WO2015165219A1 - 一种基于可见光的通信方法及交通设备 - Google Patents

一种基于可见光的通信方法及交通设备 Download PDF

Info

Publication number
WO2015165219A1
WO2015165219A1 PCT/CN2014/088658 CN2014088658W WO2015165219A1 WO 2015165219 A1 WO2015165219 A1 WO 2015165219A1 CN 2014088658 W CN2014088658 W CN 2014088658W WO 2015165219 A1 WO2015165219 A1 WO 2015165219A1
Authority
WO
WIPO (PCT)
Prior art keywords
visible light
light signal
traffic
traffic device
information
Prior art date
Application number
PCT/CN2014/088658
Other languages
English (en)
French (fr)
Inventor
余荣道
黄茂胜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015165219A1 publication Critical patent/WO2015165219A1/zh
Priority to US15/338,127 priority Critical patent/US10050706B2/en
Priority to US16/041,561 priority patent/US10476593B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Definitions

  • the present invention relates to the field of communication processing technologies, and in particular, to a communication method based on visible light and a traffic device.
  • the visible light communication technology is a new wireless communication technology that has emerged in recent years.
  • the communication function is integrated, and the light source can realize the illumination function as well as the communication function.
  • visible light communication technology has the advantages of high transmission power, no radio spectrum, no electromagnetic interference and no electromagnetic radiation, and energy conservation. Therefore, visible light communication technology has become more and more The more important it is.
  • the application research of visible light communication technology mainly focuses on indoor transportation equipment and outdoor visible light intelligent transportation equipment. Since the visible light intelligent transportation device communicates by using visible light communication, depending on the accuracy of the visible light receiver, it is not dependent on the human eye to identify the device where the surrounding visible light emitter is located. Therefore, when the traffic device is used in the transportation system, the safety hazard can be effectively avoided. For example, in the smog weather, when the visibility is only 100 meters, the owner of the vehicle A cannot visually identify the vehicle B located 500 meters ahead of the vehicle A. At this time, the owner of the vehicle A can use the traffic equipment to recognize the traffic. Tool B.
  • the above method has the following drawbacks: when the traffic device receives multiple visible light signals at the same time, the traffic device cannot accurately receive the visible light signal due to interference between the multiple visible light signals, for example, the vehicles A are separated by 500 meters in different directions. There are three vehicles: vehicle B, vehicle C, vehicle D, vehicle B, vehicle C, vehicle D simultaneously send visible light signals to vehicle A, due to interference between the three visible light signals, the vehicle A cannot accurately receive any visible light signal.
  • the embodiments of the present invention provide a communication method based on visible light and a traffic device, which are used to solve the problem that the visible light signal cannot be accurately received due to multi-channel visible light signal interference in the prior art.
  • a visible light based communication method including:
  • Acquiring information related to the transportation device wherein the related information includes one or any combination of performance information, size information of the transportation device, and identification information of a visible light source of the transportation device;
  • Modulating the processed related information to a visible light signal causing the information to be carried in a visible light signal, and causing the traffic device receiving the processed related information to demodulate by orthogonality between the orthogonal sequences Carrying the related information in the visible light signal, thereby eliminating interference between multiple visible light signals;
  • the visible light signal carrying the processed related information is transmitted.
  • the related information is processed by using an orthogonal sequence, and specifically includes:
  • the related information is mapped onto an orthogonal sequence.
  • the orthogonal sequence is generated based on a base sequence cyclic shift.
  • the base sequence has the following form:
  • m(k) is a base sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • m(k) is a base sequence and m*(k+ ⁇ ) is an orthogonal sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • the processed related information is modulated to the visible light signal, specifically:
  • the processed correlation information is modulated to a visible light signal by a multi-carrier modulation method.
  • the visible light signal that carries the processed related information is sent, specifically:
  • B1 is the width between the left and right taillights of the traffic device transmitting the visible light signal
  • H1 is the height of the taillight of the traffic device transmitting the visible light signal to the ground;
  • B2 is a width between the width of the traffic device receiving the visible light signal (B2>B1);
  • H2 is a distance between the display light of the traffic device receiving the visible light signal and the ground;
  • S1 is a distance between a right taillight of a traffic device that transmits the visible light signal and a right width light of a traffic device that receives the visible light signal;
  • S2 is a distance between a left taillight of a traffic device that transmits the visible light signal and a traffic light width indicator that receives the visible light signal;
  • L is a vertical distance between a taillight connection of the traffic device transmitting the visible light signal and a traffic light width line connecting the visible light signal;
  • X1 is the intersection between the left taillight of the traffic device transmitting the visible light signal and the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal. And a distance between the left wide lamp of the traffic device receiving the visible light signal;
  • X2 is the intersection between the right taillight of the traffic device transmitting the visible light signal to the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal And a distance between a right-width lamp of the traffic device receiving the visible light signal.
  • a visible light based communication method including:
  • the visible light signal is solved Tune, specifically including:
  • the visible light signal is demodulated by a multi-carrier demodulation method.
  • the demodulated visible light signal is processed by using the orthogonal sequence, and specifically includes:
  • the demodulated visible light signal is demapped using the orthogonal sequence.
  • the orthogonal sequence is generated based on a base sequence cyclic shift.
  • the base sequence has the following form:
  • m(k) is a base sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • m(k) is a base sequence and m*(k+ ⁇ ) is an orthogonal sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • the related information of the traffic device carried in the visible light signal is demodulated After that, it also includes:
  • B1 is the width between the left and right taillights of the traffic device transmitting the visible light signal
  • H1 is the height of the taillight of the traffic device transmitting the visible light signal to the ground;
  • B2 is a width between the width of the traffic device receiving the visible light signal (B2>B1);
  • H2 is a distance between the display light of the traffic device receiving the visible light signal and the ground;
  • S1 is a distance between a right taillight of a traffic device that transmits the visible light signal and a right width light of a traffic device that receives the visible light signal;
  • S2 is a distance between a left taillight of a traffic device that transmits the visible light signal and a traffic light width indicator that receives the visible light signal;
  • L is a vertical distance between a taillight connection of the traffic device transmitting the visible light signal and a traffic light width line connecting the visible light signal;
  • X1 is the intersection between the left taillight of the traffic device transmitting the visible light signal and the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal. And a distance between the left wide lamp of the traffic device receiving the visible light signal;
  • X2 is the intersection between the right taillight of the traffic device transmitting the visible light signal to the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal And a distance between a right-width lamp of the traffic device receiving the visible light signal.
  • the related information of the traffic device carried in the visible light signal is demodulated After that, it also includes:
  • If the relevant information is the brake light lamp information, decelerate
  • the related information is double flashing information, decelerate, and/or trigger the double flashing light of the traffic device to emit the visible light signal carrying the double flashing light information.
  • a transportation device including:
  • An acquiring module configured to acquire related information of a transportation device, where the related information includes one or any combination of performance information, size information of the transportation device, and identification information of a visible light source of the transportation device;
  • a processing module configured to process the related information by using an orthogonal sequence to obtain processed related information
  • a modulation module configured to modulate the processed related information to a visible light signal, to carry the information in a visible light signal, and to enable a traffic device that receives the processed related information to utilize a positive between the orthogonal sequences Intermodulating the related information carried in the visible light signal, thereby eliminating interference between multiple visible light signals;
  • a sending module configured to send the visible light signal carrying the processed related information.
  • the processing module is specifically configured to:
  • the related information is mapped onto an orthogonal sequence.
  • the orthogonal sequence used by the processing module to process is generated based on a base sequence cyclic shift.
  • the orthogonal sequence used by the processing module is generated by a base sequence of the following form:
  • m(k) is a base sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • m(k) is a base sequence and m*(k+ ⁇ ) is an orthogonal sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • the modulating module is specifically configured to:
  • the processed correlation information is modulated to a visible light signal by a multi-carrier modulation method.
  • the sending module is specifically configured to:
  • B1 is the width between the left and right taillights of the traffic device transmitting the visible light signal
  • H1 is the height of the taillight of the traffic device transmitting the visible light signal to the ground;
  • B2 is a width between the width of the traffic device receiving the visible light signal (B2>B1);
  • H2 is a distance between the display light of the traffic device receiving the visible light signal and the ground;
  • S1 is a distance between a right taillight of a traffic device that transmits the visible light signal and a right width light of a traffic device that receives the visible light signal;
  • S2 is a distance between a left taillight of a traffic device that transmits the visible light signal and a traffic light width indicator that receives the visible light signal;
  • L is a vertical distance between a taillight connection of the traffic device transmitting the visible light signal and a traffic light width line connecting the visible light signal;
  • X1 is the intersection between the left taillight of the traffic device transmitting the visible light signal and the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal. And a distance between the left wide lamp of the traffic device receiving the visible light signal;
  • X2 is the intersection between the right taillight of the traffic device transmitting the visible light signal to the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal And a distance between a right-width lamp of the traffic device receiving the visible light signal.
  • a visible light-based communication traffic device including:
  • a visible light receiving module configured to receive a visible light signal sent by the traffic device, and demodulate the visible light signal, wherein the demodulated visible light signal carries information about the traffic device processed by the orthogonal sequence ;
  • a processing module configured to process the demodulated visible light signal by using the orthogonal sequence to demodulate related information of the transportation device carried in the visible light signal; wherein the related information includes the One or any combination of performance information, size information of the transportation device, and identification information of the visible light source of the transportation device.
  • the visible light receiving module is specifically configured to:
  • the visible light signal is demodulated by a multi-carrier demodulation method.
  • the processing module is specifically configured to:
  • the demodulated visible light signal is demapped using the orthogonal sequence.
  • the orthogonal sequence used by the processing module processing is generated based on a base sequence cyclic shift.
  • the orthogonal sequence used by the processing module to descramble is generated based on a base sequence of the following form:
  • m(k) is a base sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • the processing module processing uses any one of the orthogonal sequence and the base sequence to satisfy the following relationship:
  • m(k) is a base sequence and m*(k+ ⁇ ) is an orthogonal sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • At the sixth A possible implementation manner further includes a distance calculation module, where the distance calculation module is specifically configured to:
  • B1 is the width between the left and right taillights of the traffic device transmitting the visible light signal
  • H1 is the height of the taillight of the traffic device transmitting the visible light signal to the ground;
  • B2 is a width between the width of the traffic device receiving the visible light signal (B2>B1);
  • H2 is a distance between the display light of the traffic device receiving the visible light signal and the ground;
  • S1 is a distance between a right taillight of a traffic device that transmits the visible light signal and a right width light of a traffic device that receives the visible light signal;
  • S2 is a distance between a left taillight of a traffic device that transmits the visible light signal and a traffic light width indicator that receives the visible light signal;
  • L is a vertical distance between a taillight connection of the traffic device transmitting the visible light signal and a traffic light width line connecting the visible light signal;
  • X1 is the intersection between the left taillight of the traffic device transmitting the visible light signal and the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal. And a distance between the left wide lamp of the traffic device receiving the visible light signal;
  • X2 is the intersection between the right taillight of the traffic device transmitting the visible light signal to the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal And a distance between a right-width lamp of the traffic device receiving the visible light signal.
  • control management module is further configured to:
  • If the related information demodulated by the processing is brake light lamp information, controlling the traffic device to perform deceleration;
  • the traffic device is controlled to decelerate, and/or the dual flashing light is illuminated, and the visible light signal carrying the double flashing light information is transmitted.
  • the embodiment of the present invention Before the visible light signal is generated, the related information carried in the visible light signal is processed by using an orthogonal sequence, and there is no interference between different visible light signals processed by the orthogonal sequence, so that even if there is a light receiving device.
  • the traffic device receives multiple visible light signals, the received multiple visible light signals are orthogonal, so that even if there is interference between the orthogonal multiple visible light signals, the traffic device receiving the multiple visible light signals is received.
  • the orthogonality between the orthogonal sequences can be used to demodulate the related information in the multi-channel visible light signal, thereby eliminating interference, and therefore, the visible light signal can be accurately received, thereby solving the interference of multiple visible light signals in the prior art.
  • FIG. 1A is a flowchart of a method based on visible light communication according to an embodiment of the present invention
  • FIG. 1B is a schematic diagram of a module of an execution body based on visible light communication according to an embodiment of the present invention
  • 1C is a schematic diagram of another module of an execution body based on visible light communication according to an embodiment of the present invention.
  • 2A is a flowchart of another method based on visible light communication according to an embodiment of the present invention.
