WO2015163664A1 - Crystalline silicon wafer etching method and etching apparatus using silicon fluoride film, and solar cell manufacturing method and manufacturing apparatus using same - Google Patents

Crystalline silicon wafer etching method and etching apparatus using silicon fluoride film, and solar cell manufacturing method and manufacturing apparatus using same Download PDF

Info

Publication number
WO2015163664A1
WO2015163664A1 PCT/KR2015/003957 KR2015003957W WO2015163664A1 WO 2015163664 A1 WO2015163664 A1 WO 2015163664A1 KR 2015003957 W KR2015003957 W KR 2015003957W WO 2015163664 A1 WO2015163664 A1 WO 2015163664A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
crystalline silicon
silicon wafer
etching solution
steam
Prior art date
Application number
PCT/KR2015/003957
Other languages
French (fr)
Korean (ko)
Inventor
주민규
최장군
박민영
Original Assignee
주식회사 디씨티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 디씨티 filed Critical 주식회사 디씨티
Publication of WO2015163664A1 publication Critical patent/WO2015163664A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method and apparatus for manufacturing a solar cell including a crystalline silicon wafer etching method and an etching apparatus, and more specifically, nitric acid and hydrofluoric acid are generated as steam by using a microwave method, and crystalline silicon is generated through the generated steam.
  • Such a solar cell is a photoelectric conversion element that converts a light source into electrical energy.
  • electrons and holes are generated by a photoelectric effect, and impurities are doped with silicon. Due to the photovoltaic effect in the semiconductor, electrons and holes are separated into n-type and p-type silicon semiconductors, respectively. The separated electrons and holes are pulled toward the n-type silicon semiconductor and the p-type silicon semiconductor, respectively, and are collected and moved to the front electrode and the rear electrode bonded to the upper emitter layer and the lower substrate, respectively. do.
  • the most basic method is to maximize the absorption of light to generate a lot of electrons and holes, and to minimize the loss by reducing various defects generated inside the semiconductor of the solar cell.
  • One of the most basic methods of maximizing light absorption capacity is to improve the structure of the surface to which light is irradiated (texture).
  • the light absorption rate is higher than that of the smooth surface structure because the surface becomes rough as a plurality of protruding pyramid structures.
  • the pair of electrons and holes generated by the absorbed light is increased, thereby generating more electrical energy, and the conversion efficiency per unit area of the solar cell is increased, thereby making a highly efficient solar cell.
  • etching method for changing the surface structure of a silicon wafer which is a substrate of a solar cell
  • a method using plasma a method using photolithography, and a physical V-groove Etching methods and chemical etching methods.
  • the etching method using plasma is a method of etching a mask on which a pattern is formed on a silicon wafer. Therefore, an expensive vacuum device for forming a plasma is required.
  • Etching method using photolithography is a method of forming a desired surface structure by applying photoresist, covering pattern mask, and then isotropic isotropic etching. It is difficult to secure price competitiveness of solar cell because of complicated process and high cost. There is this.
  • the physical V-groove etching method can form the desired surface structure, but it takes a long time, and physically damages the surface of the solar cell, causing unnecessary resistance to increase, making it difficult to achieve high efficiency of the solar cell. There is a problem that cannot be applied.
  • Chemical etching can be largely divided into a method using an alkaline solution and an acid solution.
  • the method using a basic solution is mainly used for etching single-crystal silicon wafers, and an acid solution.
  • the method using is widely used for etching multi-crystal silicon wafers having two or more crystal directions.
  • etching is performed by contact with a silicon wafer through vaporization of a solution.
  • Techniques for forming polycrystalline silicon wafer surface structures have been developed.
  • Such a prior art is a method of contacting the silicon wafer by simply misting the etching solution contained in the bath (Bath) by any method of reaction heat with silicon (Si), heating by a heater, and vibration by an ultrasonic vibrator. The surface was etched through.
  • the conventional techniques have a problem that many etching solutions are wasted because the etching solution is put in a container and misted, and in order to optimize the etching surface and mass-produce the device, the amount of fuming vapor generated and the silicon wafer and There is a problem in that the contact speed of the control is impossible to increase the cost and productivity and quality of the raw materials.
  • Patent Document 0001 Korean Registered Patent Publication No. 10-0941331
  • Patent Document 0002 Solar Energy Materials & Solar Cells 107 (2012) 366-372
  • the present invention is to solve the above problems, by devising a generator using a microwave (Microwave) method to control the consumption of the etching solution to generate an etching vapor silicon fluoride film (SiF x on the surface of the substrate)
  • a microwave Microwave
  • a manufacturing method and a manufacturing apparatus using the same which can reduce manufacturing costs, increase productivity and quality, and minimize reflectance by forming a barrier and indirect etching through a silicon fluoride film gap.
  • a crystalline silicon wafer etching method using a silicon fluoride film according to an embodiment of the present invention is exposed to the dry surface of the crystalline silicon wafer from which the saw damage is removed;
  • An etching steam generation step in which the etching solution is vaporized by the microwave method and is generated as etching steam;
  • the etching step may include forming a silicon fluoride film on the surface of the crystalline silicon wafer through a gas phase oxidation reaction with nitric acid and a gas phase chemical reaction with hydrofluoric acid mixed in the etching solution; And etching gas is transferred to the surface of the crystalline silicon wafer through the pores of the silicon fluoride film to etch the surface of the crystalline silicon wafer.
  • the forming of the silicon fluoride film and the etching of the surface of the crystalline silicon wafer may be performed simultaneously.
  • a crystalline silicon wafer etching apparatus using a silicon fluoride film comprises a main body formed to have chemical resistance and heat resistance; Transfer means for transferring the crystalline silicon wafers from which the saw damage has been removed into the main body, and transferring the etched crystalline silicon wafer to the outside of the main body; And a steam generator installed at a periphery of the main body to adjust consumption of an etching solution for etching the surface of the crystalline silicon wafer, and to generate an etching vapor by vaporizing the etching solution in a microwave manner.
  • the steam generating unit the discharge vessel is formed to have a chemical resistance and heat resistance and the discharge port is formed to discharge the etch steam generated therein;
  • An etching solution container installed inside the discharge container and storing an etching solution;
  • a microwave generating means installed at a periphery of the etching solution container to vaporize the etching solution stored in the etching solution container in a microwave manner;
  • Etching solution input adjusting means installed between the outside of the discharge container and the etching solution container to control the input of the etching solution from the outside into the etching solution container;
  • a vapor pressure control unit installed in the discharge container to adjust the feed amount of the carrier gas to control the feed amount of the etch steam generated through the microwave method, and to control the feed rate of the etch steam by adjusting the exhaust pressure for fine adjustment of the feed amount. It comprises a means.
  • the body is characterized in that the water is filled for controlling the etching action of the etch steam transferred to the main body through the steam generating unit.
  • a solar cell manufacturing method comprises a saw damage removal step of removing the saw damage generated on the surface of the crystalline silicon wafer by a wire cut; An etch step of exposing the surface of the crystalline silicon wafer from which the sore damage is removed to dry conditions, vaporizing the etching solution using a microwave method to generate etching steam, and etching the surface of the crystalline silicon wafer with the generated etching vapor.
  • the etching step may include forming a silicon fluoride film on the surface of the crystalline silicon wafer through a gas phase oxidation reaction with nitric acid and a gas phase chemical reaction with hydrofluoric acid mixed in the etching solution; And etching gas is transferred to the surface of the crystalline silicon wafer through the pores of the silicon fluoride film to etch the surface of the crystalline silicon wafer.
  • the forming of the silicon fluoride film and the etching of the surface of the crystalline silicon wafer may be performed simultaneously.
  • Solar cell manufacturing apparatus is a saw damage removal unit for removing the saw damage generated on the surface of the crystalline silicon wafer by a wire cut;
  • the etching solution in which nitric acid and hydrofluoric acid is mixed is vaporized to generate etching steam, and the soak damage is removed by the saw damage removing unit using the generated etching steam to dry the surface of the dried crystalline silicon wafer.
  • An etching unit for etching A neutralizing unit for neutralizing an acidic material including silicon fluoride remaining on the surface of the crystalline silicon wafer etched by the etching unit; A doping unit for diffusing impurities to generate a photovoltaic effect on the surface of the crystalline silicon wafer transferred from the neutralizing unit; An etching unit for removing high concentration impurities on the surface of the crystalline silicon wafer generated during the doping process; An anti-reflection film forming unit which forms an anti-reflection film on the surface of the silicon wafer from which the impurities are removed to prevent reflection of sunlight and to protect the surface; And an electrode forming unit for forming a front electrode and a back electrode on the crystalline silicon wafer on which the anti-reflection film is formed.
  • the etching unit in the present invention the body formed to have a chemical resistance and heat resistance; Transfer means for transferring the crystalline silicon wafers from which the saw damage has been removed into the main body, and transferring the etched crystalline silicon wafer to the outside of the main body; And a steam generator installed at a periphery of the main body to adjust consumption of an etching solution for etching the surface of the crystalline silicon wafer, and to generate an etching vapor by vaporizing the etching solution in a microwave manner. do.
  • the steam generating unit the discharge vessel is formed to have a chemical resistance and heat resistance and the discharge port is formed to discharge the etch steam generated therein;
  • An etching solution container installed inside the discharge container and storing an etching solution;
  • a microwave generating means installed at a periphery of the etching solution container to vaporize the etching solution stored in the etching solution container in a microwave manner;
  • Etching solution input adjusting means installed between the outside of the discharge container and the etching solution container to control the input of the etching solution from the outside into the etching solution container;
  • a vapor pressure control unit installed in the discharge container to adjust the feed amount of the carrier gas to control the feed amount of the etch steam generated through the microwave method, and to control the feed rate of the etch steam by adjusting the exhaust pressure for fine adjustment of the feed amount. It comprises a means.
  • the body is characterized in that the water is filled for controlling the etching action of the etch steam transferred to the main body through the steam generating unit.
  • the etching solution is converted to steam by controlling the amount of the etching solution by the amount required for etching, it is possible to prevent much energy from being consumed when the etching solution is misted.
  • the process cost can be reduced, and it can be manufactured by the mass production type In-Line process.
  • the feed rate of etch steam By controlling the feed rate of etch steam directly, the result can be obtained with uniform quality and improve the productivity and economic efficiency. Can be.
  • the silicon fluoride film is formed on the surface of the crystalline silicon wafer by the gas phase oxidation reaction of the nitrate vapor mixed with the etching solution and the gas phase chemical reaction of the hydrofluoric acid vapor, the etching occurs indirectly through the pores of the silicon fluoride film.
  • a uniform nano-structured etching result is formed on the surface of the crystalline silicon wafer to significantly reduce the reflectivity of the crystalline silicon solar cell, thereby improving the conversion efficiency of the solar cell.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a solar cell using a silicon fluoride film according to an embodiment of the present invention.
