浮粗微动一体掩模台 Download PDFInfo
- Publication number
- WO2015165335A1 WO2015165335A1 PCT/CN2015/076880 CN2015076880W WO2015165335A1 WO 2015165335 A1 WO2015165335 A1 WO 2015165335A1 CN 2015076880 W CN2015076880 W CN 2015076880W WO 2015165335 A1 WO2015165335 A1 WO 2015165335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coarse
- mask table
- motion integrated
- motor
- integrated mask
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70758—Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70766—Reaction force control means, e.g. countermass
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70775—Position control, e.g. interferometers or encoders for determining the stage position
Definitions
- the invention relates to a magnetic motor coarse micro-motion integrated mask table driven by a planar motor, in particular to a magnetic suspension coarse micro-motion integrated mask table driven by a moving iron plane motor, which is mainly applied to the technical field of semiconductor manufacturing.
- Reducing the wavelength of the source, reducing the process factor, and increasing the numerical aperture of the optical component can increase the resolution of the lithography machine.
- the numerical aperture of the process factor and the optical system varies little, and reducing the wavelength of the light source can increase the resolution of the lithography machine and improve the precision of the lithography machine.
- the wavelength of the light source in the lithography machine has evolved from 365 nm ultraviolet (UV) light to 248 nm and 193 nm deep ultraviolet (DUV) light, each of which increases the resolution of the lithography machine.
- the next generation of lithography machines will use extreme ultraviolet (EUV) light with a wavelength of 13.5 nm as the light source.
- EUV extreme ultraviolet
- the projection objective system, alignment system and ultra-precision workpiece stage system are the three core technologies of the lithography machine.
- the ultra-precision workpiece stage system includes a mask stage system carrying a mask and a wafer stage system carrying a silicon wafer.
- the magnetic levitation mask table is the best solution for power consumption and vacuum requirements.
- the magnetic suspension support has the following advantages: low temperature rise, no friction and wear under extremely high speed, no creep at very low speed, high motion precision, low vibration and no pollution.
- the mask stage system is composed of a mask stage, a balance mass, a drive motor of the mover, a mask, a pedestal, a vibration isolation system, and a measurement system.
- the exposure process of the lithography machine requires that the mask stage carrying the mask is driven by the driving motor to reciprocate in the scanning direction (>132mm) to perform the "acceleration-uniform-deceleration" movement, and other degrees of freedom micro-motion ( ⁇ 2mm) .
- the mask table can be divided into a mask table with a coarse micro-motion laminated structure and a mask table with a coarse micro-motion integrated structure.
- the mask stage is composed of a coarse motion stage with a large stroke motion and a micro-motion stage with high precision fine adjustment.
- large stroke motion and high-precision fine adjustment are performed by a single coarse micro-motion integrated mask stage.
- the mask stage of the coarse and micro-moving integrated structure has the characteristics of light weight and less cable disturbance.
- the power consumption of the mask table is small during the working process, the thrust requirement of the motor is low, and the theoretical model is more accurate.
- Some scholars have developed it. Research. In the prior art, a six-degree-of-freedom movement of a magnetically driven coarse micro-motion integrated mask stage is driven by a linear motor, and each linear motor can provide a thrust in a moving direction of the motor mover and a thrust perpendicular to a moving direction of the motor mover.
- At least three linear motors are required to provide vertical thrust; in order to control the motion of the coarse and micro motion integrated mask stage, at least six degrees of freedom are required.
- the other two linear motors provide the thrust and the aforementioned Linear motors provide different thrust directions. Due to the structural constraints, the two motor structures are generally different, which increases the design complexity of the coarse micro-motion integrated mask table motor; two linear motors with different structures are arranged side by side in the coarse micro-motion integrated mask table In the above, the width of the coarse micro-motion integrated mask stage is increased, and the natural frequency and control bandwidth of the coarse micro-motion integrated mask stage are reduced, thereby affecting the control precision.
