WO2015165334A1 - 一种透析液温度监测方法、装置及腹膜透析仪 - Google Patents

一种透析液温度监测方法、装置及腹膜透析仪 Download PDF

Info

Publication number
WO2015165334A1
WO2015165334A1 PCT/CN2015/076856 CN2015076856W WO2015165334A1 WO 2015165334 A1 WO2015165334 A1 WO 2015165334A1 CN 2015076856 W CN2015076856 W CN 2015076856W WO 2015165334 A1 WO2015165334 A1 WO 2015165334A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
difference
temperature sensor
temperature parameter
monitoring
Prior art date
Application number
PCT/CN2015/076856
Other languages
English (en)
French (fr)
Inventor
林慧勇
潘力
Original Assignee
昆山韦睿医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山韦睿医疗科技有限公司 filed Critical 昆山韦睿医疗科技有限公司
Publication of WO2015165334A1 publication Critical patent/WO2015165334A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • A61M1/287Dialysates therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • A61M1/166Heating
    • A61M1/1664Heating with temperature control

Definitions

  • the invention relates to the field of medical equipment, in particular to a method and a device for monitoring dialysate temperature and a peritoneal dialyzer.
  • Peritoneal dialysis techniques are a variant similar to artificial blood purification. It is a filter membrane of the body itself by utilizing the peritoneum of the patient's blood supply.
  • the dialysate is introduced through the catheter into the abdominal cavity of the patient, and according to the principle of permeation, the urine component is removed from the blood and enters the abdominal cavity. After a few hours, the dialysate carrying the urine component is then discharged from the abdominal cavity, thereby achieving the effect of dialysis.
  • peritoneal dialysis For example, for continuous ambulatory peritoneal dialysis (CAPD), the patient can manually change the dialysate, for example, 4 to 5 dialysate per day; for automated peritoneal dialysis (APD), one is called circulation
  • the Cycler's equipment automatically replaces the dialysis bag at night, so that the patient is not restricted during the day.
  • the peritoneal cavity is filled with dialysate by a circulator, the filling volume needs to be controlled, and the maximum filling amount for the patient is, for example, about 3,500 ml for an ordinary adult.
  • a standard value is used as the filling amount, which avoids the complicated work of determining the filling amount peculiar to each patient by experiment.
  • the dialysate is input through a catheter inserted into the abdominal cavity of the patient, which is heated to a suitable temperature (for example, about 37 ° C) before being delivered to the abdominal cavity of the patient to avoid input to the patient.
  • a suitable temperature for example, about 37 ° C
  • Unsuitable temperature eg, too cold or too hot
  • dialysate gives the patient a sense of discomfort. Therefore, the temperature of the dialysate in the dialysis bag is a very important therapeutic parameter, and monitoring the temperature of the dialysate is particularly important.
  • a temperature sensor can be disposed on the heating tray to monitor the temperature of the dialysate.
  • a solution for setting a sensor can be employed, in which, During the treatment, when the absolute value of the difference between the temperature T1 of the dialysate detected and the preset normal body temperature value T is greater than a preset threshold (eg, 2.5 ° C), an alarm signal is issued. Due to the long time-consuming use of APD dialysis equipment and the high safety requirements, once a problem occurs, it will cause great harm to the patient.
  • a preset threshold eg, 2.5 ° C
  • the technical solution for monitoring the temperature of the dialysate by a single sensor cannot directly judge whether the sensor is normal, which brings potential risks to the treatment of the patient. Once the sensor fails due to internal or external reasons, the exact temperature of the dialysate cannot be obtained, which can cause a very large hazard to the patient.
  • the detection rule set is generally only when the parameters of the two temperature sensors are different to a certain value, that is, The sensor is out of order and an alarm is issued. Therefore, the existing technical solution cannot know which sensor is faulty. Therefore, in the event of an alarm, the treatment must be terminated and the troubleshooting work must be performed. Since the fault generally occurs in the hardware part, the device needs to be disassembled for detection and replacement. A malfunctioning sensor brings great inconvenience to the treatment of the patient.
  • the technical problem to be solved by the embodiments of the present invention is to provide a dialysate temperature monitoring method and device, and a peritoneal dialyzer, which can accurately monitor dialysis by setting three temperature sensors and mutually checking the data of the three temperature sensors.
  • the temperature of the dialysate in the bag is high, and it is not necessary to interrupt the treatment immediately if one of the sensors fails.
  • an embodiment of the present invention provides a dialysate temperature monitoring method for a peritoneal dialyzer provided with three temperature sensors, the method comprising the following steps:
  • Corresponding monitoring logic is respectively determined according to the working state of the peritoneal dialysis apparatus, wherein the working state includes a non-treatment state and a treatment state, and the corresponding monitoring logic is a first monitoring logic and a second monitoring logic;
  • the temperature parameters of the dialysate obtained by the first temperature sensor and the second temperature sensor are judged to determine whether there is a deviation of the temperature parameter.
  • the steps include:
  • the first temperature sensor, the second temperature sensor, and the third temperature sensor are monitored by the first monitoring logic when the operating state of the peritoneal dialysis apparatus is in a non-treatment state, including:
  • the monitoring is continued; otherwise, the maximum temperature parameter is subtracted from the intermediate temperature parameter to obtain a first difference, and the intermediate temperature parameter is subtracted from the intermediate temperature parameter to obtain a second a difference, and determining whether the first difference and the second difference are both greater than the first threshold;
  • the result of the determination is that the first difference and the second difference are both greater than the first threshold, performing a device error alarm and interrupting monitoring; otherwise, prompting the first difference or the second difference
  • the two temperature sensors corresponding to the smaller ones are normal, and the other one is abnormal.
  • the sensor abnormal alarm is issued and monitoring continues.
  • the temperature parameters of the dialysate obtained by the first temperature sensor, the second temperature sensor and the third temperature sensor are judged to determine whether there is
  • the steps for deviation of the temperature parameters include:
  • the first temperature sensor, the second temperature sensor, and the third temperature sensor are monitored by the second monitoring logic, including:
  • the treatment is continued; otherwise, the maximum temperature parameter is subtracted from the intermediate temperature parameter to obtain a first difference, and the intermediate temperature parameter is subtracted from the intermediate temperature parameter to obtain a second a difference, and determining whether the first difference and the second difference are both greater than the first threshold;
  • the result of the determination is that the first difference and the second difference are both greater than the first threshold, performing a device error alarm and interrupting the treatment; otherwise, prompting the first difference or the second difference
  • the two temperature sensors corresponding to the smaller ones are normal, and the other one is not normal.
  • the device is abnormally alarmed and continues to be treated.
  • the temperature parameters of the dialysate obtained by the first temperature sensor, the second temperature sensor and the third temperature sensor are judged to determine whether there is
  • the steps for deviation of the temperature parameters include:
  • the first temperature sensor, the second temperature sensor, and the third temperature sensor are monitored by the second monitoring logic, including:
  • the first temperature parameter, the second temperature parameter, and the third temperature parameter obtained by the first temperature sensor, the second temperature sensor, and the third temperature sensor are respectively associated with
  • an embodiment of the present invention further provides a dialysate temperature monitoring device for a peritoneal dialyzer provided with three temperature sensors, including:
  • a temperature parameter obtaining unit configured to periodically obtain a temperature parameter of the dialysate in the dialysate bag placed on the tray of the peritoneal dialyzer by the first temperature sensor, the second temperature sensor and the third temperature sensor;
  • a monitoring logic determining unit configured to respectively determine corresponding monitoring logic according to an operating state of the peritoneal dialysis apparatus, wherein the working state includes a non-treatment state and a treatment state, and the corresponding monitoring logic is a first monitoring Logic and second monitoring logic;
  • a monitoring processing unit configured to determine, according to monitoring logic corresponding to the working state of the peritoneal dialysis apparatus, temperature parameters of the dialysate obtained by the first temperature sensor, the second temperature sensor, and the third temperature sensor , to determine whether there is a deviation of the temperature parameters, if there is, then an alarm prompt, otherwise continue to monitor or treat.
  • the monitoring processing unit further includes:
  • the non-therapeutic state monitoring and processing unit is configured to perform monitoring processing on the first temperature parameter, the second temperature parameter, and the third temperature parameter by using a first monitoring logic corresponding to the non-therapeutic state;
  • the treatment state monitoring processing unit is configured to perform monitoring processing on the first temperature parameter, the second temperature parameter, and the third temperature parameter by using a second monitoring logic corresponding to the treatment state.
  • the non-therapeutic state monitoring processing unit further includes:
  • a sorting subunit configured to sort three temperature parameters obtained by the first temperature sensor, the second temperature sensor, and the third temperature sensor to form a maximum temperature parameter, an intermediate temperature parameter, and a minimum temperature parameter;
  • a first comparison subunit configured to determine whether a difference between the maximum temperature parameter and the minimum temperature parameter is less than or equal to a first threshold
  • a first processing subunit configured to continue monitoring when the determination result of the first comparison subunit is that the difference is less than the first threshold; otherwise, subtracting the maximum temperature parameter from the intermediate temperature parameter to obtain the first The difference is obtained by subtracting the intermediate temperature parameter from the intermediate temperature parameter to obtain a second difference;
