WO2015162840A1 - Engine system - Google Patents

Engine system Download PDF

Info

Publication number
WO2015162840A1
WO2015162840A1 PCT/JP2015/001153 JP2015001153W WO2015162840A1 WO 2015162840 A1 WO2015162840 A1 WO 2015162840A1 JP 2015001153 W JP2015001153 W JP 2015001153W WO 2015162840 A1 WO2015162840 A1 WO 2015162840A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
compressor
supercharger
switching
pressure
Prior art date
Application number
PCT/JP2015/001153
Other languages
French (fr)
Japanese (ja)
Inventor
隼太 秋山
橋本 大
直隆 山添
中島 隆博
哲男 野上
育大 植村
克浩 吉澤
正憲 東田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201580012093.2A priority Critical patent/CN106068368B/en
Priority to JP2015519118A priority patent/JP5786107B1/en
Priority to KR1020167017606A priority patent/KR101697218B1/en
Publication of WO2015162840A1 publication Critical patent/WO2015162840A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine system that includes a plurality of superchargers and that can change the number of superchargers to be operated in accordance with operating conditions.
  • an engine system that often operates the engine main body at a medium load and a low load from the viewpoint of fuel consumption or the like may include two superchargers, a main supercharger and a subsupercharger.
  • a main supercharger and a subsupercharger when the engine body is operated at a high load, both the main supercharger and the sub-supercharger are operated, and when the engine body is operated at a medium load and a low load, only the main turbocharger is operated. Drive.
  • efficient operation is possible not only when the engine body is operated at a high load, but also when the engine body is operated at a medium load and a low load.
  • the amount of exhaust gas supplied to the turbocharger is smaller during EGR operation than during normal operation. If the number of operating superchargers is changed according to the above, efficient operation is possible while preventing surges in the supercharger.
  • the secondary turbocharger In order to reduce the number of turbochargers operating while continuing engine operation, the secondary turbocharger must be stopped while the main turbocharger is operating. In this case, since the outside air boosted by the main supercharger flows back to the subsupercharger, an engine system that changes the number of operating superchargers has a valve on the outlet side of the compressor of the subsupercharger. ing. If this valve is closed, backflow can be prevented. However, if the operation of the sub-supercharger continues with the backflow prevention valve closed, a surge occurs because the back pressure of the compressor of the sub-supercharger increases.
  • such an engine system includes an air discharge pipe that guides air between the compressor of the sub-supercharger and the backflow prevention valve to the outside, and an air discharge valve provided in the air discharge pipe. And the generation
  • Patent Document 2 discloses a marine diesel engine provided with a check valve that is opened when the outlet pressure of the compressor section of the auxiliary exhaust turbine supercharger is equal to or higher than the pressure of the supply manifold.
  • the backflow phenomenon can be prevented, but it is not determined whether or not the condition is such that a surge occurs.
  • the invention described in Patent Document 3 is obtained by replacing the check valve with a control valve in the invention described in Patent Document 2. This control valve is opened when the differential pressure between the outlet pressure of the compressor section and the pressure of the air supply manifold becomes a predetermined value or less. Even in the invention described in Patent Document 3, it is not determined whether the conditions are such that a surge occurs. In either case, the control is limited because of the causal relationship between the differential pressure before and after the valve in the pipe and the number of states in the pipe at a location different from the surge occurrence location of the sub-exhaust turbine turbocharger.
  • the ventilating valve is opened early, and then the backflow prevention valve is closed. Therefore, the air that should be able to be supplied to the engine body is discharged to the outside. As a result, the pressure (scavenging pressure) of the scavenging gas supplied to the engine body is reduced, and the engine body cannot be operated efficiently.
  • the present invention has been made in view of the circumstances as described above.
  • the efficiency of the engine main body is improved while preventing a surge from occurring in the supercharger. It aims at providing the engine system which can suppress that it falls.
  • An engine system includes an engine main body, at least one main supercharger having a main turbine and a main compressor, and the engine main body arranged in parallel with the main supercharger.
  • At least one sub-supercharger having a turbine and a sub-compressor; a sub-turbine inlet valve provided on the inlet side of the sub-turbine; a sub-compressor outlet valve provided on the outlet side of the sub-compressor; An air discharge pipe for guiding outside air boosted by a compressor from the upstream side of the sub-compressor outlet valve to the outside, an air discharge valve provided in the air discharge pipe, and a control device.
  • the subturbine inlet valve and the subcompressor outlet valve are closed while the main supercharger is operated, and the subsupercharger is operated.
  • the sub-compressor outlet pressure is higher than the reference pressure at stop.
  • the discharge valve is closed when the sub compressor outlet pressure is lower than the stop-time reference pressure. That is, when the possibility of occurrence of a surge is low, the outside air boosted by the sub-compressor with the vent valve closed is supplied to the engine body. As a result, it is possible to prevent the air boosted by the sub-compressor from being unnecessarily discharged to the outside, and to suppress a decrease in scavenging air pressure of the engine body. As a result, when the number of operating superchargers is reduced, it is possible to suppress a decrease in the efficiency of the engine body.
  • the controller increases the opening degree of the air discharge valve as the difference between the sub compressor outlet pressure and the stop-time reference pressure is smaller.
  • the increase amount may be reduced.
  • the increase amount of the opening degree of the discharge valve is small. That is, when the possibility that a surge occurs in the sub-compressor is not high, the outside air boosted by the sub-compressor is not released to the outside. As a result, the engine body can be efficiently operated by increasing the scavenging air pressure while further suppressing the occurrence of a surge in the auxiliary compressor.
  • An engine system is arranged in parallel with the main supercharger with respect to the engine body, at least one main supercharger having a main turbine and a main compressor, and the engine body.
  • At least one sub-supercharger having a sub-turbine and a sub-compressor; a sub-turbine inlet valve provided on the inlet side of the sub-turbine; and a sub-compressor outlet valve provided on the outlet side of the sub-compressor;
  • a ventilating pipe for guiding outside air boosted by the subcompressor from the upstream side of the subcompressor outlet valve to the outside, a ventilating valve provided in the ventilating pipe, and a control device, the control device, From the state where the main supercharger is operated and the subsupercharger is stopped, the subturbine inlet valve and the subcompressor outlet valve are opened while the main supercharger is operated.
  • an operating reference pressure having a predetermined surge margin is determined based on the sub-supercharger speed, and the sub-compressor outlet pressure is set to the operating reference pressure.
  • the opening degree of the discharge valve is increased when the pressure is higher than that, and the opening degree of the discharge valve is decreased when the sub-compressor outlet pressure is lower than the operating reference pressure.
  • the opening degree of the air discharge valve decreases. That is, when the possibility of occurrence of a surge is low, a large amount of air boosted by the auxiliary compressor is supplied to the engine body by reducing the opening degree of the discharge valve. As a result, it is possible to prevent the air boosted by the sub-compressor from being unnecessarily discharged to the outside, and to suppress a decrease in scavenging air pressure of the engine body. As a result, when increasing the number of operating superchargers, it is possible to suppress a decrease in the efficiency of the engine body.
  • the control device when the control device increases the opening degree of the air discharge valve, the smaller the difference between the outlet pressure of the sub-compressor and the reference pressure during operation, the lower the opening degree of the air discharge valve.
  • the increase amount may be reduced.
  • the increase amount of the opening degree of the discharge valve is small. That is, when the possibility that a surge occurs in the sub-compressor is not high, the outside air boosted by the sub-compressor is not released to the outside. As a result, the engine body can be efficiently operated by increasing the scavenging air pressure while further suppressing the occurrence of a surge in the auxiliary compressor.
  • the auxiliary supercharger rotational speed becomes equal to or higher than a predetermined switching rotational speed.
  • the sub-compressor outlet valve starts to be opened, and the switching speed is determined according to the engine load.
  • the switching speed is not determined by comparing the outlet pressure and scavenging pressure of the auxiliary compressor, but the operating curve of the auxiliary compressor (subcompressor flow rate and auxiliary compressor outlet) from just before opening the auxiliary compressor outlet valve to after completion of switching. Pressure relationship) and is determined taking into account that the secondary compressor will not surge.
  • the sub compressor outlet valve is closed until the sub supercharger rotation speed reaches the switching rotation speed, so that the outside air boosted by the main compressor is supplied to the sub compressor. It can be supplied to the engine body as scavenging gas without backflow. Therefore, the engine body can be operated efficiently. Further, since the switching speed is determined according to the engine load, the engine body can be operated more efficiently while avoiding a surge.
  • An engine system includes an engine main body, at least one main supercharger having a main turbine and a main compressor, and the main supercharger arranged in parallel to the engine main body.
  • At least one sub-supercharger having a sub-turbine and a sub-compressor, a sub-turbine inlet valve provided on the inlet side of the sub-turbine, and a sub-compressor outlet valve provided on the outlet side of the sub-compressor
  • An air discharge pipe for guiding outside air boosted by the auxiliary compressor from the upstream side of the auxiliary compressor outlet valve to the outside, an air discharge valve provided in the air discharge pipe, and a control device, the control device comprising: From the state where the main supercharger is operated and the subsupercharger is stopped, the subturbine inlet valve and the sub compressor outlet valve are opened while the main supercharger is operated.
  • the auxiliary turbocharger rotational speed is increased.
  • the discharge valve starts to be closed when the predetermined first switching rotational speed is reached, and when the sub-supercharger rotational speed becomes the second switching rotational speed that is greater than the first switching rotational speed
  • the auxiliary compressor outlet valve is configured to start opening.
  • auxiliary compressor outlet valve starts to open with the air discharge valve closed to some extent, it is possible to suppress the release of outside air boosted by the auxiliary compressor to the outside through the air discharge valve. Further, it is possible to suppress the outside air boosted by the main compressor from flowing back to the sub compressor. Therefore, it can suppress that the efficiency of an engine main body falls.
  • the control device determines a first switching operation point (sub compressor flow rate and sub compressor outlet pressure) of the sub compressor having a predetermined surge margin based on an engine load, and the first compressor
  • the sub-supercharger rotation speed of the pressure curve passing through the switching operation point (the relationship between the sub-compressor flow rate and the sub-compressor outlet pressure at each rotation speed of the sub-supercharger) is set as the first switching rotation speed. May be.
  • the first switching speed is not determined by comparing the outlet pressure of the auxiliary compressor and the scavenging pressure, but from the time immediately before starting the closing of the discharge valve based on the engine load to the time immediately before starting the opening of the auxiliary compressor outlet valve.
  • the compressor operating curve is predicted and determined so that the secondary compressor does not surge.
  • the first switching operating point is determined based on the engine load, and the first switching rotational speed is determined using the first switching operating point. Therefore, it is possible to control the opening and closing of the air discharge valve without measuring the pressure such as the sub compressor outlet pressure. Therefore, depending on other conditions, a pressure gauge for measuring the pressure such as the sub compressor outlet pressure becomes unnecessary.
  • the control device determines a second switching operation point of the sub-compressor having a predetermined surge margin based on an engine load, and outputs a sub-pressure curve passing through the second switching operation point.
  • the turbocharger rotational speed may be configured to be the second switching rotational speed.
  • the second switching speed is not determined by comparing the outlet pressure and scavenging air pressure of the auxiliary compressor, but from immediately before the opening of the auxiliary compressor outlet valve based on the engine load to the end of the opening (switching completion).
  • the operation curve is predicted and determined so that the secondary compressor does not surge.
  • the second switching operation point is determined based on the engine load, and further, the second switching rotation speed is determined using the second switching operation point. Therefore, it is possible to determine the timing at which the auxiliary compressor outlet valve starts to be opened without measuring the pressure such as the auxiliary compressor outlet pressure. Therefore, depending on other conditions, a pressure gauge for measuring the pressure such as the sub compressor outlet pressure becomes unnecessary.
  • the control device acquires a main compressor outlet pressure when increasing the number of operating superchargers, a sub-supercharger rotational speed is equal to or higher than the second switching rotational speed, and
  • the auxiliary compressor outlet valve may be configured to start to open when the acquired main compressor outlet pressure is smaller than the auxiliary compressor outlet pressure at the second switching operation point.
  • the main compressor outlet pressure may be higher than the assumed pressure in situations where the engine load fluctuates rapidly. There is a risk that the outside air boosted by the main compressor will flow back to the sub compressor.
  • the subcompressor outlet pressure valve is not opened, so that backflow is prevented from occurring in the subcompressor. it can.
  • the control device sets a value equal to the acquired main compressor outlet pressure as a second switching pressure, and sets a value obtained by adding a predetermined flow rate to a sub compressor flow rate at which a surge occurs at the second switching pressure.
  • the second switching flow rate, the operating point at the second switching pressure and the second switching flow rate as the second switching operating point, and the sub-supercharger rotation speed of the pressure curve passing through the second switching operating point is the You may be comprised so that it may be set as 2nd switching rotation speed.
  • the control device estimates an engine load based on the acquired main compressor outlet pressure, and the first switching operation point of the sub compressor having a predetermined surge margin based on the estimated engine load. And the sub-supercharger rotation speed of the pressure curve passing through the first switching operation point may be set as the first switching rotation speed.
  • the engine load is directly acquired not only when determining the first switching speed but also the second switching speed. There is no need to do. That is, since the acquisition of the engine load can be omitted in the operation number increase control, the engine system can be simplified if the acquisition of the engine load can be omitted also in the operation number decrease control.
  • the controller decreases the opening of the air discharge valve as the difference between the sub-supercharger rotation speed and the first switching rotation speed decreases. May be configured to be small.
  • FIG. 1 is a schematic configuration diagram of the entire engine system according to the first embodiment.
  • FIG. 2 is a block diagram of a control system of the engine system.
  • FIG. 3 is a flowchart showing a supercharger operation number reduction control method.
  • FIG. 4 is a time chart of the opening degree of each valve during supercharger operation number reduction control.
  • FIG. 5 is a graph showing the relationship between the surge line and the stop-time reference pressure.
  • FIG. 6 is a time chart of the sub compressor outlet pressure and scavenging pressure.
  • FIG. 7 is a flowchart showing a method for increasing the number of operating superchargers according to the first embodiment.
  • FIG. 8 is a time chart of the opening degree of each valve during the supercharger operation number increase control of the first embodiment.
  • FIG. 9 is a graph showing the relationship between the engine load and the switching speed.
  • FIG. 10 is an overall schematic diagram of an engine system according to a modification of FIG.
  • FIG. 11 is a flowchart showing a method for increasing the number of operating superchargers according to the second embodiment.
  • FIG. 12 is a time chart of the opening degree of each valve and the number of rotations of the sub-supercharger during the supercharger operation number increase control of the second embodiment.
  • FIG. 13 is a graph showing the relationship between the engine load, the first switching pressure, and the second switching pressure.
  • FIG. 14 is a graph showing the relationship between the engine load, the first switching flow rate, and the second switching flow rate.
  • FIG. 15 is a diagram illustrating a method for determining the first switching rotation speed and the second switching rotation speed according to the second embodiment.
  • FIG. 16 is a schematic configuration diagram of the entire engine system according to the third embodiment.
  • FIG. 17 is a flowchart showing a method for increasing the number of operating superchargers according to the third embodiment.
  • FIG. 18 is a flowchart showing a method for increasing the number of operating superchargers according to the fourth embodiment.
  • FIG. 19 is a graph showing the relationship between the main compressor outlet pressure and the engine load.
  • FIG. 20 is a diagram illustrating a method for determining the second switching rotation speed according to the fourth embodiment.
  • FIG. 21 is an overall schematic diagram of an engine system according to another modification of FIG.
  • FIG. 1 is a schematic configuration diagram of the entire engine system 100.
  • a thick broken line indicates the flow of exhaust gas
  • a thick solid line indicates the flow of scavenging gas.
  • the engine system 100 includes an engine main body 10, a main supercharger 20, a sub supercharger 30, a sub turbine inlet valve 41, a sub compressor outlet valve 42, and an air discharge valve 43. It is equipped with.
  • the engine body 10 in the present embodiment is a main propulsion unit for a ship, and is a large two-stroke diesel engine.
  • the engine body 10 is provided with an engine tachometer 11 (see FIG. 2) that measures the number of rotations of the engine body 10 (engine speed).
  • the engine body 10 also includes a fuel supply device 12 (see FIG. 2) that adjusts the fuel injection amount.
  • the engine body 10 may be a 4-stroke engine, a gas engine, or a gasoline engine. In the following description, “scavenging” is read as “supplying air” in the case of a 4-stroke engine.
  • the main supercharger 20 is a supercharger that always operates regardless of the operating state of the engine body 10. Exhaust gas discharged from the engine body 10 is supplied to the main turbine 22 via the main exhaust pipe 21. The main turbine 22 is rotated by the energy of the supplied exhaust gas. The main turbine 22 and the main compressor 23 are connected by a connecting shaft 24, and the main compressor 23 rotates as the main turbine 22 rotates. When the main compressor 23 rotates, the air (outside air) taken from outside is increased in pressure, and the increased outside air is supplied as scavenging gas to the engine body 10 via the main scavenging piping 25.
  • the sub-supercharger 30 is a supercharger that is operated or stopped according to the operating state of the engine body 10.
  • the sub supercharger 30 is arranged in parallel with the main supercharger 20 with respect to the engine body 10.
  • the sub-supercharger 30 may have the same specification (capacity) as the main supercharger 20 or a different specification.
  • the exhaust gas discharged from the engine body 10 is supplied to the sub turbine 32 via the sub exhaust pipe 31.
  • the sub turbine 32 is rotated by the energy of the supplied exhaust gas.
  • the auxiliary turbine 32 and the auxiliary compressor 33 are connected by a connecting shaft 34, and the auxiliary compressor 33 also rotates as the auxiliary turbine 32 rotates.
  • the air (outside air) taken from the outside is increased in pressure, and the increased outside air is supplied as scavenging gas to the engine body 10 via the sub-scavenging piping 35 and the main scavenging piping 25.
  • the auxiliary scavenging pipe 35 is connected to the main scavenging pipe 25.
  • An air cooler 50 that cools the scavenging gas is provided downstream of the portion of the main scavenging piping 25 to which the sub-scavenging piping 35 is connected.
  • the auxiliary scavenging pipe 35 may be directly connected to the engine body 10 without being connected to the main scavenging pipe 25.
  • the sub-supercharger 30 is provided with a sub-supercharger tachometer 36 that measures the rotation speed of the sub-supercharger 30 (sub-compressor 33).
  • a sub-compressor outlet pressure gauge 37 that measures the pressure of the outside air (sub-compressor outlet pressure) increased by the sub-compressor 33 is provided near the outlet of the sub-compressor 33.
  • the auxiliary turbine inlet valve 41 is provided in the auxiliary exhaust pipe 31 and is a valve located on the inlet side of the auxiliary turbine 32.
  • the auxiliary compressor outlet valve 42 is provided in the auxiliary scavenging pipe 35 and is a valve located on the outlet side of the auxiliary compressor 33.
  • An air discharge pipe 44 is connected to a portion of the auxiliary scavenging pipe 35 upstream of the auxiliary compressor outlet valve 42.
  • the air discharge pipe 44 is a pipe that guides outside air boosted by the sub compressor 33 to the outside.
  • the air discharge valve 43 is provided in the air discharge pipe 44.
  • the auxiliary turbine inlet valve 41 and the auxiliary compressor outlet valve 42 are open / close valves that can be switched to either fully closed or fully open in the present embodiment, but are adjustment valves that can adjust the opening degree. May be. It takes some time to switch between opening and closing these valves (see FIG. 4).
  • the air discharge valve 43 is an adjustment valve capable of adjusting the opening degree in the present embodiment.
  • the air discharge valve 43 is an on-off valve, and the opening degree may be adjusted by an inching operation (operation by an open command / close command).
  • FIG. 2 is a block diagram of a control system of engine system 100.
  • the engine system 100 includes a control device 60 that controls the entire engine system 100.
  • the control device 60 is configured by, for example, a CPU, a ROM, a RAM, and the like.
  • the control device 60 is electrically connected to the engine tachometer 11, the fuel supply device 12, the sub supercharger tachometer 36, and the sub compressor outlet pressure gauge 37.
  • the control device 60 acquires the engine speed, the fuel injection amount, the sub supercharger speed, the sub compressor outlet pressure, and the like based on signals transmitted from these devices.
  • the control device 60 performs various calculations based on the input signals from the above devices and controls each part of the engine system 100.
  • the control device 60 is electrically connected to the auxiliary turbine inlet valve 41, the auxiliary compressor outlet valve 42, and the ventilating valve 43, and to these devices based on the results of various calculations and the like. Send a control signal.
  • FIG. 3 is a flowchart showing a method of operating number reduction control. The calculation and control described below are performed by the control device 60.
  • FIG. 4 is a time chart showing the opening degrees of the auxiliary turbine inlet valve 41, the auxiliary compressor outlet valve 42, and the air discharge valve 43. Note that FIG. 4 is conceptually shown and does not necessarily match the actual value (the same applies to other time charts and graphs described below).
  • the control device 60 simultaneously closes the auxiliary turbine inlet valve 41 and the auxiliary compressor outlet valve 42 (step S1).
  • the exhaust gas discharged from the engine main body 10 is not supplied to the sub turbine 32, and the rotational speed of the sub supercharger 30 gradually decreases.
  • FIG. 4 it takes some time until these valves are fully opened to fully closed.
  • the sub-supercharger 30 stops after the sub-turbine inlet valve 41 starts to close it is assumed that the sub-compressor outlet valve 42 starts to close slightly later than the sub-turbine inlet valve 41.
  • control device 60 reads signals transmitted from the sub-supercharger tachometer 36 and the sub-compressor outlet pressure gauge 37, and acquires the sub-supercharger rotation speed and the sub-compressor outlet pressure based on these signals ( Step S2).
  • FIG. 5 is a diagram showing the relationship between the sub compressor flow rate and the sub compressor outlet pressure at each rotation speed of the sub supercharger 30, that is, a diagram (compressor map) showing the pressure curve at each rotation speed.
  • the thick line in the figure indicates a line (surge line) connecting points where a surge occurs at each rotation speed.
  • the broken line in the figure is a stop-time reference pressure line that is preset to have a predetermined interval (surge margin) from the surge line.
  • stop-time reference pressure is a pressure at a point where this pressure curve and the stop-time reference pressure line intersect.
  • the control device 60 stores data on the stop-time reference pressure for each rotation speed of the sub-supercharger 30. Therefore, the stop-time reference pressure can be determined based on the acquired rotation speed of the sub-supercharger 30.
  • the control device 60 determines whether or not the sub compressor outlet pressure is larger than the stop-time reference pressure (step S4). That is, it is determined whether or not there is a risk of occurrence of a surge in the sub compressor 33. If it is determined that the sub compressor outlet pressure is equal to or lower than the stop-time reference pressure (NO in step S4), the process proceeds to step S5. That is, if it is determined that there is no possibility of a surge occurring in the sub compressor 33, the process proceeds to step S5. On the other hand, if it is determined that the sub-compressor outlet pressure is greater than the stop-time reference pressure (YES in step S4), the process proceeds to step S6. That is, when it is determined that there is a possibility that a surge occurs in the sub compressor 33, the process proceeds to step S6.
  • the control device 60 transmits a control signal to the air discharge valve 43 to decrease the opening degree of the air discharge valve 43.
  • the control device 60 transmits a control signal to the air discharge valve 43 to increase the opening degree of the air discharge valve 43.
