WO2015163170A1 - Image pickup element, control method, and image pickup device - Google Patents

Image pickup element, control method, and image pickup device Download PDF

Info

Publication number
WO2015163170A1
WO2015163170A1 PCT/JP2015/061310 JP2015061310W WO2015163170A1 WO 2015163170 A1 WO2015163170 A1 WO 2015163170A1 JP 2015061310 W JP2015061310 W JP 2015061310W WO 2015163170 A1 WO2015163170 A1 WO 2015163170A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control line
pixel
unit pixel
control signal
Prior art date
Application number
PCT/JP2015/061310
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 半澤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015163170A1 publication Critical patent/WO2015163170A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present technology relates to an imaging device, a control method, and an imaging device, and more particularly, to an imaging device, a control method, and an imaging device that can more easily read out pixel signals.
  • the transfer control line (TRG), the reset control line (RST), and the select control line (SEL) are controlled in the row direction with respect to the number of pixels to be controlled (NxM).
  • NxM the number of pixels to be controlled
  • the reset control line (RST) and the select control line (SEL) are arranged in the same direction (both in the row direction), and the reset voltage VR is arranged vertically. Therefore, the transfer control signal must be converted to an XY address. Therefore, there is only one floating diffusion (FD) that is reset at the same time, so only one charge transfer can be performed, and simultaneous charge transfer cannot be performed.
  • FD floating diffusion
  • the present technology has been proposed in view of such a situation, and an object thereof is to enable pixel signals to be read more easily.
  • One aspect of the present technology provides a unit pixel group including a plurality of unit pixels and a reset control that transmits a reset control signal that controls resetting of the floating diffusion to the unit pixels to which the unit pixel group is connected.
  • a line, a select control line that transmits a select control signal for controlling reading of the level of the floating diffusion, and a reset control signal for the unit pixel to which the unit pixel group is connected By selecting a reset control line and outputting the generated reset control signal to the selected reset control line, the floating diffusion is reset for a desired unit pixel combination of the unit pixel group, Generate the select control signal, select the select control line, and generate By outputting the select control signal to the selected select control line, the unit pixel group includes any one of the combination of unit pixels to which the reset control line outputting the reset control signal is connected.
  • the image pickup device includes a control unit that reads out the floating diffusion level for a desired combination of unit pixels.
  • the unit pixel group is a pixel array in which the unit pixels are arranged in an array, the reset control line is provided for each row of unit pixels of the pixel array, and each reset control line is assigned to the assigned row.
  • the select control line is provided for each column of unit pixels of the pixel array, each select control line is connected to each unit pixel of the assigned column, and the control unit
  • the reset is performed for each unit pixel in a desired row of the pixel array.
  • the select control signal is generated, the select control line is selected, and the generated select control signal is output to the selected select control line. Accordingly, the rows of the unit pixels of the pixel array to perform the reset, it is possible to read the reset level of the floating diffusion unit pixel of a desired sequence.
  • the unit pixel group is a pixel array in which the unit pixels are arranged in an array, the reset control line is provided for each column of unit pixels of the pixel array, and each reset control line is assigned to an assigned column.
  • the select control line is provided for each unit pixel row of the pixel array, each select control line is connected to each unit pixel of the assigned row, and the control unit
  • the select control signal is generated, the select control line is selected, and the generated select control signal is output to the selected select control line. Accordingly, the column of the unit pixel of the pixel array to perform the reset, it is possible to read the reset level of the floating diffusion unit pixel of a desired row.
  • the reset power supply voltage and the source follower power supply voltage can be supplied to the unit pixels through different wirings.
  • the reset power supply voltage and the source follower power supply voltage can be supplied to the unit pixel through a common wiring.
  • the control unit further includes a transfer control line that transmits a transfer control signal for controlling transfer of charges accumulated in a photodiode to the unitary pixel of the unit pixel group to which the unit pixel is connected. Generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, thereby obtaining a desired unit pixel combination of the unit pixel group. Thus, the charge transfer can be performed.
  • the unit pixel group is a pixel array in which unit pixels are arranged in an array, the transfer control line is provided for each unit pixel row of the pixel array, and each transfer control line is assigned to an assigned row.
  • the select control line is provided for each column of unit pixels of the pixel array, each select control line is connected to each unit pixel of the assigned column, and the control unit By generating a transfer control signal, selecting the transfer control line, and outputting the generated transfer control signal to the selected transfer control line, the charge for each unit pixel in a desired row of the pixel array
  • the charge transfer is performed by generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line.
  • the performed row of the unit pixels of the pixel array was, it is possible to read out the signal level of the floating diffusion unit pixel of a desired sequence.
  • the unit pixel group is a pixel array in which unit pixels are arranged in an array, the transfer control line is provided for each unit pixel column of the pixel array, and each transfer control line is assigned to an assigned column.
  • the select control line is provided for each unit pixel row of the pixel array, each select control line is connected to each unit pixel of the assigned row, and the control unit
  • By generating a transfer control signal, selecting the transfer control line, and outputting the generated transfer control signal to the selected transfer control line the charge for each unit pixel in a desired column of the pixel array
  • the charge transfer is performed by generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line.
  • the performed columns of unit pixels of the pixel array was, it is possible to read out the signal level of the floating diffusion unit pixel of a desired row.
  • the unit pixel group is a pixel array in which unit pixels are arranged in an array, and the transfer control line is provided for each unit pixel row of the pixel array, and each unit pixel in the row to which each unit pixel is assigned.
  • a control line is provided for each row or column of unit pixels of the pixel array, each select control line is connected to each unit pixel of the assigned row or column, and the control unit generates the transfer control signal And selecting the first transfer control line and the second transfer control line, and outputting the generated transfer control signal to the selected first transfer control line and the second transfer control line.
  • the pixel array Transfer the charge to a desired unit pixel, generate the select control signal, select the select control line in a row or column including the unit pixel that has transferred the charge, By outputting the generated select control signal to the selected select control line, it is possible to read the signal level of the floating diffusion of the unit pixel to which the charge has been transferred.
  • the unit pixel group is a pixel array in which unit pixels are arranged in an array, the transfer control line is provided for each unit pixel of the pixel array, and the select control line is a unit pixel of the pixel array.
  • each select control line is connected to each unit pixel of the assigned row or column, the control unit generates the transfer control signal, selects the transfer control line, generates By outputting the transfer control signal to the selected transfer control line, the charge is transferred to a desired unit pixel of the pixel array, and further, the select control signal is generated, By selecting the select control line in the row or column including the unit pixel to which the transfer has been performed, and outputting the generated select control signal to the selected select control line, the charge transfer is performed. It is possible to read out the signal level of the floating diffusion unit pixels were performed.
  • the unit pixel includes a plurality of photodiodes, and the control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line. Accordingly, the charge accumulated in the desired photodiode can be transferred to the desired combination of unit pixels in the unit pixel group.
  • the control unit can generate the select control signal, select all the select control lines, and output the generated select control signal to all the select control lines, thereby performing an auto-zero operation. .
  • It may further include an A / D conversion unit that A / D converts the level of the floating diffusion read from the unit pixel based on the control of the control unit.
  • the A / D converter is provided for each partial region that divides the region where the unit pixel group is formed into a plurality of levels, and the floating diffusion level read from the unit pixels included in the corresponding partial region Can be A / D converted.
  • the A / D converter can be formed on a semiconductor substrate different from the semiconductor substrate on which the unit pixel group is formed.
  • the A / D conversion unit compares a reference voltage generation unit that generates a reference voltage, a level of the floating diffusion read from the unit pixel, and the reference voltage generated by the reference voltage generation unit.
  • the reference voltage generation unit, the comparison unit, and the counter are different from a semiconductor substrate on which the unit pixel group is formed. It can be formed on a semiconductor substrate.
  • the A / D conversion unit compares a reference voltage generation unit that generates a reference voltage, a level of the floating diffusion read from the unit pixel, and the reference voltage generated by the reference voltage generation unit. And a counter that counts until the comparison result of the comparison unit changes, and the counter is formed on a semiconductor substrate different from the semiconductor substrate on which the unit pixel group is formed. it can.
  • the level of the floating diffusion read from the unit pixel is transmitted from a semiconductor substrate on which the unit pixel group is formed to a semiconductor substrate on which the A / D conversion unit is formed by one or a plurality of wirings. be able to.
  • One aspect of the present technology also generates a reset control signal for controlling the reset of the floating diffusion of the unit pixel, and the reset control signal for the unit pixel to which the unit pixel group consisting of a plurality of unit pixels is connected.
  • the reset signal is transmitted to the selected reset control line, and the floating diffusion is reset for a desired combination of unit pixels of the unit pixel group.
  • Generating a select control signal for controlling reading of the level of the floating diffusion selecting a select control line for transmitting the select control signal to the unit pixel to which the unit pixel group itself is connected, and generating The selected control signal is output to the selected select control line.
  • the floating diffusion This is a control method for performing reading at a certain level.
  • Another aspect of the present technology includes an imaging unit that images a subject and an image processing unit that performs image processing on image data obtained by imaging by the imaging unit, and the imaging unit is a unit including a plurality of unit pixels.
  • a reset control line for transmitting a reset control signal for controlling resetting of a floating diffusion is connected to the pixel group, to the unit pixel to which the unit pixel group is connected, and the unit pixel group is connected to itself.
  • a select control line that transmits a select control signal for controlling reading of the level of the floating diffusion, the reset control signal is generated, the reset control line is selected, and the generated reset control signal is By outputting to the selected reset control line, for a desired unit pixel combination of the unit pixel group
  • the reset control signal is output by resetting the floating diffusion, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line.
  • a reset control signal for controlling the reset of the floating diffusion of the unit pixel is generated, and the reset control signal is transmitted to the unit pixel to which the unit pixel group including a plurality of unit pixels is connected.
  • the reset control line to be selected is selected and the generated reset control signal is output to the selected reset control line
  • the floating diffusion is reset in the desired unit pixel combination of the unit pixel group, and the floating diffusion is performed.
  • a select control signal for controlling the reading of the selected level is generated, a select control line for transmitting the select control signal to the unit pixel to which the unit pixel group itself is connected is selected, and the generated select control signal is selected.
  • the imaging device captures an image of a subject, generates a reset control signal that controls resetting of the floating diffusion of the unit pixel, and connects the unit pixel group itself including a plurality of unit pixels.
  • a reset control line that transmits a reset control signal to the unit pixel and outputting the generated reset control signal to the selected reset control line
  • the floating diffusion is reset, a select control signal for controlling the reading of the floating diffusion level is generated, and a select control line for transmitting the select control signal to the unit pixel to which the unit pixel group itself is connected is selected.
  • the generated select control signal is selected
  • the floating diffusion in the desired unit pixel combination of the unit pixel group including any one of the unit pixels of the combination to which the reset control line to which the reset control signal is output is connected by being output to the rect control line Level reading is performed.
  • a captured image can be obtained. Further, according to the present technology, it is possible to read out the pixel signal more easily.
  • First embodiment image sensor
  • Second embodiment imaging device
  • Pixel XY address selection methods include XY addressing of the readout section and XY addressing of the charge transfer section.
  • the former is an essential technique for the XY address selection method, and the latter is necessary or unnecessary depending on the XY address selection method.
  • Non-Patent Document 1 a structure combining a three-transistor (3Tr) pixel operation and a select control line (SEL) was conceivable.
  • the reset control line (RST) and the select control line (SEL) are arranged in the same direction (both in the row direction), and the reset voltage VR is arranged vertically. Therefore, the transfer control signal must be converted to an XY address. Therefore, there is only one floating diffusion (FD) that is reset at the same time, so only one charge transfer can be performed, and simultaneous charge transfer cannot be performed.
  • FD floating diffusion
  • the transfer control signal is not always converted to an XY address, the signal may be destroyed. Further, since the select control lines (SEL) are combined into one row in order to reduce the number of transistors (Tr), the symmetry of the layout is lost between pixels with and without the select control line (SEL). There was a risk of it.
  • a unit pixel group composed of a plurality of unit pixels, and a reset control line for transmitting a reset control signal for controlling resetting of the floating diffusion to the unit pixel to which the unit pixel group is connected.
  • Select a control line that transmits a select control signal that controls reading of the floating diffusion level and a reset control signal for the unit pixel to which the unit pixel group is connected.
  • control unit can easily select a desired pixel by selecting the reset control line and the select control line. Therefore, by performing resetting in units of rows (or units of columns), even if charge transfer is performed in units of rows (or units of columns), signals are not destroyed and pixels can be sequentially read out one by one. That is, the pixel signal can be read more easily.
  • the unit pixel group is a pixel array in which each unit pixel is arranged in an array, a reset control line is provided for each unit pixel row of the pixel array, and each reset control line is assigned to each assigned row.
  • a select control line may be provided for each column of unit pixels in the pixel array, and each select control line may be connected to each unit pixel in the assigned column. Then, the control unit generates a reset control signal, selects a reset control line, and outputs the generated reset control signal to the selected reset control line, whereby each unit pixel in a desired row of the pixel array is output.
  • the reset is performed, the select control signal is generated, the select control line is selected, and the generated select control signal is output to the selected select control line, so that the row of the unit pixel of the pixel array that has been reset
  • the reset level of the floating diffusion of the unit pixel in the desired column may be read out.
  • a reset control line may be provided for each column of unit pixels of the pixel array, and a select control line may be provided for each row of unit pixels of the pixel array.
  • the unit pixel group of the unit pixel group may further include a transfer control line that transmits a transfer control signal for controlling the transfer of the charge accumulated in the photodiode to the floating diffusion. Good. Then, the control unit generates a transfer control signal, selects a transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby a desired unit pixel combination of the unit pixel group is obtained. Alternatively, charge transfer may be performed.
  • the unit pixel group is a pixel array in which each unit pixel is arranged in an array, a transfer control line is provided for each unit pixel row of the pixel array, and each transfer control line is assigned to each assigned row.
  • a select control line may be provided for each column of unit pixels in the pixel array, and each select control line may be connected to each unit pixel in the assigned column.
  • the control unit generates a transfer control signal, selects a transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby each unit pixel in a desired row of the pixel array is output.
  • the charge transfer is performed, the select control signal is generated, the select control line is selected, and the generated select control signal is output to the selected select control line. You may make it read the signal level of the floating diffusion of the unit pixel of the desired column of the unit pixel row.
  • a transfer control line may be provided for each column of unit pixels of the pixel array, and a select control line may be provided for each row of unit pixels of the pixel array.
  • an A / D conversion unit is provided for each partial region that divides the region where the unit pixel group is formed into a plurality of regions, and the level of the floating diffusion read from the unit pixels included in the corresponding partial region.
  • a / D conversion may be performed.
  • the reset control line (RST) and the select control line (SEL), which are constituent elements of the conventional 4-transistor (4Tr) type pixel, are used to control the XY address of the pixel from which the signal is read. Can do. That is, the configuration for designating unit pixels for reading signals can be made easier. Therefore, the pixel signal can be read out more easily.
  • the transfer control signal is not required to be an XY address.
  • all the pixel unit cells can have the same structure, so that each unit pixel does not have an asymmetric structure, and deterioration of characteristics due to this can be reduced.
  • an output difference may occur even for the same color, such as a difference in the Gr / Gb characteristics of the Bayer array.
  • a plurality of pixel outputs can be bundled and connected to the A / D converter. Even when pixels and circuits are mixed on a single substrate, or when connecting to an A / D converter that spans multiple columns, there is no need to provide a column switch between the column and AD converter. be able to.
  • FIG. 1 shows a configuration example of a pixel region of an image sensor which is an embodiment of an image sensor to which the present technology is applied.
  • An image sensor 100 shown in FIG. 1 is a device that photoelectrically converts light from a subject and outputs it as image data.
  • the image sensor 100 is configured as a CMOS image sensor using CMOS (Complementary Metal Oxide Semiconductor), a CCD image sensor using CCD (Charge Coupled Device), or the like.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the image sensor 100 includes a pixel array 101.
  • the pixel array 101 is a pixel region in which pixel configurations (unit pixels 111) having photoelectric conversion elements such as photodiodes are arranged in a planar shape or a curved shape.
  • the pixel array 101 has unit pixels 111 arranged in an array.
  • the horizontal arrangement of the unit pixels 111 indicates a row
  • the vertical arrangement indicates a column.
  • Each unit pixel 111 receives light from a subject, photoelectrically converts the incident light, accumulates charges, and outputs the charges as pixel signals at a predetermined timing.
  • a pixel unit 121 including unit pixels 111 of a plurality of rows and a plurality of columns is formed in the pixel array 101. That is, the pixel unit is a unit pixel group included in a partial region that divides the pixel region including the pixel array 101 into a plurality of regions. In the case of the example of FIG. 1, the pixel unit 121 includes a 4 ⁇ 4 unit pixel 111.
  • the size and shape of the pixel unit 121 are arbitrary.
  • the size of the pixel unit 121 may be configured by unit pixels of 4 ⁇ 4, 4 ⁇ 8, 8 ⁇ 4, 8 ⁇ 8, 4 ⁇ 16, 8 ⁇ 16, 16 ⁇ 4, 16 ⁇ 8, and 16 ⁇ 16.
  • each unit pixel 111 belongs to one of the pixel units 121.
  • the size and shape of each pixel unit 121 may not be the same.
  • each unit pixel 111 is shown as a square having the same size. However, the size and shape of each unit pixel 111 are arbitrary, and may not be square, but may be the same size. And it may not be a shape.
  • FIG. 2 is a diagram illustrating an example of a part of the configuration of the image sensor 100.
  • each pixel unit 121 of the image sensor 100 is provided with an A / D converter 131.
  • three pixel units 121 pixel units 121-1 to 121-3
  • three A / D converters 131 are formed for them.
  • the A / D conversion unit 131-1 is connected to the pixel unit 121-1, and A / D converts signals read from each unit pixel of the pixel unit 121-1.
  • the A / D conversion unit 131-2 is connected to the pixel unit 121-2 and performs A / D conversion on a signal read from each unit pixel of the pixel unit 121-2.
  • the A / D conversion unit 131-3 is connected to the pixel unit 121-3 and performs A / D conversion on signals read from each unit pixel of the pixel unit 121-3.
  • the A / D converter 131-1 to A / D converter 131-3 are simply referred to as the A / D converter 131 when there is no need to distinguish between them. That is, an A / D conversion unit 131 is provided for each pixel unit 121, and a signal read from each unit pixel 111 in the pixel unit 121 is supplied to the A / D conversion unit 131 connected to the pixel unit 121. And A / D converted.
  • the signal is sequentially read from each unit pixel 111 in the pixel unit 121, for example, by one unit pixel, and supplied to the A / D converter 131.
  • the signal readout order of each unit pixel 111 in the pixel unit 121 is arbitrary.
  • the data may be read in a predetermined order such as a raster scan order or may be read at random.
  • the pixel unit 121 and the A / D converter 131 are formed on the same semiconductor substrate.
  • the image sensor 100 may be configured such that its circuit configuration is formed on two semiconductor substrates (laminated chips (the pixel substrate 141 and the circuit substrate 142)) that are superimposed on each other. Good.
  • a pixel region (that is, the pixel array 101) is formed on the pixel substrate 141.
  • N pixel units 121 pixel units 121-1 to 121-N
  • An A / D conversion unit 131 corresponding to each pixel unit 121 is formed on the circuit board 142.
  • the A / D converter 131 is formed on the circuit board 142 at a position where the pixel unit 121 corresponding to the A / D converter 131 is stacked on the pixel substrate 141.
  • the A / D converter 131-K is formed on the pixel substrate 141 in a state where the pixel substrate 141 and the circuit substrate 142 are bonded together, and the pixel unit 121 corresponding to the A / D converter 131-K. -K is formed at the position where it is stacked.
  • the transmission path of the signal read from each single pixel of the pixel unit 121-K is connected to the transmission path of the signal to be compared with the reference potential of the A / D converter 131-K.
  • a signal read from each single pixel of the pixel unit 121-K is input to the A / D conversion unit 131-K and A / D converted.
  • the number of connections can be suppressed to one or several. Therefore, it is not necessary to adjust the area required for connection to the pixel pitch, and since the number of connections is small, an improvement in yield can be expected.
  • the number (number of layers) of the semiconductor substrates (layered chips) is arbitrary, and may be three or more.
  • FIG. 4 shows a configuration example of one pixel unit 121 minutes.
  • the circuit configuration surrounded by the dotted line 151 shows an example of the circuit configuration of one unit pixel 111.
  • FIG. 5 shows an example of the main configuration of the circuit configuration within this dotted line 151 (that is, the circuit configuration of the unit pixel 111).
  • the unit pixel 111 includes a photodiode 171, a transfer transistor 172, a reset transistor 173, an amplification transistor 174, and a select transistor 175.
  • the photodiode (PD) 171 photoelectrically converts the received light into a photocharge (here, photoelectrons) having a charge amount corresponding to the light quantity, and accumulates the photocharge.
  • the anode electrode of the photodiode 171 is connected to the ground (pixel ground) of the pixel region, and the cathode electrode is connected to the floating diffusion (FD) via the transfer transistor 172.
  • a method may be adopted in which the cathode electrode of the photodiode 171 is connected to the power source (pixel power source) of the pixel region, the anode electrode is connected to the floating diffusion (FD) via the transfer transistor 172, and the photocharge is read as a photohole. .
  • the transfer transistor 172 controls reading of the photocharge from the photodiode 171.
  • the transfer transistor 172 has a drain electrode connected to the floating diffusion and a source electrode connected to the cathode electrode of the photodiode 171.
  • a transfer control line (TRG) for transmitting a transfer control signal supplied from the area scanning unit 152 (FIG. 4) is connected to the gate electrode of the transfer transistor 172.
  • the reset transistor 173 resets the potential of the floating diffusion (FD).
  • the reset transistor 173 has a drain electrode connected to the power supply potential and a source electrode connected to the floating diffusion (FD). Further, a reset control line (RST) for transmitting a reset control signal supplied from the area scanning unit 152 (FIG. 4) is connected to the gate electrode of the reset transistor 173.
  • the reset control signal (RST) that is, the gate potential of the reset transistor 173
  • the floating diffusion (FD) is disconnected from the reset voltage wiring (VR) (that is, the reset voltage VR).
  • the reset control signal (RST) that is, the gate potential of the reset transistor 173) is on, the charge of the floating diffusion (FD) is discarded to the reset voltage wiring (VR), and the floating diffusion (FD) is reset.
  • the amplification transistor 174 amplifies the potential change of the floating diffusion (FD) and outputs it as an electric signal (analog signal).
  • the amplification transistor 174 has a gate electrode connected to the floating diffusion (FD), a drain electrode connected to the source follower power supply voltage, and a source electrode connected to the drain electrode of the select transistor 175.
  • the amplification transistor 174 outputs the potential of the floating diffusion (FD) reset by the reset transistor 173 to the select transistor 175 as a reset signal (reset level).
  • the amplification transistor 174 outputs the potential of the floating diffusion (FD) to which the photocharge has been transferred by the transfer transistor 172, to the select transistor 175 as a light accumulation signal (signal level).
  • the select transistor 175 controls the output of the electrical signal supplied from the amplification transistor 174 to the vertical signal line VSL (that is, the A / D conversion unit 131).
  • the select transistor 175 has a drain electrode connected to the source electrode of the amplification transistor 174 and a source electrode connected to the vertical signal line VSL.
  • a select control line (SEL) for transmitting a select control signal supplied from the area scanning unit 152 (FIG. 4) is connected to the gate electrode of the select transistor 175.
  • the select control signal (SEL) that is, the gate potential of the select transistor 175) is in the OFF state, the amplification transistor 174 and the vertical signal line VSL are electrically disconnected. Therefore, in this state, no reset signal, pixel signal, or the like is output from the unit pixel.
  • the select control signal (SEL) that is, the gate potential of the select transistor 175
  • the unit pixel is selected. That is, the amplification transistor 174 and the vertical signal line VSL are electrically connected, and a signal output from the amplification transistor 174 is supplied to the vertical signal line VSL as a pixel signal of the unit pixel. That is, a reset signal, a pixel signal, and the like are read from the unit pixel.
  • a reset voltage wiring (VR), a reset control line (RST), and a transfer control line (TRG) are formed for each row (horizontal alignment) of the unit pixel 111 group arranged in an array.
  • the pixel unit 121 is composed of 4 ⁇ 4 unit pixels, four reset voltage lines (VR), reset control lines (RST), and four transfer control lines (TRG) are formed ( Reset voltage wiring VR1 to reset voltage wiring VR4, reset control line RST1 to reset control line RST4, transfer control line TRG1 to transfer control line TRG4).
  • the reset voltage wiring VR1, the reset control line RST1, and the transfer control line TRG1 are connected to each unit pixel in the top row of the pixel unit 121 shown in FIG.
  • the reset voltage wiring VR2, the reset control line RST2, and the transfer control line TRG2 are connected to each unit pixel in the second row from the top of the pixel unit 121 shown in FIG.
  • the reset voltage wiring VR3, the reset control line RST3, and the transfer control line TRG3 are connected to each unit pixel in the third row from the top of the pixel unit 121 shown in FIG.
  • the reset voltage line VR4, the reset control line RST4, and the transfer control line TRG4 are connected to each unit pixel in the bottom row of the pixel unit 121 shown in FIG.
  • a select control line (SEL) is formed for each column (arrangement in the vertical direction) of the group of unit pixels 111 arranged in an array.
  • the pixel unit 121 is composed of 4 ⁇ 4 unit pixels, four select control lines (SEL) are formed (select control line SEL1 to select control line SEL4).
  • the select control line SEL1 is connected to each unit pixel in the leftmost column of the pixel unit 121 shown in FIG.
  • the select control line SEL2 is connected to each unit pixel in the second column from the left of the pixel unit 121 shown in FIG.
  • the select control line SEL3 is connected to each unit pixel in the third column from the left of the pixel unit 121 shown in FIG.
  • the select control line SEL4 is connected to each unit pixel in the rightmost column of the pixel unit 121 shown in FIG.
  • the image sensor 100 has an area scanning unit 152.
  • the area scanning unit 152 is an example of an embodiment of control that controls reading of a signal from each unit pixel 111.
  • the area scanning unit 152 supplies a reset voltage to each reset voltage wiring (VR) (reset voltage wiring VR1 to reset voltage wiring VR4).
  • VR reset voltage wiring
  • the area scanning unit 152 generates a reset control signal, selects any one of the reset control lines RST1 to RST4, and outputs the generated reset control signal to the selected reset control line (RST). That is, the area scanning unit 152 supplies the reset control signal to each unit pixel (the gate of the reset transistor 173) connected to the selected reset control line (RST).
  • the area scanning unit 152 generates a transfer control signal, selects any one of the transfer control lines TRG1 to TRG4, and outputs the generated transfer control signal to the selected transfer control line (TRG). That is, the area scanning unit 152 supplies the transfer control signal to each unit pixel (the gate of the transfer transistor 172) connected to the selected transfer control line (TRG).
  • the area scanning unit 152 generates a select control signal, selects one of the select control lines SEL1 to SEL4, and outputs the generated select control signal to the selected select control line (SEL). That is, the area scanning unit 152 supplies the select control signal to each unit pixel (the gate of the select transistor 175) connected to the selected select control line (SEL).
  • the area scanning unit 152 can easily select a desired pixel by selecting the reset control line (RST) and the select control line (SEL). That is, the area scanning unit 152 can more easily read out signals one by one from each unit pixel. At that time, it is possible to handle both charge transfer at the same time in units of rows, and addition of Tr and wiring to XY addresses. In the former case, after the reset voltage for one row is read, charge transfer is performed, and the signals for one row are read sequentially. In the latter case, it is sufficient to sequentially read out signals by performing charge transfer for one pixel at a desired address.
  • the image sensor 100 includes a D / A converter (DAC) 161, a comparator (CMP) 162, and a counter (CNT) 163.
  • DAC D / A converter
  • CMP comparator
  • CNT counter
  • the D / A conversion unit 161 generates a predetermined ramp signal as a reference voltage supplied to the comparison unit 162.
  • the D / A conversion unit 161 supplies the generated ramp signal to the other input of the comparison unit 162.
  • the comparison unit 162 compares the reference voltage (ramp signal) supplied from the D / A conversion unit 161 with the signal read from each unit pixel 111 supplied from the pixel unit 121, and compares the comparison result (which (Information indicating whether the value of the
  • the counter 163 counts the period from the start of counting until the value of the comparison result changes, and outputs the count value as digital data of the signal input to the comparison unit 162 when the value of the comparison result changes. .
  • the D / A conversion unit (DAC) 161, the comparison unit (CMP) 162, and the counter (CNT) 163 are the configuration of the A / D conversion unit 131.
  • the signal of each unit pixel in the pixel unit 121 is read out pixel by pixel under the control of the area scanning unit 152 and supplied to the comparison unit 162.
  • the comparison unit 162 sequentially compares each supplied signal with the ramp signal and outputs the comparison result.
  • the counter 163 counts until the comparison result changes, and outputs the count value. In this way, the A / D converter 131 can A / D convert signals read from the respective pixels in the corresponding pixel unit 121.
  • the area scanning unit 152 and the configuration of one pixel unit 121 are shown. However, the area scanning unit 152 applies to all the pixel units 121 of the pixel array 101. Can be controlled as well.
  • the A / D conversion unit is not limited to the configuration of the D / A conversion unit 161, the comparison unit (CMP) 162, and the counter (CNT) 163 described above.
  • the A / D conversion unit is a successive approximation type or a digital sigma type A / D It may be a conversion unit or the like.