  • 2B is a schematic diagram of calculating a distance between two cars in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a first functional structure of a traffic device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a first entity of a traffic device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a second functional structure of a traffic device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a second entity of a traffic device according to an embodiment of the present invention.
  • a communication method based on a visible light source includes: acquiring related information of a traffic device, where the related information includes performance information, size information of the traffic device, and an identifier of the visible light source of the traffic device.
  • One or any combination of information processing the related information by using an orthogonal sequence to obtain processed related information; modulating the processed related information to a visible light signal, causing the information to be carried in the visible light signal, and accepting the processing
  • the subsequent related information traffic device demodulates the related information carried in the visible light signal by orthogonality between the orthogonal sequences, thereby eliminating interference between the plurality of visible light signals; and the visible light signal carrying the processed related information Sending, so that even if the traffic device receives multiple visible light signals, since the received multiple visible light signals are orthogonal, even if there is interference between the orthogonal multiple visible light signals, multiple channels are received.
  • Traffic signals for visible light signals can be demodulated and carried out using orthogonal sequence orthogonality Seeing the relevant information in the optical signal, thereby eliminating the interference, therefore, the visible light signal can be accurately received, and the problem that the visible light signal cannot be accurately received due to the interference of multiple visible light signals in the prior art is solved.
  • a communication method based on a visible light source is provided in an embodiment of the present invention.
  • the specific process of the method is as follows:
  • Step 100 Obtain information about a transportation device, where the related information includes the sex of the transportation device.
  • the related information includes the sex of the transportation device.
  • Step 110 processing the related information by using an orthogonal sequence to obtain related information after processing
  • Step 120 Modulate the processed related information to a visible light signal, so that the information is carried in the visible light signal, and the traffic device that receives the processed related information is demodulated and carried in visible light by orthogonality between the orthogonal sequences. Correlation information in the signal, thereby eliminating interference between multiple visible light signals;
  • Step 130 Send a visible light signal carrying the processed related information.
  • the execution subject of step 100 to step 130 may be in the form of a plurality of transportation devices, such as a vehicle: a vehicle such as an automobile.
  • Existing automotive lamp systems include automotive lighting systems and automotive light visible light signaling systems.
  • the car lighting system provides illumination for low visibility, mainly including headlights, fog lights (front and rear), license plate lights, etc.
  • the vehicle light visible light signal system is used to transmit information about the vehicle to the outside for prompting and warning.
  • the visible light signal system of the automobile lamp includes a brake light, a turn signal (front and rear), a width and tail light (back light), a reversing light, a hazard warning light, and the like.
  • the existing car lights are mainly used to transmit simple information, such as braking, steering, etc., and the information is only recognized by the human eye, which is caused by the relatively slow recognition of the human eye, or due to bad weather and poor line of sight. Security risks.
  • the invention aims to realize the communication between the vehicle and the vehicle by using the visible light communication, and realizes the automatic communication between the vehicle and the vehicle by using the visible light to carry the information of the vehicle lamp and the speed of the vehicle in the vehicle lamp, thereby avoiding the human eye. Identify potential safety hazards that are relatively slow, or due to bad weather and poor line of sight.
  • car A has four lights: headlight 1, headlight 2, headlight 3, and headlight 4, and each visible light signal transmitted by the headlight carries some relevant information. If orthogonal sequence processing is not used, it is different. There is interference between the light signals emitted between the lights, and the car B receiving the visible light signal cannot accurately demodulate the relevant information carried in the light signals emitted by each of the lights, and there is no accurate connection. The problem of receiving visible light signals.
  • the related information of the traffic device has various forms, and may be in the following form:
  • It includes one or any combination of performance information, size information of the transportation equipment, and identification information of the visible light source of the transportation equipment.
  • vehicle lamp information of traffic equipment For example, vehicle lamp information of traffic equipment, speed information of traffic equipment, acceleration information of traffic equipment, length information of traffic equipment, width information, altitude information, oil quantity information, and the like.
  • the vehicle light information of the traffic equipment may be the ID information of the traffic light of the traffic equipment, or may be the sequence information corresponding to the ID information of the traffic light of the traffic equipment, wherein the correspondence between the three is as shown in Table 1. :
  • Table 1 Correspondence between traffic light information, ID information and sequence information of traffic equipment
  • the car A communicates with the visible light of the rear lamp of the car A:
  • Step A The car A determines the brake light information of the device
  • Step B The automobile A processes the brake light information by using an orthogonal sequence, and modulates the processed brake light information to a visible light signal;
  • Step C The car A transmits the visible light signal through one of the rear lights of the car A.
  • the front light of the automobile B communicates with the automobile A, and the implementation process is similar to the above process, and will not be described in detail here.
  • the related information is processed by using an orthogonal sequence, wherein any two orthogonal sequences satisfy the relationship shown in Formula One:
  • N is the length of any sequence
  • m n,i is the i-th element in the sequence of m n .
  • the visible light signals of different paths are processed based on the sequences orthogonal to each other, or the mutually orthogonal sequences are respectively processed, so that the multiple visible light signals can transmit information in parallel using visible light, thereby improving the data transmission rate.
  • the orthogonal sequence has multiple forms, and is optional, which is generated based on the cyclic shift of the base sequence.
  • the orthogonal sequence has multiple forms, and is optional, which is generated based on the cyclic shift of the base sequence.
  • other forms may also be used, and details are not described herein.
  • m(k) is a base sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • m(k) is a base sequence and m*(k+ ⁇ ) is an orthogonal sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • the processed related information is modulated to a visible light signal by a multi-carrier modulation method.
  • each of the lights corresponds to a sequence
  • other information may be carried on the basis of the sequence corresponding to the lights, such as the speed information of the vehicle, the acceleration information, the width information between the left and right taillights, and the taillights.
  • Information such as the distance of the ground.
  • v ⁇ m 1 ⁇ v ⁇ m 1,1 v ⁇ m 1,2 ,v ⁇ m 1,3 ,...v ⁇ m 1,N-1 ,v ⁇ m 1,N ⁇ (Formula 4)
  • the sequence corresponding to the m 1 sequence of the brake lamp is orthogonal to the sequence corresponding to other lights, other information is orthogonal to other sequences after loading the m 1 sequence.
  • other vehicles receive the visible light signal carrying the information of the m1 sequence, it is known not only that the vehicle transmitting the visible light signal has activated the braking but also the current vehicle speed of the vehicle. Depending on the current speed of the vehicle transmitting the visible light signal and the current speed of the vehicle receiving the visible light signal, appropriate deceleration or acceleration measures may be taken.
  • different related information may be transmitted through the same visible light source, or may be transmitted through different visible light sources, that is, different related information may be transmitted through the same vehicle light, or may be transmitted through different lights. .
  • the automobile lamp 1 uses the visible light signal to transmit the speed information, the acceleration information and the oil quantity information of the vehicle, or the automobile lamp 1 transmits the speed information of the vehicle by using the visible light signal, and the automobile lamp 2 transmits the acceleration information of the vehicle by using the visible light signal.
  • the automobile lamp 3 uses the visible light signal to transmit the fuel quantity information of the vehicle, so that at the same time, the three lights can simultaneously transmit the speed, acceleration and oil quantity information of the vehicle, thereby improving the transmission rate of the communication between the vehicle and the vehicle. .
  • the related information is processed by using an orthogonal sequence, and the orthogonal sequence is processed to carry Each visible light signal of the related information avoids interference with each other.
  • the orthogonal sequences are added, and then the visible light signal is modulated.
  • the execution modules of the steps 100-120 can be respectively as follows, as shown in FIG. 1B:
  • the lamp control module the module mainly controls the operation of the corresponding lamp, such as turning the turn signal switch, pressing the hazard alarm button, the car brake, etc., turning on the corresponding lamp through the operation of the lamp control module, and sending relevant information to the control Management module
  • a control management module receives an input of the vehicle light control module, and determines the operation lamp information according to the input; and can also obtain information such as speed information, acceleration information, oil quantity information of the automobile, or width information and height information of the automobile And so on, and transfer the information to the corresponding modulation module;
  • a modulation module that receives information from the control management module that needs to be transmitted using visible light, such as information related to vehicle lights, vehicle related information, or other visible light communication between vehicles Information, modulating the information, specifically sampling, quantizing into a binary bit stream, and modulating and transmitting the binary bit stream to the driver module;
  • a drive module that converts the binary bit stream modulated signal into a light intensity signal and drives the corresponding automotive light to illuminate.
  • FIG. 1B is a schematic diagram of communication of a plurality of vehicle lights.
  • multiple vehicle lights can be used for communication, or one vehicle can communicate with each other.
  • the schematic diagram is as shown in FIG. 1C. .
  • the visible light signal carrying the processed related information is transmitted, so that the traffic device receiving the visible light signal calculates the distance between the two transportation devices according to the relevant information by using the following formula:
  • B1 is the width between the left and right taillights of the traffic equipment transmitting the visible light signal
  • H1 is the height of the taillight of the traffic equipment transmitting the visible light signal to the ground;
  • B2 is the width between the widths of the traffic lights (B2>B1) of the traffic equipment receiving the visible light signal;
  • H2 is a distance between the display light of the traffic device receiving the visible light signal and the ground;
  • S1 is the distance between the right taillight of the traffic device transmitting the visible light signal and the right width lamp of the traffic device receiving the visible light signal;
  • S2 is a distance between a left taillight of a traffic device that transmits a visible light signal and a traffic light width indicator that receives a visible light signal;
  • L is the vertical distance between the taillight connection of the traffic device transmitting the visible light signal and the connection line of the traffic device receiving the visible light signal;
  • X1 is the intersection between the left taillight of the traffic device transmitting the visible light signal to the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal, and receiving the visible light signal The distance between the wide lights on the left of the traffic equipment;
  • X2 is the right tail light of the traffic device transmitting the visible light signal to the traffic device receiving the visible light signal The distance between the vertical line between the width of the light line and the line of the traffic light that receives the visible light signal, and the distance between the right side of the traffic device that receives the visible light signal.
  • FIG. 2A another embodiment of the present invention provides a communication method based on a visible light source.
  • the specific process of the method is as follows:
  • Step 200 Receive a visible light signal sent by the traffic device, and demodulate the visible light signal, where the demodulated visible light signal carries information about the traffic device processed by the orthogonal sequence;
  • Step 210 Perform processing on the demodulated visible light signal by using an orthogonal sequence to demodulate information about a traffic device carried in the visible light signal, where the related information includes performance information, size information, and traffic equipment of the transportation device.
  • the related information includes performance information, size information, and traffic equipment of the transportation device.
  • the traffic device after receiving the visible light signal, performs the following operations before demodulating the visible light signal:
  • the visible light signal is converted into an optical-electrical signal to obtain a data signal, and then the data signal is demodulated.
  • information about a traffic device carried in the data signal such as vehicle light information, such as a car light message, or a car light
  • vehicle light information such as a car light message, or a car light
  • the brake module of the automobile may be triggered to decelerate; if the double flash information is obtained, the brake module of the automobile may be triggered to decelerate, and the vehicle acquiring the information The double flashing light is on.
  • the visible light signal is demodulated by multi-carrier demodulation.
  • the demodulated visible light signal is demapped using an orthogonal sequence.
  • the orthogonal sequence is generated based on a cyclic shift of the base sequence.
  • Equation 3 there are many forms of the relationship between any one of the orthogonal sequences and the base sequence. Alternatively, the form of Equation 3 can be used.
  • the method further includes:
  • B1 is the width between the left and right taillights of the traffic equipment transmitting the visible light signal
  • H1 is the height of the taillight of the traffic equipment transmitting the visible light signal to the ground;
  • B2 is the width between the widths of the traffic lights (B2>B1) of the traffic equipment receiving the visible light signal;
  • H2 is a distance between the display light of the traffic device receiving the visible light signal and the ground;
  • S1 is the distance between the right taillight of the traffic device transmitting the visible light signal and the right width lamp of the traffic device receiving the visible light signal;
  • S2 is a distance between a left taillight of a traffic device that transmits a visible light signal and a traffic light width indicator that receives a visible light signal;
  • L is the vertical distance between the taillight connection of the traffic device transmitting the visible light signal and the connection line of the traffic device receiving the visible light signal;
  • X1 is the left taillight of the traffic device transmitting the visible light signal to the traffic device receiving the visible light signal The intersection between the vertical line between the width lamp connection line and the communication device width line connecting the visible light signal, and the distance between the left width lamp of the traffic device receiving the visible light signal;
  • X2 is the intersection between the right taillight of the traffic device transmitting the visible light signal to the line connecting the width of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal, and receiving the visible light signal The distance between the wide lights on the right of the traffic equipment.