- the object of the present invention is to provide a magnetic motor coarse micro-motion integrated mask table driven by a planar motor, which aims to solve the complexity of the design of the mask stage driving motor driven by the linear motor in the prior art, resulting in coarse
- the width of the micro-motion integrated mask stage increases, which reduces the natural frequency and control bandwidth of the coarse micro-motion integrated mask stage, thereby affecting the control accuracy.
- the invention provides a magnetic motor coarse micro-motion integrated mask table driven by a planar motor, comprising a coarse micro-motion integrated mask stage, a balance mass, a driving motor of a coarse micro-motion integrated mask stage, a mask plate and a base
- the vibration isolation system and the measurement system are located between the balance mass and the base, and the mask plate is mounted on the coarse micro-motion integrated mask stage, wherein the coarse micro-motion integrated mask stage
- the driving motor is a moving iron plane motor; the movable iron plane motor mover is a permanent magnet array mounted on the top surface of the coarse micro motion integrated mask stage, and the moving iron plane motor stator is a coil array mounted on the balance mass.
- the magnetic motor coarse micro-motion integrated mask table driven by the planar motor of the present invention further comprises a magnetic levitation structure for providing compensation for the gravity of the coarse micro-motion integrated mask stage, and the magnetic suspension structure mover is installed in the coarse micro-motion integrated mask.
- the magnetic suspension structure stator is mounted on the balance mass.
- the magnetic levitation coarse micro-motion integrated mask table of the present invention drives the moving iron type planar motor mover permanent magnet array arrangement form as a two-dimensional Halbach array; the moving iron type planar motor stator coil array is arranged in two forms. One is arranged in the Y direction and the other is arranged in the X direction.
- the magnetic levitation coarse micro-motion integrated mask table of the invention adopts a reflective reticle, and the coarse micro-motion integrated mask stage is a solid structure; the reticle arrangement position is the bottom of the coarse micro-motion integrated mask stage.
- the magnetic levitation coarse micro-motion integrated mask table of the present invention drives a coarse micro-motion integrated body by using a single-structure moving iron plane motor.
- the six-degree-of-freedom movement of the mask stage moves the design complexity of the coarse-micro-motion integrated mask stage motor; compared with the linear motor, the plane motor can provide more thrust in the direction, reducing the number of motors and making the
- the structure of the micro-motion integrated mask table is more compact, and the natural frequency and control bandwidth of the coarse micro-motion integrated mask stage are improved, thereby improving the control precision.
- the gravity compensation structure of the magnetic levitation can reduce the power consumption during system operation, reduce the influence of system heating on the environment and the measurement system, and improve the control accuracy.
- Figure 1 is an isometric view showing the structure of a magnetically driven coarse micro-motion integrated mask table driven by a planar motor of the present invention.
- Figure 2 is a front elevational view showing the structure of a magnetically driven coarse micro-motion integrated mask table driven by a planar motor of the present invention.
- FIG. 3 is a schematic view showing the arrangement of a permanent magnet array of a movable iron type planar motor of the present invention.
- FIG. 4 is a schematic view showing the arrangement of a stator coil array of a moving iron type planar motor according to the present invention.
- Fig. 5a is a plan view showing the structure of a magnetic suspension coarse micro-motion integrated mask stage driven by a planar motor according to the present invention.
- Figure 5b is a cross-sectional view taken along line A-A of Figure 5a.
- 100-coarse micro-motion integrated mask table 101-mask; 200-balance mass; 300-moving iron plane motor; 301-moving iron plane motor mover; 302-moving iron plane motor stator; - magnetic suspension structure; 401 - magnetic suspension structure mover; 402 - magnetic suspension structure stator; 500 - vibration isolation system.
