WO2015162654A1 - Lithium ion cell and method for manufacturing same - Google Patents

Lithium ion cell and method for manufacturing same Download PDF

Info

Publication number
WO2015162654A1
WO2015162654A1 PCT/JP2014/061116 JP2014061116W WO2015162654A1 WO 2015162654 A1 WO2015162654 A1 WO 2015162654A1 JP 2014061116 W JP2014061116 W JP 2014061116W WO 2015162654 A1 WO2015162654 A1 WO 2015162654A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
separator
negative electrode
internal short
lithium ion
Prior art date
Application number
PCT/JP2014/061116
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 加賀
新平 尼崎
正志 西亀
和明 直江
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/061116 priority Critical patent/WO2015162654A1/en
Priority to TW104112602A priority patent/TWI523296B/en
Publication of WO2015162654A1 publication Critical patent/WO2015162654A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion battery.
  • Patent Document 1 discloses a nonaqueous electrolyte battery having a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte, and an aluminum silicate at a location where it can come into contact with the nonaqueous electrolyte in the battery.
  • a nonaqueous electrolyte battery that is excellent in reliability and can suppress deterioration in characteristics during high-temperature storage is described using a nonaqueous electrolyte battery characterized by having a derivative thereof.
  • an object of the present invention is to provide a lithium ion battery capable of suppressing internal short circuit failure by efficiently capturing metal ions and improving reliability.
  • the present invention provides a positive electrode and a negative electrode, a separator that insulates the positive electrode and the negative electrode, an electrolyte solution that performs a charge / discharge reaction between the positive electrode and the negative electrode, and the separator.
  • a lithium ion battery characterized by containing an internal short-circuit preventing agent that suppresses internal short-circuit defects.
  • the present invention it is possible to provide a lithium ion battery capable of suppressing internal short circuit failure by efficiently capturing metal ions and improving reliability.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • Example 1 of the present invention will be described with reference to FIGS. 1-6.
  • the slurry SL1 for producing the positive electrode will be described.
  • a positive electrode active material PAS made of lithium cobalt oxide and carbon as a conductive additive are mixed.
  • a positive electrode active material PAS and a conductive additive are contained in a solution in which a binder (binder) made of polyvinylidene fluoride is dissolved in N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • the slurry SL2 for producing a separator that insulates the positive electrode and the negative electrode will be described.
  • the slurry SL2 include ceramic powder CRS (particle size is 4 ⁇ m, for example) such as alumina (Al 2 O 3 ) and silica (SiO 2 ), high-density polyethylene (melting point: 130 to 137 ° C.), and the like.
  • Organic material OM (particle size is, for example, 1 ⁇ m) such as linear low density polyethylene (melting point: 122 to 124 ° C.) is mixed.
  • the slurry SL2 is mixed with an internal short circuit preventing agent ISM (particle size is, for example, 1 ⁇ m) such as nitrite or nitrate.
  • the slurry SL1 containing the positive electrode active material PAS and the binder (binder) is applied to the positive electrode plate (positive electrode current collector) PEP and dried. Thereafter, pressurization is performed to increase the density of the positive electrode active material PAS applied to both surfaces of the positive electrode plate PEP and to smooth the surface.
  • the positive electrode active material PAS is applied to both surfaces of the positive electrode plate PEP.
  • a separator SP1 containing ceramic powder CRS, an organic material OM, an internal short circuit preventing agent ISM, and a binder is formed on the positive electrode active material PAS.
  • the separator SP1 uses a die coater DC, and a ceramic powder CRS, an organic material OM, and an internal short circuit preventing agent ISM are applied on the positive electrode active material PAS applied to the positive electrode plate PEP after the positive electrode sheet PES is produced. It is produced by applying the kneaded slurry SL2. Next, the ceramic powder CRS, the organic material OM, and the internal short circuit inhibitor ISM applied on the positive electrode plate PAS are dried. Specifically, for example, by heating the positive electrode plate PEP at 120 ° C. or less, the positive electrode active material PAS, the ceramic powder CRS, the organic material OM, and the internal short circuit preventing agent ISM applied on the positive electrode plate PEP are dried. Let The heat treatment here needs to be set to a temperature at which the organic material OM constituting the separator SP1 does not melt.