  • the amount of change in the opening degree of the air discharge valve 43 is determined according to the difference between the sub compressor outlet pressure and the stop-time reference pressure. That is, the increase / decrease amount of the opening degree of the air discharge valve 43 is made small as the difference between the sub compressor outlet pressure and the stop-time reference pressure becomes small.
  • step S7 the control device 60 determines whether or not the sub-supercharger 30 has stopped. That is, it is determined whether or not the sub supercharger rotational speed has become zero. If it is determined that the sub-supercharger 30 has stopped (YES in step S7), the process ends. On the other hand, if it is determined that the sub-supercharger 30 has not stopped (NO in step S7), the process returns to step S2 and repeats steps S2 to S8.
  • a time chart of the opening degree of the ventilating valve 43 shows the opening degree of the ventilating valve 43 in the present embodiment, and the broken line shows the sub turbine inlet valve 41.
  • the opening degree of the air discharge valve 43 when the air discharge valve 43 starts to open simultaneously with the start of closing the sub compressor outlet valve 42 (in the case of early opening) is shown.
  • or 3 mentioned above has begun to open the ventilation valve 43 at an earlier timing than what is shown with a broken line.
  • the air discharge valve 43 does not start to open. It can be delayed compared to the case.
  • the opening degree of the ventilating valve 43 does not increase at a constant rate, and the opening degree may be decreased when the possibility of occurrence of a surge is low.
  • the opening degree of the air discharge valve 43 can be made as small as possible in the range where a surge does not occur.
  • FIG. 6 is a diagram showing temporal changes in the sub compressor outlet pressure and scavenging pressure.
  • the solid line shows the case of this embodiment, and the broken line shows the case of early opening (see the lower figure of FIG. 4).
  • the start of opening of the discharge valve 43 is slower than in the case of early opening. From this, it can be seen that the sub-compressor outlet pressure begins to decrease.
  • the scavenging air pressure decreases less in the case of this embodiment than in the case of early opening. This is because in the case of the present embodiment, even after the sub compressor outlet valve 42 starts to close, the outside air increased in pressure by the sub compressor 33 can be used as the scavenging gas.
  • the sub-supercharger 30 when the number of superchargers to be operated is reduced, the sub-supercharger 30 is compared to the case where the ventilator valve 43 is opened early in consideration of the occurrence of a surge as in the prior art. It is possible to suppress a decrease in scavenging air pressure not only during stopping but also after stopping. Therefore, according to the present embodiment, the engine body 10 can be operated more efficiently than in the conventional case.
  • FIG. 7 is a flowchart showing a method for controlling the number of operating units. The calculation and control described below are performed by the control device 60.
  • FIG. 8 is a time chart showing the opening degrees of the auxiliary turbine inlet valve 41, the auxiliary compressor outlet valve 42, and the air discharge valve 43.
  • the control device 60 opens the sub turbine inlet valve 41 (step S11). Thereby, the exhaust gas is supplied to the auxiliary turbine 32 and the auxiliary supercharger 30 starts to operate.
  • the sub compressor outlet valve 42 does not open simultaneously with the sub turbine inlet valve 41. This is because if the sub-compressor outlet valve 42 is opened with the sub-supercharger 30 having a low rotation speed and a low sub-compressor outlet pressure, the outside air increased in pressure by the main compressor 23 flows back to the sub-compressor 33.
  • control device 60 reads signals transmitted from the engine tachometer 11, the fuel supply device 12, the sub-supercharger tachometer 36, and the sub-compressor outlet pressure gauge 37, and based on these signals, loads the engine load (engine (Estimated from rotation speed and fuel injection amount), sub-supercharger rotation speed, and sub-compressor outlet pressure are acquired (step S12).
  • the control device 60 determines the switching rotation speed (step S13).
  • the “switching rotation speed” here is the sub-supercharger rotation speed when the sub-compressor outlet valve 42 starts to be opened.
  • the switching speed is determined according to the engine load. Specifically, the control device 60 stores map data corresponding to the graph shown in FIG. 9, and determines the switching speed based on the acquired engine load. As shown in FIG. 9, the switching speed increases as the engine load increases.
  • control device 60 determines whether or not the sub-supercharger rotation speed acquired in step S12 is equal to or higher than the switching rotation speed determined in step S13 (step S14).
  • the sub-compressor outlet valve 42 is opened (step S15), and then the process proceeds to step S16.
  • the process proceeds to step S16 without passing through step S15.
  • the control device 60 determines an operating reference pressure based on the sub-supercharger rotation speed acquired in Step S12 (Step S16).
  • the reference pressure during operation is a pressure having a predetermined amount of surge margin set in advance in the same manner as the reference pressure during stoppage (see step S3 in FIG. 3).
  • the control device 60 stores data on the operation reference pressure for each sub-supercharger rotation speed. Therefore, the operating reference pressure can be determined based on the acquired sub supercharger rotation speed. In each sub-supercharger rotation speed, the reference pressure during operation and the reference pressure during stop may be set to the same value.
  • the control device 60 determines whether or not the sub compressor outlet pressure is larger than the operation reference pressure (step S17). That is, it is determined whether or not there is a risk of occurrence of a surge in the sub compressor 33. If it is determined that the sub compressor outlet pressure is equal to or lower than the operating reference pressure (NO in step S17), the process proceeds to step S18. That is, if it is determined that there is no possibility of a surge occurring in the sub compressor 33, the process proceeds to step S18. On the other hand, if it is determined that the sub compressor outlet pressure is greater than the operating reference pressure (YES in step S17), the process proceeds to step S19. That is, when it is determined that there is a possibility that a surge occurs in the sub compressor 33, the process proceeds to step S19.
  • the control device 60 transmits a control signal to the air discharge valve 43 to decrease the opening degree of the air discharge valve 43.
  • the control device 60 transmits a control signal to the air discharge valve 43 to increase the opening degree of the air discharge valve 43.
  • the increase / decrease amount of the opening degree of the air discharge valve 43 is made small as the difference between the sub compressor outlet pressure and the reference pressure during operation becomes small.
  • step S20 the control device 60 determines whether or not the sub compressor outlet valve 42 is fully opened. Whether or not the sub-compressor outlet valve 42 is fully opened can be determined by the fully closed / full-opening limit switch of the sub-compressor outlet valve 42, the time after the opening is started, or the like. If it is determined that the sub compressor outlet valve 42 is fully opened (YES in step S20), the process is terminated. On the other hand, when it is determined that the sub compressor outlet valve 42 is not fully opened (NO in step S20), the process returns to step S12 and steps S12 to S20 are repeated.
  • the opening degree (including the fully closed position) of the discharge valve 43 is controlled to be as small as possible within a range where no surge occurs. Therefore, the outside air boosted by the auxiliary compressor 33 is suppressed from being discharged to the outside, and is supplied to the engine body 10 as scavenging gas as soon as the auxiliary compressor outlet valve 42 starts to open. Therefore, the scavenging pressure can be increased and the engine body 10 can be operated efficiently.
  • the timing for opening the auxiliary compressor outlet valve 42 is determined based on the engine load and the auxiliary supercharger rotation speed.
  • the timing for opening the sub compressor outlet valve 42 is not limited to this.
  • a differential pressure gauge 38 for measuring the differential pressure across the auxiliary compressor outlet valve 42 may be provided, and the timing for opening the auxiliary compressor outlet valve 42 may be determined based on the differential pressure before and after.
  • the sub compressor outlet valve 42 may be opened when the pressure on the upstream side of the sub compressor outlet valve 42 becomes higher than the pressure on the downstream side.
  • a scavenging meter 39 for measuring scavenging air pressure is provided between the air cooler 50 and the engine body 10, and when the differential pressure between the sub compressor outlet pressure and scavenging air pressure exceeds a predetermined threshold value, The sub compressor outlet valve 42 may be opened. Further, as the auxiliary compressor outlet valve 42, a check valve may be employed so that the outside air increased in pressure by the auxiliary compressor 33 flows to the engine body 10, but the outside air increased in pressure by the main compressor 23 does not flow to the auxiliary compressor 33.
  • FIG. 11 is a flowchart showing a method of increasing the number of operating units according to this embodiment.
  • FIG. 12 is a time chart showing the opening degree of the auxiliary turbine inlet valve 41, the auxiliary compressor outlet valve 42, and the air discharge valve 43, and the rotation speed of the auxiliary supercharger 30.
  • the control device 60 starts opening the air discharge valve 43 so as to reach a predetermined opening degree (step S21), and after a predetermined time, the auxiliary device 43 Opening of the turbine inlet valve 41 is started (step S22).
  • the auxiliary supercharger 30 starts to operate (see FIG. 12).
  • control device 60 reads signals transmitted from the engine tachometer 11, the fuel supply device 12, and the sub-supercharger tachometer 36, and based on these signals, loads the engine load (engine speed and fuel injection amount). And the sub-supercharger rotation speed are acquired (step S23).
  • the control device 60 determines a first switching operation point (sub compressor flow rate and sub compressor outlet pressure) (step S24).
  • the “first switching operation point” is an operation point of the sub compressor 33 having a predetermined surge margin, and is a point at which the air discharge valve 43 starts to close. Since the operating point of the sub-compressor 33 is greatly changed by opening and closing the air discharge valve 43, the operation curve (the locus of the operation point) of the sub-compressor 33 is different if the timing at which the air discharge valve 43 starts to close is different.
  • the discharge valve 43 starts to close when the auxiliary compressor 33 reaches a certain operating point, a surge occurs immediately before the start of closing the discharge valve 43 and immediately before the opening of the auxiliary compressor outlet valve 42. No operating point that satisfies the condition that the operating curve does not reach the surge region is set as the first switching operating point. However, the first switching operation point changes according to the engine load. Note that the sub-compressor outlet pressure and the sub-compressor flow rate at the first switching operation point are set as a first switching pressure and a first switching flow rate, respectively (see FIG. 15).
  • the control device 60 stores map data corresponding to the graph of the first switching pressure shown in FIG. 13, and determines the first switching pressure based on this map data and the engine load acquired in step S23.
  • control device 60 stores map data corresponding to the graph of the first switching flow rate shown in FIG. 14, and determines the first switching flow rate based on the map data and the engine load acquired in step S23. . As shown in FIGS. 13 and 14, the first switching pressure and the first switching flow rate increase as the engine load increases.
  • the control device 60 determines the first switching rotational speed (step S25).
  • the sub supercharger rotation speed of the pressure curve passing through the first switching operation point of the sub compressor 33 is set as the first switching rotation speed. For example, as shown in FIG. 15, when the pressure curve of the X% rotation speed passes through the point A which is the first switching operation point, the first switching rotation speed is set to X% rotation speed.
  • the operating point of the sub compressor 33 when the sub supercharger rotation speed reaches the first switching rotation speed may be different from the first switching operation point.
  • the sub compressor outlet valve 42 immediately before starting to close the discharge valve 43.
  • the surge of the sub-compressor 33 can be avoided until just before starting to open.
  • the control device 60 determines whether or not the sub supercharger rotational speed is equal to or higher than the first switching rotational speed (step S26).
  • the closing of the air discharge valve 43 is started (step S27; see FIG. 12).
  • the process returns to step S23 and steps S23 to S26 are repeated.
  • control device 60 After starting the closing of the discharge valve 43 through step S27, the control device 60 reads signals transmitted from the engine tachometer 11, the fuel supply device 12, and the sub-supercharger tachometer 36 again. Based on this signal, the engine load and the sub-supercharger speed are acquired (step S28).
  • the “second switching operation point” is an operation point of the sub compressor 33 having a predetermined surge margin, and is a point at which the sub compressor outlet valve 42 starts to be opened.
  • the second switching operation point is determined in the same manner as the first switching operation point. That is, if the auxiliary compressor outlet valve 42 starts to open when the auxiliary compressor 33 reaches a certain operating point, no surge will occur between immediately before the auxiliary compressor outlet valve 42 starts to open and to completion of opening (switching completion).
  • the operating point that satisfies the condition that the operating curve does not reach the surge region is set as the second switching operating point.
  • the second switching operation point changes according to the engine load.
  • the auxiliary compressor outlet pressure and the auxiliary compressor flow rate at the second switching operation point are set as the second switching pressure and the second switching flow rate, respectively (see FIG. 15).
  • the control device 60 determines the second switching pressure and the second switching flow rate based on the graph of the second switching pressure shown in FIGS. 13 and 14, the map data corresponding to the second switching flow rate, and the engine load. When the engine load is the same, the second switching pressure and the second switching flow rate are determined to be higher than the first switching pressure and the first switching flow rate, respectively.
  • the control device 60 determines the second switching rotation speed (step S30).
  • the sub-supercharger speed of the pressure curve passing through the second switching operating point of the sub-compressor 33 is set as the second switching speed.
  • the second switching rotation speed is set to Y% rotation speed. Since the second switching pressure and the second switching flow rate are larger than the first switching pressure and the first switching flow rate, respectively, the second switching rotational speed is higher than the first switching rotational speed.
  • the operating point of the sub compressor when the sub supercharger rotational speed reaches the second switching rotational speed may be different from the second switching operating point.
  • the second switching operation point has a predetermined surge margin, even if the actual operation point is slightly deviated from the second switching operation point, the time from immediately before the sub compressor outlet valve 42 is opened to until the opening is completed. During this time, the surge of the sub compressor 33 can be avoided.
  • the control device 60 determines whether or not the sub-supercharger rotation speed is equal to or higher than the second switching rotation speed (step S31).
  • the opening of the sub-compressor outlet valve 42 is started (step S32; see FIG. 12), and the processing thereafter Exit.
  • the process returns to step S28 and steps S28 to S31 are repeated.
  • the operation number increase control of this embodiment is as described above.
  • the discharge valve 43 starts to be closed, and thereafter the opening of the sub compressor outlet valve 42 is started.
  • the opening of the sub compressor outlet valve 42 is started with the air discharge valve 43 closed to some extent, it is possible to prevent the outside air boosted by the sub compressor 33 from being released to the outside through the air discharge valve 43. it can.
  • the outside air is sufficiently boosted by the sub compressor 33, it is possible to suppress the outside air boosted by the main compressor 23 from flowing back to the sub compressor 33.
  • the opening and closing of the sub compressor outlet valve 42 and the air discharge valve 43 are controlled based on the sub supercharger rotation speed, and therefore acquisition of the sub compressor outlet pressure is omitted. Can do. Therefore, for example, when the auxiliary compressor outlet pressure gauge 37 in FIG. 1 is not used not only in the operating unit increase control but also in the operating unit decrease control, such as performing the operating unit decrease control based on the time schedule, Can be omitted.
  • the air discharge valve 43 starts to be closed (steps S26 and S27).
  • the speed at which the wind valve 43 is closed that is, the decrease rate (change rate) of the opening degree of the discharge valve 43 may not be constant.
  • the speed at which the air discharge valve 43 is closed may be increased as the difference between the sub-supercharger rotation speed and the first switching rotation speed is increased, that is, the amount of decrease in the opening degree of the air discharge valve 43 may be increased.
  • FIG. 16 is a schematic configuration diagram of the entire engine system 200 according to the present embodiment.
  • the main scavenging pipe 25 is provided with a main compressor outlet pressure gauge 40, but otherwise, the first embodiment and the second embodiment shown in FIG. 1.
  • the main compressor outlet pressure gauge 40 is located on the outlet side of the main compressor 23 and upstream of the air cooler 50.
  • the main compressor outlet pressure gauge 40 is electrically connected to the control device 60, and the control device 60 acquires the main compressor outlet pressure based on a signal transmitted from the main compressor outlet pressure gauge 40.
  • FIG. 17 is a flowchart showing a method for controlling the number of operating units of the present embodiment, and corresponds to FIG. 11 of the second embodiment.
  • the operation number increase control of this embodiment is obtained by adding steps S41 and S42 to the operation number increase control of the second embodiment.
  • the control device 60 determines in step S29 that the sub-supercharger rotation speed is equal to or higher than the second switching rotation speed, the sub-compressor outlet valve 42 has started to be opened. If it is determined in step S31 that the sub supercharger rotational speed is equal to or higher than the second switching rotational speed, the process proceeds to step S41 without immediately starting to open the sub compressor outlet valve 42.
  • step S41 the control device 60 reads a signal transmitted from the main compressor outlet pressure gauge 40, and acquires the main compressor outlet pressure based on this signal.
  • the control device 60 determines whether or not the main compressor outlet pressure acquired in step S41 is equal to or lower than the second switching pressure used when determining the second switching operating point in step S29 (step S42). ). If the main compressor outlet pressure is equal to or lower than the second switching pressure (YES in step S42), opening of the sub compressor outlet valve 42 is started (step S32), and then the process is terminated. On the other hand, when it is determined that the main compressor outlet pressure is greater than the second switching pressure (NO in step S42), the process returns to step S28 and steps S28 to S31, S41, and S42 are repeated.
  • the auxiliary compressor outlet valve 42 in addition to the sub-supercharger rotational speed being equal to or higher than the second switching rotational speed, when the main compressor outlet pressure is equal to or lower than the second switching pressure, the auxiliary compressor outlet valve 42 is not turned on for the first time. Start opening.
  • the engine load may fluctuate greatly depending on the sea conditions.
  • the main compressor outlet pressure is controlled to decrease when the engine load decreases, it takes some time until the main compressor outlet pressure decreases after the engine load decreases. Therefore, when the operation number increase control is performed at the same time as the engine load is reduced, the main compressor outlet pressure is still in a high state, so that the outside air boosted by the main compressor 23 may flow back to the sub compressor 33 side.
  • the opening of the sub compressor outlet valve 42 is started only when the main compressor outlet pressure is equal to or lower than the second switching pressure.
  • the opening of the sub compressor outlet valve 42 is started when the sub compressor outlet pressure becomes the second switching pressure, so that the sub compressor outlet pressure when the opening of the sub compressor outlet valve 42 is started is changed to the second switching pressure. Pressure. Therefore, as in the present embodiment, if the main compressor outlet pressure is equal to or lower than the second switching pressure, the main compressor outlet pressure is smaller than the sub compressor outlet pressure when the opening of the sub compressor outlet valve 42 is started. . Therefore, according to this embodiment, even when the engine load fluctuates, the outside air boosted by the main compressor 23 does not flow back to the sub compressor 33 side.
  • the main compressor outlet pressure is acquired using the main compressor outlet pressure gauge 40.
  • a scavenging pressure gauge (see reference numeral 39 in FIG. 10) is provided downstream of the air cooler 50 of the main scavenging pipe 25.
  • the main compressor outlet pressure may be acquired (estimated) based on the scavenging pressure measured by the scavenging pressure gauge. This also applies to the case of a fourth embodiment described later.
  • the overall configuration of the engine system according to the present embodiment is basically the same as the engine system 200 of the third embodiment shown in FIG. That is, in the engine system according to this embodiment, the main compressor outlet pressure gauge 40 is provided in the main scavenging piping 25.
  • FIG. 18 is a flowchart showing a method for controlling the number of operating units of the present embodiment, and corresponds to FIG. 11 of the second embodiment.
  • the operation number increase control of the present embodiment changes steps S23, S28, and S29 of the operation number increase control of the second embodiment to steps S51, S53, and S54. Step S52 is added.
  • the engine load and the sub-supercharger speed are acquired (see step S23 in FIG. 11).
  • the main compressor outlet pressure gauge 40 and the sub-supercharger are obtained.
  • the signals transmitted from the tachometer 36 are read, and the “main compressor outlet pressure” and the sub-supercharger rotation speed are acquired based on these signals (step S51).
  • the control device 60 estimates the engine load based on the main compressor outlet pressure acquired in step S51 (step S52). Specifically, the control device 60 stores map data corresponding to the graph shown in FIG. 19, and estimates the engine load based on this map data and the acquired compressor outlet pressure. As shown in FIG. 19, the estimated engine load increases as the compressor outlet pressure increases.
  • the first switching operation point is determined based on the estimated engine load (step S24), and the first switching rotational speed is determined (step S24).
  • the first switching operating point has a predetermined surge margin. Even if the actual operating point slightly deviates from the first switching operating point, it is possible to avoid the surge of the sub compressor 33 from immediately before the start of closing the air discharge valve 43 to just before starting to open the sub compressor outlet valve 42. .
  • step S27 after passing through step S27, the main compressor outlet pressure and the sub-supercharger rotation speed are acquired in the same manner as in step S51 (step S53). Thereafter, the control device 60 determines the second switching operation point (step S54). Specifically, the control device 60 sets a value equal to the main compressor outlet pressure acquired in step S53 as the second switching pressure. A value obtained by adding a predetermined flow rate (margin flow rate) to the flow rate of the sub-compressor 33 that generates a surge at the second switching pressure is defined as a second switching flow rate. Further, an operating point at which the sub compressor outlet pressure is the second switching pressure and the sub compressor flow rate is the second switching flow rate is defined as a second switching operating point. That is, as shown in FIG.
  • a point C which is the point (surge point) of the second switching pressure (main compressor outlet pressure) in the surge line is taken, and the auxiliary compressor flow rate is increased from this point C by a predetermined margin flow rate.
  • the point D shifted to the side is set as the second switching operation point.
  • step S30 of FIG. 18 the sub-supercharger rotation speed of the pressure curve passing through the second switching operation point of the sub-compressor 33 is set as the second switching rotation speed.
  • the second switching rotation speed is set to the Z% rotation speed.
  • the value of the above margin flow rate is not particularly limited.
  • the margin flow rate may be constant or may be varied such as increasing as the main compressor outlet pressure increases.
  • the point D shifted from the surge point C to the increase side of the auxiliary compressor flow rate by a predetermined margin flow rate is set as the second switching operation point.
  • the direction of the shift is the increase direction of the auxiliary compressor flow rate.
  • the second switching operation point may be a point that is shifted from the surge point (point C) by a predetermined margin flow rate toward the increase side of the sub compressor flow rate and shifted by a predetermined margin pressure toward the decrease side of the sub compressor pressure. .
  • the first switching rotational speed and the second switching rotational speed are determined based on the main compressor outlet pressure instead of the engine load, and the sub supercharger rotational speed is equal to or higher than the first switching rotational speed.
  • closing of the air discharge valve 43 is started, and when the rotation speed is equal to or higher than the second switching rotational speed, opening of the sub compressor outlet valve 42 is started.
  • the timing for closing the air discharge valve 43 and the timing for opening the sub compressor outlet valve 42 are not affected by the engine load, and thus are effective when the operation number increase control is performed in a situation where the engine load varies.
  • control device 60 when the engine load is not used not only in the operation number increase control but also in the operation number decrease control, such as the operation number decrease control according to the first embodiment, the control device 60, the engine tachometer 11 and the fuel in FIG. The connection with the supply device 12 can be omitted.
  • the engine systems 100 and 200 include one main supercharger 20 and one sub-supercharger 30
  • the engine systems 100 and 200 include a plurality of main superchargers 20.
  • a plurality of sub-superchargers 30 may be provided.
  • the engine system 100 may include one main supercharger 20 and two auxiliary superchargers 30 as shown in FIG.
  • the engine system of the present invention it is possible to prevent the efficiency of the engine body from being lowered when changing the number of operating superchargers while preventing surges from occurring in the supercharger. . Therefore, it is useful in the technical field of an engine system that changes the number of superchargers operated in accordance with the operating conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