- the planar motor-driven magnetic levitation coarse micro-motion integrated mask table comprises a coarse micro-motion integrated mask stage 100, a balance mass 200, a drive motor of the coarse micro-motion integrated mask stage, a mask plate 101, a base 001, The vibration isolation system 500 and the measurement system; the vibration isolation system 500 is located between the balance mass 200 and the base 001, and the mask plate 101 is mounted on the coarse micro-motion integrated mask stage 100; the coarse micro-motion integrated mask stage
- the driving motor adopts a moving iron plane motor 300, and the movable iron plane motor mover 301 is a permanent magnet array mounted on the top surface of the coarse micro motion integrated mask stage 100, and the movable iron plane motor stator 302 is installed in balance.
- a coil array of mass 200 The six-degree-of-freedom movement of the coarse micro-motion integrated mask stage 100 (the large-stroke motion of the coarse micro-motion integrated mask stage in the Y direction and the fine adjustment of the other five degrees of freedom) is arranged in the coarse micro-motion integrated mask
- the moving iron type planar motor 300 (permanent magnet array) on the top surface of the stage is driven.
- the coarse micro-motion integrated mask table provided by the invention further comprises a magnetic levitation structure 400 for providing compensation for the gravity of the coarse micro-motion integrated mask stage, and the vertical force compensation provided by the magnetic levitation structure 400 compensates the coarse micro-motion integrated mask table moving table gravity .
- the magnetic suspension structure mover 401 is mounted on the coarse micro-motion integrated mask stage, and the magnetic suspension structure stator 402 is mounted on the balance mass: when the magnetic suspension structure stator 402 is arranged above the coarse micro-motion integrated mask stage 100, It provides a vertical upward gravitational force for the coarse micro-motion integrated mask stage 100; the magnetic suspension structure stator 402 is disposed under the coarse micro-motion integrated mask stage 100, which provides a vertical upward repulsive force; the magnetic suspension structure stator 402 When disposed on the upper and lower sides of the coarse micro-motion integrated mask stage 100, the resultant force direction is vertically upward.