  • the slurry SL2 in which the ceramic powder CRS, the organic material OM, and the internal short circuit preventing agent ISM are kneaded is applied to the slurry. Then, for example, by heating the positive electrode plate PEP at 120 ° C.
  • the ceramic powder CRS, the organic material OM, and the internal short circuit preventing agent ISM applied to the other surface of the positive electrode plate PEP are dried, and the positive electrode plate
  • the positive electrode active material PAS, the separator SP1, and the separator SP2 are formed on both sides of the PEP.
  • the slurry SL3 for producing the negative electrode will be described.
  • the slurry SL3 includes, for example, a solution in which a negative electrode active material NAS made of a carbon material (carbon material) and a binder (binder) made of polyvinylidene fluoride are dissolved in N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • the slurry SL3 containing the negative electrode active material NAS and a binder (binder) is applied to the negative electrode plate (negative electrode current collector) NEP and dried. Thereafter, pressurization is performed to increase the density of the negative electrode active material NAS applied to both surfaces of the negative electrode plate NEP, and the negative electrode sheet NAS having a smooth surface is produced.
  • the positive electrode plate PEP coated with the separator SP1 (SP2) and the positive electrode active material PAS is cut and processed. Thereby, a plurality of positive electrode current collecting tabs PTAB having a rectangular shape on one side (upper side) of the positive electrode plate PEP can be formed.
  • the positive electrode PEL processed by applying the positive electrode active material PAS to the positive electrode plate PEP can be formed.
  • the negative electrode plate NEP coated with the negative electrode active material NAS is cut and processed. Accordingly, a plurality of negative electrode current collecting tabs NTAB having a rectangular shape on one side (lower side) of the negative electrode plate NEP can be formed. In this way, the negative electrode NEL processed by applying the negative electrode active material NAS to the negative electrode plate NEP can be formed.
  • the positive electrode PEL formed integrally with the separator SP1 (SP2 (not shown)) and the negative electrode NEL are overlapped.
  • the positive electrode current collecting tab PTAB formed in the positive electrode PEL and the negative electrode current collecting tab NTAB formed in the negative electrode NEL are arranged in opposite directions.
  • the electrode wound body WRF is formed by winding the positive electrode PEL with the separator SP1 (SP2) and the negative electrode NEL around the shaft core CR. In this way, the electrode winding body WRF can be formed.
  • the positive electrode current collecting tab PTAB protruding from the upper end of the electrode winding body WRF is connected to the positive electrode current collecting ring PR.
  • the negative electrode current collecting tab NTAB protruding from the lower end of the electrode winding body WRF is connected to the negative electrode current collecting ring NR.
  • the connection of the positive electrode current collector tab PTAB to the positive electrode current collector ring PR and the connection of the negative electrode current collector tab NTAB to the negative electrode current collector ring NR are performed by, for example, ultrasonic welding.
  • the electrode winding body WRF is inserted into the outer can CS.
  • a groove DT is formed in the outer can CS.
  • the groove DT is provided to fix the electrode winding body WRF inserted in the outer can CS so as not to move in the vertical direction.
  • the electrolyte EL is injected into the outer can CS into which the electrode winding body WRF is inserted.
  • the upper part of the outer can CS is sealed with a cap.
  • the separator SP1 can contain a material that is hardly soluble in a non-aqueous electrolyte such as nitrite and nitrate and has an effect of capturing metal ions.
  • the internal short-circuit preventing agent component that is in contact with the water electrolyte and eluted in a small amount efficiently captures metal ions and can prevent internal short-circuit. Therefore, a highly reliable lithium ion battery can be provided.
  • Example 2 of the present invention will be described with reference to FIGS. 7-9.
  • This example is characterized in that it is formed by applying ceramic powder CRS, organic material OM, and internal short circuit preventing agent ISM on a polyolefin film.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the slurry SL4 that forms the separator SP3a is, for example, in a solution in which a binder (binder) made of polyvinylidene fluoride is dissolved in N-methylpyrrolidone (NMP).