  • FIG 3 is a graph showing the reflectivity of the silicon wafer etched according to the embodiment of the present invention.
  • FIG. 4 is a view showing a solar cell manufacturing apparatus using a silicon fluoride film according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an embodiment of an etching unit illustrated in FIG. 4.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a solar cell using a silicon fluoride film (SiF x Barrier) according to an embodiment of the present invention.
  • a solar cell manufacturing method includes a saw damage removal (SDR) process, a dry steam etching process, a neutralization process, a doping process, and an oxide film ( Phosphoric Silicate Glass Removal Process, Anti-Reflective Coating Formation Process and Metallization Process.
  • SDR saw damage removal
  • a dry steam etching process a dry steam etching process
  • a neutralization process a doping process
  • oxide film Phosphoric Silicate Glass Removal Process, Anti-Reflective Coating Formation Process and Metallization Process.
  • the texture process was performed simultaneously with the soak damage removal process, but in the present invention, the surface of the crystalline silicon wafer (hereinafter referred to as the "crystalline silicon substrate") is structured by dry vapor etching, so that the soy damage removal process and The texture process is divided into separate processes.
  • a SDR process is performed to remove damages formed on a crystalline silicon substrate by a wire cut with a crystalline silicon substrate for a solar cell finished with a wire cut to manufacture a solar cell. (S100).
  • the saw damage etching process may be used any of the existing processes, including the process of etching or removing the substrate surface using a chemical chemical polishing (Polishing).
  • the surface of the crystalline silicon substrate is kept dry, and the crystalline silicon substrate from which the sow damage is removed is placed in a dry vapor etching unit (to be described in detail later).
  • the dry steam etching unit when the crystalline silicon substrate is removed from the saw damage therein, using the microwave generated by the microwave generating means (to be described later) vaporize the etching solution by vaporizing the etching solution Silicon fluoride on the surface of the crystalline silicon substrate by the gas phase oxidation reaction of nitric acid (HNO 3 ) vapor and the gas phase chemical reaction of hydrofluoric acid (HF) vapor which are generated and exposed to the crystalline silicon substrate from which the sore damage is removed. A film (SiF x Barrier) is formed.
  • the etching vapor penetrates into the surface of the crystalline silicon substrate through the pores of the silicon fluoride film to indirectly etch the surface of the crystalline silicon substrate (S200).
  • the surface of the crystalline silicon substrate is formed on the surface of the crystalline silicon substrate after the silicon fluoride film is formed by the etching vapor by etching the surface of the crystalline silicon substrate or silicon fluoride film is formed and the surface of the crystalline silicon substrate by the etching steam The etching process may be performed at the same time.
  • an acidic substance containing silicon fluoride remaining on the surface of the crystalline silicon substrate after the etching process by using a low concentration (within 1%) of KOH, NaOH or NH 4 OH mixed solution, etc.
  • a neutralization process for neutralizing the process is performed (S300). In this case, the neutralization process is not necessarily performed, but is preferably performed for the performance of the crystalline silicon substrate and subsequent processes.
  • impurities of different types e.g., group 5 element or group 3 element
  • a doping process to diffuse is performed (S400).
  • an etching process for removing high concentration impurities and oxide films on the surface of the crystalline silicon substrate generated during the doping process and a high concentration of impurities are removed to prevent reflection of sunlight and protect the surface.
  • An anti-reflective film forming process for forming an anti-reflective coating (AR coating) and a metallization process for forming the front electrode and the rear electrode may be sequentially performed (S500).
  • Figure 3 is a graph showing the reflectivity of the crystalline silicon wafer etched according to an embodiment of the present invention.
  • the etching solution is vaporized using the microwave method to convert the etching solution into etching steam, and the etched silicon substrate is etched using the etching steam generated as described above, the surface of the crystalline silicon substrate is nano (Nano).
  • the unit has a etched concave-convex structure of micro units in the unit to form a structure that can minimize the reflectivity.
  • the crystalline silicon substrate (Bear Wafer of FIG. 3), which is used for manufacturing a solar cell, exhibits a high reflectivity of about 25.11%.
  • the crystalline silicon substrate used for solar cell manufacturing is a mixture of hydrofluoric acid (HF), nitric acid (HNO 3 ) and acetic acid (CH 3 COOH) or hydrofluoric acid (HF), nitric acid (HNO 3 ) and ultra pure water (Ultra Pure Water) Saw damage is removed by being immersed in the etched solution, but if the immersion time is unnecessarily increased, it is overetched and the reflectivity is very high. Therefore, only the proper etching is performed by analyzing the depth of soak damage of the crystalline silicon substrate.
  • the crystalline silicon substrate is immersed in the etching solution mixed with hydrofluoric acid, nitric acid and acetic acid, or hydrofluoric acid, nitric acid, and ultrapure water to remove soil damage, the reflectivity of the crystalline silicon substrate is lowered to approximately 21.96%.
  • the crystalline silicon substrate from which the saw damage is removed still has high reflectivity, there is a limit to the high efficiency of the solar cell. Therefore, in the present invention, by using a microwave method hydrofluoric acid (HF) and nitric acid (HNO 3 ) is a mixture of a solution having a ratio of 7: 3 and the like to make a vapor state after the sour damage generated by the etching steam Exposure etching is performed on the surface of the removed crystalline silicon substrate. Accordingly, as shown in FIG. 3, the reflectivity becomes very low to about 5.04%, and the solar cell of high efficiency can be manufactured by using the crystalline silicon substrate having such low reflectivity.
  • HF hydrofluoric acid
  • HNO 3 nitric acid
  • FIG. 4 is a view showing a solar cell manufacturing apparatus using a silicon fluoride film according to an embodiment of the present invention
  • Figure 5 is a view showing an embodiment of the etching unit shown in FIG.
  • a solar cell manufacturing apparatus using a silicon fluoride film according to an embodiment of the present invention, a sour damage removal unit 100, an etching unit 200, a neutralization unit 300, and a doping unit 400.
  • the saw damage removing unit 100 is used to remove the saw damage on the surface of the crystalline silicon substrate for solar cells finished with a wire cut, and the etching solution for removing the saw damage in a container formed to have chemical resistance and heat resistance. It may be configured to.
  • the etching unit 200 is an apparatus for etching the surface of the crystalline silicon substrate transferred from the saw damage removal unit 100 by the etching steam generated by the microwave method, the body having chemical resistance and heat resistance; Transfer means for transferring the crystalline silicon substrates from which the saw damage has been removed into the main body, and transferring the etched crystalline silicon substrate to the outside of the main body; And is installed in the periphery of the main body (that is, either side, including the inside or one of the upper and lower), the etching solution for etching the surface of the crystalline silicon substrate by vaporizing the etching solution in a microwave manner by controlling the consumption of the etching solution It consists of a steam generator 210 for generating steam.
  • the steam generating unit 210 is formed to have a chemical resistance and heat resistance and the discharge container 2102 is formed with a discharge port 2101 for discharging the etch steam generated therein;
  • An etching solution container 2104 installed inside the discharge container 2102 and storing an etching solution;
  • Microwave generation means (2106) installed at the periphery of the etching solution container (2104) to vaporize the etching solution stored in the etching solution container (2104) in a microwave manner;
  • Etching solution input adjusting means (2108) installed between the outside of the discharge container (2102) and the etching solution container (2104) to control the input of the etching solution from the outside to the etching solution container (2104);
  • It is configured to include a vapor pressure adjusting
  • the etching unit 200 vaporizes the etching solution in a microwave manner in the steam generator 210.
  • the steam generator 210 the consumption of the etching solution is converted to the etching steam in accordance with the etching solution input amount adjusted by the etching solution input control means 2108 is adjusted, the carrier controlled by the steam pressure control means 2110
  • the transfer amount of the etching steam and the feed rate of the etching steam are controlled according to the carrier gas injection amount and the exhaust pressure.
  • the etching steam is generated in the steam generating unit 210 as described above, the surface of the crystalline silicon substrate transferred into the main body of the etching unit 200 and the gas phase oxidation reaction by nitric acid mixed in the etching solution and
  • the silicon fluoride film is formed by the gas phase chemical reaction with hydrofluoric acid, and the silicon fluoride film is formed, the etching vapor penetrates into the surface of the crystalline silicon substrate through the pores of the silicon fluoride film to indirectly etch the surface of the crystalline silicon substrate.
  • the surface of the crystalline silicon substrate is formed on the surface of the crystalline silicon substrate after the silicon fluoride film is formed by the etching vapor by etching the surface of the crystalline silicon substrate or silicon fluoride film is formed and the surface of the crystalline silicon substrate by the etching steam Etching may occur simultaneously.
  • the main body is filled with water to control the etching action of the etching steam transferred into the main body through the steam generating unit 210.
  • the neutralization unit 300 is an acidic material containing silicon fluoride remaining on the surface of the crystalline silicon substrate etched by the etching unit 200 using a low concentration (within 1%) KOH, NaOH or NH 4 OH mixed solution, etc. Neutralize
  • the doping unit 400 diffuses impurities of another type (eg, a group 5 element or a group 3 element) to generate a photovoltaic effect on the surface of the crystalline silicon substrate transferred from the neutralization unit 300.
  • impurities of another type eg, a group 5 element or a group 3 element
  • the etching unit 500 removes high concentration impurities and oxide films on the surface of the crystalline silicon substrate generated during the doping process in the doping unit 400.
  • the anti-reflection film forming unit 600 forms an anti-reflection film that prevents reflection of sunlight and protects the surface of the crystalline silicon substrate from which the high concentration impurities and the oxide film are removed by the etching unit 500.
  • the electrode forming unit 700 forms a front electrode and a rear electrode on the crystalline silicon substrate on which the anti-reflection film is formed by the anti-reflection film forming unit 600.
  • the solar cell manufacturing apparatus having the above configuration is configured to enable an in-line process of mass production type.
  • the solar cell manufacturing apparatus using a silicon fluoride film according to an embodiment of the present invention is the above-described SO damage removal unit 100, etching unit 200, neutralization unit 300, doping unit 400 ),
  • a buffer space for exchanging the substrate between the loading unit and the outside of the atmospheric pressure state may further include a load lock unit (or load lock chamber) to alternate the vacuum or atmospheric state for the substrate exchange.
  • the solar cell manufacturing method and apparatus of the present invention described above converts an etching solution mixed with hydrofluoric acid and nitric acid to steam using a microwave method (ie, misting), so that much energy is consumed when the etching solution is misted. It is possible to prevent the process cost (process cost) can be reduced compared to the conventional solar cell manufacturing method using the silicon reaction heat as shown in Table 1, because it can be manufactured in a mass production type inline process can be produced in mass production type Compared to the conventional technology, which is not easy, productivity and economics may be improved, and in particular, economics may be improved by up to 55 times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a crystalline silicon wafer etching method and etching apparatus using a silicon fluoride film, and a solar cell manufacturing method and manufacturing apparatus using the same. The present invention comprises: an exposure step for exposing a surface of a crystalline silicon wafer, saw damage of which has been removed, in a dried state; an etching vapor generation step for generating etching vapor by evaporating an etching solution in a microwave scheme; and an etching step for etching the surface of the crystalline silicon wafer by the etching vapor.