- FIG. 3 is a mover 301 of the moving iron type planar motor of the present invention, that is, a permanent magnet array mounted on the coarse micro-motion integrated mask stage 100, which is arranged in a two-dimensional Halbach array.
- stator 302 of the moving iron type planar motor of the present invention is a stator 302 of the moving iron type planar motor of the present invention, and a coil array mounted on the balance mass 200, which are arranged in two forms, one arranged in the Y direction and the other in the X direction. cloth.
- Fig. 5a is a plan view showing the structure of a magnetically driven coarse micro-motion integrated mask stage 100 driven by a planar motor of the present invention
- Fig. 5b is a cross-sectional view taken along line A-A of Fig. 5a.
- the coarse micro-motion integrated mask table 100 adopts a reflective mask plate 101, and the coarse micro-motion integrated mask stage 100 has a solid structure, and the mask plate 101 is disposed at the bottom of the coarse micro-motion integrated mask stage 100.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
一种平面电动机驱动的磁悬浮粗微动一体掩模台,其包括粗微动一体掩模台动台(100)、平衡质量(200)、驱动电动机、掩模板(101)、基座(001)、隔振系统(500)及测量系统;隔振系统(500)位于平衡质量(200)与基座(001)之间,掩模板(101)安装在粗微动一体掩模台动台(100)上;掩模台动台(100)的驱动电动机为动铁式平面电动机(300),平面电动机动子(301)为安装在粗微动一体掩模台动台(100)顶面的永磁体阵列,平面电动机定子(302)为安装在平衡质量(200)上的线圈阵列。这种平面电动机驱动的磁悬浮粗微动一体掩模台可降低掩模台动台驱动电动机的设计复杂性;与直线电动机相比,平面电动机能够提供更多方向的推力,减少电动机的数量,使粗微动一体掩模台动台结构更加紧凑,提高粗微动一体掩模台动台的固有频率及控制带宽,进而提高控制精度。
Description
本发明涉及一种平面电动机驱动的磁悬浮粗微动一体掩模台,尤其涉及动铁式平面电动机驱动的磁悬浮粗微动一体掩模台,主要应用于半导体制造技术领域。
过去的几十年中,半导体工业的发展一直受到摩尔定律的驱动。即当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。这要求芯片的特征尺寸越来越小。从技术的角度看,随着硅片上线路密度的增加,其复杂性和差错率也将呈指数增长,要求新一代光刻机的精度越来越高。
缩小光源波长、减小工艺因子和增大光学元件的数值孔径可以提高光刻机的分别率。工艺因子和光学系统的数值孔径的变化范围很小,降低光源波长可以更大程度提高光刻机的分辨率,提高光刻机的精度。光刻机中光光源波长从365nm的紫外(UV)光发展到248nm和193nm的深紫外(DUV)光,每一阶段都提高了光刻机的分辨率。下一代的光刻机将使用13.5nm波长的极紫外(EUV)光作为光源。
投影物镜系统、对准系统和超精密工件台系统是光刻机的三大核心技术。其中,超精密工件台系统包括承载掩模板的掩模台系统和承载硅片的硅片台系统两部分。
EUV光子会被气体所吸收,必须在真空腔室中对硅片进行曝光。温度的变化会引起光源波长的变化,影响精度。最小化系统功耗以保证稳定的环境温度,所有用于真空的元件必须采用放气最少的材料。磁悬浮掩模台是解决功耗和真空需求的最佳方案。磁悬浮支承具有以下优点:温升小,极高速下无摩擦、磨损,极低速时无爬行,运动精度高,振动小,无污染。