  • the area scanning unit 152 initializes the photodiode (PD) 171 in step S101. For example, the area scanning unit 152 selects the reset voltage wiring VR1 to the reset voltage wiring VR4, the reset control line RST1 to the reset control line RST4, and the transfer control line TRG1 to the transfer control line TRG4, and turns them all on. Thus, the photodiodes 171 of all the unit pixels 111 are initialized (global reset is performed). The area scanning unit 152 may perform a rolling reset that sequentially initializes the photodiodes 171 of each unit pixel.
  • the area scanning unit 152 initializes the floating diffusion (FD) in step S102.
  • the area scanning unit 152 initializes the floating diffusion (FD) of all the unit pixels 111 by selecting the reset control lines RST1 to RST4 and turning them all on.
  • step S103 the area scanning unit 152 selects a row (reading row) of unit pixels from which a signal is read. For example, the area scanning unit 152 selects any one of the reset control lines RST1 to RST4 and turns it on, thereby selecting a desired row of the unit pixels 111 as a readout row.
  • step S104 the area scanning unit 152 sequentially selects a column of unit pixels from which the reset level is read (reset level read column). For example, the area scanning unit 152 selects any one of the select control lines SEL1 to SEL4 and turns it on, thereby selecting a desired unit pixel 111 column as a reset level readout column. . The area scanning unit 152 repeats this process, and sequentially selects each column as a reset level read column. In this way, the reset level is sequentially read out from each pixel in the readout row one pixel at a time.
  • step S105 the area scanning unit 152 transfers the charges accumulated in the photodiodes 171 in the readout row to the floating diffusion.
  • the area scanning unit 152 selects the transfer control line assigned to the read line selected in step S103 from the transfer control lines TRG1 to TRG4, and turns it on to thereby read the read line.
  • the charge of the photodiode 171 is transferred to the floating diffusion.
  • step S106 the area scanning unit 152 sequentially selects a unit pixel column (pixel signal read column) from which the pixel signal is read. For example, the area scanning unit 152 selects any one of the select control lines SEL1 to SEL4 and turns it on, thereby selecting a desired unit pixel 111 column as a pixel signal readout column. . The area scanning unit 152 repeats this process, and sequentially selects each column as a pixel signal readout column. In this way, pixel signals are sequentially read out from each pixel in the readout row one pixel at a time.
  • FIG. 7 is a timing chart showing an example of how the reset level and pixel signal are read out by the above-described read transmission control process.
  • the area scanning unit 152 can easily read out the signal level of each pixel only by selecting each control line as in the case of the conventional simultaneous row reading.
  • a plurality of semiconductor substrates may be provided, and the A / D converter may be formed on a semiconductor substrate different from the semiconductor substrate on which the unit pixel group is formed. That is, the configuration of the image sensor 100 shown in FIG. 4 may be formed on a plurality of semiconductor substrates as shown in FIG. An example in that case is shown in FIG.
  • the A / D conversion unit compares the reference voltage generation unit that generates the reference voltage, the comparison unit that compares the level of the floating diffusion read from the unit pixel with the reference voltage generated by the reference voltage generation unit, and the comparison A counter that counts until the comparison result of the unit changes, and the reference voltage generation unit, the comparison unit, and the counter are formed on a semiconductor substrate different from the semiconductor substrate on which the unit pixel group is formed. Also good.
  • the configuration of the pixel array 101 is formed on the pixel substrate 141, and the A / D converter 131 (D / A converter (DAC) 161, comparator (CMP) 162, and counter ( CNT) 163) is formed on the circuit board 142.
  • D / A converter D / A converter
  • CMP comparator
  • CNT counter
  • the counter may be formed on a semiconductor substrate different from the semiconductor substrate on which the unit pixel group is formed. An example in that case is shown in FIG.
  • the configuration of the pixel array 101 and the configurations of the D / A converter (DAC) 161 and the comparator (CMP) 162 are formed on the pixel substrate 141, and the counter (CNT) 163) is a circuit. It is formed on the substrate 142.
  • the floating diffusion level read from the unit pixel may be transmitted by a plurality of wirings from the semiconductor substrate on which the unit pixel group is formed to the semiconductor substrate on which the A / D conversion unit is formed. Good.
  • FIG. 10 shows an example in that case.
  • the configuration of the pixel array 101 is formed on the pixel substrate 141 as in the example of FIG. 8, and the A / D conversion unit 131 (D / A conversion unit (DAC) 161, comparison unit (CMP)). 162 and a counter (CNT) 163) are formed on the circuit board 142.
  • the pixel substrate 141 and the circuit substrate 142 are connected by two wires.
  • a selection unit (SW) 181 is formed on the circuit board 142. The selection unit 181 selects either one or both of the signals transmitted from the two wirings from the pixel array 101, and supplies them to the comparison unit 162.
  • SF capacity addition and source follower
  • the position of the wiring (vertical signal line) connecting the circuit of each unit pixel of the pixel array 101 and the comparison unit 162 is arbitrary, and is not limited to the above-described example of FIG.
  • the wiring may have a horizontal configuration.
  • the unit pixels in each row are connected by the wiring, the wirings in each row are further connected at the end of the pixel unit 121, and are connected to the comparison unit 162 as one wiring. Is done.
  • the wiring may have a comb-like configuration.
  • the unit pixels of each row are connected by the wiring, and the wirings of each row are further connected at the central portion (other than the end) of the pixel unit 121 and compared as one wiring. Connected to the unit 162.
  • the reset power supply voltage and the source follower power supply voltage are supplied to the unit pixel 111 through different wirings.
  • the source follower power supply voltage may be supplied by a common wiring.
  • FIG. 13 An example is shown in FIG. In FIG. 13, a portion surrounded by a dotted line 191 is a configuration of one unit pixel. This is shown in FIG.
  • the configuration of the unit pixel 111 is basically the same as the example of FIG. 5, but in the example of FIG. 14, the drain electrode of the amplification transistor 174 is the reset voltage wiring. (VR) connected.
  • the reset voltage and the source follower power supply voltage can be supplied by the common wiring (reset voltage wiring (VR)).
  • the circuit configuration can be further simplified, and an increase in circuit area can be suppressed.
  • the unit pixel has a plurality of photodiodes, and the control unit generates a transfer control signal, selects a transfer control line, and outputs the generated transfer control signal to the selected transfer control line. You may make it perform the transfer of the electric charge accumulate
  • a plurality of photodiodes may share a circuit for reading out the charge.
  • the part surrounded by the dotted line 192 is the configuration of one unit pixel. This is shown in FIG.
  • the configuration of the unit pixel 111 is basically the same as the example of FIG. 5, but in the example of FIG. 16, two photodiodes 171 and two transfer transistors 172 are provided. (Photodiode 171-1 and photodiode 171-2, and transfer transistor 172-1 and transfer transistor 172-2).
  • a transfer control line (TRG) is formed for each transfer transistor 172.
  • the transfer transistor 172-1 is connected to the transfer control line TRG1
  • the transfer transistor 172-2 is connected to the transfer control line TRG2.
  • the area scanning unit 152 selects one of the transfer control line TRG1 and the transfer control line TRG2, thereby causing either one of the photodiode 171-1 or the photodiode 171-2 to transfer a charge. It can be selected as a diode. That is, the charge of the photodiode 171 connected to the transfer control line (TRG) to which the selected transfer control signal is transmitted is transferred to the floating diffusion. That is, the area scanning unit 152 can select not only a unit pixel from which a pixel signal is read, but also a photodiode in the unit pixel.
  • the arrangement of the photodiodes 171 is arbitrary. For example, it may be arranged in the horizontal direction in the figure, or may be arranged in an oblique direction. Further, the number of photodiodes sharing the circuit is arbitrary. For example, four photodiodes may share one circuit. In that case, the arrangement of the photodiodes is arbitrary. For example, the four photodiodes may be arranged in the horizontal direction in the figure, or two photodiodes may be arranged in the vertical direction in the figure and two in the horizontal direction in the figure (that is, 2 ⁇ 2).
  • the present technology can divert the conventional pixel layout and can also support pixel sharing, and thus can be downsized.
  • a transfer control line may be provided for each unit pixel of the pixel array. Then, the control unit generates a transfer control signal, selects a transfer control line, and outputs the generated transfer control signal to the selected transfer control line, thereby transferring charges to a desired unit pixel of the pixel array. May be performed. In that case, the control unit further generates a select control signal, selects a row or column select control line including the unit pixel to which the charge is transferred, and applies the generated select control signal to the selected select control line. By outputting, the signal level of the floating diffusion of the unit pixel to which the charge is transferred may be read out. FIG. 17 shows an example in that case.
  • the configuration surrounded by the dotted line 193 shows an example of the circuit configuration for one row of the unit pixel 111 of one pixel unit 121.
  • a transfer control line (TRG) is provided for each unit pixel in each row of the pixel unit (for example, in the case of the first row from the top, transfer control lines TRG1-1 to transfer control lines). TRG1-4).
  • a second transfer control line connected to each unit pixel in the assigned column may be provided.
  • the control unit generates the transfer control signal, selects the first transfer control line and the second transfer control line, and selects the generated transfer control signal.
  • the first transfer control line and the second transfer control By outputting to a line, the charge may be transferred to a desired unit pixel of the pixel array.
  • a select control line may be provided for each row or column of unit pixels of the pixel array, and each select control line may be connected to each unit pixel of the assigned row or column.
  • control unit generates a select control signal, selects a row or column select control line including the unit pixel to which the charge is transferred, and outputs the generated select control signal to the selected select control line.
  • select control signal selects a row or column select control line including the unit pixel to which the charge is transferred, and outputs the generated select control signal to the selected select control line.
  • FIG. 18 shows an example in that case.
  • the part surrounded by a dotted line 194 is the configuration of one unit pixel. This is shown in FIG.
  • the configuration of the unit pixel 111 is basically the same as the example of FIG. 5, but in the example of FIG. 19, the transfer transistor 172 is formed in a two-stage configuration. (Transfer transistor 172-1 and transfer transistor 172-2).
  • the gate of the transfer transistor 172-2 formed between the photodiode 171 and the floating diffusion is connected to the source of the transfer transistor 172-1.
  • the gate of the transfer transistor 172-1 is connected to the transfer control line TRGX, and the drain is connected to the transfer control line TRGY.
  • the transfer control line TRGX is assigned to a column of unit pixels, and is connected to the gate of the transfer transistor 172-1 of each unit pixel of the assigned column.
  • the transfer control line TRGY is assigned to a row of unit pixels, and is connected to the drain of the transfer transistor 172-1 of each unit pixel in the assigned row.
  • the area scanning unit 152 can select one unit pixel for transferring charges one by one by selecting the transfer control line TRGX and the transfer control line TRGY. That is, in this way, charge transfer can be performed for each unit pixel.
  • the present technology can cope with the XY addressing of the transfer control line.
  • a portion surrounded by a dotted line 195 is a configuration of one unit pixel. This is shown in FIG.
  • the configuration of the unit pixel 111 is basically the same as the example of FIG. 5, but in the example of FIG. 20, the transfer transistor 172 is formed in a two-stage configuration. (Transfer transistor 172-1 and transfer transistor 172-2).
  • the gate of the transfer transistor 172-1 is connected to the transfer control line TRGX.
  • the gate of the transfer transistor 172-2 is connected to the transfer control line TRGY.
  • the transfer control line TRGX is assigned to a unit pixel column, and is connected to the gate of the transfer transistor 172-1 of each unit pixel of the assigned column.
  • the transfer control line TRGY is assigned to a row of unit pixels, and is connected to the gate of the transfer transistor 172-2 of each unit pixel of the assigned row.
  • the area scanning unit 152 can select one unit pixel for transferring charges one by one by selecting the transfer control line TRGX and the transfer control line TRGY. That is, in this way, charge transfer can be performed for each unit pixel.
  • the present technology can cope with the XY addressing of the transfer control line.
  • a / D conversion unit 131 may perform a single slope operation. That is, the present technology can also be applied to an image sensor using a single slope A / D converter. An example of the flow of the read transmission control process in that case will be described with reference to the flowchart of FIG.
  • the area scanning unit 152 executes each process from step S121 to step S123 in the same manner as each process from step S101 to step S103 (FIG. 6).
  • step S124 the area scanning unit 152 selects all the select control lines (SEL) and outputs the generated select control signal to all the select control lines (SEL), thereby causing the auto-zero operation to be performed.
  • the area scanning unit 152 performs the process of step S125 in the same manner as the process of step S104 (FIG. 6).
  • step S126 the area scanning unit 152 selects all the select control lines (SEL) and outputs the generated select control signal to all the select control lines (SEL), thereby causing the auto-zero operation to be performed.
  • the area scanning unit 152 performs the processes of step S127 and step S128 in the same manner as the processes of step S105 and step S106 (FIG. 6).
  • FIG. 23 is a timing chart showing an example of how the reset level and the pixel signal are read out by the above-described read transmission control process.
  • the area scanning unit 152 can easily read out the signal level of each pixel only by selecting each control line as in the case of the conventional simultaneous row reading. That is, even in the case of an image sensor having a single slope A / D converter, it is possible to read out the pixel signal more easily.
  • FIG. 24 is a block diagram illustrating a main configuration example of an imaging apparatus as an example of an electronic apparatus to which the present technology is applied.
  • An imaging apparatus 600 shown in FIG. 24 is an apparatus that images a subject and outputs an image of the subject as an electrical signal.
  • the imaging apparatus 600 includes an optical unit 611, a CMOS image sensor 612, an image processing unit 613, a display unit 614, a codec processing unit 615, a storage unit 616, an output unit 617, a communication unit 618, and a control unit 621. , An operation unit 622, and a drive 623.
  • the optical unit 611 includes a lens that adjusts the focal point to the subject and collects light from the focused position, an aperture that adjusts exposure, a shutter that controls the timing of imaging, and the like.
  • the optical unit 611 transmits light (incident light) from the subject and supplies the light to the CMOS image sensor 612.
  • the CMOS image sensor 612 photoelectrically converts incident light, A / D converts a signal for each pixel (pixel signal), performs signal processing such as CDS, and supplies the processed captured image data to the image processing unit 613. .
  • the image processing unit 613 performs image processing on the captured image data obtained by the CMOS image sensor 612. More specifically, the image processing unit 613 performs, for example, color mixture correction, black level correction, white balance adjustment, demosaic processing, matrix processing, gamma correction, on the captured image data supplied from the CMOS image sensor 612. And various image processing such as YC conversion.
  • the image processing unit 613 supplies captured image data subjected to image processing to the display unit 614.
  • the display unit 614 is configured as a liquid crystal display or the like, for example, and displays an image of captured image data (for example, an image of a subject) supplied from the image processing unit 613.
  • the image processing unit 613 further supplies the captured image data subjected to the image processing to the codec processing unit 615 as necessary.
  • the codec processing unit 615 subjects the captured image data supplied from the image processing unit 613 to encoding processing of a predetermined method, and supplies the obtained encoded data to the storage unit 616. Further, the codec processing unit 615 reads the encoded data recorded in the storage unit 616, decodes it to generate decoded image data, and supplies the decoded image data to the image processing unit 613.
  • the image processing unit 613 performs predetermined image processing on the decoded image data supplied from the codec processing unit 615.
  • the image processing unit 613 supplies the decoded image data subjected to the image processing to the display unit 614.
  • the display unit 614 is configured as a liquid crystal display, for example, and displays an image of the decoded image data supplied from the image processing unit 613.
  • the codec processing unit 615 supplies the encoded data obtained by encoding the captured image data supplied from the image processing unit 613 or the encoded data of the captured image data read from the storage unit 616 to the output unit 617. You may make it output outside the imaging device 600.
  • the codec processing unit 615 supplies captured image data before encoding or decoded image data obtained by decoding encoded data read from the storage unit 616 to the output unit 617, and outputs the image data to the outside of the imaging device 600. You may make it output to.
  • the codec processing unit 615 may transmit the captured image data, the encoded data of the captured image data, or the decoded image data to another device via the communication unit 618. Further, the codec processing unit 615 may acquire captured image data and encoded data of the image data via the communication unit 618. The codec processing unit 615 appropriately encodes and decodes the captured image data acquired through the communication unit 618 and the encoded data of the image data. The codec processing unit 615 may supply the obtained image data or encoded data to the image processing unit 613 as described above, or output it to the storage unit 616, the output unit 617, and the communication unit 618. Good.
  • the storage unit 616 stores encoded data supplied from the codec processing unit 615 and the like.
  • the encoded data stored in the storage unit 616 is read out and decoded by the codec processing unit 615 as necessary.
  • the captured image data obtained by the decoding process is supplied to the display unit 614, and a captured image corresponding to the captured image data is displayed.
  • the output unit 617 has an external output interface such as an external output terminal, and outputs various data supplied via the codec processing unit 615 to the outside of the imaging apparatus 600 via the external output interface.
  • the communication unit 618 supplies various types of information such as image data and encoded data supplied from the codec processing unit 615 to another device that is a communication partner of predetermined communication (wired communication or wireless communication). Further, the communication unit 618 acquires various types of information such as image data and encoded data from another device that is a communication partner of predetermined communication (wired communication or wireless communication), and supplies the acquired information to the codec processing unit 615. .
  • the control unit 621 controls the operation of each processing unit (each processing unit indicated by a dotted line 620, the operation unit 622, and the drive 623) of the imaging apparatus 600.
  • the operation unit 622 includes, for example, an arbitrary input device such as a jog dial (trademark), a key, a button, or a touch panel.
  • the operation unit 622 receives an operation input by a user or the like and supplies a signal corresponding to the operation input to the control unit 621. To do.
  • the drive 623 reads information stored in a removable medium 624 attached to the drive 623 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the drive 623 reads various information such as programs and data from the removable medium 624 and supplies the information to the control unit 621. Further, the drive 623 stores various information such as image data and encoded data supplied through the control unit 621 in the removable medium 624 when the writable removable medium 624 is attached to the drive 623. .
  • the CMOS image sensor 612 of the imaging apparatus 600 As the CMOS image sensor 612 of the imaging apparatus 600 as described above, the present technology described above in each embodiment is applied. That is, the image sensor 100 described above is used as the CMOS image sensor 612. Thereby, the CMOS image sensor 612 can read out the pixel signal more easily. Therefore, the imaging apparatus 600 can obtain a captured image more easily by imaging a subject.
  • the imaging apparatus to which the present technology is applied is not limited to the configuration described above, and may have another configuration.
  • an information processing apparatus having an imaging function such as a mobile phone, a smart phone, a tablet device, and a personal computer.
  • it may be a camera module used by being mounted on another information processing apparatus (or mounted as an embedded device).
  • the series of processes described above can be executed by hardware or software.
  • a program constituting the software is installed from a network or a recording medium.
  • this recording medium is configured by a removable medium 624 on which a program is recorded, which is distributed to distribute the program to the user, separately from the apparatus main body.
  • the removable medium 624 includes a magnetic disk (including a flexible disk) and an optical disk (including a CD-ROM and a DVD). Further, magneto-optical disks (including MD (Mini-Disc)) and semiconductor memories are also included.
  • the program can be installed in the storage unit 616 by attaching the removable medium 624 to the drive 623.
  • This program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. In that case, the program can be received by the communication unit 618 and installed in the storage unit 616.
  • a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be received by the communication unit 618 and installed in the storage unit 616.
  • this program can be installed in advance in a ROM (Read Only Memory) or the like in the storage unit 616 or the control unit 621.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
  • each step described above can be executed in each device described above or any device other than each device described above.
  • the device that executes the process may have the functions (functional blocks and the like) necessary for executing the process described above.
  • Information necessary for processing may be transmitted to the apparatus as appropriate.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
  • the present technology can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • the present technology is not limited to this, and any configuration mounted on such a device or a device constituting the system, for example, a processor as a system LSI (Large Scale Integration), a module using a plurality of processors, a plurality of It is also possible to implement as a unit using other modules, a set obtained by further adding other functions to the unit (that is, a partial configuration of the apparatus), and the like.
  • a processor as a system LSI (Large Scale Integration)
  • a module using a plurality of processors a plurality of It is also possible to implement as a unit using other modules, a set obtained by further adding other functions to the unit (that is, a partial configuration of the apparatus), and the like.
  • the imaging apparatus to which the present technology is applied is not limited to the configuration described above, and may have another configuration.
  • an information processing apparatus having an imaging function such as a mobile phone, a smart phone, a tablet device, and a personal computer.
  • it may be a camera module used by being mounted on another information processing apparatus (or mounted as an embedded device).
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
  • this technique can also take the following structures.
  • the reset control signal is output by resetting the floating diffusion, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line.
  • a control unit that reads out the level of the floating diffusion for a desired combination of unit pixels of the unit pixel group, including any one of the combination of unit pixels to which the reset control line is connected.
  • An imaging device comprising: (2) The unit pixel group is a pixel array in which the unit pixels are arranged in an array, The reset control line is provided for each row of unit pixels of the pixel array, Each reset control line is connected to each unit pixel in the assigned row, The select control line is provided for each column of unit pixels of the pixel array, Each select control line is connected to each unit pixel in the assigned column, The control unit generates the reset control signal, selects the reset control line, and outputs the generated reset control signal to the selected reset control line, whereby each unit of a desired row of the pixel array The reset is performed by causing the pixel to perform the reset, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line.
  • the imaging element according to (1) wherein the reset level of the floating diffusion of the unit pixel in a desired column in the row of unit pixels of the pixel array that has been performed is read.
  • the unit pixel group is a pixel array in which the unit pixels are arranged in an array, The reset control line is provided for each column of unit pixels of the pixel array, Each reset control line is connected to each unit pixel in the assigned column, The select control line is provided for each row of unit pixels of the pixel array, Each select control line is connected to each unit pixel in the assigned row, The control unit generates the reset control signal, selects the reset control line, and outputs the generated reset control signal to the selected reset control line, whereby each unit of a desired column of the pixel array
  • the reset is performed by causing the pixel to perform the reset, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line.
  • a transfer control line for transmitting a transfer control signal for controlling transfer of charges accumulated in a photodiode to the floating diffusion for the unit pixels to which the unit pixel group is connected,
  • the control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, so that a desired unit pixel of the unit pixel group is output.
  • the imaging device according to any one of (1) to (5), wherein the charge is transferred with respect to the combination.
  • the unit pixel group is a pixel array in which the unit pixels are arranged in an array
  • the transfer control line is provided for each row of unit pixels of the pixel array, Each transfer control line is connected to each unit pixel in the assigned row
  • the select control line is provided for each column of unit pixels of the pixel array, Each select control line is connected to each unit pixel in the assigned column
  • the control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby each unit of a desired row of the pixel array By transferring the charge to a pixel, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line,
  • the image sensor according to any one of (1) to (6), wherein a signal level of the floating diffusion of a unit pixel of a desired column in a row of unit pixels of the pixel array to which charge is transferred is read.
  • the unit pixel group is a pixel array in which the unit pixels are arranged in an array.
  • the transfer control line is provided for each unit pixel column of the pixel array, Each transfer control line is connected to each unit pixel of the assigned column,
  • the select control line is provided for each row of unit pixels of the pixel array, Each select control line is connected to each unit pixel in the assigned row,
  • the control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby each unit of a desired column of the pixel array By transferring the charge to a pixel, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line,
  • the imaging device according to any one of (1) to (7), wherein the signal level of the floating diffusion of the unit pixel in a desired row of the unit pixel column of the pixel array to which charge transfer has been performed is read.
  • the unit pixel group is a pixel array in which the unit pixels are arranged in an array,
  • the transfer control line is A first transfer control line provided for each row of unit pixels of the pixel array, each connected to each unit pixel of the assigned row;
  • a second transfer control line provided for each unit pixel column of the pixel array and connected to each unit pixel of the assigned column,
  • the select control line is provided for each row or column of unit pixels of the pixel array, Each select control line is connected to each unit pixel in the assigned row or column,
  • the control unit generates the transfer control signal, selects the first transfer control line and the second transfer control line, and selects the first transfer control line and the generated transfer control signal.
  • the unit By outputting to the second transfer control line, the unit transfers the charge to the desired unit pixel of the pixel array, generates the select control signal, and transfers the charge.
  • the select control line By selecting the select control line in a row or column including pixels and outputting the generated select control signal to the selected select control line, the signal of the floating diffusion of the unit pixel to which the charge is transferred.
  • the image sensor according to any one of (1) to (8), wherein the level is read. (10)
  • the unit pixel group is a pixel array in which the unit pixels are arranged in an array.
  • the transfer control line is provided for each unit pixel of the pixel array
  • the select control line is provided for each row or column of unit pixels of the pixel array, Each select control line is connected to each unit pixel in the assigned row or column,
  • the control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby a desired unit pixel of the pixel array is output.
  • Transfer the charge further generate the select control signal, select the select control line in the row or column including the unit pixel to which the charge transfer was performed, and generate the select control signal
  • the image sensor according to any one of (1) to (9), wherein the signal level of the floating diffusion of the unit pixel to which the charge is transferred is read by outputting to the selected select control line.
  • the unit pixel includes a plurality of photodiodes,
  • the control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, so that a desired unit pixel of the unit pixel group is output.
  • the imaging device according to any one of (1) to (10), wherein a charge accumulated in a desired photodiode is transferred with respect to the combination.
  • the control unit generates the select control signal, selects all the select control lines, and outputs the generated select control signal to all the select control lines, thereby performing an auto-zero operation.
  • the imaging device according to any one of (1) to (11).
  • the A / D converter is provided for each partial region that divides the region where the unit pixel group is formed into a plurality of regions, and the floating portion read from the unit pixels included in the corresponding partial region.
  • the image pickup device according to any one of (1) to (13), wherein the diffusion level is A / D converted.
  • the A / D converter is A reference voltage generator for generating a reference voltage; A comparison unit that compares the level of the floating diffusion read out from the unit pixel with the reference voltage generated by the reference voltage generation unit; A counter that counts until the comparison result of the comparison unit changes,
  • the imaging device according to any one of (1) to (15), wherein the reference voltage generation unit, the comparison unit, and the counter are formed on a semiconductor substrate different from a semiconductor substrate on which the unit pixel group is formed.
  • the A / D converter is A reference voltage generator for generating a reference voltage; A comparison unit that compares the level of the floating diffusion read out from the unit pixel with the reference voltage generated by the reference voltage generation unit; A counter that counts until the comparison result of the comparison unit changes,
  • the imaging device according to any one of (1) to (16), wherein the counter is formed on a semiconductor substrate different from a semiconductor substrate on which the unit pixel group is formed.
  • the level of the floating diffusion read from the unit pixel is changed from a semiconductor substrate on which the unit pixel group is formed to a semiconductor substrate on which the A / D conversion unit is formed by one or a plurality of wirings.
  • the imaging device according to any one of (1) to (17).
  • the select control signal for controlling the reading of the level of the floating diffusion is generated, the select control line for transmitting the select control signal to the unit pixel to which the unit pixel group is connected is selected, and the generated select
  • the unit pixel group includes any one of the combination unit pixels to which the reset control line outputting the reset control signal is connected.
  • a control method for reading the floating diffusion level for a combination of unit pixels (20) an imaging unit for imaging a subject; An image processing unit that performs image processing on image data obtained by imaging by the imaging unit, The imaging unit A unit pixel group composed of a plurality of unit pixels; A reset control line for transmitting a reset control signal for controlling resetting of the floating diffusion to the unit pixel to which the unit pixel group is connected; A select control line for transmitting a select control signal for controlling reading of the level of the floating diffusion to the unit pixel to which the unit pixel group is connected; By generating the reset control signal, selecting the reset control line, and outputting the generated reset control signal to the selected reset control line, for a desired unit pixel combination of the unit pixel group, The reset control signal is output by resetting the floating diffusion, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line.
  • a control unit that reads out the level of the floating diffusion for a desired combination of unit pixels of the unit pixel group including
  • 100 image sensor 101 pixel array, 111 unit pixel, 121 pixel unit, 131 A / D conversion unit, 152 area scanning unit, 161 D / A conversion unit, 162 comparison unit, 163 counter, 171 photodiode, 172 transfer transistor, 173 reset transistor, 174 amplification transistor, 175 select transistor, 181 selection unit, 600 imaging device, 612 CMOS image sensor

Abstract

The technology of the present invention pertains to an image pickup element, a control method, and an image pickup device that enable pixel signal read-out to be more easily carried out. This image pickup element outputs generated reset control signals to selected reset control lines to cause a desired unit pixel combination to reset the floating diffusion thereof, and outputs generated selection control signals to selected selection control lines to cause a desired unit pixel combination that includes any one of unit pixels of the combination to which the reset control lines to which the reset control signals have been output are connected to conduct read-out of floating diffusion levels. The technology of the present invention can be applied to, for example, an image pickup element or an electronic apparatus.