  • steps 100-130 and the execution body of steps 200-210 are all traffic devices, such as a car, where the execution body of steps 100-130 is car A, steps 200-210
  • the main body of the implementation is the car B, and the car B can calculate the distance between the two cars according to the information about the received car, as shown in FIG. 2B.
  • the specific calculation method can be according to formula 5:
  • S is the distance between the two cars
  • B1 is the width between the left and right taillights of the car A
  • H1 is the height of the taillight of the car A to the ground
  • B2 is the width between the wide lamps of the automobile B (B2>B1);
  • H2 is the distance between the display of the car B and the ground
  • S1 is the distance between the right taillight of the car A and the right side of the car B;
  • S2 is the distance between the left taillight of the car A and the wide light of the car B;
  • L is the vertical distance between the connection between the rear end of the car A and the width of the car B;
  • X1 is the intersection between the vertical line between the left taillight of the car A and the line connecting the wide line of the car B and the line connecting the car B, and the distance between the left side of the car B and the wide lamp;
  • X2 is the distance between the line between the right taillight of the car A and the line connecting the wide line of the car B and the line connecting the car B, and the distance between the left side of the car B and the wide lamp. among them:
  • relevant information of a traffic device carried in a visible light signal is demodulated After that, it also includes the following operations:
  • If the relevant information is the brake light lamp information, decelerate
  • the related information is double flashing information, decelerate, and/or trigger the double flashing light of the traffic device to emit the visible light signal carrying the double flashing light information.
  • the transmission process of the visible light signal based on the visible light source As shown in FIG. 3, the transmission process of the visible light signal based on the visible light source:
  • Step 300 The vehicle A acquires the information of the brake light and the distance information between the left and right tail lights of the automobile A;
  • Step 310 The automobile A maps the information of the brake light and the distance information between the left and right tail lights of the automobile A to an orthogonal sequence respectively;
  • Step 320 The automobile A modulates the information of the processed brake lamp and the distance information between the left and right taillights of the automobile A into the visible light signal by the on-off keying modulation mode;
  • the mapped information may be modulated to a visible light signal by using a pulse position modulation method or a multi-carrier modulation method;
  • the visible light signals of the information of the distance information between the visible light signal carrying the information of the brake lamp and the left and right tail lights of the car A are respectively transmitted through the two headlights.
  • Step 330 The automobile A transmits the visible light signals respectively carrying the distance information between the brake light information and the left and right tail lights of the automobile A.
  • the brake light information and the car are carried.
  • the car B that receives the two visible light signals cannot demodulate the information carried in any of the two visible light signals. Therefore, the embodiment can accurately acquire information carried in each visible light signal when receiving multiple optical signals.
  • the receiving process of the visible light signal based on the visible light source As shown in FIG. 4, the receiving process of the visible light signal based on the visible light source:
  • Step 400 Car B receives two visible light signals sent by car A, and two visible lights Signal demodulation
  • Step 410 The automobile B processes the demodulated two visible light signals by using an orthogonal sequence, and demodulates the distance information between the brake light information of the automobile A carried in the visible light signal and the left and right tail lights of the automobile A;
  • Step 420 The automobile B decelerates according to the brake light information of the automobile A, and performs other related operations according to the distance information between the left and right tail lights of the automobile A.
  • the embodiment since the information of the brake light of the automobile A and the distance information between the front two lights are respectively mapped to the orthogonal sequence, that is, after the orthogonal sequence processing, the brake light information and the automobile A are respectively carried. There is no interference between the visible light signals of the distance information between the left and right taillights, and the car B that receives the two visible light signals processes the corresponding visible light signals according to the corresponding orthogonal sequence, so that the two visible lights can be accurately obtained.
  • the information carried in any one of the visible light signals of the signal Therefore, the embodiment can accurately acquire the information carried in each visible light signal when receiving the multiple optical signals, thereby solving the problems in the prior art.
  • an embodiment of the present invention provides a traffic device, where the traffic device includes an obtaining module 50, a processing module 51, an adjusting module 52, and a sending module 53, wherein:
  • the obtaining module 50 is configured to acquire related information of the transportation device, where the related information includes one or any combination of performance information, size information of the transportation device, and identification information of the visible light source of the transportation device;
  • the processing module 51 is configured to process the related information by using an orthogonal sequence to obtain related information after processing;
  • the modulation module 52 is configured to modulate the processed related information to a visible light signal, so that the information is carried in the visible light signal, and the traffic device that receives the processed related information is demodulated by orthogonality between the orthogonal sequences. Carrying relevant information in the visible light signal, thereby eliminating interference between multiple visible light signals;
  • the sending module 53 is configured to send the visible light signal carrying the processed related information.
  • processing module 51 is specifically configured to:
  • the related information is mapped onto the orthogonal sequence.
  • the orthogonal sequence used by the processing module 51 for processing is generated based on the cyclic shift of the base sequence.
  • the orthogonal sequence used by the processing module 51 is generated by a base sequence of the following form:
  • m(k) is a base sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • m(k) is a base sequence and m*(k+ ⁇ ) is an orthogonal sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • the modulation module 52 is specifically configured to:
  • the processed related information is modulated to a visible light signal by a multi-carrier modulation method.
  • the sending module 53 is specifically configured to:
  • the visible light signal carrying the processed related information is transmitted, so that the traffic device receiving the visible light signal calculates the distance between the two transportation devices according to the relevant information by using the following formula:
  • B1 is the width between the left and right taillights of the traffic equipment transmitting the visible light signal
  • H1 is the height of the taillight of the traffic equipment transmitting the visible light signal to the ground;
  • B2 is the width between the widths of the traffic lights (B2>B1) of the traffic equipment receiving the visible light signal;
  • H2 is a distance between the display light of the traffic device receiving the visible light signal and the ground;
  • S1 is the distance between the right taillight of the traffic device transmitting the visible light signal and the right width lamp of the traffic device receiving the visible light signal;
  • S2 is a distance between a left taillight of a traffic device that transmits a visible light signal and a traffic light width indicator that receives a visible light signal;
  • L is the vertical distance between the taillight connection of the traffic device transmitting the visible light signal and the connection line of the traffic device receiving the visible light signal;
  • X1 is the intersection between the left taillight of the traffic device transmitting the visible light signal to the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal, and receiving the visible light signal The distance between the wide lights on the left of the traffic equipment;
  • X2 is the intersection between the right taillight of the traffic device transmitting the visible light signal to the line connecting the width of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal, and receiving the visible light signal The distance between the wide lights on the right of the traffic equipment.
  • a physical structure diagram of a traffic device includes at least one processor 601, a communication bus 602, a memory 603, and at least one communication interface 604.
  • the communication bus 602 is used to implement the connection and communication between the above components, and the communication interface 604 is used to connect and communicate with external devices.
  • the memory 603 is configured to store program code that needs to be executed.
  • the program code may include: an obtaining module 6031, a processing module 6032, a modulation module 6033, and a sending module 6034.
  • the unit is executed by the processor 601, the following functions are implemented:
  • the obtaining module 6031 is configured to acquire related information of the transportation device, where the related information includes one or any combination of performance information, size information of the transportation device, and identification information of the visible light source of the transportation device. ;
  • the processing module 6032 is configured to process the related information by using an orthogonal sequence to obtain processed related information.
  • a modulation module 6033 configured to modulate the processed related information to a visible light signal, to carry the information in a visible light signal, and to enable the traffic device that receives the processed related information to utilize the orthogonal sequence Orthogonality demodulates the related information carried in the visible light signal, thereby eliminating interference between multiple visible light signals;
  • the sending module 6034 is configured to send the visible light signal that carries the processed related information.
  • an embodiment of the present invention provides another traffic device, where the traffic device includes a visible light receiving module 70 and a processing module 71, where:
  • the visible light receiving module 70 is configured to receive the visible light signal sent by the traffic device, and demodulate the visible light signal, wherein the demodulated visible light signal carries information about the traffic device processed by the orthogonal sequence;
  • the processing module 71 is configured to process the demodulated visible light signal by using an orthogonal sequence to demodulate related information of the traffic device carried in the visible light signal; wherein the related information includes performance information and size information of the traffic device. And one or any combination of identification information of the visible light source of the transportation device.
  • the visible light receiving module 70 is specifically configured to: demodulate the visible light signal by using an on-off keying demodulation method; or
  • the visible light signal is demodulated by multi-carrier demodulation.
  • processing module 71 is specifically configured to:
  • the demodulated visible light signal is demapped using an orthogonal sequence.
  • the orthogonal sequence used by the processing module 71 is generated based on the cyclic shift of the base sequence.
  • the orthogonal sequence used by the processing module 71 to descramble is generated based on a base sequence of the following form:
  • m(k) is a base sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • m(k) is a base sequence and m*(k+ ⁇ ) is an orthogonal sequence
  • N is the length of the base sequence and is a positive integer
  • k is any integer between 0-N;
  • j is an imaginary unit
  • r is any positive integer that is mutually prime with N.
  • the distance calculation module 72 is specifically configured to:
  • B1 is the width between the left and right taillights of the traffic equipment transmitting the visible light signal
  • H1 is the height of the taillight of the traffic equipment transmitting the visible light signal to the ground;
  • B2 is the width between the widths of the traffic lights (B2>B1) of the traffic equipment receiving the visible light signal;
  • H2 is a distance between the display light of the traffic device receiving the visible light signal and the ground;
  • S1 is the distance between the right taillight of the traffic device transmitting the visible light signal and the right width lamp of the traffic device receiving the visible light signal;
  • S2 is a distance between a left taillight of a traffic device that transmits a visible light signal and a traffic light width indicator that receives a visible light signal;
  • L is the vertical distance between the taillight connection of the traffic device transmitting the visible light signal and the connection line of the traffic device receiving the visible light signal;
  • X1 is the intersection between the left taillight of the traffic device transmitting the visible light signal to the line connecting the traffic light of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal, and receiving the visible light signal The distance between the wide lights on the left of the traffic equipment;
  • X2 is the intersection between the right taillight of the traffic device transmitting the visible light signal to the line connecting the width of the traffic light receiving the visible light signal and the line connecting the traffic light receiving the visible light signal, and receiving the visible light signal The distance between the wide lights on the right of the traffic equipment.
  • control management module 73 is configured to:
  • the traffic device is controlled to decelerate
  • the traffic device is controlled to decelerate, and/or the double flashing light is illuminated, and the visible light signal carrying the double flashing light information is transmitted.
  • a physical structure diagram of a traffic device includes at least one processor 801, a communication bus 802, a memory 803, and at least one communication interface 804.
  • the communication bus 802 is used to implement the connection and communication between the above components, and the communication interface 804 is used to connect and communicate with external devices.
  • the memory 803 is configured to store program code that needs to be executed.
  • the program code may include: a visible light receiving module 8031 and a processing module 8032. When the unit is executed by the processor 801, the following functions are implemented:
  • the visible light receiving module 8031 is configured to receive a visible light signal sent by the traffic device, and demodulate the visible light signal, where the demodulated visible light signal carries the correlation of the traffic device processed by the orthogonal sequence information;
  • the processing module 8032 is configured to process, by using the orthogonal sequence, the demodulated visible light signal to demodulate related information of the transportation device carried in the visible light signal; wherein the related information includes One or any combination of performance information, size information of the transportation device, and identification information of the visible light source of the transportation device.
  • a communication method based on a visible light source in which: acquiring related information of a traffic device; processing related information by using an orthogonal sequence, and performing related information after processing Modulating to a visible light signal, and transmitting the visible light signal.
  • the related information carried in the visible light signal is processed by using an orthogonal sequence, and the different visible light signals processed by the orthogonal sequence are processed.
  • a traffic device that receives multiple visible light signals can demodulate multiple visible light signals by orthogonality, thereby eliminating interference, and thus can accurately receive visible light signals, thereby solving the interference of multiple visible light signals in the prior art.
  • the problem caused by the inability to accurately receive visible light signals.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the computer readable memory is stored in the computer readable memory.
  • the instructions in the production result include an article of manufacture of the instruction device that functions in a block or blocks of a flow or a flow of flowcharts and/or a block diagram.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions in one or more blocks of the flowchart or in a flow or block of the flowchart.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种基于可见光源的通信方法及交通设备,在该方案中,在生成可见光信号之前,将可见光信号中携带的相关信息利用正交序列进行处理,而用正交序列进行处理后的不同可见光信号之间是不存在干扰的,这样,即使光接收设备接收到多路可见光信号时,由于接收到的多路可见光信号之间是正交的,因此,可以准确接收到可见光信号,解决了现有技术中由于多路可见光信号干扰而造成的无法准确接收可见光信号的问题。