掩模台系统由掩模台动台、平衡质量、动台的驱动电动机、掩模板、基座、隔振系统及测量系统等部分构成。光刻机曝光工艺要求,掩模台动台携带掩模板在驱动电动机的驱动下沿扫描方向大行程(>132mm)往复做“加速—匀速—减速”运动,其他自由度微动(±2mm)。根据掩模台动台结构不同可以分为掩模台动台采用粗微动叠层结构的掩模台和掩模台动台采用粗微动一体结构的掩模台。对于粗微动叠层结构的掩模台,掩模台动台由大行程运动的粗动台和高精度微调的微动台两部分组成。对于粗微动一体结构的掩模台,大行程运动和高精度微调由单独的一个粗微动一体掩模台动台完成。
粗微动一体结构的掩模台动台,具有质量轻、少线缆扰动等特点,掩模台工作过程中功耗小,对于电动机推力要求较低,理论模型更加准确,一些学者对其展开了研究。现有技术中,采用直线电动机驱动磁悬浮粗微动一体掩模台动台的六自由度运动,每个直线电动机能够提供沿电动机动子运动方向的推力和垂直于电动机动子运动方向的推力。为控制粗微动一体掩模台动台的调平、调焦运动,至少需要三个直线电动机提供竖直方向推力;为控制粗微动一体掩模台动台六自由度运动,至少还需要另外两个直线电动机,其提供的推力与前述的
直线电动机提供的推力方向不同。由于结构限制,这两种电动机结构一般不同,增加了粗微动一体掩模台动台驱动电动机的设计复杂度;两种不同结构的直线电动机并列排布在粗微动一体掩模台动台上,增加了粗微动一体掩模台动台的宽度,降低了粗微动一体掩模台动台的固有频率及控制带宽,进而影响控制精度。
发明内容
本发明的目的是提供一种平面电动机驱动的磁悬浮粗微动一体掩模台,旨在解决现有技术中因采用直线电机所带来的掩模台动台驱动电动机设计的复杂性,导致粗微动一体掩模台动台的宽度增加,降低了粗微动一体掩模台动台的固有频频率和控制带宽,进而影响了控制精度。
本发明的技术方案如下:
本发明提供一种平面电动机驱动的磁悬浮粗微动一体掩模台,包括粗微动一体掩模台动台、平衡质量、粗微动一体掩模台动台的驱动电动机、掩模板、基座、隔振系统及测量系统;隔振系统位于平衡质量与基座之间,掩模板安装在粗微动一体掩模台动台上,其特征在于:该粗微动一体掩模台动台的驱动电动机为动铁式平面电动机;动铁式平面电动机动子为安装在粗微动一体掩模台动台顶面的永磁体阵列,动铁式平面电动机定子为安装在平衡质量上的线圈阵列。
本发明所述的平面电动机驱动的磁悬浮粗微动一体掩模台,还包括提供补偿粗微动一体掩模台动台重力的磁悬浮结构,所述的磁悬浮结构动子安装在粗微动一体掩模台动台上,磁悬浮结构定子安装在平衡质量上。
本发明所述的磁悬浮粗微动一体掩模台,其驱动动铁式平面电动机动子永磁体阵列排布形式为二维Halbach阵列;动铁式平面电动机定子线圈阵列排布形式有两种,一种为沿Y方向排布,另一种沿X方向排布。
本发明所述的磁悬浮粗微动一体掩模台采用反射式掩模板,粗微动一体掩模台动台为实心式结构;掩模板布置位置为粗微动一体掩模台动台的底部。
本发明与现有技术相比,具有以下优点及突出性的技术效果:(1)本发明所述的磁悬浮粗微动一体掩模台,使用单一结构的动铁式平面电动机驱动粗微动一体掩模台动台的六自由度运动,降低粗微动一体掩模台动台电动机的设计复杂度;与直线电动机相比,平面电动机能够提供更多方向的推力,减少电动机的数量,使粗微动一体掩模台动台结构更加紧凑,提高粗微动一体掩模台动台的固有频率及控制带宽,进而提高控制精度。(2)磁悬浮的重力补偿结构可以降低系统工作时的功耗,降低系统发热对于环境及测量系统的影响,提高控制精度。
图1是本发明平面电动机驱动的磁悬浮粗微动一体掩模台结构的等轴测图。
图2是本发明平面电动机驱动的磁悬浮粗微动一体掩模台结构的正视图。
图3是本发明动铁式平面电动机动子永磁体阵列排布示意图。
图4是本发明动铁式平面电动机定子线圈阵列排布示意图。
图5a是本发明平面电动机驱动的磁悬浮粗微动一体掩模台动台结构俯视图。
图5b是图5a中A-A面的剖视图。
图中:
100-粗微动一体掩模台动台;101-掩模板;200-平衡质量;300-动铁式平面电动机;301-动铁式平面电动机动子;302-动铁式平面电动机定子;400-磁悬浮结构;401-磁悬浮结构动子;402-磁悬浮结构定子;500-隔振系统。
下面结合附图对本发明的原理、结构和实施方式作进一步详细描述。
图1和图2分别是本发明提供的平面电动机驱动的磁悬浮粗微动一体掩模台结构的等轴测图和正视图。该平面电动机驱动的磁悬浮粗微动一体掩模台包括粗微动一体掩模台动台100、平衡质量200、粗微动一体掩模台动台的驱动电动机、掩模板101、基座001、隔振系统500及测量系统;隔振系统500位于平衡质量200与基座001之间,掩模板101安装在粗微动一体掩模台动台100上;该粗微动一体掩模台动台的驱动电动机采用动铁式平面电动机300,动铁式平面电动机动子301为安装在粗微动一体掩模台动台100顶面的永磁体阵列,动铁式平面电动机定子302为安装在平衡质量200上的线圈阵列。该粗微动一体掩模台动台100的六自由度运动(粗微动一体掩模台动台Y方向的大行程运动和其他五个自由度的微调)由布置在粗微动一体掩模台动台顶面的动铁式平面电动机300(永磁体阵列)驱动。