Description

撮像素子、制御方法、並びに、撮像装置Imaging device, control method, and imaging apparatus
 本技術は、撮像素子、制御方法、並びに、撮像装置に関し、特に、より容易に画素信号の読み出しを行うことができるようにした撮像素子、制御方法、並びに、撮像装置に関する。 The present technology relates to an imaging device, a control method, and an imaging device, and more particularly, to an imaging device, a control method, and an imaging device that can more easily read out pixel signals.
 近年、複数の画素がアレイ状に配置された画素アレイに対して、前記画素の複数行および複数列からなる部分領域である画素ユニット毎に、画素信号をA/D変換するA/D変換部が設けられる撮像素子が考えられた。このような撮像素子においては、従来の行同時読み出しでは対応できず、読み出す画素の行列を1画素ずつ指定するXYアドレス選択方式が必須技術となる。 In recent years, for a pixel array in which a plurality of pixels are arranged in an array, an A / D conversion unit that performs A / D conversion of a pixel signal for each pixel unit that is a partial region including a plurality of rows and a plurality of columns An image sensor provided with the above has been considered. In such an image sensor, conventional row simultaneous reading cannot be used, and an XY address selection method for designating a pixel matrix to be read out one by one is an essential technique.
 この画素のXYアドレス選択方式として、画素トランジスタ(Tr)数を変えずに配線によりXYアドレス指定を実現する方式が提案されている(例えば、特許文献1参照)。また、3トランジスタ(3Tr)画素動作とセレクト制御線(SEL)を組み合わせた構造が考えられた(例えば、非特許文献1参照)。 As a XY address selection method for this pixel, a method for realizing XY address designation by wiring without changing the number of pixel transistors (Tr) has been proposed (for example, see Patent Document 1). Moreover, the structure which combined 3 transistor (3Tr) pixel operation | movement and the select control line (SEL) was considered (for example, refer nonpatent literature 1).
特開2012-102606号公報JP 2012-102606 A
 しかしながら、特許文献1に記載の方法の場合、制御する画素数(NxM)に対し、転送制御線(TRG)、リセット制御線(RST)、セレクト制御線(SEL)をそれぞれ、行方向で制御する場合N倍、列方向で制御する場合M倍に増大させる必要があり、配線リソースにより画素ユニットのサイズが制限されるおそれがあった。 However, in the case of the method described in Patent Document 1, the transfer control line (TRG), the reset control line (RST), and the select control line (SEL) are controlled in the row direction with respect to the number of pixels to be controlled (NxM). In the case of control in the column direction in the case of N times, it is necessary to increase it to M times in the case of controlling in the column direction.
 また、非特許文献1に記載の方法の場合、リセット制御線(RST)とセレクト制御線(SEL)とが同一方向(共に行方向)に配置され、リセット電圧VRが縦に配置されている。そのため、転送制御信号は必ずXYアドレス化しなければならない。そのため、同時にリセットされるフローティングディフュージョン(FD)は1か所のみのため、電荷転送も1か所しか行うことができず、同時電荷転送を行うことができなかった。 In the case of the method described in Non-Patent Document 1, the reset control line (RST) and the select control line (SEL) are arranged in the same direction (both in the row direction), and the reset voltage VR is arranged vertically. Therefore, the transfer control signal must be converted to an XY address. Therefore, there is only one floating diffusion (FD) that is reset at the same time, so only one charge transfer can be performed, and simultaneous charge transfer cannot be performed.
 本技術は、このような状況に鑑みて提案されたものであり、より容易に画素信号の読み出しを行うことができるようにすることを目的とする。 The present technology has been proposed in view of such a situation, and an object thereof is to enable pixel signals to be read more easily.
 本技術の一側面は、複数の単位画素からなる単位画素群と、前記単位画素群の、自身が接続される単位画素に対して、フローティングディフュージョンのリセットを制御するリセット制御信号を伝送するリセット制御線と、前記単位画素群の、自身が接続される単位画素に対して、前記フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号を伝送するセレクト制御線と、前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのリセットを行わせ、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセット制御信号を出力した前記リセット制御線が接続される前記組み合わせの単位画素のいずれか1つを含む、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのレベルの読み出しを行わせる制御部とを備える撮像素子である。 One aspect of the present technology provides a unit pixel group including a plurality of unit pixels and a reset control that transmits a reset control signal that controls resetting of the floating diffusion to the unit pixels to which the unit pixel group is connected. A line, a select control line that transmits a select control signal for controlling reading of the level of the floating diffusion, and a reset control signal for the unit pixel to which the unit pixel group is connected, By selecting a reset control line and outputting the generated reset control signal to the selected reset control line, the floating diffusion is reset for a desired unit pixel combination of the unit pixel group, Generate the select control signal, select the select control line, and generate By outputting the select control signal to the selected select control line, the unit pixel group includes any one of the combination of unit pixels to which the reset control line outputting the reset control signal is connected. The image pickup device includes a control unit that reads out the floating diffusion level for a desired combination of unit pixels.
 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、前記リセット制御線は、前記画素アレイの単位画素の行毎に設けられ、各リセット制御線は、割り当てられた行の各単位画素に接続され、前記セレクト制御線は、前記画素アレイの単位画素の列毎に設けられ、各セレクト制御線は、割り当てられた列の各単位画素に接続され、前記制御部は、前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記画素アレイの所望の行の各単位画素に対して前記リセットを行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセットを行わせた前記画素アレイの単位画素の行の、所望の列の単位画素の前記フローティングディフュージョンのリセットレベルを読み出させることができる。 The unit pixel group is a pixel array in which the unit pixels are arranged in an array, the reset control line is provided for each row of unit pixels of the pixel array, and each reset control line is assigned to the assigned row. Connected to each unit pixel, the select control line is provided for each column of unit pixels of the pixel array, each select control line is connected to each unit pixel of the assigned column, and the control unit By generating a reset control signal, selecting the reset control line, and outputting the generated reset control signal to the selected reset control line, the reset is performed for each unit pixel in a desired row of the pixel array. Furthermore, the select control signal is generated, the select control line is selected, and the generated select control signal is output to the selected select control line. Accordingly, the rows of the unit pixels of the pixel array to perform the reset, it is possible to read the reset level of the floating diffusion unit pixel of a desired sequence.
 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、前記リセット制御線は、前記画素アレイの単位画素の列毎に設けられ、各リセット制御線は、割り当てられた列の各単位画素に接続され、前記セレクト制御線は、前記画素アレイの単位画素の行毎に設けられ、各セレクト制御線は、割り当てられた行の各単位画素に接続され、前記制御部は、前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記画素アレイの所望の列の各単位画素に対して前記リセットを行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセットを行わせた前記画素アレイの単位画素の列の、所望の行の単位画素の前記フローティングディフュージョンのリセットレベルを読み出させることができる。 The unit pixel group is a pixel array in which the unit pixels are arranged in an array, the reset control line is provided for each column of unit pixels of the pixel array, and each reset control line is assigned to an assigned column. Connected to each unit pixel, the select control line is provided for each unit pixel row of the pixel array, each select control line is connected to each unit pixel of the assigned row, and the control unit By generating a reset control signal, selecting the reset control line, and outputting the generated reset control signal to the selected reset control line, the reset is performed for each unit pixel in a desired column of the pixel array. Furthermore, the select control signal is generated, the select control line is selected, and the generated select control signal is output to the selected select control line. Accordingly, the column of the unit pixel of the pixel array to perform the reset, it is possible to read the reset level of the floating diffusion unit pixel of a desired row.
 前記単位画素に対して、リセット電源電圧とソースフォロワ電源電圧とが互いに異なる配線により供給されるようにすることができる。 The reset power supply voltage and the source follower power supply voltage can be supplied to the unit pixels through different wirings.
 前記単位画素に対して、リセット電源電圧とソースフォロワ電源電圧とが共通の配線により供給されるようにすることができる。 The reset power supply voltage and the source follower power supply voltage can be supplied to the unit pixel through a common wiring.
 前記単位画素群の、自身が接続される単位画素に対して、フォトダイオードに蓄積された電荷の前記フローティングディフュージョンへの転送を制御する転送制御信号を伝送する転送制御線をさらに備え、前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記電荷の転送を行わせることができる。 The control unit further includes a transfer control line that transmits a transfer control signal for controlling transfer of charges accumulated in a photodiode to the unitary pixel of the unit pixel group to which the unit pixel is connected. Generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, thereby obtaining a desired unit pixel combination of the unit pixel group. Thus, the charge transfer can be performed.
 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、前記転送制御線は、前記画素アレイの単位画素の行毎に設けられ、各転送制御線は、割り当てられた行の各単位画素に接続され、前記セレクト制御線は、前記画素アレイの単位画素の列毎に設けられ、各セレクト制御線は、割り当てられた列の各単位画素に接続され、前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記画素アレイの所望の行の各単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた前記画素アレイの単位画素の行の、所望の列の単位画素の前記フローティングディフュージョンの信号レベルを読み出させることができる。 The unit pixel group is a pixel array in which unit pixels are arranged in an array, the transfer control line is provided for each unit pixel row of the pixel array, and each transfer control line is assigned to an assigned row. Connected to each unit pixel, the select control line is provided for each column of unit pixels of the pixel array, each select control line is connected to each unit pixel of the assigned column, and the control unit By generating a transfer control signal, selecting the transfer control line, and outputting the generated transfer control signal to the selected transfer control line, the charge for each unit pixel in a desired row of the pixel array The charge transfer is performed by generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. The performed row of the unit pixels of the pixel array was, it is possible to read out the signal level of the floating diffusion unit pixel of a desired sequence.
 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、前記転送制御線は、前記画素アレイの単位画素の列毎に設けられ、各転送制御線は、割り当てられた列の各単位画素に接続され、前記セレクト制御線は、前記画素アレイの単位画素の行毎に設けられ、各セレクト制御線は、割り当てられた行の各単位画素に接続され、前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記画素アレイの所望の列の各単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた前記画素アレイの単位画素の列の、所望の行の単位画素の前記フローティングディフュージョンの信号レベルを読み出させることができる。 The unit pixel group is a pixel array in which unit pixels are arranged in an array, the transfer control line is provided for each unit pixel column of the pixel array, and each transfer control line is assigned to an assigned column. Connected to each unit pixel, the select control line is provided for each unit pixel row of the pixel array, each select control line is connected to each unit pixel of the assigned row, and the control unit By generating a transfer control signal, selecting the transfer control line, and outputting the generated transfer control signal to the selected transfer control line, the charge for each unit pixel in a desired column of the pixel array The charge transfer is performed by generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. The performed columns of unit pixels of the pixel array was, it is possible to read out the signal level of the floating diffusion unit pixel of a desired row.
 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、前記転送制御線は、前記画素アレイの単位画素の行毎に設けられ、それぞれが割り当てられた行の各単位画素に接続される第1の転送制御線と、前記画素アレイの単位画素の列毎に設けられ、それぞれが割り当てられた列の各単位画素に接続される第2の転送制御線とを含み、前記セレクト制御線は、前記画素アレイの単位画素の行または列毎に設けられ、各セレクト制御線は、割り当てられた行または列の各単位画素に接続され、前記制御部は、前記転送制御信号を生成し、前記第1の転送制御線および前記第2の転送制御線を選択し、生成した前記転送制御信号を選択した前記第1の転送制御線および前記第2の転送制御線に出力することにより、前記画素アレイの所望の単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記電荷の転送を行わせた単位画素を含む行または列の前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた単位画素の前記フローティングディフュージョンの信号レベルを読み出させることができる。 The unit pixel group is a pixel array in which unit pixels are arranged in an array, and the transfer control line is provided for each unit pixel row of the pixel array, and each unit pixel in the row to which each unit pixel is assigned. A first transfer control line to be connected; and a second transfer control line provided for each column of unit pixels of the pixel array and connected to each unit pixel of the assigned column. A control line is provided for each row or column of unit pixels of the pixel array, each select control line is connected to each unit pixel of the assigned row or column, and the control unit generates the transfer control signal And selecting the first transfer control line and the second transfer control line, and outputting the generated transfer control signal to the selected first transfer control line and the second transfer control line. , The pixel array Transfer the charge to a desired unit pixel, generate the select control signal, select the select control line in a row or column including the unit pixel that has transferred the charge, By outputting the generated select control signal to the selected select control line, it is possible to read the signal level of the floating diffusion of the unit pixel to which the charge has been transferred.
 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、前記転送制御線は、前記画素アレイの単位画素毎に設けられ、前記セレクト制御線は、前記画素アレイの単位画素の行または列毎に設けられ、各セレクト制御線は、割り当てられた行または列の各単位画素に接続され、前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記画素アレイの所望の単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記電荷の転送を行わせた単位画素を含む行または列の前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた単位画素の前記フローティングディフュージョンの信号レベルを読み出させることができる。 The unit pixel group is a pixel array in which unit pixels are arranged in an array, the transfer control line is provided for each unit pixel of the pixel array, and the select control line is a unit pixel of the pixel array. Provided for each row or column, each select control line is connected to each unit pixel of the assigned row or column, the control unit generates the transfer control signal, selects the transfer control line, generates By outputting the transfer control signal to the selected transfer control line, the charge is transferred to a desired unit pixel of the pixel array, and further, the select control signal is generated, By selecting the select control line in the row or column including the unit pixel to which the transfer has been performed, and outputting the generated select control signal to the selected select control line, the charge transfer is performed. It is possible to read out the signal level of the floating diffusion unit pixels were performed.
 前記単位画素は、複数のフォトダイオードを有し、前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、所望のフォトダイオードに蓄積された電荷の転送を行わせることができる。 The unit pixel includes a plurality of photodiodes, and the control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line. Accordingly, the charge accumulated in the desired photodiode can be transferred to the desired combination of unit pixels in the unit pixel group.
 前記制御部は、前記セレクト制御信号を生成し、全ての前記セレクト制御線を選択し、生成した前記セレクト制御信号を前記全てのセレクト制御線に出力することにより、オートゼロ動作を行わせることができる。 The control unit can generate the select control signal, select all the select control lines, and output the generated select control signal to all the select control lines, thereby performing an auto-zero operation. .
 前記制御部の制御に基づいて前記単位画素から読み出された前記フローティングディフュージョンのレベルをA/D変換するA/D変換部をさらに備えることができる。 It may further include an A / D conversion unit that A / D converts the level of the floating diffusion read from the unit pixel based on the control of the control unit.
 前記A/D変換部は、前記単位画素群が形成される領域を複数に分割する部分領域毎に設けられ、自身が対応する部分領域に含まれる単位画素から読み出された前記フローティングディフュージョンのレベルをA/D変換することができる。 The A / D converter is provided for each partial region that divides the region where the unit pixel group is formed into a plurality of levels, and the floating diffusion level read from the unit pixels included in the corresponding partial region Can be A / D converted.
 複数の半導体基板を有し、前記A/D変換部は、前記単位画素群が形成される半導体基板と異なる半導体基板に形成されることができる。 It has a plurality of semiconductor substrates, and the A / D converter can be formed on a semiconductor substrate different from the semiconductor substrate on which the unit pixel group is formed.
 前記A/D変換部は、基準電圧を生成する基準電圧生成部と、前記単位画素から読み出された前記フローティングディフュージョンのレベルと、前記基準電圧生成部により生成された前記基準電圧とを比較する比較部と、前記比較部の比較結果が変化するまでをカウントするカウンタとを有し、前記基準電圧生成部、前記比較部、および前記カウンタは、前記単位画素群が形成される半導体基板と異なる半導体基板に形成されることができる。 The A / D conversion unit compares a reference voltage generation unit that generates a reference voltage, a level of the floating diffusion read from the unit pixel, and the reference voltage generated by the reference voltage generation unit. A comparison unit; and a counter that counts until the comparison result of the comparison unit changes. The reference voltage generation unit, the comparison unit, and the counter are different from a semiconductor substrate on which the unit pixel group is formed. It can be formed on a semiconductor substrate.
 前記A/D変換部は、基準電圧を生成する基準電圧生成部と、前記単位画素から読み出された前記フローティングディフュージョンのレベルと、前記基準電圧生成部により生成された前記基準電圧とを比較する比較部と、前記比較部の比較結果が変化するまでをカウントするカウンタとを有し、前記カウンタは、前記単位画素群が形成される半導体基板と異なる半導体基板に形成されるようにすることができる。 The A / D conversion unit compares a reference voltage generation unit that generates a reference voltage, a level of the floating diffusion read from the unit pixel, and the reference voltage generated by the reference voltage generation unit. And a counter that counts until the comparison result of the comparison unit changes, and the counter is formed on a semiconductor substrate different from the semiconductor substrate on which the unit pixel group is formed. it can.
 前記単位画素から読み出された前記フローティングディフュージョンのレベルは、単数若しくは複数の配線により、前記単位画素群が形成される半導体基板から、前記A/D変換部が形成される半導体基板に伝送されることができる。 The level of the floating diffusion read from the unit pixel is transmitted from a semiconductor substrate on which the unit pixel group is formed to a semiconductor substrate on which the A / D conversion unit is formed by one or a plurality of wirings. be able to.
 本技術の一側面は、また、単位画素のフローティングディフュージョンのリセットを制御するリセット制御信号を生成し、複数の単位画素からなる単位画素群の自身が接続される単位画素に対して前記リセット制御信号を伝送するリセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのリセットを行わせ、前記フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号を生成し、前記単位画素群の自身が接続される単位画素に対して前記セレクト制御信号を伝送するセレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセット制御信号を出力した前記リセット制御線が接続される前記組み合わせの単位画素のいずれか1つを含む、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのレベルの読み出しを行わせる制御方法である。 One aspect of the present technology also generates a reset control signal for controlling the reset of the floating diffusion of the unit pixel, and the reset control signal for the unit pixel to which the unit pixel group consisting of a plurality of unit pixels is connected. The reset signal is transmitted to the selected reset control line, and the floating diffusion is reset for a desired combination of unit pixels of the unit pixel group. Generating a select control signal for controlling reading of the level of the floating diffusion, selecting a select control line for transmitting the select control signal to the unit pixel to which the unit pixel group itself is connected, and generating The selected control signal is output to the selected select control line. Thus, for the desired unit pixel combination of the unit pixel group including any one of the combination unit pixels to which the reset control line that has output the reset control signal is connected, the floating diffusion This is a control method for performing reading at a certain level.
 本技術の他の側面は、被写体を撮像する撮像部と、前記撮像部による撮像により得られた画像データを画像処理する画像処理部とを備え、前記撮像部は、複数の単位画素からなる単位画素群と、前記単位画素群の、自身が接続される単位画素に対して、フローティングディフュージョンのリセットを制御するリセット制御信号を伝送するリセット制御線と、前記単位画素群の、自身が接続される単位画素に対して、前記フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号を伝送するセレクト制御線と、前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのリセットを行わせ、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセット制御信号を出力した前記リセット制御線が接続される前記組み合わせの単位画素のいずれか1つを含む、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのレベルの読み出しを行わせる制御部とを備える撮像装置である。 Another aspect of the present technology includes an imaging unit that images a subject and an image processing unit that performs image processing on image data obtained by imaging by the imaging unit, and the imaging unit is a unit including a plurality of unit pixels. A reset control line for transmitting a reset control signal for controlling resetting of a floating diffusion is connected to the pixel group, to the unit pixel to which the unit pixel group is connected, and the unit pixel group is connected to itself. For a unit pixel, a select control line that transmits a select control signal for controlling reading of the level of the floating diffusion, the reset control signal is generated, the reset control line is selected, and the generated reset control signal is By outputting to the selected reset control line, for a desired unit pixel combination of the unit pixel group The reset control signal is output by resetting the floating diffusion, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. A control unit that reads out the level of the floating diffusion for a desired combination of unit pixels of the unit pixel group, including any one of the combination of unit pixels to which the reset control line is connected. It is an imaging device provided with.
 本技術の一側面においては、単位画素のフローティングディフュージョンのリセットを制御するリセット制御信号が生成され、複数の単位画素からなる単位画素群の自身が接続される単位画素に対してリセット制御信号を伝送するリセット制御線が選択され、生成されたリセット制御信号が選択されたリセット制御線に出力されることにより、単位画素群の所望の単位画素の組み合わせにおいて、フローティングディフュージョンのリセットが行われ、フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号が生成され、単位画素群の自身が接続される単位画素に対してセレクト制御信号を伝送するセレクト制御線が選択され、生成されたセレクト制御信号が選択されたセレクト制御線に出力されることにより、リセット制御信号が出力されたリセット制御線が接続される組み合わせの単位画素のいずれか1つを含む、単位画素群の所望の単位画素の組み合わせにおいて、フローティングディフュージョンのレベルの読み出しが行われる。 In one aspect of the present technology, a reset control signal for controlling the reset of the floating diffusion of the unit pixel is generated, and the reset control signal is transmitted to the unit pixel to which the unit pixel group including a plurality of unit pixels is connected. When the reset control line to be selected is selected and the generated reset control signal is output to the selected reset control line, the floating diffusion is reset in the desired unit pixel combination of the unit pixel group, and the floating diffusion is performed. A select control signal for controlling the reading of the selected level is generated, a select control line for transmitting the select control signal to the unit pixel to which the unit pixel group itself is connected is selected, and the generated select control signal is selected. By being output to the selected control line, Including any one of the unit pixel combinations reset control line set control signal is output is connected, in a combination of desired unit pixels in the unit pixel group, the level of the readout of the floating diffusion is performed.
 本技術の他の側面においては、撮像装置において、被写体が撮像され、単位画素のフローティングディフュージョンのリセットを制御するリセット制御信号が生成され、複数の単位画素からなる単位画素群の自身が接続される単位画素に対してリセット制御信号を伝送するリセット制御線が選択され、生成されたリセット制御信号が選択されたリセット制御線に出力されることにより、単位画素群の所望の単位画素の組み合わせにおいて、フローティングディフュージョンのリセットが行われ、フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号が生成され、単位画素群の自身が接続される単位画素に対してセレクト制御信号を伝送するセレクト制御線が選択され、生成されたセレクト制御信号が選択されたセレクト制御線に出力されることにより、リセット制御信号が出力されたリセット制御線が接続される組み合わせの単位画素のいずれか1つを含む、単位画素群の所望の単位画素の組み合わせにおいて、フローティングディフュージョンのレベルの読み出しが行われる。 In another aspect of the present technology, the imaging device captures an image of a subject, generates a reset control signal that controls resetting of the floating diffusion of the unit pixel, and connects the unit pixel group itself including a plurality of unit pixels. By selecting a reset control line that transmits a reset control signal to the unit pixel and outputting the generated reset control signal to the selected reset control line, in a desired unit pixel combination of the unit pixel group, The floating diffusion is reset, a select control signal for controlling the reading of the floating diffusion level is generated, and a select control line for transmitting the select control signal to the unit pixel to which the unit pixel group itself is connected is selected. The generated select control signal is selected The floating diffusion in the desired unit pixel combination of the unit pixel group including any one of the unit pixels of the combination to which the reset control line to which the reset control signal is output is connected by being output to the rect control line Level reading is performed.
 本技術によれば、撮像画像を得ることが出来る。また本技術によれば、より容易に画素信号の読み出しを行うことができる。 According to the present technology, a captured image can be obtained. Further, according to the present technology, it is possible to read out the pixel signal more easily.
画素ユニットの例を説明する図である。It is a figure explaining the example of a pixel unit. イメージセンサの主な構成例を示す図である。It is a figure which shows the main structural examples of an image sensor. イメージセンサの主な構成例を示す図である。It is a figure which shows the main structural examples of an image sensor. イメージセンサの主な構成例を示す図である。It is a figure which shows the main structural examples of an image sensor. 単位画素の主な構成例を示す図である。It is a figure which shows the main structural examples of a unit pixel. 読み出し伝送制御処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of a read transmission control process. 読み出し伝送制御の様子の例を示すタイミングチャートである。It is a timing chart which shows the example of the mode of read transmission control. イメージセンサの他の構成例を示す図である。It is a figure which shows the other structural example of an image sensor. イメージセンサのさらに他の構成例を示す図である。It is a figure which shows the further another structural example of an image sensor. イメージセンサのさらに他の構成例を示す図である。It is a figure which shows the further another structural example of an image sensor. イメージセンサのさらに他の構成例を示す図である。It is a figure which shows the further another structural example of an image sensor. イメージセンサのさらに他の構成例を示す図である。It is a figure which shows the further another structural example of an image sensor. イメージセンサのさらに他の構成例を示す図である。It is a figure which shows the further another structural example of an image sensor. 単位画素の他の構成例を示す図である。It is a figure which shows the other structural example of a unit pixel. イメージセンサのさらに他の構成例を示す図である。It is a figure which shows the further another structural example of an image sensor. 単位画素の他の構成例を示す図である。It is a figure which shows the other structural example of a unit pixel. イメージセンサのさらに他の構成例を示す図である。It is a figure which shows the further another structural example of an image sensor. イメージセンサのさらに他の構成例を示す図である。It is a figure which shows the further another structural example of an image sensor. 単位画素の他の構成例を示す図である。It is a figure which shows the other structural example of a unit pixel. イメージセンサのさらに他の構成例を示す図である。It is a figure which shows the further another structural example of an image sensor. 単位画素の他の構成例を示す図である。It is a figure which shows the other structural example of a unit pixel. 読み出し伝送制御処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of a read transmission control process. 読み出し伝送制御の様子の例を示すタイミングチャートである。It is a timing chart which shows the example of the mode of read transmission control. 撮像装置の主な構成例を示す図である。It is a figure which shows the main structural examples of an imaging device.
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態(イメージセンサ)
 2.第2の実施の形態(撮像装置)
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. First embodiment (image sensor)
2. Second embodiment (imaging device)
 <1.第1の実施の形態>
  <画素ユニットの読み出し>
 近年、複数の画素がアレイ状に配置された画素アレイに対して、前記画素の複数行および複数列からなる部分領域である画素ユニット毎に、画素信号をA/D変換するA/D変換部が設けられる撮像素子が考えられた。このような撮像素子においては、従来の行同時読み出しでは対応できず、読み出す画素の行列を1画素ずつ指定するXYアドレス選択方式が必須技術となる。
<1. First Embodiment>
<Reading out pixel unit>
In recent years, for a pixel array in which a plurality of pixels are arranged in an array, an A / D conversion unit that performs A / D conversion of a pixel signal for each pixel unit that is a partial region composed of a plurality of rows and columns of the pixels An image sensor provided with the above has been considered. In such an image sensor, conventional row simultaneous reading cannot be used, and an XY address selection method for designating a pixel matrix to be read out one by one is an essential technique.
 画素のXYアドレス選択方式には読み出し部のXYアドレス化と電荷転送部のXYアドレス化がある。前者はXYアドレス選択方式には必須の技術であり、後者はXYアドレス選択方式によって必要、不必要が分かれる。 Pixel XY address selection methods include XY addressing of the readout section and XY addressing of the charge transfer section. The former is an essential technique for the XY address selection method, and the latter is necessary or unnecessary depending on the XY address selection method.
 読み出し部のXYアドレス選択方式としては、XY用のセレクトトランジスタ(SEL Tr)を各々設けた回路構成の5トランジスタ(5Tr)回路が考えられるが、この場合、従来の行同時読み出しの場合と比べて回路規模が増大するおそれがあった。そこで特許文献1に記載のように、画素を構成するトランジスタ(Tr)数を変えずに、配線によりXYアドレスを指定する方式が提案された。しかしながら、この方式の場合、制御する画素数(NxM)に対し、転送制御線(TRG)、リセット制御線(RST)、セレクト制御線(SEL)をそれぞれ、行方向で制御する場合N倍、列方向で制御する場合M倍に増大させる必要があり、配線リソースにより画素ユニットのサイズが制限されるおそれがあった。 As a method for selecting the XY address of the readout unit, a 5-transistor (5Tr) circuit having a circuit configuration each provided with an XY select transistor (SEL Tr) is conceivable. There was a risk that the circuit scale would increase. Therefore, as described in Patent Document 1, a method has been proposed in which an XY address is designated by wiring without changing the number of transistors (Tr) constituting a pixel. However, in this system, the transfer control line (TRG), reset control line (RST), and select control line (SEL) are controlled in the row direction by N times the number of pixels (NxM) to be controlled (NxM). When controlling in the direction, it is necessary to increase M times, and there is a possibility that the size of the pixel unit is limited by the wiring resource.
 また、非特許文献1に記載のように、3トランジスタ(3Tr)画素動作とセレクト制御線(SEL)を組み合わせた構造が考えられた。しかしながら、この方法の場合、リセット制御線(RST)とセレクト制御線(SEL)とが同一方向(共に行方向)に配置され、リセット電圧VRが縦に配置されている。そのため、転送制御信号は必ずXYアドレス化しなければならない。そのため、同時にリセットされるフローティングディフュージョン(FD)は1か所のみのため、電荷転送も1か所しか行うことができず、同時電荷転送を行うことができなかった。 Also, as described in Non-Patent Document 1, a structure combining a three-transistor (3Tr) pixel operation and a select control line (SEL) was conceivable. However, in this method, the reset control line (RST) and the select control line (SEL) are arranged in the same direction (both in the row direction), and the reset voltage VR is arranged vertically. Therefore, the transfer control signal must be converted to an XY address. Therefore, there is only one floating diffusion (FD) that is reset at the same time, so only one charge transfer can be performed, and simultaneous charge transfer cannot be performed.
 仮に、転送制御信号は必ずXYアドレス化しない場合、信号が破壊されてしまうおそれがあった。また、トランジスタ(Tr)の数を減らすため、セレクト制御線(SEL)を行で1つにまとめているため、セレクト制御線(SEL)がある画素と無い画素とでレイアウトの対称性が崩れてしまうおそれがあった。 If the transfer control signal is not always converted to an XY address, the signal may be destroyed. Further, since the select control lines (SEL) are combined into one row in order to reduce the number of transistors (Tr), the symmetry of the layout is lost between pixels with and without the select control line (SEL). There was a risk of it.
  <RSTとSELによる読み出し制御>
 そこで、撮像素子において、複数の単位画素からなる単位画素群と、単位画素群の、自身が接続される単位画素に対して、フローティングディフュージョンのリセットを制御するリセット制御信号を伝送するリセット制御線と、単位画素群の、自身が接続される単位画素に対して、フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号を伝送するセレクト制御線と、リセット制御信号を生成し、リセット制御線を選択し、生成したリセット制御信号を選択したリセット制御線に出力することにより、単位画素群の所望の単位画素の組み合わせに対して、フローティングディフュージョンのリセットを行わせ、セレクト制御信号を生成し、セレクト制御線を選択し、生成したセレクト制御信号を選択したセレクト制御線に出力することにより、リセット制御信号を出力したリセット制御線が接続される組み合わせの単位画素のいずれか1つを含む、単位画素群の所望の単位画素の組み合わせに対して、フローティングディフュージョンのレベルの読み出しを行わせる制御部とを備えるようにする。
<Read control by RST and SEL>