Description

一种基于可见光的通信方法及交通设备 技术领域
本发明涉及通信处理技术领域,特别涉及一种基于可见光的通信方法及交通设备。
背景技术
可见光通信技术为近年来兴起的全新无线通信技术,在光源进行照明的同时,融入了通信功能,可以使光源既可以实现照明功能,也可以实现通信功能。与传统的射频通信技术以及其他无线光通信技术相比较,可见光通信技术具有发射功率高、不占用无线电频谱、无电磁干扰和无电磁辐射、节约能源等优点,因此,可见光通信技术已经变得越来越重要。
目前,可见光通信技术的应用研究主要集中在室内交通设备和室外的可见光智能交通设备。由于可见光智能交通设备利用可见光通信进行通信时,依赖于可见光接收器的精度,不是依赖人眼识别周围可见光发射器所在的设备,因此,交通设备在用于交通系统时,可以有效避免安全隐患,例如,处于雾霾天气,能见度只有100米时,交通工具A的车主用肉眼无法识别位于交通工具A前方500米的交通工具B,此时,交通工具A的车主可以利用交通设备可以识别出交通工具B。
但是,上述方法存在如下缺陷:交通设备同时接收多路可见光信号时,由于多路可见光信号之间存在干扰,造成交通设备无法准确接收可见光信号,例如:交通工具A相距500米的不同方向上分别有三辆交通工具:交通工具B、交通工具C、交通工具D,交通工具B、交通工具C、交通工具D同时向交通工具A发送可见光信号,由于三路可见光信号之间存在干扰,则交通工具A无法准确接收到任意一路可见光信号。
发明内容
本发明实施例提供一种基于可见光的通信方法及交通设备,用以解决现有技术中由于多路可见光信号干扰而造成的无法准确接收可见光信号的问题。
本发明实施例提供的具体技术方案如下:
第一方面,提供一种基于可见光的通信方法,包括:
获取交通设备的相关信息,其中,所述相关信息包括所述交通设备的性能信息、尺寸信息,及所述交通设备的可视光源的标识信息中的一种或者任意组合;
对所述相关信息利用正交序列进行处理,得到处理后的相关信息;
将所述处理后的相关信息调制至可见光信号,使所述信息携带在可见光信号中传输,并使得接受处理后的相关信息的交通设备利用所述正交序列之间的正交性解调出携带在所述可见光信号中的所述相关信息,从而消除多个可见光信号间的干扰;
将携带了所述处理后的相关信息的可见光信号进行发送。
结合第一方面,在第一种可能的实现方式中,对所述相关信息利用正交序列进行处理,具体包括:
对所述相关信息利用正交序列进行加扰;或者
将所述相关信息映射到正交序列上。
结合第一方面,或者第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述正交序列是基于基序列循环移位生成的。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述基序列的形式如下:
Figure PCTCN2014088658-appb-000001
其中,m(k)为基序列;
N为所述基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
结合第一方面的第二或第三种可能的实现方式,在第四种可能的实现方式中,任意一正交序列与基序列之间满足如下关系:
Figure PCTCN2014088658-appb-000002
其中,m(k)为基序列、m﹡(k+σ)为正交序列;
N为所述基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
结合第一方面,或者第一方面的第一至第四种可能的实现方式,在第五种可能的实现方式中,将所述处理后的相关信息调制至可见光信号,具体包括:
采用通断键控调制方式将所述处理后的相关信息调制至可见光信号;或者,
采用脉冲位置调制方式将所述处理后的相关信息调制至可见光信号;或者
采用多载波调制方式将所述处理后的相关信息调制至可见光信号。
结合第一方面,或者第一方面的第一至第五种可能的实现方式,在第六种可能的实现方式中,将携带了所述处理后的相关信息的可见光信号进行发送,具体包括:
将携带了所述处理后的相关信息的可见光信号进行发送,以使得接收所述可见光信号的交通设备根据所述相关信息采用如下公式计算两辆交通设备之间的距离:
Figure PCTCN2014088658-appb-000003
其中:B1为发送所述可见光信号的交通设备左右尾灯间宽度;
H1为发送所述可见光信号的交通设备尾灯对地面的高度;
B2为接收所述可见光信号的交通设备示宽灯间宽度(B2>B1);
H2为接收所述可见光信号的交通设备的示宽灯相对地面距离;
S1为发送所述可见光信号的交通设备右尾灯与接收所述可见光信号的交通设备右示宽灯之间的距离;
S2为发送所述可见光信号的交通设备左尾灯与接收所述可见光信号的交通设备示宽灯之间的距离;
L为发送所述可见光信号的交通设备尾灯连接与接收所述可见光信号的交通设备示宽灯连线之间的垂直距离;
X1为发送所述可见光信号的交通设备的左尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备左示宽灯之间的距离;
X2为发送所述可见光信号的交通设备的右尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备右示宽灯之间的距离。
第二方面,提供一种基于可见光的通信方法,包括:
接收交通设备发送的可见光信号,并将所述可见光信号进行解调,其中,解调后的可见光信号中携带了经过正交序列进行处理后的所述交通设备的相关信息;
对解调后的可见光信号利用所述正交序列进行处理,以解调出携带在所述可见光信号中的所述交通设备的相关信息;其中,所述相关信息包括所述交通设备的性能信息、尺寸信息,及所述交通设备的可视光源的标识信息中的一种或者任意组合。
结合第二方面,在第一种可能的实现方式中,将所述可见光信号进行解 调,具体包括:
采用通断键控解调方式将所述可见光信号进行解调;或者,
采用脉冲位置解调方式将所述可见光信号进行解调,或者
采用多载波解调方式将所述可见光信号进行解调。
结合第二方面,或者第二方面的第一种可能的实现方式,在第二种可能的实现方式中,对解调后的可见光信号利用所述正交序列进行处理,具体包括:
对解调后的可见光信号利用所述正交序列进行解扰;或者
对解调后的可见光信号利用所述正交序列进行解映射。
结合第二方面的第一或第二种可能的实现方式,在第三种可能的实现方式中,所述正交序列是基于基序列循环移位生成的。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述基序列的形式如下:
Figure PCTCN2014088658-appb-000004
其中,m(k)为基序列;
N为所述基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
结合第二方面,或者第二方面的第一至第四种可能的实现方式,在第五种可能的实现方式中,任意一正交序列与基序列之间满足如下关系:
Figure PCTCN2014088658-appb-000005
其中,m(k)为基序列、m﹡(k+σ)为正交序列;
N为所述基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
结合第二方面,或者第二方面的第一至第五种可能的实现方式,在第六种可能的实现方式中,在解调出携带在所述可见光信号中的所述交通设备的相关信息之后,还包括:
根据所述相关信息采用如下公式计算两辆交通设备之间的距离:
Figure PCTCN2014088658-appb-000006
其中:B1为发送所述可见光信号的交通设备左右尾灯间宽度;
H1为发送所述可见光信号的交通设备尾灯对地面的高度;
B2为接收所述可见光信号的交通设备示宽灯间宽度(B2>B1);
H2为接收所述可见光信号的交通设备的示宽灯相对地面距离;
S1为发送所述可见光信号的交通设备右尾灯与接收所述可见光信号的交通设备右示宽灯之间的距离;
S2为发送所述可见光信号的交通设备左尾灯与接收所述可见光信号的交通设备示宽灯之间的距离;
L为发送所述可见光信号的交通设备尾灯连接与接收所述可见光信号的交通设备示宽灯连线之间的垂直距离;
X1为发送所述可见光信号的交通设备的左尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备左示宽灯之间的距离;
X2为发送所述可见光信号的交通设备的右尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备右示宽灯之间的距离。
结合第二方面,或者第二方面的第一至第六种可能的实现方式,在第七种可能的实现方式中,在解调出携带在所述可见光信号中的所述交通设备的相关信息之后,还包括:
若相关信息是刹车灯车灯信息,则进行减速;
若相关信息是双闪灯信息,则进行减速,和/或,触发本交通设备的双闪灯亮起、发送承载双闪灯车灯信息的可见光信号。
第三方面,提供一种交通设备,包括:
获取模块,用于获取交通设备的相关信息,其中,所述相关信息包括所述交通设备的性能信息、尺寸信息,及所述交通设备的可视光源的标识信息中的一种或者任意组合;
处理模块,用于对所述相关信息利用正交序列进行处理,得到处理后的相关信息;
调制模块,用于将所述处理后的相关信息调制至可见光信号,使所述信息携带在可见光信号中传输,并使得接受处理后的相关信息的交通设备利用所述正交序列之间的正交性解调出携带在所述可见光信号中的所述相关信息,从而消除多个可见光信号间的干扰;
发送模块,用于将携带了所述处理后的相关信息的可见光信号进行发送。
结合第三方面,在第一种可能的实现方式中,述处理模块具体用于:
对所述相关信息利用正交序列进行加扰;或者
将所述相关信息映射到正交序列上。
结合第三方面,或者第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理模块进行处理时使用的正交序列是基于基序列循环移位生成的。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述处理模块进行处理时使用的正交序列是经过如下形式的基序列生成的:
Figure PCTCN2014088658-appb-000007
其中,m(k)为基序列;
N为所述基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
结合第三方面的第二或第三种可能的实现方式,在第四种可能的实现方式中,所述处理模块进行处理使用的任意一正交序列与基序列之间满足如下关系:
Figure PCTCN2014088658-appb-000008
其中,m(k)为基序列、m﹡(k+σ)为正交序列;
N为所述基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
结合第三方面,或者第三方面的第一至第四种可能的实现方式,在第五种可能的实现方式中,所述调制模块具体用于:
采用通断键控调制方式将所述处理后的相关信息调制至可见光信号;或者,
采用脉冲位置调制方式将所述处理后的相关信息调制至可见光信号;或者
采用多载波调制方式将所述处理后的相关信息调制至可见光信号。
结合第三方面,或者第三方面的第一至第五种可能的实现方式,在第六种可能的实现方式中,所述发送模块具体用于:
将携带了所述处理后的相关信息的可见光信号进行发送,以使得接收所述可见光信号的交通设备根据所述相关信息采用如下公式计算两辆交通设备之间的距离:
Figure PCTCN2014088658-appb-000009
其中:B1为发送所述可见光信号的交通设备左右尾灯间宽度;
H1为发送所述可见光信号的交通设备尾灯对地面的高度;
B2为接收所述可见光信号的交通设备示宽灯间宽度(B2>B1);
H2为接收所述可见光信号的交通设备的示宽灯相对地面距离;
S1为发送所述可见光信号的交通设备右尾灯与接收所述可见光信号的交通设备右示宽灯之间的距离;
S2为发送所述可见光信号的交通设备左尾灯与接收所述可见光信号的交通设备示宽灯之间的距离;
L为发送所述可见光信号的交通设备尾灯连接与接收所述可见光信号的交通设备示宽灯连线之间的垂直距离;
X1为发送所述可见光信号的交通设备的左尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备左示宽灯之间的距离;
X2为发送所述可见光信号的交通设备的右尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备右示宽灯之间的距离。
第四方面,提供一种基于可见光的通信交通设备,包括:
可见光接收模块,用于接收交通设备发送的可见光信号,并将所述可见光信号进行解调,其中,解调后的可见光信号中携带了经过正交序列进行处理后的所述交通设备的相关信息;
处理模块,用于对解调后的可见光信号利用所述正交序列进行处理,以解调出携带在所述可见光信号中的所述交通设备的相关信息;其中,所述相关信息包括所述交通设备的性能信息、尺寸信息,及所述交通设备的可视光源的标识信息中的一种或者任意组合。
结合第四方面,在第一种可能的实现方式中,所述可见光接收模块具体用于:
采用通断键控解调方式将所述可见光信号进行解调;或者,
采用脉冲位置解调方式将所述可见光信号进行解调,或者
采用多载波解调方式将所述可见光信号进行解调。
结合第四方面,或者第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理模块具体用于:
对解调后的可见光信号利用所述正交序列进行解扰;或者
对解调后的可见光信号利用所述正交序列进行解映射。
结合第四方面的第一或第二种可能的实现方式,在第三种可能的实现方式中,所述处理模块处理使用的正交序列是基于基序列循环移位生成的。
结合第四方面的第三种可能的实现方式,在第四种可能的实现方式中,所述处理模块解扰使用的正交序列是基于如下形式的基序列生成的:
Figure PCTCN2014088658-appb-000010
其中,m(k)为基序列;
N为所述基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
结合第四方面,或者第四方面的第一至第四种可能的实现方式,在第五种可能的实现方式中,所述处理模块处理使用的任意一正交序列与基序列之间满足如下关系:
Figure PCTCN2014088658-appb-000011
其中,m(k)为基序列、m﹡(k+σ)为正交序列;
N为所述基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
结合第四方面,或者第四方面的第一至第五种可能的实现方式,在第六 种可能的实现方式中,还包括距离计算模块,所述距离计算模块具体用于:
根据所述相关信息采用如下公式计算两辆交通设备之间的距离:
Figure PCTCN2014088658-appb-000012
其中:B1为发送所述可见光信号的交通设备左右尾灯间宽度;
H1为发送所述可见光信号的交通设备尾灯对地面的高度;
B2为接收所述可见光信号的交通设备示宽灯间宽度(B2>B1);
H2为接收所述可见光信号的交通设备的示宽灯相对地面距离;