  • a second comparison subunit configured to determine whether the first difference value and the second difference value are both greater than the first threshold value
  • a second processing subunit configured to: when the determination result of the second comparison subunit is greater than the first threshold, perform a device error alarm, and interrupt monitoring; otherwise, prompt the first difference or the first
  • the two temperature sensors corresponding to the smaller of the two differences are normal, and the other temperature sensor is abnormal, and the sensor abnormal alarm is performed, and the monitoring is continued.
  • the treatment state monitoring and processing unit further comprises:
  • a sorting subunit configured to sort three temperature parameters obtained by the first temperature sensor, the second temperature sensor, and the third temperature sensor to form a maximum temperature parameter, an intermediate temperature parameter, and a minimum temperature parameter;
  • a third comparison subunit configured to determine whether a difference between the maximum temperature parameter and the minimum temperature parameter is less than or equal to a first threshold
  • a third processing subunit configured to continue processing when the determination result of the third comparison subunit is that the difference is less than the first threshold; otherwise, subtracting the maximum temperature parameter from the intermediate temperature parameter to obtain the first The difference is obtained by subtracting the intermediate temperature parameter from the intermediate temperature parameter to obtain a second difference;
  • a fourth comparison subunit configured to determine whether the first difference value and the second difference value are both greater than the first threshold value
  • a fourth processing subunit configured to: when the determination result of the fourth comparison subunit is greater than the first threshold, perform a device error alarm, and interrupt the treatment; otherwise, prompt the first difference or the first
  • the two temperature sensors corresponding to the smaller of the two differences are normal, and the other temperature sensor is abnormal. The sensor abnormal alarm is given and the treatment is continued.
  • the treatment state monitoring and processing unit further comprises:
  • a reference temperature parameter comparison subunit configured to use the first temperature parameter, the second temperature parameter, and the third temperature parameter obtained by the first temperature sensor, the second temperature sensor, and the third temperature sensor
  • the numbers are respectively subtracted from a reference temperature parameter and taken as an absolute value to obtain a third difference, a fourth difference, and a fifth difference;
  • a fifth comparison subunit configured to determine whether the third difference, the fourth difference, and the fifth difference are both less than or equal to a second threshold
  • a fifth processing subunit configured to continue the treatment when the determination result of the fifth comparison subunit is YES;
  • a sixth comparison subunit configured to determine, when the determination result of the fifth comparison subunit is negative, whether two of the third difference, the fourth difference, and the fifth difference are less than or equal to Second threshold
  • a sixth processing subunit configured to: when the determination result of the sixth comparison unit is YES, perform a sensor abnormality alarm on the temperature sensor corresponding to the difference value greater than the second threshold value, and continue the treatment; otherwise, proceed The device is abnormally alarmed and the treatment is interrupted.
  • a further aspect of an embodiment of the present invention provides a peritoneal dialysis apparatus provided with three temperature sensors for monitoring the dialysate temperature parameter thereof, and at least further comprising the aforementioned dialysate temperature monitoring device.
  • FIG. 1 is a schematic structural view of an embodiment of a peritoneal dialyzer provided by the present invention
  • FIG. 2 is a main flow chart of an embodiment of a dialysate temperature monitoring method according to the present invention
  • Figure 3 is a detailed flow chart of one embodiment of Figure 2;
  • Figure 4 is a detailed flow chart of another embodiment of Figure 2;
  • FIG. 5 is a schematic structural diagram of an embodiment of a dialysate temperature monitoring device according to the present invention.
  • FIG. 6 is a schematic structural view of an embodiment of the monitoring processing unit of FIG. 5;
  • Figure 7 is a schematic structural view of the non-therapeutic state monitoring and processing unit of Figure 6;
  • Figure 8 is a schematic structural view of an embodiment of the treatment state monitoring and processing unit of Figure 6;
  • FIG. 9 is a block diagram showing another embodiment of the treatment state monitoring processing unit of Figure 6.
  • FIG. 1 is a schematic structural view of an embodiment of a peritoneal dialyzer provided by the present invention; it can be understood that the present invention is merely an example and not limited thereto.
  • the peritoneal dialyzer includes:
  • a dialysis machine 4 a container 9 connected to the dialysis machine 4, a liquid outlet 2, and a connector 3 for connecting to a catheter of the patient; wherein the container 9 is for placing fresh dialysate, and the liquid outlet 2 is for The used dialysate is drained; the connector 3 is used to introduce fresh dialysate into the abdominal cavity of the patient or to draw used dialysate from the abdominal cavity of the patient.
  • the dialysis machine 4, the container 9, the liquid outlet and the connector 3 communicate with each other via the fluid path 100.
  • the dialysis machine 4 is also referred to as a circulator for performing peritoneal dialysis treatment.
  • the dialysis machine 4 may mainly include a controller 1, a balancer 95, a pump 5, a valve 7, a heater 6, and a temperature sensor 8.
  • the pump 5 is used to transport fluid, mainly to deliver fresh dialysate from the container 9 to the connector 3, and to transport the used dialysate from the connector 3 to the liquid port 2.
  • the valve 7 is used to control fluid flow, and the fluid path 100 is opened or closed by opening the control valve 7 to establish a corresponding fluid connection between the container 9, the connector 3 and the liquid outlet 2.
  • the heater 6 is used to heat the fresh dialysate to a suitable temperature (e.g., 37 ° C) before being delivered to the patient.
  • a suitable temperature e.g. 37 ° C
  • the heater 6 may be in the form of a heating tray on which the dialysate is placed.
  • the temperature sensor 8 is configured to monitor the temperature of the dialysate in the dialysate bag heated by the heater 6.
  • the temperature sensor is three, specifically, the three temperature sensors are set. At the corresponding position of the heating tray.
  • Balancer 95 is used to balance the amount of fluid administered to and from the patient.
  • the balancer 95 can be a balance chamber or a balance, by weighing the container 9 and holding the container of used dialysate. The weight is used to balance the input and output dialysate.
  • the controller 9 is used to control other components in the peritoneal dialysis machine, which can control the pump 5, the heater 6 and the valve 7 based on the data of the temperature sensor 8 to achieve functions such as controlling the temperature, flow and replacement of the dialyzer.
  • FIG. 2 it is a main flowchart of an embodiment of a dialysate temperature monitoring method according to the present invention; in this embodiment, it is applied to a peritoneal dialyzer provided with three temperature sensors as shown in FIG.
  • the method mainly includes:
  • Step S10 the temperature parameters of the dialysate in the dialysate bag placed on the tray of the peritoneal dialyzer are regularly obtained by the first temperature sensor, the second temperature sensor and the third temperature sensor;
  • Step S12 Determine corresponding monitoring logic according to the working state of the peritoneal dialysis apparatus, wherein the working state includes a non-treatment state and a treatment state, and the corresponding monitoring logic is a first monitoring logic and a second Monitoring logic
  • Step S14 determining, according to monitoring logic corresponding to the working state of the peritoneal dialysis apparatus, temperature parameters of the dialysate obtained by the first temperature sensor, the second temperature sensor, and the third temperature sensor, determining whether There is a deviation in the temperature parameter. If there is, an alarm will be given, otherwise the monitoring will continue.
  • the dialysate temperature monitoring method comprises the following steps:
  • Step S20 acquiring temperature monitoring parameters of three temperature sensors, specifically, obtaining a first temperature parameter T1 of the dialysate from the first temperature sensor, and obtaining a second temperature parameter T2 of the dialysate from the second temperature sensor, from the third temperature
  • the sensor obtains a third temperature parameter T3 of the dialysate, which may be a timing acquisition, such as obtaining the data of T1, T2 and T3 every fixed time (eg 30 seconds).
  • T1, T2, and T3 need to be monitored according to the monitoring logic corresponding to the working state of the peritoneal dialysis apparatus, that is, when in the non-treatment state, the first monitoring logic is used for T1. , T2 and T3 for monitoring and treatment; when in the treatment state, The second monitoring logic performs monitoring processing on T1, T2 and T3; specifically, the following steps are included:
  • step S21 the three temperature parameters T1, T2 and T3 are sorted to form a maximum temperature parameter Tmax, an intermediate temperature parameter Tmid and a minimum temperature parameter Tmin;
  • step S23 If the result of the determination is that the difference between the two is less than or equal to the first threshold T, it indicates that the temperature parameters read by the three temperature sensors are all normal, then the flow goes to step S23 to continue the operation step; otherwise, it indicates that at least If the temperature parameter read by one temperature sensor is incorrect, in step S24, the maximum temperature parameter Tmax is subtracted from the intermediate temperature parameter Tmid to obtain a first difference t1, and the intermediate temperature parameter Tmid is subtracted from the intermediate temperature parameter Tmin. Second difference t2,;
  • step S25 it is determined whether the first difference t1 and the second difference t2 are both greater than the first threshold T; if the determination result is yes, then go to step S27, if the result of the determination is no, go to Step S26;
  • Step S26 when the result of the determination in step S25 is no, the two temperature sensors corresponding to the smaller one of the first difference t1 or the second difference t2 are normal, and the other temperature sensor is abnormal, and the sensor is abnormal. Alarm and continue to monitor. Specifically, when at least one of t1 or t2 is less than T, if t1 is the smaller of the two differences, the maximum temperature parameter Tmax and the intermediate temperature parameter Tmid are more accurate.