本发明提供的粗微动一体掩膜台还包括提供补偿粗微动一体掩模台动台重力的磁悬浮结构400,由磁悬浮结构400提供的垂向力补偿粗微动一体掩模台动台重力。所述的磁悬浮结构动子401安装在粗微动一体掩模台动台上,磁悬浮结构定子402安装在平衡质量上:磁悬浮结构定子402布置在粗微动一体掩模台动台100上方时,其为粗微动一体掩模台动台100提供竖直向上的引力;磁悬浮结构定子402布置在粗微动一体掩模台动台100下方时,其提供竖直向上的斥力;磁悬浮结构定子402布置在粗微动一体掩模台动台100上、下两侧时,其提供的合力方向竖直向上。
图3是本发明所述动铁式平面电动机的动子301,即为安装在粗微动一体掩模台动台100上的永磁体阵列,其排布形式为二维Halbach阵列。
图4是本发明所述动铁式平面电动机的定子302,及为安装在平衡质量200上的线圈阵列,其排布形式有两种,一种沿Y方向排布,另一种X方向排布。
图5a是本发明平面电动机驱动的磁悬浮粗微动一体掩模台动台100结构俯视图,图5b是图5a中A-A面的剖视图。该粗微动一体掩模台100采用反射式掩模板101,粗微动一体掩模台动台100为实心式结构,掩模板101布置位置为粗微动一体掩模台动台100底部。
Claims (4)
- 一种平面电动机驱动的磁悬浮粗微动一体掩模台,包括粗微动一体掩模台动台(100)、平衡质量(200)、粗微动一体掩模台动台的驱动电动机、掩模板(101)、基座(001)、隔振系统(500)及测量系统;隔振系统位于平衡质量与基座之间,掩模板安装在粗微动一体掩模台动台上,其特征在于:该粗微动一体掩模台动台的驱动电动机为动铁式平面电动机(300);动铁式平面电动机动子(301)为安装在粗微动一体掩模台动台顶面的永磁体阵列,动铁式平面电动机定子(302)为安装在平衡质量上的线圈阵列。
- 根据权利要求1所述的一种平面电动机驱动的磁悬浮粗微动一体掩模台,其特征在于:该粗微动一体掩膜台还包括提供补偿粗微动一体掩模台动台重力的磁悬浮结构(400),所述的磁悬浮结构动子(401)安装在粗微动一体掩模台动台上,磁悬浮结构定子(402)安装在平衡质量上。
- 根据权利要求1或2所述的一种平面电动机驱动的磁悬浮粗微动一体掩模台,其特征在于:动铁式平面电动机动子的永磁体阵列排布形式为二维Halbach阵列;动铁式平面电动机定子线圈阵列排布形式有两种:一种为沿Y方向排布,另一种沿X方向排布。
- 根据权利要求1所述的一种平面电动机驱动的磁悬浮粗微动一体掩模台,其特征在于:所述的粗微动一体掩模台的掩模板为反射式掩模板,粗微动一体掩模台动台为实心式结构,掩模板布置位置为粗微动一体掩模台动台的底部。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/307,797 US9791789B2 (en) | 2014-04-28 | 2015-04-17 | Magnetically suspended coarse motion and fine motion integrated reticle stage driven by planar motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410174870.0A CN104122759A (zh) | 2014-04-28 | 2014-04-28 | 一种平面电动机驱动的磁悬浮粗微动一体掩模台 |
CN201410174870.0 | 2014-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015165335A1 true WO2015165335A1 (zh) | 2015-11-05 |
Family
ID=51768234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/076880 WO2015165335A1 (zh) | 2014-04-28 | 2015-04-17 | 一种平面电动机驱动的磁悬浮粗微动一体掩模台 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9791789B2 (zh) |
CN (1) | CN104122759A (zh) |
WO (1) | WO2015165335A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017126577A1 (ja) * | 2016-01-22 | 2017-07-27 | Tdk株式会社 | アクチュエータ |
CN110176407A (zh) * | 2019-04-30 | 2019-08-27 | 上海隐冠半导体技术有限公司 | 运动装置 |
WO2019167913A1 (ja) * | 2018-02-28 | 2019-09-06 | Tdk株式会社 | トランデューサ並びにこれを用いたアクチュエータ及びエネルギハーベスタ |
CN113686478A (zh) * | 2021-07-02 | 2021-11-23 | 安徽大学 | 一种永磁直线电机推力测量连续精确加载装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104122759A (zh) * | 2014-04-28 | 2014-10-29 | 清华大学 | 一种平面电动机驱动的磁悬浮粗微动一体掩模台 |
CN105319989B (zh) * | 2015-11-19 | 2018-06-15 | 清华大学 | 一种永磁弹射掩模台弹射区电机出力最小轨迹规划方法 |