Description

실리콘불화물 막을 이용한 결정질 실리콘 웨이퍼 식각방법 및 식각장치, 이를 이용한 태양전지 제조방법 및 제조장치Etching method and etching apparatus for crystalline silicon wafer using silicon fluoride film, manufacturing method and manufacturing apparatus for solar cell using same
본 발명은 결정질 실리콘 웨이퍼 식각방법 및 식각장치를 포함한 태양전지 제조방법 및 제조장치에 관한 것으로서, 보다 상세하게는 마이크로웨이브 방식을 이용하여 질산과 불산을 증기로 발생시키고, 발생된 증기를 통하여 결정질 실리콘 기판에 실리콘불화물 막(SiFx Barrier)을 형성해 식각함으로써 반사율을 낮추고, 생산성 및 태양전지의 변환효율을 향상시킬 수 있는 결정질 실리콘 웨이퍼의 식각방법 및 식각장치와 이를 이용한 태양전지 제조방법 및 제조장치에 관한 것이다.The present invention relates to a method and apparatus for manufacturing a solar cell including a crystalline silicon wafer etching method and an etching apparatus, and more specifically, nitric acid and hydrofluoric acid are generated as steam by using a microwave method, and crystalline silicon is generated through the generated steam. Forming and etching silicon fluoride film (SiF x Barrier) on the substrate to reduce the reflectance, improve the productivity and the conversion efficiency of the solar cell etching method and etching apparatus of the crystalline silicon wafer and solar cell manufacturing method and manufacturing apparatus using the same It is about.
지속적인 산업 발전으로 인해 화석 연료의 고갈 및 온실 가스의 배출 때문에 태양에너지, 풍력에너지, 및 조력에너지와 같은 대체에너지의 개발 및 연구가 지속적으로 수행되고 있고, 이 중 태양에너지는 사실상 무한정 얻을 수 있다는 이점 때문에 태양에너지를 얻을 수 있는 태양전지에 대한 연구에 관심이 집중되고 있다.Due to the continuous industrial development, the development and research of alternative energy such as solar energy, wind energy, and tidal energy are continuously conducted due to the depletion of fossil fuel and the emission of greenhouse gas, among which the solar energy can be virtually infinite. Therefore, attention is focused on research on solar cells that can obtain solar energy.
이러한, 태양전지는 광원을 전기에너지로 변환하는 광-전 변환소자로서, 태양광이 입사되면 광전효과(Photoelectric effect)에 의해 전자(electron)와 정공(hole)이 생성되고, 불순물이 도핑된 실리콘 반도체에서 광기전력효과(Photovoltaic effect)에 의해 전자와 정공이 각각 n형 실리콘 반도체와 p형 실리콘 반도체로 분리가 이루어지게 된다. 이렇게 분리된 전자와 정공은 각각 n형 실리콘 반도체 및 p형 실리콘 반도체 쪽으로 끌어 당겨져 각각 에미터층 상부 및 기판 하부와 접합된 전면전극 및 후면전극으로 이동 수집되며, 이 전극들을 전선으로 연결하면 전류가 흐르게 된다.Such a solar cell is a photoelectric conversion element that converts a light source into electrical energy. When solar light is incident, electrons and holes are generated by a photoelectric effect, and impurities are doped with silicon. Due to the photovoltaic effect in the semiconductor, electrons and holes are separated into n-type and p-type silicon semiconductors, respectively. The separated electrons and holes are pulled toward the n-type silicon semiconductor and the p-type silicon semiconductor, respectively, and are collected and moved to the front electrode and the rear electrode bonded to the upper emitter layer and the lower substrate, respectively. do.
태양전지의 효율을 높이는 방법으로는 가장 기본적으로 빛의 흡수 능력을 극대화시켜 전자와 정공을 많이 생성시키는 방법과 태양전지 반도체 내부에서 발생되는 여러가지 결함을 줄여 손실을 최소화시키는 방법, 전자-정공의 수집단계에서 전극의 저항을 최소화하는 방법 등 여러가지 방법들이 있다. 이 중 가장 기본이 되는 빛의 흡수능력을 극대화시키는 방법 중 하나로는 빛이 조사되는 표면의 구조를 개선시키는 방법(texture; 텍스쳐)이 있다.In order to increase the efficiency of the solar cell, the most basic method is to maximize the absorption of light to generate a lot of electrons and holes, and to minimize the loss by reducing various defects generated inside the semiconductor of the solar cell. There are several methods, such as minimizing the resistance of the electrode in the step. One of the most basic methods of maximizing light absorption capacity is to improve the structure of the surface to which light is irradiated (texture).
이렇게 빛이 조사되는 표면 구조를 개선하게 되면, 표면이 다수의 돌출된 피라미드(Pyramid) 구조처럼 거칠어지기 때문에 매끄러운 표면 구조보다 빛의 흡수율이 높아지게 된다. 이로 인해, 흡수된 빛에 의해 생성되는 전자와 정공의 쌍이 증가하게 되므로 더 많은 전기에너지의 생성이 가능하게 되고, 태양전지의 단위면적당 변환효율이 증가하게 되어 고효율의 태양전지가 만들어지게 된다.When the surface structure to which light is irradiated is improved, the light absorption rate is higher than that of the smooth surface structure because the surface becomes rough as a plurality of protruding pyramid structures. As a result, the pair of electrons and holes generated by the absorbed light is increased, thereby generating more electrical energy, and the conversion efficiency per unit area of the solar cell is increased, thereby making a highly efficient solar cell.
이와 같이 태양전지의 기판인 실리콘 웨이퍼(Silicon Wafer)의 표면 구조를 변화시키는 식각방법으로는 플라즈마(Plasma)를 이용하는 방법, 포토리소그라피(Photolithography)를 이용한 방법, 물리적인 V자 홈(V-Grooving) 식각방법 및 화학적 식각 방법 등이 있다.As an etching method for changing the surface structure of a silicon wafer, which is a substrate of a solar cell, a method using plasma, a method using photolithography, and a physical V-groove Etching methods and chemical etching methods.
플라즈마를 이용한 식각 방법은 패턴이 형성되어 있는 마스크를 실리콘 웨이퍼 위에 올려 식각하는 방법으로 우선 플라즈마를 형성하기 위한 고가의 진공장비가 필요하기 때문에 상업적으로 이용 가치가 매우 낮다.The etching method using plasma is a method of etching a mask on which a pattern is formed on a silicon wafer. Therefore, an expensive vacuum device for forming a plasma is required.
포토리소그라피를 이용한 식각 방법은 포토레지스트를 도포하고 패턴 마스크를 씌워 패턴을 형성한 후 이·등방성 식각을 통해 원하는 표면구조를 만드는 방법으로 공정이 복잡하고 공정비용이 비싸 태양전지의 가격 경쟁력 확보에 어려움이 있다.Etching method using photolithography is a method of forming a desired surface structure by applying photoresist, covering pattern mask, and then isotropic isotropic etching. It is difficult to secure price competitiveness of solar cell because of complicated process and high cost. There is this.
물리적인 V자 홈 식각 방법은 원하는 표면구조는 형성할 수 있으나, 작업시간이 오래 걸리고, 태양전지의 표면에 물리적인 손상을 입혀 내부에 불필요한 저항이 증가하게 되어 태양전지의 고효율화를 이루기 어려우며, 상업적으로 적용할 수 없는 문제가 있다.The physical V-groove etching method can form the desired surface structure, but it takes a long time, and physically damages the surface of the solar cell, causing unnecessary resistance to increase, making it difficult to achieve high efficiency of the solar cell. There is a problem that cannot be applied.
화학적 식각 방법은 크게 염기성(Alkaline) 용액을 이용하는 방법과 산성(Acid) 용액을 이용하는 방법으로 나눌 수 있으며, 염기성 용액을 이용하는 방법은 주로 단결정(Single-Crystalline) 실리콘 웨이퍼의 식각에 많이 사용되고, 산성 용액을 이용한 방법은 결정방향이 2개 이상인 다결정(Multi-Crystalline) 실리콘 웨이퍼의 식각에 많이 사용된다.Chemical etching can be largely divided into a method using an alkaline solution and an acid solution. The method using a basic solution is mainly used for etching single-crystal silicon wafers, and an acid solution. The method using is widely used for etching multi-crystal silicon wafers having two or more crystal directions.
단결정 실리콘 웨이퍼의 경우 한 방향으로 결정이 성장하기 때문에 균일하게 염기성 용액으로 이방성(anisotropic) 식각이 가능하여 원하는 표면 구조를 쉽게 얻을 수 있으나, 다결정 실리콘 웨이퍼의 경우에는 결정방향이 다양하기 때문에 염기성 용액으로 이방성 식각을 할 경우 결정방향에 다라 식각 깊이가 불규칙하게 되어 태양전지의 변환효율의 감소를 가져다 주므로 원하는 표면 구조를 얻기가 매우 어려워 결정방향과 상관없는 등방성(isotropic) 식각이 되는 산성 용액을 이용한 식각 방법들이 개발되었으나, 이 또한 충분히 낮은 반사도를 가지는 표면 구조를 형성하기 어려운 문제가 있다.In the case of single crystal silicon wafers, crystals grow in one direction, so that anisotropic etching is possible with a basic solution uniformly, so that the desired surface structure can be easily obtained. In the case of anisotropic etching, the etching depth becomes irregular depending on the crystal direction, which reduces the conversion efficiency of the solar cell. Therefore, it is very difficult to obtain the desired surface structure, and thus etching using an acid solution which is anisotropic etching irrespective of the crystal direction. Although methods have been developed, this also has a problem that it is difficult to form a surface structure with sufficiently low reflectivity.
이러한 문제점을 해결하기 위해 한국 등록특허공보 제10-0941331호 및 Solar Energy Materials & Solar Cells 107 (2012) 366-372에 기술된 바와 같이 용액의 연무화(vapor)를 통해 실리콘 웨이퍼와의 접촉으로 식각되도록 하는 다결정 실리콘 웨이퍼 표면 구조를 형성하는 기술이 개발되었다.To solve this problem, as described in Korean Patent Publication No. 10-0941331 and Solar Energy Materials & Solar Cells 107 (2012) 366-372, etching is performed by contact with a silicon wafer through vaporization of a solution. Techniques for forming polycrystalline silicon wafer surface structures have been developed.
이와 같은 종래 기술은 실리콘(Si)과의 반응열, 히터에 의한 가열 및 초음파 진동자에 의해 진동 중 어느 하나의 방법으로 용기(Bath)에 담긴 식각 용액(Acid Etching)을 단순 연무화시켜 실리콘 웨이퍼의 접촉을 통해 표면을 식각하였다. 그러나, 종래의 기술들은 식각 용액을 용기에 담아서 연무화시키기 때문에 많은 식각 용액이 사용되어 낭비되는 문제점이 있으며, 식각표면의 최적화와 양산을 위한 장치 구성에 있어 연무화 증기의 발생량 조절 및 실리콘 웨이퍼와의 접촉 속도 조절이 불가능하여 원재료의 비용 증가와 생산성 및 품질이 저하되는 문제가 있다.Such a prior art is a method of contacting the silicon wafer by simply misting the etching solution contained in the bath (Bath) by any method of reaction heat with silicon (Si), heating by a heater, and vibration by an ultrasonic vibrator. The surface was etched through. However, the conventional techniques have a problem that many etching solutions are wasted because the etching solution is put in a container and misted, and in order to optimize the etching surface and mass-produce the device, the amount of fuming vapor generated and the silicon wafer and There is a problem in that the contact speed of the control is impossible to increase the cost and productivity and quality of the raw materials.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 0001) 한국 등록특허공보 제10-0941331호 (Patent Document 0001) Korean Registered Patent Publication No. 10-0941331
(특허문헌 0002) Solar Energy Materials & Solar Cells 107 (2012) 366-372 (Patent Document 0002) Solar Energy Materials & Solar Cells 107 (2012) 366-372
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 식각용액의 소비량 조절이 가능하도록 마이크로웨이브(Microwave) 방식을 이용한 발생 장치를 고안하여 식각 증기를 발생시켜 기판 표면에 실리콘불화물 막(SiFx Barrier)을 형성시키고, 실리콘불화물 막 공극을 통해 간접 식각함으로써 제조비용을 줄이고, 생산성 및 품질은 높이며, 반사율을 최소화할 수 있는 결정질 실리콘 태양전지 식각방법, 이를 이용한 제조방법 및 제조장치를 제공하는 것을 목적으로 한다.Accordingly, the present invention is to solve the above problems, by devising a generator using a microwave (Microwave) method to control the consumption of the etching solution to generate an etching vapor silicon fluoride film (SiF x on the surface of the substrate) To provide a crystalline silicon solar cell etching method, a manufacturing method and a manufacturing apparatus using the same, which can reduce manufacturing costs, increase productivity and quality, and minimize reflectance by forming a barrier and indirect etching through a silicon fluoride film gap. The purpose.
상술한 목적을 이루기 위해, 본 발명의 실시 예에 따른 실리콘불화물 막을 이용한 결정질 실리콘 웨이퍼 식각방법은 소우 데미지가 제거된 결정질 실리콘 웨이퍼의 표면이 건조된 상태로 노출되는 노출 단계; 마이크로웨이브 방식에 의해 식각용액이 증기화되어 식각 증기로 발생되는 식각 증기 발생 단계; 및 상기 식각 증기에 의해 상기 결정질 실리콘 웨이퍼의 표면이 식각되는 식각 단계를 포함한다.In order to achieve the above object, a crystalline silicon wafer etching method using a silicon fluoride film according to an embodiment of the present invention is exposed to the dry surface of the crystalline silicon wafer from which the saw damage is removed; An etching steam generation step in which the etching solution is vaporized by the microwave method and is generated as etching steam; And an etching step of etching the surface of the crystalline silicon wafer by the etching vapor.
본 발명에서 상기 식각 단계는, 상기 식각용액에 혼합되어 있는 질산에 의한 기상 산화반응과 불산에 의한 기상 화학반응을 통해 상기 결정질 실리콘 웨이퍼의 표면에 실리콘불화물 막이 형성되는 단계; 및 식각 증기가 상기 실리콘불화물 막의 공극을 통해 상기 결정질 실리콘 웨이퍼의 표면에 전달되어 상기 결정질 실리콘 웨이퍼의 표면이 식각되는 단계를 포함하는 것을 특징으로 한다.In the present invention, the etching step may include forming a silicon fluoride film on the surface of the crystalline silicon wafer through a gas phase oxidation reaction with nitric acid and a gas phase chemical reaction with hydrofluoric acid mixed in the etching solution; And etching gas is transferred to the surface of the crystalline silicon wafer through the pores of the silicon fluoride film to etch the surface of the crystalline silicon wafer.
본 발명에서 상기 실리콘불화물 막이 형성되는 단계와 결정질 실리콘 웨이퍼의 표면이 식각되는 단계는 동시에 진행되는 것을 특징으로 한다.In the present invention, the forming of the silicon fluoride film and the etching of the surface of the crystalline silicon wafer may be performed simultaneously.