  • Tmin value is not accurate, it is considered that the temperature sensor corresponding to Tmin may be abnormal, and the temperature sensor is abnormally alarmed; if t2 is the smaller of the two differences, the intermediate temperature parameter Tmid and minimum are The value of the temperature parameter Tmin is more accurate, and if the Tmax value is not accurate, it is considered that the temperature sensor corresponding to Tmax may be abnormal, and the temperature sensor is abnormally alarmed.
  • Step S26 when the result of the determination in step S25 is YES, it indicates that the temperature parameters obtained by the three temperature sensors are inaccurate. At this time, it is likely that a fault has occurred elsewhere in the device, so the device failure alarm is required at this time, and the monitoring is terminated. .
  • step S28 after the device failure is eliminated, the operation steps are continued.
  • the monitoring logics T1, T2 and T3 can also be monitored by the same monitoring logic as in FIG. 3.
  • the monitoring logics T1, T2 and T3 can also be monitored by the same monitoring logic as in FIG. 3.
  • FIG. 4 a detailed flowchart of another specific example in FIG. 2 is shown.
  • the peritoneal dialysis machine when the peritoneal dialysis machine is in a non-therapeutic state, it can monitor T1, T2, and T3 using the first monitoring logic as shown in FIG. 3; and when the peritoneal dialysis machine is in a therapeutic state, T1, T2, and T3 may be monitored using a second monitoring logic as shown in FIG. 4, and in particular, as detailed in connection with FIG.
  • the method of this embodiment includes the following steps:
  • step S30 temperature monitoring parameters T1, T2 and T3 of the three temperature sensors are acquired.
  • step S21 the three temperature parameters T1, T2 and T3 are respectively subtracted from a reference temperature parameter T0 (such as 37 ° C) and taken to an absolute value to obtain a third difference t3.
  • step S32 it is determined whether the third difference t3, the fourth difference t4, and the fifth difference t5 are both less than or equal to the second threshold Tf (eg, 2.5 ° C).
  • step S33 If the result of the determination is that the three differences are less than or equal to the second threshold Tf, it indicates that the temperature parameters read by the three temperature sensors are all normal, then the flow goes to step S33 to continue the operation step; otherwise, it indicates that at least one temperature may be If the temperature parameter read by the sensor is incorrect, then in step S34, it is determined whether two of the third difference t3, the fourth difference t4, and the fifth difference t5 are less than or equal to the second threshold Tf; If so, in step S35, a sensor abnormality alarm is performed on the temperature sensor corresponding to the difference greater than the second threshold Tf, and the treatment is continued. For example, in one example, t3 and t4 are smaller than Tf, and t5 is greater than Tf.
  • step S36 Perform an abnormal device alarm and interrupt the treatment. Because at least two temperature parameters in T1, T2 and T3 are abnormal, it is likely that other parts of the device have appeared. Fault, so the device is abnormally alarmed. When such a situation occurs, then in step S38, after the device failure is eliminated, the operation steps are continued.
  • an embodiment of a dialysate temperature monitoring device is provided in a peritoneal dialyzer provided with two temperature sensors, specifically Implemented in the controller 1 of FIG. 1, in particular, the dialysate temperature monitoring device 10 comprises:
  • the temperature parameter obtaining unit 12 is configured to periodically obtain the temperature parameter of the dialysate in the dialysate bag placed on the tray of the peritoneal dialyzer by the first temperature sensor 80, the second temperature sensor 81 and the third temperature sensor 82, specifically The first temperature parameter T1 is obtained from the first temperature sensor 80, the second temperature parameter T2 is obtained from the second temperature sensor 81, and the third temperature sensor 82 is obtained. Obtaining a third temperature parameter T3;
  • the monitoring logic determining unit 14 is configured to respectively determine corresponding monitoring logic according to the working state of the peritoneal dialysis apparatus, wherein the working state includes a treatment state and a non-treatment state, and the corresponding monitoring logic is a first monitoring logic and a first Second monitoring logic;
  • the monitoring processing unit 16 is configured to perform temperature parameters T1, T2, and T3 of the dialysate obtained by the first temperature sensor 80, the second temperature sensor 81, and the third temperature sensor 82 according to the monitoring logic determined by the monitoring logic determining unit 14. Make a judgment to determine whether there is a deviation in the temperature parameter. If there is, an alarm will be given, otherwise the monitoring will continue.
  • the monitoring processing unit 16 further includes
  • the non-therapeutic state monitoring and processing unit 17 is configured to perform monitoring processing on the first temperature parameter T1, the second temperature parameter T2, and the third temperature parameter T3 by using the first monitoring logic;
  • the treatment state monitoring and processing unit 18 is configured to perform monitoring processing on the first temperature parameter T1, the second temperature parameter T2, and the third temperature parameter T3 by using the second monitoring logic.
  • the non-therapeutic state monitoring processing unit 17 includes:
  • the sorting subunit 170 is configured to sort the three temperature parameters T1, T2 and T3 obtained by the first temperature sensor, the second temperature sensor and the third temperature sensor to form a maximum temperature parameter Tmax, an intermediate temperature parameter Tmid and a minimum Temperature parameter Tmin;
  • a first comparison subunit 171 configured to determine whether a difference between the maximum temperature parameter Tmax and the minimum temperature parameter Tmin is less than or equal to a first threshold T (eg, 5 ° C);
  • the first processing sub-unit 172 is configured to continue monitoring when the determination result of the first comparison sub-unit 171 is that the difference is less than the first threshold T; otherwise, the maximum temperature parameter Tmax and the intermediate temperature parameter Tmid Subtracting to obtain a first difference t1, subtracting the intermediate temperature parameter Tmid from the intermediate temperature parameter Tmin to obtain a second difference t2;
  • a second comparison sub-unit 173, configured to determine whether the first difference value t1 and the second difference value t2 are both greater than the first threshold value T;
  • the second processing sub-unit 174 is configured to: when the determination result of the second comparison sub-unit 173 is greater than the first threshold T, perform a device error alarm, and interrupt monitoring; otherwise, prompt the first difference
  • the two temperature sensors corresponding to the smaller of the value t1 or the second difference t2 are normal, and the other temperature sensor is abnormal, the sensor abnormality alarm is performed, and the monitoring is continued.
  • FIG. 8 is a schematic structural view of an embodiment of the treatment state monitoring processing unit of FIG. 6; in this embodiment, the second monitoring logic employed by the treatment state monitoring processing unit 18 is the first adopted in FIG.
  • the monitoring logic is basically the same.
  • the treatment state monitoring The processing unit 18 includes:
  • the sorting subunit 180 is configured to sort the three temperature parameters T1, T2, and T3 obtained by the first temperature sensor, the second temperature sensor, and the third temperature sensor to form a maximum temperature parameter Tmax, an intermediate temperature parameter Tmid, and a minimum Temperature parameter Tmin;
  • a first comparison subunit 181 configured to determine whether a difference between the maximum temperature parameter Tmax and the minimum temperature parameter Tmin is less than or equal to a first threshold T (eg, 5 ° C);
  • the first processing sub-unit 182 is configured to continue the treatment when the determination result of the first comparison sub-unit 181 is that the difference is less than the first threshold T; otherwise, the maximum temperature parameter Tmax and the intermediate temperature parameter Tmid Subtracting to obtain a first difference t1, subtracting the intermediate temperature parameter Tmid from the intermediate temperature parameter Tmin to obtain a second difference t2;
  • a second comparison sub-unit 183 configured to determine whether the first difference value t1 and the second difference value t2 are both greater than the first threshold value T;
  • the second processing sub-unit 184 is configured to: when the determination result of the second comparison sub-unit 173 is greater than the first threshold T, perform a device error alarm, and interrupt the treatment; otherwise, prompt the first difference
  • the two temperature sensors corresponding to the smaller of the value t1 or the second difference t2 are normal, and the other temperature sensor is abnormal, the sensor abnormality alarm is performed, and the treatment is continued.
  • FIG. 9 is a schematic structural view of an embodiment of the treatment state monitoring processing unit of FIG. 6; in this embodiment, the second monitoring logic employed by the treatment state monitoring processing unit 18 is the first adopted in FIG. The monitoring logic is different.
  • the treatment state monitoring processing unit 18 includes:
  • the reference temperature parameter comparison subunit 190 is configured to respectively obtain the first temperature parameter T1, the second temperature parameter T2, and the third temperature parameter T3 obtained by the first temperature sensor 80, the second temperature sensor 81, and the third temperature sensor 82 Subtracting from a reference temperature parameter T0 (such as 37 ° C) and taking an absolute value, obtaining a third difference t3, a fourth difference t4 and a fifth difference t5;
  • a reference temperature parameter T0 such as 37 ° C
  • a fifth comparison sub-unit 191 configured to determine whether the third difference t3, the fourth difference t4, and the fifth difference t5 are both less than or equal to a second threshold Tf (eg, 2.5 ° C),
  • the fifth processing sub-unit 192 is configured to continue the treatment when the determination result of the fifth comparison sub-unit 191 is YES;
  • the sixth comparison subunit 193 is configured to determine whether there are two of the third difference t3, the fourth difference t4, and the fifth difference t5 when the determination result of the fifth comparison subunit 191 is NO.
  • the difference is less than or equal to the second threshold Tf;
  • a sixth processing sub-unit 194 configured to: when the determination result of the sixth comparison unit 193 is YES, The temperature sensor corresponding to the difference corresponding to the second threshold value Tf is subjected to a sensor abnormality alarm, and the treatment is continued; otherwise, the device abnormality alarm is performed, and the treatment is interrupted.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Anesthesiology (AREA)
  • Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