CN113493891B (zh) * | 2020-03-19 | 2022-09-02 | 上海微电子装备(集团)股份有限公司 | 掩模夹持模块及掩模拉伸装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0768705A2 (en) * | 1995-10-09 | 1997-04-16 | Canon Kabushiki Kaisha | Stage apparatus and linear motor, and exposure apparatus and device production method using the stage apparatus |
US6426788B1 (en) * | 1994-05-19 | 2002-07-30 | Canon Kabushiki Kaisha | Stage device and exposure apparatus using the same |
CN201097109Y (zh) * | 2007-11-14 | 2008-08-06 | 上海微电子装备有限公司 | 一种精密运动平台 |
CN102096338A (zh) * | 2011-01-14 | 2011-06-15 | 清华大学 | 一种掩膜台系统 |
CN103454864A (zh) * | 2013-08-30 | 2013-12-18 | 清华大学 | 一种粗精动一体的磁浮掩膜台系统 |
CN203838475U (zh) * | 2014-04-28 | 2014-09-17 | 清华大学 | 一种平面电动机驱动的磁悬浮粗微动一体掩模台 |
CN104122759A (zh) * | 2014-04-28 | 2014-10-29 | 清华大学 | 一种平面电动机驱动的磁悬浮粗微动一体掩模台 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004146492A (ja) * | 2002-10-23 | 2004-05-20 | Canon Inc | Euv露光装置 |
EP3392713A1 (en) * | 2003-10-31 | 2018-10-24 | Nikon Corporation | Immersion exposure apparatus and method |
CN102880013B (zh) * | 2012-09-28 | 2015-02-18 | 清华大学 | 一种掩模台工作台 |
-
2014
- 2014-04-28 CN CN201410174870.0A patent/CN104122759A/zh active Pending
-
2015
- 2015-04-17 WO PCT/CN2015/076880 patent/WO2015165335A1/zh active Application Filing
- 2015-04-17 US US15/307,797 patent/US9791789B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6426788B1 (en) * | 1994-05-19 | 2002-07-30 | Canon Kabushiki Kaisha | Stage device and exposure apparatus using the same |
EP0768705A2 (en) * | 1995-10-09 | 1997-04-16 | Canon Kabushiki Kaisha | Stage apparatus and linear motor, and exposure apparatus and device production method using the stage apparatus |
CN201097109Y (zh) * | 2007-11-14 | 2008-08-06 | 上海微电子装备有限公司 | 一种精密运动平台 |
CN102096338A (zh) * | 2011-01-14 | 2011-06-15 | 清华大学 | 一种掩膜台系统 |
CN103454864A (zh) * | 2013-08-30 | 2013-12-18 | 清华大学 | 一种粗精动一体的磁浮掩膜台系统 |
CN203838475U (zh) * | 2014-04-28 | 2014-09-17 | 清华大学 | 一种平面电动机驱动的磁悬浮粗微动一体掩模台 |
CN104122759A (zh) * | 2014-04-28 | 2014-10-29 | 清华大学 | 一种平面电动机驱动的磁悬浮粗微动一体掩模台 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017126577A1 (ja) * | 2016-01-22 | 2017-07-27 | Tdk株式会社 | アクチュエータ |
JPWO2017126577A1 (ja) * | 2016-01-22 | 2019-05-09 | Tdk株式会社 | アクチュエータ |