본 발명의 실시 예에 따른 실리콘불화물 막을 이용한 결정질 실리콘 웨이퍼 식각장치는 내화학성 및 내열성을 갖도록 형성된 본체; 상기 본체 내부로 소우 데미지가 제거된 결정질 실리콘 웨이퍼들을 전달하고, 식각이 이루어진 결정질 실리콘 웨이퍼를 상기 본체 외부로 전달하는 이송수단; 및 상기 본체의 주변부에 설치되고, 상기 결정질 실리콘 웨이퍼의 표면을 식각하기 위한 식각용액의 소비량을 조절하며, 마이크로웨이브 방식으로 식각용액을 증기화시켜 식각 증기를 발생시키는 증기 발생부를 포함한다.A crystalline silicon wafer etching apparatus using a silicon fluoride film according to an embodiment of the present invention comprises a main body formed to have chemical resistance and heat resistance; Transfer means for transferring the crystalline silicon wafers from which the saw damage has been removed into the main body, and transferring the etched crystalline silicon wafer to the outside of the main body; And a steam generator installed at a periphery of the main body to adjust consumption of an etching solution for etching the surface of the crystalline silicon wafer, and to generate an etching vapor by vaporizing the etching solution in a microwave manner.
본 발명에서 상기 증기 발생부는, 내화학성 및 내열성을 가지도록 형성되고 내부에서 생성된 식각 증기가 토출되는 토출구가 형성된 토출용기; 상기 토출용기 내부에 설치되고, 식각용액이 저장된 식각용액용기; 상기 식각용액용기의 주변부에 설치되어 상기 식각용액용기에 저장된 식각용액을 마이크로웨이브 방식으로 증기화시키는 마이크로웨이브 발생수단; 상기 토출용기의 외부와 식각용액용기 사이에 설치되어 외부로부터 상기 식각용액용기로의 식각용액 투입을 조절하는 식각용액 투입 조절수단; 및 상기 토출용기에 설치되어 캐리어 가스의 투입량을 조절하여 마이크로웨이브 방식을 통해 생성된 식각 증기의 이송량을 조절하고, 이송량의 미세 조절을 위해 배기 압력을 조절하여 식각 증기의 이송속도를 조절하는 증기압 조절수단을 포함하는 것을 특징으로 한다.In the present invention, the steam generating unit, the discharge vessel is formed to have a chemical resistance and heat resistance and the discharge port is formed to discharge the etch steam generated therein; An etching solution container installed inside the discharge container and storing an etching solution; A microwave generating means installed at a periphery of the etching solution container to vaporize the etching solution stored in the etching solution container in a microwave manner; Etching solution input adjusting means installed between the outside of the discharge container and the etching solution container to control the input of the etching solution from the outside into the etching solution container; And a vapor pressure control unit installed in the discharge container to adjust the feed amount of the carrier gas to control the feed amount of the etch steam generated through the microwave method, and to control the feed rate of the etch steam by adjusting the exhaust pressure for fine adjustment of the feed amount. It comprises a means.
본 발명에서 상기 본체에는 증기 발생부를 통해 본체로 이송된 식각 증기의 식각 작용 제어를 위해 물이 채워지는 것을 특징으로 한다.In the present invention, the body is characterized in that the water is filled for controlling the etching action of the etch steam transferred to the main body through the steam generating unit.
본 발명의 실시 예에 따른 태양전지 제조방법은 와이어 컷에 의해 결정질 실리콘 웨이퍼의 표면에 생성된 소우 데미지를 제거시키는 소우 데미지 제거 단계; 소우 데미지가 제거된 결정질 실리콘 웨이퍼 표면을 건조한 조건에 노출시키고, 마이크로웨이브 방식을 이용하여 식각용액을 증기화시켜 식각 증기를 발생시키며, 발생된 식각 증기로 상기 결정질 실리콘 웨이퍼의 표면을 식각시키는 식각 단계; 식각 공정 후 결정질 실리콘 웨이퍼의 표면에 잔류하는 불화규소를 포함한 산성 물질을 중화시키는 중화공정 단계; 상기 결정질 실리콘 웨이퍼 표면에 광기전력효과를 발생시키기 위해 불순물을 확산시키는 도핑 공정 단계; 상기 도핑 공정 시 발생한 결정질 실리콘 웨이퍼 표면 상의 고농도 불순물을 제거하기 위한 에칭 단계; 및 고농도 불순물이 제거된 결정질 실리콘 웨이퍼에 반사 방지막을 형성하는 반사 방지막 형성 단계; 및 반사 방지막이 형성된 결정질 실리콘 웨이퍼에 전면전극과 후면전극을 형성하는 전극 형성 단계를 포함한다.A solar cell manufacturing method according to an embodiment of the present invention comprises a saw damage removal step of removing the saw damage generated on the surface of the crystalline silicon wafer by a wire cut; An etch step of exposing the surface of the crystalline silicon wafer from which the sore damage is removed to dry conditions, vaporizing the etching solution using a microwave method to generate etching steam, and etching the surface of the crystalline silicon wafer with the generated etching vapor. ; A neutralization step of neutralizing an acidic material including silicon fluoride remaining on the surface of the crystalline silicon wafer after the etching process; A doping process step of diffusing an impurity to generate a photovoltaic effect on the surface of the crystalline silicon wafer; An etching step for removing high concentration impurities on the surface of the crystalline silicon wafer generated during the doping process; And forming an anti-reflection film on the crystalline silicon wafer from which the high concentration of impurities have been removed. And an electrode forming step of forming a front electrode and a back electrode on the crystalline silicon wafer on which the anti-reflection film is formed.
본 발명에서 상기 식각 단계는, 상기 식각용액에 혼합되어 있는 질산에 의한 기상 산화반응과 불산에 의한 기상 화학반응을 통해 상기 결정질 실리콘 웨이퍼의 표면에 실리콘불화물 막이 형성되는 단계; 및 식각 증기가 상기 실리콘불화물 막의 공극을 통해 상기 결정질 실리콘 웨이퍼의 표면에 전달되어 상기 결정질 실리콘 웨이퍼의 표면이 식각되는 단계를 포함하는 것을 특징으로 한다.In the present invention, the etching step may include forming a silicon fluoride film on the surface of the crystalline silicon wafer through a gas phase oxidation reaction with nitric acid and a gas phase chemical reaction with hydrofluoric acid mixed in the etching solution; And etching gas is transferred to the surface of the crystalline silicon wafer through the pores of the silicon fluoride film to etch the surface of the crystalline silicon wafer.
본 발명에서 상기 실리콘불화물 막이 형성되는 단계와 결정질 실리콘 웨이퍼의 표면이 식각되는 단계는 동시에 진행되는 것을 특징으로 한다.In the present invention, the forming of the silicon fluoride film and the etching of the surface of the crystalline silicon wafer may be performed simultaneously.
본 발명의 실시 예에 따른 태양전지 제조장치는 와이어 컷에 의해 결정질 실리콘 웨이퍼 표면에 생성된 소우 데미지를 제거시키는 소우 데미지 제거 유닛; 마이크로웨이브 방식을 이용하여 질산과 불산이 혼합되어 있는 식각용액을 증기화시켜 식각 증기를 발생시키고, 발생된 식각 증기로 상기 소우 데미지 제거 유닛에 의해 소우 데미지가 제거되어 건조된 결정질 실리콘 웨이퍼의 표면을 식각시키는 식각 유닛; 식각 유닛에 의해 식각된 결정질 실리콘 웨이퍼의 표면에 잔류하는 불화규소를 포함한 산성 물질을 중화시키는 중화 유닛; 중화 유닛으로부터 전달된 결정질 실리콘 웨이퍼 표면에 광기전력효과를 발생시키기 위해 불순물을 확산시키는 도핑 유닛; 상기 도핑 공정 시 발생한 결정질 실리콘 웨이퍼 표면 상의 고농도 불순물을 제거하기 위한 에칭 유닛; 상기 불순물이 제거된 실리콘 웨이퍼의 표면에 태양광의 반사를 막고 표면을 보호하기 위한 반사 방지막을 형성하는 반사 방지막 형성 유닛; 및 상기 반사 방지막이 형성된 결정질 실리콘 웨이퍼에 전면전극과 후면전극을 형성하는 전극 형성 유닛을 포함한다.Solar cell manufacturing apparatus according to an embodiment of the present invention is a saw damage removal unit for removing the saw damage generated on the surface of the crystalline silicon wafer by a wire cut; By using the microwave method, the etching solution in which nitric acid and hydrofluoric acid is mixed is vaporized to generate etching steam, and the soak damage is removed by the saw damage removing unit using the generated etching steam to dry the surface of the dried crystalline silicon wafer. An etching unit for etching; A neutralizing unit for neutralizing an acidic material including silicon fluoride remaining on the surface of the crystalline silicon wafer etched by the etching unit; A doping unit for diffusing impurities to generate a photovoltaic effect on the surface of the crystalline silicon wafer transferred from the neutralizing unit; An etching unit for removing high concentration impurities on the surface of the crystalline silicon wafer generated during the doping process; An anti-reflection film forming unit which forms an anti-reflection film on the surface of the silicon wafer from which the impurities are removed to prevent reflection of sunlight and to protect the surface; And an electrode forming unit for forming a front electrode and a back electrode on the crystalline silicon wafer on which the anti-reflection film is formed.
본 발명에서 상기 식각 유닛은, 내화학성 및 내열성을 갖도록 형성된 본체; 상기 본체 내부로 소우 데미지가 제거된 결정질 실리콘 웨이퍼들을 전달하고, 식각이 이루어진 결정질 실리콘 웨이퍼를 상기 본체 외부로 전달하는 이송수단; 및 상기 본체의 주변부에 설치되고, 상기 결정질 실리콘 웨이퍼의 표면을 식각하기 위한 식각용액의 소비량을 조절하며, 마이크로웨이브 방식으로 식각용액을 증기화시켜 식각 증기를 발생시키는 증기 발생부를 포함하는 것을 특징으로 한다.The etching unit in the present invention, the body formed to have a chemical resistance and heat resistance; Transfer means for transferring the crystalline silicon wafers from which the saw damage has been removed into the main body, and transferring the etched crystalline silicon wafer to the outside of the main body; And a steam generator installed at a periphery of the main body to adjust consumption of an etching solution for etching the surface of the crystalline silicon wafer, and to generate an etching vapor by vaporizing the etching solution in a microwave manner. do.
본 발명에서 상기 증기 발생부는, 내화학성 및 내열성을 가지도록 형성되고 내부에서 생성된 식각 증기가 토출되는 토출구가 형성된 토출용기; 상기 토출용기 내부에 설치되고, 식각용액이 저장된 식각용액용기; 상기 식각용액용기의 주변부에 설치되어 상기 식각용액용기에 저장된 식각용액을 마이크로웨이브 방식으로 증기화시키는 마이크로웨이브 발생수단; 상기 토출용기의 외부와 식각용액용기 사이에 설치되어 외부로부터 상기 식각용액용기로의 식각용액 투입을 조절하는 식각용액 투입 조절수단; 및 상기 토출용기에 설치되어 캐리어 가스의 투입량을 조절하여 마이크로웨이브 방식을 통해 생성된 식각 증기의 이송량을 조절하고, 이송량의 미세 조절을 위해 배기 압력을 조절하여 식각 증기의 이송속도를 조절하는 증기압 조절수단을 포함하는 것을 특징으로 한다.In the present invention, the steam generating unit, the discharge vessel is formed to have a chemical resistance and heat resistance and the discharge port is formed to discharge the etch steam generated therein; An etching solution container installed inside the discharge container and storing an etching solution; A microwave generating means installed at a periphery of the etching solution container to vaporize the etching solution stored in the etching solution container in a microwave manner; Etching solution input adjusting means installed between the outside of the discharge container and the etching solution container to control the input of the etching solution from the outside into the etching solution container; And a vapor pressure control unit installed in the discharge container to adjust the feed amount of the carrier gas to control the feed amount of the etch steam generated through the microwave method, and to control the feed rate of the etch steam by adjusting the exhaust pressure for fine adjustment of the feed amount. It comprises a means.
본 발명에서 상기 본체에는 증기 발생부를 통해 본체로 이송된 식각 증기의 식각 작용 제어를 위해 물이 채워지는 것을 특징으로 한다.In the present invention, the body is characterized in that the water is filled for controlling the etching action of the etch steam transferred to the main body through the steam generating unit.
상술한 바와 같이 본 발명은 마이크로웨이브 방식을 이용하여 식각용액을 식각에 필요한 양만큼 조절하여 증기로 변환(즉, 연무화)하기 때문에 식각용액의 연무화 시 많은 에너지가 소모되는 것을 방지할 수 있어 종래에 비해 공정 비용을 줄일 수 있고, 양산타입의 인라인(In-Line) 공정으로 제작이 가능하며, 식각 증기의 이송속도를 직접 제어함으로써 균일한 품질의 결과물을 얻을 수 있고 생산성 및 경제성을 향상시킬 수 있다.As described above, according to the present invention, since the etching solution is converted to steam by controlling the amount of the etching solution by the amount required for etching, it is possible to prevent much energy from being consumed when the etching solution is misted. Compared with the conventional method, the process cost can be reduced, and it can be manufactured by the mass production type In-Line process. By controlling the feed rate of etch steam directly, the result can be obtained with uniform quality and improve the productivity and economic efficiency. Can be.
또한, 본 발명은 식각용액에 혼합되어 있는 질산 증기의 기상 산화반응과 불산 증기의 기상 화학반응에 의해 결정질 실리콘 웨이퍼의 표면에 실리콘불화물 막이 형성되고, 실리콘불화물 막의 공극을 통해 간접적으로 식각이 일어나기 때문에 결정질 실리콘 웨이퍼의 표면에 균일한 나노 구조의 식각 결과물이 형성되어 결정질 실리콘 태양전지의 반사율을 대폭 줄일 수 있으며, 이를 통해 태양전지의 변환효율을 향상시킬 수 있다.In addition, since the silicon fluoride film is formed on the surface of the crystalline silicon wafer by the gas phase oxidation reaction of the nitrate vapor mixed with the etching solution and the gas phase chemical reaction of the hydrofluoric acid vapor, the etching occurs indirectly through the pores of the silicon fluoride film. A uniform nano-structured etching result is formed on the surface of the crystalline silicon wafer to significantly reduce the reflectivity of the crystalline silicon solar cell, thereby improving the conversion efficiency of the solar cell.
도 1은 본 발명의 실시 예에 따른 실리콘불화물 막을 이용한 태양전지 제조방법을 나타내는 흐름도이다.1 is a flowchart illustrating a method of manufacturing a solar cell using a silicon fluoride film according to an embodiment of the present invention.
도 2는 본 발명에 따라 식각된 실리콘 웨이퍼의 표면을 SEM 촬영한 사진이다.2 is a SEM photograph of the surface of the silicon wafer etched according to the present invention.
도 3은 본 발명의 실시 예에 따라 식각된 실리콘 웨이퍼의 반사도를 나타내는 그래프이다.3 is a graph showing the reflectivity of the silicon wafer etched according to the embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 실리콘불화물 막을 이용한 태양전지 제조장치를 나타내는 도면이다.4 is a view showing a solar cell manufacturing apparatus using a silicon fluoride film according to an embodiment of the present invention.