In this engine system, from a state in which a main supercharger and an auxiliary supercharger operate, the auxiliary turbine inlet valve and the auxiliary compressor outlet valve are closed and the auxiliary supercharger stopped while keeping the main supercharger operating; when reducing the number of superchargers operating, a stop-time reference pressure having a prescribed surge margin is determined on the basis of the rotation speed of the auxiliary supercharger, and a blowoff valve is opened when the outlet pressure of the auxiliary compressor is higher than the stop-time reference pressure and the blowoff valve is closed when the outlet pressure of the auxiliary compressor is lower than the stop-time reference pressure.

Description

エンジンシステムEngine system
 本発明は、複数台の過給機を備え、運転状況に応じて過給機の運転台数を変えることができるエンジンシステムに関する。 The present invention relates to an engine system that includes a plurality of superchargers and that can change the number of superchargers to be operated in accordance with operating conditions.
 一般的に過給機を備えたエンジンシステムでは、エンジン本体が高負荷のときに効率のよい運転ができるように過給機が選定される。ただし、燃費等の観点から、エンジン本体を中負荷及び低負荷で運転することが多いエンジンシステムでは、主過給機と副過給機の2台の過給機を備える場合もある。このエンジンシステムでは、エンジン本体を高負荷で運転する場合には主過給機と副過給機の両方を運転させ、エンジン本体を中負荷及び低負荷で運転する場合には主過給機のみを運転させる。このような構成とすれば、エンジン本体を高負荷で運転する場合のみならず、中負荷及び低負荷で運転する場合も効率のよい運転が可能である。 Generally, in an engine system equipped with a supercharger, the supercharger is selected so that efficient operation can be performed when the engine body is heavily loaded. However, an engine system that often operates the engine main body at a medium load and a low load from the viewpoint of fuel consumption or the like may include two superchargers, a main supercharger and a subsupercharger. In this engine system, when the engine body is operated at a high load, both the main supercharger and the sub-supercharger are operated, and when the engine body is operated at a medium load and a low load, only the main turbocharger is operated. Drive. With such a configuration, efficient operation is possible not only when the engine body is operated at a high load, but also when the engine body is operated at a medium load and a low load.
 また、排気ガスをエンジン本体に再循環させるEGRユニットを備えたエンジンシステムの場合は、EGR運転時には通常運転時よりも過給機に供給する排気ガスの量が減少するため、EGR率とエンジン負荷に応じて過給機の運転台数を変えれば過給機のサージを防ぎつつ、効率のよい運転が可能である。 Also, in the case of an engine system equipped with an EGR unit that recirculates exhaust gas to the engine body, the amount of exhaust gas supplied to the turbocharger is smaller during EGR operation than during normal operation. If the number of operating superchargers is changed according to the above, efficient operation is possible while preventing surges in the supercharger.
 エンジンの運転を継続しながら過給機の運転台数を減らすためには、主過給機を運転させたまま副過給機を停止させなければならない。この場合、主過給機で昇圧した外気が副過給機に逆流してしまうことから、過給機の運転台数を変えるエンジンシステムでは、副過給機のコンプレッサの出口側に弁が設けられている。この弁を閉じれば、逆流を防止することができる。ただし、この逆流防止用の弁を閉じたまま副過給機の運転が続くと、副過給機のコンプレッサの背圧が高くなることから、サージが発生してしまう。そこで、このようなエンジンシステムでは、副過給機のコンプレッサと逆流防止用の弁の間の空気を外部へ導く放風配管と、この放風配管に設けられた放風弁を備えている。そして、逆流防止用の弁を閉じる前から放風弁を開放することで、サージの発生を回避している(特許文献1乃至3参照)。 In order to reduce the number of turbochargers operating while continuing engine operation, the secondary turbocharger must be stopped while the main turbocharger is operating. In this case, since the outside air boosted by the main supercharger flows back to the subsupercharger, an engine system that changes the number of operating superchargers has a valve on the outlet side of the compressor of the subsupercharger. ing. If this valve is closed, backflow can be prevented. However, if the operation of the sub-supercharger continues with the backflow prevention valve closed, a surge occurs because the back pressure of the compressor of the sub-supercharger increases. In view of this, such an engine system includes an air discharge pipe that guides air between the compressor of the sub-supercharger and the backflow prevention valve to the outside, and an air discharge valve provided in the air discharge pipe. And the generation | occurrence | production of a surge is avoided by opening a vent valve before closing the valve for backflow prevention (refer patent documents 1 thru | or 3).
 なお、特許文献2では、副排気タービン過給機のコンプレッサ部の出口圧力が、給気マニホールドの圧力以上のときに開状態となる逆止弁を備えた舶用ディーゼル機関が開示されている。特許文献2に記載の発明では、逆流現象を防止することはできるが、サージが発生するような条件であるか否かの判断は行っていない。また、特許文献3に記載の発明は、特許文献2に記載の発明において逆止弁を制御弁に代えたものである。この制御弁は、コンプレッサ部の出口圧力と給気マニホールドの圧力との差圧が所定値以下になったときに開状態となる。特許文献3に記載の発明においても、サージが発生するような条件であるか否かの判断は行っていない。いずれも配管内バルブ前後の差圧という副排気タービン過給機のサージ発生場所とは異なる場所の配管内状態数との因果関係から間接的に制御を掛けているため制御に限界がある。 Note that Patent Document 2 discloses a marine diesel engine provided with a check valve that is opened when the outlet pressure of the compressor section of the auxiliary exhaust turbine supercharger is equal to or higher than the pressure of the supply manifold. In the invention described in Patent Document 2, the backflow phenomenon can be prevented, but it is not determined whether or not the condition is such that a surge occurs. The invention described in Patent Document 3 is obtained by replacing the check valve with a control valve in the invention described in Patent Document 2. This control valve is opened when the differential pressure between the outlet pressure of the compressor section and the pressure of the air supply manifold becomes a predetermined value or less. Even in the invention described in Patent Document 3, it is not determined whether the conditions are such that a surge occurs. In either case, the control is limited because of the causal relationship between the differential pressure before and after the valve in the pipe and the number of states in the pipe at a location different from the surge occurrence location of the sub-exhaust turbine turbocharger.
特開昭60-166716号公報JP-A-60-166716 特開2009-167799号公報JP 2009-167799 A 特開2011-47393号公報JP 2011-47393 A
 このように、従来のエンジンシステムでは、サージを確実に回避するために、早期に放風弁を開放し、その後に逆流防止用の弁を閉じている。そのため、エンジン本体へ供給できるはずの空気まで外部へ排出してしまい、その結果、エンジン本体へ供給する掃気ガスの圧力(掃気圧)が低下して、エンジン本体を効率よく運転することができない。 As described above, in the conventional engine system, in order to surely avoid a surge, the ventilating valve is opened early, and then the backflow prevention valve is closed. Therefore, the air that should be able to be supplied to the engine body is discharged to the outside. As a result, the pressure (scavenging pressure) of the scavenging gas supplied to the engine body is reduced, and the engine body cannot be operated efficiently.
 本発明は、以上のような事情に鑑みてなされたものであって、過給機の運転台数を変更する際に、過給機にサージが発生するのを防止しつつ、エンジン本体の効率が低下するのを抑えることができるエンジンシステムを提供することを目的としている。 The present invention has been made in view of the circumstances as described above. When changing the number of operating superchargers, the efficiency of the engine main body is improved while preventing a surge from occurring in the supercharger. It aims at providing the engine system which can suppress that it falls.
 本発明のある形態に係るエンジンシステムは、エンジン本体と、主タービン及び主コンプレッサを有する少なくとも一台の主過給機と、前記エンジン本体に対して前記主過給機と並列に配置され、副タービン及び副コンプレッサを有する少なくとも一台の副過給機と、前記副タービンの入口側に設けられた副タービン入口弁と、前記副コンプレッサの出口側に設けられた副コンプレッサ出口弁と、前記副コンプレッサで昇圧された外気を前記副コンプレッサ出口弁の上流から外部へ導く放風配管と、前記放風配管に設けられた放風弁と、制御装置と、を備え、前記制御装置は、前記主過給機及び前記副過給機が運転した状態から、前記主過給機を運転させたまま前記副タービン入口弁及び前記副コンプレッサ出口弁を閉じて前記副過給機を停止させ、過給機の運転台数を減らす際、副過給機回転数に基づいて所定のサージマージンを有する停止時基準圧を決定し、副コンプレッサ出口圧が前記停止時基準圧よりも高いときに前記放風弁の開度を増加させ、前記副コンプレッサ出口圧が前記停止時基準圧よりも低いときに前記放風弁の開度を減少させるように構成されている。 An engine system according to an aspect of the present invention includes an engine main body, at least one main supercharger having a main turbine and a main compressor, and the engine main body arranged in parallel with the main supercharger. At least one sub-supercharger having a turbine and a sub-compressor; a sub-turbine inlet valve provided on the inlet side of the sub-turbine; a sub-compressor outlet valve provided on the outlet side of the sub-compressor; An air discharge pipe for guiding outside air boosted by a compressor from the upstream side of the sub-compressor outlet valve to the outside, an air discharge valve provided in the air discharge pipe, and a control device. From the state in which the supercharger and the subsupercharger are operated, the subturbine inlet valve and the subcompressor outlet valve are closed while the main supercharger is operated, and the subsupercharger is operated. When stopping and reducing the number of operating turbochargers, determine the reference pressure at stop with a predetermined surge margin based on the sub-supercharger rotation speed, and the sub-compressor outlet pressure is higher than the reference pressure at stop The opening degree of the discharge valve is increased, and the opening degree of the discharge valve is decreased when the sub compressor outlet pressure is lower than the stop-time reference pressure.
 かかる構成によれば、放風弁は副コンプレッサ出口圧が停止時基準圧よりも低いときには閉止される。つまり、サージが発生する可能性が低いときは、放風弁を閉じて副コンプレッサで昇圧した外気をエンジン本体に供給する。これにより、副コンプレッサで昇圧された空気が無駄に外部へ放出されるのが抑えられ、エンジン本体の掃気圧の低下を抑えることができる。その結果、過給機の運転台数を減らす際に、エンジン本体の効率が低下するのを抑制することができる。 According to such a configuration, the discharge valve is closed when the sub compressor outlet pressure is lower than the stop-time reference pressure. That is, when the possibility of occurrence of a surge is low, the outside air boosted by the sub-compressor with the vent valve closed is supplied to the engine body. As a result, it is possible to prevent the air boosted by the sub-compressor from being unnecessarily discharged to the outside, and to suppress a decrease in scavenging air pressure of the engine body. As a result, when the number of operating superchargers is reduced, it is possible to suppress a decrease in the efficiency of the engine body.
 また、上記のエンジンシステムにおいて、前記制御装置は、前記放風弁の開度を増加させる際、前記副コンプレッサ出口圧と前記停止時基準圧との差が小さいほど前記放風弁の開度の増加量を小さくするように構成されていてもよい。 In the engine system, when the opening degree of the air discharge valve is increased, the controller increases the opening degree of the air discharge valve as the difference between the sub compressor outlet pressure and the stop-time reference pressure is smaller. The increase amount may be reduced.
 かかる構成によれば、副コンプレッサの運転点がサージ領域の近くにない場合には放風弁の開度の増加量は小さくなる。つまり、副コンプレッサにサージが発生する可能性が高くない場合には、副コンプレッサで昇圧した外気はあまり外部に放出されない。これにより、より一層、副コンプレッサにサージが発生するのを抑えつつ、掃気圧を高めてエンジン本体を効率よく運転することができる。 According to such a configuration, when the operating point of the sub-compressor is not near the surge region, the increase amount of the opening degree of the discharge valve is small. That is, when the possibility that a surge occurs in the sub-compressor is not high, the outside air boosted by the sub-compressor is not released to the outside. As a result, the engine body can be efficiently operated by increasing the scavenging air pressure while further suppressing the occurrence of a surge in the auxiliary compressor.
 また、本発明のある形態に係るエンジンシステムは、エンジン本体と、主タービン及び主コンプレッサを有する少なくとも一台の主過給機と、前記エンジン本体に対して前記主過給機と並列に配置され、副タービン及び副コンプレッサを有する少なくとも一台の副過給機と、前記副タービンの入口側に設けられた副タービン入口弁と、前記副コンプレッサの出口側に設けられた副コンプレッサ出口弁と、前記副コンプレッサで昇圧された外気を前記副コンプレッサ出口弁の上流から外部へ導く放風配管と、前記放風配管に設けられた放風弁と、制御装置と、を備え、前記制御装置は、前記主過給機が運転し前記副過給機が停止した状態から、前記主過給機を運転させたまま前記副タービン入口弁及び前記副コンプレッサ出口弁を開いて前記副過給機を運転させ、過給機の運転台数を増やす際、副過給機回転数に基づいて所定のサージマージンを有する運転時基準圧を決定し、副コンプレッサ出口圧が前記運転時基準圧よりも高いときに前記放風弁の開度を増加させ、前記副コンプレッサ出口圧が前記運転時基準圧よりも低いときに前記放風弁の開度を減少させるように構成されている。 An engine system according to an embodiment of the present invention is arranged in parallel with the main supercharger with respect to the engine body, at least one main supercharger having a main turbine and a main compressor, and the engine body. At least one sub-supercharger having a sub-turbine and a sub-compressor; a sub-turbine inlet valve provided on the inlet side of the sub-turbine; and a sub-compressor outlet valve provided on the outlet side of the sub-compressor; A ventilating pipe for guiding outside air boosted by the subcompressor from the upstream side of the subcompressor outlet valve to the outside, a ventilating valve provided in the ventilating pipe, and a control device, the control device, From the state where the main supercharger is operated and the subsupercharger is stopped, the subturbine inlet valve and the subcompressor outlet valve are opened while the main supercharger is operated. When operating the turbocharger and increasing the number of turbochargers to be operated, an operating reference pressure having a predetermined surge margin is determined based on the sub-supercharger speed, and the sub-compressor outlet pressure is set to the operating reference pressure. The opening degree of the discharge valve is increased when the pressure is higher than that, and the opening degree of the discharge valve is decreased when the sub-compressor outlet pressure is lower than the operating reference pressure.
 かかる構成によれば、副コンプレッサの出口圧が運転時基準圧よりも低いときには放風弁の開度が減少する。つまり、サージが発生する可能性が低いときは、放風弁の開度を小さくして副コンプレッサで昇圧した空気をエンジン本体に多く供給する。これにより、副コンプレッサで昇圧された空気が無駄に外部へ放出されるのが抑えられ、エンジン本体の掃気圧の低下を抑えることができる。その結果、過給機の運転台数を増やす際に、エンジン本体の効率が低下するのを抑制することができる。 According to such a configuration, when the outlet pressure of the sub compressor is lower than the reference pressure during operation, the opening degree of the air discharge valve decreases. That is, when the possibility of occurrence of a surge is low, a large amount of air boosted by the auxiliary compressor is supplied to the engine body by reducing the opening degree of the discharge valve. As a result, it is possible to prevent the air boosted by the sub-compressor from being unnecessarily discharged to the outside, and to suppress a decrease in scavenging air pressure of the engine body. As a result, when increasing the number of operating superchargers, it is possible to suppress a decrease in the efficiency of the engine body.
 また、上記のエンジンシステムにおいて、前記制御装置は、前記放風弁の開度を増加させる際、前記副コンプレッサの出口圧と前記運転時基準圧との差が小さいほど前記放風弁の開度の増加量を小さくするように構成されていてもよい。 In the engine system, when the control device increases the opening degree of the air discharge valve, the smaller the difference between the outlet pressure of the sub-compressor and the reference pressure during operation, the lower the opening degree of the air discharge valve. The increase amount may be reduced.
 かかる構成によれば、副コンプレッサの運転点がサージ領域の近くにない場合には放風弁の開度の増加量は小さくなる。つまり、副コンプレッサにサージが発生する可能性が高くない場合には、副コンプレッサで昇圧した外気はあまり外部に放出されない。これにより、より一層、副コンプレッサにサージが発生するのを抑えつつ、掃気圧を高めてエンジン本体を効率よく運転することができる。 According to such a configuration, when the operating point of the sub-compressor is not near the surge region, the increase amount of the opening degree of the discharge valve is small. That is, when the possibility that a surge occurs in the sub-compressor is not high, the outside air boosted by the sub-compressor is not released to the outside. As a result, the engine body can be efficiently operated by increasing the scavenging air pressure while further suppressing the occurrence of a surge in the auxiliary compressor.
 また、上記のエンジンシステムにおいて、前記制御装置は、過給機の運転台数を増やす際、前記副タービン入口弁を開放し始めた後、副過給機回転数が所定の切替回転数以上となったときに前記副コンプレッサ出口弁の開放を開始し、前記切替回転数はエンジン負荷に応じて決定するように構成されていてもよい。切替回転数は、副コンプレッサの出口圧と掃気圧を比較して決定するのではなく、副コンプレッサ出口弁を開く直前から切替完了後までの、副コンプレッサの動作曲線(副コンプレッサ流量と副コンプレッサ出口圧の関係)を予測し、副コンプレッサがサージしないように考慮し決定される。 In the engine system described above, when the control device increases the number of operating superchargers, after starting to open the auxiliary turbine inlet valve, the auxiliary supercharger rotational speed becomes equal to or higher than a predetermined switching rotational speed. The sub-compressor outlet valve starts to be opened, and the switching speed is determined according to the engine load. The switching speed is not determined by comparing the outlet pressure and scavenging pressure of the auxiliary compressor, but the operating curve of the auxiliary compressor (subcompressor flow rate and auxiliary compressor outlet) from just before opening the auxiliary compressor outlet valve to after completion of switching. Pressure relationship) and is determined taking into account that the secondary compressor will not surge.
 かかる構成によれば、過給機の運転台数を増やす際に、副過給機回転数が切替回転数に達するまで副コンプレッサ出口弁を閉じておくため、主コンプレッサで昇圧した外気を副コンプレッサに逆流することなく、掃気としてエンジン本体に供給することができる。そのため、エンジン本体を効率よく運転することができる。また、切替回転数はエンジン負荷に応じて決定されるため、サージを回避しつつ、エンジン本体のより効率のよい運転が可能である。 According to this configuration, when the number of turbochargers to be operated is increased, the sub compressor outlet valve is closed until the sub supercharger rotation speed reaches the switching rotation speed, so that the outside air boosted by the main compressor is supplied to the sub compressor. It can be supplied to the engine body as scavenging gas without backflow. Therefore, the engine body can be operated efficiently. Further, since the switching speed is determined according to the engine load, the engine body can be operated more efficiently while avoiding a surge.
 また、本発明の他の形態に係るエンジンシステムは、エンジン本体と、主タービン及び主コンプレッサを有する少なくとも一台の主過給機と、前記エンジン本体に対して前記主過給機と並列に配置され、副タービン及び副コンプレッサを有する少なくとも一台の副過給機と、前記副タービンの入口側に設けられた副タービン入口弁と、前記副コンプレッサの出口側に設けられた副コンプレッサ出口弁と、前記副コンプレッサで昇圧された外気を前記副コンプレッサ出口弁の上流から外部へ導く放風配管と、前記放風配管に設けられた放風弁と、制御装置と、を備え、前記制御装置は、前記主過給機が運転し前記副過給機が停止した状態から、前記主過給機を運転させたまま前記副タービン入口弁及び前記副コンプレッサ出口弁を開いて前記副過給機を運転させ、過給機の運転台数を増やす際、前記放風弁を所定の開度で開いた状態で前記副タービン入口弁の開放を開始した後、副過給機回転数が所定の第1切替回転数以上となったときに前記放風弁の閉止を開始し、副過給機回転数が前記第1切替回転数よりも大きい第2切替回転数以上となったときに前記副コンプレッサ出口弁の開放を開始するように構成されている。 An engine system according to another embodiment of the present invention includes an engine main body, at least one main supercharger having a main turbine and a main compressor, and the main supercharger arranged in parallel to the engine main body. At least one sub-supercharger having a sub-turbine and a sub-compressor, a sub-turbine inlet valve provided on the inlet side of the sub-turbine, and a sub-compressor outlet valve provided on the outlet side of the sub-compressor An air discharge pipe for guiding outside air boosted by the auxiliary compressor from the upstream side of the auxiliary compressor outlet valve to the outside, an air discharge valve provided in the air discharge pipe, and a control device, the control device comprising: From the state where the main supercharger is operated and the subsupercharger is stopped, the subturbine inlet valve and the sub compressor outlet valve are opened while the main supercharger is operated. When operating the supercharger and increasing the number of superchargers to be operated, after opening the auxiliary turbine inlet valve with the discharge valve opened at a predetermined opening, the auxiliary turbocharger rotational speed is increased. When the discharge valve starts to be closed when the predetermined first switching rotational speed is reached, and when the sub-supercharger rotational speed becomes the second switching rotational speed that is greater than the first switching rotational speed The auxiliary compressor outlet valve is configured to start opening.
 かかる構成によれば、放風弁がある程度閉まった状態で副コンプレッサ出口弁が開き始めるため、副コンプレッサで昇圧した外気が放風弁を介して外部に放出されるのを抑えることができる。また、主コンプレッサで昇圧した外気が副コンプレッサへ逆流するのを抑えることができる。よって、エンジン本体の効率が低下するのを抑えることができる。 According to such a configuration, since the auxiliary compressor outlet valve starts to open with the air discharge valve closed to some extent, it is possible to suppress the release of outside air boosted by the auxiliary compressor to the outside through the air discharge valve. Further, it is possible to suppress the outside air boosted by the main compressor from flowing back to the sub compressor. Therefore, it can suppress that the efficiency of an engine main body falls.
 また、上記のエンジンシステムにおいて、前記制御装置は、エンジン負荷に基づいて所定のサージマージンを有する前記副コンプレッサの第1切替動作点(副コンプレッサ流量と副コンプレッサ出口圧)を決定し、前記第1切替動作点を通過する圧力曲線(副過給機の各回転数における副コンプレッサ流量と副コンプレッサ出口圧の関係)の副過給機回転数を前記第1切替回転数とするように構成されていてもよい。第1切替回転数は、副コンプレッサの出口圧と掃気圧を比較して決定するのではなく、エンジン負荷に基づいて放風弁を閉じ始める直前から副コンプレッサ出口弁を開き始める直前までの、副コンプレッサの動作曲線を予測し、副コンプレッサがサージしないように考慮し決定される。 In the engine system, the control device determines a first switching operation point (sub compressor flow rate and sub compressor outlet pressure) of the sub compressor having a predetermined surge margin based on an engine load, and the first compressor The sub-supercharger rotation speed of the pressure curve passing through the switching operation point (the relationship between the sub-compressor flow rate and the sub-compressor outlet pressure at each rotation speed of the sub-supercharger) is set as the first switching rotation speed. May be. The first switching speed is not determined by comparing the outlet pressure of the auxiliary compressor and the scavenging pressure, but from the time immediately before starting the closing of the discharge valve based on the engine load to the time immediately before starting the opening of the auxiliary compressor outlet valve. The compressor operating curve is predicted and determined so that the secondary compressor does not surge.
 かかる構成によれば、エンジン負荷に基づいて第1切替動作点を決定し、さらにこの第1切替動作点を用いて第1切替回転数を決定することになる。そのため、副コンプレッサ出口圧等の圧力を測定することなく放風弁の開閉を制御することができる。よって、他の条件によっては、副コンプレッサ出口圧等の圧力を測定する圧力計が不要となる。 According to this configuration, the first switching operating point is determined based on the engine load, and the first switching rotational speed is determined using the first switching operating point. Therefore, it is possible to control the opening and closing of the air discharge valve without measuring the pressure such as the sub compressor outlet pressure. Therefore, depending on other conditions, a pressure gauge for measuring the pressure such as the sub compressor outlet pressure becomes unnecessary.
 また、上記のエンジンシステムにおいて、前記制御装置は、エンジン負荷に基づいて所定のサージマージンを有する前記副コンプレッサの第2切替動作点を決定し、前記第2切替動作点を通過する圧力曲線の副過給機回転数を前記第2切替回転数とするように構成されてもよい。第2切替回転数は、副コンプレッサの出口圧と掃気圧を比較して決定するのではなく、エンジン負荷に基づいて副コンプレッサ出口弁を開き始める直前から開き終わる(切替完了)までの、副コンプレッサの動作曲線を予測し、副コンプレッサがサージしないように考慮し決定される。 In the engine system, the control device determines a second switching operation point of the sub-compressor having a predetermined surge margin based on an engine load, and outputs a sub-pressure curve passing through the second switching operation point. The turbocharger rotational speed may be configured to be the second switching rotational speed. The second switching speed is not determined by comparing the outlet pressure and scavenging air pressure of the auxiliary compressor, but from immediately before the opening of the auxiliary compressor outlet valve based on the engine load to the end of the opening (switching completion). The operation curve is predicted and determined so that the secondary compressor does not surge.
 かかる構成によれば、エンジン負荷に基づいて第2切替動作点を決定し、さらにこの第2切替動作点を用いて第2切替回転数を決定することになる。そのため、副コンプレッサ出口圧等の圧力を測定することなく副コンプレッサ出口弁を開放し始めるタイミングを決定することができる。よって、他の条件によっては、副コンプレッサ出口圧等の圧力を測定する圧力計が不要となる。 According to such a configuration, the second switching operation point is determined based on the engine load, and further, the second switching rotation speed is determined using the second switching operation point. Therefore, it is possible to determine the timing at which the auxiliary compressor outlet valve starts to be opened without measuring the pressure such as the auxiliary compressor outlet pressure. Therefore, depending on other conditions, a pressure gauge for measuring the pressure such as the sub compressor outlet pressure becomes unnecessary.
 また、上記のエンジンシステムにおいて、前記制御装置は、過給機の運転台数を増やす際、主コンプレッサ出口圧を取得し、副過給機回転数が前記第2切替回転数以上であり、かつ、取得した主コンプレッサ出口圧が前記第2切替動作点における副コンプレッサ出口圧よりも小さいときに副コンプレッサ出口弁を開き始めるように構成されていてもよい。 Further, in the engine system, the control device acquires a main compressor outlet pressure when increasing the number of operating superchargers, a sub-supercharger rotational speed is equal to or higher than the second switching rotational speed, and The auxiliary compressor outlet valve may be configured to start to open when the acquired main compressor outlet pressure is smaller than the auxiliary compressor outlet pressure at the second switching operation point.