  • a short-circuit preventing agent ISM particle size is, for example, 1 ⁇ m is contained.
  • a slurry SL4 kneaded with the internal short-circuit preventing agent ISM is applied onto the polyolefin separator PSP, whereby a ceramic is applied onto the polyolefin separator PSP.
  • Separator SP3a containing powder CRS and internal short circuit preventing agent ISM is formed.
  • the internal short circuit preventing agent ISM applied on the polyolefin separator PSP is dried. Specifically, for example, by heating at 120 ° C. or lower, the internal short circuit preventing agent ISM applied on the polyolefin-based separator PSP is dried. The heat treatment here needs to be set to a temperature at which the polyolefin separator PSP does not melt. Thereby, SP3 containing the internal short circuit preventing agent ISM can be formed on the polyolefin-based separator PSP.
  • Example 1 Compared with Example 1, it is possible to make the internal short-circuit preventing agent uniformly exist on the surface of the separator SP3, and the internal short-circuit preventing agent component comes into contact with the non-aqueous electrolyte in a minute amount. Can be effectively suppressed from becoming non-uniform in concentration. For this reason, it is possible to efficiently capture metal ions and effectively make an internal short circuit without depending on the location where the metal foreign matter is mixed, and to manufacture a highly reliable lithium ion battery.
  • Example 3 of the present invention will be described with reference to FIG.
  • This example is characterized in that the organic material OM and the internal short circuit preventing agent ISM are contained in a polyolefin film by a dry method.
  • the same components as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • high-density polyethylene melting point: 130-137 ° C.
  • linear low-density polyethylene melting point: 122-124 ° C.
  • organic material OM for example, nitrite
  • An internal short circuit preventing agent ISM particle size is 1 ⁇ m, for example
  • ISM particle size is 1 ⁇ m, for example
  • the molten organic material OM containing the internal short-circuit preventing agent is supplied from the extruder EXM to the T die TD, and is cooled and solidified by being extruded in a sheet form onto the cooling roll COR. Then, heat processing is performed by the preheating roll group PHRS, and a porous structure is formed by extending
  • Example 4 of the present invention will be described with reference to FIG.
  • This example is characterized in that an organic material OM and an internal short circuit preventing agent ISM are contained in a polyolefin film by a wet method.
  • the same components as those in Example 1-3 are denoted by the same reference numerals, and description thereof is omitted.
  • the organic material OM such as high density polyethylene (melting point: 130 to 137 ° C.) or linear low density polyethylene (melting point: 122 to 124 ° C.), for example, nitrite, Cooled by extruding an internal short-circuit preventive agent ISM such as nitrate (particle size is 1 ⁇ m, for example) and an organic solvent OM into a soluble solvent and extruding it from the T-die TD onto the cooling roll COR. , Phase separation into polymer phase and solvent phase. Thereafter, the solvent is removed by volatilization at the solvent removal unit SRP, and the stretched roll group EXRS is stretched to form a porous structure.
  • SP5 composed of the organic material OM and the internal short circuit preventing agent ISM is added. Can be formed.
  • the separator SP5 can contain a material that is hardly soluble in the non-aqueous electrolyte, such as nitrite and nitrate, and has an effect of capturing metal ions.
  • the internal short-circuit preventing agent component that contacts and is eluted in a small amount can efficiently capture metal ions and prevent internal short-circuit.
  • the internal short circuit preventing agent is included during the production of the separator SP5, so that a slurry kneading / coating step including the internal short circuit preventing agent is unnecessary. Yes, the number of processes can be reduced.
  • the technical idea of the present invention has been described by taking a wound type lithium ion battery as an example.
  • the technical idea of the present invention is not limited to the wound type lithium ion battery.
  • the present invention can be widely applied to an electricity storage device (for example, a battery or a capacitor) including a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode.
  • the present invention can be widely used in, for example, a manufacturing industry for manufacturing a battery represented by a lithium ion battery.