도 5는 도 4에 도시된 식각 유닛의 일 실시 예를 나타내는 도면이다.FIG. 5 is a diagram illustrating an embodiment of an etching unit illustrated in FIG. 4.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있는 바람직한 실시 예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시 예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. However, in describing in detail the operating principle of the preferred embodiment of the present invention, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다.In addition, the same reference numerals are used for parts having similar functions and functions throughout the drawings.
덧붙여, 명세서 전체에서 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때 이는 직접적으로 연결되어 있는 경우 뿐만 아니라 그 중간에 다른 구성요소를 사이에 두고 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, when a part of the specification is said to be 'connected' to another part, this includes not only the case in which it is directly connected, but also indirectly connected between other components in between. In addition, the term 'comprising' a certain component means that the component may further include other components, except for the case where there is no contrary description.
도 1은 본 발명의 실시 예에 따른 실리콘불화물 막(SiFx Barrier)을 이용한 태양전지 제조방법을 나타내는 흐름도이다. 1 is a flowchart illustrating a method of manufacturing a solar cell using a silicon fluoride film (SiF x Barrier) according to an embodiment of the present invention.
도 1에 도시된 바와 같이 본 발명의 실시 예에 따른 태양전지 제조방법은 소우 데미지 제거(Saw Damage Removal; SDR) 공정, 건식 증기 식각(Texture) 공정, 중화 공정, 도핑(Doping) 공정, 산화막(Phosphoric Silicate Glass) 제거 공정, 반사 방지막(Anti-Reflective Coating) 형성 공정 및 금속화(Metallization) 처리 공정으로 이루어진다.As shown in FIG. 1, a solar cell manufacturing method according to an exemplary embodiment of the present invention includes a saw damage removal (SDR) process, a dry steam etching process, a neutralization process, a doping process, and an oxide film ( Phosphoric Silicate Glass Removal Process, Anti-Reflective Coating Formation Process and Metallization Process.
종래에는 텍스쳐 공정이 소우 데미지 제거 공정과 동시에 이루어졌으나, 본 발명에서는 건식 증기 식각 방법으로 결정질 실리콘 웨이퍼(이하에서는 "결정질 실리콘 기판"이라 함)의 표면을 구조화(Texture)시키기 때문에 소우 데미지 제거 공정과 텍스쳐 공정은 별도의 공정으로 나누어져 이루어진다.Conventionally, the texture process was performed simultaneously with the soak damage removal process, but in the present invention, the surface of the crystalline silicon wafer (hereinafter referred to as the "crystalline silicon substrate") is structured by dry vapor etching, so that the soy damage removal process and The texture process is divided into separate processes.
먼저, 본 발명에서는 태양전지를 제조하기 위해 와이어 컷(Wire Cut)으로 마감된 태양전지용 결정질 실리콘 기판을 가지고 와이어 컷에 의해 결정질 실리콘 기판에 형성된 손상부위를 없애는 소우 데미지 제거(SDR) 공정을 수행한다(S100).First, in the present invention, a SDR process is performed to remove damages formed on a crystalline silicon substrate by a wire cut with a crystalline silicon substrate for a solar cell finished with a wire cut to manufacture a solar cell. (S100).
다시 말해, 결정질 실리콘 잉곳(Ingot)에서 기판으로 제작 시 발생한 손상을 제거하기 위해 소우 데미지 제거 공정이 필요하며, 이 경우 소우 데미지 에칭(Saw Damage Etching)을 함으로써 기판 제작 시 생성된 데미지가 제거된다. 이때, 소우 데미지 에칭 공정은 케미컬을 사용하여 기판 표면을 에칭하거나 물리 화학적으로 연마(Polishing)하여 제거시키는 공정을 포함하여 기존에 사용되는 공정 중 어떠한 공정이 사용되더라도 무방하다.In other words, in order to remove the damage generated during the fabrication in the crystalline silicon ingot (Ingot) is required a sore damage removal process, in this case by the damage damage (Saw Damage Etching) to remove the damage generated during the fabrication of the substrate. At this time, the saw damage etching process may be used any of the existing processes, including the process of etching or removing the substrate surface using a chemical chemical polishing (Polishing).
이렇게 소우 데미지를 제거한 후에는 결정질 실리콘 기판의 표면이 건조된 상태가 유지되도록 하여 소우 데미지가 제거된 결정질 실리콘 기판을 건식 증기 식각 유닛(이후 상세히 설명하기로 함)에 넣는다.After the soak damage is removed, the surface of the crystalline silicon substrate is kept dry, and the crystalline silicon substrate from which the sow damage is removed is placed in a dry vapor etching unit (to be described in detail later).
상기 건식 증기 식각 유닛은 내부에 소우 데미지가 제거된 결정질 실리콘 기판이 들어오면, 마이크로웨이브(Microwave) 발생수단(후술하기로 함)에서 발생되는 마이크로웨이브를 이용하여 식각용액을 증기화시켜 식각 증기를 발생시키고, 소우 데미지가 제거된 결정질 실리콘 기판에 노출되면서 식각용액에 혼합되어 있는 질산(HNO3) 증기의 기상 산화반응과 불산(HF) 증기의 기상 화학 반응에 의해 결정질 실리콘 기판의 표면에는 실리콘불화물 막(SiFx Barrier)이 형성된다. 이렇게 식각 증기에 의해 실리콘불화물 막이 형성되면, 상기 식각 증기가 실리콘불화물 막의 공극을 통해 결정질 실리콘 기판의 표면으로 침투하여 결정질 실리콘 기판의 표면을 식각하는 간접 식각이 진행된다(S200). 이때, 상기 결정질 실리콘 기판의 표면은 결정질 실리콘 기판의 표면 위에 실리콘불화물 막이 형성된 후 식각 증기에 의해 결정질 실리콘 기판의 표면이 식각되거나 실리콘불화물 막이 형성되는 과정과 상기 결정질 실리콘 기판의 표면이 식각 증기에 의해 식각되는 과정이 동시에 이루어질 수도 있다.The dry steam etching unit, when the crystalline silicon substrate is removed from the saw damage therein, using the microwave generated by the microwave generating means (to be described later) vaporize the etching solution by vaporizing the etching solution Silicon fluoride on the surface of the crystalline silicon substrate by the gas phase oxidation reaction of nitric acid (HNO 3 ) vapor and the gas phase chemical reaction of hydrofluoric acid (HF) vapor which are generated and exposed to the crystalline silicon substrate from which the sore damage is removed. A film (SiF x Barrier) is formed. When the silicon fluoride film is formed by the etching vapor as described above, the etching vapor penetrates into the surface of the crystalline silicon substrate through the pores of the silicon fluoride film to indirectly etch the surface of the crystalline silicon substrate (S200). In this case, the surface of the crystalline silicon substrate is formed on the surface of the crystalline silicon substrate after the silicon fluoride film is formed by the etching vapor by etching the surface of the crystalline silicon substrate or silicon fluoride film is formed and the surface of the crystalline silicon substrate by the etching steam The etching process may be performed at the same time.
한편, 결정질 실리콘 기판의 표면이 충분히 식각된 후에는 저농도(1% 이내)의 KOH나 NaOH 또는 NH4OH 혼합용액 등을 이용하여 식각 공정 후 결정질 실리콘 기판의 표면에 잔류하는 불화규소를 포함한 산성 물질을 중화시키는 중화 공정이 진행된다(S300). 이때, 중화 공정은 반드시 수행될 필요는 없으나, 결정질 실리콘 기판의 성능 및 후속공정을 위해 수행되는 것이 바람직하다.On the other hand, after the surface of the crystalline silicon substrate is sufficiently etched, an acidic substance containing silicon fluoride remaining on the surface of the crystalline silicon substrate after the etching process by using a low concentration (within 1%) of KOH, NaOH or NH 4 OH mixed solution, etc. A neutralization process for neutralizing the process is performed (S300). In this case, the neutralization process is not necessarily performed, but is preferably performed for the performance of the crystalline silicon substrate and subsequent processes.
중화 공정 또는 식각 공정(중화 공정이 수행되지 않은 경우) 이후에는 결정질 실리콘 기판 표면에 광기전력효과(Photovoltaic Effect)를 발생시키기 위해 다른 타입(예를 들면, 5족 원소 또는 3족 원소)의 불순물을 확산시키는 도핑(Doping) 공정이 수행된다(S400).After the neutralization process or etching process (if the neutralization process is not performed), impurities of different types (e.g., group 5 element or group 3 element) may be added to generate a photovoltaic effect on the surface of the crystalline silicon substrate. A doping process to diffuse is performed (S400).
도핑 공정 이후에는 도핑 공정 시 발생한 결정질 실리콘 기판 표면 상의 고농도 불순물 및 산화막을 제거하기 위한 에칭(Etching) 공정(또는 산화막 제거 공정)과 고농도 불순물이 제거된 결정질 실리콘 기판에 태양광의 반사를 막고 표면을 보호 해주는 반사 방지막(Anti-Reflective Coating; AR Coating)을 형성시키는 반사 방지막 형성 공정 및 전면전극과 후면전극을 형성하는 금속화 처리(Metallization) 공정이 순차적으로 수행될 수 있다(S500).After the doping process, an etching process (or an oxide film removing process) for removing high concentration impurities and oxide films on the surface of the crystalline silicon substrate generated during the doping process and a high concentration of impurities are removed to prevent reflection of sunlight and protect the surface. An anti-reflective film forming process for forming an anti-reflective coating (AR coating) and a metallization process for forming the front electrode and the rear electrode may be sequentially performed (S500).
도 2는 본 발명에 따라 식각된 결정질 실리콘 웨이퍼의 표면을 SEM 촬영한 사진이고, 도 3은 본 발명의 실시 예에 따라 식각된 결정질 실리콘 웨이퍼의 반사도를 나타내는 그래프이다.2 is a SEM photograph of the surface of the crystalline silicon wafer etched according to the present invention, Figure 3 is a graph showing the reflectivity of the crystalline silicon wafer etched according to an embodiment of the present invention.
마이크로웨이브 방식을 이용하여 식각용액을 증기화시켜 식각 증기로 변환시키고, 이렇게 발생된 식각 증기로 결정질 실리콘 기판을 식각하면 도 2 및 도 3에 도시된 바와 같이 결정질 실리콘 기판의 표면이 나노(Nano) 단위에서 마이크로(Micro) 단위의 식각 요철구조가 있는 모양으로 되어 반사도를 최소화할 수 있는 구조를 형성하게 된다.When the etching solution is vaporized using the microwave method to convert the etching solution into etching steam, and the etched silicon substrate is etched using the etching steam generated as described above, the surface of the crystalline silicon substrate is nano (Nano). The unit has a etched concave-convex structure of micro units in the unit to form a structure that can minimize the reflectivity.
그리고, 일반적으로 태양전지 제조를 위해 사용되는 결정질 실리콘 기판(도 3의 Bear Wafer)은 대략 25.11% 정도의 높은 반사도를 보인다. 한편, 태양전지 제조를 위해 사용된 결정질 실리콘 기판은 불산(HF), 질산(HNO3) 및 초산(CH3COOH) 또는 불산(HF), 질산(HNO3) 및 초순수(Ultra Pure Water)가 혼합된 식각용액에 침지되어 소우 데미지가 제거(Saw Damage Removal) 되는데, 침지시간이 불필요하게 증가하게 되면 과식각되어 반사도가 매우 높아지기 때문에 통상적으로 결정질 실리콘 기판의 소우 데미지 깊이를 분석하여 적절한 식각만이 이루어지도록 침지시키게 된다. 이렇게 불산, 질산 및 초산 또는 불산, 질산 및 초순수로 혼합된 식각용액에 절단된 결정질 실리콘 기판을 침지시켜 소우 데미지를 제거하면 결정질 실리콘 기판의 반사도는 대략 21.96%로 낮아지게 된다.In general, the crystalline silicon substrate (Bear Wafer of FIG. 3), which is used for manufacturing a solar cell, exhibits a high reflectivity of about 25.11%. On the other hand, the crystalline silicon substrate used for solar cell manufacturing is a mixture of hydrofluoric acid (HF), nitric acid (HNO 3 ) and acetic acid (CH 3 COOH) or hydrofluoric acid (HF), nitric acid (HNO 3 ) and ultra pure water (Ultra Pure Water) Saw damage is removed by being immersed in the etched solution, but if the immersion time is unnecessarily increased, it is overetched and the reflectivity is very high. Therefore, only the proper etching is performed by analyzing the depth of soak damage of the crystalline silicon substrate. It is dipped to lose. When the crystalline silicon substrate is immersed in the etching solution mixed with hydrofluoric acid, nitric acid and acetic acid, or hydrofluoric acid, nitric acid, and ultrapure water to remove soil damage, the reflectivity of the crystalline silicon substrate is lowered to approximately 21.96%.
그러나, 이와 같이 소우 데미지가 제거된 결정질 실리콘 기판은 여전히 높은 반사도를 갖기 때문에 태양전지의 고효율화에 한계를 갖게 된다. 이에 본 발명에서는 마이크로웨이브 방식을 이용하여 불산(HF)과 질산(HNO3)이 7:3 및 이와 유사한 비율을 가지는 용액으로 혼합된 혼합용액을 증기 상태로 만든 후 생성된 식각 증기로 소우 데미지가 제거된 결정질 실리콘 기판의 표면에 노출 식각시킨다. 이에 따라, 도 3에 도시된 바와 같이 반사도가 대략 5.04%로 매우 낮아지게 되고, 이렇게 반사도가 낮은 결정질 실리콘 기판을 이용함으로써 고효율의 태양전지를 제작할 수 있게 된다.However, since the crystalline silicon substrate from which the saw damage is removed still has high reflectivity, there is a limit to the high efficiency of the solar cell. Therefore, in the present invention, by using a microwave method hydrofluoric acid (HF) and nitric acid (HNO 3 ) is a mixture of a solution having a ratio of 7: 3 and the like to make a vapor state after the sour damage generated by the etching steam Exposure etching is performed on the surface of the removed crystalline silicon substrate. Accordingly, as shown in FIG. 3, the reflectivity becomes very low to about 5.04%, and the solar cell of high efficiency can be manufactured by using the crystalline silicon substrate having such low reflectivity.
도 4는 본 발명의 실시 예에 따른 실리콘불화물 막을 이용한 태양전지 제조장치를 나타내는 도면이고, 도 5는 도 4에 도시된 식각 유닛의 일 실시 예를 나타내는 도면이다.4 is a view showing a solar cell manufacturing apparatus using a silicon fluoride film according to an embodiment of the present invention, Figure 5 is a view showing an embodiment of the etching unit shown in FIG.