Therefore, in the imaging device, a unit pixel group composed of a plurality of unit pixels, and a reset control line for transmitting a reset control signal for controlling resetting of the floating diffusion to the unit pixel to which the unit pixel group is connected. Select a control line that transmits a select control signal that controls reading of the floating diffusion level and a reset control signal for the unit pixel to which the unit pixel group is connected. By outputting the generated reset control signal to the selected reset control line, the floating diffusion is reset for the desired combination of unit pixels of the unit pixel group, the select control signal is generated, and the select control line And select the generated select control signal. The level of the floating diffusion for a desired unit pixel combination of the unit pixel group including any one of the unit pixels of the combination to which the reset control line that has output the reset control signal is connected by outputting to the line And a control unit for reading the data.
 このようにすることにより、制御部は、リセット制御線とセレクト制御線を選択することにより、容易に所望の画素を選択することができる。したがって、リセットを行単位(又は列単位)で行うようにすることにより、電荷転送を行単位(又は列単位)で行っても、信号が破壊されず、1画素ずつ順次読出すことができる。つまり、より容易に画素信号の読み出しを行うことができる。 In this way, the control unit can easily select a desired pixel by selecting the reset control line and the select control line. Therefore, by performing resetting in units of rows (or units of columns), even if charge transfer is performed in units of rows (or units of columns), signals are not destroyed and pixels can be sequentially read out one by one. That is, the pixel signal can be read more easily.
 例えば、単位画素群が、各単位画素をアレイ状に配置した画素アレイであり、リセット制御線が、画素アレイの単位画素の行毎に設けられ、各リセット制御線が、割り当てられた行の各単位画素に接続され、セレクト制御線が、画素アレイの単位画素の列毎に設けられ、各セレクト制御線が、割り当てられた列の各単位画素に接続されるようにしてもよい。そして、制御部が、リセット制御信号を生成し、リセット制御線を選択し、生成したリセット制御信号を選択したリセット制御線に出力することにより、画素アレイの所望の行の各単位画素に対してリセットを行わせ、さらに、セレクト制御信号を生成し、セレクト制御線を選択し、生成したセレクト制御信号を選択したセレクト制御線に出力することにより、リセットを行わせた画素アレイの単位画素の行の、所望の列の単位画素のフローティングディフュージョンのリセットレベルを読み出させるようにしてもよい。 For example, the unit pixel group is a pixel array in which each unit pixel is arranged in an array, a reset control line is provided for each unit pixel row of the pixel array, and each reset control line is assigned to each assigned row. A select control line may be provided for each column of unit pixels in the pixel array, and each select control line may be connected to each unit pixel in the assigned column. Then, the control unit generates a reset control signal, selects a reset control line, and outputs the generated reset control signal to the selected reset control line, whereby each unit pixel in a desired row of the pixel array is output. The reset is performed, the select control signal is generated, the select control line is selected, and the generated select control signal is output to the selected select control line, so that the row of the unit pixel of the pixel array that has been reset The reset level of the floating diffusion of the unit pixel in the desired column may be read out.
 もちろん、リセット制御線が画素アレイの単位画素の列毎に設けられ、セレクト制御線が画素アレイの単位画素の行毎に設けられるようにしてもよい。 Of course, a reset control line may be provided for each column of unit pixels of the pixel array, and a select control line may be provided for each row of unit pixels of the pixel array.
 例えば、単位画素群の、自身が接続される単位画素に対して、フォトダイオードに蓄積された電荷のフローティングディフュージョンへの転送を制御する転送制御信号を伝送する転送制御線をさらに備えるようにしてもよい。そして、制御部が、転送制御信号を生成し、転送制御線を選択し、生成した転送制御信号を選択した転送制御線に出力することにより、単位画素群の所望の単位画素の組み合わせに対して、電荷の転送を行わせるようにしてもよい。 For example, the unit pixel group of the unit pixel group may further include a transfer control line that transmits a transfer control signal for controlling the transfer of the charge accumulated in the photodiode to the floating diffusion. Good. Then, the control unit generates a transfer control signal, selects a transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby a desired unit pixel combination of the unit pixel group is obtained. Alternatively, charge transfer may be performed.
 例えば、単位画素群が、各単位画素をアレイ状に配置した画素アレイであり、転送制御線が、画素アレイの単位画素の行毎に設けられ、各転送制御線が、割り当てられた行の各単位画素に接続され、セレクト制御線が、画素アレイの単位画素の列毎に設けられ、各セレクト制御線が、割り当てられた列の各単位画素に接続されるようにしてもよい。そして、制御部が、転送制御信号を生成し、転送制御線を選択し、生成した転送制御信号を選択した転送制御線に出力することにより、画素アレイの所望の行の各単位画素に対して電荷の転送を行わせ、さらに、セレクト制御信号を生成し、セレクト制御線を選択し、生成したセレクト制御信号を選択したセレクト制御線に出力することにより、電荷の転送を行わせた画素アレイの単位画素の行の、所望の列の単位画素のフローティングディフュージョンの信号レベルを読み出させるようにしてもよい。 For example, the unit pixel group is a pixel array in which each unit pixel is arranged in an array, a transfer control line is provided for each unit pixel row of the pixel array, and each transfer control line is assigned to each assigned row. A select control line may be provided for each column of unit pixels in the pixel array, and each select control line may be connected to each unit pixel in the assigned column. Then, the control unit generates a transfer control signal, selects a transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby each unit pixel in a desired row of the pixel array is output. The charge transfer is performed, the select control signal is generated, the select control line is selected, and the generated select control signal is output to the selected select control line. You may make it read the signal level of the floating diffusion of the unit pixel of the desired column of the unit pixel row.
 もちろん、転送制御線が画素アレイの単位画素の列毎に設けられ、セレクト制御線が画素アレイの単位画素の行毎に設けられるようにしてもよい。 Of course, a transfer control line may be provided for each column of unit pixels of the pixel array, and a select control line may be provided for each row of unit pixels of the pixel array.
 例えば、制御部の制御に基づいて単位画素から読み出されたフローティングディフュージョンのレベルをA/D変換するA/D変換部をさらに備えるようにしてもよい。 For example, you may make it further provide the A / D conversion part which A / D-converts the level of the floating diffusion read from the unit pixel based on control of the control part.
 例えば、A/D変換部が、単位画素群が形成される領域を複数に分割する部分領域毎に設けられ、自身が対応する部分領域に含まれる単位画素から読み出されたフローティングディフュージョンのレベルをA/D変換するようにしてもよい。 For example, an A / D conversion unit is provided for each partial region that divides the region where the unit pixel group is formed into a plurality of regions, and the level of the floating diffusion read from the unit pixels included in the corresponding partial region. A / D conversion may be performed.
 以上のようにすることにより、従来の4トランジスタ(4Tr)型画素の構成要素であるリセット制御線(RST)とセレクト制御線(SEL)を用いて、信号を読み出す画素のXYアドレスを制御することができる。つまり、信号を読み出すための単位画素指定のための構成をより容易にすることができる。したがって、より容易に画素信号の読み出しを行うことができる。 As described above, the reset control line (RST) and the select control line (SEL), which are constituent elements of the conventional 4-transistor (4Tr) type pixel, are used to control the XY address of the pixel from which the signal is read. Can do. That is, the configuration for designating unit pixels for reading signals can be made easier. Therefore, the pixel signal can be read out more easily.
 例えば、画素トランジスタ(Tr)構造には一切の変更を加えずに、各画素からの信号の読み出しを実現することができる。その場合、面積を増大させずに、各画素からの信号の読み出しを実現することができる。また、転送制御信号のXYアドレス化は必須項目ではなくなる。 For example, it is possible to realize signal readout from each pixel without making any changes to the pixel transistor (Tr) structure. In that case, reading of signals from each pixel can be realized without increasing the area. In addition, the transfer control signal is not required to be an XY address.
 また、本技術を適用することにより、画素単位セルを全て同一の構造とすることができるため、各単位画素が非対称な構造にはならず、そのことによる特性の悪化を低減させることができる。例えば、非対称な画素構造の場合、例えばベイヤ配列のGr/Gb特性に差が出るなど、同色でも出力差を生じる場合がある。 Also, by applying the present technology, all the pixel unit cells can have the same structure, so that each unit pixel does not have an asymmetric structure, and deterioration of characteristics due to this can be reduced. For example, in the case of an asymmetric pixel structure, an output difference may occur even for the same color, such as a difference in the Gr / Gb characteristics of the Bayer array.
 また、本技術を適用することにより、複数の画素出力を束ねてA/D変換部に接続することができる。1つの基板に画素と回路が混在する場合、または複数のカラムにまたがったA/D変換部に接続する場合でも、カラムとAD変換器の間にカラム分のスイッチを設ける必要がないようにすることができる。 Also, by applying this technology, a plurality of pixel outputs can be bundled and connected to the A / D converter. Even when pixels and circuits are mixed on a single substrate, or when connecting to an A / D converter that spans multiple columns, there is no need to provide a column switch between the column and AD converter. be able to.
  <イメージセンサ>
 このような本技術を適用した撮像素子の一実施の形態であるイメージセンサの画素領域の構成例を、図1に示す。図1に示されるイメージセンサ100は、被写体からの光を光電変換して画像データとして出力するデバイスである。例えば、イメージセンサ100は、CMOS(Complementary Metal Oxide Semiconductor)を用いたCMOSイメージセンサ、CCD(Charge Coupled Device)を用いたCCDイメージセンサ等として構成される。
<Image sensor>
FIG. 1 shows a configuration example of a pixel region of an image sensor which is an embodiment of an image sensor to which the present technology is applied. An image sensor 100 shown in FIG. 1 is a device that photoelectrically converts light from a subject and outputs it as image data. For example, the image sensor 100 is configured as a CMOS image sensor using CMOS (Complementary Metal Oxide Semiconductor), a CCD image sensor using CCD (Charge Coupled Device), or the like.
 図1に示されるように、イメージセンサ100は、画素アレイ101を有する。画素アレイ101は、フォトダイオード等の光電変換素子を有する画素構成(単位画素111)が平面状または曲面状に配置される画素領域である。図1の例の場合、画素アレイ101は、単位画素111がアレイ状に配置されている。図中、単位画素111の水平方向の並びが行を示し、垂直方向の並びが列を示す。 As shown in FIG. 1, the image sensor 100 includes a pixel array 101. The pixel array 101 is a pixel region in which pixel configurations (unit pixels 111) having photoelectric conversion elements such as photodiodes are arranged in a planar shape or a curved shape. In the example of FIG. 1, the pixel array 101 has unit pixels 111 arranged in an array. In the figure, the horizontal arrangement of the unit pixels 111 indicates a row, and the vertical arrangement indicates a column.
 各単位画素111は、被写体からの光を受光し、その入射光を光電変換して電荷を蓄積し、所定のタイミングにおいて、その電荷を画素信号として出力する。 Each unit pixel 111 receives light from a subject, photoelectrically converts the incident light, accumulates charges, and outputs the charges as pixel signals at a predetermined timing.
 また、図1に示されるように、画素アレイ101には、複数行複数列の単位画素111からなる画素ユニット121が形成される。つまり、画素ユニットは、画素アレイ101からなる画素領域を複数に分割する部分領域に含まれる単位画素群である。図1の例の場合、画素ユニット121は、4x4の単位画素111により構成される。もちろん、画素ユニット121のサイズや形状は任意である。例えば、画素ユニット121のサイズが4x4、4x8、8x4、8x8、4x16、8x16、16x4、16x8、16x16の単位画素により構成されるようにしてもよい。 Further, as shown in FIG. 1, a pixel unit 121 including unit pixels 111 of a plurality of rows and a plurality of columns is formed in the pixel array 101. That is, the pixel unit is a unit pixel group included in a partial region that divides the pixel region including the pixel array 101 into a plurality of regions. In the case of the example of FIG. 1, the pixel unit 121 includes a 4 × 4 unit pixel 111. Of course, the size and shape of the pixel unit 121 are arbitrary. For example, the size of the pixel unit 121 may be configured by unit pixels of 4 × 4, 4 × 8, 8 × 4, 8 × 8, 4 × 16, 8 × 16, 16 × 4, 16 × 8, and 16 × 16.
 図1においては、画素ユニット121を1つのみ示しているが、実際には、画素ユニット121は、画素アレイ101全体に形成される。つまり、各単位画素111は、いずれかの画素ユニット121に属する。各画素ユニット121のサイズや形状が互いに同一でなくてもよい。 In FIG. 1, only one pixel unit 121 is shown, but in actuality, the pixel unit 121 is formed in the entire pixel array 101. That is, each unit pixel 111 belongs to one of the pixel units 121. The size and shape of each pixel unit 121 may not be the same.
 また、図1においては、各単位画素111が互いに同じ大きさの正方形として示されているが、各単位画素111のサイズや形状は任意であり、正方形で無くてもよいし、互いに同一のサイズおよび形状でなくてもよい。 In FIG. 1, each unit pixel 111 is shown as a square having the same size. However, the size and shape of each unit pixel 111 are arbitrary, and may not be square, but may be the same size. And it may not be a shape.
  <エリアA/D変換部>
 図2は、イメージセンサ100の構成の一部の例を示す図である。図2に示されるように、イメージセンサ100の各画素ユニット121には、それぞれ、A/D変換部131が設けられる。図2の例の場合、画素領域に3つの画素ユニット121(画素ユニット121-1乃至画素ユニット121-3)が形成されている。また、それらに対して、3つのA/D変換部131(A/D変換部131-1乃至A/D変換部131-3)が形成されている。
<Area A / D converter>
FIG. 2 is a diagram illustrating an example of a part of the configuration of the image sensor 100. As shown in FIG. 2, each pixel unit 121 of the image sensor 100 is provided with an A / D converter 131. In the case of the example in FIG. 2, three pixel units 121 (pixel units 121-1 to 121-3) are formed in the pixel region. In addition, three A / D converters 131 (A / D converters 131-1 to 131-3) are formed for them.
 A/D変換部131-1は、画素ユニット121-1に接続され、画素ユニット121-1の各単位画素から読み出される信号をA/D変換する。A/D変換部131-2は、画素ユニット121-2に接続され、画素ユニット121-2の各単位画素から読み出される信号をA/D変換する。A/D変換部131-3は、画素ユニット121-3に接続され、画素ユニット121-3の各単位画素から読み出される信号をA/D変換する。 The A / D conversion unit 131-1 is connected to the pixel unit 121-1, and A / D converts signals read from each unit pixel of the pixel unit 121-1. The A / D conversion unit 131-2 is connected to the pixel unit 121-2 and performs A / D conversion on a signal read from each unit pixel of the pixel unit 121-2. The A / D conversion unit 131-3 is connected to the pixel unit 121-3 and performs A / D conversion on signals read from each unit pixel of the pixel unit 121-3.
 A/D変換部131-1乃至A/D変換部131-3を互いに区別して説明する必要が無い場合、単にA/D変換部131と称する。つまり、各画素ユニット121に対してA/D変換部131が設けられ、画素ユニット121内の各単位画素111から読み出される信号は、その画素ユニット121に接続されるA/D変換部131に供給され、A/D変換される。 The A / D converter 131-1 to A / D converter 131-3 are simply referred to as the A / D converter 131 when there is no need to distinguish between them. That is, an A / D conversion unit 131 is provided for each pixel unit 121, and a signal read from each unit pixel 111 in the pixel unit 121 is supplied to the A / D conversion unit 131 connected to the pixel unit 121. And A / D converted.
 信号は、画素ユニット121内の各単位画素111から、例えば1単位画素分ずつ順次読み出され、A/D変換部131に供給される。画素ユニット121内の各単位画素111の信号読み出し順は任意である。例えばラスタスキャン順等のように、予め定められた順に読み出すようにしてもよいし、ランダムに読み出すようにしてもよい。 The signal is sequentially read from each unit pixel 111 in the pixel unit 121, for example, by one unit pixel, and supplied to the A / D converter 131. The signal readout order of each unit pixel 111 in the pixel unit 121 is arbitrary. For example, the data may be read in a predetermined order such as a raster scan order or may be read at random.
 図2の例の場合、画素ユニット121およびA/D変換部131は、互いに同一の半導体基板に形成されている。 In the case of the example of FIG. 2, the pixel unit 121 and the A / D converter 131 are formed on the same semiconductor substrate.
  <半導体基板積層構造>
 イメージセンサ100は、例えば、図3に示されるように、互いに重畳される2枚の半導体基板(積層チップ(画素基板141および回路基板142))に、その回路構成が形成されるようにしてもよい。
<Semiconductor substrate laminated structure>
For example, as shown in FIG. 3, the image sensor 100 may be configured such that its circuit configuration is formed on two semiconductor substrates (laminated chips (the pixel substrate 141 and the circuit substrate 142)) that are superimposed on each other. Good.
 画素基板141には、画素領域(すなわち、画素アレイ101)が形成される。例えば、図3の場合、N個の画素ユニット121(画素ユニット121-1乃至画素ユニット121-N)が形成される。回路基板142には、各画素ユニット121に対応するA/D変換部131が形成される。 A pixel region (that is, the pixel array 101) is formed on the pixel substrate 141. For example, in the case of FIG. 3, N pixel units 121 (pixel units 121-1 to 121-N) are formed. An A / D conversion unit 131 corresponding to each pixel unit 121 is formed on the circuit board 142.
 A/D変換部131は、回路基板142の、画素基板141に形成される、そのA/D変換部131に対応する画素ユニット121と積層される位置に形成される。例えば、A/D変換部131-Kは、画素基板141と回路基板142とを貼り合わせた状態において、画素基板141に形成される、そのA/D変換部131-Kに対応する画素ユニット121-Kと積層される位置に形成される。 The A / D converter 131 is formed on the circuit board 142 at a position where the pixel unit 121 corresponding to the A / D converter 131 is stacked on the pixel substrate 141. For example, the A / D converter 131-K is formed on the pixel substrate 141 in a state where the pixel substrate 141 and the circuit substrate 142 are bonded together, and the pixel unit 121 corresponding to the A / D converter 131-K. -K is formed at the position where it is stacked.
 この状態において、画素ユニット121-Kの各単画素から読み出された信号の伝送路と、A/D変換部131-Kの基準電位と比較する信号の伝送路とが接続される。このような構成とすることにより、画素ユニット121-Kの各単画素から読み出された信号が、A/D変換部131-Kに入力され、A/D変換される。
 このように、画素基板141と回路基板142を有する構成の場合、接続(マイクロバンプやTSVなど)数を1つまたは数個に抑えることができる。したがって接続に必要な面積を画素ピッチに合わせる必要はなく、また接続数が少ないため歩留りの向上を期待することができる。
In this state, the transmission path of the signal read from each single pixel of the pixel unit 121-K is connected to the transmission path of the signal to be compared with the reference potential of the A / D converter 131-K. With such a configuration, a signal read from each single pixel of the pixel unit 121-K is input to the A / D conversion unit 131-K and A / D converted.
Thus, in the case of the configuration including the pixel substrate 141 and the circuit substrate 142, the number of connections (micro bumps, TSVs, etc.) can be suppressed to one or several. Therefore, it is not necessary to adjust the area required for connection to the pixel pitch, and since the number of connections is small, an improvement in yield can be expected.
 なお、この半導体基板(積層チップ)の数(層数)は任意であり、3層以上であってもよい。 Note that the number (number of layers) of the semiconductor substrates (layered chips) is arbitrary, and may be three or more.
  <イメージセンサの回路構成>
 イメージセンサ100の主な回路構成の例を図4に示す。図4においては、1画素ユニット121分の構成例を示す。点線151で囲まれる回路構成が1つの単位画素111の回路構成の例を示している。
<Circuit configuration of image sensor>
An example of the main circuit configuration of the image sensor 100 is shown in FIG. FIG. 4 shows a configuration example of one pixel unit 121 minutes. The circuit configuration surrounded by the dotted line 151 shows an example of the circuit configuration of one unit pixel 111.
  <単位画素構成>
 ここで、この点線151内の回路構成(すなわち、単位画素111の回路構成)の主な構成の例を図5に示す。図5に示される例の場合、単位画素111は、フォトダイオード171、転送トランジスタ172、リセットトランジスタ173、増幅トランジスタ174、およびセレクトトランジスタ175を有する。
<Unit pixel configuration>
Here, FIG. 5 shows an example of the main configuration of the circuit configuration within this dotted line 151 (that is, the circuit configuration of the unit pixel 111). In the example illustrated in FIG. 5, the unit pixel 111 includes a photodiode 171, a transfer transistor 172, a reset transistor 173, an amplification transistor 174, and a select transistor 175.
 フォトダイオード(PD)171は、受光した光をその光量に応じた電荷量の光電荷(ここでは、光電子)に光電変換してその光電荷を蓄積する。フォトダイオード171のアノード電極は画素領域のグランド(画素グランド)に接続され、カソード電極は転送トランジスタ172を介してフローティングディフュージョン(FD)に接続される。もちろん、フォトダイオード171のカソード電極が画素領域の電源(画素電源)に接続され、アノード電極が転送トランジスタ172を介してフローティングディフュージョン(FD)に接続され、光電荷を光正孔として読み出す方式としてもよい。 The photodiode (PD) 171 photoelectrically converts the received light into a photocharge (here, photoelectrons) having a charge amount corresponding to the light quantity, and accumulates the photocharge. The anode electrode of the photodiode 171 is connected to the ground (pixel ground) of the pixel region, and the cathode electrode is connected to the floating diffusion (FD) via the transfer transistor 172. Of course, a method may be adopted in which the cathode electrode of the photodiode 171 is connected to the power source (pixel power source) of the pixel region, the anode electrode is connected to the floating diffusion (FD) via the transfer transistor 172, and the photocharge is read as a photohole. .
 転送トランジスタ172は、フォトダイオード171からの光電荷の読み出しを制御する。転送トランジスタ172は、ドレイン電極がフローティングディフュージョンに接続され、ソース電極がフォトダイオード171のカソード電極に接続される。また、転送トランジスタ172のゲート電極には、エリア走査部152(図4)から供給される転送制御信号を伝送する転送制御線(TRG)が接続される。転送制御線(TRG)(すなわち、転送トランジスタ172のゲート電位)がオフ状態のとき、フォトダイオード171からの光電荷の転送が行われない(フォトダイオード171において光電荷が蓄積される)。転送制御線(TRG)(すなわち、転送トランジスタ172のゲート電位)がオン状態のとき、フォトダイオード171に蓄積された光電荷がフローティングディフュージョン(FD)に転送される。 The transfer transistor 172 controls reading of the photocharge from the photodiode 171. The transfer transistor 172 has a drain electrode connected to the floating diffusion and a source electrode connected to the cathode electrode of the photodiode 171. Further, a transfer control line (TRG) for transmitting a transfer control signal supplied from the area scanning unit 152 (FIG. 4) is connected to the gate electrode of the transfer transistor 172. When the transfer control line (TRG) (that is, the gate potential of the transfer transistor 172) is in an off state, photocharge is not transferred from the photodiode 171 (photocharge is accumulated in the photodiode 171). When the transfer control line (TRG) (that is, the gate potential of the transfer transistor 172) is on, the photocharge accumulated in the photodiode 171 is transferred to the floating diffusion (FD).
 リセットトランジスタ173は、フローティングディフュージョン(FD)の電位をリセットする。リセットトランジスタ173は、ドレイン電極が電源電位に接続され、ソース電極がフローティングディフュージョン(FD)に接続される。また、リセットトランジスタ173のゲート電極には、エリア走査部152(図4)から供給されるリセット制御信号を伝送するリセット制御線(RST)が接続される。リセット制御信号(RST)(すなわち、リセットトランジスタ173のゲート電位)がオフ状態のとき、フローティングディフュージョン(FD)はリセット電圧配線(VR)(すなわち、リセット電圧VR)と切り離されている。リセット制御信号(RST)(すなわち、リセットトランジスタ173のゲート電位)がオン状態のとき、フローティングディフュージョン(FD)の電荷がリセット電圧配線(VR)に捨てられ、フローティングディフュージョン(FD)がリセットされる。 The reset transistor 173 resets the potential of the floating diffusion (FD). The reset transistor 173 has a drain electrode connected to the power supply potential and a source electrode connected to the floating diffusion (FD). Further, a reset control line (RST) for transmitting a reset control signal supplied from the area scanning unit 152 (FIG. 4) is connected to the gate electrode of the reset transistor 173. When the reset control signal (RST) (that is, the gate potential of the reset transistor 173) is in the off state, the floating diffusion (FD) is disconnected from the reset voltage wiring (VR) (that is, the reset voltage VR). When the reset control signal (RST) (that is, the gate potential of the reset transistor 173) is on, the charge of the floating diffusion (FD) is discarded to the reset voltage wiring (VR), and the floating diffusion (FD) is reset.
 増幅トランジスタ174は、フローティングディフュージョン(FD)の電位変化を増幅し、電気信号(アナログ信号)として出力する。増幅トランジスタ174は、ゲート電極がフローティングディフュージョン(FD)に接続され、ドレイン電極がソースフォロワ電源電圧に接続され、ソース電極がセレクトトランジスタ175のドレイン電極に接続されている。例えば、増幅トランジスタ174は、リセットトランジスタ173によってリセットされたフローティングディフュージョン(FD)の電位をリセット信号(リセットレベル)としてセレクトトランジスタ175に出力する。また、増幅トランジスタ174は、転送トランジスタ172によって光電荷が転送されたフローティングディフュージョン(FD)の電位を光蓄積信号(信号レベル)としてセレクトトランジスタ175に出力する。 The amplification transistor 174 amplifies the potential change of the floating diffusion (FD) and outputs it as an electric signal (analog signal). The amplification transistor 174 has a gate electrode connected to the floating diffusion (FD), a drain electrode connected to the source follower power supply voltage, and a source electrode connected to the drain electrode of the select transistor 175. For example, the amplification transistor 174 outputs the potential of the floating diffusion (FD) reset by the reset transistor 173 to the select transistor 175 as a reset signal (reset level). In addition, the amplification transistor 174 outputs the potential of the floating diffusion (FD) to which the photocharge has been transferred by the transfer transistor 172, to the select transistor 175 as a light accumulation signal (signal level).
 セレクトトランジスタ175は、増幅トランジスタ174から供給される電気信号の垂直信号線VSL(すなわち、A/D変換部131)への出力を制御する。セレクトトランジスタ175は、ドレイン電極が増幅トランジスタ174のソース電極に接続され、ソース電極が垂直信号線VSLに接続されている。また、セレクトトランジスタ175のゲート電極には、エリア走査部152(図4)から供給されるセレクト制御信号を伝送するセレクト制御線(SEL)が接続される。セレクト制御信号(SEL)(すなわち、セレクトトランジスタ175のゲート電位)がオフ状態のとき、増幅トランジスタ174と垂直信号線VSLは電気的に切り離されている。したがって、この状態のとき、当該単位画素からリセット信号や画素信号等が出力されない。セレクト制御信号(SEL)(すなわち、セレクトトランジスタ175のゲート電位)がオン状態のとき、当該単位画素が選択状態となる。つまり、増幅トランジスタ174と垂直信号線VSLが電気的に接続され、増幅トランジスタ174から出力される信号が、当該単位画素の画素信号として、垂直信号線VSLに供給される。すなわち、当該単位画素からリセット信号や画素信号等が読み出される。 The select transistor 175 controls the output of the electrical signal supplied from the amplification transistor 174 to the vertical signal line VSL (that is, the A / D conversion unit 131). The select transistor 175 has a drain electrode connected to the source electrode of the amplification transistor 174 and a source electrode connected to the vertical signal line VSL. A select control line (SEL) for transmitting a select control signal supplied from the area scanning unit 152 (FIG. 4) is connected to the gate electrode of the select transistor 175. When the select control signal (SEL) (that is, the gate potential of the select transistor 175) is in the OFF state, the amplification transistor 174 and the vertical signal line VSL are electrically disconnected. Therefore, in this state, no reset signal, pixel signal, or the like is output from the unit pixel. When the select control signal (SEL) (that is, the gate potential of the select transistor 175) is on, the unit pixel is selected. That is, the amplification transistor 174 and the vertical signal line VSL are electrically connected, and a signal output from the amplification transistor 174 is supplied to the vertical signal line VSL as a pixel signal of the unit pixel. That is, a reset signal, a pixel signal, and the like are read from the unit pixel.
 図4に戻り、アレイ状に配置された単位画素111群の各行(水平方向の並び)に対して、リセット電圧配線(VR)、リセット制御線(RST)、転送制御線(TRG)が形成される。図4の例の場合、画素ユニット121が4x4の単位画素により構成されるので、リセット電圧配線(VR)、リセット制御線(RST)、転送制御線(TRG)が4本ずつ形成されている(リセット電圧配線VR1乃至リセット電圧配線VR4、リセット制御線RST1乃至リセット制御線RST4、転送制御線TRG1乃至転送制御線TRG4)。 Returning to FIG. 4, a reset voltage wiring (VR), a reset control line (RST), and a transfer control line (TRG) are formed for each row (horizontal alignment) of the unit pixel 111 group arranged in an array. The In the case of the example of FIG. 4, since the pixel unit 121 is composed of 4 × 4 unit pixels, four reset voltage lines (VR), reset control lines (RST), and four transfer control lines (TRG) are formed ( Reset voltage wiring VR1 to reset voltage wiring VR4, reset control line RST1 to reset control line RST4, transfer control line TRG1 to transfer control line TRG4).
 つまり、リセット電圧配線VR1、リセット制御線RST1、および転送制御線TRG1は、図4に示される画素ユニット121の一番上の行の各単位画素に接続される。同様に、リセット電圧配線VR2、リセット制御線RST2、および転送制御線TRG2は、図4に示される画素ユニット121の上から2番目の行の各単位画素に接続される。また、リセット電圧配線VR3、リセット制御線RST3、および転送制御線TRG3は、図4に示される画素ユニット121の上から3番目の行の各単位画素に接続される。同様に、リセット電圧配線VR4、リセット制御線RST4、および転送制御線TRG4は、図4に示される画素ユニット121の一番下の行の各単位画素に接続される。 That is, the reset voltage wiring VR1, the reset control line RST1, and the transfer control line TRG1 are connected to each unit pixel in the top row of the pixel unit 121 shown in FIG. Similarly, the reset voltage wiring VR2, the reset control line RST2, and the transfer control line TRG2 are connected to each unit pixel in the second row from the top of the pixel unit 121 shown in FIG. Further, the reset voltage wiring VR3, the reset control line RST3, and the transfer control line TRG3 are connected to each unit pixel in the third row from the top of the pixel unit 121 shown in FIG. Similarly, the reset voltage line VR4, the reset control line RST4, and the transfer control line TRG4 are connected to each unit pixel in the bottom row of the pixel unit 121 shown in FIG.
 また、図4に示されるように、アレイ状に配置された単位画素111群の各列(垂直方向の並び)に対して、セレクト制御線(SEL)が形成される。図4の例の場合、画素ユニット121が4x4の単位画素により構成されるので、セレクト制御線(SEL)が4本形成されている(セレクト制御線SEL1乃至セレクト制御線SEL4)。 Further, as shown in FIG. 4, a select control line (SEL) is formed for each column (arrangement in the vertical direction) of the group of unit pixels 111 arranged in an array. In the example of FIG. 4, since the pixel unit 121 is composed of 4 × 4 unit pixels, four select control lines (SEL) are formed (select control line SEL1 to select control line SEL4).
 つまり、セレクト制御線SEL1は、図4に示される画素ユニット121の一番左の列の各単位画素に接続される。同様に、セレクト制御線SEL2は、図4に示される画素ユニット121の左から2番目の列の各単位画素に接続される。また、セレクト制御線SEL3は、図4に示される画素ユニット121の左から3番目の列の各単位画素に接続される。同様に、セレクト制御線SEL4は、図4に示される画素ユニット121の一番右の列の各単位画素に接続される。 That is, the select control line SEL1 is connected to each unit pixel in the leftmost column of the pixel unit 121 shown in FIG. Similarly, the select control line SEL2 is connected to each unit pixel in the second column from the left of the pixel unit 121 shown in FIG. The select control line SEL3 is connected to each unit pixel in the third column from the left of the pixel unit 121 shown in FIG. Similarly, the select control line SEL4 is connected to each unit pixel in the rightmost column of the pixel unit 121 shown in FIG.
 イメージセンサ100は、エリア走査部152を有する。エリア走査部152は、各単位画素111からの信号の読み出しを制御する制御の一実施の形態の例である。例えばエリア走査部152は、各リセット電圧配線(VR)(リセット電圧配線VR1乃至リセット電圧配線VR4)に対してリセット電圧を供給する。 The image sensor 100 has an area scanning unit 152. The area scanning unit 152 is an example of an embodiment of control that controls reading of a signal from each unit pixel 111. For example, the area scanning unit 152 supplies a reset voltage to each reset voltage wiring (VR) (reset voltage wiring VR1 to reset voltage wiring VR4).
 また、エリア走査部152は、リセット制御信号を生成し、リセット制御線RST1乃至リセット制御線RST4のいずれかを選択し、生成したリセット制御信号を選択したリセット制御線(RST)に出力する。つまり、エリア走査部152は、リセット制御信号を、選択したリセット制御線(RST)に接続される各単位画素(のリセットトランジスタ173のゲート)に対して供給する。 The area scanning unit 152 generates a reset control signal, selects any one of the reset control lines RST1 to RST4, and outputs the generated reset control signal to the selected reset control line (RST). That is, the area scanning unit 152 supplies the reset control signal to each unit pixel (the gate of the reset transistor 173) connected to the selected reset control line (RST).
 また、エリア走査部152は、転送制御信号を生成し、転送制御線TRG1乃至転送制御線TRG4のいずれかを選択し、生成した転送制御信号を選択した転送制御線(TRG)に出力する。つまり、エリア走査部152は、転送制御信号を、選択した転送制御線(TRG)に接続される各単位画素(の転送トランジスタ172のゲート)に対して供給する。 Further, the area scanning unit 152 generates a transfer control signal, selects any one of the transfer control lines TRG1 to TRG4, and outputs the generated transfer control signal to the selected transfer control line (TRG). That is, the area scanning unit 152 supplies the transfer control signal to each unit pixel (the gate of the transfer transistor 172) connected to the selected transfer control line (TRG).
 また、エリア走査部152は、セレクト制御信号を生成し、セレクト制御線SEL1乃至セレクト制御線SEL4のいずれかを選択し、生成したセレクト制御信号を選択したセレクト制御線(SEL)に出力する。つまり、エリア走査部152は、セレクト制御信号を、選択したセレクト制御線(SEL)に接続される各単位画素(のセレクトトランジスタ175のゲート)に対して供給する。 Also, the area scanning unit 152 generates a select control signal, selects one of the select control lines SEL1 to SEL4, and outputs the generated select control signal to the selected select control line (SEL). That is, the area scanning unit 152 supplies the select control signal to each unit pixel (the gate of the select transistor 175) connected to the selected select control line (SEL).
 このような構成とすることで、エリア走査部152は、リセット制御線(RST)とセレクト制御線(SEL)を選択することにより、容易に所望の1画素を選択することができる。つまり、エリア走査部152は、より容易に、各単位画素から1画素づつ信号を読み出すことができる。その際、電荷転送を行単位で同時に行っても、Trや配線を追加してXYアドレス化してもどちらにも対応が可能となる。前者の場合、1行分のリセット電圧を読み出した後、電荷転送し、1行分の信号をそれぞれ順次に読み出せばよい。後者の場合、電荷転送を1画素行って信号を読み出すことを、順次好きなアドレスで行えばよい。 With such a configuration, the area scanning unit 152 can easily select a desired pixel by selecting the reset control line (RST) and the select control line (SEL). That is, the area scanning unit 152 can more easily read out signals one by one from each unit pixel. At that time, it is possible to handle both charge transfer at the same time in units of rows, and addition of Tr and wiring to XY addresses. In the former case, after the reset voltage for one row is read, charge transfer is performed, and the signals for one row are read sequentially. In the latter case, it is sufficient to sequentially read out signals by performing charge transfer for one pixel at a desired address.
 また、図4に示されるように、イメージセンサ100は、D/A変換部(DAC)161、比較部(CMP)162、およびカウンタ(CNT)163を有する。画素ユニット121の各単位画素が接続される上述した垂直信号線は、比較部162の一方の入力に接続される。 4, the image sensor 100 includes a D / A converter (DAC) 161, a comparator (CMP) 162, and a counter (CNT) 163. The above-described vertical signal line to which each unit pixel of the pixel unit 121 is connected is connected to one input of the comparison unit 162.
 D/A変換部161は、比較部162に供給する基準電圧として、所定のランプ信号を生成する。D/A変換部161は、比較部162の他方の入力に、生成したランプ信号を供給する。 The D / A conversion unit 161 generates a predetermined ramp signal as a reference voltage supplied to the comparison unit 162. The D / A conversion unit 161 supplies the generated ramp signal to the other input of the comparison unit 162.
 比較部162は、D/A変換部161から供給される基準電圧(ランプ信号)と、画素ユニット121から供給される、各単位画素111から読み出された信号とを比較し、比較結果(どちらの値が大きいかを示す情報)をカウンタ163に供給する。 The comparison unit 162 compares the reference voltage (ramp signal) supplied from the D / A conversion unit 161 with the signal read from each unit pixel 111 supplied from the pixel unit 121, and compares the comparison result (which (Information indicating whether the value of the
 カウンタ163は、カウント開始からその比較結果の値が変化するまでの期間をカウントし、比較結果の値が変化した時点でそのカウント値を、比較部162に入力された信号のデジタルデータとして出力する。 The counter 163 counts the period from the start of counting until the value of the comparison result changes, and outputs the count value as digital data of the signal input to the comparison unit 162 when the value of the comparison result changes. .