S1为发送所述可见光信号的交通设备右尾灯与接收所述可见光信号的交通设备右示宽灯之间的距离;
S2为发送所述可见光信号的交通设备左尾灯与接收所述可见光信号的交通设备示宽灯之间的距离;
L为发送所述可见光信号的交通设备尾灯连接与接收所述可见光信号的交通设备示宽灯连线之间的垂直距离;
X1为发送所述可见光信号的交通设备的左尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备左示宽灯之间的距离;
X2为发送所述可见光信号的交通设备的右尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备右示宽灯之间的距离。
结合第四方面,或者第四方面的第一至第六种可能的实现方式,在第七种可能的实现方式中,还包括控制管理模块,所述控制管理模块用于:
若所述处理解调出的相关信息是刹车灯车灯信息,则控制所述交通设备进行减速;
若所述处理解调出的相关信息是双闪灯信息,则控制所述交通设备进行减速,和/或,双闪灯亮起、发送承载双闪灯车灯信息的可见光信号。
本发明有益效果如下:
现有技术中,交通设备同时接收多路可见光信号时,由于多路可见光信号之间存在干扰,造成交通设备无法准确接收可见光信号,因此,存在无法准确接收可见光信号的问题,而本发明实施例中,在生成可见光信号之前,将可见光信号中携带的相关信息利用正交序列进行处理,而用正交序列进行处理后的不同可见光信号之间是不存在干扰的,这样,即使具有光接收设备的交通设备接收到多路可见光信号时,由于接收到的多路可见光信号之间是正交的,这样,即使正交的多路可见光信号之间存在干扰,接收到多路可见光信号的交通设备可以利用正交序列之间的正交性将多路可见光信号中的相关信息解调出来,进而消除干扰,因此,可以准确接收到可见光信号,解决了现有技术中由于多路可见光信号干扰而造成的无法准确接收可见光信号的问题。
附图说明
图1A为本发明实施例中基于可见光通信的一种方法流程图;
图1B为本发明实施例中基于可见光通信的执行主体的一种模块示意图;
图1C为本发明实施例中基于可见光通信的执行主体的另一种模块示意图;
图2A为本发明实施例中基于可见光通信的另一种方法流程图;
图2B为本发明实施例中计算两辆汽车之间的距离的示意图;
图3为本发明实施例中基于可见光通信的一种实施例;
图4为本发明实施例中基于可见光通信的一种实施例;
图5为本发明实施例中交通设备的第一功能结构示意图;
图6为本发明实施例中交通设备的第一实体结构示意图;
图7为本发明实施例中交通设备的第二功能结构示意图;
图8为本发明实施例中交通设备的第二实体结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明实施例中,提供一种基于可见光源的通信方法,该方法中:获取交通设备的相关信息,其中,相关信息包括交通设备的性能信息、尺寸信息,及交通设备的可视光源的标识信息中的一种或者任意组合;对相关信息利用正交序列进行处理,得到处理后的相关信息;将处理后的相关信息调制至可见光信号,使信息携带在可见光信号中传输,并使得接受处理后的相关信息的交通设备利用正交序列之间的正交性解调出携带在可见光信号中的相关信息,从而消除多个可见光信号间的干扰;将携带了处理后的相关信息的可见光信号进行发送,这样,即使交通设备接收到多路可见光信号时,由于接收到的多路可见光信号之间是正交的,这样,即使正交的多路可见光信号之间存在干扰,接收到多路可见光信号的交通设备可以利用正交序列正交性解调出携带在可见光信号中的相关信息,进而消除干扰,因此,可以准确接收到可见光信号,解决了现有技术中由于多路可见光信号干扰而造成的无法准确接收可见光信号的问题。
下面结合附图对本发明优选的实施方式进行详细说明。
参阅图1A所示,本发明实施例中提供一种基于可见光源的通信方法,该方法的具体过程如下:
步骤100:获取交通设备的相关信息,其中,相关信息包括交通设备的性 能信息、尺寸信息,及交通设备的可视光源的标识信息中的一种或者任意组合;
步骤110:对相关信息利用正交序列进行处理,得到处理后的相关信息;
步骤120:将处理后的相关信息调制至可见光信号,使信息携带在可见光信号中传输,并使得接受处理后的相关信息的交通设备利用正交序列之间的正交性解调出携带在可见光信号中的相关信息,从而消除多个可见光信号间的干扰;
步骤130:将携带了处理后的相关信息的可见光信号进行发送。
本发明实施例中,步骤100至步骤130的执行主体可以为交通设备的形式有多种,如交通工具:汽车等交通工具。
下面以交通设备为汽车为例进行说明,当然,在实际应用中还有其他形式的交通设备,在此不再进行一一说明。
现有的汽车车灯系统包括汽车照明系统和汽车灯可见光信号系统。汽车照明系统为能见度较低时行驶提供照明,主要包括前照灯,雾灯(前、后),牌照灯等。汽车灯可见光信号系统用来向外界传送车辆的有关信息,用来提示和警告。汽车灯可见光信号系统包括制动灯、转向灯(前、后)、示宽灯与尾灯(后灯)、倒车灯、危险报警信号灯等。
现有的汽车车灯主要用来传递简单的信息,如刹车、转向等,而且这些信息只靠人眼来识别,存在由于人眼识别相对较慢、或由于天气不好、视线不好带来的安全隐患。本发明旨在利用可见光通信实现车与车之间的通信,通过在汽车车灯中利用可见光承载车灯信息、车的速度等信息,实现车与车之间的自动通信,进而避免由于人眼识别相对较慢、或由于天气不好、视线不好带来的安全隐患。
例如,汽车A有四个车灯:车灯1、车灯2、车灯3、车灯4,每一个车灯发射的可见光信号中携带一些相关信息,如果不采用正交序列处理的话,不同车灯之间发出的光信号之间存在干扰,接收到可见光信号的汽车B是无法准确解调出每一个车灯发出的光信号中携带的相关信息,存在无法准确接 收可见光信号的问题。
本发明实施例中,交通设备的相关信息有多种形式,可选的,可以为如下形式:
包括交通设备的性能信息、尺寸信息,及交通设备的可视光源的标识信息中的一种或者任意组合。
如,交通设备的车灯信息、交通设备的速度信息、交通设备的加速度信息、交通设备的长度信息、宽度信息、高度信息,油量信息等。
当然,交通设备的车灯信息可以是交通设备的车灯的ID信息,也可以是与交通设备的车灯的ID信息对应的序列信息,其中,三者之间的对应关系如表1所示:
表1交通设备的车灯信息、ID信息及序列信息之间的对应关系
ID 车灯 序列
1 制动灯 m1{m1,1m1,2,m1,3,……m1,N-1,m1,N}
2 倒车灯 m2{m2,1m2,2,m2,3,……m2,N-1,m2,N}
3 左尾灯 m3{m3,1m3,2,m3,3,……m3,N-1,m3,N}
4 右尾灯 m4{m4,1m4,2,m4,3,……m4,N-1,m4,N}
5 左转向灯 m5{m5,1m5,2,m5,3,……m5,N-1,m5,N}
6 右转向灯 m6{m6,1m6,2,m6,3,……m6,N-1,m6,N}
例如,汽车A为了避免与后面的汽车B发生碰撞等出现安全事故,用汽车A的后车灯的可见光进行通信:
步骤A:汽车A确定本装置的刹车灯信息;
步骤B:汽车A将刹车灯信息利用正交序列进行处理,并对处理后的刹车灯信息进行调制至可见光信号;
步骤C:汽车A将可见光信号通过汽车A的后车灯中的一个车灯进行发送。
当然,在实际应用中,汽车B的前车灯与汽车A进行通信,实施过程与上述过程类似,在此不再进行一一详述。
在实际应用中,由于多个可见光源(如车灯)同时发送多路信号时,具 有光接收器的交通设备接收到时,多路信号之间存在干扰,导致具有光接收器的交通设备无法准确接收到可见光信号,那么也就无法准确解调出可见光信号中携带的信息,因此,本发明实施例中,为了消除不同路可见光信号之间的干扰,对相关信息利用正交序列进行处理,其中,任意两个正交序列满足公式一所示的关系:
Figure PCTCN2014088658-appb-000013
    (公式一)
其中,n、k均为序列编号;i是任意一个序列中的元素索引;
N为任意一序列的长度;
Figure PCTCN2014088658-appb-000014
为对mk序列中的第i个元素的共轭、mn,i为mn序列中的第i个元素。
本发明实施例中,基于这些彼此正交的序列,或将这些彼此正交序列分别对不同路的可见光信号进行处理,使得多路可见光信号可以并行地利用可见光传输信息,从而提高数据传输速率。
本发明实施例中,对相关信息利用正交序列进行处理的方式有多种,可选的,可以采用如下方式:
对相关信息利用正交序列进行加扰;或者
将相关信息映射到正交序列上,当然,还有其他实现方式,在此不再进行一一详述。
本发明实施例中,正交序列有多种形式,可选的,是基于基序列循环移位生成的,当然,也可以是其他形式,在此不再进行一一详述。
本发明实施例中,如果正交序列是基于基序列循环移位生成的,基序列的形式如公式二所示:
Figure PCTCN2014088658-appb-000015
    (公式二)
其中,m(k)为基序列;
N为基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
本发明实施例中,任意一正交序列与基序列之间满足如下关系:
Figure PCTCN2014088658-appb-000016
    (公式三)
其中,m(k)为基序列、m﹡(k+σ)为正交序列;
N为基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
本发明实施例中,将处理后的相关信息调制至可见光信号的方式有多种,可选的,可以采用如下方式:
采用通断键控调制方式将处理后的相关信息调制至可见光信号;或者,
采用脉冲位置调制方式将处理后的相关信息调制至可见光信号;或者
采用多载波调制方式将处理后的相关信息调制至可见光信号。
当然,在实际应用中,还有其他实现方式,在此不再进行一一详述。
本发明实施例中,如每一个车灯与一个序列对应时,可以在车灯相对应的序列基础上承载其它信息,如车的速度信息、加速度信息、左右尾灯之间的宽度信息、尾灯离地面的距离等信息。
如表1所示,在启动制动灯时,在制动灯对应的序列m1上加载车辆的速度v,如公式四所示:
v·m1={v·m1,1v·m1,2,v·m1,3,……v·m1,N-1,v·m1,N}    (公式四)
由于制动灯对应的m1序列与其它车灯对应的序列均正交,因此,在m1 序列上加载其他信息后仍然与其它序列正交。这样,其他车辆接收到携带m1序列的信息的可见光信号时,不仅知道发送可见光信号的车启动了制动,而且还知道该车当前的车速。根据发送可见光信号的车的当前速度、接收可见光信号的车的当前速度,可采取合适的减速或加速措施。
本发明实施例中,不同的相关信息可以通过同一可见光源进行传输,也可以通过不同的可见光源进行传输,即不同的相关信息可以通过同一车灯进行传输,也可以通过不同的车灯进行传输。
例如:汽车车灯1利用可见光信号传输车的速度信息、加速度信息及油量信息,或者,汽车车灯1利用可见光信号传输车的速度信息,汽车车灯2利用可见光信号传输车的加速度信息,汽车车灯3利用可见光信号传输车的油量信息,这样,在同一时刻,利用这3个车灯可同时传输车的速度、加速度、油量信息,从而提高车与车之间通信的传输速率。
本发明实施例中,当通过一个可见光源传输多路可见光信号时,其中,为了避免多路可见光信号之间的干扰,要将相关信息利用正交序列进行处理用正交序列进行处理,令携带相关信息的每一路可见光信号彼此之间避免干扰,在将可见光信号进行调制之前,要将正交序列进行相加,再对可见光信号进行调制。
本发明实施例中,步骤100-130的执行主体是汽车时,步骤100-120的各个步骤的执行模块可以分别如下,如图1B所示:
车灯控制模块,该模块主要控制相应车灯的操作,比如拨转向灯开关、按危险报警按钮、车刹车等,通过车灯控制模块的操作开启相应的车灯,并将相关信息发送至控制管理模块;
控制管理模块,该模块接收车灯控制模块的输入,并根据该输入确定操作的车灯信息;还可获取汽车的速率信息、加速度信息、油量信息等信息,或汽车的宽度信息、高度信息等信息,并将这些信息传送至相应的调制模块;
调制模块,该模块接收来自控制管理模块的需要利用可见光进行传输的相关信息,比如车灯相关信息、汽车相关信息或其它车辆间利用可见光通信 的信息,对这些信息进行调制,具体为采样、量化为二进制比特流,并将二进制比特流进行调制并传输至驱动模块;
驱动模块,该模块将二进制比特流调制后的信号转换为光强度信号并驱动相应的汽车车灯发光。
当然,图1B所示的是多个车灯均进行通信的示意图,在实际应用中,可以利用多个车灯进行通信,也可以通过一个车灯进行通信,此时,示意图如图1C所示。
本发明实施例中,将携带了处理后的相关信息的可见光信号进行发送的方式有多种,可选的,可以采用如下方式:
将携带了处理后的相关信息的可见光信号进行发送,以使得接收可见光信号的交通设备根据相关信息采用如下公式计算两辆交通设备之间的距离:
Figure PCTCN2014088658-appb-000017
    (公式五)
其中:B1为发送可见光信号的交通设备左右尾灯间宽度;
H1为发送可见光信号的交通设备尾灯对地面的高度;
B2为接收可见光信号的交通设备示宽灯间宽度(B2>B1);
H2为接收可见光信号的交通设备的示宽灯相对地面距离;
S1为发送可见光信号的交通设备右尾灯与接收可见光信号的交通设备右示宽灯之间的距离;
S2为发送可见光信号的交通设备左尾灯与接收可见光信号的交通设备示宽灯之间的距离;
L为发送可见光信号的交通设备尾灯连接与接收可见光信号的交通设备示宽灯连线之间的垂直距离;
X1为发送可见光信号的交通设备的左尾灯到接收可见光信号的交通设备示宽灯连线之间的垂线与接收可见光信号的交通设备示宽灯连线之间的交点,与接收可见光信号的交通设备左示宽灯之间的距离;
X2为发送可见光信号的交通设备的右尾灯到接收可见光信号的交通设备 示宽灯连线之间的垂线与接收可见光信号的交通设备示宽灯连线之间的交点,与接收可见光信号的交通设备右示宽灯之间的距离。
本发明实施例中,参阅图2A所示,本发明实施例中提供另一种种基于可见光源的通信方法,该方法的具体过程如下:
步骤200:接收交通设备发送的可见光信号,并将可见光信号进行解调,其中,解调后的可见光信号中携带了经过正交序列进行处理后的交通设备的相关信息;
步骤210:对解调后的可见光信号利用正交序列进行处理,以解调出携带在可见光信号中的交通设备的相关信息;其中,相关信息包括交通设备的性能信息、尺寸信息,及交通设备的可视光源的标识信息中的一种或者任意组合。
本发明实施例中,交通设备在接收到可见光信号之后,将可见光信号进行解调之前,还包括如下操作:
将可见光信号进行光-电信号转换得到数据信号,然后,再对数据信号进行解调。
本发明实施例中,通过对解调后的可见光信号利用正交序列进行处理,可以得到其中数据信号中承载的交通设备的相关信息,如,车灯信息如汽车车灯消息、或汽车车灯ID信息、或汽车车灯ID信息、汽车速度信息、加速度信息、油量信息、长度信息、宽度信息等,或其他汽车相关信息。
本发明实施例中,获得交通设备的相关信息之后,根据这些信息作出相应的提示或者操作。
例如,获取的如果是刹车灯车灯信息,则可触发汽车的制动模块进行减速;如果获取的是双闪灯信息,则可触发汽车的制动模块进行减速,并对获取信息的汽车的双闪灯亮。