도 4 및 도 5를 참조하면, 본 발명의 실시 예에 따른 실리콘불화물 막을 이용한 태양전지 제조장치는 소우 데미지 제거 유닛(100), 식각 유닛(200), 중화 유닛(300), 도핑 유닛(400), 에칭 유닛(500), 반사 방지막 형성 유닛(600) 및 전극 형성 유닛(700)으로 이루어진다.4 and 5, a solar cell manufacturing apparatus using a silicon fluoride film according to an embodiment of the present invention, a sour damage removal unit 100, an etching unit 200, a neutralization unit 300, and a doping unit 400. , An etching unit 500, an antireflection film forming unit 600, and an electrode forming unit 700.
상기 소우 데미지 제거 유닛(100)은 와이어 컷으로 마감된 태양전지용 결정질 실리콘 기판의 표면에 존재하는 소우 데미지를 제거하기 위한 것으로 내화학성 및 내열성을 가지도록 형성된 용기 내에 소우 데미지 제거를 위한 에칭 용액이 저장되도록 구성될 수 있다.The saw damage removing unit 100 is used to remove the saw damage on the surface of the crystalline silicon substrate for solar cells finished with a wire cut, and the etching solution for removing the saw damage in a container formed to have chemical resistance and heat resistance. It may be configured to.
상기 식각 유닛(200)은 마이크로웨이브 방식에 의해 발생된 식각 증기로 소우 데미지 제거 유닛(100)으로부터 전달된 결정질 실리콘 기판의 표면을 식각하는 장치로, 내화학성 및 내열성을 가지는 본체; 상기 본체 내부로 소우 데미지가 제거된 결정질 실리콘 기판들을 전달하고, 식각이 이루어진 결정질 실리콘 기판을 상기 본체 외부로 전달하는 이송수단; 및 상기 본체의 주변부(즉, 내부 포함 양옆 또는 상하부 중 어느 한 곳)에 설치되고, 식각용액의 소비량을 조절하여 마이크로웨이브 방식으로 상기 식각용액을 증기화시켜 결정질 실리콘 기판의 표면을 식각하기 위한 식각 증기를 발생시키는 증기 발생부(210)로 이루어진다.The etching unit 200 is an apparatus for etching the surface of the crystalline silicon substrate transferred from the saw damage removal unit 100 by the etching steam generated by the microwave method, the body having chemical resistance and heat resistance; Transfer means for transferring the crystalline silicon substrates from which the saw damage has been removed into the main body, and transferring the etched crystalline silicon substrate to the outside of the main body; And is installed in the periphery of the main body (that is, either side, including the inside or one of the upper and lower), the etching solution for etching the surface of the crystalline silicon substrate by vaporizing the etching solution in a microwave manner by controlling the consumption of the etching solution It consists of a steam generator 210 for generating steam.
이때, 상기 증기 발생부(210)는 내화학성 및 내열성을 가지도록 형성되고 내부에서 생성된 식각 증기가 토출되는 토출구(2101)가 형성된 토출용기(2102); 상기 토출용기(2102)의 내부에 설치되고, 식각용액이 저장된 식각용액용기(2104); 상기 식각용액용기(2104)의 주변부에 설치되어 상기 식각용액용기(2104)에 저장된 식각용액을 마이크로웨이브 방식으로 증기화시키는 마이크로웨이브 발생수단(2106); 토출용기(2102)의 외부와 식각용액용기(2104) 사이에 설치되어 외부로부터 상기 식각용액용기(2104)로의 식각용액 투입을 조절하는 식각용액 투입 조절수단(2108); 및 토출용기(2102)에 설치되어 캐리어 가스(Carrier Gas)의 투입량을 조절하여 마이크로웨이브 방식을 통해 생성된 식각 증기의 이송량을 조절하고, 이송량의 미세 조절을 위해 배기 압력을 조절하여 식각 증기의 이송속도를 조절하는 증기압 조절수단(2110)을 포함하도록 구성된다.At this time, the steam generating unit 210 is formed to have a chemical resistance and heat resistance and the discharge container 2102 is formed with a discharge port 2101 for discharging the etch steam generated therein; An etching solution container 2104 installed inside the discharge container 2102 and storing an etching solution; Microwave generation means (2106) installed at the periphery of the etching solution container (2104) to vaporize the etching solution stored in the etching solution container (2104) in a microwave manner; Etching solution input adjusting means (2108) installed between the outside of the discharge container (2102) and the etching solution container (2104) to control the input of the etching solution from the outside to the etching solution container (2104); And installed in the discharge vessel (2102) by adjusting the input amount of the carrier gas (Carrier Gas) to control the feed amount of the etch steam generated through the microwave method, to control the exhaust pressure for fine adjustment of the transfer amount of the transfer of the etch steam It is configured to include a vapor pressure adjusting means 2110 for adjusting the speed.
이러한, 식각 유닛(200)은 캐리어나 컨베이어 벨트 또는 이동롤러 중 어느 하나로 구성된 이송수단에 의해 본체 내부로 결정질 실리콘 기판이 전달되면, 상기 증기 발생부(210)에서 마이크로웨이브 방식으로 식각용액을 증기화시켜 식각 증기를 발생시킨다. 이때, 증기 발생부(210)에서는 식각용액 투입 조절수단(2108)에 의해 조절된 식각용액 투입량에 따라 식각 증기로 변환되는 식각용액의 소비량이 조절되고, 증기압 조절수단(2110)에 의해 조절된 캐리어 가스(Carrier Gas) 주입량 및 배기 압력에 따라 식각 증기의 이송량과 식각 증기의 이송속도가 조절된다.When the crystalline silicon substrate is transferred to the inside of the main body by a conveying means configured as a carrier, a conveyor belt, or a moving roller, the etching unit 200 vaporizes the etching solution in a microwave manner in the steam generator 210. To generate etch steam. At this time, in the steam generator 210, the consumption of the etching solution is converted to the etching steam in accordance with the etching solution input amount adjusted by the etching solution input control means 2108 is adjusted, the carrier controlled by the steam pressure control means 2110 The transfer amount of the etching steam and the feed rate of the etching steam are controlled according to the carrier gas injection amount and the exhaust pressure.
한편, 상기와 같이 증기 발생부(210)에서 식각 증기가 발생되게 되면, 상기 식각 유닛(200)의 본체 내부로 전달된 결정질 실리콘 기판의 표면에는 식각용액에 혼합되어 있는 질산에 의한 기상 산화반응과 불산에 의한 기상 화학반응에 의해 실리콘불화물 막이 형성되고, 실리콘불화물 막이 형성되면 상기 식각 증기가 실리콘불화물 막의 공극을 통해 결정질 실리콘 기판의 표면으로 침투하여 결정질 실리콘 기판의 표면을 식각하는 간접 식각이 진행된다. 이때, 상기 결정질 실리콘 기판의 표면은 상기 결정질 실리콘 기판의 표면 위에 실리콘불화물 막이 형성된 후 식각 증기에 의해 결정질 실리콘 기판의 표면이 식각되거나 실리콘불화물 막이 형성되는 과정과 결정질 실리콘 기판의 표면이 식각 증기에 의해 식각되는 과정이 동시에 일어날 수도 있다.On the other hand, when the etching steam is generated in the steam generating unit 210 as described above, the surface of the crystalline silicon substrate transferred into the main body of the etching unit 200 and the gas phase oxidation reaction by nitric acid mixed in the etching solution and When the silicon fluoride film is formed by the gas phase chemical reaction with hydrofluoric acid, and the silicon fluoride film is formed, the etching vapor penetrates into the surface of the crystalline silicon substrate through the pores of the silicon fluoride film to indirectly etch the surface of the crystalline silicon substrate. . In this case, the surface of the crystalline silicon substrate is formed on the surface of the crystalline silicon substrate after the silicon fluoride film is formed by the etching vapor by etching the surface of the crystalline silicon substrate or silicon fluoride film is formed and the surface of the crystalline silicon substrate by the etching steam Etching may occur simultaneously.
한편, 상기 본체에는 증기 발생부(210)를 통해 본체 내부로 이송된 식각 증기의 식각 작용 제어를 위해 물이 채워진다.On the other hand, the main body is filled with water to control the etching action of the etching steam transferred into the main body through the steam generating unit 210.
상기 중화 유닛(300)은 저농도(1% 이내)의 KOH나 NaOH 또는 NH4OH 혼합용액 등을 이용하여 식각 유닛(200)에 의해 식각된 결정질 실리콘 기판의 표면에 잔류하는 불화규소를 포함한 산성 물질을 중화시킨다.The neutralization unit 300 is an acidic material containing silicon fluoride remaining on the surface of the crystalline silicon substrate etched by the etching unit 200 using a low concentration (within 1%) KOH, NaOH or NH 4 OH mixed solution, etc. Neutralize
상기 도핑 유닛(400)은 상기 중화 유닛(300)으로부터 전달된 결정질 실리콘 기판 표면에 광기전력효과를 발생시키기 위해 다른 타입(예를 들면, 5족 원소 또는 3족 원소)의 불순물을 확산시킨다.The doping unit 400 diffuses impurities of another type (eg, a group 5 element or a group 3 element) to generate a photovoltaic effect on the surface of the crystalline silicon substrate transferred from the neutralization unit 300.
상기 에칭 유닛(500)은 도핑 유닛(400)에서의 도핑 공정 시 발생한 결정질 실리콘 기판 표면 상의 고농도 불순물 및 산화막을 제거한다.The etching unit 500 removes high concentration impurities and oxide films on the surface of the crystalline silicon substrate generated during the doping process in the doping unit 400.
반사 방지막 형성 유닛(600)은 상기 에칭 유닛(500)에 의해 고농도 불순물 및 산화막이 제거된 결정질 실리콘 기판에 태양광의 반사를 막고 표면을 보호해주는 반사 방지막을 형성한다.The anti-reflection film forming unit 600 forms an anti-reflection film that prevents reflection of sunlight and protects the surface of the crystalline silicon substrate from which the high concentration impurities and the oxide film are removed by the etching unit 500.
상기 전극 형성 유닛(700)은 상기 반사 방지막 형성 유닛(600)에 의해 반사 방지막이 형성된 결정질 실리콘 기판에 전면전극과 후면전극을 형성한다.The electrode forming unit 700 forms a front electrode and a rear electrode on the crystalline silicon substrate on which the anti-reflection film is formed by the anti-reflection film forming unit 600.
이상의 구성으로 이루어진 본 발명의 실시 예에 따른 태양전지 제조장치는 양산타입의 인라인(In-Line) 공정이 가능하도록 구성된다. 한편, 본 발명의 실시 예에 따른 실리콘불화물 막 이용한 태양전지 제조장치는 태양전지를 제조하기 위해 상술한 소우 데미지 제거 유닛(100), 식각 유닛(200), 중화 유닛(300), 도핑 유닛(400), 에칭 유닛(500), 반사 방지막 형성 유닛(600) 및 전극 형성 유닛(700)에서 결정질 실리콘 기판(즉, 실리콘 웨이퍼)을 로딩하는 로딩 유닛(또는 로딩 챔버), 항상 진공 상태에서 기판을 로딩하는 로딩 유닛과 대기압 상태의 외부 사이에서 기판을 교환하는 완충공간으로서 기판 교환을 위해 진공 또는 대기압 상태를 교번하는 로드락 유닛(또는 로드락 챔버)를 더 포함할 수 있다.The solar cell manufacturing apparatus according to the embodiment of the present invention having the above configuration is configured to enable an in-line process of mass production type. On the other hand, the solar cell manufacturing apparatus using a silicon fluoride film according to an embodiment of the present invention is the above-described SO damage removal unit 100, etching unit 200, neutralization unit 300, doping unit 400 ), A loading unit (or loading chamber) for loading a crystalline silicon substrate (ie, a silicon wafer) from the etching unit 500, the antireflection film forming unit 600, and the electrode forming unit 700, and always loading the substrate in a vacuum state. As a buffer space for exchanging the substrate between the loading unit and the outside of the atmospheric pressure state may further include a load lock unit (or load lock chamber) to alternate the vacuum or atmospheric state for the substrate exchange.
상술한 본 발명의 태양전지 제조방법 및 제조장치는 마이크로웨이브 방식을 이용하여 불산과 질산이 혼합된 식각용액을 증기로 변환(즉, 연무화)하기 때문에 식각용액의 연무화 시 많은 에너지가 소모되는 것을 방지할 수 있어 표 1에 도시된 바와 같이 실리콘 반응열을 이용한 종래의 태양전지 제조방법에 비해 공정 비용(Process cost)을 줄일 수 있고, 양산타입의 인라인 공정으로 제작이 가능하기 때문에 양산타입으로 제작이 용이하지 않은 종래 기술에 비해 생산성(Productivity) 및 경제성(Commercially)을 향상시킬 수 있으며, 특히 경제성의 경우 최대 55배 정도 개선시킬 수 있다.The solar cell manufacturing method and apparatus of the present invention described above converts an etching solution mixed with hydrofluoric acid and nitric acid to steam using a microwave method (ie, misting), so that much energy is consumed when the etching solution is misted. It is possible to prevent the process cost (process cost) can be reduced compared to the conventional solar cell manufacturing method using the silicon reaction heat as shown in Table 1, because it can be manufactured in a mass production type inline process can be produced in mass production type Compared to the conventional technology, which is not easy, productivity and economics may be improved, and in particular, economics may be improved by up to 55 times.
표 1
개선 효과 종래기술 본 발명
공정비용(Process cost) 1.00 0.17
생산성(Productivity) 1.00 9.33
경제성(원가대비매출비중/commercially) 1.00 55.09
Table 1
Improvement effect Prior art The present invention
Process cost 1.00 0.17
Productivity 1.00 9.33
Economic feasibility (commercial share of cost) 1.00 55.09
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관해서 설명하였으나, 이는 본 발명의 가장 양호한 실시 예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술사상의 범주를 벗어나지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 물론이다. 따라서, 본 발명의 권리범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 후술하는 청구범위 뿐만 아니라 이와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention, a preferred embodiment of the present invention has been described, but this is only illustrative of the best embodiment of the present invention and not intended to limit the present invention. In addition, any person having ordinary skill in the art to which the present invention pertains may make various modifications and imitations without departing from the scope of the technical idea of the present invention. Accordingly, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.