 つまり、D/A変換部(DAC)161、比較部(CMP)162、およびカウンタ(CNT)163は、A/D変換部131の構成である。 That is, the D / A conversion unit (DAC) 161, the comparison unit (CMP) 162, and the counter (CNT) 163 are the configuration of the A / D conversion unit 131.
 画素ユニット121内の各単位画素の信号は、エリア走査部152の制御により、1画素ずつ読み出され、比較部162に供給される。比較部162は、供給される各信号を順次ランプ信号と比較し、その比較結果を出力する。カウンタ163が、その比較結果が変化するまでをカウントし、そのカウント値を出力する。このようにすることにより、A/D変換部131は、対応する画素ユニット121内の各画素から読み出された信号をA/D変換することができる。 The signal of each unit pixel in the pixel unit 121 is read out pixel by pixel under the control of the area scanning unit 152 and supplied to the comparison unit 162. The comparison unit 162 sequentially compares each supplied signal with the ramp signal and outputs the comparison result. The counter 163 counts until the comparison result changes, and outputs the count value. In this way, the A / D converter 131 can A / D convert signals read from the respective pixels in the corresponding pixel unit 121.
 なお、図4の例においては、エリア走査部152と、画素ユニット121の1つ分の構成とが示されているが、エリア走査部152は、画素アレイ101の全ての画素ユニット121に対して、同様に制御することができる。そして、A/D変換部は、上述したD/A変換部161、比較部(CMP)162、およびカウンタ(CNT)163の構成に限らず、例えば、逐次比較型若しくはデジタルシグマ型のA/D変換部等であってもよい。 In the example of FIG. 4, the area scanning unit 152 and the configuration of one pixel unit 121 are shown. However, the area scanning unit 152 applies to all the pixel units 121 of the pixel array 101. Can be controlled as well. The A / D conversion unit is not limited to the configuration of the D / A conversion unit 161, the comparison unit (CMP) 162, and the counter (CNT) 163 described above. For example, the A / D conversion unit is a successive approximation type or a digital sigma type A / D It may be a conversion unit or the like.
  <読み出し伝送制御処理の流れ>
 図6のフローチャートを参照して、読み出し伝送制御処理の流れの例を説明する。
<Flow of read transmission control processing>
An example of the flow of the read transmission control process will be described with reference to the flowchart of FIG.
 読み出し伝送制御処理が開始されると、エリア走査部152は、ステップS101において、フォトダイオード(PD)171を初期化させる。例えば、エリア走査部152は、リセット電圧配線VR1乃至リセット電圧配線VR4、リセット制御線RST1乃至リセット制御線RST4、並びに、転送制御線TRG1乃至転送制御線TRG4を選択し、これらをすべてONにすることにより、全ての単位画素111のフォトダイオード171を初期化する(グローバルリセットを行う)。なお、エリア走査部152が、各単位画素のフォトダイオード171を順次初期化するローリングリセットを行うようにしてもよい。 When the read transmission control process is started, the area scanning unit 152 initializes the photodiode (PD) 171 in step S101. For example, the area scanning unit 152 selects the reset voltage wiring VR1 to the reset voltage wiring VR4, the reset control line RST1 to the reset control line RST4, and the transfer control line TRG1 to the transfer control line TRG4, and turns them all on. Thus, the photodiodes 171 of all the unit pixels 111 are initialized (global reset is performed). The area scanning unit 152 may perform a rolling reset that sequentially initializes the photodiodes 171 of each unit pixel.
 その後、露光が行われた後、ステップS102において、エリア走査部152は、フローティングディフュージョン(FD)を初期化する。例えば、エリア走査部152は、リセット制御線RST1乃至リセット制御線RST4を選択し、これらをすべてONにすることにより、全ての単位画素111のフローティングディフュージョン(FD)を初期化する。 Thereafter, after the exposure, the area scanning unit 152 initializes the floating diffusion (FD) in step S102. For example, the area scanning unit 152 initializes the floating diffusion (FD) of all the unit pixels 111 by selecting the reset control lines RST1 to RST4 and turning them all on.
 ステップS103において、エリア走査部152は、信号を読み出す単位画素の行(読み出し行)を選択する。例えば、エリア走査部152は、リセット制御線RST1乃至リセット制御線RST4の中からいずれかを選択し、それをONにすることにより、所望の単位画素111の行を、読み出し行として選択する。 In step S103, the area scanning unit 152 selects a row (reading row) of unit pixels from which a signal is read. For example, the area scanning unit 152 selects any one of the reset control lines RST1 to RST4 and turns it on, thereby selecting a desired row of the unit pixels 111 as a readout row.
 ステップS104において、エリア走査部152は、リセットレベルを読み出す単位画素の列(リセットレベル読み出し列)を順次選択する。例えば、エリア走査部152は、セレクト制御線SEL1乃至セレクト制御線SEL4の中からいずれかを選択し、それをONにすることにより、所望の単位画素111の列を、リセットレベル読み出し列として選択する。エリア走査部152は、この処理を繰り返し、各列をリセットレベル読み出し列として順次選択する。このようにすることにより、読み出し行の各画素から、リセットレベルが1画素ずつ順次読み出される。 In step S104, the area scanning unit 152 sequentially selects a column of unit pixels from which the reset level is read (reset level read column). For example, the area scanning unit 152 selects any one of the select control lines SEL1 to SEL4 and turns it on, thereby selecting a desired unit pixel 111 column as a reset level readout column. . The area scanning unit 152 repeats this process, and sequentially selects each column as a reset level read column. In this way, the reset level is sequentially read out from each pixel in the readout row one pixel at a time.
 ステップS105において、エリア走査部152は、読み出し行のフォトダイオード171に蓄積された電荷をフローティングディフュージョンに転送する。例えば、エリア走査部152は、転送制御線TRG1乃至転送制御線TRG4の中から、ステップS103において選択された読み出し行に割り当てられた転送制御線を選択し、それをONにすることにより、読み出し行の各単位画素において、フォトダイオード171の電荷をフローティングディフュージョンに転送する。 In step S105, the area scanning unit 152 transfers the charges accumulated in the photodiodes 171 in the readout row to the floating diffusion. For example, the area scanning unit 152 selects the transfer control line assigned to the read line selected in step S103 from the transfer control lines TRG1 to TRG4, and turns it on to thereby read the read line. In each unit pixel, the charge of the photodiode 171 is transferred to the floating diffusion.
 ステップS106において、エリア走査部152は、画素信号を読み出す単位画素の列(画素信号読み出し列)を順次選択する。例えば、エリア走査部152は、セレクト制御線SEL1乃至セレクト制御線SEL4の中からいずれかを選択し、それをONにすることにより、所望の単位画素111の列を、画素信号読み出し列として選択する。エリア走査部152は、この処理を繰り返し、各列を画素信号読み出し列として順次選択する。このようにすることにより、読み出し行の各画素から、画素信号が1画素ずつ順次読み出される。 In step S106, the area scanning unit 152 sequentially selects a unit pixel column (pixel signal read column) from which the pixel signal is read. For example, the area scanning unit 152 selects any one of the select control lines SEL1 to SEL4 and turns it on, thereby selecting a desired unit pixel 111 column as a pixel signal readout column. . The area scanning unit 152 repeats this process, and sequentially selects each column as a pixel signal readout column. In this way, pixel signals are sequentially read out from each pixel in the readout row one pixel at a time.
 以上のように各処理が行われると、読み出し伝送制御処理が終了する。 When each process is performed as described above, the read transmission control process ends.
 図7は、上述した読み出し伝送制御処理により、リセットレベルや画素信号が読み出される様子の例を示すタイミングチャートである。 FIG. 7 is a timing chart showing an example of how the reset level and pixel signal are read out by the above-described read transmission control process.
 このように、エリア走査部152は、従来の行同時読み出しの場合と同様に、各制御線を選択するのみで、容易に各画素の信号レベルを読み出すことができる。 As described above, the area scanning unit 152 can easily read out the signal level of each pixel only by selecting each control line as in the case of the conventional simultaneous row reading.
  <構成例のバリエーション>
 なお、複数の半導体基板を有し、A/D変換部が、単位画素群が形成される半導体基板と異なる半導体基板に形成されるようにしてもよい。つまり、図4に示されるイメージセンサ100の構成を、図3に示されるような、複数の半導体基板に形成されるようにしてもよい。その場合の例を図8に示す。
<Configuration example variations>
Note that a plurality of semiconductor substrates may be provided, and the A / D converter may be formed on a semiconductor substrate different from the semiconductor substrate on which the unit pixel group is formed. That is, the configuration of the image sensor 100 shown in FIG. 4 may be formed on a plurality of semiconductor substrates as shown in FIG. An example in that case is shown in FIG.
 A/D変換部が、基準電圧を生成する基準電圧生成部と、単位画素から読み出されたフローティングディフュージョンのレベルと、基準電圧生成部により生成された基準電圧とを比較する比較部と、比較部の比較結果が変化するまでをカウントするカウンタとを有し、その基準電圧生成部、比較部、およびカウンタが、単位画素群が形成される半導体基板と異なる半導体基板に形成されるようにしてもよい。 The A / D conversion unit compares the reference voltage generation unit that generates the reference voltage, the comparison unit that compares the level of the floating diffusion read from the unit pixel with the reference voltage generated by the reference voltage generation unit, and the comparison A counter that counts until the comparison result of the unit changes, and the reference voltage generation unit, the comparison unit, and the counter are formed on a semiconductor substrate different from the semiconductor substrate on which the unit pixel group is formed. Also good.
 例えば、図8に示されるように、画素アレイ101の構成が画素基板141に形成され、A/D変換部131(D/A変換部(DAC)161、比較部(CMP)162、およびカウンタ(CNT)163)が回路基板142に形成されている。 For example, as shown in FIG. 8, the configuration of the pixel array 101 is formed on the pixel substrate 141, and the A / D converter 131 (D / A converter (DAC) 161, comparator (CMP) 162, and counter ( CNT) 163) is formed on the circuit board 142.
 また、カウンタが、単位画素群が形成される半導体基板と異なる半導体基板に形成されるようにしてもよい。その場合の例を図9に示す。 Further, the counter may be formed on a semiconductor substrate different from the semiconductor substrate on which the unit pixel group is formed. An example in that case is shown in FIG.
 図9の例の場合、画素アレイ101の構成、並びに、D/A変換部(DAC)161および比較部(CMP)162の構成が、画素基板141に形成され、カウンタ(CNT)163)が回路基板142に形成されている。 In the case of the example of FIG. 9, the configuration of the pixel array 101 and the configurations of the D / A converter (DAC) 161 and the comparator (CMP) 162 are formed on the pixel substrate 141, and the counter (CNT) 163) is a circuit. It is formed on the substrate 142.
 また、単位画素から読み出されたフローティングディフュージョンのレベルが、複数の配線により、単位画素群が形成される半導体基板から、A/D変換部が形成される半導体基板に伝送されるようにしてもよい。図10にその場合の例を示す。 Further, the floating diffusion level read from the unit pixel may be transmitted by a plurality of wirings from the semiconductor substrate on which the unit pixel group is formed to the semiconductor substrate on which the A / D conversion unit is formed. Good. FIG. 10 shows an example in that case.
 図10の例の場合、図8の例と同様に、画素アレイ101の構成が画素基板141に形成され、A/D変換部131(D/A変換部(DAC)161、比較部(CMP)162、およびカウンタ(CNT)163)が回路基板142に形成されている。ただし、画素基板141と回路基板142とが2本の配線により接続されている。回路基板142には、選択部(SW)181が形成される。選択部181は、画素アレイ101からの2本の配線により伝送される信号のうち、いずれか一方若しくは両方を選択し、比較部162に供給する。このような構成とすることにより、比較部162の容量加算やソースフォロア(SF)加算を実現することができる。なお、画素基板141と回路基板142とを接続する配線の数は、3本以上であってもよい。 In the case of the example of FIG. 10, the configuration of the pixel array 101 is formed on the pixel substrate 141 as in the example of FIG. 8, and the A / D conversion unit 131 (D / A conversion unit (DAC) 161, comparison unit (CMP)). 162 and a counter (CNT) 163) are formed on the circuit board 142. However, the pixel substrate 141 and the circuit substrate 142 are connected by two wires. A selection unit (SW) 181 is formed on the circuit board 142. The selection unit 181 selects either one or both of the signals transmitted from the two wirings from the pixel array 101, and supplies them to the comparison unit 162. By adopting such a configuration, it is possible to realize capacity addition and source follower (SF) addition of the comparison unit 162. Note that the number of wirings connecting the pixel substrate 141 and the circuit substrate 142 may be three or more.
 容量加算やソースフォロア(SF)加算のような同時に複数の画素を読み出す場合は、必要な個数分の接続を用意すればよい。また画素共有や容量可変方式、画素内にメモリを配置したグローバルシャッタなど、従来から知られている機能を追加することにも対応できる。 When reading multiple pixels at the same time, such as capacity addition or source follower (SF) addition, it is sufficient to prepare the necessary number of connections. Further, it is possible to cope with addition of conventionally known functions such as pixel sharing, a variable capacity system, and a global shutter in which a memory is arranged in the pixel.
 また、画素アレイ101の各単位画素の回路と、比較部162とを接続する配線(垂直信号線)の位置は任意であり、図4等の上述した例に限定されない。例えば、図11に示されるように、その配線が横型の構成となるようにしてもよい。この場合、図11に示されるように、各行の単位画素同士がその配線により接続され、その各行の配線同士が画素ユニット121の端部においてさらに接続され、1本の配線として比較部162に接続される。 Further, the position of the wiring (vertical signal line) connecting the circuit of each unit pixel of the pixel array 101 and the comparison unit 162 is arbitrary, and is not limited to the above-described example of FIG. For example, as shown in FIG. 11, the wiring may have a horizontal configuration. In this case, as shown in FIG. 11, the unit pixels in each row are connected by the wiring, the wirings in each row are further connected at the end of the pixel unit 121, and are connected to the comparison unit 162 as one wiring. Is done.
 また、例えば、図12に示されるように、その配線が櫛形の構成となるようにしてもよい。この場合、図11に示されるように、各行の単位画素同士がその配線により接続され、その各行の配線同士が画素ユニット121の中央部(端以外)においてさらに接続され、1本の配線として比較部162に接続される。 Also, for example, as shown in FIG. 12, the wiring may have a comb-like configuration. In this case, as shown in FIG. 11, the unit pixels of each row are connected by the wiring, and the wirings of each row are further connected at the central portion (other than the end) of the pixel unit 121 and compared as one wiring. Connected to the unit 162.
 また、以上においては、単位画素111に対して、リセット電源電圧とソースフォロワ電源電圧とが互いに異なる配線により供給される場合について説明したが、これに限らず、単位画素に対して、リセット電源電圧とソースフォロワ電源電圧とが共通の配線により供給されるようにしてもよい。図13にその例を示す。図13において、点線191で囲まれる部分が、1単位画素の構成である。その様子を図14に示す。 In the above description, the case where the reset power supply voltage and the source follower power supply voltage are supplied to the unit pixel 111 through different wirings has been described. And the source follower power supply voltage may be supplied by a common wiring. An example is shown in FIG. In FIG. 13, a portion surrounded by a dotted line 191 is a configuration of one unit pixel. This is shown in FIG.
 図14に示されるように、この場合も、単位画素111の構成は、基本的に図5の例と同様であるが、図14の例の場合、増幅トランジスタ174のドレイン電極は、リセット電圧配線(VR)に接続されている。このように、リセット電圧とソースフォロワ電源電圧とが共通の配線(リセット電圧配線(VR))により供給されるようにすることができる。このようにすることにより、回路構成をさらに簡易にすることができ、回路面積の増大を抑制することができる。 As shown in FIG. 14, in this case as well, the configuration of the unit pixel 111 is basically the same as the example of FIG. 5, but in the example of FIG. 14, the drain electrode of the amplification transistor 174 is the reset voltage wiring. (VR) connected. In this way, the reset voltage and the source follower power supply voltage can be supplied by the common wiring (reset voltage wiring (VR)). By doing so, the circuit configuration can be further simplified, and an increase in circuit area can be suppressed.
 また、単位画素が、複数のフォトダイオードを有し、制御部が、転送制御信号を生成し、転送制御線を選択し、生成した転送制御信号を選択した転送制御線に出力することにより、単位画素群の所望の単位画素の組み合わせに対して、所望のフォトダイオードに蓄積された電荷の転送を行わせるようにしてもよい。 Further, the unit pixel has a plurality of photodiodes, and the control unit generates a transfer control signal, selects a transfer control line, and outputs the generated transfer control signal to the selected transfer control line. You may make it perform the transfer of the electric charge accumulate | stored in the desired photodiode with respect to the combination of the desired unit pixel of a pixel group.
 例えば、図15に示されるように、複数のフォトダイオードが、その電荷を読み出すための回路を共有するようにしてもよい。図15において、点線192で囲まれる部分が、1単位画素の構成である。その様子を図16に示す。 For example, as shown in FIG. 15, a plurality of photodiodes may share a circuit for reading out the charge. In FIG. 15, the part surrounded by the dotted line 192 is the configuration of one unit pixel. This is shown in FIG.
 図16に示されるように、この場合も、単位画素111の構成は、基本的に図5の例と同様であるが、図16の例の場合、フォトダイオード171と転送トランジスタ172が2つずつ形成されている(フォトダイオード171-1およびフォトダイオード171-2、並びに、転送トランジスタ172-1および転送トランジスタ172-2)。 As shown in FIG. 16, in this case as well, the configuration of the unit pixel 111 is basically the same as the example of FIG. 5, but in the example of FIG. 16, two photodiodes 171 and two transfer transistors 172 are provided. (Photodiode 171-1 and photodiode 171-2, and transfer transistor 172-1 and transfer transistor 172-2).
 このように、転送トランジスタ172が複数存在する場合、転送制御線(TRG)は、各転送トランジスタ172に対して形成される。図16の例の場合、転送トランジスタ172-1は、転送制御線TRG1に接続され、転送トランジスタ172-2は、転送制御線TRG2に接続される。この場合、エリア走査部152は、転送制御線TRG1および転送制御線TRG2のいずれか一方を選択することで、フォトダイオード171-1およびフォトダイオード171-2のいずれか一方を、電荷を転送するフォトダイオードとして選択することができる。つまり、選択され転送制御信号が伝送された転送制御線(TRG)に接続されるフォトダイオード171の電荷がフローティングディフュージョンに転送される。つまり、エリア走査部152は、画素信号を読み出す単位画素だけでなく、その単位画素内のフォトダイオードも選択することができる。 Thus, when there are a plurality of transfer transistors 172, a transfer control line (TRG) is formed for each transfer transistor 172. In the example of FIG. 16, the transfer transistor 172-1 is connected to the transfer control line TRG1, and the transfer transistor 172-2 is connected to the transfer control line TRG2. In this case, the area scanning unit 152 selects one of the transfer control line TRG1 and the transfer control line TRG2, thereby causing either one of the photodiode 171-1 or the photodiode 171-2 to transfer a charge. It can be selected as a diode. That is, the charge of the photodiode 171 connected to the transfer control line (TRG) to which the selected transfer control signal is transmitted is transferred to the floating diffusion. That is, the area scanning unit 152 can select not only a unit pixel from which a pixel signal is read, but also a photodiode in the unit pixel.
 なお、図15においては、図中垂直方向に並ぶ2つのフォトダイオード171がフローティングディフュージョン等の回路を共有する場合について説明したが、このフォトダイオード171の配置は任意である。例えば、図中水平方向に並んでいてもよいし、斜め方向に並んでいてもよい。また、回路を共有するフォトダイオードの数は任意である。例えば、4つのフォトダイオードが1つの回路を共有するようにしてもよい。その場合も各フォトダイオードの並びは任意である。例えば、その4つのフォトダイオードが図中水平方向に並んでいてもよいし、図中垂直方向に2つ並び、図中水平方向に2つ並ぶ構成(つまり2x2)であってもよい。 In addition, in FIG. 15, although the case where the two photodiodes 171 arranged in the vertical direction in the drawing share a circuit such as a floating diffusion has been described, the arrangement of the photodiodes 171 is arbitrary. For example, it may be arranged in the horizontal direction in the figure, or may be arranged in an oblique direction. Further, the number of photodiodes sharing the circuit is arbitrary. For example, four photodiodes may share one circuit. In that case, the arrangement of the photodiodes is arbitrary. For example, the four photodiodes may be arranged in the horizontal direction in the figure, or two photodiodes may be arranged in the vertical direction in the figure and two in the horizontal direction in the figure (that is, 2 × 2).
 このように、本技術は、従来の画素レイアウトを流用することも可能であり、画素共有にも対応が可能できるため、小型化することも可能である。 As described above, the present technology can divert the conventional pixel layout and can also support pixel sharing, and thus can be downsized.
 また、転送制御線が、画素アレイの単位画素毎に設けられるようにしてもよい。そして、制御部が、転送制御信号を生成し、転送制御線を選択し、生成した転送制御信号を選択した転送制御線に出力することにより、画素アレイの所望の単位画素に対して電荷の転送を行わせるようにしてもよい。その場合、制御部が、さらに、セレクト制御信号を生成し、電荷の転送を行わせた単位画素を含む行または列のセレクト制御線を選択し、生成したセレクト制御信号を選択したセレクト制御線に出力することにより、電荷の転送を行わせた単位画素のフローティングディフュージョンの信号レベルを読み出させるようにしてもよい。図17にその場合の例を示す。 Further, a transfer control line may be provided for each unit pixel of the pixel array. Then, the control unit generates a transfer control signal, selects a transfer control line, and outputs the generated transfer control signal to the selected transfer control line, thereby transferring charges to a desired unit pixel of the pixel array. May be performed. In that case, the control unit further generates a select control signal, selects a row or column select control line including the unit pixel to which the charge is transferred, and applies the generated select control signal to the selected select control line. By outputting, the signal level of the floating diffusion of the unit pixel to which the charge is transferred may be read out. FIG. 17 shows an example in that case.
 図17において、点線193で囲まれる構成は、1つの画素ユニット121の単位画素111の1行分の回路構成の例を示している。図17に示されるように、画素ユニットの各行において、単位画素毎に転送制御線(TRG)が設けられている(例えば、上から1行目の場合、転送制御線TRG1-1乃至転送制御線TRG1-4)。 17, the configuration surrounded by the dotted line 193 shows an example of the circuit configuration for one row of the unit pixel 111 of one pixel unit 121. As shown in FIG. 17, a transfer control line (TRG) is provided for each unit pixel in each row of the pixel unit (for example, in the case of the first row from the top, transfer control lines TRG1-1 to transfer control lines). TRG1-4).
 このようにすることにより、電荷の転送を単位画素毎に行うことができる。このように、本技術は、転送制御線のXYアドレス化にも対応することができる。 This makes it possible to transfer charges for each unit pixel. As described above, the present technology can cope with the XY addressing of the transfer control line.
 また、画素アレイの単位画素の行毎に設けられ、それぞれが割り当てられた行の各単位画素に接続される第1の転送制御線と、画素アレイの単位画素の列毎に設けられ、それぞれが割り当てられた列の各単位画素に接続される第2の転送制御線とが設けられるようにしてもよい。そして、制御部が、転送制御信号を生成し、第1の転送制御線および第2の転送制御線を選択し、生成した転送制御信号を選択した第1の転送制御線および第2の転送制御線に出力することにより、画素アレイの所望の単位画素に対して電荷の転送を行わせるようにしてもよい。さらに、セレクト制御線が、画素アレイの単位画素の行または列毎に設けられ、各セレクト制御線が、割り当てられた行または列の各単位画素に接続されるようにしてもよい。さらに、制御部が、セレクト制御信号を生成し、電荷の転送を行わせた単位画素を含む行または列のセレクト制御線を選択し、生成したセレクト制御信号を選択したセレクト制御線に出力することにより、電荷の転送を行わせた単位画素のフローティングディフュージョンの信号レベルを読み出させるようにしてもよい。 Also provided for each row of unit pixels of the pixel array, each of which is provided for each column of unit pixels of the pixel array and a first transfer control line connected to each unit pixel of the assigned row, A second transfer control line connected to each unit pixel in the assigned column may be provided. The control unit generates the transfer control signal, selects the first transfer control line and the second transfer control line, and selects the generated transfer control signal. The first transfer control line and the second transfer control By outputting to a line, the charge may be transferred to a desired unit pixel of the pixel array. Further, a select control line may be provided for each row or column of unit pixels of the pixel array, and each select control line may be connected to each unit pixel of the assigned row or column. Further, the control unit generates a select control signal, selects a row or column select control line including the unit pixel to which the charge is transferred, and outputs the generated select control signal to the selected select control line. Thus, the signal level of the floating diffusion of the unit pixel to which the charge is transferred may be read out.
 図18にその場合の例を示す。図18において、点線194で囲まれる部分が、1単位画素の構成である。その様子を図19に示す。 FIG. 18 shows an example in that case. In FIG. 18, the part surrounded by a dotted line 194 is the configuration of one unit pixel. This is shown in FIG.
 図19に示されるように、この場合も、単位画素111の構成は、基本的に図5の例と同様であるが、図19の例の場合、転送トランジスタ172が2段構成に形成されている(転送トランジスタ172-1および転送トランジスタ172-2)。 As shown in FIG. 19, in this case as well, the configuration of the unit pixel 111 is basically the same as the example of FIG. 5, but in the example of FIG. 19, the transfer transistor 172 is formed in a two-stage configuration. (Transfer transistor 172-1 and transfer transistor 172-2).
 フォトダイオード171とフローティングディフュージョンとの間に形成される転送トランジスタ172-2のゲートは、転送トランジスタ172-1のソースに接続される。転送トランジスタ172-1のゲートは転送制御線TRGXに接続され、ドレインは転送制御線TRGYに接続される。 The gate of the transfer transistor 172-2 formed between the photodiode 171 and the floating diffusion is connected to the source of the transfer transistor 172-1. The gate of the transfer transistor 172-1 is connected to the transfer control line TRGX, and the drain is connected to the transfer control line TRGY.
 転送制御線TRGXは、図18に示されるように、単位画素の列に対して割り当てられており、その割り当てられた列の各単位画素の転送トランジスタ172-1のゲートに接続される。転送制御線TRGYは、図18に示されるように、単位画素の行に対して割り当てられており、その割り当てられた行の各単位画素の転送トランジスタ172-1のドレインに接続される。 As shown in FIG. 18, the transfer control line TRGX is assigned to a column of unit pixels, and is connected to the gate of the transfer transistor 172-1 of each unit pixel of the assigned column. As shown in FIG. 18, the transfer control line TRGY is assigned to a row of unit pixels, and is connected to the drain of the transfer transistor 172-1 of each unit pixel in the assigned row.
 つまり、エリア走査部152は、この転送制御線TRGXおよび転送制御線TRGYを選択することにより、電荷を転送する単位画素を1つずつ選択することができる。つまり、このようにすることにより、電荷の転送を単位画素毎に行うことができる。このように、本技術は、転送制御線のXYアドレス化にも対応することができる。 That is, the area scanning unit 152 can select one unit pixel for transferring charges one by one by selecting the transfer control line TRGX and the transfer control line TRGY. That is, in this way, charge transfer can be performed for each unit pixel. As described above, the present technology can cope with the XY addressing of the transfer control line.
 なお、転送トランジスタの構成は、図18および図19の例に限らない。例えば、図20の例のように構成されるようにしてもよい。 Note that the configuration of the transfer transistor is not limited to the examples of FIGS. For example, you may make it comprise like the example of FIG.
 図20において、点線195で囲まれる部分が、1単位画素の構成である。その様子を図21に示す。 In FIG. 20, a portion surrounded by a dotted line 195 is a configuration of one unit pixel. This is shown in FIG.
 図21に示されるように、この場合も、単位画素111の構成は、基本的に図5の例と同様であるが、図20の例の場合、転送トランジスタ172が2段構成に形成されている(転送トランジスタ172-1および転送トランジスタ172-2)。 As shown in FIG. 21, in this case as well, the configuration of the unit pixel 111 is basically the same as the example of FIG. 5, but in the example of FIG. 20, the transfer transistor 172 is formed in a two-stage configuration. (Transfer transistor 172-1 and transfer transistor 172-2).
 フォトダイオード171とフローティングディフュージョン(FD)との間に直列に形成される2つの転送トランジスタ172(転送トランジスタ172-1および転送トランジスタ172-2)について、転送トランジスタ172-1のゲートは転送制御線TRGXに接続され、転送トランジスタ172-2のゲートは転送制御線TRGYに接続される。 Regarding two transfer transistors 172 (transfer transistor 172-1 and transfer transistor 172-2) formed in series between the photodiode 171 and the floating diffusion (FD), the gate of the transfer transistor 172-1 is connected to the transfer control line TRGX. The gate of the transfer transistor 172-2 is connected to the transfer control line TRGY.
 転送制御線TRGXは、図20に示されるように、単位画素の列に対して割り当てられており、その割り当てられた列の各単位画素の転送トランジスタ172-1のゲートに接続される。転送制御線TRGYは、図20に示されるように、単位画素の行に対して割り当てられており、その割り当てられた行の各単位画素の転送トランジスタ172-2のゲートに接続される。 As shown in FIG. 20, the transfer control line TRGX is assigned to a unit pixel column, and is connected to the gate of the transfer transistor 172-1 of each unit pixel of the assigned column. As shown in FIG. 20, the transfer control line TRGY is assigned to a row of unit pixels, and is connected to the gate of the transfer transistor 172-2 of each unit pixel of the assigned row.
 つまり、エリア走査部152は、この転送制御線TRGXおよび転送制御線TRGYを選択することにより、電荷を転送する単位画素を1つずつ選択することができる。つまり、このようにすることにより、電荷の転送を単位画素毎に行うことができる。このように、本技術は、転送制御線のXYアドレス化にも対応することができる。 That is, the area scanning unit 152 can select one unit pixel for transferring charges one by one by selecting the transfer control line TRGX and the transfer control line TRGY. That is, in this way, charge transfer can be performed for each unit pixel. As described above, the present technology can cope with the XY addressing of the transfer control line.
 なお、A/D変換部131は、シングルスロープの動作を行うようにしてもよい。つまり、本技術は、シングルスロープのA/D変換部を用いる撮像素子にも適用することができる。その場合の、読み出し伝送制御処理の流れの例を図22のフローチャートを参照して説明する。 Note that the A / D conversion unit 131 may perform a single slope operation. That is, the present technology can also be applied to an image sensor using a single slope A / D converter. An example of the flow of the read transmission control process in that case will be described with reference to the flowchart of FIG.
 読み出し伝送制御処理が開始されると、エリア走査部152は、ステップS121乃至ステップS123の各処理を、ステップS101乃至ステップS103の各処理(図6)と同様に実行する。 When the read transmission control process is started, the area scanning unit 152 executes each process from step S121 to step S123 in the same manner as each process from step S101 to step S103 (FIG. 6).
 ステップS124において、エリア走査部152は、全てのセレクト制御線(SEL)を選択し、生成したセレクト制御信号を全てのセレクト制御線(SEL)に出力することにより、オートゼロ動作を行わせる。 In step S124, the area scanning unit 152 selects all the select control lines (SEL) and outputs the generated select control signal to all the select control lines (SEL), thereby causing the auto-zero operation to be performed.
 エリア走査部152は、ステップS125の処理を、ステップS104の処理(図6)と同様に行う。 The area scanning unit 152 performs the process of step S125 in the same manner as the process of step S104 (FIG. 6).
 ステップS126において、エリア走査部152は、全てのセレクト制御線(SEL)を選択し、生成したセレクト制御信号を全てのセレクト制御線(SEL)に出力することにより、オートゼロ動作を行わせる。 In step S126, the area scanning unit 152 selects all the select control lines (SEL) and outputs the generated select control signal to all the select control lines (SEL), thereby causing the auto-zero operation to be performed.
 エリア走査部152は、ステップS127およびステップS128の各処理を、ステップS105およびステップS106の各処理(図6)と同様に行う。 The area scanning unit 152 performs the processes of step S127 and step S128 in the same manner as the processes of step S105 and step S106 (FIG. 6).
 以上のように各処理が行われると、読み出し伝送制御処理が終了する。 When each process is performed as described above, the read transmission control process ends.
 図23は、上述した読み出し伝送制御処理により、リセットレベルや画素信号が読み出される様子の例を示すタイミングチャートである。 FIG. 23 is a timing chart showing an example of how the reset level and the pixel signal are read out by the above-described read transmission control process.
 このように、エリア走査部152は、従来の行同時読み出しの場合と同様に、各制御線を選択するのみで、容易に各画素の信号レベルを読み出すことができる。つまり、シングルスロープのA/D変換部を有する撮像素子の場合であっても、より容易に画素信号の読み出しを行うことができる。 As described above, the area scanning unit 152 can easily read out the signal level of each pixel only by selecting each control line as in the case of the conventional simultaneous row reading. That is, even in the case of an image sensor having a single slope A / D converter, it is possible to read out the pixel signal more easily.
 <2.第2の実施の形態>
  <撮像装置>
 なお、本技術は、撮像素子以外にも適用することができる。例えば、撮像装置のような、撮像素子を有する装置(電子機器等)に本技術を適用するようにしてもよい。図24は、本技術を適用した電子機器の一例としての撮像装置の主な構成例を示すブロック図である。図24に示される撮像装置600は、被写体を撮像し、その被写体の画像を電気信号として出力する装置である。
<2. Second Embodiment>
<Imaging device>
Note that the present technology can be applied to devices other than the image sensor. For example, the present technology may be applied to an apparatus (an electronic device or the like) having an imaging element such as an imaging apparatus. FIG. 24 is a block diagram illustrating a main configuration example of an imaging apparatus as an example of an electronic apparatus to which the present technology is applied. An imaging apparatus 600 shown in FIG. 24 is an apparatus that images a subject and outputs an image of the subject as an electrical signal.
 図24に示されるように撮像装置600は、光学部611、CMOSイメージセンサ612、画像処理部613、表示部614、コーデック処理部615、記憶部616、出力部617、通信部618、制御部621、操作部622、およびドライブ623を有する。 As illustrated in FIG. 24, the imaging apparatus 600 includes an optical unit 611, a CMOS image sensor 612, an image processing unit 613, a display unit 614, a codec processing unit 615, a storage unit 616, an output unit 617, a communication unit 618, and a control unit 621. , An operation unit 622, and a drive 623.
 光学部611は、被写体までの焦点を調整し、焦点が合った位置からの光を集光するレンズ、露出を調整する絞り、および、撮像のタイミングを制御するシャッタ等よりなる。光学部611は、被写体からの光(入射光)を透過し、CMOSイメージセンサ612に供給する。 The optical unit 611 includes a lens that adjusts the focal point to the subject and collects light from the focused position, an aperture that adjusts exposure, a shutter that controls the timing of imaging, and the like. The optical unit 611 transmits light (incident light) from the subject and supplies the light to the CMOS image sensor 612.
 CMOSイメージセンサ612は、入射光を光電変換して画素毎の信号(画素信号)をA/D変換し、CDS等の信号処理を行い、処理後の撮像画像データを画像処理部613に供給する。 The CMOS image sensor 612 photoelectrically converts incident light, A / D converts a signal for each pixel (pixel signal), performs signal processing such as CDS, and supplies the processed captured image data to the image processing unit 613. .
 画像処理部613は、CMOSイメージセンサ612により得られた撮像画像データを画像処理する。より具体的には、画像処理部613は、CMOSイメージセンサ612から供給された撮像画像データに対して、例えば、混色補正や、黒レベル補正、ホワイトバランス調整、デモザイク処理、マトリックス処理、ガンマ補正、およびYC変換等の各種画像処理を施す。画像処理部613は、画像処理を施した撮像画像データを表示部614に供給する。 The image processing unit 613 performs image processing on the captured image data obtained by the CMOS image sensor 612. More specifically, the image processing unit 613 performs, for example, color mixture correction, black level correction, white balance adjustment, demosaic processing, matrix processing, gamma correction, on the captured image data supplied from the CMOS image sensor 612. And various image processing such as YC conversion. The image processing unit 613 supplies captured image data subjected to image processing to the display unit 614.
 表示部614は、例えば、液晶ディスプレイ等として構成され、画像処理部613から供給された撮像画像データの画像(例えば、被写体の画像)を表示する。 The display unit 614 is configured as a liquid crystal display or the like, for example, and displays an image of captured image data (for example, an image of a subject) supplied from the image processing unit 613.
 画像処理部613は、さらに、画像処理を施した撮像画像データを、必要に応じて、コーデック処理部615に供給する。 The image processing unit 613 further supplies the captured image data subjected to the image processing to the codec processing unit 615 as necessary.