一种透析液温度监测方法及相应的透析液温度监测装置(10)与腹膜透析仪(4),透析液温度监测方法包括以下步骤:通过第一温度传感器(80)、第二温度传感器(81)以及第三温度传感器(82)定时获得放置于腹膜透析仪(4)的托盘上的透析液袋中透析液的温度参数;根据腹膜透析仪(4)所处的工作状态,分别确定对应的监测逻辑;根据腹膜透析仪(4)所处的工作状态所对应的监测逻辑,对获得的透析液的温度参数进行判断,如果温度参数出现偏差则进行报警提示。通过对第一温度传感器(80)、第二温度传感器(81)以及第三温度传感器(82)的数据进行相互核对,可以准确监测透析液的温度,安全性高。

Description

一种透析液温度监测方法、装置及腹膜透析仪
本申请要求于2014年4月29日提交中国专利局、申请号为201410177094.X、发明名称为“一种透析液温度监测方法、装置及腹膜透析仪”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗设备领域,尤其涉及一种透析液温度监测方法、装置及腹膜透析仪。
背景技术
腹膜透析技术是类似于人工血液净化的变型方式。其是通过利用患者的供血良好的腹膜作为身体自身的过滤膜。将透析液通过导管输入至患者的腹腔,根据渗透原理,尿液成分被从血液中排除并进入腹腔。数小时之后,然后将该携带该尿液成分的透析液从腹腔排出,从而实现透析的效果。
在现有的技术中,一般可以采用几种不同的方法来进行腹膜透析。例如,对于持续性非卧床腹膜透析(CAPD),患者自己可以手动更换透析液,例如,每天可以更换4至5次透析液即可;而对于自动化腹膜透析(APD),一种被称作循环仪(Cycler)的设备可在夜间实现自动更换透析袋,从而使患者在白天不会受到限制。
在这种自动化腹膜透析中,腹腔通过循环仪被填充透析液,填充容量需要控制,给患者提供最大填充量对于普通成人而言例如是3500ml左右。通常,会采用一个标准值用作填充量,可以避免通过试验来确定每一患者所特有的填充量所带来的复杂工作。
通常,在腹膜透析仪中,通过一个插入患者腹腔的导管来输入透析液,该透析液在输送给患者腹腔之前,需将其加热到合适的温度(例如37℃左右),以避免给患者输入不合适温度(例如过冷或过热)透析液给患者引起的不适感。故透析袋内的透析液温度是非常重要的治疗参数,对该透析液温度的监控尤其重要。
在现有技术中,在将透析液输送给患者腹腔之前,一般采用加热托盘对其进行加热,此时可以在加热托盘上设置温度传感器以对透析液的温度进行监控。在现有技术中,可以采用设置一个传感器的方案,在这种方案中,在 治疗过程中当其检测到的透析液的温度T1与预设的人体正常体温值T之间的差值的绝对值大于预设阈值(如2.5℃)时,则会发出报警信号。由于APD透析设备的使用时间长,而且对安全性要求高,一旦出现问题则会给患者带来非常大的危害。故现有技术中的这种通过单个传感器来监测透析液温度的技术方案,无法直接判断该传感器是否正常,这样给患者的治疗会带来潜在的风险。一旦该传感器由于内部或外部原因失灵,则无法获得透析液的准确温度,会给患者带来非常大的危害。
在一些现有的技术中,也出现了采用两个温度传感器的技术方案,但是在这些技术方案中,设置的检测规则一般是仅仅当两个温度传感器的参数相差到一定值时,即判定有传感器失灵,并进行报警。故现有的这种技术方案无法获知具体是哪个传感器出错,因此在出现报警时,必须终止治疗并进行排除故障的工作,而由于故障一般是出现在硬件部分,需要拆开设备进行检测并更换失灵的传感器,给对患者的治疗带来非常大的不便。
发明内容
本发明实施例所要解决的技术问题在于,提供一种透析液温度监测方法、装置及腹膜透析仪,可以通过设置三个温度传感器,并对三个温度传感器的数据进行相互核对,可以准确监测透析袋内透析液温度,安全性高,且在其中某一传感器出错时,无需必须马上中断治疗。
为了解决上述技术问题,本发明实施例提供一种透析液温度监测方法,用于设置有三个温度传感器的腹膜透析仪中,所述方法包括如下步骤:
通过第一温度传感器、第二温度传感器和第三温度传感器定时获得放置于所述腹膜透析仪的托盘上的透析液袋中透析液的温度参数;
根据所述腹膜透析仪所处的工作状态,分别确定对应的监测逻辑,其中,所述工作状态包括非治疗状态以及治疗状态,所述对应的监测逻辑为第一监测逻辑以及第二监测逻辑;
根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器、第二温度传感器以及第三温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差,如果有,则进行报警提示,否则继续进行监测或治疗。
其中,根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器以及第二温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差的步骤包括:
当所述腹膜透析仪所处的工作状态为非治疗状态时,以第一监测逻辑对所述第一温度传感器、第二温度传感器以及第三温度传感器进行监测处理,包括:
将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数进行排序,形成最大温度参数、中间温度参数以及最小温度参数;
判断最大温度参数与最小温度参数两者之间差值是否小于或等于第一阈值;
如果判断结果为所述差值小于所述第一阈值,则继续进行监测;否则将最大温度参数与中间温度参数相减获得第一差值,将中间温度参数与中间温度参数相减获得第二差值,并判断所述第一差值与所述第二差值是否均大于所述第一阈值;
如果判断结果为所述第一差值与所述第二差值均大于所述第一阈值,则进行设备出错报警,并中断监测;否则,提示所述第一差值或第二差值中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行监测。
其中,根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器、第二温度传感器以及第三温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差的步骤包括:
当所述腹膜透析仪所处的工作状态为治疗状态时,以第二监测逻辑对所述第一温度传感器、第二温度传感器以及第三温度传感器进行监测处理,包括:
将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数进行排序,形成最大温度参数、中间温度参数以及最小温度参数;
判断最大温度参数与最小温度参数两者之间差值是否小于或等于第一阈值;
如果判断结果为所述差值小于所述第一阈值,则继续进行治疗;否则将最大温度参数与中间温度参数相减获得第一差值,将中间温度参数与中间温度参数相减获得第二差值,并判断所述第一差值与所述第二差值是否均大于所述第一阈值;
如果判断结果为所述第一差值与所述第二差值均大于所述第一阈值,则进行设备出错报警,并中断治疗;否则,提示所述第一差值或第二差值中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感 器异常报警,并继续进行治疗。
其中,根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器、第二温度传感器以及第三温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差的步骤包括:
当所述腹膜透析仪所处的工作状态为治疗状态时,以第二监测逻辑对所述第一温度传感器、第二温度传感器以及第三温度传感器进行监测处理,包括:
将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的第一温度参数、第二温度参数以及第三温度参数分别与
判断所述第三差值、第四差值以及第五差值是否均小于或等于第二阈值,如果判断结果为均小于,则继续进行治疗;否则继续判断所述第三差值、第四差值以及第五差值中是否有两个差值小于或等于第二阈值,如果判断结果为是,则对差值大于所述第二阈值所对应的温度传感器进行传感器异常报警,并继续进行治疗;否则,进行设备异常报警,中断治疗。
相应地,本发明实施例还提供了一种透析液温度监测装置,用于设置有三个温度传感器的腹膜透析仪中,其中,包括:
温度参数获得单元,用于通过第一温度传感器、第二温度传感器和第三温度传感器定时获得放置于所述腹膜透析仪的托盘上的透析液袋中透析液的温度参数;
监测逻辑确定单元,用于根据所述腹膜透析仪所处的工作状态,分别确定对应的监测逻辑,其中,所述工作状态包括非治疗状态以及治疗状态,所述对应的监测逻辑为第一监测逻辑以及第二监测逻辑;
监测处理单元,用于根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器、第二温度传感器以及第三温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差,如果有,则进行报警提示,否则继续进行监测或治疗。