 エンジン負荷に基づいて副コンプレッサ出口弁を開放するタイミングを決定する場合、エンジン負荷が急激に変動する状況では主コンプレッサ出口圧が想定した圧力より高い場合があり、そのとき主コンプレッサ出口弁を開放すると、主コンプレッサで昇圧した外気が副コンプレッサへ逆流するおそれがある。これに対し、上記の構成では、実際の主コンプレッサ出口圧を取得して、逆流が発生するおそれがある場合には副コンプレッサ出口圧弁を開放しないため、副コンプレッサに逆流が生じるのを防ぐことができる。 When determining the timing for opening the sub compressor outlet valve based on the engine load, the main compressor outlet pressure may be higher than the assumed pressure in situations where the engine load fluctuates rapidly. There is a risk that the outside air boosted by the main compressor will flow back to the sub compressor. On the other hand, in the above configuration, when the actual main compressor outlet pressure is acquired and there is a possibility of backflow, the subcompressor outlet pressure valve is not opened, so that backflow is prevented from occurring in the subcompressor. it can.
 また、上記のエンジンシステムにおいて、前記制御装置は、取得した主コンプレッサ出口圧に等しい値を第2切替圧とし、当該第2切替圧においてサージが発生する副コンプレッサ流量に所定流量を加えた値を第2切替流量とし、前記第2切替圧でかつ前記第2切替流量である動作点を第2切替動作点とし、前記第2切替動作点を通過する圧力曲線の副過給機回転数を前記第2切替回転数とするように構成されていてもよい。 In the engine system, the control device sets a value equal to the acquired main compressor outlet pressure as a second switching pressure, and sets a value obtained by adding a predetermined flow rate to a sub compressor flow rate at which a surge occurs at the second switching pressure. The second switching flow rate, the operating point at the second switching pressure and the second switching flow rate as the second switching operating point, and the sub-supercharger rotation speed of the pressure curve passing through the second switching operating point is the You may be comprised so that it may be set as 2nd switching rotation speed.
 かかる構成によれば、第2切替回転数は、エンジン負荷を用いず主コンプレッサ出口圧に基づいて決定されるため、エンジン負荷が急激に変動する状況で副過給機の台数を増加したとしても、副コンプレッサに逆流が生じるのを防ぐことができる。 According to such a configuration, since the second switching speed is determined based on the main compressor outlet pressure without using the engine load, even if the number of sub-superchargers is increased in a situation where the engine load fluctuates rapidly, Thus, backflow can be prevented from occurring in the auxiliary compressor.
 また、上記のエンジンシステムにおいて、前記制御装置は、取得した主コンプレッサ出口圧に基づいてエンジン負荷を推定し、推定したエンジン負荷に基づいて所定のサージマージンを有する前記副コンプレッサの第1切替動作点を決定し、前記第1切替動作点を通過する圧力曲線の副過給機回転数を前記第1切替回転数とするように構成されていてもよい。 In the engine system, the control device estimates an engine load based on the acquired main compressor outlet pressure, and the first switching operation point of the sub compressor having a predetermined surge margin based on the estimated engine load. And the sub-supercharger rotation speed of the pressure curve passing through the first switching operation point may be set as the first switching rotation speed.
 かかる構成によれば、主コンプレッサ出口圧に基づいて第1切替回転数を決定することができるため、第2切替回転数のみならず第1切替回転数を決定する際にもエンジン負荷を直接取得する必要がない。つまり、運転台数増加制御においてエンジン負荷の取得が省略できることから、運転台数減少制御においてもエンジン負荷の取得を省略できる場合には、エンジンシステムを簡略化することができる。 According to such a configuration, since the first switching speed can be determined based on the main compressor outlet pressure, the engine load is directly acquired not only when determining the first switching speed but also the second switching speed. There is no need to do. That is, since the acquisition of the engine load can be omitted in the operation number increase control, the engine system can be simplified if the acquisition of the engine load can be omitted also in the operation number decrease control.
 また、上記のエンジンシステムにおいて、前記制御装置は、前記放風弁を閉じる際、副過給機回転数と前記第1切替回転数との差が小さくなるほど前記放風弁の開度の減少量を小さくするように構成されていてもよい。 In the engine system, when the air discharge valve is closed, the controller decreases the opening of the air discharge valve as the difference between the sub-supercharger rotation speed and the first switching rotation speed decreases. May be configured to be small.
 かかる構成によれば、副コンプレッサにサージが発生する可能性が低い場合には、素早く放風弁を閉じることができるため、エンジン本体の効率の低下をさらに抑えることができる。 According to such a configuration, when the possibility of occurrence of a surge in the auxiliary compressor is low, it is possible to quickly close the air discharge valve, so that it is possible to further suppress a decrease in the efficiency of the engine body.
 以上のとおり、上記のエンジンシステムによれば、過給機にサージが発生するのを防止しつつ、過給機の運転台数を変更する際に、エンジン本体の効率が低下するのを抑制することができる。 As described above, according to the engine system described above, it is possible to prevent the efficiency of the engine body from being reduced when changing the number of operating superchargers while preventing surges from occurring in the supercharger. Can do.
図1は、第1実施形態に係るエンジンシステム全体の概略構成図である。FIG. 1 is a schematic configuration diagram of the entire engine system according to the first embodiment. 図2は、エンジンシステムの制御系のブロック図である。FIG. 2 is a block diagram of a control system of the engine system. 図3は、過給機運転台数削減制御方法を示したフロー図である。FIG. 3 is a flowchart showing a supercharger operation number reduction control method. 図4は、過給機運転台数削減制御時における各弁の開度のタイムチャートである。FIG. 4 is a time chart of the opening degree of each valve during supercharger operation number reduction control. 図5は、サージラインと停止時基準圧との関係を示したグラフである。FIG. 5 is a graph showing the relationship between the surge line and the stop-time reference pressure. 図6は、副コンプレッサ出口圧及び掃気圧のタイムチャートである。FIG. 6 is a time chart of the sub compressor outlet pressure and scavenging pressure. 図7は、第1実施形態の過給機運転台数増加制御の方法を示したフロー図である。FIG. 7 is a flowchart showing a method for increasing the number of operating superchargers according to the first embodiment. 図8は、第1実施形態の過給機運転台数増加制御時における各弁の開度のタイムチャートである。FIG. 8 is a time chart of the opening degree of each valve during the supercharger operation number increase control of the first embodiment. 図9は、エンジン負荷と切替回転数の関係を示したグラフである。FIG. 9 is a graph showing the relationship between the engine load and the switching speed. 図10は、図1の変形例に係るエンジンシステムの全体概略図である。FIG. 10 is an overall schematic diagram of an engine system according to a modification of FIG. 図11は、第2実施形態の過給機運転台数増加制御の方法を示したフロー図である。FIG. 11 is a flowchart showing a method for increasing the number of operating superchargers according to the second embodiment. 図12は、第2実施形態の過給機運転台数増加制御時における各弁の開度及び副過給機の回転数のタイムチャートである。FIG. 12 is a time chart of the opening degree of each valve and the number of rotations of the sub-supercharger during the supercharger operation number increase control of the second embodiment. 図13は、エンジン負荷と第1切替圧及び第2切替圧との関係を示したグラフである。FIG. 13 is a graph showing the relationship between the engine load, the first switching pressure, and the second switching pressure. 図14は、エンジン負荷と第1切替流量及び第2切替流量との関係を示したグラフである。FIG. 14 is a graph showing the relationship between the engine load, the first switching flow rate, and the second switching flow rate. 図15は、第2実施形態の第1切替回転数及び第2切替回転数を決定する方法を説明する図である。FIG. 15 is a diagram illustrating a method for determining the first switching rotation speed and the second switching rotation speed according to the second embodiment. 図16は、第3実施形態に係るエンジンシステム全体の概略構成図である。FIG. 16 is a schematic configuration diagram of the entire engine system according to the third embodiment. 図17は、第3実施形態の過給機運転台数増加制御の方法を示したフロー図である。FIG. 17 is a flowchart showing a method for increasing the number of operating superchargers according to the third embodiment. 図18は、第4実施形態の過給機運転台数増加制御の方法を示したフロー図である。FIG. 18 is a flowchart showing a method for increasing the number of operating superchargers according to the fourth embodiment. 図19は、主コンプレッサ出口圧とエンジン負荷の関係を示したグラフである。FIG. 19 is a graph showing the relationship between the main compressor outlet pressure and the engine load. 図20は、第4実施形態の第2切替回転数を決定する方法を説明する図である。FIG. 20 is a diagram illustrating a method for determining the second switching rotation speed according to the fourth embodiment. 図21は、図1の他の変形例に係るエンジンシステムの全体概略図である。FIG. 21 is an overall schematic diagram of an engine system according to another modification of FIG.
 以下、本発明の実施形態について図を参照しながら説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Below, the same code | symbol is attached | subjected to the element which is the same or it corresponds through all the drawings, and the overlapping description is abbreviate | omitted.
  (第1実施形態)
はじめに第1実施形態について説明する。
(First embodiment)
First, the first embodiment will be described.
 <エンジンシステムの全体構成>
 まず、本実施形態に係るエンジンシステム100の全体構成について説明する。図1は、エンジンシステム100の全体の概略構成図である。図1において、太く描いた破線は排気ガスの流れを示しており、太く描いた実線は掃気ガスの流れを示している。図1に示すように、エンジンシステム100は、エンジン本体10と、主過給機20と、副過給機30と、副タービン入口弁41と、副コンプレッサ出口弁42と、放風弁43と、を備えている。
<Overall configuration of engine system>
First, the overall configuration of the engine system 100 according to the present embodiment will be described. FIG. 1 is a schematic configuration diagram of the entire engine system 100. In FIG. 1, a thick broken line indicates the flow of exhaust gas, and a thick solid line indicates the flow of scavenging gas. As shown in FIG. 1, the engine system 100 includes an engine main body 10, a main supercharger 20, a sub supercharger 30, a sub turbine inlet valve 41, a sub compressor outlet valve 42, and an air discharge valve 43. It is equipped with.
 本実施形態におけるエンジン本体10は、船舶の推進用主機であり、大型の2ストロークディーゼルエンジンである。エンジン本体10には、エンジン本体10の回転数(エンジン回転数)を測定するエンジン回転計11(図2参照)が設けられている。また、エンジン本体10は、燃料の噴射量を調整する燃料供給装置12(図2参照)を有している。なお、エンジン本体10は、4ストロークエンジンであってもよく、ガスエンジンやガソリンエンジンであってもよい。以下の説明における「掃気」は、4ストロークエンジンの場合には「給気」と読み替えられる。 The engine body 10 in the present embodiment is a main propulsion unit for a ship, and is a large two-stroke diesel engine. The engine body 10 is provided with an engine tachometer 11 (see FIG. 2) that measures the number of rotations of the engine body 10 (engine speed). The engine body 10 also includes a fuel supply device 12 (see FIG. 2) that adjusts the fuel injection amount. The engine body 10 may be a 4-stroke engine, a gas engine, or a gasoline engine. In the following description, “scavenging” is read as “supplying air” in the case of a 4-stroke engine.
 主過給機20は、エンジン本体10の運転状態にかかわらず常に運転する過給機である。エンジン本体10から排出された排気ガスは主排気配管21を介して主タービン22に供給される。主タービン22は供給された排気ガスのエネルギにより回転する。主タービン22と主コンプレッサ23は連結シャフト24により連結されており、主タービン22の回転に伴って主コンプレッサ23も回転する。主コンプレッサ23が回転すると、外部から取り込んだ空気(外気)が昇圧され、昇圧された外気は掃気ガスとして主掃気配管25を介してエンジン本体10に供給される。 The main supercharger 20 is a supercharger that always operates regardless of the operating state of the engine body 10. Exhaust gas discharged from the engine body 10 is supplied to the main turbine 22 via the main exhaust pipe 21. The main turbine 22 is rotated by the energy of the supplied exhaust gas. The main turbine 22 and the main compressor 23 are connected by a connecting shaft 24, and the main compressor 23 rotates as the main turbine 22 rotates. When the main compressor 23 rotates, the air (outside air) taken from outside is increased in pressure, and the increased outside air is supplied as scavenging gas to the engine body 10 via the main scavenging piping 25.
 副過給機30は、エンジン本体10の運転状態に応じて、運転又は停止する過給機である。副過給機30はエンジン本体10に対して主過給機20と並列に配置されている。なお、副過給機30は、主過給機20と同じ仕様(容量)であってもよく異なる仕様であってもよい。エンジン本体10から排出された排気ガスは副排気配管31を介して副タービン32に供給される。副タービン32は供給された排気ガスのエネルギにより回転する。副タービン32と副コンプレッサ33は連結シャフト34により連結されており、副タービン32の回転に伴って副コンプレッサ33も回転する。副コンプレッサ33が回転すると、外部から取り込んだ空気(外気)が昇圧され、昇圧された外気は掃気ガスとして副掃気配管35および主掃気配管25を介してエンジン本体10に供給される。 The sub-supercharger 30 is a supercharger that is operated or stopped according to the operating state of the engine body 10. The sub supercharger 30 is arranged in parallel with the main supercharger 20 with respect to the engine body 10. The sub-supercharger 30 may have the same specification (capacity) as the main supercharger 20 or a different specification. The exhaust gas discharged from the engine body 10 is supplied to the sub turbine 32 via the sub exhaust pipe 31. The sub turbine 32 is rotated by the energy of the supplied exhaust gas. The auxiliary turbine 32 and the auxiliary compressor 33 are connected by a connecting shaft 34, and the auxiliary compressor 33 also rotates as the auxiliary turbine 32 rotates. When the sub-compressor 33 rotates, the air (outside air) taken from the outside is increased in pressure, and the increased outside air is supplied as scavenging gas to the engine body 10 via the sub-scavenging piping 35 and the main scavenging piping 25.
 本実施形態では、副掃気配管35は主掃気配管25に連結されている。そして、主掃気配管25の副掃気配管35が連結されている部分よりも下流には掃気ガスを冷却するエアクーラ50が設けられている。ただし、掃気ガスを冷却しない場合及び過給機20、30ごとにエアクーラ50を設ける場合などには、副掃気配管35を主掃気配管25に連結せず、エンジン本体10に直接連結してもよい。なお、副過給機30には、副過給機30(副コンプレッサ33)の回転数を測定する副過給機回転計36が設けられている。また、副コンプレッサ33の出口付近には副コンプレッサ33によって昇圧された外気の圧力(副コンプレッサ出口圧)を測定する副コンプレッサ出口圧計37が設けられている。 In the present embodiment, the auxiliary scavenging pipe 35 is connected to the main scavenging pipe 25. An air cooler 50 that cools the scavenging gas is provided downstream of the portion of the main scavenging piping 25 to which the sub-scavenging piping 35 is connected. However, when the scavenging gas is not cooled and when the air cooler 50 is provided for each of the superchargers 20 and 30, the auxiliary scavenging pipe 35 may be directly connected to the engine body 10 without being connected to the main scavenging pipe 25. . The sub-supercharger 30 is provided with a sub-supercharger tachometer 36 that measures the rotation speed of the sub-supercharger 30 (sub-compressor 33). A sub-compressor outlet pressure gauge 37 that measures the pressure of the outside air (sub-compressor outlet pressure) increased by the sub-compressor 33 is provided near the outlet of the sub-compressor 33.
 副タービン入口弁41は、副排気配管31に設けられており、副タービン32の入口側に位置する弁である。副コンプレッサ出口弁42は、副掃気配管35に設けられており、副コンプレッサ33の出口側に位置する弁である。副掃気配管35の副コンプレッサ出口弁42よりも上流側の部分には、放風配管44が連結されている。放風配管44は、副コンプレッサ33で昇圧された外気を外部へ導く配管である。放風弁43は、この放風配管44に設けられている。上述した弁のうち、副タービン入口弁41及び副コンプレッサ出口弁42は、本実施形態においては全閉又は全開のいずれかに切り替えられる開閉弁であるが、開度の調整ができる調整弁であってもよい。これらの弁の開閉の切り替えには多少の時間がかかる(図4参照)。一方、放風弁43は、本実施形態では、開度の調整が可能である調整弁である。ただし、放風弁43は開閉弁であってインチング操作(開指令/閉指令による操作)により開度を調整してもよい。 The auxiliary turbine inlet valve 41 is provided in the auxiliary exhaust pipe 31 and is a valve located on the inlet side of the auxiliary turbine 32. The auxiliary compressor outlet valve 42 is provided in the auxiliary scavenging pipe 35 and is a valve located on the outlet side of the auxiliary compressor 33. An air discharge pipe 44 is connected to a portion of the auxiliary scavenging pipe 35 upstream of the auxiliary compressor outlet valve 42. The air discharge pipe 44 is a pipe that guides outside air boosted by the sub compressor 33 to the outside. The air discharge valve 43 is provided in the air discharge pipe 44. Among the valves described above, the auxiliary turbine inlet valve 41 and the auxiliary compressor outlet valve 42 are open / close valves that can be switched to either fully closed or fully open in the present embodiment, but are adjustment valves that can adjust the opening degree. May be. It takes some time to switch between opening and closing these valves (see FIG. 4). On the other hand, the air discharge valve 43 is an adjustment valve capable of adjusting the opening degree in the present embodiment. However, the air discharge valve 43 is an on-off valve, and the opening degree may be adjusted by an inching operation (operation by an open command / close command).
 <制御系の構成>
 次に、エンジンシステム100の制御系の構成について説明する。図2は、エンジンシステム100の制御系のブロック図である。図2に示すように、エンジンシステム100は、エンジンシステム100全体を制御する制御装置60を備えている。制御装置60は、例えばCPU、ROM、RAM等によって構成されている。
<Control system configuration>
Next, the configuration of the control system of the engine system 100 will be described. FIG. 2 is a block diagram of a control system of engine system 100. As shown in FIG. 2, the engine system 100 includes a control device 60 that controls the entire engine system 100. The control device 60 is configured by, for example, a CPU, a ROM, a RAM, and the like.
 制御装置60は、エンジン回転計11、燃料供給装置12、副過給機回転計36、及び副コンプレッサ出口圧計37と電気的に接続されている。制御装置60は、これらの機器から送信される信号に基づいて、エンジン回転数、燃料噴射量、副過給機回転数、及び副コンプレッサ出口圧等を取得する。制御装置60は、上記の各機器からの入力信号に基づいて種々の演算を行い、エンジンシステム100の各部を制御する。本実施形態では、制御装置60は、副タービン入口弁41、副コンプレッサ出口弁42、及び放風弁43と電気的に接続されており、各種の演算等の結果に基づいて、これらの機器へ制御信号を送信する。 The control device 60 is electrically connected to the engine tachometer 11, the fuel supply device 12, the sub supercharger tachometer 36, and the sub compressor outlet pressure gauge 37. The control device 60 acquires the engine speed, the fuel injection amount, the sub supercharger speed, the sub compressor outlet pressure, and the like based on signals transmitted from these devices. The control device 60 performs various calculations based on the input signals from the above devices and controls each part of the engine system 100. In the present embodiment, the control device 60 is electrically connected to the auxiliary turbine inlet valve 41, the auxiliary compressor outlet valve 42, and the ventilating valve 43, and to these devices based on the results of various calculations and the like. Send a control signal.
 <運転台数削減制御>
 続いて、主過給機20及び副過給機30が運転した状態から、主過給機20を運転させたまま副過給機30を停止させ、過給機の運転台数を減らす制御(運転台数削減制御)について説明する。図3は、運転台数削減制御の方法を示したフローチャートである。以下で説明する演算及び制御は、制御装置60によって遂行される。また、図4は副タービン入口弁41、副コンプレッサ出口弁42、及び放風弁43の各開度を示したタイムチャートである。なお、図4は概念的に示すものであり、実際の値とは必ずしも一致しない(以下で説明する他のタイムチャート及びグラフも同様)。
<Control of number of operating units>
Subsequently, from the state in which the main supercharger 20 and the subsupercharger 30 are operated, the subsupercharger 30 is stopped while the main supercharger 20 is operated, and the control (operation) is performed to reduce the number of operated superchargers. The number reduction control) will be described. FIG. 3 is a flowchart showing a method of operating number reduction control. The calculation and control described below are performed by the control device 60. FIG. 4 is a time chart showing the opening degrees of the auxiliary turbine inlet valve 41, the auxiliary compressor outlet valve 42, and the air discharge valve 43. Note that FIG. 4 is conceptually shown and does not necessarily match the actual value (the same applies to other time charts and graphs described below).
 まず、処理が開始されると、制御装置60は、副タービン入口弁41と副コンプレッサ出口弁42を同時に閉じる(ステップS1)。これにより、副タービン32にエンジン本体10から排出される排気ガスが供給されなくなり、副過給機30の回転数が次第に低下していく。なお、図4に示すように、これらの弁が全開から全閉となるには多少の時間がかかる。このため、副タービン入口弁41を閉じ始めてから副過給機30が停止するまでには多少の時間がかかることから、副タービン入口弁41から少し遅れて副コンプレッサ出口弁42を閉じ始めたとしても、主コンプレッサ23で昇圧した外気が副コンプレッサ33へ逆流するのを防止することができる。 First, when the processing is started, the control device 60 simultaneously closes the auxiliary turbine inlet valve 41 and the auxiliary compressor outlet valve 42 (step S1). Thereby, the exhaust gas discharged from the engine main body 10 is not supplied to the sub turbine 32, and the rotational speed of the sub supercharger 30 gradually decreases. In addition, as shown in FIG. 4, it takes some time until these valves are fully opened to fully closed. For this reason, since it takes some time until the sub-supercharger 30 stops after the sub-turbine inlet valve 41 starts to close, it is assumed that the sub-compressor outlet valve 42 starts to close slightly later than the sub-turbine inlet valve 41. However, it is possible to prevent the outside air boosted by the main compressor 23 from flowing back to the sub compressor 33.
 続いて、制御装置60は、副過給機回転計36及び副コンプレッサ出口圧計37から送信される信号を読み込み、これらの信号に基づいて副過給機回転数及び副コンプレッサ出口圧を取得する(ステップS2)。 Subsequently, the control device 60 reads signals transmitted from the sub-supercharger tachometer 36 and the sub-compressor outlet pressure gauge 37, and acquires the sub-supercharger rotation speed and the sub-compressor outlet pressure based on these signals ( Step S2).
 続いて、制御装置60は、ステップS2で取得した副過給機回転数に基づいて停止時基準圧を決定する(ステップS3)。ここで、図5は、副過給機30の各回転数における副コンプレッサ流量と副コンプレッサ出口圧の関係を示した図、すなわち各回転数における圧力曲線を示した図(コンプレッサマップ)である。図中の太線は各回転数においてサージが発生する点をつないだ線(サージライン)を示している。図中の破線は、サージラインから所定の間隔(サージマージン)を有するように予め設定された停止時基準圧ラインである。上述した「停止時基準圧」は、この圧力曲線と停止時基準圧ラインとが交差する点の圧力である。制御装置60は、副過給機30の回転数ごとの停止時基準圧のデータを記憶している。そのため、取得した副過給機30の回転数に基づいて停止時基準圧を決定することができる。 Subsequently, the control device 60 determines the stop-time reference pressure based on the sub-supercharger rotation speed acquired in Step S2 (Step S3). Here, FIG. 5 is a diagram showing the relationship between the sub compressor flow rate and the sub compressor outlet pressure at each rotation speed of the sub supercharger 30, that is, a diagram (compressor map) showing the pressure curve at each rotation speed. The thick line in the figure indicates a line (surge line) connecting points where a surge occurs at each rotation speed. The broken line in the figure is a stop-time reference pressure line that is preset to have a predetermined interval (surge margin) from the surge line. The above-mentioned “stop-time reference pressure” is a pressure at a point where this pressure curve and the stop-time reference pressure line intersect. The control device 60 stores data on the stop-time reference pressure for each rotation speed of the sub-supercharger 30. Therefore, the stop-time reference pressure can be determined based on the acquired rotation speed of the sub-supercharger 30.
 続いて、制御装置60は、副コンプレッサ出口圧が、停止時基準圧よりも大きいか否かを判定する(ステップS4)。すなわち、副コンプレッサ33にサージが発生する危険性があるか否かを判定する。副コンプレッサ出口圧が停止時基準圧以下であると判定した場合には(ステップS4でNO)、ステップS5へ進む。つまり、副コンプレッサ33にサージが発生する可能性がないと判断した場合にはステップS5へ進む。一方、副コンプレッサ出口圧が停止時基準圧よりも大きいと判断した場合には(ステップS4でYES)、ステップS6へ進む。つまり、副コンプレッサ33にサージが発生する可能性があると判断した場合にはステップS6へ進む。 Subsequently, the control device 60 determines whether or not the sub compressor outlet pressure is larger than the stop-time reference pressure (step S4). That is, it is determined whether or not there is a risk of occurrence of a surge in the sub compressor 33. If it is determined that the sub compressor outlet pressure is equal to or lower than the stop-time reference pressure (NO in step S4), the process proceeds to step S5. That is, if it is determined that there is no possibility of a surge occurring in the sub compressor 33, the process proceeds to step S5. On the other hand, if it is determined that the sub-compressor outlet pressure is greater than the stop-time reference pressure (YES in step S4), the process proceeds to step S6. That is, when it is determined that there is a possibility that a surge occurs in the sub compressor 33, the process proceeds to step S6.
 副コンプレッサ33にサージが発生する可能性がないとしてステップS5へ進んだ場合、制御装置60は、放風弁43に制御信号を送信して放風弁43の開度を減少させる。一方、副コンプレッサ33にサージが発生する可能性があるとしてステップS6へ進んだ場合、制御装置60は、放風弁43に制御信号を送信して放風弁43の開度を増加させる。なお、本実施形態では、副コンプレッサ出口圧と停止時基準圧との差に応じて放風弁43の開度の変化量を決定する。つまり、副コンプレッサ出口圧と停止時基準圧との差が小さくなるに従って放風弁43の開度の増減量を小さくする。 When it is determined that there is no possibility of occurrence of a surge in the sub compressor 33, the control device 60 transmits a control signal to the air discharge valve 43 to decrease the opening degree of the air discharge valve 43. On the other hand, when it is determined that a surge may occur in the sub compressor 33 and the process proceeds to step S <b> 6, the control device 60 transmits a control signal to the air discharge valve 43 to increase the opening degree of the air discharge valve 43. In the present embodiment, the amount of change in the opening degree of the air discharge valve 43 is determined according to the difference between the sub compressor outlet pressure and the stop-time reference pressure. That is, the increase / decrease amount of the opening degree of the air discharge valve 43 is made small as the difference between the sub compressor outlet pressure and the stop-time reference pressure becomes small.
 続いて、ステップS5又はS6を経た後、制御装置60は、副過給機30が停止したか否かを判定する(ステップS7)。つまり、副過給機回転数がゼロになったか否かを判定する。副過給機30が停止したと判定した場合には(ステップS7でYES)、処理を終了する。一方、副過給機30が停止していないと判定した場合には(ステップS7でNO)、ステップS2に戻ってステップS2~S8を繰り返す。 Subsequently, after step S5 or S6, the control device 60 determines whether or not the sub-supercharger 30 has stopped (step S7). That is, it is determined whether or not the sub supercharger rotational speed has become zero. If it is determined that the sub-supercharger 30 has stopped (YES in step S7), the process ends. On the other hand, if it is determined that the sub-supercharger 30 has not stopped (NO in step S7), the process returns to step S2 and repeats steps S2 to S8.