 コーデック処理部615は、画像処理部613から供給された撮像画像データに対して、所定の方式の符号化処理を施し、得られた符号化データを記憶部616に供給する。また、コーデック処理部615は、記憶部616に記録されている符号化データを読み出し、復号して復号画像データを生成し、その復号画像データを画像処理部613に供給する。 The codec processing unit 615 subjects the captured image data supplied from the image processing unit 613 to encoding processing of a predetermined method, and supplies the obtained encoded data to the storage unit 616. Further, the codec processing unit 615 reads the encoded data recorded in the storage unit 616, decodes it to generate decoded image data, and supplies the decoded image data to the image processing unit 613.
 画像処理部613は、コーデック処理部615から供給される復号画像データに対して所定の画像処理を施す。画像処理部613は、画像処理を施した復号画像データを表示部614に供給する。表示部614は、例えば、液晶ディスプレイ等として構成され、画像処理部613から供給された復号画像データの画像を表示する。 The image processing unit 613 performs predetermined image processing on the decoded image data supplied from the codec processing unit 615. The image processing unit 613 supplies the decoded image data subjected to the image processing to the display unit 614. The display unit 614 is configured as a liquid crystal display, for example, and displays an image of the decoded image data supplied from the image processing unit 613.
 また、コーデック処理部615は、画像処理部613から供給された撮像画像データを符号化した符号化データ、または、記憶部616から読み出した撮像画像データの符号化データを出力部617に供給し、撮像装置600の外部に出力させるようにしてもよい。また、コーデック処理部615は、符号化前の撮像画像データ、若しくは、記憶部616から読み出した符号化データを復号して得られた復号画像データを出力部617に供給し、撮像装置600の外部に出力させるようにしてもよい。 Also, the codec processing unit 615 supplies the encoded data obtained by encoding the captured image data supplied from the image processing unit 613 or the encoded data of the captured image data read from the storage unit 616 to the output unit 617. You may make it output outside the imaging device 600. FIG. Further, the codec processing unit 615 supplies captured image data before encoding or decoded image data obtained by decoding encoded data read from the storage unit 616 to the output unit 617, and outputs the image data to the outside of the imaging device 600. You may make it output to.
 さらに、コーデック処理部615は、撮像画像データ、撮像画像データの符号化データ、または、復号画像データを、通信部618を介して他の装置に伝送させるようにしてもよい。また、コーデック処理部615は、撮像画像データや画像データの符号化データを、通信部618を介して取得するようにしてもよい。コーデック処理部615は、通信部618を介して取得した撮像画像データや画像データの符号化データに対して、適宜、符号化や復号等を行う。コーデック処理部615は、得られた画像データ若しくは符号化データを、上述したように、画像処理部613に供給したり、記憶部616、出力部617、および通信部618に出力するようにしてもよい。 Furthermore, the codec processing unit 615 may transmit the captured image data, the encoded data of the captured image data, or the decoded image data to another device via the communication unit 618. Further, the codec processing unit 615 may acquire captured image data and encoded data of the image data via the communication unit 618. The codec processing unit 615 appropriately encodes and decodes the captured image data acquired through the communication unit 618 and the encoded data of the image data. The codec processing unit 615 may supply the obtained image data or encoded data to the image processing unit 613 as described above, or output it to the storage unit 616, the output unit 617, and the communication unit 618. Good.
 記憶部616は、コーデック処理部615から供給される符号化データ等を記憶する。記憶部616に格納された符号化データは、必要に応じてコーデック処理部615に読み出されて復号される。復号処理により得られた撮像画像データは、表示部614に供給され、その撮像画像データに対応する撮像画像が表示される。 The storage unit 616 stores encoded data supplied from the codec processing unit 615 and the like. The encoded data stored in the storage unit 616 is read out and decoded by the codec processing unit 615 as necessary. The captured image data obtained by the decoding process is supplied to the display unit 614, and a captured image corresponding to the captured image data is displayed.
 出力部617は、外部出力端子等の外部出力インターフェイスを有し、コーデック処理部615を介して供給される各種データを、その外部出力インターフェイスを介して撮像装置600の外部に出力する。 The output unit 617 has an external output interface such as an external output terminal, and outputs various data supplied via the codec processing unit 615 to the outside of the imaging apparatus 600 via the external output interface.
 通信部618は、コーデック処理部615から供給される画像データや符号化データ等の各種情報を、所定の通信(有線通信若しくは無線通信)の通信相手である他の装置に供給する。また、通信部618は、所定の通信(有線通信若しくは無線通信)の通信相手である他の装置から、画像データや符号化データ等の各種情報を取得し、それをコーデック処理部615に供給する。 The communication unit 618 supplies various types of information such as image data and encoded data supplied from the codec processing unit 615 to another device that is a communication partner of predetermined communication (wired communication or wireless communication). Further, the communication unit 618 acquires various types of information such as image data and encoded data from another device that is a communication partner of predetermined communication (wired communication or wireless communication), and supplies the acquired information to the codec processing unit 615. .
 制御部621は、撮像装置600の各処理部(点線620内に示される各処理部、操作部622、並びに、ドライブ623)の動作を制御する。 The control unit 621 controls the operation of each processing unit (each processing unit indicated by a dotted line 620, the operation unit 622, and the drive 623) of the imaging apparatus 600.
 操作部622は、例えば、ジョグダイヤル(商標)、キー、ボタン、またはタッチパネル等の任意の入力デバイスにより構成され、例えばユーザ等による操作入力を受け、その操作入力に対応する信号を制御部621に供給する。 The operation unit 622 includes, for example, an arbitrary input device such as a jog dial (trademark), a key, a button, or a touch panel. For example, the operation unit 622 receives an operation input by a user or the like and supplies a signal corresponding to the operation input to the control unit 621. To do.
 ドライブ623は、自身に装着された、例えば、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブルメディア624に記憶されている情報を読み出す。ドライブ623は、リムーバブルメディア624からプログラムやデータ等の各種情報を読み出し、それを制御部621に供給する。また、ドライブ623は、書き込み可能なリムーバブルメディア624が自身に装着された場合、制御部621を介して供給される、例えば画像データや符号化データ等の各種情報を、そのリムーバブルメディア624に記憶させる。 The drive 623 reads information stored in a removable medium 624 attached to the drive 623 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory. The drive 623 reads various information such as programs and data from the removable medium 624 and supplies the information to the control unit 621. Further, the drive 623 stores various information such as image data and encoded data supplied through the control unit 621 in the removable medium 624 when the writable removable medium 624 is attached to the drive 623. .
 以上のような撮像装置600のCMOSイメージセンサ612として、各実施の形態において上述した本技術を適用する。すなわち、CMOSイメージセンサ612として、上述したイメージセンサ100が用いられる。これにより、CMOSイメージセンサ612は、より容易に画素信号を読み出すことができる。したがって撮像装置600は、被写体を撮像することにより、より容易に撮像画像を得ることができる。 As the CMOS image sensor 612 of the imaging apparatus 600 as described above, the present technology described above in each embodiment is applied. That is, the image sensor 100 described above is used as the CMOS image sensor 612. Thereby, the CMOS image sensor 612 can read out the pixel signal more easily. Therefore, the imaging apparatus 600 can obtain a captured image more easily by imaging a subject.
 なお、本技術を適用した撮像装置は、上述した構成に限らず、他の構成であってもよい。例えば、デジタルスチルカメラやビデオカメラだけでなく、携帯電話機、スマートホン、タブレット型デバイス、パーソナルコンピュータ等の、撮像機能を有する情報処理装置であってもよい。また、他の情報処理装置に装着して使用される(若しくは組み込みデバイスとして搭載される)カメラモジュールであってもよい。 Note that the imaging apparatus to which the present technology is applied is not limited to the configuration described above, and may have another configuration. For example, not only a digital still camera and a video camera but also an information processing apparatus having an imaging function, such as a mobile phone, a smart phone, a tablet device, and a personal computer. Further, it may be a camera module used by being mounted on another information processing apparatus (or mounted as an embedded device).
 上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。上述した一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、ネットワークや記録媒体からインストールされる。 The series of processes described above can be executed by hardware or software. When the above-described series of processing is executed by software, a program constituting the software is installed from a network or a recording medium.
 この記録媒体は、例えば、図24に示されるように、装置本体とは別に、ユーザにプログラムを配信するために配布される、プログラムが記録されているリムーバブルメディア624により構成される。このリムーバブルメディア624には、磁気ディスク(フレキシブルディスクを含む)や光ディスク(CD-ROMやDVDを含む)が含まれる。さらに、光磁気ディスク(MD(Mini Disc)を含む)や半導体メモリ等も含まれる。 For example, as shown in FIG. 24, this recording medium is configured by a removable medium 624 on which a program is recorded, which is distributed to distribute the program to the user, separately from the apparatus main body. The removable medium 624 includes a magnetic disk (including a flexible disk) and an optical disk (including a CD-ROM and a DVD). Further, magneto-optical disks (including MD (Mini-Disc)) and semiconductor memories are also included.
 その場合、プログラムは、そのリムーバブルメディア624をドライブ623に装着することにより、記憶部616にインストールすることができる。 In that case, the program can be installed in the storage unit 616 by attaching the removable medium 624 to the drive 623.
 また、このプログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することもできる。その場合、プログラムは、通信部618で受信し、記憶部616にインストールすることができる。 This program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. In that case, the program can be received by the communication unit 618 and installed in the storage unit 616.
 その他、このプログラムは、記憶部616や制御部621内のROM(Read Only Memory)等に、あらかじめインストールしておくこともできる。 In addition, this program can be installed in advance in a ROM (Read Only Memory) or the like in the storage unit 616 or the control unit 621.
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
 また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。 Further, in the present specification, the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
 また、上述した各ステップの処理は、上述した各装置、若しくは、上述した各装置以外の任意の装置において、実行することができる。その場合、その処理を実行する装置が、上述した、その処理を実行するのに必要な機能(機能ブロック等)を有するようにすればよい。また、処理に必要な情報を、適宜、その装置に伝送するようにすればよい。 Further, the processing of each step described above can be executed in each device described above or any device other than each device described above. In that case, the device that executes the process may have the functions (functional blocks and the like) necessary for executing the process described above. Information necessary for processing may be transmitted to the apparatus as appropriate.
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 In this specification, the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。 Also, in the above, the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units). Conversely, the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit). Of course, a configuration other than that described above may be added to the configuration of each device (or each processing unit). Furthermore, if the configuration and operation of the entire system are substantially the same, a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 For example, the present technology can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and is jointly processed.
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
 また、本技術は、これに限らず、このような装置またはシステムを構成する装置に搭載するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。 In addition, the present technology is not limited to this, and any configuration mounted on such a device or a device constituting the system, for example, a processor as a system LSI (Large Scale Integration), a module using a plurality of processors, a plurality of It is also possible to implement as a unit using other modules, a set obtained by further adding other functions to the unit (that is, a partial configuration of the apparatus), and the like.
 なお、本技術を適用した撮像装置は、上述した構成に限らず、他の構成であってもよい。例えば、デジタルスチルカメラやビデオカメラだけでなく、携帯電話機、スマートホン、タブレット型デバイス、パーソナルコンピュータ等の、撮像機能を有する情報処理装置であってもよい。また、他の情報処理装置に装着して使用される(若しくは組み込みデバイスとして搭載される)カメラモジュールであってもよい。 Note that the imaging apparatus to which the present technology is applied is not limited to the configuration described above, and may have another configuration. For example, not only a digital still camera and a video camera but also an information processing apparatus having an imaging function, such as a mobile phone, a smart phone, a tablet device, and a personal computer. Further, it may be a camera module used by being mounted on another information processing apparatus (or mounted as an embedded device).
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。 Also, in the above, the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units). Conversely, the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit). Of course, a configuration other than that described above may be added to the configuration of each device (or each processing unit). Furthermore, if the configuration and operation of the entire system are substantially the same, a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 なお、本技術は以下のような構成も取ることができる。
 (1) 複数の単位画素からなる単位画素群と、
 前記単位画素群の、自身が接続される単位画素に対して、フローティングディフュージョンのリセットを制御するリセット制御信号を伝送するリセット制御線と、
 前記単位画素群の、自身が接続される単位画素に対して、前記フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号を伝送するセレクト制御線と、
 前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのリセットを行わせ、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセット制御信号を出力した前記リセット制御線が接続される前記組み合わせの単位画素のいずれか1つを含む、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのレベルの読み出しを行わせる制御部と
 を備える撮像素子。
 (2) 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
 前記リセット制御線は、前記画素アレイの単位画素の行毎に設けられ、
 各リセット制御線は、割り当てられた行の各単位画素に接続され、
 前記セレクト制御線は、前記画素アレイの単位画素の列毎に設けられ、
 各セレクト制御線は、割り当てられた列の各単位画素に接続され、
 前記制御部は、前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記画素アレイの所望の行の各単位画素に対して前記リセットを行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセットを行わせた前記画素アレイの単位画素の行の、所望の列の単位画素の前記フローティングディフュージョンのリセットレベルを読み出させる
 (1)に記載の撮像素子。
 (3) 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
 前記リセット制御線は、前記画素アレイの単位画素の列毎に設けられ、
 各リセット制御線は、割り当てられた列の各単位画素に接続され、
 前記セレクト制御線は、前記画素アレイの単位画素の行毎に設けられ、
 各セレクト制御線は、割り当てられた行の各単位画素に接続され、
 前記制御部は、前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記画素アレイの所望の列の各単位画素に対して前記リセットを行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセットを行わせた前記画素アレイの単位画素の列の、所望の行の単位画素の前記フローティングディフュージョンのリセットレベルを読み出させる
 (1)または(2)に記載の撮像素子。
 (4) 前記単位画素に対して、リセット電源電圧とソースフォロワ電源電圧とが互いに異なる配線により供給される
 (1)乃至(3)のいずれかに記載の撮像素子。
 (5) 前記単位画素に対して、リセット電源電圧とソースフォロワ電源電圧とが共通の配線により供給される
 (1)乃至(4)のいずれかに記載の撮像素子。
 (6) 前記単位画素群の、自身が接続される単位画素に対して、フォトダイオードに蓄積された電荷の前記フローティングディフュージョンへの転送を制御する転送制御信号を伝送する転送制御線をさらに備え、
 前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記電荷の転送を行わせる
 (1)乃至(5)のいずれかに記載の撮像素子。
 (7) 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
 前記転送制御線は、前記画素アレイの単位画素の行毎に設けられ、
 各転送制御線は、割り当てられた行の各単位画素に接続され、
 前記セレクト制御線は、前記画素アレイの単位画素の列毎に設けられ、
 各セレクト制御線は、割り当てられた列の各単位画素に接続され、
 前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記画素アレイの所望の行の各単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた前記画素アレイの単位画素の行の、所望の列の単位画素の前記フローティングディフュージョンの信号レベルを読み出させる
 (1)乃至(6)のいずれかに記載の撮像素子。
 (8) 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
 前記転送制御線は、前記画素アレイの単位画素の列毎に設けられ、
 各転送制御線は、割り当てられた列の各単位画素に接続され、
 前記セレクト制御線は、前記画素アレイの単位画素の行毎に設けられ、
 各セレクト制御線は、割り当てられた行の各単位画素に接続され、
 前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記画素アレイの所望の列の各単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた前記画素アレイの単位画素の列の、所望の行の単位画素の前記フローティングディフュージョンの信号レベルを読み出させる
 (1)乃至(7)のいずれかに記載の撮像素子。
 (9) 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
 前記転送制御線は、
  前記画素アレイの単位画素の行毎に設けられ、それぞれが割り当てられた行の各単位画素に接続される第1の転送制御線と、
  前記画素アレイの単位画素の列毎に設けられ、それぞれが割り当てられた列の各単位画素に接続される第2の転送制御線と
 を含み、
 前記セレクト制御線は、前記画素アレイの単位画素の行または列毎に設けられ、
 各セレクト制御線は、割り当てられた行または列の各単位画素に接続され、
 前記制御部は、前記転送制御信号を生成し、前記第1の転送制御線および前記第2の転送制御線を選択し、生成した前記転送制御信号を選択した前記第1の転送制御線および前記第2の転送制御線に出力することにより、前記画素アレイの所望の単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記電荷の転送を行わせた単位画素を含む行または列の前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた単位画素の前記フローティングディフュージョンの信号レベルを読み出させる
 (1)乃至(8)のいずれかに記載の撮像素子。
 (10) 前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
 前記転送制御線は、前記画素アレイの単位画素毎に設けられ、
 前記セレクト制御線は、前記画素アレイの単位画素の行または列毎に設けられ、
 各セレクト制御線は、割り当てられた行または列の各単位画素に接続され、
 前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記画素アレイの所望の単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記電荷の転送を行わせた単位画素を含む行または列の前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた単位画素の前記フローティングディフュージョンの信号レベルを読み出させる
 (1)乃至(9)のいずれかに記載の撮像素子。
 (11) 前記単位画素は、複数のフォトダイオードを有し、
 前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、所望のフォトダイオードに蓄積された電荷の転送を行わせる
 (1)乃至(10)のいずれかに記載の撮像素子。
 (12) 前記制御部は、前記セレクト制御信号を生成し、全ての前記セレクト制御線を選択し、生成した前記セレクト制御信号を前記全てのセレクト制御線に出力することにより、オートゼロ動作を行わせる
 (1)乃至(11)のいずれかに記載の撮像素子。
 (13) 前記制御部の制御に基づいて前記単位画素から読み出された前記フローティングディフュージョンのレベルをA/D変換するA/D変換部をさらに備える
 (1)乃至(12)のいずれかに記載の撮像素子。
 (14) 前記A/D変換部は、前記単位画素群が形成される領域を複数に分割する部分領域毎に設けられ、自身が対応する部分領域に含まれる単位画素から読み出された前記フローティングディフュージョンのレベルをA/D変換する
 (1)乃至(13)のいずれかに記載の撮像素子。
 (15) 複数の半導体基板を有し、
 前記A/D変換部は、前記単位画素群が形成される半導体基板と異なる半導体基板に形成される
 (1)乃至(14)のいずれかに記載の撮像素子。
 (16) 前記A/D変換部は、
  基準電圧を生成する基準電圧生成部と、
  前記単位画素から読み出された前記フローティングディフュージョンのレベルと、前記基準電圧生成部により生成された前記基準電圧とを比較する比較部と、
  前記比較部の比較結果が変化するまでをカウントするカウンタと
 を有し、
 前記基準電圧生成部、前記比較部、および前記カウンタは、前記単位画素群が形成される半導体基板と異なる半導体基板に形成される
 (1)乃至(15)のいずれかに記載の撮像素子。
 (17) 前記A/D変換部は、
  基準電圧を生成する基準電圧生成部と、
  前記単位画素から読み出された前記フローティングディフュージョンのレベルと、前記基準電圧生成部により生成された前記基準電圧とを比較する比較部と、
  前記比較部の比較結果が変化するまでをカウントするカウンタと
 を有し、
 前記カウンタは、前記単位画素群が形成される半導体基板と異なる半導体基板に形成される
 (1)乃至(16)のいずれかに記載の撮像素子。
 (18) 前記単位画素から読み出された前記フローティングディフュージョンのレベルは、単数若しくは複数の配線により、前記単位画素群が形成される半導体基板から、前記A/D変換部が形成される半導体基板に伝送される
 (1)乃至(17)のいずれかに記載の撮像素子。
 (19) 単位画素のフローティングディフュージョンのリセットを制御するリセット制御信号を生成し、複数の単位画素からなる単位画素群の自身が接続される単位画素に対して前記リセット制御信号を伝送するリセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのリセットを行わせ、
 前記フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号を生成し、前記単位画素群の自身が接続される単位画素に対して前記セレクト制御信号を伝送するセレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセット制御信号を出力した前記リセット制御線が接続される前記組み合わせの単位画素のいずれか1つを含む、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのレベルの読み出しを行わせる
 制御方法。
 (20) 被写体を撮像する撮像部と、
 前記撮像部による撮像により得られた画像データを画像処理する画像処理部と
 を備え、
 前記撮像部は、
  複数の単位画素からなる単位画素群と、
  前記単位画素群の、自身が接続される単位画素に対して、フローティングディフュージョンのリセットを制御するリセット制御信号を伝送するリセット制御線と、
  前記単位画素群の、自身が接続される単位画素に対して、前記フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号を伝送するセレクト制御線と、
  前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのリセットを行わせ、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセット制御信号を出力した前記リセット制御線が接続される前記組み合わせの単位画素のいずれか1つを含む、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのレベルの読み出しを行わせる制御部と
 を備える撮像装置。
In addition, this technique can also take the following structures.
(1) a unit pixel group composed of a plurality of unit pixels;
A reset control line for transmitting a reset control signal for controlling resetting of the floating diffusion to the unit pixel to which the unit pixel group is connected;
A select control line for transmitting a select control signal for controlling reading of the level of the floating diffusion to the unit pixel to which the unit pixel group is connected;
By generating the reset control signal, selecting the reset control line, and outputting the generated reset control signal to the selected reset control line, for a desired unit pixel combination of the unit pixel group, The reset control signal is output by resetting the floating diffusion, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. A control unit that reads out the level of the floating diffusion for a desired combination of unit pixels of the unit pixel group, including any one of the combination of unit pixels to which the reset control line is connected. An imaging device comprising:
(2) The unit pixel group is a pixel array in which the unit pixels are arranged in an array,
The reset control line is provided for each row of unit pixels of the pixel array,
Each reset control line is connected to each unit pixel in the assigned row,
The select control line is provided for each column of unit pixels of the pixel array,
Each select control line is connected to each unit pixel in the assigned column,
The control unit generates the reset control signal, selects the reset control line, and outputs the generated reset control signal to the selected reset control line, whereby each unit of a desired row of the pixel array The reset is performed by causing the pixel to perform the reset, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. The imaging element according to (1), wherein the reset level of the floating diffusion of the unit pixel in a desired column in the row of unit pixels of the pixel array that has been performed is read.
(3) The unit pixel group is a pixel array in which the unit pixels are arranged in an array,
The reset control line is provided for each column of unit pixels of the pixel array,
Each reset control line is connected to each unit pixel in the assigned column,
The select control line is provided for each row of unit pixels of the pixel array,
Each select control line is connected to each unit pixel in the assigned row,
The control unit generates the reset control signal, selects the reset control line, and outputs the generated reset control signal to the selected reset control line, whereby each unit of a desired column of the pixel array The reset is performed by causing the pixel to perform the reset, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. The imaging element according to (1) or (2), wherein the reset level of the floating diffusion of the unit pixel in a desired row in the unit pixel column of the pixel array is read.
(4) The imaging device according to any one of (1) to (3), wherein a reset power source voltage and a source follower power source voltage are supplied to the unit pixels through different wirings.
(5) The imaging device according to any one of (1) to (4), wherein a reset power supply voltage and a source follower power supply voltage are supplied to the unit pixel through a common wiring.
(6) A transfer control line for transmitting a transfer control signal for controlling transfer of charges accumulated in a photodiode to the floating diffusion for the unit pixels to which the unit pixel group is connected,
The control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, so that a desired unit pixel of the unit pixel group is output. The imaging device according to any one of (1) to (5), wherein the charge is transferred with respect to the combination.
(7) The unit pixel group is a pixel array in which the unit pixels are arranged in an array,
The transfer control line is provided for each row of unit pixels of the pixel array,
Each transfer control line is connected to each unit pixel in the assigned row,
The select control line is provided for each column of unit pixels of the pixel array,
Each select control line is connected to each unit pixel in the assigned column,
The control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby each unit of a desired row of the pixel array By transferring the charge to a pixel, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line, The image sensor according to any one of (1) to (6), wherein a signal level of the floating diffusion of a unit pixel of a desired column in a row of unit pixels of the pixel array to which charge is transferred is read.
(8) The unit pixel group is a pixel array in which the unit pixels are arranged in an array.
The transfer control line is provided for each unit pixel column of the pixel array,
Each transfer control line is connected to each unit pixel of the assigned column,
The select control line is provided for each row of unit pixels of the pixel array,
Each select control line is connected to each unit pixel in the assigned row,
The control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby each unit of a desired column of the pixel array By transferring the charge to a pixel, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line, The imaging device according to any one of (1) to (7), wherein the signal level of the floating diffusion of the unit pixel in a desired row of the unit pixel column of the pixel array to which charge transfer has been performed is read.
(9) The unit pixel group is a pixel array in which the unit pixels are arranged in an array,
The transfer control line is
A first transfer control line provided for each row of unit pixels of the pixel array, each connected to each unit pixel of the assigned row;
A second transfer control line provided for each unit pixel column of the pixel array and connected to each unit pixel of the assigned column,
The select control line is provided for each row or column of unit pixels of the pixel array,
Each select control line is connected to each unit pixel in the assigned row or column,
The control unit generates the transfer control signal, selects the first transfer control line and the second transfer control line, and selects the first transfer control line and the generated transfer control signal. By outputting to the second transfer control line, the unit transfers the charge to the desired unit pixel of the pixel array, generates the select control signal, and transfers the charge. By selecting the select control line in a row or column including pixels and outputting the generated select control signal to the selected select control line, the signal of the floating diffusion of the unit pixel to which the charge is transferred The image sensor according to any one of (1) to (8), wherein the level is read.
(10) The unit pixel group is a pixel array in which the unit pixels are arranged in an array.
The transfer control line is provided for each unit pixel of the pixel array,
The select control line is provided for each row or column of unit pixels of the pixel array,
Each select control line is connected to each unit pixel in the assigned row or column,
The control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby a desired unit pixel of the pixel array is output. Transfer the charge, further generate the select control signal, select the select control line in the row or column including the unit pixel to which the charge transfer was performed, and generate the select control signal The image sensor according to any one of (1) to (9), wherein the signal level of the floating diffusion of the unit pixel to which the charge is transferred is read by outputting to the selected select control line.
(11) The unit pixel includes a plurality of photodiodes,
The control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, so that a desired unit pixel of the unit pixel group is output. The imaging device according to any one of (1) to (10), wherein a charge accumulated in a desired photodiode is transferred with respect to the combination.
(12) The control unit generates the select control signal, selects all the select control lines, and outputs the generated select control signal to all the select control lines, thereby performing an auto-zero operation. The imaging device according to any one of (1) to (11).
(13) The system according to any one of (1) to (12), further including an A / D conversion unit that performs A / D conversion on the level of the floating diffusion read from the unit pixel based on the control of the control unit. Image sensor.
(14) The A / D converter is provided for each partial region that divides the region where the unit pixel group is formed into a plurality of regions, and the floating portion read from the unit pixels included in the corresponding partial region. The image pickup device according to any one of (1) to (13), wherein the diffusion level is A / D converted.
(15) having a plurality of semiconductor substrates;
The image sensor according to any one of (1) to (14), wherein the A / D conversion unit is formed on a semiconductor substrate different from a semiconductor substrate on which the unit pixel group is formed.
(16) The A / D converter is
A reference voltage generator for generating a reference voltage;
A comparison unit that compares the level of the floating diffusion read out from the unit pixel with the reference voltage generated by the reference voltage generation unit;
A counter that counts until the comparison result of the comparison unit changes,
The imaging device according to any one of (1) to (15), wherein the reference voltage generation unit, the comparison unit, and the counter are formed on a semiconductor substrate different from a semiconductor substrate on which the unit pixel group is formed.
(17) The A / D converter is
A reference voltage generator for generating a reference voltage;
A comparison unit that compares the level of the floating diffusion read out from the unit pixel with the reference voltage generated by the reference voltage generation unit;
A counter that counts until the comparison result of the comparison unit changes,
The imaging device according to any one of (1) to (16), wherein the counter is formed on a semiconductor substrate different from a semiconductor substrate on which the unit pixel group is formed.
(18) The level of the floating diffusion read from the unit pixel is changed from a semiconductor substrate on which the unit pixel group is formed to a semiconductor substrate on which the A / D conversion unit is formed by one or a plurality of wirings. The imaging device according to any one of (1) to (17).
(19) A reset control line for generating a reset control signal for controlling resetting of the floating diffusion of the unit pixel and transmitting the reset control signal to the unit pixel to which the unit pixel group consisting of a plurality of unit pixels is connected. And outputting the generated reset control signal to the selected reset control line to cause the floating diffusion to be reset for a desired combination of unit pixels of the unit pixel group,
The select control signal for controlling the reading of the level of the floating diffusion is generated, the select control line for transmitting the select control signal to the unit pixel to which the unit pixel group is connected is selected, and the generated select By outputting a control signal to the selected select control line, the unit pixel group includes any one of the combination unit pixels to which the reset control line outputting the reset control signal is connected. A control method for reading the floating diffusion level for a combination of unit pixels.
(20) an imaging unit for imaging a subject;
An image processing unit that performs image processing on image data obtained by imaging by the imaging unit,
The imaging unit
A unit pixel group composed of a plurality of unit pixels;
A reset control line for transmitting a reset control signal for controlling resetting of the floating diffusion to the unit pixel to which the unit pixel group is connected;
A select control line for transmitting a select control signal for controlling reading of the level of the floating diffusion to the unit pixel to which the unit pixel group is connected;
By generating the reset control signal, selecting the reset control line, and outputting the generated reset control signal to the selected reset control line, for a desired unit pixel combination of the unit pixel group, The reset control signal is output by resetting the floating diffusion, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. A control unit that reads out the level of the floating diffusion for a desired combination of unit pixels of the unit pixel group, including any one of the combination of unit pixels to which the reset control line is connected. An imaging apparatus comprising:
 100 イメージセンサ, 101 画素アレイ, 111 単位画素、 121 画素ユニット, 131 A/D変換部, 152 エリア走査部, 161 D/A変換部, 162 比較部, 163 カウンタ, 171 フォトダイオード, 172 転送トランジスタ, 173 リセットトランジスタ, 174 増幅トランジスタ, 175 セレクトトランジスタ, 181 選択部, 600 撮像装置, 612 CMOSイメージセンサ 100 image sensor, 101 pixel array, 111 unit pixel, 121 pixel unit, 131 A / D conversion unit, 152 area scanning unit, 161 D / A conversion unit, 162 comparison unit, 163 counter, 171 photodiode, 172 transfer transistor, 173 reset transistor, 174 amplification transistor, 175 select transistor, 181 selection unit, 600 imaging device, 612 CMOS image sensor