本发明实施例中,将可见光信号进行解调的方式有多种,可选的,可以采用如下方式:
采用通断键控解调方式将可见光信号进行解调;或者,
采用脉冲位置解调方式将可见光信号进行解调,或者
采用多载波解调方式将可见光信号进行解调。
当然,还有可能是其他方式,在此不再进行一一详述。
本发明实施例中,对解调后的可见光信号利用正交序列进行处理的方式有多种,可选的,可以采用如下方式:
对解调后的可见光信号利用正交序列进行解扰;或者
对解调后的可见光信号利用正交序列进行解映射。
本发明实施例中,正交序列是基于基序列循环移位生成的。
本发明实施例中,基序列的形式有多种,可选的,可以采用公式二的形式。
同理,任意一正交序列与基序列之间满足关系的形式也有多种,可选的,可以采用公式三的形式。
在解调出携带在可见光信号中的交通设备的相关信息之后,还包括:
根据相关信息采用如下公式计算两辆交通设备之间的距离:
Figure PCTCN2014088658-appb-000018
其中:B1为发送可见光信号的交通设备左右尾灯间宽度;
H1为发送可见光信号的交通设备尾灯对地面的高度;
B2为接收可见光信号的交通设备示宽灯间宽度(B2>B1);
H2为接收可见光信号的交通设备的示宽灯相对地面距离;
S1为发送可见光信号的交通设备右尾灯与接收可见光信号的交通设备右示宽灯之间的距离;
S2为发送可见光信号的交通设备左尾灯与接收可见光信号的交通设备示宽灯之间的距离;
L为发送可见光信号的交通设备尾灯连接与接收可见光信号的交通设备示宽灯连线之间的垂直距离;
X1为发送可见光信号的交通设备的左尾灯到接收可见光信号的交通设备 示宽灯连线之间的垂线与接收可见光信号的交通设备示宽灯连线之间的交点,与接收可见光信号的交通设备左示宽灯之间的距离;
X2为发送可见光信号的交通设备的右尾灯到接收可见光信号的交通设备示宽灯连线之间的垂线与接收可见光信号的交通设备示宽灯连线之间的交点,与接收可见光信号的交通设备右示宽灯之间的距离。
本发明实施例中,如步骤100-130的执行主体、步骤200-210的执行主体均为交通设备时,如为汽车时,其中,步骤100-130的执行主体为汽车A、步骤200-210的执行主体为汽车B,汽车B可根据接收到的汽车的相关信息计算两辆汽车之间的距离,具体如图2B所示,具体计算方式可根据公式五:
Figure PCTCN2014088658-appb-000019
其中:S为两车之间的距离;
B1为汽车A左右尾灯间宽度;
H1为汽车A尾灯对地面的高度;
B2为汽车B示宽灯间宽度(B2>B1);
H2为汽车B的示宽灯相对地面距离;
S1为汽车A右尾灯与汽车B右示宽灯之间的距离;
S2为汽车A左尾灯与汽车B示宽灯之间的距离;
L为汽车A尾灯连接与汽车B示宽灯连线之间的垂直距离;
X1为汽车A的左尾灯到汽车B示宽灯连线之间的垂线与汽车B示宽灯连线之间的交点,与汽车B左示宽灯之间的距离;
X2为汽车A的右尾灯到汽车B示宽灯连线之间的垂线与汽车B示宽灯连线之间的交点,与汽车B右示宽灯之间的距离。其中:
B2=B1+X1+X2    (公式六)
X12=S22-L2    (公式七)
X22=S12-L2    (公式八)
本发明实施例中,在解调出携带在可见光信号中的交通设备的相关信息 之后,还包括如下操作:
若相关信息是刹车灯车灯信息,则进行减速;
若相关信息是双闪灯信息,则进行减速,和/或,触发本交通设备的双闪灯亮起、发送承载双闪灯车灯信息的可见光信号。
为了更好地理解本发明实施例,以下给出具体应用场景,针对基于可见光源的通信过程,作出进一步详细描述:
如图3所示,基于可见光源的可见光信号的发送过程:
步骤300:汽车A获取制动灯的信息、汽车A的左右尾灯之间的距离信息;
步骤310:汽车A将制动灯的信息、汽车A的左右尾灯之间的距离信息分别映射到正交序列;
步骤320:汽车A将处理后的制动灯的信息、汽车A的左右尾灯之间的距离信息均通断键控调制方式调制至可见光信号;
当然,该步骤中,也可以采用脉冲位置调制方式,或者多载波调制方式对映射后的信息调制至可见光信号;
该步骤中,携带制动灯的信息的可见光信号和汽车A的左右尾灯之间的距离信息的信息的可见光信号分别通过两个车灯进行传输。
步骤330:汽车A将分别携带制动灯信息和汽车A的左右尾灯之间的距离信息的可见光信号进行发送。
在该实施例中,如果汽车A未对制动灯的信息、汽车A的左右尾灯之间的距离信息分别映射到正交序列,即未经过正交序列处理,分别携带制动灯信息和汽车A的左右尾灯之间的距离信息的可见光信号之间存在干扰,出现混乱,接收到这两路可见光信号的汽车B就无法解调出这两路可见光信号中的任意一路可见光信号中携带的信息,因此,该实施例可以在接收到多路光信号时,准确获取每一路可见光信号中携带的信息。
如图4所示,基于可见光源的可见光信号的接收过程:
步骤400:汽车B接收汽车A发送的两路可见光信号,并将两路可见光 信号解调;
步骤410:汽车B将解调后的两路可见光信号利用正交序列进行处理,解调出可见光信号中携带的汽车A的制动灯信息、和汽车A的左右尾灯之间的距离信息;
步骤420:汽车B根据汽车A的制动灯信息进行减速,并根据汽车A的左右尾灯之间的距离信息进行其他相关操作。
在该实施例中,由于汽车A对制动灯的信息、前面两个车灯之间的距离信息分别映射到正交序列,即经过正交序列处理,分别携带制动灯信息和汽车A的左右尾灯之间的距离信息的可见光信号之间未存在干扰,接收到这两路可见光信号的汽车B就再根据相应的正交序列对相应的可见光信号进行处理,就可以准确获取这两路可见光信号中的任意一路可见光信号中携带的信息,因此,该实施例可以在接收到多路光信号时,准确获取每一路可见光信号中携带的信息,解决了现有技术中存在的问题。
基于上述技术方案,参阅图5所示,本发明实施例提供一种交通设备,该交通设备包括获取模块50、处理模块51、调整模块52,及发送模块53,其中:
获取模块50,用于获取交通设备的相关信息,其中,相关信息包括交通设备的性能信息、尺寸信息,及交通设备的可视光源的标识信息中的一种或者任意组合;
处理模块51,用于对相关信息利用正交序列进行处理,得到处理后的相关信息;
调制模块52,用于将处理后的相关信息调制至可见光信号,使信息携带在可见光信号中传输,并使得接受处理后的相关信息的交通设备利用正交序列之间的正交性解调出携带在可见光信号中的相关信息,从而消除多个可见光信号间的干扰;
发送模块53,用于将携带了处理后的相关信息的可见光信号进行发送。
本发明实施例中,可选的,处理模块51具体用于:
对相关信息利用正交序列进行加扰;或者
将相关信息映射到正交序列上。
本发明实施例中,可选的,处理模块51进行处理时使用的正交序列是基于基序列循环移位生成的。
本发明实施例中,可选的,处理模块51进行处理时使用的正交序列是经过如下形式的基序列生成的:
Figure PCTCN2014088658-appb-000020
其中,m(k)为基序列;
N为基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
本发明实施例中,可选的,处理模块51进行处理使用的任意一正交序列与基序列之间满足如下关系:
Figure PCTCN2014088658-appb-000021
其中,m(k)为基序列、m﹡(k+σ)为正交序列;
N为基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
本发明实施例中,可选的,调制模块52具体用于:
采用通断键控调制方式将处理后的相关信息调制至可见光信号;或者,
采用脉冲位置调制方式将处理后的相关信息调制至可见光信号;或者
采用多载波调制方式将处理后的相关信息调制至可见光信号。
本发明实施例中,可选的,发送模块53具体用于:
将携带了处理后的相关信息的可见光信号进行发送,以使得接收可见光信号的交通设备根据相关信息采用如下公式计算两辆交通设备之间的距离:
Figure PCTCN2014088658-appb-000022
其中:B1为发送可见光信号的交通设备左右尾灯间宽度;
H1为发送可见光信号的交通设备尾灯对地面的高度;
B2为接收可见光信号的交通设备示宽灯间宽度(B2>B1);
H2为接收可见光信号的交通设备的示宽灯相对地面距离;
S1为发送可见光信号的交通设备右尾灯与接收可见光信号的交通设备右示宽灯之间的距离;
S2为发送可见光信号的交通设备左尾灯与接收可见光信号的交通设备示宽灯之间的距离;
L为发送可见光信号的交通设备尾灯连接与接收可见光信号的交通设备示宽灯连线之间的垂直距离;
X1为发送可见光信号的交通设备的左尾灯到接收可见光信号的交通设备示宽灯连线之间的垂线与接收可见光信号的交通设备示宽灯连线之间的交点,与接收可见光信号的交通设备左示宽灯之间的距离;
X2为发送可见光信号的交通设备的右尾灯到接收可见光信号的交通设备示宽灯连线之间的垂线与接收可见光信号的交通设备示宽灯连线之间的交点,与接收可见光信号的交通设备右示宽灯之间的距离。
如图6所示,为本发明实施例提供的一种交通设备的实体结构图,交通设备包括至少一个处理器601,通信总线602,存储器603以及至少一个通信接口604。
其中,通信总线602用于实现上述组件之间的连接并通信,通信接口604用于与外部设备连接并通信。
其中,存储器603用于存储需要执行的程序代码,这些程序代码具体可以包括:获取模块6031、处理模块6032、调制模块6033及发送模块6034,当上 述单元被处理器601执行时,实现如下功能:
获取模块6031,用于获取交通设备的相关信息,其中,所述相关信息包括所述交通设备的性能信息、尺寸信息,及所述交通设备的可视光源的标识信息中的一种或者任意组合;
处理模块6032,用于对所述相关信息利用正交序列进行处理,得到处理后的相关信息;
调制模块6033,用于将所述处理后的相关信息调制至可见光信号,使所述信息携带在可见光信号中传输,并使得接受处理后的相关信息的交通设备利用所述正交序列之间的正交性解调出携带在所述可见光信号中的所述相关信息,从而消除多个可见光信号间的干扰;
发送模块6034,用于将携带了所述处理后的相关信息的可见光信号进行发送。
基于上述技术方案,参阅图7所示,本发明实施例提供另一种交通设备,该交通设备包括可见光接收模块70、处理模块71,其中:
可见光接收模块70,用于接收交通设备发送的可见光信号,并将可见光信号进行解调,其中,解调后的可见光信号中携带了经过正交序列进行处理后的交通设备的相关信息;
处理模块71,用于对解调后的可见光信号利用正交序列进行处理,以解调出携带在可见光信号中的交通设备的相关信息;其中,相关信息包括交通设备的性能信息、尺寸信息,及交通设备的可视光源的标识信息中的一种或者任意组合。
本发明实施例中,可选的,可见光接收模块70具体用于:采用通断键控解调方式将可见光信号进行解调;或者,
采用脉冲位置解调方式将可见光信号进行解调,或者
采用多载波解调方式将可见光信号进行解调。
本发明实施例中,可选的,处理模块71具体用于:
对解调后的可见光信号利用正交序列进行解扰;或者
对解调后的可见光信号利用正交序列进行解映射。
本发明实施例中,可选的,处理模块71处理使用的正交序列是基于基序列循环移位生成的。
本发明实施例中,可选的,处理模块71解扰使用的正交序列是基于如下形式的基序列生成的:
Figure PCTCN2014088658-appb-000023
其中,m(k)为基序列;
N为基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
本发明实施例中,可选的,处理模块71处理使用的任意一正交序列与基序列之间满足如下关系:
Figure PCTCN2014088658-appb-000024
其中,m(k)为基序列、m﹡(k+σ)为正交序列;
N为基序列的长度,为正整数;
k为0-N之间的任意一整数;
j为虚数单位;
r为与N互质的任意一正整数。
本发明实施例中,进一步的,还包括距离计算模块72,距离计算模块72具体用于:
根据相关信息采用如下公式计算两辆交通设备之间的距离:
Figure PCTCN2014088658-appb-000025
其中:B1为发送可见光信号的交通设备左右尾灯间宽度;
H1为发送可见光信号的交通设备尾灯对地面的高度;
B2为接收可见光信号的交通设备示宽灯间宽度(B2>B1);
H2为接收可见光信号的交通设备的示宽灯相对地面距离;
S1为发送可见光信号的交通设备右尾灯与接收可见光信号的交通设备右示宽灯之间的距离;
S2为发送可见光信号的交通设备左尾灯与接收可见光信号的交通设备示宽灯之间的距离;
L为发送可见光信号的交通设备尾灯连接与接收可见光信号的交通设备示宽灯连线之间的垂直距离;
X1为发送可见光信号的交通设备的左尾灯到接收可见光信号的交通设备示宽灯连线之间的垂线与接收可见光信号的交通设备示宽灯连线之间的交点,与接收可见光信号的交通设备左示宽灯之间的距离;
X2为发送可见光信号的交通设备的右尾灯到接收可见光信号的交通设备示宽灯连线之间的垂线与接收可见光信号的交通设备示宽灯连线之间的交点,与接收可见光信号的交通设备右示宽灯之间的距离。
本发明实施例中,进一步的,还包括控制管理模块73,控制管理模块73用于:
若处理解调出的相关信息是刹车灯车灯信息,则控制交通设备进行减速;
若处理解调出的相关信息是双闪灯信息,则控制交通设备进行减速,和/或,双闪灯亮起、发送承载双闪灯车灯信息的可见光信号。
如图8所示,为本发明实施例提供的一种交通设备的实体结构图,交通设备包括至少一个处理器801,通信总线802,存储器803以及至少一个通信接口804。
其中,通信总线802用于实现上述组件之间的连接并通信,通信接口804用于与外部设备连接并通信。
其中,存储器803用于存储需要执行的程序代码,这些程序代码具体可以包括:可见光接收模块8031、处理模块8032,当上述单元被处理器801执行时,实现如下功能:
可见光接收模块8031,用于接收交通设备发送的可见光信号,并将所述可见光信号进行解调,其中,解调后的可见光信号中携带了经过正交序列进行处理后的所述交通设备的相关信息;
处理模块8032,用于对解调后的可见光信号利用所述正交序列进行处理,以解调出携带在所述可见光信号中的所述交通设备的相关信息;其中,所述相关信息包括所述交通设备的性能信息、尺寸信息,及所述交通设备的可视光源的标识信息中的一种或者任意组合。
综上所述,本发明实施例中,提供一种基于可见光源的通信方法,该方法中:获取交通设备的相关信息;对相关信息利用正交序列进行处理,并对处理后的相关信息进行调制至可见光信号,并将可见光信号进行发送,在该方案中,在生成可见光信号之前,将可见光信号中携带的相关信息利用正交序列进行处理,而用正交序列进行处理后的不同可见光信号之间是不存在干扰的,这样,即使光接收设备接收到多路可见光信号时,由于接收到的多路可见光信号之间是正交的,这样,即使正交的多路可见光信号之间存在干扰,接收到多路可见光信号的交通设备可以利用正交性将多路可见光信号解调出来,进而消除干扰,因此,可以准确接收到可见光信号,解决了现有技术中由于多路可见光信号干扰而造成的无法准确接收可见光信号的问题。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (30)