 図4のうち放風弁43の開度のタイムチャートを示す図(図4の下図)において、実線が本実施形態における放風弁43の開度を示しており、破線が副タービン入口弁41及び副コンプレッサ出口弁42を閉じ始めるのと同時に放風弁43が開き始めた場合(早期開放の場合)の放風弁43の開度を示している。なお、前述した特許文献1乃至3に記載のものは、破線で示すものよりもさらに早いタイミングで放風弁43を開き始めている。この図で示すように、本実施形態の場合は、副コンプレッサ33にサージが発生する可能性がないときには放風弁43が開き始めないため、放風弁43の開き始めのタイミングを早期開放の場合に比べて遅らせることができる。さらに、本実施形態では、放風弁43は一定の割合で開度が大きくなるのではなく、サージが発生する可能性が低いときには開度を減少させることもある。これにより、サージが発生しない範囲で、放風弁43の開度を可能な限り小さくすることができる。 4, a time chart of the opening degree of the ventilating valve 43 (lower figure of FIG. 4) shows the opening degree of the ventilating valve 43 in the present embodiment, and the broken line shows the sub turbine inlet valve 41. The opening degree of the air discharge valve 43 when the air discharge valve 43 starts to open simultaneously with the start of closing the sub compressor outlet valve 42 (in the case of early opening) is shown. In addition, the thing of the patent documents 1 thru | or 3 mentioned above has begun to open the ventilation valve 43 at an earlier timing than what is shown with a broken line. As shown in this figure, in the case of the present embodiment, when there is no possibility of occurrence of a surge in the sub compressor 33, the air discharge valve 43 does not start to open. It can be delayed compared to the case. Furthermore, in this embodiment, the opening degree of the ventilating valve 43 does not increase at a constant rate, and the opening degree may be decreased when the possibility of occurrence of a surge is low. Thereby, the opening degree of the air discharge valve 43 can be made as small as possible in the range where a surge does not occur.
 図6は、副コンプレッサ出口圧と掃気圧の時間変化を示した図である。図6において、実線は本実施形態の場合を示しており、破線は早期開放の場合を示している(図4の下図参照)。まず、図6のうち副コンプレッサ出口圧の時間変化を示す図(図6の上図)に着目すると、本実施形態の場合は早期開放の場合に比べ、放風弁43の開き始めが遅いことから、副コンプレッサ出口圧が低下し始めるのも遅くなることがわかる。 FIG. 6 is a diagram showing temporal changes in the sub compressor outlet pressure and scavenging pressure. In FIG. 6, the solid line shows the case of this embodiment, and the broken line shows the case of early opening (see the lower figure of FIG. 4). First, paying attention to the graph showing the time variation of the sub compressor outlet pressure in FIG. 6 (upper diagram in FIG. 6), in the case of this embodiment, the start of opening of the discharge valve 43 is slower than in the case of early opening. From this, it can be seen that the sub-compressor outlet pressure begins to decrease.
 続いて、図6のうち掃気圧の時間変化を示す図(図6の下図)に着目すると、本実施形態の場合は早期開放の場合に比べ、掃気圧の落ち込みが少ない。これは、本実施形態の場合、副コンプレッサ出口弁42が閉まり始めた後であっても、副コンプレッサ33で昇圧した外気を掃気ガスとして利用できるからである。 Subsequently, paying attention to the figure showing the time variation of the scavenging air pressure in FIG. 6 (the lower diagram in FIG. 6), the scavenging air pressure decreases less in the case of this embodiment than in the case of early opening. This is because in the case of the present embodiment, even after the sub compressor outlet valve 42 starts to close, the outside air increased in pressure by the sub compressor 33 can be used as the scavenging gas.
 このように、本実施形態によれば、過給機の運転台数を減らす際、従来のようにサージの発生を考慮して放風弁43を早期に開き始める場合に比べ、副過給機30を停止する間だけでなく停止した後においても、掃気圧の低下を抑制することができる。よって、本実施形態によれば従来の場合に比べて、エンジン本体10を効率よく運転することができる。 Thus, according to the present embodiment, when the number of superchargers to be operated is reduced, the sub-supercharger 30 is compared to the case where the ventilator valve 43 is opened early in consideration of the occurrence of a surge as in the prior art. It is possible to suppress a decrease in scavenging air pressure not only during stopping but also after stopping. Therefore, according to the present embodiment, the engine body 10 can be operated more efficiently than in the conventional case.
 <運転台数増加制御>
 続いて、主過給機20が運転し副過給機30が停止している状態から、主過給機20を運転させたまま副過給機30を運転させ、過給機の運転台数を増やす制御(運転台数増加制御)について説明する。図7は、運転台数増加制御の方法を示したフローチャートである。以下で説明する演算及び制御は、制御装置60によって遂行される。また、図8は副タービン入口弁41、副コンプレッサ出口弁42、及び放風弁43の開度を示したタイムチャートである。
<Operating number increase control>
Subsequently, from the state where the main supercharger 20 is operated and the subsupercharger 30 is stopped, the subsupercharger 30 is operated while the main supercharger 20 is operated, and the number of superchargers operated is determined. The increasing control (control for increasing the number of operating units) will be described. FIG. 7 is a flowchart showing a method for controlling the number of operating units. The calculation and control described below are performed by the control device 60. FIG. 8 is a time chart showing the opening degrees of the auxiliary turbine inlet valve 41, the auxiliary compressor outlet valve 42, and the air discharge valve 43.
 まず、処理が開始されると、制御装置60は、副タービン入口弁41を開放する(ステップS11)。これにより、副タービン32に排気ガスが供給され副過給機30は運転し始める。なお、副コンプレッサ出口弁42は、副タービン入口弁41と同時には開放しない。副過給機30の回転数が少なく副コンプレッサ出口圧が小さい状態で副コンプレッサ出口弁42を開いてしまうと、主コンプレッサ23で昇圧された外気が副コンプレッサ33に逆流してしまうからである。 First, when the process is started, the control device 60 opens the sub turbine inlet valve 41 (step S11). Thereby, the exhaust gas is supplied to the auxiliary turbine 32 and the auxiliary supercharger 30 starts to operate. The sub compressor outlet valve 42 does not open simultaneously with the sub turbine inlet valve 41. This is because if the sub-compressor outlet valve 42 is opened with the sub-supercharger 30 having a low rotation speed and a low sub-compressor outlet pressure, the outside air increased in pressure by the main compressor 23 flows back to the sub-compressor 33.
 続いて、制御装置60は、エンジン回転計11、燃料供給装置12、副過給機回転計36、及び副コンプレッサ出口圧計37から送信される信号を読み込み、これらの信号に基づいてエンジン負荷(エンジン回転数及び燃料噴射量から推定)、副過給機回転数、及び副コンプレッサ出口圧を取得する(ステップS12)。 Subsequently, the control device 60 reads signals transmitted from the engine tachometer 11, the fuel supply device 12, the sub-supercharger tachometer 36, and the sub-compressor outlet pressure gauge 37, and based on these signals, loads the engine load (engine (Estimated from rotation speed and fuel injection amount), sub-supercharger rotation speed, and sub-compressor outlet pressure are acquired (step S12).
 続いて、制御装置60は、切替回転数を決定する(ステップS13)。ここでいう「切替回転数」とは、副コンプレッサ出口弁42を開放し始めるときの副過給機回転数である。切替回転数はエンジン負荷に応じて決定する。具体的には、制御装置60は、図9に示すグラフに対応するマップデータを記憶しており、取得したエンジン負荷に基づいて切替回転数を決定する。なお、図9に示すように、エンジン負荷が大きくなるに従って切替回転数は大きくなる。 Subsequently, the control device 60 determines the switching rotation speed (step S13). The “switching rotation speed” here is the sub-supercharger rotation speed when the sub-compressor outlet valve 42 starts to be opened. The switching speed is determined according to the engine load. Specifically, the control device 60 stores map data corresponding to the graph shown in FIG. 9, and determines the switching speed based on the acquired engine load. As shown in FIG. 9, the switching speed increases as the engine load increases.
 続いて、制御装置60は、ステップS12で取得した副過給機回転数が、ステップS13で決定した切替回転数以上か否かを判定する(ステップS14)。副過給機回転数が切替回転数以上であると判定したとき(ステップS14でYES)、副コンプレッサ出口弁42の開放を始め(ステップS15)、その後ステップS16へ進む。一方、副過給機回転数が切替回転数よりも小さいと判定したとき(ステップS14でNO)、ステップS15を経ずにステップS16に進む。 Subsequently, the control device 60 determines whether or not the sub-supercharger rotation speed acquired in step S12 is equal to or higher than the switching rotation speed determined in step S13 (step S14). When it is determined that the sub-supercharger rotational speed is equal to or higher than the switching rotational speed (YES in step S14), the sub-compressor outlet valve 42 is opened (step S15), and then the process proceeds to step S16. On the other hand, when it is determined that the sub-supercharger rotational speed is smaller than the switching rotational speed (NO in step S14), the process proceeds to step S16 without passing through step S15.
 続いて、制御装置60は、ステップS12で取得した副過給機回転数に基づいて運転時基準圧を決定する(ステップS16)。運転時基準圧は、前述した停止時基準圧(図3のステップS3参照)と同様に予め設定された所定量のサージマージンを有する圧力である。制御装置60は、副過給機回転数ごとの運転時基準圧のデータを記憶している。そのため、取得した副過給機回転数に基づいて運転時基準圧を決定することができる。なお、各副過給機回転数において、運転時基準圧と停止時基準圧とを同じ値にしてもよい。 Subsequently, the control device 60 determines an operating reference pressure based on the sub-supercharger rotation speed acquired in Step S12 (Step S16). The reference pressure during operation is a pressure having a predetermined amount of surge margin set in advance in the same manner as the reference pressure during stoppage (see step S3 in FIG. 3). The control device 60 stores data on the operation reference pressure for each sub-supercharger rotation speed. Therefore, the operating reference pressure can be determined based on the acquired sub supercharger rotation speed. In each sub-supercharger rotation speed, the reference pressure during operation and the reference pressure during stop may be set to the same value.
 続いて、制御装置60は、副コンプレッサ出口圧が、運転時基準圧よりも大きいか否かを判定する(ステップS17)。すなわち、副コンプレッサ33にサージが発生する危険性があるか否かを判定する。副コンプレッサ出口圧が運転時基準圧以下であると判定した場合には(ステップS17でNO)、ステップS18へ進む。つまり、副コンプレッサ33にサージが発生する可能性がないと判断した場合にはステップS18へ進む。一方、副コンプレッサ出口圧が運転時基準圧よりも大きいと判断した場合には(ステップS17でYES)、ステップS19へ進む。つまり、副コンプレッサ33にサージが発生する可能性があると判断した場合にはステップS19へ進む。 Subsequently, the control device 60 determines whether or not the sub compressor outlet pressure is larger than the operation reference pressure (step S17). That is, it is determined whether or not there is a risk of occurrence of a surge in the sub compressor 33. If it is determined that the sub compressor outlet pressure is equal to or lower than the operating reference pressure (NO in step S17), the process proceeds to step S18. That is, if it is determined that there is no possibility of a surge occurring in the sub compressor 33, the process proceeds to step S18. On the other hand, if it is determined that the sub compressor outlet pressure is greater than the operating reference pressure (YES in step S17), the process proceeds to step S19. That is, when it is determined that there is a possibility that a surge occurs in the sub compressor 33, the process proceeds to step S19.
 副コンプレッサ33にサージが発生する可能性がないとしてステップS18へ進んだ場合、制御装置60は、放風弁43に制御信号を送信して放風弁43の開度を減少させる。一方、副コンプレッサ33にサージが発生する可能性があるとしてステップS19へ進んだ場合、制御装置60は、放風弁43に制御信号を送信して放風弁43の開度を増加する。なお、放風弁43の開度を増加させるとき、副コンプレッサ出口圧と運転時基準圧との差が小さくなるに従って、放風弁43の開度の増減量を小さくする。 When it is determined that there is no possibility of occurrence of a surge in the sub compressor 33, the control device 60 transmits a control signal to the air discharge valve 43 to decrease the opening degree of the air discharge valve 43. On the other hand, when it is determined that a surge may occur in the sub compressor 33 and the process proceeds to step S <b> 19, the control device 60 transmits a control signal to the air discharge valve 43 to increase the opening degree of the air discharge valve 43. In addition, when increasing the opening degree of the air discharge valve 43, the increase / decrease amount of the opening degree of the air discharge valve 43 is made small as the difference between the sub compressor outlet pressure and the reference pressure during operation becomes small.
 続いて、ステップS18又はS19を経た後、制御装置60は、副コンプレッサ出口弁42が全開になったか否かを判定する(ステップS20)。なお、副コンプレッサ出口弁42が全開になったか否かは、副コンプレッサ出口弁42の全閉/全開確認用リミットスイッチや開放が開始されてからの時間等によって判断することができる。副コンプレッサ出口弁42が全開になったと判定した場合には(ステップS20でYES)、処理を終了する。一方、副コンプレッサ出口弁42が全開になっていないと判定した場合には(ステップS20でNO)、ステップS12に戻ってステップS12~S20を繰り返す。 Subsequently, after step S18 or S19, the control device 60 determines whether or not the sub compressor outlet valve 42 is fully opened (step S20). Whether or not the sub-compressor outlet valve 42 is fully opened can be determined by the fully closed / full-opening limit switch of the sub-compressor outlet valve 42, the time after the opening is started, or the like. If it is determined that the sub compressor outlet valve 42 is fully opened (YES in step S20), the process is terminated. On the other hand, when it is determined that the sub compressor outlet valve 42 is not fully opened (NO in step S20), the process returns to step S12 and steps S12 to S20 are repeated.
 以上のとおり、本実施形態の運転台数増加制御によれば、サージが発生しない範囲で可能な限り放風弁43の開度(全閉も含む)が小さくなるように制御される。そのため、副コンプレッサ33で昇圧した外気は、外部に排出されるのが抑えられて、副コンプレッサ出口弁42が開き始めるとすぐに掃気ガスとしてエンジン本体10に供給される。そのため、掃気圧を高めることができ、エンジン本体10を効率よく運転することができる。 As described above, according to the operation number increase control of the present embodiment, the opening degree (including the fully closed position) of the discharge valve 43 is controlled to be as small as possible within a range where no surge occurs. Therefore, the outside air boosted by the auxiliary compressor 33 is suppressed from being discharged to the outside, and is supplied to the engine body 10 as scavenging gas as soon as the auxiliary compressor outlet valve 42 starts to open. Therefore, the scavenging pressure can be increased and the engine body 10 can be operated efficiently.
 なお、本実施形態の運転台数増加制御では、エンジン負荷及び副過給機回転数に基づいて副コンプレッサ出口弁42を開放するタイミングを決定している。ただし、副コンプレッサ出口弁42を開放するタイミングは、これに限られない。例えば図10に示すように副コンプレッサ出口弁42の前後差圧を測定する差圧計38を設け、当該前後差圧に基づいて副コンプレッサ出口弁42を開放するタイミングを決定してもよい。具体的には、副コンプレッサ出口弁42の上流側の圧力が下流側の圧力よりも高くなったときに副コンプレッサ出口弁42を開放してもよい。 In the control for increasing the number of operating units of this embodiment, the timing for opening the auxiliary compressor outlet valve 42 is determined based on the engine load and the auxiliary supercharger rotation speed. However, the timing for opening the sub compressor outlet valve 42 is not limited to this. For example, as shown in FIG. 10, a differential pressure gauge 38 for measuring the differential pressure across the auxiliary compressor outlet valve 42 may be provided, and the timing for opening the auxiliary compressor outlet valve 42 may be determined based on the differential pressure before and after. Specifically, the sub compressor outlet valve 42 may be opened when the pressure on the upstream side of the sub compressor outlet valve 42 becomes higher than the pressure on the downstream side.
 また、図10に示すように、エアクーラ50とエンジン本体10の間に掃気圧を測定する掃気圧計39を設け、副コンプレッサ出口圧と掃気圧の差圧が所定の閾値を越えたときに、副コンプレッサ出口弁42を開放するようにしてもよい。さらに、副コンプレッサ出口弁42として、副コンプレッサ33で昇圧した外気がエンジン本体10へ流れるが、主コンプレッサ23で昇圧した外気が副コンプレッサ33に流れないような逆止弁を採用してもよい。 Further, as shown in FIG. 10, a scavenging meter 39 for measuring scavenging air pressure is provided between the air cooler 50 and the engine body 10, and when the differential pressure between the sub compressor outlet pressure and scavenging air pressure exceeds a predetermined threshold value, The sub compressor outlet valve 42 may be opened. Further, as the auxiliary compressor outlet valve 42, a check valve may be employed so that the outside air increased in pressure by the auxiliary compressor 33 flows to the engine body 10, but the outside air increased in pressure by the main compressor 23 does not flow to the auxiliary compressor 33.
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、運転台数増加制御の方法が第1実施形態の場合と異なる。以下、本実施形態の運転台数増加制御について説明する。
(Second Embodiment)
Next, a second embodiment will be described. In this embodiment, the method for controlling the number of operating units is different from that in the first embodiment. Hereinafter, the operation number increase control of this embodiment will be described.
 図11は、本実施形態の運転台数増加制御の方法を示したフローチャートである。また、図12は、副タービン入口弁41、副コンプレッサ出口弁42、及び放風弁43の開度、並びに副過給機30の回転数を示したタイムチャートである。 FIG. 11 is a flowchart showing a method of increasing the number of operating units according to this embodiment. FIG. 12 is a time chart showing the opening degree of the auxiliary turbine inlet valve 41, the auxiliary compressor outlet valve 42, and the air discharge valve 43, and the rotation speed of the auxiliary supercharger 30.
 図11に示すように、運転台数増加制御の処理が開始されると、制御装置60は、所定の開度となるように放風弁43の開放を開始し(ステップS21)、所定時間後に副タービン入口弁41の開放を開始する(ステップS22)。副タービン入口弁41の開放を開始することにより、副過給機30は運転し始める(図12参照)。 As shown in FIG. 11, when the process of increasing the number of operating units is started, the control device 60 starts opening the air discharge valve 43 so as to reach a predetermined opening degree (step S21), and after a predetermined time, the auxiliary device 43 Opening of the turbine inlet valve 41 is started (step S22). By starting to open the auxiliary turbine inlet valve 41, the auxiliary supercharger 30 starts to operate (see FIG. 12).
 続いて、制御装置60は、エンジン回転計11、燃料供給装置12、及び副過給機回転計36から送信される信号を読み込み、これらの信号に基づいてエンジン負荷(エンジン回転数及び燃料噴射量から推定)及び副過給機回転数を取得する(ステップS23)。 Subsequently, the control device 60 reads signals transmitted from the engine tachometer 11, the fuel supply device 12, and the sub-supercharger tachometer 36, and based on these signals, loads the engine load (engine speed and fuel injection amount). And the sub-supercharger rotation speed are acquired (step S23).
 続いて、制御装置60は、第1切替動作点(副コンプレッサ流量と副コンプレッサ出口圧)を決定する(ステップS24)。「第1切替動作点」は、所定のサージマージンを有する副コンプレッサ33の動作点であって、放風弁43を閉じ始める点である。放風弁43の開閉によって副コンプレッサ33の動作点は大きく変化するため、放風弁43を閉じ始めるタイミングが異なれば副コンプレッサ33の動作曲線(動作点の軌跡)も異なる。本実施形態では、副コンプレッサ33がある動作点に達した時に放風弁43を閉じ始めれば、放風弁43を閉じ始める直前から副コンプレッサ出口弁42を開き始める直前までの間にサージが生じない、つまりその間に動作曲線がサージ領域に達しないという条件を満たす動作点を第1切替動作点として設定する。ただし、第1切替動作点は、エンジン負荷に応じて変化する。なお、第1切替動作点における副コンプレッサ出口圧及び副コンプレッサ流量をそれぞれ第1切替圧及び第1切替流量とする(図15参照)。制御装置60は、図13に示す第1切替圧のグラフに対応するマップデータを記憶しており、このマップデータとステップS23で取得したエンジン負荷に基づいて第1切替圧を決定する。同様に、制御装置60は、図14に示す第1切替流量のグラフに対応するマップデータを記憶しており、このマップデータとステップS23で取得したエンジン負荷に基づいて第1切替流量を決定する。なお、図13、図14に示すように、エンジン負荷が大きくなるほど第1切替圧及び第1切替流量は大きくなる。 Subsequently, the control device 60 determines a first switching operation point (sub compressor flow rate and sub compressor outlet pressure) (step S24). The “first switching operation point” is an operation point of the sub compressor 33 having a predetermined surge margin, and is a point at which the air discharge valve 43 starts to close. Since the operating point of the sub-compressor 33 is greatly changed by opening and closing the air discharge valve 43, the operation curve (the locus of the operation point) of the sub-compressor 33 is different if the timing at which the air discharge valve 43 starts to close is different. In this embodiment, if the discharge valve 43 starts to close when the auxiliary compressor 33 reaches a certain operating point, a surge occurs immediately before the start of closing the discharge valve 43 and immediately before the opening of the auxiliary compressor outlet valve 42. No operating point that satisfies the condition that the operating curve does not reach the surge region is set as the first switching operating point. However, the first switching operation point changes according to the engine load. Note that the sub-compressor outlet pressure and the sub-compressor flow rate at the first switching operation point are set as a first switching pressure and a first switching flow rate, respectively (see FIG. 15). The control device 60 stores map data corresponding to the graph of the first switching pressure shown in FIG. 13, and determines the first switching pressure based on this map data and the engine load acquired in step S23. Similarly, the control device 60 stores map data corresponding to the graph of the first switching flow rate shown in FIG. 14, and determines the first switching flow rate based on the map data and the engine load acquired in step S23. . As shown in FIGS. 13 and 14, the first switching pressure and the first switching flow rate increase as the engine load increases.
 続いて、制御装置60は、第1切替回転数を決定する(ステップS25)。本実施形態では、副コンプレッサ33の第1切替動作点を通過する圧力曲線の副過給機回転数を第1切替回転数とする。例えば、図15で示すように第1切替動作点である点AをX%回転数の圧力曲線が通過する場合には、第1切替回転数をX%回転数とする。なお、エンジンの運転状況などによっては、副過給機回転数が第1切替回転数に達したときの副コンプレッサ33の動作点が第1切替動作点と異なる場合がある。ただし、第1切替動作点は所定のサージマージンを有しているため、実際の動作点が第1切替動作点から多少ずれたとしても、放風弁43を閉じ始める直前から副コンプレッサ出口弁42を開き始める直前までの間は副コンプレッサ33のサージを回避することができる。 Subsequently, the control device 60 determines the first switching rotational speed (step S25). In the present embodiment, the sub supercharger rotation speed of the pressure curve passing through the first switching operation point of the sub compressor 33 is set as the first switching rotation speed. For example, as shown in FIG. 15, when the pressure curve of the X% rotation speed passes through the point A which is the first switching operation point, the first switching rotation speed is set to X% rotation speed. Depending on the operating condition of the engine, the operating point of the sub compressor 33 when the sub supercharger rotation speed reaches the first switching rotation speed may be different from the first switching operation point. However, since the first switching operating point has a predetermined surge margin, even if the actual operating point slightly deviates from the first switching operating point, the sub compressor outlet valve 42 immediately before starting to close the discharge valve 43. The surge of the sub-compressor 33 can be avoided until just before starting to open.
 続いて、制御装置60は、副過給機回転数が第1切替回転数以上であるか否かを判定する(ステップS26)。副過給機回転数が第1切替回転数以上であると判定した場合には(ステップS26でYES)、放風弁43の閉止を開始する(ステップS27;図12参照)。一方、副過給機回転数が第1切替回転数よりも小さいと判定した場合には(ステップS26でNO)、ステップS23に戻ってステップS23~S26を繰り返す。 Subsequently, the control device 60 determines whether or not the sub supercharger rotational speed is equal to or higher than the first switching rotational speed (step S26). When it is determined that the sub-supercharger rotational speed is equal to or higher than the first switching rotational speed (YES in step S26), the closing of the air discharge valve 43 is started (step S27; see FIG. 12). On the other hand, when it is determined that the sub-supercharger rotational speed is smaller than the first switching rotational speed (NO in step S26), the process returns to step S23 and steps S23 to S26 are repeated.
 ステップS27を経て放風弁43の閉止を開始した後は、制御装置60は、再度、エンジン回転計11、燃料供給装置12、及び副過給機回転計36から送信される信号を読み込み、これらの信号に基づいてエンジン負荷及び副過給機回転数を取得する(ステップS28)。 After starting the closing of the discharge valve 43 through step S27, the control device 60 reads signals transmitted from the engine tachometer 11, the fuel supply device 12, and the sub-supercharger tachometer 36 again. Based on this signal, the engine load and the sub-supercharger speed are acquired (step S28).
 続いて、制御装置60は、第2切替動作点を決定する(ステップS29)。「第2切替動作点」は、所定のサージマージンを有する副コンプレッサ33の動作点であって、副コンプレッサ出口弁42を開き始める点である。第2切替動作点は、第1切替動作点と同様にして決定する。すなわち、副コンプレッサ33がある動作点に達した時に副コンプレッサ出口弁42を開き始めれば、副コンプレッサ出口弁42を開き始める直前から開き終わる(切替完了)までの間にサージが生じない、つまりその間に動作曲線がサージ領域に達しないという条件を満たす動作点を第2切替動作点として設定する。第2切替動作点も第1切替動作点と同様に、エンジン負荷に応じて変化する。なお、第2切替動作点における副コンプレッサ出口圧及び副コンプレッサ流量をそれぞれ第2切替圧及び第2切替流量とする(図15参照)。制御装置60は、図13、図14に示す第2切替圧のグラフ及び第2切替流量に対応するマップデータ及びエンジン負荷に基づいて、第2切替圧及び第2切替流量を決定する。なお、エンジン負荷が同じである場合、第2切替圧及び第2切替流量は、それぞれ第1切替圧及び第1切替流量よりも高い値に決定される。 Subsequently, the control device 60 determines a second switching operation point (step S29). The “second switching operation point” is an operation point of the sub compressor 33 having a predetermined surge margin, and is a point at which the sub compressor outlet valve 42 starts to be opened. The second switching operation point is determined in the same manner as the first switching operation point. That is, if the auxiliary compressor outlet valve 42 starts to open when the auxiliary compressor 33 reaches a certain operating point, no surge will occur between immediately before the auxiliary compressor outlet valve 42 starts to open and to completion of opening (switching completion). The operating point that satisfies the condition that the operating curve does not reach the surge region is set as the second switching operating point. Similarly to the first switching operation point, the second switching operation point changes according to the engine load. The auxiliary compressor outlet pressure and the auxiliary compressor flow rate at the second switching operation point are set as the second switching pressure and the second switching flow rate, respectively (see FIG. 15). The control device 60 determines the second switching pressure and the second switching flow rate based on the graph of the second switching pressure shown in FIGS. 13 and 14, the map data corresponding to the second switching flow rate, and the engine load. When the engine load is the same, the second switching pressure and the second switching flow rate are determined to be higher than the first switching pressure and the first switching flow rate, respectively.