Claims (20)

  1.  複数の単位画素からなる単位画素群と、
     前記単位画素群の、自身が接続される単位画素に対して、フローティングディフュージョンのリセットを制御するリセット制御信号を伝送するリセット制御線と、
     前記単位画素群の、自身が接続される単位画素に対して、前記フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号を伝送するセレクト制御線と、
     前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのリセットを行わせ、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセット制御信号を出力した前記リセット制御線が接続される前記組み合わせの単位画素のいずれか1つを含む、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのレベルの読み出しを行わせる制御部と
     を備える撮像素子。
    A unit pixel group composed of a plurality of unit pixels;
    A reset control line for transmitting a reset control signal for controlling resetting of the floating diffusion to the unit pixel to which the unit pixel group is connected;
    A select control line for transmitting a select control signal for controlling reading of the level of the floating diffusion to the unit pixel to which the unit pixel group is connected;
    By generating the reset control signal, selecting the reset control line, and outputting the generated reset control signal to the selected reset control line, for a desired unit pixel combination of the unit pixel group, The reset control signal is output by resetting the floating diffusion, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. A control unit that reads out the level of the floating diffusion for a desired combination of unit pixels of the unit pixel group, including any one of the combination of unit pixels to which the reset control line is connected. An imaging device comprising:
  2.  前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
     前記リセット制御線は、前記画素アレイの単位画素の行毎に設けられ、
     各リセット制御線は、割り当てられた行の各単位画素に接続され、
     前記セレクト制御線は、前記画素アレイの単位画素の列毎に設けられ、
     各セレクト制御線は、割り当てられた列の各単位画素に接続され、
     前記制御部は、前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記画素アレイの所望の行の各単位画素に対して前記リセットを行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセットを行わせた前記画素アレイの単位画素の行の、所望の列の単位画素の前記フローティングディフュージョンのリセットレベルを読み出させる
     請求項1に記載の撮像素子。
    The unit pixel group is a pixel array in which each unit pixel is arranged in an array,
    The reset control line is provided for each row of unit pixels of the pixel array,
    Each reset control line is connected to each unit pixel in the assigned row,
    The select control line is provided for each column of unit pixels of the pixel array,
    Each select control line is connected to each unit pixel in the assigned column,
    The control unit generates the reset control signal, selects the reset control line, and outputs the generated reset control signal to the selected reset control line, whereby each unit of a desired row of the pixel array The reset is performed by causing the pixel to perform the reset, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. The imaging device according to claim 1, wherein a reset level of the floating diffusion of a unit pixel in a desired column in a row of unit pixels of the pixel array is read.
  3.  前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
     前記リセット制御線は、前記画素アレイの単位画素の列毎に設けられ、
     各リセット制御線は、割り当てられた列の各単位画素に接続され、
     前記セレクト制御線は、前記画素アレイの単位画素の行毎に設けられ、
     各セレクト制御線は、割り当てられた行の各単位画素に接続され、
     前記制御部は、前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記画素アレイの所望の列の各単位画素に対して前記リセットを行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセットを行わせた前記画素アレイの単位画素の列の、所望の行の単位画素の前記フローティングディフュージョンのリセットレベルを読み出させる
     請求項1に記載の撮像素子。
    The unit pixel group is a pixel array in which each unit pixel is arranged in an array,
    The reset control line is provided for each column of unit pixels of the pixel array,
    Each reset control line is connected to each unit pixel in the assigned column,
    The select control line is provided for each row of unit pixels of the pixel array,
    Each select control line is connected to each unit pixel in the assigned row,
    The control unit generates the reset control signal, selects the reset control line, and outputs the generated reset control signal to the selected reset control line, whereby each unit of a desired column of the pixel array The reset is performed by causing the pixel to perform the reset, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. The imaging device according to claim 1, wherein a reset level of the floating diffusion of the unit pixel in a desired row of the unit pixel column of the pixel array is read.
  4.  前記単位画素に対して、リセット電源電圧とソースフォロワ電源電圧とが互いに異なる配線により供給される
     請求項1に記載の撮像素子。
    The imaging device according to claim 1, wherein the reset power supply voltage and the source follower power supply voltage are supplied to the unit pixel through different wirings.
  5.  前記単位画素に対して、リセット電源電圧とソースフォロワ電源電圧とが共通の配線により供給される
     請求項1に記載の撮像素子。
    The imaging device according to claim 1, wherein a reset power source voltage and a source follower power source voltage are supplied to the unit pixel through a common wiring.
  6.  前記単位画素群の、自身が接続される単位画素に対して、フォトダイオードに蓄積された電荷の前記フローティングディフュージョンへの転送を制御する転送制御信号を伝送する転送制御線をさらに備え、
     前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記電荷の転送を行わせる
     請求項1に記載の撮像素子。
    A transfer control line for transmitting a transfer control signal for controlling transfer of charges accumulated in a photodiode to the floating diffusion for a unit pixel to which the unit pixel group is connected;
    The control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, so that a desired unit pixel of the unit pixel group is output. The image sensor according to claim 1, wherein the charge is transferred with respect to the combination.
  7.  前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
     前記転送制御線は、前記画素アレイの単位画素の行毎に設けられ、
     各転送制御線は、割り当てられた行の各単位画素に接続され、
     前記セレクト制御線は、前記画素アレイの単位画素の列毎に設けられ、
     各セレクト制御線は、割り当てられた列の各単位画素に接続され、
     前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記画素アレイの所望の行の各単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた前記画素アレイの単位画素の行の、所望の列の単位画素の前記フローティングディフュージョンの信号レベルを読み出させる
     請求項6に記載の撮像素子。
    The unit pixel group is a pixel array in which each unit pixel is arranged in an array,
    The transfer control line is provided for each row of unit pixels of the pixel array,
    Each transfer control line is connected to each unit pixel in the assigned row,
    The select control line is provided for each column of unit pixels of the pixel array,
    Each select control line is connected to each unit pixel in the assigned column,
    The control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby each unit of a desired row of the pixel array By transferring the charge to a pixel, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line, The imaging device according to claim 6, wherein the signal level of the floating diffusion of the unit pixel of a desired column in the row of the unit pixel of the pixel array to which charge transfer is performed is read out.
  8.  前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
     前記転送制御線は、前記画素アレイの単位画素の列毎に設けられ、
     各転送制御線は、割り当てられた列の各単位画素に接続され、
     前記セレクト制御線は、前記画素アレイの単位画素の行毎に設けられ、
     各セレクト制御線は、割り当てられた行の各単位画素に接続され、
     前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記画素アレイの所望の列の各単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた前記画素アレイの単位画素の列の、所望の行の単位画素の前記フローティングディフュージョンの信号レベルを読み出させる
     請求項6に記載の撮像素子。
    The unit pixel group is a pixel array in which each unit pixel is arranged in an array,
    The transfer control line is provided for each unit pixel column of the pixel array,
    Each transfer control line is connected to each unit pixel of the assigned column,
    The select control line is provided for each row of unit pixels of the pixel array,
    Each select control line is connected to each unit pixel in the assigned row,
    The control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby each unit of a desired column of the pixel array By transferring the charge to a pixel, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line, The imaging device according to claim 6, wherein the signal level of the floating diffusion of the unit pixel in a desired row of the unit pixel column of the pixel array to which charge transfer is performed is read out.
  9.  前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
     前記転送制御線は、
      前記画素アレイの単位画素の行毎に設けられ、それぞれが割り当てられた行の各単位画素に接続される第1の転送制御線と、
      前記画素アレイの単位画素の列毎に設けられ、それぞれが割り当てられた列の各単位画素に接続される第2の転送制御線と
     を含み、
     前記セレクト制御線は、前記画素アレイの単位画素の行または列毎に設けられ、
     各セレクト制御線は、割り当てられた行または列の各単位画素に接続され、
     前記制御部は、前記転送制御信号を生成し、前記第1の転送制御線および前記第2の転送制御線を選択し、生成した前記転送制御信号を選択した前記第1の転送制御線および前記第2の転送制御線に出力することにより、前記画素アレイの所望の単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記電荷の転送を行わせた単位画素を含む行または列の前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた単位画素の前記フローティングディフュージョンの信号レベルを読み出させる
     請求項6に記載の撮像素子。
    The unit pixel group is a pixel array in which each unit pixel is arranged in an array,
    The transfer control line is
    A first transfer control line provided for each row of unit pixels of the pixel array, each connected to each unit pixel of the assigned row;
    A second transfer control line provided for each unit pixel column of the pixel array and connected to each unit pixel of the assigned column,
    The select control line is provided for each row or column of unit pixels of the pixel array,
    Each select control line is connected to each unit pixel in the assigned row or column,
    The control unit generates the transfer control signal, selects the first transfer control line and the second transfer control line, and selects the first transfer control line and the generated transfer control signal. By outputting to the second transfer control line, the unit transfers the charge to the desired unit pixel of the pixel array, generates the select control signal, and transfers the charge. By selecting the select control line in a row or column including pixels and outputting the generated select control signal to the selected select control line, the signal of the floating diffusion of the unit pixel to which the charge is transferred The imaging device according to claim 6, wherein a level is read out.
  10.  前記単位画素群は、各単位画素をアレイ状に配置した画素アレイであり、
     前記転送制御線は、前記画素アレイの単位画素毎に設けられ、
     前記セレクト制御線は、前記画素アレイの単位画素の行または列毎に設けられ、
     各セレクト制御線は、割り当てられた行または列の各単位画素に接続され、
     前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記画素アレイの所望の単位画素に対して前記電荷の転送を行わせ、さらに、前記セレクト制御信号を生成し、前記電荷の転送を行わせた単位画素を含む行または列の前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記電荷の転送を行わせた単位画素の前記フローティングディフュージョンの信号レベルを読み出させる
     請求項6に記載の撮像素子。
    The unit pixel group is a pixel array in which each unit pixel is arranged in an array,
    The transfer control line is provided for each unit pixel of the pixel array,
    The select control line is provided for each row or column of unit pixels of the pixel array,
    Each select control line is connected to each unit pixel in the assigned row or column,
    The control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, whereby a desired unit pixel of the pixel array is output. Transfer the charge, further generate the select control signal, select the select control line in the row or column including the unit pixel to which the charge transfer was performed, and generate the select control signal The imaging device according to claim 6, wherein the signal level of the floating diffusion of the unit pixel to which the charge is transferred is read by outputting the selected control line to the selected control line.
  11.  前記単位画素は、複数のフォトダイオードを有し、
     前記制御部は、前記転送制御信号を生成し、前記転送制御線を選択し、生成した前記転送制御信号を選択した前記転送制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、所望のフォトダイオードに蓄積された電荷の転送を行わせる
     請求項6に記載の撮像素子。
    The unit pixel has a plurality of photodiodes,
    The control unit generates the transfer control signal, selects the transfer control line, and outputs the generated transfer control signal to the selected transfer control line, so that a desired unit pixel of the unit pixel group is output. The imaging device according to claim 6, wherein the charge accumulated in a desired photodiode is transferred with respect to the combination.
  12.  前記制御部は、前記セレクト制御信号を生成し、全ての前記セレクト制御線を選択し、生成した前記セレクト制御信号を前記全てのセレクト制御線に出力することにより、オートゼロ動作を行わせる
     請求項1に記載の撮像素子。
    The control unit generates the select control signal, selects all the select control lines, and outputs the generated select control signal to all the select control lines, thereby performing an auto-zero operation. The imaging device described in 1.
  13.  前記制御部の制御に基づいて前記単位画素から読み出された前記フローティングディフュージョンのレベルをA/D変換するA/D変換部をさらに備える
     請求項1に記載の撮像素子。
    The imaging device according to claim 1, further comprising an A / D conversion unit that performs A / D conversion on the level of the floating diffusion read from the unit pixel based on the control of the control unit.
  14.  前記A/D変換部は、前記単位画素群が形成される領域を複数に分割する部分領域毎に設けられ、自身が対応する部分領域に含まれる単位画素から読み出された前記フローティングディフュージョンのレベルをA/D変換する
     請求項13に記載の撮像素子。
    The A / D converter is provided for each partial region that divides the region where the unit pixel group is formed into a plurality of levels, and the floating diffusion level read from the unit pixels included in the corresponding partial region The image sensor according to claim 13, wherein A / D conversion is performed.
  15.  複数の半導体基板を有し、
     前記A/D変換部は、前記単位画素群が形成される半導体基板と異なる半導体基板に形成される
     請求項13に記載の撮像素子。
    Having a plurality of semiconductor substrates,
    The imaging device according to claim 13, wherein the A / D conversion unit is formed on a semiconductor substrate different from a semiconductor substrate on which the unit pixel group is formed.
  16.  前記A/D変換部は、
      基準電圧を生成する基準電圧生成部と、
      前記単位画素から読み出された前記フローティングディフュージョンのレベルと、前記基準電圧生成部により生成された前記基準電圧とを比較する比較部と、
      前記比較部の比較結果が変化するまでをカウントするカウンタと
     を有し、
     前記基準電圧生成部、前記比較部、および前記カウンタは、前記単位画素群が形成される半導体基板と異なる半導体基板に形成される
     請求項15に記載の撮像素子。
    The A / D converter is
    A reference voltage generator for generating a reference voltage;
    A comparison unit that compares the level of the floating diffusion read out from the unit pixel with the reference voltage generated by the reference voltage generation unit;
    A counter that counts until the comparison result of the comparison unit changes,
    The imaging device according to claim 15, wherein the reference voltage generation unit, the comparison unit, and the counter are formed on a semiconductor substrate different from a semiconductor substrate on which the unit pixel group is formed.
  17.  前記A/D変換部は、
      基準電圧を生成する基準電圧生成部と、
      前記単位画素から読み出された前記フローティングディフュージョンのレベルと、前記基準電圧生成部により生成された前記基準電圧とを比較する比較部と、
      前記比較部の比較結果が変化するまでをカウントするカウンタと
     を有し、
     前記カウンタは、前記単位画素群が形成される半導体基板と異なる半導体基板に形成される
     請求項15に記載の撮像素子。
    The A / D converter is
    A reference voltage generator for generating a reference voltage;
    A comparison unit that compares the level of the floating diffusion read out from the unit pixel with the reference voltage generated by the reference voltage generation unit;
    A counter that counts until the comparison result of the comparison unit changes,
    The imaging device according to claim 15, wherein the counter is formed on a semiconductor substrate different from a semiconductor substrate on which the unit pixel group is formed.
  18.  前記単位画素から読み出された前記フローティングディフュージョンのレベルは、単数若しくは複数の配線により、前記単位画素群が形成される半導体基板から、前記A/D変換部が形成される半導体基板に伝送される
     請求項15に記載の撮像素子。
    The level of the floating diffusion read from the unit pixel is transmitted from a semiconductor substrate on which the unit pixel group is formed to a semiconductor substrate on which the A / D conversion unit is formed by one or a plurality of wirings. The imaging device according to claim 15.
  19.  単位画素のフローティングディフュージョンのリセットを制御するリセット制御信号を生成し、複数の単位画素からなる単位画素群の自身が接続される単位画素に対して前記リセット制御信号を伝送するリセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのリセットを行わせ、
     前記フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号を生成し、前記単位画素群の自身が接続される単位画素に対して前記セレクト制御信号を伝送するセレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセット制御信号を出力した前記リセット制御線が接続される前記組み合わせの単位画素のいずれか1つを含む、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのレベルの読み出しを行わせる
     制御方法。
    Generate a reset control signal for controlling the reset of the floating diffusion of the unit pixel, and select a reset control line that transmits the reset control signal to the unit pixel to which the unit pixel group consisting of a plurality of unit pixels is connected. And outputting the generated reset control signal to the selected reset control line to reset the floating diffusion for a desired unit pixel combination of the unit pixel group,
    The select control signal for controlling the reading of the level of the floating diffusion is generated, the select control line for transmitting the select control signal to the unit pixel to which the unit pixel group is connected is selected, and the generated select By outputting a control signal to the selected select control line, the unit pixel group includes any one of the combination unit pixels to which the reset control line outputting the reset control signal is connected. A control method for reading the floating diffusion level for a combination of unit pixels.
  20.  被写体を撮像する撮像部と、
     前記撮像部による撮像により得られた画像データを画像処理する画像処理部と
     を備え、
     前記撮像部は、
      複数の単位画素からなる単位画素群と、
      前記単位画素群の、自身が接続される単位画素に対して、フローティングディフュージョンのリセットを制御するリセット制御信号を伝送するリセット制御線と、
      前記単位画素群の、自身が接続される単位画素に対して、前記フローティングディフュージョンのレベルの読み出しを制御するセレクト制御信号を伝送するセレクト制御線と、
      前記リセット制御信号を生成し、前記リセット制御線を選択し、生成した前記リセット制御信号を選択した前記リセット制御線に出力することにより、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのリセットを行わせ、前記セレクト制御信号を生成し、前記セレクト制御線を選択し、生成した前記セレクト制御信号を選択した前記セレクト制御線に出力することにより、前記リセット制御信号を出力した前記リセット制御線が接続される前記組み合わせの単位画素のいずれか1つを含む、前記単位画素群の所望の単位画素の組み合わせに対して、前記フローティングディフュージョンのレベルの読み出しを行わせる制御部と
     を備える撮像装置。
    An imaging unit for imaging a subject;
    An image processing unit that performs image processing on image data obtained by imaging by the imaging unit,
    The imaging unit
    A unit pixel group composed of a plurality of unit pixels;
    A reset control line for transmitting a reset control signal for controlling resetting of the floating diffusion to the unit pixel to which the unit pixel group is connected;
    A select control line for transmitting a select control signal for controlling reading of the level of the floating diffusion to the unit pixel to which the unit pixel group is connected;
    By generating the reset control signal, selecting the reset control line, and outputting the generated reset control signal to the selected reset control line, for a desired unit pixel combination of the unit pixel group, The reset control signal is output by resetting the floating diffusion, generating the select control signal, selecting the select control line, and outputting the generated select control signal to the selected select control line. A control unit that reads out the level of the floating diffusion for a desired combination of unit pixels of the unit pixel group, including any one of the combination of unit pixels to which the reset control line is connected. An imaging apparatus comprising:
PCT/JP2015/061310 2014-04-24 2015-04-13 Image pickup element, control method, and image pickup device WO2015163170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014090101A JP2015211259A (en) 2014-04-24 2014-04-24 Imaging device, control method and imaging apparatus
JP2014-090101 2014-04-24