其中,所述监测处理单元进一步包括:
非治疗状态监测处理单元,用于采用与非治疗状态对应的第一监测逻辑对所述第一温度参数、第二温度参数以及第三温度参数进行监测处理;
治疗状态监测处理单元,用于采用与治疗状态对应的第二监测逻辑对所述第一温度参数、第二温度参数以及第三温度参数进行监测处理。
其中,所述非治疗状态监测处理单元进一步包括:
排序子单元,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数进行排序,形成最大温度参数、中间温度参数以及最小温度参数;
第一比较子单元,用于判断最大温度参数与最小温度参数两者之间差值是否小于或等于第一阈值;
第一处理子单元,用于当所述第一比较子单元的判断结果为所述差值小于所述第一阈值,则继续进行监测;否则将最大温度参数与中间温度参数相减获得第一差值,将中间温度参数与中间温度参数相减获得第二差值;
第二比较子单元,用于判断所述第一差值与所述第二差值是否均大于所述第一阈值;
第二处理子单元,用于在所述第二比较子单元的判断结果为均大于所述第一阈值时,则进行设备出错报警,并中断监测;否则,提示所述第一差值或第二差值中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行监测。
其中,所述治疗状态监测处理单元进一步包括:
排序子单元,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数进行排序,形成最大温度参数、中间温度参数以及最小温度参数;
第三比较子单元,用于判断最大温度参数与最小温度参数两者之间差值是否小于或等于第一阈值;
第三处理子单元,用于当所述第三比较子单元的判断结果为所述差值小于所述第一阈值,则继续进行治疗;否则将最大温度参数与中间温度参数相减获得第一差值,将中间温度参数与中间温度参数相减获得第二差值;
第四比较子单元,用于判断所述第一差值与所述第二差值是否均大于所述第一阈值;
第四处理子单元,用于在所述第四比较子单元的判断结果为均大于所述第一阈值时,则进行设备出错报警,并中断治疗;否则,提示所述第一差值或第二差值中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行治疗。
其中,所述治疗状态监测处理单元进一步包括:
基准温度参数比较子单元,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的第一温度参数、第二温度参数以及第三温度参 数分别与一基准温度参数进行相减并取绝对值,获得第三差值、第四差值以及第五差值;
第五比较子单元,用于判断所述第三差值、第四差值以及第五差值是否均小于或等于第二阈值,
第五处理子单元,用于在所述第五比较子单元的判断结果为是时,继续进行治疗;
第六比较子单元,用于在所述第五比较子单元的判断结果为否时,判断所述第三差值、第四差值以及第五差值中是否有两个差值小于或等于第二阈值;
第六处理子单元,用于在所述第六比较单元的判断结果为是时,对大于所述第二阈值的差值所对应的温度传感器进行传感器异常报警,并继续进行治疗;否则,进行设备异常报警,中断治疗。
相应地,本发明实施例的再一方面还提供一种腹膜透析仪,其设置有三个用于监测其透析液温度参数的温度传感器,并至少进一步包括有前述的透析液温度监测装置。
实施本发明实施例,具有如下有益效果:
提供一种透析液温度监测方法、装置及腹膜透析仪,可以通过设置三个温度传感器,并对三个温度传感器的数据进行相互核对,可以准确监测用于输入患者的透析液的温度,安全性高。且在其中某一传感器出错时,无需马上中断监测或治疗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1是本发明提供的一种腹膜透析仪一个实施例的结构示意图;
图2为本发明提供的一种透析液温度监测方法一个实施例的主流程图;
图3是图2中一个具体实施例的详细流程图;
图4是图2中另一个具体实施例的详细流程图;
图5为本发明提供的一种透析液温度监测装置的一个实施例的结构示意 图;
图6为图5中监测处理单元的一个实施例的结构示意图;
图7为图6中非治疗状态监测处理单元的结构示意图;
图8为图6中治疗状态监测处理单元的一个实施例的结构示意图;
图9是图6中治疗状态监测处理单元的另一个实施例的结构示意图。
具体实施方式
以下各实施例的说明是参考附图,用以式例本发明可以用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
如图1所示,是本发明提供的一种腹膜透析仪一个实施例的结构示意图;可以理解的是,此处仅为示例非为限制,在该实施例中,该腹膜透析仪包括:
透析机4,以及与该透析机4相连接的容器9、出液口2以及用于与患者的导管连接的连接器3;其中,容器9用于放置新鲜透析液,而出液口2用于将用过的透析液排出;连接器3用于将新鲜的透析液引入到患者的腹腔中或者将用过的透析液从患者的腹腔中引出。而透析机4、容器9、出液口和连接器3之间经由流体路径100彼此连通。
其中,透析机4也被称作循环器,其用于执行腹膜透析治疗。在该实施例中,透析机4可主要包括有控制器1、平衡器95、泵5、阀7、加热器6以及温度传感器8。
具体地,该泵5用于运输流体,主要将新鲜的透析液从容器9中输送给连接器3,并把用过的透析液从连接器3运输给出液口2。
阀7用于控制流体流,通过控制阀7的开启来打开或关闭流体路径100,以便建立容器9、连接器3和出液口2之间的相应的流体连接。
加热器6用于对新鲜透析液在输送给病人之前加热到合适的温度(如,37℃),具体地,该加热器6可以采用加热托盘的形式,在所述加热托盘上放置有透析液袋,而透析液袋存储有透析液。
温度传感器8,用于监控经加热器6加热后的透析液袋中的透析液的温度,在本实施例中,该温度传感器为三个,具体地,该三个温度传感器设置 于加热托盘相应位置处。
平衡器95用于平衡给予患者的和从患者所提取的流体量。以便阻止给予患者过多的流体或者提取过多的流体,该平衡器95可以是一个平衡腔室,也可以是一个天平,通过称量容器9的重量以及盛放用过的透析液的容器的重量来实现输入及输出的透析液的平衡。
控制器9用于控制腹膜透析仪中的其他部件,其可基于温度传感器8的数据来控制泵5、加热器6和阀7,以实现控制透析仪的温度、流量和更换等功能。
如图2所示,为本发明提供的一种透析液温度监测方法一个实施例的主流程图;在该实施例中,其应用于如图1示出的设置有三个温度传感器的腹膜透析仪中,该方法主要包括:
步骤S10,通过第一温度传感器、第二温度传感器以及第三温度传感器定时获得放置于所述腹膜透析仪的托盘上的透析液袋中透析液的温度参数;
步骤S12,根据所述腹膜透析仪所处的工作状态,分别确定对应的监测逻辑,其中,所述工作状态包括非治疗状态以及治疗状态,所述对应的监测逻辑为第一监测逻辑以及第二监测逻辑;
步骤S14,根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器、第二温度传感器以及第三温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差,如果有,则进行报警提示,否则继续进行监测。
如图3所示,示出了图2中的一个具体的例子的详细流程图,在该例子中,在腹膜透析仪处于非治疗状态以及治疗状态均可以采用如图3示出的监测逻辑进行监测处理,具体地,在该实施例中,该透析液温度监测方法包括如下步骤:
步骤S20,获取三个温度传感器的温度监测参数,具体地,从第一温度传感器获得透析液的第一温度参数T1,从第二温度传感器获得透析液的第二温度参数T2,从第三温度传感器获得透析液的第三温度参数T3,该获取过程可以是定时获取,例如每隔一固定时间(如30秒)即获得该T1、T2和T3的数据。
然后本发明的实施例中,需要根据腹膜透析仪所处的工作状态所对应的监测逻辑对T1、T2和T3进行监测处理,即,当处于非治疗状态时,则以第一监测逻辑对T1、T2和T3进行监测处理;当处于治疗状态时,则以第 二监测逻辑对T1、T2和T3进行监测处理;具体地包括如下步骤:
当腹膜透析仪处于非治疗状态时,在步骤S21中,将三个温度参数T1、T2和T3进行排序,形成最大温度参数Tmax、中间温度参数Tmid以及最小温度参数Tmin;
步骤S22,判断最大温度参数Tmax与最小温度参数Tmin两者之间差值是否小于或等于第一阈值T,即判断Tmax-Tmin<=T?第一阈值T其中,该第一阈值T为T1、T2和T3中允许的最大偏差值,在一个实施例中,该第一阈值T为5℃;
如果判断结果为两者之间的差值小于或等于第一阈值T,则说明三个温度传感器所读取的温度参数均正常,则流程转至步骤S23继续执行操作步骤;否则则表明可能至少一个温度传感器所读取的温度参数有误,则在步骤S24中,将最大温度参数Tmax与中间温度参数Tmid相减获得第一差值t1,将中间温度参数Tmid与中间温度参数Tmin相减获得第二差值t2,;