 続いて、制御装置60は、第2切替回転数を決定する(ステップS30)。第1切替回転数の場合と同様に、副コンプレッサ33の第2切替動作点を通過する圧力曲線の副過給機回転数を第2切替回転数とする。例えば、図15で示すように第2切替動作点である点BをY%回転数の圧力曲線が通過している場合には、第2切替回転数をY%回転数とする。なお、第2切替圧及び第2切替流量は、それぞれ第1切替圧及び第1切替流量よりも大きいことから、第2切替回転数は第1切替回転数よりも高くなる。また、エンジンの運転状況などによっては、副過給機回転数が第2切替回転数に達したときの副コンプレッサの動作点が第2切替動作点と異なる場合がある。ただし、第2切替動作点は所定のサージマージンを有しているため、実際の動作点が第2切替動作点から多少ずれたとしても、副コンプレッサ出口弁42を開き始める直前から開き終わるまでの間は副コンプレッサ33のサージを回避することができる。 Subsequently, the control device 60 determines the second switching rotation speed (step S30). As in the case of the first switching speed, the sub-supercharger speed of the pressure curve passing through the second switching operating point of the sub-compressor 33 is set as the second switching speed. For example, as shown in FIG. 15, when the pressure curve of the Y% rotation speed passes through the point B that is the second switching operation point, the second switching rotation speed is set to Y% rotation speed. Since the second switching pressure and the second switching flow rate are larger than the first switching pressure and the first switching flow rate, respectively, the second switching rotational speed is higher than the first switching rotational speed. Further, depending on the operating condition of the engine, the operating point of the sub compressor when the sub supercharger rotational speed reaches the second switching rotational speed may be different from the second switching operating point. However, since the second switching operation point has a predetermined surge margin, even if the actual operation point is slightly deviated from the second switching operation point, the time from immediately before the sub compressor outlet valve 42 is opened to until the opening is completed. During this time, the surge of the sub compressor 33 can be avoided.
 続いて、制御装置60は、副過給機回転数が第2切替回転数以上であるか否かを判定する(ステップS31)。副過給機回転数が第2切替回転数以上であると判定した場合には(ステップS31でYES)、副コンプレッサ出口弁42の開放を開始し(ステップS32;図12参照)、その後に処理を終了する。一方、副過給機回転数が第2切替回転数よりも小さいと判定した場合には(ステップS31でNO)、ステップS28に戻ってステップS28~S31を繰り返す。 Subsequently, the control device 60 determines whether or not the sub-supercharger rotation speed is equal to or higher than the second switching rotation speed (step S31). When it is determined that the sub-supercharger rotational speed is equal to or higher than the second switching rotational speed (YES in step S31), the opening of the sub-compressor outlet valve 42 is started (step S32; see FIG. 12), and the processing thereafter Exit. On the other hand, when it is determined that the sub-supercharger rotational speed is smaller than the second switching rotational speed (NO in step S31), the process returns to step S28 and steps S28 to S31 are repeated.
 本実施形態の運転台数増加制御は以上のとおりである。運転台数増加制御を以上のように行うことにより、図12に示すように、放風弁43が所定の開度で開いた状態で副タービン入口弁41の開放が開始された後、放風弁43の閉止が開始し、さらにその後に副コンプレッサ出口弁42の開放が開始されることになる。つまり、放風弁43がある程度閉まった状態で副コンプレッサ出口弁42の開放が開始されるため、副コンプレッサ33で昇圧した外気が放風弁43を介して外部に放出されるのを抑えることができる。また、副コンプレッサ33で外気が十分に昇圧されるため、主コンプレッサ23で昇圧した外気が副コンプレッサ33へ逆流することを抑えることができる。よって、エンジン本体10の効率が低下するのを抑えることができる。また、本実施形態の運転台数増加制御では、副コンプレッサ出口弁42及び放風弁43の開閉が、副過給機回転数に基づいて制御されるため、副コンプレッサ出口圧力の取得を省略することができる。そのため、例えば、運転台数減少制御をタイムスケジュールに基づいて行うなど、運転台数増加制御のみならず運転台数減少制御においても副コンプレッサ出口圧力を用いない場合には、図1における副コンプレッサ出口圧計37を省略することができる。 The operation number increase control of this embodiment is as described above. By performing the operation number increase control as described above, as shown in FIG. 12, after the sub-turbine inlet valve 41 is opened in a state where the discharge valve 43 is opened at a predetermined opening, the discharge valve 43 starts to be closed, and thereafter the opening of the sub compressor outlet valve 42 is started. In other words, since the opening of the sub compressor outlet valve 42 is started with the air discharge valve 43 closed to some extent, it is possible to prevent the outside air boosted by the sub compressor 33 from being released to the outside through the air discharge valve 43. it can. In addition, since the outside air is sufficiently boosted by the sub compressor 33, it is possible to suppress the outside air boosted by the main compressor 23 from flowing back to the sub compressor 33. Therefore, it can suppress that the efficiency of the engine main body 10 falls. In addition, in the control for increasing the number of operating units according to the present embodiment, the opening and closing of the sub compressor outlet valve 42 and the air discharge valve 43 are controlled based on the sub supercharger rotation speed, and therefore acquisition of the sub compressor outlet pressure is omitted. Can do. Therefore, for example, when the auxiliary compressor outlet pressure gauge 37 in FIG. 1 is not used not only in the operating unit increase control but also in the operating unit decrease control, such as performing the operating unit decrease control based on the time schedule, Can be omitted.
 なお、以上では、副過給機回転数が第1切替回転数以上であると判定した場合には、放風弁43の閉止を開始することを説明したが(ステップS26、S27)、この放風弁43を閉じる速度、すなわち放風弁43の開度の減少率(変化率)は一定でなくてもよい。例えば、副過給機回転数と第1切替回転数の差が大きいほど放風弁43を閉じる速度を大きく、すなわち放風弁43の開度の減少量を大きくしてもよい。かかる構成によれば、副コンプレッサ33のサージが発生する可能性が低い場合に、より素早く放風弁43を閉じることができるため、エンジン本体10の効率の低下をさらに抑えることができる。 In the above description, it has been described that when it is determined that the sub-supercharger rotational speed is equal to or higher than the first switching rotational speed, the air discharge valve 43 starts to be closed (steps S26 and S27). The speed at which the wind valve 43 is closed, that is, the decrease rate (change rate) of the opening degree of the discharge valve 43 may not be constant. For example, the speed at which the air discharge valve 43 is closed may be increased as the difference between the sub-supercharger rotation speed and the first switching rotation speed is increased, that is, the amount of decrease in the opening degree of the air discharge valve 43 may be increased. According to such a configuration, when the possibility of occurrence of a surge in the sub compressor 33 is low, the air discharge valve 43 can be closed more quickly, so that a decrease in the efficiency of the engine body 10 can be further suppressed.
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態は、第2実施形態において運転台数増加制御に所定のステップを追加したものである。以下、本実施形態の第2実施形態との相違部分を中心に説明する。
(Third embodiment)
Next, a third embodiment will be described. The present embodiment is obtained by adding a predetermined step to the operation number increase control in the second embodiment. The following description will focus on the differences of this embodiment from the second embodiment.
 図16は、本実施形態に係るエンジンシステム200の全体の概略構成図である。図16に示すように、本実施形態に係るエンジンシステム200では、主掃気配管25に主コンプレッサ出口圧計40が設けられているが、それ以外は図1に示す第1実施形態及び第2実施形態に係るエンジンシステム100と同じ構成である。主コンプレッサ出口圧計40は主コンプレッサ23の出口側であってエアクーラ50の上流に位置している。主コンプレッサ出口圧計40は制御装置60と電気的に接続されており、制御装置60は主コンプレッサ出口圧計40から送信される信号に基づいて、主コンプレッサ出口圧を取得する。 FIG. 16 is a schematic configuration diagram of the entire engine system 200 according to the present embodiment. As shown in FIG. 16, in the engine system 200 according to the present embodiment, the main scavenging pipe 25 is provided with a main compressor outlet pressure gauge 40, but otherwise, the first embodiment and the second embodiment shown in FIG. 1. This is the same configuration as the engine system 100 according to FIG. The main compressor outlet pressure gauge 40 is located on the outlet side of the main compressor 23 and upstream of the air cooler 50. The main compressor outlet pressure gauge 40 is electrically connected to the control device 60, and the control device 60 acquires the main compressor outlet pressure based on a signal transmitted from the main compressor outlet pressure gauge 40.
 図17は、本実施形態の運転台数増加制御の方法を示したフローチャートであり、第2実施形態の図11に相当する。図17と図11を対比すればわかるように、本実施形態の運転台数増加制御は、第2実施形態の運転台数増加制御にステップS41、S42を追加したものである。第2実施形態では、制御装置60がステップS29において副過給機回転数が第2切替回転数以上であると判定した場合、副コンプレッサ出口弁42の開放を開始していたが、本実施形態ではステップS31において副過給機回転数が第2切替回転数以上であると判定した場合、すぐに副コンプレッサ出口弁42の開放を開始せずにステップS41へ進む。 FIG. 17 is a flowchart showing a method for controlling the number of operating units of the present embodiment, and corresponds to FIG. 11 of the second embodiment. As can be seen by comparing FIG. 17 and FIG. 11, the operation number increase control of this embodiment is obtained by adding steps S41 and S42 to the operation number increase control of the second embodiment. In the second embodiment, when the control device 60 determines in step S29 that the sub-supercharger rotation speed is equal to or higher than the second switching rotation speed, the sub-compressor outlet valve 42 has started to be opened. If it is determined in step S31 that the sub supercharger rotational speed is equal to or higher than the second switching rotational speed, the process proceeds to step S41 without immediately starting to open the sub compressor outlet valve 42.
 ステップS41では、制御装置60は、主コンプレッサ出口圧計40から送信される信号を読み込み、この信号に基づいて主コンプレッサ出口圧を取得する。 In step S41, the control device 60 reads a signal transmitted from the main compressor outlet pressure gauge 40, and acquires the main compressor outlet pressure based on this signal.
 続いて、制御装置60は、ステップS41で取得した主コンプレッサ出口圧が、ステップS29において第2切替動作点を決定する際に用いた第2切替圧以下であるか否かを判定する(ステップS42)。主コンプレッサ出口圧が第2切替圧以下である場合は(ステップS42でYES)、副コンプレッサ出口弁42の開放を開始し(ステップS32)、その後に処理を終了する。一方、主コンプレッサ出口圧が第2切替圧よりも大きいと判定した場合には(ステップS42でNO)、ステップS28に戻ってステップS28~S31、S41、S42を繰り返す。 Subsequently, the control device 60 determines whether or not the main compressor outlet pressure acquired in step S41 is equal to or lower than the second switching pressure used when determining the second switching operating point in step S29 (step S42). ). If the main compressor outlet pressure is equal to or lower than the second switching pressure (YES in step S42), opening of the sub compressor outlet valve 42 is started (step S32), and then the process is terminated. On the other hand, when it is determined that the main compressor outlet pressure is greater than the second switching pressure (NO in step S42), the process returns to step S28 and steps S28 to S31, S41, and S42 are repeated.
 以上のとおり、本実施形態では、副過給機回転数が第2切替回転数以上であることに加え、主コンプレッサ出口圧が第2切替圧以下であるときに、はじめて副コンプレッサ出口弁42の開放を開始する。 As described above, in the present embodiment, in addition to the sub-supercharger rotational speed being equal to or higher than the second switching rotational speed, when the main compressor outlet pressure is equal to or lower than the second switching pressure, the auxiliary compressor outlet valve 42 is not turned on for the first time. Start opening.
 ここで、船舶が一定速度で航行する場合であっても、海の状況によってはエンジン負荷が大きく変動する場合がある。エンジン負荷が下がったとき主コンプレッサ出口圧は下がるよう制御されるが、エンジン負荷が下がってから主コンプレッサ出口圧が下がるまでにはある程度の時間がかかる。そのため、エンジン負荷が下がるのと同時に運転台数増加制御を行った場合、主コンプレッサ出口圧はまだ高い状態にあるため主コンプレッサ23で昇圧した外気が副コンプレッサ33側へ逆流してしまうおそれがある。 Here, even if the ship navigates at a constant speed, the engine load may fluctuate greatly depending on the sea conditions. Although the main compressor outlet pressure is controlled to decrease when the engine load decreases, it takes some time until the main compressor outlet pressure decreases after the engine load decreases. Therefore, when the operation number increase control is performed at the same time as the engine load is reduced, the main compressor outlet pressure is still in a high state, so that the outside air boosted by the main compressor 23 may flow back to the sub compressor 33 side.
 これに対し、本実施形態では、主コンプレッサ出口圧が第2切替圧以下であるときにはじめて副コンプレッサ出口弁42の開放を開始する。もともと、副コンプレッサ出口圧が第2切替圧力となった時に副コンプレッサ出口弁42の開放を開始するのであるから、副コンプレッサ出口弁42の開放が開始されたときの副コンプレッサ出口圧は第2切替圧である。そのため、本実施形態のように、主コンプレッサ出口圧が第2切替圧力以下であれば、副コンプレッサ出口弁42の開放が開始されたときには、主コンプレッサ出口圧は副コンプレッサ出口圧より小さいことになる。よって、本実施形態によれば、エンジン負荷が変動するような場合であっても、主コンプレッサ23で昇圧した外気が副コンプレッサ33側へ逆流するようなことはない。 In contrast, in this embodiment, the opening of the sub compressor outlet valve 42 is started only when the main compressor outlet pressure is equal to or lower than the second switching pressure. Originally, the opening of the sub compressor outlet valve 42 is started when the sub compressor outlet pressure becomes the second switching pressure, so that the sub compressor outlet pressure when the opening of the sub compressor outlet valve 42 is started is changed to the second switching pressure. Pressure. Therefore, as in the present embodiment, if the main compressor outlet pressure is equal to or lower than the second switching pressure, the main compressor outlet pressure is smaller than the sub compressor outlet pressure when the opening of the sub compressor outlet valve 42 is started. . Therefore, according to this embodiment, even when the engine load fluctuates, the outside air boosted by the main compressor 23 does not flow back to the sub compressor 33 side.
 なお、本実施形態では、主コンプレッサ出口圧計40を用いて主コンプレッサ出口圧を取得したが、例えば、主掃気配管25のエアクーラ50よりも下流に掃気圧計(図10の符号39参照)を設け、その掃気圧計が測定した掃気圧に基づいて主コンプレッサ出口圧を取得(推定)してもよい。この点は後述の第4実施形態の場合も同様である。 In the present embodiment, the main compressor outlet pressure is acquired using the main compressor outlet pressure gauge 40. For example, a scavenging pressure gauge (see reference numeral 39 in FIG. 10) is provided downstream of the air cooler 50 of the main scavenging pipe 25. The main compressor outlet pressure may be acquired (estimated) based on the scavenging pressure measured by the scavenging pressure gauge. This also applies to the case of a fourth embodiment described later.
 (第4実施形態)
 次に、第4実施形態について説明する。本実施形態は、第2実施形態において第1切替回転数および第2切替回転数を決定する方法が異なるものである。以下、本実施形態における第1切替回転数および第2切替回転数の決定方法を中心に説明する。
(Fourth embodiment)
Next, a fourth embodiment will be described. The present embodiment is different from the second embodiment in the method of determining the first switching rotation speed and the second switching rotation speed. Hereinafter, the determination method of the first switching rotation speed and the second switching rotation speed in the present embodiment will be mainly described.
 本実施形態に係るエンジンシステムの全体構成は、図16に示す第3実施形態のエンジンシステム200と基本的に同じである。すなわち、本実施形態に係るエンジンシステムでは主掃気配管25に主コンプレッサ出口圧計40が設けられている。 The overall configuration of the engine system according to the present embodiment is basically the same as the engine system 200 of the third embodiment shown in FIG. That is, in the engine system according to this embodiment, the main compressor outlet pressure gauge 40 is provided in the main scavenging piping 25.
 図18は、本実施形態の運転台数増加制御の方法を示したフローチャートであり、第2実施形態の図11に相当する。図18と図11を対比すればわかるように、本実施形態の運転台数増加制御は、第2実施形態の運転台数増加制御のステップS23、S28、S29をステップS51、S53、S54に変更し、ステップS52を追加したものである。 FIG. 18 is a flowchart showing a method for controlling the number of operating units of the present embodiment, and corresponds to FIG. 11 of the second embodiment. As can be seen from a comparison between FIG. 18 and FIG. 11, the operation number increase control of the present embodiment changes steps S23, S28, and S29 of the operation number increase control of the second embodiment to steps S51, S53, and S54. Step S52 is added.
 第2実施形態ではステップS22を経た後、エンジン負荷及び副過給機回転数を取得していたところ(図11のステップS23参照)、本実施形態では、主コンプレッサ出口圧計40及び副過給機回転計36から送信される信号を読み込み、これらの信号に基づいて「主コンプレッサ出口圧」及び副過給機回転数を取得する(ステップS51)。その後、制御装置60は、ステップS51で取得した主コンプレッサ出口圧に基づいてエンジン負荷を推定する(ステップS52)。具体的には、制御装置60は、図19に示すグラフに対応するマップデータを記憶しており、このマップデータと取得したコンプレッサ出口圧に基づいてエンジン負荷を推定する。なお、図19に示すように、コンプレッサ出口圧が大きくなるに従って推定されるエンジン負荷は大きくなる。 In the second embodiment, after passing through step S22, the engine load and the sub-supercharger speed are acquired (see step S23 in FIG. 11). In this embodiment, the main compressor outlet pressure gauge 40 and the sub-supercharger are obtained. The signals transmitted from the tachometer 36 are read, and the “main compressor outlet pressure” and the sub-supercharger rotation speed are acquired based on these signals (step S51). Thereafter, the control device 60 estimates the engine load based on the main compressor outlet pressure acquired in step S51 (step S52). Specifically, the control device 60 stores map data corresponding to the graph shown in FIG. 19, and estimates the engine load based on this map data and the acquired compressor outlet pressure. As shown in FIG. 19, the estimated engine load increases as the compressor outlet pressure increases.
 その後は、第2実施形態と同様に、推定したエンジン負荷に基づいて第1切替動作点を決定し(ステップS24)、第1切替回転数を決定する(ステップS24)。なお、ステップS52で推定したエンジン負荷と実際のエンジン負荷とには多少の誤差があるものの、前述の通り第1切替動作点は所定のサージマージンを有しているため、当該誤差に起因して実際の動作点が第1切替動作点から多少ずれたとしても、放風弁43を閉じ始める直前から副コンプレッサ出口弁42を開き始める直前までの間は副コンプレッサ33のサージを回避することができる。 Thereafter, similarly to the second embodiment, the first switching operation point is determined based on the estimated engine load (step S24), and the first switching rotational speed is determined (step S24). Although there is a slight error between the engine load estimated in step S52 and the actual engine load, as described above, the first switching operating point has a predetermined surge margin. Even if the actual operating point slightly deviates from the first switching operating point, it is possible to avoid the surge of the sub compressor 33 from immediately before the start of closing the air discharge valve 43 to just before starting to open the sub compressor outlet valve 42. .
 また、本実施形態ではステップS27を経た後、ステップS51と同様に、主コンプレッサ出口圧及び副過給機回転数を取得する(ステップS53)。その後、制御装置60は、第2切替動作点を決定する(ステップS54)。具体的には、制御装置60は、ステップS53で取得した主コンプレッサ出口圧に等しい値を第2切替圧とする。そして、この第2切替圧においてサージが発生する副コンプレッサ33の流量に所定流量(マージン流量)を加えた値を第2切替流量とする。さらに、副コンプレッサ出口圧が第2切替圧で、かつ、副コンプレッサ流量が第2切替流量である動作点を第2切替動作点とする。すなわち、図20で示すように、サージラインにおける第2切替圧(主コンプレッサ出口圧)の点(サージ点)である点Cをとり、この点Cから所定のマージン流量分だけ副コンプレッサ流量の増加側にシフトした点Dを第2切替動作点とする。 In this embodiment, after passing through step S27, the main compressor outlet pressure and the sub-supercharger rotation speed are acquired in the same manner as in step S51 (step S53). Thereafter, the control device 60 determines the second switching operation point (step S54). Specifically, the control device 60 sets a value equal to the main compressor outlet pressure acquired in step S53 as the second switching pressure. A value obtained by adding a predetermined flow rate (margin flow rate) to the flow rate of the sub-compressor 33 that generates a surge at the second switching pressure is defined as a second switching flow rate. Further, an operating point at which the sub compressor outlet pressure is the second switching pressure and the sub compressor flow rate is the second switching flow rate is defined as a second switching operating point. That is, as shown in FIG. 20, a point C which is the point (surge point) of the second switching pressure (main compressor outlet pressure) in the surge line is taken, and the auxiliary compressor flow rate is increased from this point C by a predetermined margin flow rate. The point D shifted to the side is set as the second switching operation point.
 続いて、図18のステップS30において、副コンプレッサ33の第2切替動作点を通過する圧力曲線の副過給機回転数を第2切替回転数とする。例えば、図20で示すように第2切替動作点である点DをZ%回転数の圧力曲線が通過している場合には、第2切替回転数をZ%回転数とする。第2切替回転数を決定した後の処理(ステップS31、S32)は、第2実施形態の場合と同様である。 Subsequently, in step S30 of FIG. 18, the sub-supercharger rotation speed of the pressure curve passing through the second switching operation point of the sub-compressor 33 is set as the second switching rotation speed. For example, as shown in FIG. 20, when the pressure curve of the Z% rotation speed passes through the point D that is the second switching operation point, the second switching rotation speed is set to the Z% rotation speed. The processing (steps S31 and S32) after determining the second switching rotational speed is the same as in the second embodiment.
 なお、上記のマージン流量の値は特に限定されない。マージン流量は一定であってもよく、主コンプレッサ出口圧が高くなるほど大きくするなど変動させてもよい。また、以上では、サージ点である点Cから所定のマージン流量だけ副コンプレッサ流量の増加側にシフトした点Dを第2切替動作点としたが、上記のシフトの方向は副コンプレッサ流量の増加方向のみに限られない。例えば、サージ点(点C)から所定のマージン流量だけ副コンプレッサ流量の増加側にシフトすると共に、所定のマージン圧力だけ副コンプレッサ圧力の減少側にシフトさせた点を第2切替動作点としてもよい。 In addition, the value of the above margin flow rate is not particularly limited. The margin flow rate may be constant or may be varied such as increasing as the main compressor outlet pressure increases. In the above description, the point D shifted from the surge point C to the increase side of the auxiliary compressor flow rate by a predetermined margin flow rate is set as the second switching operation point. However, the direction of the shift is the increase direction of the auxiliary compressor flow rate. Not limited to only. For example, the second switching operation point may be a point that is shifted from the surge point (point C) by a predetermined margin flow rate toward the increase side of the sub compressor flow rate and shifted by a predetermined margin pressure toward the decrease side of the sub compressor pressure. .
 以上のとおり、本実施形態では、エンジン負荷ではなく主コンプレッサ出口圧に基づいて第1切替回転数および第2切替回転数を決定し、副過給機回転数がこの第1切替回転数以上であるとき放風弁43の閉止を開始し、この第2切替回転数以上であるとき副コンプレッサ出口弁42の開放を開始する。このように、放風弁43を閉止するタイミングおよび副コンプレッサ出口弁42を開放するタイミングは、エンジン負荷に影響されないため、エンジン負荷が変動する状況で稼働台数増加制御を行う場合は有効である。さらに、第1実施形態による運転台数減少制御を行うなど、運転台数増加制御のみならず運転台数減少制御においてもエンジン負荷を用いない場合には、図2における制御装置60とエンジン回転計11および燃料供給装置12との接続を省略することができる。 As described above, in the present embodiment, the first switching rotational speed and the second switching rotational speed are determined based on the main compressor outlet pressure instead of the engine load, and the sub supercharger rotational speed is equal to or higher than the first switching rotational speed. At a certain time, closing of the air discharge valve 43 is started, and when the rotation speed is equal to or higher than the second switching rotational speed, opening of the sub compressor outlet valve 42 is started. As described above, the timing for closing the air discharge valve 43 and the timing for opening the sub compressor outlet valve 42 are not affected by the engine load, and thus are effective when the operation number increase control is performed in a situation where the engine load varies. Further, when the engine load is not used not only in the operation number increase control but also in the operation number decrease control, such as the operation number decrease control according to the first embodiment, the control device 60, the engine tachometer 11 and the fuel in FIG. The connection with the supply device 12 can be omitted.
 以上、第1乃至4実施形態について説明した。以上では、エンジンシステム100、200が一台の主過給機20と一台の副過給機30を備える場合について説明したが、エンジンシステム100、200は主過給機20を複数台備えていてもよく、副過給機30を複数台備えていてもよい。例えば、第1実施形態であれば、エンジンシステム100は、図21に示すように、一台の主過給機20と、二台の副過給機30を備えていても良い。 The first to fourth embodiments have been described above. Although the case where the engine systems 100 and 200 include one main supercharger 20 and one sub-supercharger 30 has been described above, the engine systems 100 and 200 include a plurality of main superchargers 20. Alternatively, a plurality of sub-superchargers 30 may be provided. For example, in the first embodiment, the engine system 100 may include one main supercharger 20 and two auxiliary superchargers 30 as shown in FIG.
 本発明に係るエンジンシステムによれば、過給機にサージが発生するのを防止しつつ、過給機の運転台数を変更する際に、エンジン本体の効率が低下するのを抑制することができる。よって、運転状況に応じて過給機の運転台数を変えるエンジンシステムの技術分野において有益である。 According to the engine system of the present invention, it is possible to prevent the efficiency of the engine body from being lowered when changing the number of operating superchargers while preventing surges from occurring in the supercharger. . Therefore, it is useful in the technical field of an engine system that changes the number of superchargers operated in accordance with the operating conditions.
10 エンジン本体
20 主過給機
22 主タービン
23 主コンプレッサ
30 副過給機
32 副タービン
33 副コンプレッサ
41 副タービン入口弁
42 副コンプレッサ出口弁
43 放風弁
44 放風配管
60 制御装置
100、200 エンジンシステム
DESCRIPTION OF SYMBOLS 10 Engine main body 20 Main supercharger 22 Main turbine 23 Main compressor 30 Subsupercharger 32 Subturbine 33 Subcompressor 41 Subturbine inlet valve 42 Subcompressor outlet valve 43 Air discharge valve 44 Air discharge piping 60 Control apparatus 100, 200 Engine system