WO2019167913A1 (ja) * | 2018-02-28 | 2019-09-06 | Tdk株式会社 | トランデューサ並びにこれを用いたアクチュエータ及びエネルギハーベスタ |
JPWO2019167913A1 (ja) * | 2018-02-28 | 2021-02-12 | Tdk株式会社 | トランデューサ並びにこれを用いたアクチュエータ及びエネルギハーベスタ |
JP7176701B2 (ja) | 2018-02-28 | 2022-11-22 | Tdk株式会社 | トランデューサ並びにこれを用いたアクチュエータ及びエネルギハーベスタ |
CN110176407A (zh) * | 2019-04-30 | 2019-08-27 | 上海隐冠半导体技术有限公司 | 运动装置 |
CN110176407B (zh) * | 2019-04-30 | 2024-05-24 | 上海隐冠半导体技术有限公司 | 运动装置 |
CN113686478A (zh) * | 2021-07-02 | 2021-11-23 | 安徽大学 | 一种永磁直线电机推力测量连续精确加载装置 |
CN113686478B (zh) * | 2021-07-02 | 2023-09-15 | 安徽大学 | 一种永磁直线电机推力测量连续精确加载装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104122759A (zh) | 2014-10-29 |
US20170052461A1 (en) | 2017-02-23 |
US9791789B2 (en) | 2017-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015165335A1 (zh) | 一种平面电动机驱动的磁悬浮粗微动一体掩模台 | |
CN101807010B (zh) | 纳米精度六自由度磁浮微动台及应用 | |
JP4639517B2 (ja) | ステージ装置、リソグラフィーシステム、位置決め方法、及びステージ装置の駆動方法 | |
WO2015165336A1 (zh) | 一种平面电动机驱动的粗微动一体掩模台 | |
CN102096338B (zh) | 一种掩膜台系统 | |
US8836918B2 (en) | Dual-stage exchange system for lithographic apparatus | |
CN103454864B (zh) | 一种粗精动一体的磁浮掩膜台系统 | |
US20100187917A1 (en) | Micro stage with 6 degrees of freedom | |
JP4446951B2 (ja) | 位置決めデバイス、リソグラフィ装置及び駆動ユニット | |
CN103226296B (zh) | 一种带激光干涉仪测量的粗精动叠层工作台 | |
CN101694560B (zh) | 采用气浮平面电机的硅片台双台交换系统 | |
CN103186058B (zh) | 一种具有六自由度粗动台的掩模台系统 | |
TWI754681B (zh) | 馬達總成、微影裝置及器件製造方法 | |
CN101221366A (zh) | 可隔离外部震动的六自由度微动台 | |
CN101515119A (zh) | 采用气浮平面电机的硅片台双台交换系统 | |
CN103019046A (zh) | 一种基于多组独立驱动解耦控制的六自由度磁浮微动台 | |
CN103116250B (zh) | 带激光干涉仪测量的具有六自由度粗动台的掩膜台系统 | |
CN102537049A (zh) | 径向气浮导向模块及应用其的光刻机运动平台 | |
US7728462B2 (en) | Monolithic stage devices providing motion in six degrees of freedom | |
US20030173833A1 (en) | Wafer stage with magnetic bearings | |
CN103105743B (zh) | 带平面衍射光栅测量的具有六自由度粗动台的掩膜台系统 | |
CN103105742B (zh) | 带光电位置探测器测量的六自由度粗动台的掩模台系统 | |
WO2019096536A1 (en) | Positioning system and method for positioning a stage with respect to a frame | |
WO2016000497A1 (zh) | 一种电磁弹射启动式掩模台系统 | |
CN203838475U (zh) | 一种平面电动机驱动的磁悬浮粗微动一体掩模台 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15785961 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15307797 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15785961 Country of ref document: EP Kind code of ref document: A1 |