  1. 一种基于可见光的通信方法,其特征在于,包括:
    获取交通设备的相关信息,其中,所述相关信息包括所述交通设备的性能信息、尺寸信息,及所述交通设备的可视光源的标识信息中的一种或者任意组合;
    对所述相关信息利用正交序列进行处理,得到处理后的相关信息;
    将所述处理后的相关信息调制至可见光信号,使所述信息携带在可见光信号中传输,并使得接受处理后的相关信息的交通设备利用所述正交序列之间的正交性解调出携带在所述可见光信号中的所述相关信息,从而消除多个可见光信号间的干扰;
    将携带了所述处理后的相关信息的可见光信号进行发送。
  2. 如权利要求1所述的方法,其特征在于,对所述相关信息利用正交序列进行处理,具体包括:
    对所述相关信息利用正交序列进行加扰;或者
    将所述相关信息映射到正交序列上。
  3. 如权利要求1或2所述的方法,其特征在于,所述正交序列是基于基序列循环移位生成的。
  4. 如权利要求3所述的方法,其特征在于,所述基序列的形式如下:
    Figure PCTCN2014088658-appb-100001
    其中,m(k)为基序列;
    N为所述基序列的长度,为正整数;
    k为0-N之间的任意一整数;
    j为虚数单位;
    r为与N互质的任意一正整数。
  5. 如权利要求3或4所述的方法,其特征在于,任意一正交序列与基序列之间满足如下关系:
    Figure PCTCN2014088658-appb-100002
    其中,m(k)为基序列、m﹡(k+σ)为正交序列;
    N为所述基序列的长度,为正整数;
    k为0-N之间的任意一整数;
    j为虚数单位;
    r为与N互质的任意一正整数。
  6. 如权利要求1-5任一项所述的方法,其特征在于,将所述处理后的相关信息调制至可见光信号,具体包括:
    采用通断键控调制方式将所述处理后的相关信息调制至可见光信号;或者,
    采用脉冲位置调制方式将所述处理后的相关信息调制至可见光信号;或者
    采用多载波调制方式将所述处理后的相关信息调制至可见光信号。
  7. 如权利要求1-6任一项所述的方法,其特征在于,将携带了所述处理后的相关信息的可见光信号进行发送,具体包括:
    将携带了所述处理后的相关信息的可见光信号进行发送,以使得接收所述可见光信号的交通设备根据所述相关信息采用如下公式计算两辆交通设备之间的距离:
    Figure PCTCN2014088658-appb-100003
    其中:B1为发送所述可见光信号的交通设备左右尾灯间宽度;
    H1为发送所述可见光信号的交通设备尾灯对地面的高度;
    B2为接收所述可见光信号的交通设备示宽灯间宽度(B2>B1);
    H2为接收所述可见光信号的交通设备的示宽灯相对地面距离;
    S1为发送所述可见光信号的交通设备右尾灯与接收所述可见光信号的交通设备右示宽灯之间的距离;
    S2为发送所述可见光信号的交通设备左尾灯与接收所述可见光信号的交通设备示宽灯之间的距离;
    L为发送所述可见光信号的交通设备尾灯连接与接收所述可见光信号的交通设备示宽灯连线之间的垂直距离;
    X1为发送所述可见光信号的交通设备的左尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备左示宽灯之间的距离;
    X2为发送所述可见光信号的交通设备的右尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备右示宽灯之间的距离。
  8. 一种基于可见光的通信方法,其特征在于,包括:
    接收交通设备发送的可见光信号,并将所述可见光信号进行解调,其中,解调后的可见光信号中携带了经过正交序列进行处理后的所述交通设备的相关信息;
    对解调后的可见光信号利用所述正交序列进行处理,以解调出携带在所述可见光信号中的所述交通设备的相关信息;其中,所述相关信息包括所述交通设备的性能信息、尺寸信息,及所述交通设备的可视光源的标识信息中的一种或者任意组合。
  9. 如权利要求8所述的方法,其特征在于,将所述可见光信号进行解调,具体包括:
    采用通断键控解调方式将所述可见光信号进行解调;或者,
    采用脉冲位置解调方式将所述可见光信号进行解调,或者
    采用多载波解调方式将所述可见光信号进行解调。
  10. 如权利要求8或9所述的方法,其特征在于,对解调后的可见光信号利用所述正交序列进行处理,具体包括:
    对解调后的可见光信号利用所述正交序列进行解扰;或者
    对解调后的可见光信号利用所述正交序列进行解映射。
  11. 如权利要求9或10所述的方法,其特征在于,所述正交序列是基于基序列循环移位生成的。
  12. 如权利要求11所述的方法,其特征在于,所述基序列的形式如下:
    Figure PCTCN2014088658-appb-100004
    其中,m(k)为基序列;
    N为所述基序列的长度,为正整数;
    k为0-N之间的任意一整数;
    j为虚数单位;
    r为与N互质的任意一正整数。
  13. 如权利要求8-12任一项所述的方法,其特征在于,任意一正交序列与基序列之间满足如下关系:
    Figure PCTCN2014088658-appb-100005
    其中,m(k)为基序列、m﹡(k+σ)为正交序列;
    N为所述基序列的长度,为正整数;
    k为0-N之间的任意一整数;
    j为虚数单位;
    r为与N互质的任意一正整数。
  14. 如权利要求8-13任一项所述的方法,其特征在于,在解调出携带在所述可见光信号中的所述交通设备的相关信息之后,还包括:
    根据所述相关信息采用如下公式计算两辆交通设备之间的距离:
    Figure PCTCN2014088658-appb-100006
    其中:B1为发送所述可见光信号的交通设备左右尾灯间宽度;
    H1为发送所述可见光信号的交通设备尾灯对地面的高度;
    B2为接收所述可见光信号的交通设备示宽灯间宽度(B2>B1);
    H2为接收所述可见光信号的交通设备的示宽灯相对地面距离;
    S1为发送所述可见光信号的交通设备右尾灯与接收所述可见光信号的交通设备右示宽灯之间的距离;
    S2为发送所述可见光信号的交通设备左尾灯与接收所述可见光信号的交通设备示宽灯之间的距离;
    L为发送所述可见光信号的交通设备尾灯连接与接收所述可见光信号的交通设备示宽灯连线之间的垂直距离;
    X1为发送所述可见光信号的交通设备的左尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备左示宽灯之间的距离;
    X2为发送所述可见光信号的交通设备的右尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备右示宽灯之间的距离。
  15. 如权利要求8-14任一项所述的方法,其特征在于,在解调出携带在所述可见光信号中的所述交通设备的相关信息之后,还包括:
    若相关信息是刹车灯车灯信息,则进行减速;
    若相关信息是双闪灯信息,则进行减速,和/或,触发本交通设备的双闪灯亮起、发送承载双闪灯车灯信息的可见光信号。
  16. 一种交通设备,其特征在于,包括:
    获取模块,用于获取交通设备的相关信息,其中,所述相关信息包括所述交通设备的性能信息、尺寸信息,及所述交通设备的可视光源的标识信息中的一种或者任意组合;
    处理模块,用于对所述相关信息利用正交序列进行处理,得到处理后的相关信息;
    调制模块,用于将所述处理后的相关信息调制至可见光信号,使所述信息携带在可见光信号中传输,并使得接受处理后的相关信息的交通设备利用所述正交序列之间的正交性解调出携带在所述可见光信号中的所述相关信息,从而消除多个可见光信号间的干扰;
    发送模块,用于将携带了所述处理后的相关信息的可见光信号进行发送。
  17. 如权利要求16所述的交通设备,其特征在于,所述处理模块具体用于:
    对所述相关信息利用正交序列进行加扰;或者
    将所述相关信息映射到正交序列上。
  18. 如权利要求16或17所述的交通设备,其特征在于,所述处理模块进行处理时使用的正交序列是基于基序列循环移位生成的。
  19. 如权利要求18所述的交通设备,其特征在于,所述处理模块进行处理时使用的正交序列是经过如下形式的基序列生成的:
    Figure PCTCN2014088658-appb-100007
    其中,m(k)为基序列;
    N为所述基序列的长度,为正整数;
    k为0-N之间的任意一整数;
    j为虚数单位;
    r为与N互质的任意一正整数。
  20. 如权利要求18或19所述的交通设备,其特征在于,所述处理模块进行处理使用的任意一正交序列与基序列之间满足如下关系:
    Figure PCTCN2014088658-appb-100008
    其中,m(k)为基序列、m﹡(k+σ)为正交序列;
    N为所述基序列的长度,为正整数;
    k为0-N之间的任意一整数;
    j为虚数单位;
    r为与N互质的任意一正整数。
  21. 如权利要求16-20任一项所述的交通设备,其特征在于,所述调制模块具体用于:
    采用通断键控调制方式将所述处理后的相关信息调制至可见光信号;或者,
    采用脉冲位置调制方式将所述处理后的相关信息调制至可见光信号;或者
    采用多载波调制方式将所述处理后的相关信息调制至可见光信号。
  22. 如权利要求16-21任一项所述的交通设备,其特征在于,所述发送模块具体用于:
    将携带了所述处理后的相关信息的可见光信号进行发送,以使得接收所述可见光信号的交通设备根据所述相关信息采用如下公式计算两辆交通设备之间的距离:
    Figure PCTCN2014088658-appb-100009
    其中:B1为发送所述可见光信号的交通设备左右尾灯间宽度;
    H1为发送所述可见光信号的交通设备尾灯对地面的高度;
    B2为接收所述可见光信号的交通设备示宽灯间宽度(B2>B1);
    H2为接收所述可见光信号的交通设备的示宽灯相对地面距离;
    S1为发送所述可见光信号的交通设备右尾灯与接收所述可见光信号的交通设备右示宽灯之间的距离;
    S2为发送所述可见光信号的交通设备左尾灯与接收所述可见光信号的交通设备示宽灯之间的距离;
    L为发送所述可见光信号的交通设备尾灯连接与接收所述可见光信号的交通设备示宽灯连线之间的垂直距离;
    X1为发送所述可见光信号的交通设备的左尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备左示宽灯之间的距离;
    X2为发送所述可见光信号的交通设备的右尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连 线之间的交点,与接收所述可见光信号的交通设备右示宽灯之间的距离。
  23. 一种基于可见光的通信交通设备,其特征在于,包括:
    可见光接收模块,用于接收交通设备发送的可见光信号,并将所述可见光信号进行解调,其中,解调后的可见光信号中携带了经过正交序列进行处理后的所述交通设备的相关信息;
    处理模块,用于对解调后的可见光信号利用所述正交序列进行处理,以解调出携带在所述可见光信号中的所述交通设备的相关信息;其中,所述相关信息包括所述交通设备的性能信息、尺寸信息,及所述交通设备的可视光源的标识信息中的一种或者任意组合。
  24. 如权利要求23所述的交通设备,其特征在于,所述可见光接收模块具体用于:
    采用通断键控解调方式将所述可见光信号进行解调;或者,
    采用脉冲位置解调方式将所述可见光信号进行解调,或者
    采用多载波解调方式将所述可见光信号进行解调。
  25. 如权利要求23或24所述的交通设备,其特征在于,所述处理模块具体用于:
    对解调后的可见光信号利用所述正交序列进行解扰;或者
    对解调后的可见光信号利用所述正交序列进行解映射。
  26. 如权利要求24或25所述的交通设备,其特征在于,所述处理模块处理使用的正交序列是基于基序列循环移位生成的。
  27. 如权利要求26所述的交通设备,其特征在于,所述处理模块解扰使用的正交序列是基于如下形式的基序列生成的:
    Figure PCTCN2014088658-appb-100010
    其中,m(k)为基序列;
    N为所述基序列的长度,为正整数;
    k为0-N之间的任意一整数;
    j为虚数单位;
    r为与N互质的任意一正整数。
  28. 如权利要求23-27任一项所述的交通设备,其特征在于,所述处理模块处理使用的任意一正交序列与基序列之间满足如下关系:
    Figure PCTCN2014088658-appb-100011
    其中,m(k)为基序列、m﹡(k+σ)为正交序列;
    N为所述基序列的长度,为正整数;
    k为0-N之间的任意一整数;
    j为虚数单位;
    r为与N互质的任意一正整数。
  29. 如权利要求23-28任一项所述的交通设备,其特征在于,还包括距离计算模块,所述距离计算模块具体用于:
    根据所述相关信息采用如下公式计算两辆交通设备之间的距离:
    Figure PCTCN2014088658-appb-100012
    其中:B1为发送所述可见光信号的交通设备左右尾灯间宽度;
    H1为发送所述可见光信号的交通设备尾灯对地面的高度;
    B2为接收所述可见光信号的交通设备示宽灯间宽度(B2>B1);
    H2为接收所述可见光信号的交通设备的示宽灯相对地面距离;
    S1为发送所述可见光信号的交通设备右尾灯与接收所述可见光信号的交通设备右示宽灯之间的距离;
    S2为发送所述可见光信号的交通设备左尾灯与接收所述可见光信号的交通设备示宽灯之间的距离;
    L为发送所述可见光信号的交通设备尾灯连接与接收所述可见光信号的交通设备示宽灯连线之间的垂直距离;
    X1为发送所述可见光信号的交通设备的左尾灯到接收所述可见光信号的 交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备左示宽灯之间的距离;
    X2为发送所述可见光信号的交通设备的右尾灯到接收所述可见光信号的交通设备示宽灯连线之间的垂线与接收所述可见光信号的交通设备示宽灯连线之间的交点,与接收所述可见光信号的交通设备右示宽灯之间的距离。
  30. 如权利要求23-29任一项所述的交通设备,其特征在于,还包括控制管理模块,所述控制管理模块用于:
    若所述处理解调出的相关信息是刹车灯车灯信息,则控制所述交通设备进行减速;
    若所述处理解调出的相关信息是双闪灯信息,则控制所述交通设备进行减速,和/或,双闪灯亮起、发送承载双闪灯车灯信息的可见光信号。
PCT/CN2014/088658 2014-04-30 2014-10-15 一种基于可见光的通信方法及交通设备 WO2015165219A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/338,127 US10050706B2 (en) 2014-04-30 2016-10-28 Visible light-based communication method and transport device
US16/041,561 US10476593B2 (en) 2014-04-30 2018-07-20 Visible light-based communication method and transport device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410182851.2A CN105099549B (zh) 2014-04-30 2014-04-30 一种基于可见光的通信方法及交通设备
CN201410182851.2 2014-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/338,127 Continuation US10050706B2 (en) 2014-04-30 2016-10-28 Visible light-based communication method and transport device