Claims (12)

  1.  エンジン本体と、
     主タービン及び主コンプレッサを有する少なくとも一台の主過給機と、
     前記エンジン本体に対して前記主過給機と並列に配置され、副タービン及び副コンプレッサを有する少なくとも一台の副過給機と、
     前記副タービンの入口側に設けられた副タービン入口弁と、
     前記副コンプレッサの出口側に設けられた副コンプレッサ出口弁と、
     前記副コンプレッサで昇圧された外気を前記副コンプレッサ出口弁の上流から外部へ導く放風配管と、
     前記放風配管に設けられた放風弁と、
     制御装置と、を備え、
     前記制御装置は、
     前記主過給機及び前記副過給機が運転した状態から、前記主過給機を運転させたまま前記副タービン入口弁及び前記副コンプレッサ出口弁を閉じて前記副過給機を停止させ、過給機の運転台数を減らす際、
     副過給機回転数に基づいて所定のサージマージンを有する停止時基準圧を決定し、副コンプレッサ出口圧が前記停止時基準圧よりも高いときに前記放風弁の開度を増加させ、前記副コンプレッサ出口圧が前記停止時基準圧よりも低いときに前記放風弁の開度を減少させるように構成されている、エンジンシステム。
    The engine body,
    At least one main turbocharger having a main turbine and a main compressor;
    At least one sub-supercharger disposed in parallel with the main supercharger with respect to the engine body and having a sub-turbine and a sub-compressor;
    A sub-turbine inlet valve provided on the inlet side of the sub-turbine;
    An auxiliary compressor outlet valve provided on the outlet side of the auxiliary compressor;
    A discharge pipe for guiding outside air boosted by the sub compressor from the upstream side of the sub compressor outlet valve to the outside;
    A discharge valve provided in the discharge pipe;
    A control device,
    The controller is
    From the state in which the main turbocharger and the subsupercharger are operated, the subturbine is stopped by closing the subturbine inlet valve and the subcompressor outlet valve while operating the main supercharger, When reducing the number of operating turbochargers,
    Determining a stop-time reference pressure having a predetermined surge margin based on the sub-supercharger rotation speed, and increasing the opening of the discharge valve when the sub-compressor outlet pressure is higher than the stop-time reference pressure; An engine system configured to decrease the opening degree of the air discharge valve when a sub compressor outlet pressure is lower than the stop-time reference pressure.
  2.  前記制御装置は、前記放風弁の開度を増加させる際、前記副コンプレッサ出口圧と前記停止時基準圧との差が小さいほど前記放風弁の開度の増加量を小さくするように構成されている、請求項1に記載のエンジンシステム。 The controller is configured to reduce the increase amount of the opening of the air discharge valve as the difference between the sub compressor outlet pressure and the stop-time reference pressure is smaller when increasing the opening of the air discharge valve. The engine system according to claim 1.
  3.  エンジン本体と、
     主タービン及び主コンプレッサを有する少なくとも一台の主過給機と、
     前記エンジン本体に対して前記主過給機と並列に配置され、副タービン及び副コンプレッサを有する少なくとも一台の副過給機と、
     前記副タービンの入口側に設けられた副タービン入口弁と、
     前記副コンプレッサの出口側に設けられた副コンプレッサ出口弁と、
     前記副コンプレッサで昇圧された外気を前記副コンプレッサ出口弁の上流から外部へ導く放風配管と、
     前記放風配管に設けられた放風弁と、
     制御装置と、を備え、
     前記制御装置は、
     前記主過給機が運転し前記副過給機が停止した状態から、前記主過給機を運転させたまま前記副タービン入口弁及び前記副コンプレッサ出口弁を開いて前記副過給機を運転させ、過給機の運転台数を増やす際、
     副過給機回転数に基づいて所定のサージマージンを有する運転時基準圧を決定し、副コンプレッサ出口圧が前記運転時基準圧よりも高いときに前記放風弁の開度を増加させ、前記副コンプレッサ出口圧が前記運転時基準圧よりも低いときに前記放風弁の開度を減少させるように構成されている、エンジンシステム。
    The engine body,
    At least one main turbocharger having a main turbine and a main compressor;
    At least one sub-supercharger disposed in parallel with the main supercharger with respect to the engine body and having a sub-turbine and a sub-compressor;
    A sub-turbine inlet valve provided on the inlet side of the sub-turbine;
    An auxiliary compressor outlet valve provided on the outlet side of the auxiliary compressor;
    A discharge pipe for guiding outside air boosted by the sub compressor from the upstream side of the sub compressor outlet valve to the outside;
    A discharge valve provided in the discharge pipe;
    A control device,
    The controller is
    The sub-supercharger is operated by opening the sub-turbine inlet valve and the sub-compressor outlet valve while operating the main supercharger from the state where the main supercharger is operated and the sub-supercharger is stopped. And increase the number of turbochargers
    An operating reference pressure having a predetermined surge margin is determined based on the sub-supercharger rotational speed, and when the sub-compressor outlet pressure is higher than the operating reference pressure, the opening of the discharge valve is increased, An engine system configured to reduce the opening degree of the discharge valve when a sub compressor outlet pressure is lower than a reference pressure during operation.
  4.  前記制御装置は、前記放風弁の開度を増加させる際、前記副コンプレッサの出口圧と前記運転時基準圧との差が小さいほど前記放風弁の開度の増加量を小さくするように構成されている、請求項3に記載のエンジンシステム。 When increasing the opening degree of the discharge valve, the control device reduces the increase amount of the opening degree of the discharge valve as the difference between the outlet pressure of the sub-compressor and the reference pressure during operation decreases. The engine system according to claim 3, which is configured.
  5.  前記制御装置は、過給機の運転台数を増やす際、前記副タービン入口弁を開放し始めた後、副過給機回転数が所定の切替回転数以上となったときに前記副コンプレッサ出口弁の開放を開始し、前記切替回転数はエンジン負荷に応じて決定するように構成されている、請求項3又は4に記載のエンジンシステム。 The controller, when increasing the number of operating turbochargers, starts opening the auxiliary turbine inlet valve, and then the auxiliary compressor outlet valve when the auxiliary turbocharger rotational speed becomes equal to or higher than a predetermined switching rotational speed. The engine system according to claim 3 or 4, wherein opening of the engine is started and the switching rotational speed is determined according to an engine load.
  6.  エンジン本体と、
     主タービン及び主コンプレッサを有する少なくとも一台の主過給機と、
     前記エンジン本体に対して前記主過給機と並列に配置され、副タービン及び副コンプレッサを有する少なくとも一台の副過給機と、
     前記副タービンの入口側に設けられた副タービン入口弁と、
     前記副コンプレッサの出口側に設けられた副コンプレッサ出口弁と、
     前記副コンプレッサで昇圧された外気を前記副コンプレッサ出口弁の上流から外部へ導く放風配管と、
     前記放風配管に設けられた放風弁と、
     制御装置と、を備え、
     前記制御装置は、
     前記主過給機が運転し前記副過給機が停止した状態から、前記主過給機を運転させたまま前記副タービン入口弁及び前記副コンプレッサ出口弁を開いて前記副過給機を運転させ、過給機の運転台数を増やす際、
     前記放風弁を所定の開度で開いた状態で前記副タービン入口弁の開放を開始した後、副過給機回転数が所定の第1切替回転数以上となったときに前記放風弁の閉止を開始し、副過給機回転数が前記第1切替回転数よりも大きい第2切替回転数以上となったときに前記副コンプレッサ出口弁の開放を開始するように構成されている、エンジンシステム。
    The engine body,
    At least one main turbocharger having a main turbine and a main compressor;
    At least one sub-supercharger disposed in parallel with the main supercharger with respect to the engine body and having a sub-turbine and a sub-compressor;
    A sub-turbine inlet valve provided on the inlet side of the sub-turbine;
    An auxiliary compressor outlet valve provided on the outlet side of the auxiliary compressor;
    A discharge pipe for guiding outside air boosted by the sub compressor from the upstream side of the sub compressor outlet valve to the outside;
    A discharge valve provided in the discharge pipe;
    A control device,
    The controller is
    The sub-supercharger is operated by opening the sub-turbine inlet valve and the sub-compressor outlet valve while operating the main supercharger from the state where the main supercharger is operated and the sub-supercharger is stopped. And increase the number of turbochargers
    After the opening of the auxiliary turbine inlet valve with the opening of the discharging valve opened at a predetermined opening degree, the discharging valve when the auxiliary supercharger rotational speed becomes equal to or higher than a predetermined first switching rotational speed Is configured to start opening the sub compressor outlet valve when the sub supercharger rotational speed becomes equal to or higher than a second switching rotational speed greater than the first switching rotational speed. Engine system.
  7.  前記制御装置は、エンジン負荷に基づいて所定のサージマージンを有する前記副コンプレッサの第1切替動作点を決定し、前記第1切替動作点を通過する圧力曲線の副過給機回転数を前記第1切替回転数とするように構成されている、請求項6に記載のエンジンシステム。 The control device determines a first switching operation point of the sub-compressor having a predetermined surge margin based on an engine load, and determines a sub-supercharger rotation speed of a pressure curve passing through the first switching operation point. The engine system according to claim 6, wherein the engine system is configured to have one switching speed.
  8.  前記制御装置は、エンジン負荷に基づいて所定のサージマージンを有する前記副コンプレッサの第2切替動作点を決定し、前記第2切替動作点を通過する圧力曲線の副過給機回転数を前記第2切替回転数とするように構成されている、請求項6又は7に記載のエンジンシステム。 The control device determines a second switching operation point of the sub-compressor having a predetermined surge margin based on an engine load, and determines a sub-supercharger rotation speed of a pressure curve passing through the second switching operation point. The engine system according to claim 6 or 7, wherein the engine system is configured to have two switching speeds.
  9.  前記制御装置は、過給機の運転台数を増やす際、主コンプレッサ出口圧を取得し、副過給機回転数が前記第2切替回転数以上であり、かつ、取得した主コンプレッサ出口圧が前記第2切替動作点における副コンプレッサ出口圧よりも小さいときに副コンプレッサ出口弁を開き始めるように構成されている、請求項8に記載のエンジンシステム。 The controller acquires the main compressor outlet pressure when increasing the number of operating superchargers, the sub-supercharger rotation speed is equal to or higher than the second switching rotation speed, and the acquired main compressor outlet pressure is The engine system according to claim 8, wherein the engine system is configured to start opening the sub compressor outlet valve when the pressure is lower than the sub compressor outlet pressure at the second switching operation point.
  10.  前記制御装置は、主コンプレッサ出口圧を取得し、取得した主コンプレッサ出口圧に等しい値を第2切替圧とし、当該第2切替圧においてサージが発生する副コンプレッサ流量に所定流量を加えた値を第2切替流量とし、前記第2切替圧でかつ前記第2切替流量である動作点を第2切替動作点とし、前記第2切替動作点を通過する圧力曲線の副過給機回転数を前記第2切替回転数とするように構成されている、請求項6に記載のエンジンシステム。 The control device acquires a main compressor outlet pressure, sets a value equal to the acquired main compressor outlet pressure as a second switching pressure, and sets a value obtained by adding a predetermined flow rate to a sub compressor flow rate at which a surge occurs at the second switching pressure. The second switching flow rate, the operating point at the second switching pressure and the second switching flow rate as the second switching operating point, and the sub-supercharger rotation speed of the pressure curve passing through the second switching operating point is the The engine system according to claim 6, wherein the engine system is configured to have a second switching speed.
  11.  前記制御装置は、取得した主コンプレッサ出口圧に基づいてエンジン負荷を推定し、推定したエンジン負荷に基づいて所定のサージマージンを有する前記副コンプレッサの第1切替動作点を決定し、前記第1切替動作点を通過する圧力曲線の副過給機回転数を前記第1切替回転数とするように構成されている、請求項10に記載のエンジンシステム。 The control device estimates an engine load based on the acquired main compressor outlet pressure, determines a first switching operating point of the sub compressor having a predetermined surge margin based on the estimated engine load, and performs the first switching The engine system according to claim 10, wherein the engine system is configured such that a sub-supercharger rotational speed of a pressure curve passing through an operating point is the first switching rotational speed.
  12.  前記制御装置は、前記放風弁を閉じる際、前記副過給機回転数と前記第1切替回転数との差が小さくなるほど前記放風弁の開度の減少量を小さくするように構成されている、請求項6乃至11のうちいずれか一の項に記載のエンジンシステム。 The control device is configured to reduce the amount of decrease in the opening degree of the air discharge valve as the difference between the sub-supercharger rotation speed and the first switching rotation speed decreases when the air discharge valve is closed. The engine system according to any one of claims 6 to 11.
PCT/JP2015/001153 2014-04-24 2015-03-04 Engine system WO2015162840A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580012093.2A CN106068368B (en) 2014-04-24 2015-03-04 Engine system
JP2015519118A JP5786107B1 (en) 2014-04-24 2015-03-04 Engine system
KR1020167017606A KR101697218B1 (en) 2014-04-24 2015-03-04 Engine system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-090302 2014-04-24
JP2014090302 2014-04-24