步骤S25,判断所述第一差值t1与所述第二差值t2是否均大于所述第一阈值T;如果判断结果为是,则转至步骤S27,如果判断结果为否,则转至步骤S26;
步骤S26,当步骤S25判断结果为否时,则提示所述第一差值t1或第二差值t2中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行监测,具体地,当t1或t2中至少有一个小于T时,如果在两个差值中t1为较小者,则说明最大温度参数Tmax与中间温度参数Tmid的值较准确,而Tmin值不准确,则认为Tmin所对应的温度传感器可能出现了异常,则对该温度传感器进行异常报警;如果在两个差值中t2为较小者,则说明中间温度参数Tmid与最小温度参数Tmin的值较准确,而Tmax值不准确,则认为Tmax所对应的温度传感器可能出现了异常,则对该温度传感器进行异常报警。
步骤S26,当步骤S25判断结果为是时,则说明三个温度传感器所获得的温度参数均不准确,此时很可能是设备其他地方出现了故障,故此时需要进行设备故障报警,并终止监测。
在步骤S28中,在排除了设备故障后,继续执行操作步骤。
而当腹膜透析仪处于治疗状态时,也可以采用与图3中相同的监测逻辑对T1、T2和T3进行监测,具体的细节可以参照前述的描述,在此不进行详述。
如图4所示,示出了图2中的另一个具体的例子的详细流程图。在该实施例中,当腹膜透析仪处于非治疗状态时,则其可以采用如图3示出的第一监测逻辑对T1、T2和T3进行监测;而当腹膜透析仪处于治疗状态时,则可以采用如图4示出的第二监测逻辑对T1、T2和T3进行监测,具体地,可以结合图4进行详述。具体地,该实施例的方法包括如下步骤:
步骤S30,获取三个温度传感器的温度监测参数T1、T2和T3。
当腹膜透析仪处于治疗状态时,在步骤S21中,将三个温度参数T1、T2和T3分别与一基准温度参数T0(如37℃)进行相减并取绝对值,获得第三差值t3、第四差值t4以及第五差值t5;
步骤S32,判断第三差值t3、第四差值t4以及第五差值t5是否均小于或等于第二阈值Tf(如2.5℃)。
如果判断结果为三个差值均小于或等于第二阈值Tf,则说明三个温度传感器所读取的温度参数均正常,则流程转至步骤S33继续执行操作步骤;否则则表明可能至少一个温度传感器所读取的温度参数有误,则在步骤S34中,判断第三差值t3、第四差值t4以及第五差值t5中是否有两个小于或等于第二阈值Tf;如果判断结果为是,则在步骤S35中,对差值大于所述第二阈值Tf所对应的温度传感器进行传感器异常报警,并继续进行治疗,例如,当一个例子中,t3和t4小于Tf,t5大于Tf,则认为T1和T2所对应第一温度传感器和第二温度传感器正常,而T3对应的第三温度传感器可能出现了异常,故对第三温度传感器进行传感器异常报警;否则,在步骤S36中,进行设备异常报警,中断治疗,因为此时T1、T2和T3中至少有两个温度参数出现了异常,则很可能是设备的其他部件出现了故障,故进行设备异常报警。当出现这种情形时,则在步骤S38中,在排除了设备故障后,继续执行操作步骤。
至图5至7所示,是本发明实施例的另一个方面所提供一种透析液温度监测装置的一个实施例,该实施例用于设置有两个温度传感器的腹膜透析仪中,具体地在图1中的控制器1中实现,具体地,该透析液温度监测装置10包括:
温度参数获得单元12,用于通过第一温度传感器80、第二温度传感器81和第三温度传感器82定时获得放置于所述腹膜透析仪的托盘上的透析液袋中透析液的温度参数,具体地,从第一温度传感器80获得第一温度参数T1,从第二温度传感器81获得第二温度参数T2,从第三温度传感器82获 得第三温度参数T3;
监测逻辑确定单元14,用于根据腹膜透析仪所处的工作状态,分别确定对应的监测逻辑,其中,该工作状态包括治疗状态以及非治疗状态,分别对应的监测逻辑为第一监测逻辑以及第二监测逻辑;
监测处理单元16,用于根据监测逻辑确定单元14所确定的监测逻辑,对第一温度传感器80、第二温度传感器81以及第三温度传感器82所获得的透析液的温度参数T1、T2及T3进行判断,判断是否有温度参数出现偏差,如果有,则进行报警提示,否则继续进行监测。
其中,所述监测处理单元16进一步包括
非治疗状态监测处理单元17,用于利用第一监测逻辑对第一温度参数T1、第二温度参数T2及第三温度参数T3进行监测处理;
治疗状态监测处理单元18,用于利用第二监测逻辑对第一温度参数T1、第二温度参数T2及第三温度参数T3进行监测处理。
具体地,非治疗状态监测处理单元17包括:
排序子单元170,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数T1、T2及T3进行排序,形成最大温度参数Tmax、中间温度参数Tmid以及最小温度参数Tmin;
第一比较子单元171,用于判断最大温度参数Tmax与最小温度参数Tmin两者之间差值是否小于或等于第一阈值T(如5℃);
第一处理子单元172,用于当所述第一比较子单元171的判断结果为所述差值小于所述第一阈值T,则继续进行监测;否则将最大温度参数Tmax与中间温度参数Tmid相减获得第一差值t1,将中间温度参数Tmid与中间温度参数Tmin相减获得第二差值t2;
第二比较子单元173,用于判断所述第一差值t1与所述第二差值t2是否均大于所述第一阈值T;
第二处理子单元174,用于在所述第二比较子单元173的判断结果为均大于所述第一阈值T时,则进行设备出错报警,并中断监测;否则,提示所述第一差值t1或第二差值t2中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行监测。
如图8所示,是图6中治疗状态监测处理单元的一个实施例的结构示意图;在该实施例中,治疗状态监测处理单元18所采用的第二监测逻辑与图7中采用的第一监测逻辑基本相同。具体地,在该实施例中,该治疗状态监测 处理单元18包括:
排序子单元180,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数T1、T2及T3进行排序,形成最大温度参数Tmax、中间温度参数Tmid以及最小温度参数Tmin;
第一比较子单元181,用于判断最大温度参数Tmax与最小温度参数Tmin两者之间差值是否小于或等于第一阈值T(如5℃);
第一处理子单元182,用于当所述第一比较子单元181的判断结果为所述差值小于所述第一阈值T,则继续进行治疗;否则将最大温度参数Tmax与中间温度参数Tmid相减获得第一差值t1,将中间温度参数Tmid与中间温度参数Tmin相减获得第二差值t2;
第二比较子单元183,用于判断所述第一差值t1与所述第二差值t2是否均大于所述第一阈值T;
第二处理子单元184,用于在所述第二比较子单元173的判断结果为均大于所述第一阈值T时,则进行设备出错报警,并中断治疗;否则,提示所述第一差值t1或第二差值t2中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行治疗。
如图9所示,是图6中治疗状态监测处理单元的一个实施例的结构示意图;在该实施例中,治疗状态监测处理单元18所采用的第二监测逻辑与图7中采用的第一监测逻辑不同。具体地,在该实施例中,该治疗状态监测处理单元18包括:
基准温度参数比较子单元190,用于将所述第一温度传感器80、第二温度传感器81以及第三温度传感器82获得的第一温度参数T1、第二温度参数T2以及第三温度参数T3分别与一基准温度参数T0(如37℃)进行相减并取绝对值,获得第三差值t3、第四差值t4以及第五差值t5;
第五比较子单元191,用于判断所述第三差值t3、第四差值t4以及第五差值t5是否均小于或等于第二阈值Tf(如2.5℃),
第五处理子单元192,用于在所述第五比较子单元191的判断结果为是时,继续进行治疗;
第六比较子单元193,用于在所述第五比较子单元191的判断结果为否时,判断所述第三差值t3、第四差值t4以及第五差值t5中是否有两个差值小于或等于第二阈值Tf;
第六处理子单元194,用于在所述第六比较单元193的判断结果为是时, 对大于所述第二阈值Tf的差值所对应的温度传感器进行传感器异常报警,并继续进行治疗;否则,进行设备异常报警,中断治疗。
对图5-图6中更多的细节,可以参照前述对图1至图4的描述。
实施本发明实施例,具有如下有益效果:
提供一种透析液温度监测方法、装置及腹膜透析仪,可以通过设置三个温度传感器,并对三个温度传感器的数据进行相互核对,可以准确监测用于输入患者的透析液的温度,安全性高。且在其中某一传感器出错时,无需马上中断监测或治疗。
可以理解的是,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (14)