Claims (13)

  1. 소우 데미지가 제거된 결정질 실리콘 웨이퍼의 표면을 건조된 상태에 노출시키는 노출 단계;An exposure step of exposing the surface of the crystalline silicon wafer from which the saw damage has been removed to a dried state;
    마이크로웨이브 방식을 이용하여 식각용액을 증기화시켜 식각 증기를 발생시키는 식각 증기 발생 단계; 및An etching steam generation step of generating an etching steam by vaporizing the etching solution using a microwave method; And
    상기 식각 증기로 상기 결정질 실리콘 웨이퍼의 표면을 식각시키는 식각 단계를 포함하는 실리콘불화물 막을 이용한 결정질 실리콘 웨이퍼 식각 방법.And etching the surface of the crystalline silicon wafer with the etching vapor.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 식각 단계는,The etching step,
    상기 식각용액에 혼합되어 있는 질산에 의한 기상 산화반응과 불산에 의한 기상 화학반응을 통해 상기 결정질 실리콘 웨이퍼의 표면에 실리콘불화물 막이 형성되는 단계; 및Forming a silicon fluoride film on the surface of the crystalline silicon wafer through a gas phase oxidation reaction with nitric acid mixed with the etching solution and a gas phase chemical reaction with hydrofluoric acid; And
    식각 증기가 상기 실리콘불화물 막의 공극을 통해 상기 결정질 실리콘 웨이퍼의 표면에 전달되어 상기 결정질 실리콘 웨이퍼의 표면이 식각되는 단계를 포함하는 것을 특징으로 하는 실리콘불화물 막을 이용한 결정질 실리콘 웨이퍼 식각 방법.And etching gas is transferred to the surface of the crystalline silicon wafer through the pores of the silicon fluoride film so that the surface of the crystalline silicon wafer is etched.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 실리콘불화물 막이 형성되는 단계와 결정질 실리콘 웨이퍼의 표면이 식각되는 단계는 동시에 진행되는 것을 특징으로 하는 실리콘불화물 막을 이용한 결정질 실리콘 웨이퍼 식각 방법.Wherein the forming of the silicon fluoride film and the etching of the surface of the crystalline silicon wafer are performed at the same time.
  4. 내화학성 및 내열성을 갖도록 형성된 본체;A body formed to have chemical resistance and heat resistance;
    상기 본체 내부로 소우 데미지가 제거된 결정질 실리콘 웨이퍼들을 전달하고, 식각이 이루어진 결정질 실리콘 웨이퍼를 상기 본체 외부로 전달하는 이송수단; 및Transfer means for transferring the crystalline silicon wafers from which the saw damage has been removed into the main body, and transferring the etched crystalline silicon wafer to the outside of the main body; And
    상기 본체의 주변부에 설치되고, 상기 결정질 실리콘 웨이퍼의 표면을 식각하기 위한 식각용액의 소비량을 조절하며, 마이크로웨이브 방식으로 식각용액을 증기화시켜 식각 증기를 발생시키는 증기 발생부를 포함하는 것을 특징으로 하는 실리콘불화물 막을 이용한 결정질 실리콘 웨이퍼 식각장치.It is installed on the periphery of the main body, and adjusts the consumption of the etching solution for etching the surface of the crystalline silicon wafer, comprising a steam generating unit for generating an etching vapor by vaporizing the etching solution in a microwave method Crystalline silicon wafer etching apparatus using a silicon fluoride film.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 증기 발생부는The steam generator
    내화학성 및 내열성을 가지도록 형성되고 내부에서 생성된 식각 증기가 토출되는 토출구가 형성된 토출용기;A discharge container formed to have chemical resistance and heat resistance and having a discharge port through which the etch steam generated therein is discharged;
    상기 토출용기 내부에 설치되고, 식각용액이 저장된 식각용액용기;An etching solution container installed inside the discharge container and storing an etching solution;
    상기 식각용액용기의 주변부에 설치되어 상기 식각용액용기에 저장된 식각용액을 마이크로웨이브 방식으로 증기화시키는 마이크로웨이브 발생수단;A microwave generating means installed at a periphery of the etching solution container to vaporize the etching solution stored in the etching solution container in a microwave manner;
    상기 토출용기의 외부와 식각용액용기 사이에 설치되어 외부로부터 상기 식각용액용기로의 식각용액 투입을 조절하는 식각용액 투입 조절수단; 및Etching solution input adjusting means installed between the outside of the discharge container and the etching solution container to control the input of the etching solution from the outside into the etching solution container; And
    상기 토출용기에 설치되어 캐리어 가스의 투입량을 조절하여 마이크로웨이브 방식을 통해 생성된 식각 증기의 이송량을 조절하고, 이송량의 미세 조절을 위해 배기 압력을 조절하여 식각 증기의 이송속도를 조절하는 증기압 조절수단을 포함하는 것을 특징으로 하는 실리콘불화물 막을 이용한 결정질 실리콘 웨이퍼 식각장치.Steam pressure adjusting means installed in the discharge container to adjust the feed amount of the carrier gas to control the feed amount of the etch steam generated through the microwave method, and to control the feed rate of the etch steam by adjusting the exhaust pressure for fine control of the feed amount Crystalline silicon wafer etching apparatus using a silicon fluoride film comprising a.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 본체에는 증기 발생부를 통해 본체로 이송된 식각 증기의 식각 작용 제어를 위해 물이 채워지는 것을 특징으로 하는 실리콘불화물 막을 이용한 결정질 실리콘 웨이퍼 식각장치.The body is filled with water to control the etching action of the etching steam transferred to the main body through the steam generating unit crystalline silicon wafer etching apparatus using a silicon fluoride film.
  7. 와이어 컷에 의해 결정질 실리콘 웨이퍼의 표면에 생성된 소우 데미지를 제거시키는 소우 데미지 제거 단계;A saw damage removal step of removing the saw damage generated on the surface of the crystalline silicon wafer by the wire cut;
    소우 데미지가 제거된 결정질 실리콘 웨이퍼 표면을 건조한 조건에 노출시키고, 마이크로웨이브 방식을 이용하여 식각용액을 증기화시켜 식각 증기를 발생시키며, 발생된 식각 증기로 상기 결정질 실리콘 웨이퍼의 표면을 식각시키는 식각 단계;An etch step of exposing the surface of the crystalline silicon wafer from which the sore damage is removed to dry conditions, vaporizing the etching solution using a microwave method to generate etching steam, and etching the surface of the crystalline silicon wafer with the generated etching vapor. ;
    식각 공정 후 결정질 실리콘 웨이퍼의 표면에 잔류하는 불화규소를 포함한 산성 물질을 중화시키는 중화공정 단계;A neutralization step of neutralizing an acidic material including silicon fluoride remaining on the surface of the crystalline silicon wafer after the etching process;
    상기 결정질 실리콘 웨이퍼 표면에 광기전력효과를 발생시키기 위해 불순물을 확산시키는 도핑 공정 단계;A doping process step of diffusing an impurity to generate a photovoltaic effect on the surface of the crystalline silicon wafer;
    상기 도핑 공정 시 발생한 결정질 실리콘 웨이퍼 표면 상의 고농도 불순물을 제거하기 위한 에칭 단계; 및An etching step for removing high concentration impurities on the surface of the crystalline silicon wafer generated during the doping process; And
    고농도 불순물이 제거된 결정질 실리콘 웨이퍼에 반사 방지막을 형성하는 반사 방지막 형성 단계; 및Forming an anti-reflection film on the crystalline silicon wafer from which the high concentration of impurities have been removed; And
    반사 방지막이 형성된 결정질 실리콘 웨이퍼에 전면전극과 후면전극을 형성하는 전극 형성 단계를 포함하는 것을 특징으로 하는 태양전지 제조방법.And an electrode forming step of forming a front electrode and a back electrode on the crystalline silicon wafer on which the anti-reflection film is formed.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 식각 단계는,The etching step,
    상기 식각용액에 혼합되어 있는 질산에 의한 기상 산화반응과 불산에 의한 기상 화학반응을 통해 상기 결정질 실리콘 웨이퍼의 표면에 실리콘불화물 막이 형성되는 단계; 및Forming a silicon fluoride film on the surface of the crystalline silicon wafer through a gas phase oxidation reaction with nitric acid mixed with the etching solution and a gas phase chemical reaction with hydrofluoric acid; And
    식각 증기가 상기 실리콘불화물 막의 공극을 통해 상기 결정질 실리콘 웨이퍼의 표면에 전달되어 상기 결정질 실리콘 웨이퍼의 표면이 식각되는 단계를 포함하는 것을 특징으로 하는 태양전지 제조방법.Etching gas is transferred to the surface of the crystalline silicon wafer through the pores of the silicon fluoride film to etch the surface of the crystalline silicon wafer.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 실리콘불화물 막이 형성되는 단계와 결정질 실리콘 웨이퍼의 표면이 식각되는 단계는 동시에 진행되는 것을 특징으로 하는 태양전지 제조방법.Forming the silicon fluoride film and etching the surface of the crystalline silicon wafer are performed simultaneously.
  10. 와이어 컷에 의해 결정질 실리콘 웨이퍼 표면에 생성된 소우 데미지를 제거시키는 소우 데미지 제거 유닛;A saw damage removing unit for removing the saw damage generated on the surface of the crystalline silicon wafer by the wire cut;
    마이크로웨이브 방식을 이용하여 질산과 불산이 혼합되어 있는 식각용액을 증기화시켜 식각 증기를 발생시키고, 발생된 식각 증기로 상기 소우 데미지 제거 유닛에 의해 소우 데미지가 제거되어 건조된 결정질 실리콘 웨이퍼의 표면을 식각시키는 식각 유닛;By using the microwave method, the etching solution in which nitric acid and hydrofluoric acid is mixed is vaporized to generate etching steam, and the soak damage is removed by the saw damage removing unit using the generated etching steam to dry the surface of the dried crystalline silicon wafer. An etching unit for etching;
    식각 유닛에 의해 식각된 결정질 실리콘 웨이퍼의 표면에 잔류하는 불화규소를 포함한 산성 물질을 중화시키는 중화 유닛;A neutralizing unit for neutralizing an acidic material including silicon fluoride remaining on the surface of the crystalline silicon wafer etched by the etching unit;
    중화 유닛으로부터 전달된 결정질 실리콘 웨이퍼 표면에 광기전력효과를 발생시키기 위해 불순물을 확산시키는 도핑 유닛;A doping unit for diffusing impurities to generate a photovoltaic effect on the surface of the crystalline silicon wafer transferred from the neutralizing unit;
    상기 도핑 공정 시 발생한 결정질 실리콘 웨이퍼 표면 상의 고농도 불순물을 제거하기 위한 에칭 유닛;An etching unit for removing high concentration impurities on the surface of the crystalline silicon wafer generated during the doping process;
    상기 불순물이 제거된 실리콘 웨이퍼의 표면에 태양광의 반사를 막고 표면을 보호하기 위한 반사 방지막을 형성하는 반사 방지막 형성 유닛; 및An anti-reflection film forming unit which forms an anti-reflection film on the surface of the silicon wafer from which the impurities are removed to prevent reflection of sunlight and to protect the surface; And
    상기 반사 방지막이 형성된 결정질 실리콘 웨이퍼에 전면전극과 후면전극을 형성하는 전극 형성 유닛을 포함하는 것을 특징으로 하는 태양전지 제조장치.And an electrode forming unit for forming a front electrode and a back electrode on the crystalline silicon wafer having the anti-reflection film formed thereon.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 식각 유닛은,The etching unit,
    내화학성 및 내열성을 갖도록 형성된 본체;A body formed to have chemical resistance and heat resistance;
    상기 본체 내부로 소우 데미지가 제거된 결정질 실리콘 웨이퍼들을 전달하고, 식각이 이루어진 결정질 실리콘 웨이퍼를 상기 본체 외부로 전달하는 이송수단; 및Transfer means for transferring the crystalline silicon wafers from which the saw damage has been removed into the main body, and transferring the etched crystalline silicon wafer to the outside of the main body; And
    상기 본체의 주변부에 설치되고, 상기 결정질 실리콘 웨이퍼의 표면을 식각하기 위한 식각용액의 소비량을 조절하며, 마이크로웨이브 방식으로 식각용액을 증기화시켜 식각 증기를 발생시키는 증기 발생부를 포함하는 것을 특징으로 하는 실리콘불화물 막을 이용한 결정질 태양전지 제조장치.It is installed on the periphery of the main body, and adjusts the consumption of the etching solution for etching the surface of the crystalline silicon wafer, comprising a steam generating unit for generating an etching vapor by vaporizing the etching solution in a microwave method Crystalline solar cell manufacturing apparatus using silicon fluoride film.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 증기 발생부는The steam generator
    내화학성 및 내열성을 가지도록 형성되고 내부에서 생성된 식각 증기가 토출되는 토출구가 형성된 토출용기;A discharge container formed to have chemical resistance and heat resistance and having a discharge port through which the etch steam generated therein is discharged;
    상기 토출용기 내부에 설치되고, 식각용액이 저장된 식각용액용기;An etching solution container installed inside the discharge container and storing an etching solution;
    상기 식각용액용기의 주변부에 설치되어 상기 식각용액용기에 저장된 식각용액을 마이크로웨이브 방식으로 증기화시키는 마이크로웨이브 발생수단;A microwave generating means installed at a periphery of the etching solution container to vaporize the etching solution stored in the etching solution container in a microwave manner;
    상기 토출용기의 외부와 식각용액용기 사이에 설치되어 외부로부터 상기 식각용액용기로의 식각용액 투입을 조절하는 식각용액 투입 조절수단; 및Etching solution input adjusting means installed between the outside of the discharge container and the etching solution container to control the input of the etching solution from the outside into the etching solution container; And
    상기 토출용기에 설치되어 캐리어 가스의 투입량을 조절하여 마이크로웨이브 방식을 통해 생성된 식각 증기의 이송량을 조절하고, 이송량의 미세 조절을 위해 배기 압력을 조절하여 식각 증기의 이송속도를 조절하는 증기압 조절수단을 포함하는 것을 특징으로 하는 태양전지 제조장치.Steam pressure adjusting means installed in the discharge container to adjust the feed amount of the carrier gas to control the feed amount of the etch steam generated through the microwave method, and to control the feed rate of the etch steam by adjusting the exhaust pressure for fine control of the feed amount Solar cell manufacturing apparatus comprising a.
  13. 청구항 11에 있어서,The method according to claim 11,
    상기 본체에는 증기 발생부를 통해 본체로 이송된 식각 증기의 식각 작용 제어를 위해 물이 채워지는 것을 특징으로 하는 태양전지 제조장치.The main body is a solar cell manufacturing apparatus, characterized in that the water is filled for controlling the etching action of the etching steam transferred to the main body through the steam generator.
PCT/KR2015/003957 2014-04-22 2015-04-21 Crystalline silicon wafer etching method and etching apparatus using silicon fluoride film, and solar cell manufacturing method and manufacturing apparatus using same WO2015163664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140048173A KR101462563B1 (en) 2014-04-22 2014-04-22 Crystalline Silicon Wafer Solar Cell Etching Method and Apparatus using SiFx Barrier, Method and Apparatus for Fabricating Solar Cell using the same
KR10-2014-0048173 2014-04-22