Publications (1)

Publication Number Publication Date
WO2015163170A1 true WO2015163170A1 (en) 2015-10-29

Family

ID=54332337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061310 WO2015163170A1 (en) 2014-04-24 2015-04-13 Image pickup element, control method, and image pickup device

Country Status (2)

Country Link
JP (1) JP2015211259A (en)
WO (1) WO2015163170A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547806B2 (en) 2016-04-14 2020-01-28 Sony Corporation Solid-state imaging element, method for operating solid-state imaging element, imaging device, and electronic equipment
CN111146222A (en) * 2019-12-10 2020-05-12 南京威派视半导体技术有限公司 Multi-block pixel array based on polycrystalline circle stacking technology
US10986986B2 (en) 2016-07-27 2021-04-27 Sony Semiconductor Solutions Corporation Solid-state image pickup element, image pickup apparatus, and method of controlling solid-state image pickup element

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017117828A (en) * 2015-12-21 2017-06-29 ソニー株式会社 Solid-state image sensor and electronic apparatus
JP2017123533A (en) * 2016-01-06 2017-07-13 ソニー株式会社 Solid-state image pickup device, method of driving solid-state image pickup device and electronic apparatus
WO2017168502A1 (en) 2016-03-28 2017-10-05 オリンパス株式会社 Ad converter and image sensor
US9854192B2 (en) * 2016-04-12 2017-12-26 Raytheon Company Digital unit cell with analog counter element
US10686996B2 (en) 2017-06-26 2020-06-16 Facebook Technologies, Llc Digital pixel with extended dynamic range
US10917589B2 (en) * 2017-06-26 2021-02-09 Facebook Technologies, Llc Digital pixel with extended dynamic range
US10598546B2 (en) 2017-08-17 2020-03-24 Facebook Technologies, Llc Detecting high intensity light in photo sensor
US11906353B2 (en) 2018-06-11 2024-02-20 Meta Platforms Technologies, Llc Digital pixel with extended dynamic range
US10897586B2 (en) 2018-06-28 2021-01-19 Facebook Technologies, Llc Global shutter image sensor
US11943561B2 (en) 2019-06-13 2024-03-26 Meta Platforms Technologies, Llc Non-linear quantization at pixel sensor
US11936998B1 (en) 2019-10-17 2024-03-19 Meta Platforms Technologies, Llc Digital pixel sensor having extended dynamic range
US11902685B1 (en) 2020-04-28 2024-02-13 Meta Platforms Technologies, Llc Pixel sensor having hierarchical memory
US11956560B2 (en) 2020-10-09 2024-04-09 Meta Platforms Technologies, Llc Digital pixel sensor having reduced quantization operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261046A (en) * 1998-03-12 1999-09-24 Canon Inc Solid-state image pickup device
JP2009206883A (en) * 2008-02-28 2009-09-10 Canon Inc Imaging apparatus, and imaging system employing the same
JP2010093653A (en) * 2008-10-09 2010-04-22 Sony Corp Solid-state imaging element and method of driving the same, and camera system
JP2012010055A (en) * 2010-06-24 2012-01-12 Sony Corp Object imaging device
WO2014007004A1 (en) * 2012-07-06 2014-01-09 ソニー株式会社 Solid-state imaging device, driving method for solid-state imaging device, and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261046A (en) * 1998-03-12 1999-09-24 Canon Inc Solid-state image pickup device
JP2009206883A (en) * 2008-02-28 2009-09-10 Canon Inc Imaging apparatus, and imaging system employing the same
JP2010093653A (en) * 2008-10-09 2010-04-22 Sony Corp Solid-state imaging element and method of driving the same, and camera system
JP2012010055A (en) * 2010-06-24 2012-01-12 Sony Corp Object imaging device
WO2014007004A1 (en) * 2012-07-06 2014-01-09 ソニー株式会社 Solid-state imaging device, driving method for solid-state imaging device, and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547806B2 (en) 2016-04-14 2020-01-28 Sony Corporation Solid-state imaging element, method for operating solid-state imaging element, imaging device, and electronic equipment
US10986986B2 (en) 2016-07-27 2021-04-27 Sony Semiconductor Solutions Corporation Solid-state image pickup element, image pickup apparatus, and method of controlling solid-state image pickup element
CN111146222A (en) * 2019-12-10 2020-05-12 南京威派视半导体技术有限公司 Multi-block pixel array based on polycrystalline circle stacking technology

Also Published As

Publication number Publication date
JP2015211259A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
WO2015163170A1 (en) Image pickup element, control method, and image pickup device
JP7072362B2 (en) Solid-state image sensor, solid-state image sensor driving method, and electronic equipment
JP6607187B2 (en) Signal processing apparatus, control method, imaging device, and electronic apparatus
US10070087B2 (en) Solid-state imaging device and imaging apparatus
EP3111479B1 (en) Imaging element and imaging apparatus
JP2013051674A (en) Imaging device in which peripheral circuit is arranged and increase in chip area is suppressed, and imaging apparatus
JP6457738B2 (en) Solid-state imaging device and imaging device
US9560303B2 (en) Solid-state imaging device, imaging device, and signal reading method
WO2017119166A1 (en) Solid-state image pickup element, method for driving solid-state image pickup element, and electronic apparatus
WO2016052219A1 (en) Solid-state image capturing device, signal processing method, and electronic apparatus
US10277853B2 (en) Image capturing apparatus and control method of the same
JP2021166395A (en) Imaging element and imaging device
JP6995549B2 (en) Solid-state image sensor, solid-state image sensor driving method, and electronic equipment
JP5791982B2 (en) Solid-state imaging device, imaging device, and signal readout method
JP2020136858A (en) Solid state image pickup device, driving method of the solid state image pickup device, and electronic apparatus
JP2013026713A (en) Solid state imaging device, imaging device, and signal reading method
JP2022106861A (en) Imaging element
JP6675177B2 (en) Imaging device
JP2015111761A (en) Electronic apparatus
JP2015144340A (en) Solid-state imaging device and imaging apparatus
JP2018174592A (en) Electronic apparatus
JP6128776B2 (en) Solid-state imaging device, imaging device, and signal readout method
JP5835963B2 (en) Solid-state imaging device, imaging device, and signal readout method
JP7247975B2 (en) Imaging element and imaging device
US20220182568A1 (en) Imaging element and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783608

Country of ref document: EP

Kind code of ref document: A1