  1. 一种透析液温度监测方法,用于设置有三个温度传感器的腹膜透析仪中,其中,所述方法包括如下步骤:
    通过第一温度传感器、第二温度传感器和第三温度传感器定时获得放置于所述腹膜透析仪的托盘上的透析液袋中透析液的温度参数;
    根据所述腹膜透析仪所处的工作状态,分别确定对应的监测逻辑,其中,所述工作状态包括非治疗状态以及治疗状态,所述对应的监测逻辑为第一监测逻辑以及第二监测逻辑;
    根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器、第二温度传感器以及第三温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差,如果有,则进行报警提示,否则继续进行监测或治疗。
  2. 如权利要求1所述的透析液温度监测方法,其中,根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器以及第二温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差的步骤包括:
    当所述腹膜透析仪所处的工作状态为非治疗状态时,以第一监测逻辑对所述第一温度传感器、第二温度传感器以及第三温度传感器进行监测处理,包括:
    将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数进行排序,形成最大温度参数、中间温度参数以及最小温度参数;
    判断最大温度参数与最小温度参数两者之间差值是否小于或等于第一阈值;
    如果判断结果为所述差值小于所述第一阈值,则继续进行监测;否则将最大温度参数与中间温度参数相减获得第一差值,将中间温度参数与中间温度参数相减获得第二差值,并判断所述第一差值与所述第二差值是否均大于所述第一阈值;
    如果判断结果为所述第一差值与所述第二差值均大于所述第一阈值,则进行设备出错报警,并中断监测;否则,提示所述第一差值或第二差值中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行监测。
  3. 如权利要求2所述的透析液温度监测方法,其中,根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器、第二温度传感器以及第三温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差的步骤包括:
    当所述腹膜透析仪所处的工作状态为治疗状态时,以第二监测逻辑对所述第一温度传感器、第二温度传感器以及第三温度传感器进行监测处理,包括:
    将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数进行排序,形成最大温度参数、中间温度参数以及最小温度参数;
    判断最大温度参数与最小温度参数两者之间差值是否小于或等于第一阈值;
    如果判断结果为所述差值小于所述第一阈值,则继续进行治疗;否则将最大温度参数与中间温度参数相减获得第一差值,将中间温度参数与中间温度参数相减获得第二差值,并判断所述第一差值与所述第二差值是否均大于所述第一阈值;
    如果判断结果为所述第一差值与所述第二差值均大于所述第一阈值,则进行设备出错报警,并中断治疗;否则,提示所述第一差值或第二差值中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行治疗。
  4. 如权利要求2所述的透析液温度监测方法,其中,根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器、第二温度传感器以及第三温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差的步骤包括:
    当所述腹膜透析仪所处的工作状态为治疗状态时,以第二监测逻辑对所述第一温度传感器、第二温度传感器以及第三温度传感器进行监测处理,包括:
    将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的第一温度参数、第二温度参数以及第三温度参数分别与一基准温度参数进行相减并取绝对值,获得第三差值、第四差值以及第五差值;
    判断所述第三差值、第四差值以及第五差值是否均小于或等于第二阈值,如果判断结果为均小于,则继续进行治疗;否则继续判断所述第三差值、第四差值以及第五差值中是否有两个差值小于或等于第二阈值,如果判断结 果为是,则对差值大于所述第二阈值所对应的温度传感器进行传感器异常报警,并继续进行治疗;否则,进行设备异常报警,中断治疗。
  5. 一种透析液温度监测装置,用于设置有三个温度传感器的腹膜透析仪中,其中,包括:
    温度参数获得单元,用于通过第一温度传感器、第二温度传感器和第三温度传感器定时获得放置于所述腹膜透析仪的托盘上的透析液袋中透析液的温度参数;
    监测逻辑确定单元,用于根据所述腹膜透析仪所处的工作状态,分别确定对应的监测逻辑,其中,所述工作状态包括非治疗状态以及治疗状态,所述对应的监测逻辑为第一监测逻辑以及第二监测逻辑;
    监测处理单元,用于根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器、第二温度传感器以及第三温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差,如果有,则进行报警提示,否则继续进行监测或治疗。
  6. 如权利要求5所述的透析液温度监测装置,其中,所述监测处理单元进一步包括:
    非治疗状态监测处理单元,用于采用与非治疗状态对应的第一监测逻辑对所述第一温度参数、第二温度参数以及第三温度参数进行监测处理;
    治疗状态监测处理单元,用于采用与治疗状态对应的第二监测逻辑对所述第一温度参数、第二温度参数以及第三温度参数进行监测处理。
  7. 如权利要求6所述的透析液温度监测装置,其中,所述非治疗状态监测处理单元进一步包括:
    排序子单元,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数进行排序,形成最大温度参数、中间温度参数以及最小温度参数;
    第一比较子单元,用于判断最大温度参数与最小温度参数两者之间差值是否小于或等于第一阈值;
    第一处理子单元,用于当所述第一比较子单元的判断结果为所述差值小于所述第一阈值,则继续进行监测;否则将最大温度参数与中间温度参数相减获得第一差值,将中间温度参数与中间温度参数相减获得第二差值;
    第二比较子单元,用于判断所述第一差值与所述第二差值是否均大于所述第一阈值;
    第二处理子单元,用于在所述第二比较子单元的判断结果为均大于所述第一阈值时,则进行设备出错报警,并中断监测;否则,提示所述第一差值或第二差值中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行监测。
  8. 如权利要求7所述的透析液温度监测装置,其中,所述治疗状态监测处理单元进一步包括:
    排序子单元,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数进行排序,形成最大温度参数、中间温度参数以及最小温度参数;
    第三比较子单元,用于判断最大温度参数与最小温度参数两者之间差值是否小于或等于第一阈值;
    第三处理子单元,用于当所述第三比较子单元的判断结果为所述差值小于所述第一阈值,则继续进行治疗;否则将最大温度参数与中间温度参数相减获得第一差值,将中间温度参数与中间温度参数相减获得第二差值;
    第四比较子单元,用于判断所述第一差值与所述第二差值是否均大于所述第一阈值;
    第四处理子单元,用于在所述第四比较子单元的判断结果为均大于所述第一阈值时,则进行设备出错报警,并中断治疗;否则,提示所述第一差值或第二差值中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行治疗。
  9. 如权利要求7所述的透析液温度监测装置,其中,所述治疗状态监测处理单元进一步包括:
    基准温度参数比较子单元,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的第一温度参数、第二温度参数以及第三温度参数分别与一基准温度参数进行相减并取绝对值,获得第三差值、第四差值以及第五差值;
    第五比较子单元,用于判断所述第三差值、第四差值以及第五差值是否均小于或等于第二阈值,
    第五处理子单元,用于在所述第五比较子单元的判断结果为是时,继续进行治疗;
    第六比较子单元,用于在所述第五比较子单元的判断结果为否时,判断所述第三差值、第四差值以及第五差值中是否有两个差值小于或等于第二阈 值;
    第六处理子单元,用于在所述第六比较单元的判断结果为是时,对大于所述第二阈值的差值所对应的温度传感器进行传感器异常报警,并继续进行治疗;否则,进行设备异常报警,中断治疗。
  10. 一种腹膜透析仪,其设置有三个用于监测其透析液温度参数的温度传感器,并至少进一步包括有透析液温度监测装置,其中,所述透析液温度监测装置包括:
    温度参数获得单元,用于通过第一温度传感器、第二温度传感器和第三温度传感器定时获得放置于所述腹膜透析仪的托盘上的透析液袋中透析液的温度参数;
    监测逻辑确定单元,用于根据所述腹膜透析仪所处的工作状态,分别确定对应的监测逻辑,其中,所述工作状态包括非治疗状态以及治疗状态,所述对应的监测逻辑为第一监测逻辑以及第二监测逻辑;
    监测处理单元,用于根据所述腹膜透析仪所处的工作状态所对应的监测逻辑,对所述第一温度传感器、第二温度传感器以及第三温度传感器所获得的透析液的温度参数进行判断,判断是否有温度参数出现偏差,如果有,则进行报警提示,否则继续进行监测或治疗。
  11. 如权利要求10所述的腹膜透析仪,其中,所述监测处理单元进一步包括:
    非治疗状态监测处理单元,用于采用与非治疗状态对应的第一监测逻辑对所述第一温度参数、第二温度参数以及第三温度参数进行监测处理;
    治疗状态监测处理单元,用于采用与治疗状态对应的第二监测逻辑对所述第一温度参数、第二温度参数以及第三温度参数进行监测处理。
  12. 如权利要求11所述的腹膜透析仪,其中,所述非治疗状态监测处理单元进一步包括:
    排序子单元,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数进行排序,形成最大温度参数、中间温度参数以及最小温度参数;
    第一比较子单元,用于判断最大温度参数与最小温度参数两者之间差值是否小于或等于第一阈值;
    第一处理子单元,用于当所述第一比较子单元的判断结果为所述差值小于所述第一阈值,则继续进行监测;否则将最大温度参数与中间温度参数相 减获得第一差值,将中间温度参数与中间温度参数相减获得第二差值;
    第二比较子单元,用于判断所述第一差值与所述第二差值是否均大于所述第一阈值;
    第二处理子单元,用于在所述第二比较子单元的判断结果为均大于所述第一阈值时,则进行设备出错报警,并中断监测;否则,提示所述第一差值或第二差值中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行监测。
  13. 如权利要求12所述的腹膜透析仪,其中,所述治疗状态监测处理单元进一步包括:
    排序子单元,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的三个温度参数进行排序,形成最大温度参数、中间温度参数以及最小温度参数;
    第三比较子单元,用于判断最大温度参数与最小温度参数两者之间差值是否小于或等于第一阈值;
    第三处理子单元,用于当所述第三比较子单元的判断结果为所述差值小于所述第一阈值,则继续进行治疗;否则将最大温度参数与中间温度参数相减获得第一差值,将中间温度参数与中间温度参数相减获得第二差值;
    第四比较子单元,用于判断所述第一差值与所述第二差值是否均大于所述第一阈值;
    第四处理子单元,用于在所述第四比较子单元的判断结果为均大于所述第一阈值时,则进行设备出错报警,并中断治疗;否则,提示所述第一差值或第二差值中较小者所对应的两个温度传感器正常,另外一个温度传感器不正常,进行传感器异常报警,并继续进行治疗。
  14. 如权利要求12所述的腹膜透析仪,其中,所述治疗状态监测处理单元进一步包括:
    基准温度参数比较子单元,用于将所述第一温度传感器、第二温度传感器以及第三温度传感器获得的第一温度参数、第二温度参数以及第三温度参数分别与一基准温度参数进行相减并取绝对值,获得第三差值、第四差值以及第五差值;
    第五比较子单元,用于判断所述第三差值、第四差值以及第五差值是否均小于或等于第二阈值,
    第五处理子单元,用于在所述第五比较子单元的判断结果为是时,继续 进行治疗;
    第六比较子单元,用于在所述第五比较子单元的判断结果为否时,判断所述第三差值、第四差值以及第五差值中是否有两个差值小于或等于第二阈值;
    第六处理子单元,用于在所述第六比较单元的判断结果为是时,对大于所述第二阈值的差值所对应的温度传感器进行传感器异常报警,并继续进行治疗;否则,进行设备异常报警,中断治疗。
PCT/CN2015/076856 2014-04-29 2015-04-17 一种透析液温度监测方法、装置及腹膜透析仪 WO2015165334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410177094.XA CN103990194B (zh) 2014-04-29 2014-04-29 一种透析液温度监测方法、装置及腹膜透析仪
CN201410177094.X 2014-04-29