Publications (1)

Publication Number Publication Date
WO2015163664A1 true WO2015163664A1 (en) 2015-10-29

Family

ID=52290771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003957 WO2015163664A1 (en) 2014-04-22 2015-04-21 Crystalline silicon wafer etching method and etching apparatus using silicon fluoride film, and solar cell manufacturing method and manufacturing apparatus using same

Country Status (2)

Country Link
KR (1) KR101462563B1 (en)
WO (1) WO2015163664A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102284211B1 (en) * 2017-04-18 2021-08-03 오씨아이 주식회사 Method for preparing etching solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090007127A (en) * 2007-07-13 2009-01-16 주식회사 케이피이 Method of manufacture of tri-crystalline si solar cell with surfactant and acid texture
KR100941331B1 (en) * 2007-07-13 2010-02-11 주식회사 케이피이 Method for etching of solar cell using vapor etching and etching device for performing the same
KR20140034415A (en) * 2012-09-11 2014-03-20 주식회사 디씨티 Etchant for texturing silicon substrate and manufacturing method of high efficiency solar cell using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090007127A (en) * 2007-07-13 2009-01-16 주식회사 케이피이 Method of manufacture of tri-crystalline si solar cell with surfactant and acid texture
KR100941331B1 (en) * 2007-07-13 2010-02-11 주식회사 케이피이 Method for etching of solar cell using vapor etching and etching device for performing the same
KR20140034415A (en) * 2012-09-11 2014-03-20 주식회사 디씨티 Etchant for texturing silicon substrate and manufacturing method of high efficiency solar cell using the same

Also Published As

Publication number Publication date
KR101462563B1 (en) 2014-11-18

Similar Documents

Publication Publication Date Title
JP6212095B2 (en) Solar cell structure
US8492253B2 (en) Method of forming contacts for a back-contact solar cell
US7846762B2 (en) Integrated emitter formation and passivation
KR20120092184A (en) Method of cleaning and forming a negatively charged passivation layer over a doped region
JP2013518442A (en) Method for forming multiple doped junctions using silicon-containing particles
CN114551639B (en) Preparation method and application method of selective emitter structure with local passivation contact
US9224906B2 (en) Method for manufacturing a solar cell
WO2015191520A1 (en) Emitter diffusion conditions for black silicon
JP6144778B2 (en) Manufacturing method of solar cell
US9202965B2 (en) Method for manufacturing solar cell
US20150206990A1 (en) Solar cell production method, and solar cell produced by same production method
WO2015130334A1 (en) Silicon solar cells with epitaxial emitters
JP2006332510A (en) Manufacturing method for solar cell element
KR101160116B1 (en) Method of manufacturing Back junction solar cell
WO2015163664A1 (en) Crystalline silicon wafer etching method and etching apparatus using silicon fluoride film, and solar cell manufacturing method and manufacturing apparatus using same
TWI650872B (en) Solar cell and its manufacturing method, solar cell module and solar cell power generation system
WO2015130672A1 (en) Silicon solar cells with epitaxial emitters
TWI629804B (en) Manufacturing method of solar cell
KR101383426B1 (en) Method for fabricating bi-facial solar cell
US20140130860A1 (en) Method for forming alumina film and solar cell element
JP2016032073A (en) Method and device for manufacturing solar cell
TW201921704A (en) Method for manufacturing high-efficiency solar cell
TWI713230B (en) Solar cell and its manufacturing method
US20140246092A1 (en) Silicon substrate and manufacturing method thereof
CN116949429A (en) Method for improving uniformity of ALD film thickness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782577

Country of ref document: EP

Kind code of ref document: A1