Publications (1)

Publication Number Publication Date
WO2015162840A1 true WO2015162840A1 (en) 2015-10-29

Family

ID=54332023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001153 WO2015162840A1 (en) 2014-04-24 2015-03-04 Engine system

Country Status (3)

Country Link
KR (1) KR101697218B1 (en)
CN (1) CN106068368B (en)
WO (1) WO2015162840A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024047B (en) * 2017-03-30 2019-06-28 广东美的制冷设备有限公司 Compressor control method and device
CN113074044B (en) * 2021-04-08 2022-04-26 潍柴动力股份有限公司 Method and equipment for protecting engine supercharger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310345Y2 (en) * 1984-06-22 1991-03-14
JP2656559B2 (en) * 1988-07-30 1997-09-24 マツダ株式会社 Intake structure of supercharged engine
JP2762395B2 (en) * 1988-07-09 1998-06-04 株式会社日立製作所 Twin exhaust turbine turbocharger
JP2011047393A (en) * 2009-07-29 2011-03-10 Mitsubishi Heavy Ind Ltd Marine diesel engine
EP2295759A1 (en) * 2009-09-11 2011-03-16 Ford Global Technologies, LLC Method of and apparatus for controlling the operation of an internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166716A (en) 1984-02-08 1985-08-30 Mitsubishi Heavy Ind Ltd Supercharger selective operating method for diesel engine
JP2009162124A (en) * 2008-01-08 2009-07-23 Toyota Motor Corp Control system of parallel twin turbo system
JP4950082B2 (en) 2008-01-10 2012-06-13 三菱重工業株式会社 Marine diesel engine
JP4962403B2 (en) * 2008-05-07 2012-06-27 トヨタ自動車株式会社 Multistage turbocharging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310345Y2 (en) * 1984-06-22 1991-03-14
JP2762395B2 (en) * 1988-07-09 1998-06-04 株式会社日立製作所 Twin exhaust turbine turbocharger
JP2656559B2 (en) * 1988-07-30 1997-09-24 マツダ株式会社 Intake structure of supercharged engine
JP2011047393A (en) * 2009-07-29 2011-03-10 Mitsubishi Heavy Ind Ltd Marine diesel engine
EP2295759A1 (en) * 2009-09-11 2011-03-16 Ford Global Technologies, LLC Method of and apparatus for controlling the operation of an internal combustion engine

Also Published As

Publication number Publication date
KR101697218B1 (en) 2017-01-17
CN106068368B (en) 2019-02-19
CN106068368A (en) 2016-11-02
KR20160105794A (en) 2016-09-07

Similar Documents

Publication Publication Date Title
US10208685B2 (en) Method for charge pressure control of an internal combustion engine with turbines arranged in parallel, and internal combustion engine for carrying out such a method
BE1022403B1 (en) METHOD FOR SENDING AN OIL-INJECTED COMPRESSOR DEVICE
AU2007347705B2 (en) Anti-bogdown control system for turbine/compressor systems
JP2016020632A (en) Abnormality diagnosis device of supercharger
JP2006188989A (en) Supercharging system for internal combustion engine
CN110735706A (en) Intelligent seawater cooling system
JP6851190B2 (en) Internal combustion engines and methods for optimizing exhaust gas post-treatment of internal combustion engines
JP5412311B2 (en) Fuel gas supply system for LNG carrier
WO2015162840A1 (en) Engine system
EP2840238B1 (en) Operation of a gas turbine power plant with carbon dioxide separation
NO20210744A1 (en) Compressor unit
JP5786107B1 (en) Engine system
JP5908636B1 (en) Ship engine system and control method thereof
EP3379052A1 (en) Engine with exhaust turbocharger
JP5964260B2 (en) Engine exhaust gas energy recovery system
JP2006316759A (en) Compression device
JP5496057B2 (en) Turbocharger abnormality determination device
JP6270838B2 (en) Engine system and ship
JP2010151040A (en) Abnormality detection device of intercooler
JP6358050B2 (en) Engine control device
JP6370716B2 (en) Supercharging system and operating method of supercharging system
CN110998082B (en) Engine system
JP5841641B2 (en) Engine system
JP6554159B2 (en) Engine system
JP2005201092A (en) Supercharge system for internal combustion engine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015519118

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167017606

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782897

Country of ref document: EP

Kind code of ref document: A1