Publications (1)

Publication Number Publication Date
WO2015165334A1 true WO2015165334A1 (zh) 2015-11-05

Family

ID=51304688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076856 WO2015165334A1 (zh) 2014-04-29 2015-04-17 一种透析液温度监测方法、装置及腹膜透析仪

Country Status (2)

Country Link
CN (1) CN103990194B (zh)
WO (1) WO2015165334A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578133A (zh) * 2019-09-27 2021-03-30 深圳迈瑞生物医疗电子股份有限公司 一种样本分析系统和分析设备的测试管理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990194B (zh) * 2014-04-29 2016-06-15 昆山韦睿医疗科技有限公司 一种透析液温度监测方法、装置及腹膜透析仪
DE102015016271A1 (de) * 2015-12-15 2017-06-22 Fresenius Medical Care Deutschland Gmbh System und Verfahren zur Erkennung eines Betriebszustandes oder eines Behandlungsverlaufs bei einer Blutbehandlung
CN106214133A (zh) * 2016-08-04 2016-12-14 斯凯瑞利(北京)科技有限公司 一种双面多点测温方法及系统
CN106525107A (zh) * 2016-11-23 2017-03-22 江苏四五安全科技有限公司 一种通过仲裁方式鉴定传感器失效的方法
CN111596700A (zh) * 2020-05-28 2020-08-28 广东科学技术职业学院 输液加温安全控制方法及电路及输液加温仪
CN113592670A (zh) * 2021-07-14 2021-11-02 青岛海尔施特劳斯水设备有限公司 一种水质异常确定方法、装置、净水设备和存储介质
CN114659664B (zh) * 2022-03-30 2023-01-24 温州医科大学附属第二医院(温州医科大学附属育英儿童医院) 一种基于稳定固定的腹膜透析设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1593677A (zh) * 2004-07-15 2005-03-16 华南理工大学 肾衰竭全自动智能腹膜透析仪
US6967002B1 (en) * 1999-09-16 2005-11-22 Gambro Lundia Ab Method and apparatus for producing a sterile fluid
CN102802693A (zh) * 2009-12-23 2012-11-28 弗雷森纽斯医疗护理德国有限责任公司 透析机、尤其是腹膜透析机
WO2013122580A1 (en) * 2012-02-15 2013-08-22 Sequana Medical Ag Systems and methods for treating chronic liver failure based on peritioneal dialysis
CN103977467A (zh) * 2014-04-29 2014-08-13 昆山韦睿医疗科技有限公司 一种透析液温度监测方法、装置及腹膜透析仪
CN103990194A (zh) * 2014-04-29 2014-08-20 昆山韦睿医疗科技有限公司 一种透析液温度监测方法、装置及腹膜透析仪
CN204016965U (zh) * 2014-04-29 2014-12-17 昆山韦睿医疗科技有限公司 一种腹膜透析仪

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2240139Y (zh) * 1995-05-03 1996-11-13 张铁英 电导、温度、负压测量仪
US20080154197A1 (en) * 2006-12-20 2008-06-26 Joel Brian Derrico System and method for regulating the temperature of a fluid injected into a patient
US7957927B2 (en) * 2007-07-05 2011-06-07 Baxter International Inc. Temperature compensation for pneumatic pumping system
US7905855B2 (en) * 2007-07-05 2011-03-15 Baxter International Inc. Dialysis system having non-invasive temperature sensing
JP5152912B2 (ja) * 2008-06-27 2013-02-27 ボッシュ株式会社 タンク内センサの合理性診断方法及び合理性診断装置
CN203244633U (zh) * 2013-03-13 2013-10-23 福州东泽医疗器械有限公司 可远程监控的腹腔治疗设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967002B1 (en) * 1999-09-16 2005-11-22 Gambro Lundia Ab Method and apparatus for producing a sterile fluid
CN1593677A (zh) * 2004-07-15 2005-03-16 华南理工大学 肾衰竭全自动智能腹膜透析仪
CN102802693A (zh) * 2009-12-23 2012-11-28 弗雷森纽斯医疗护理德国有限责任公司 透析机、尤其是腹膜透析机
WO2013122580A1 (en) * 2012-02-15 2013-08-22 Sequana Medical Ag Systems and methods for treating chronic liver failure based on peritioneal dialysis
CN103977467A (zh) * 2014-04-29 2014-08-13 昆山韦睿医疗科技有限公司 一种透析液温度监测方法、装置及腹膜透析仪
CN103990194A (zh) * 2014-04-29 2014-08-20 昆山韦睿医疗科技有限公司 一种透析液温度监测方法、装置及腹膜透析仪
CN204016965U (zh) * 2014-04-29 2014-12-17 昆山韦睿医疗科技有限公司 一种腹膜透析仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578133A (zh) * 2019-09-27 2021-03-30 深圳迈瑞生物医疗电子股份有限公司 一种样本分析系统和分析设备的测试管理方法

Also Published As

Publication number Publication date
CN103990194A (zh) 2014-08-20
CN103990194B (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2015165334A1 (zh) 一种透析液温度监测方法、装置及腹膜透析仪
JP2022065202A (ja) 使用場所での透析流体調製を有し、かつその混合および加熱を含む腹膜透析のためのシステムおよび方法
CN204016965U (zh) 一种腹膜透析仪
US10004837B2 (en) Method as well as apparatuses for testing at least one function of a medical functional device
EP2404629B1 (en) Apparatus for controlling an extra-corporeal blood treatment in a medical device
EP2512549B1 (en) Apparatus for extracorporeal blood treatment and method of operation
US20210170087A1 (en) Delivery System and Mode of Operation Thereof
US11167071B2 (en) System and method for detecting an operating state or a course of treatment in a blood treatment
KR102661126B1 (ko) 복막 투석액 제조 장치 및 방법
US9649421B2 (en) Method for influencing the pressure within a heating bag during a medical treatment and medical apparatus
CN108778361A (zh) 用于检测透析系统的血液回路中的阻塞的方法和系统
KR20170042675A (ko) 복강내압 결정 장치
CN103977467A (zh) 一种透析液温度监测方法、装置及腹膜透析仪
CN104225701A (zh) 一种阀状态的检测方法、检测系统及腹膜透析设备
JP2005253768A (ja) 透析装置
JP2021520257A (ja) 透析処置を実行するための透析装置
US11253638B2 (en) Monitoring device and method for monitoring an extracorporeal blood treatment device
CA2910049C (en) Control unit and method for determining the pressure in a blood vessel, in particular in an arteriovenous fistula
CN109475679A (zh) 两个流体容纳系统之间的流体连接的中断检测
US20240050634A1 (en) Bypass Line, Medical Treatment Apparatus, and Method
US20230145918A1 (en) Control device for a blood treatment apparatus, blood treatment apparatus, system and method
JP2020081338A (ja) 血液透析装置における補液通路の閉塞検出装置
CN209301841U (zh) 用于体外血液处理的装置
CN114659664A (zh) 一种基于稳定固定的腹膜透析设备
CA3175697A1 (en) Extracorporeal blood treatment apparatus and method for operating an extracorporeal blood treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786333

Country of ref document: EP

Kind code of ref document: A1