Publications (1)

Publication Number Publication Date
WO2015165219A1 true WO2015165219A1 (zh) 2015-11-05

Family

ID=54358100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088658 WO2015165219A1 (zh) 2014-04-30 2014-10-15 一种基于可见光的通信方法及交通设备

Country Status (3)

Country Link
US (2) US10050706B2 (zh)
CN (1) CN105099549B (zh)
WO (1) WO2015165219A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347281B (zh) * 2017-01-23 2020-12-25 中国移动通信有限公司研究院 一种车辆通信方法、车辆通信装置和车辆
CN109345835A (zh) * 2018-09-05 2019-02-15 华北电力大学扬中智能电气研究中心 一种基于车车通信的前向预警方法及装置
CN110379189A (zh) * 2019-06-26 2019-10-25 东南大学 一种基于可见光通信的交通标志识别系统及识别方法
CN111856397B (zh) * 2020-06-29 2023-03-31 北京科技大学 一种室内多光源环境可见光定位系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419069A (zh) * 2008-12-09 2009-04-29 华东理工大学 基于可见光通信的车距测量方法
CN102013174A (zh) * 2010-11-18 2011-04-13 华东理工大学 基于光通信的车辆碰撞预警系统
CN102244635A (zh) * 2011-07-07 2011-11-16 清华大学 可见光通信系统及其方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331057A (ja) * 1995-03-27 1996-12-13 Sony Corp 光信号送信装置及び光信号受信装置並びに光信号送受信装置
DE10147274B4 (de) * 2001-09-26 2005-12-15 Kastriot Merlaku Modell-Fahrzeug-Rückfahr-Licht-System
JP2010034952A (ja) * 2008-07-30 2010-02-12 Toshiba Corp 可視光通信システム及び可視光通信方法
CN201784621U (zh) * 2010-05-18 2011-04-06 武汉高德红外股份有限公司 基于图像智能处理的被动红外视觉车辆辅助驾驶系统
CN110099460B (zh) * 2012-11-09 2023-06-23 交互数字专利控股公司 用于协调正交信道接入(coca)的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419069A (zh) * 2008-12-09 2009-04-29 华东理工大学 基于可见光通信的车距测量方法
CN102013174A (zh) * 2010-11-18 2011-04-13 华东理工大学 基于光通信的车辆碰撞预警系统
CN102244635A (zh) * 2011-07-07 2011-11-16 清华大学 可见光通信系统及其方法

Also Published As

Publication number Publication date
US10050706B2 (en) 2018-08-14
CN105099549B (zh) 2019-08-13
CN105099549A (zh) 2015-11-25
US10476593B2 (en) 2019-11-12
US20170047995A1 (en) 2017-02-16
US20180331758A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
CN101419069B (zh) 基于可见光通信的车距测量方法
CN104966415A (zh) 基于led可见光通信技术的车辆安全控制方法及系统
US20230082081A1 (en) Systems and methods for replicating vehicular illumination
CN107264385A (zh) 使用车辆与目标或物体通信的合作自适应照明系统
CN103522939B (zh) 一种多辅助功能智能雾灯及警示方法
WO2015165219A1 (zh) 一种基于可见光的通信方法及交通设备
CN103292819B (zh) 基于可见光通信的车辆导航系统
CN107031495A (zh) 车辆用灯及包括该车辆用灯的车辆
CN107889075A (zh) 一种基于 Li‑Fi 技术的车辆信息传输系统
CN205644975U (zh) 用于光学再现交通信息的系统装置
KR102110582B1 (ko) 가시광 통신을 이용한 전방 차량 팔로잉 장치
WO2019132526A1 (en) System and method for providing overhead camera-based precision localization for intelligent vehicles
CN104228678A (zh) 灯光切换提醒方法、装置及汽车
CN109935100A (zh) 对基础设施照明的车辆监测
Yeasmin et al. Traffic control management and road safety using vehicle to vehicle data transmission based on Li-Fi technology
CN110995347B (zh) 一种适合于道路交通安全中使用的led可见光通信系统
CN104008577A (zh) 一种基于可见光通信的路段收费系统
CN208477751U (zh) 一种夜间无交通信号灯交叉路口车辆自动预警系统
CN101847324A (zh) 一种红绿灯提醒装置
CN201449393U (zh) 一种汽车限速警示系统
CN108923856A (zh) 基于车载可见光通信的发射端led车灯自动控制装置
CN102185655A (zh) 以可见光为介质实现信息传输的方法及其装置
CN210899180U (zh) 一种前后车辆之间led无线光通信数据传输系统
CN205854058U (zh) 一种车载led通信和照明装置
CN110581734A (zh) 一种前后车辆之间led无线光通信数据传输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890483

Country of ref document: EP

Kind code of ref document: A1