Abstract

 In order to solve the problems, the present invention provides a lithium ion cell characterized by including a positive electrode, a negative electrode, a separator for insulating the positive electrode and the negative electrode, a liquid electrolyte in which charging and discharging reactions occur between the positive electrode and the negative electrode, and an internal-short-circuit-preventing agent for suppressing internal short-circuit failure within the separator.

Description

リチウムイオン電池およびその製造方法Lithium ion battery and manufacturing method thereof
 本発明は、リチウムイオン電池に関する。 The present invention relates to a lithium ion battery.
 本技術分野の背景技術として、特許文献1には、正極、負極、セパレータおよび非水電解質を有する非水電解質電池であって、電池内の非水電解質と接触し得る箇所に、アルミニウムケイ酸塩またはその誘導体を有することを特徴とする非水電解質電池により、信頼性に優れ、かつ高温貯蔵時の特性低下を抑制し得る非水電解質電池を提供する例が記載されている。 As a background art of this technical field, Patent Document 1 discloses a nonaqueous electrolyte battery having a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte, and an aluminum silicate at a location where it can come into contact with the nonaqueous electrolyte in the battery. Alternatively, an example of providing a nonaqueous electrolyte battery that is excellent in reliability and can suppress deterioration in characteristics during high-temperature storage is described using a nonaqueous electrolyte battery characterized by having a derivative thereof.
特開2012-146477号公報JP 2012-146477 A
特許文献1の方法では、金属イオンをトラップするアルミケイ酸塩またはその誘導体は電解液中に溶解することなく、セパレータに固定化されているため、金属イオンとの遭遇確率が低く、十分に金属イオンを捕捉する事ができない恐れがある。 In the method of Patent Document 1, since the aluminum silicate that traps metal ions or a derivative thereof is immobilized in the separator without dissolving in the electrolyte, the encounter probability with the metal ions is low, and the metal ions are sufficiently May not be able to be captured.
 そこで、本発明は、効率的に金属イオンを捕捉することで内部短絡不良を抑制し、信頼性向上を図ることができるリチウムイオン電池を提供することを目的とする。 Therefore, an object of the present invention is to provide a lithium ion battery capable of suppressing internal short circuit failure by efficiently capturing metal ions and improving reliability.
 上記課題を解決するため本発明は、正極および負極と、前記正極と前記負極とを絶縁するセパレータと前記正極と前記負極との間での充放電反応が行われる電解液と、前記セパレータ中に内部短絡不良を抑制する内部短絡防止剤を含有することを特徴とするリチウムイオン電池を提供する。 In order to solve the above problems, the present invention provides a positive electrode and a negative electrode, a separator that insulates the positive electrode and the negative electrode, an electrolyte solution that performs a charge / discharge reaction between the positive electrode and the negative electrode, and the separator. Provided is a lithium ion battery characterized by containing an internal short-circuit preventing agent that suppresses internal short-circuit defects.
 本発明によれば、効率的に金属イオンを捕捉することで内部短絡不良を抑制し、信頼性向上を図ることができるリチウムイオン電池を提供することができる。 According to the present invention, it is possible to provide a lithium ion battery capable of suppressing internal short circuit failure by efficiently capturing metal ions and improving reliability.
本発明の実施例1におけるリチウムイオン電池の製造工程を示す図である。It is a figure which shows the manufacturing process of the lithium ion battery in Example 1 of this invention. 本発明の実施例1におけるリチウムイオン電池の製造工程を示す図である。It is a figure which shows the manufacturing process of the lithium ion battery in Example 1 of this invention. 本発明の実施例1におけるリチウムイオン電池の構造を示す図である。It is a figure which shows the structure of the lithium ion battery in Example 1 of this invention. 本発明の実施例1におけるリチウムイオン電池の構造を示す図である。It is a figure which shows the structure of the lithium ion battery in Example 1 of this invention. 本発明の実施例1におけるリチウムイオン電池の構造を示す図である。It is a figure which shows the structure of the lithium ion battery in Example 1 of this invention. 本発明の実施例1におけるリチウムイオン電池の構造を示す図である。It is a figure which shows the structure of the lithium ion battery in Example 1 of this invention. 本発明の実施例2におけるリチウムイオン電池の製造工程を示す図である。It is a figure which shows the manufacturing process of the lithium ion battery in Example 2 of this invention. 本発明の実施例3におけるリチウムイオン電池の製造工程を示す図である。It is a figure which shows the manufacturing process of the lithium ion battery in Example 3 of this invention. 本発明の実施例4におけるリチウムイオン電池の製造工程を示す図である。It is a figure which shows the manufacturing process of the lithium ion battery in Example 4 of this invention.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shape, positional relationship, etc., of components, etc., unless otherwise specified, and in principle, it is considered that this is not clearly the case, it is substantially the same. Including those that are approximate or similar to the shape. The same applies to the above numerical values and ranges.
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。 In all the drawings for explaining the embodiments, the same members are, in principle, given the same reference numerals, and the repeated explanation thereof is omitted. In order to make the drawings easy to understand, even a plan view may be hatched.
 本発明の実施例1について図1-6を用いて説明する。 Example 1 of the present invention will be described with reference to FIGS. 1-6.
 正極を作製するためのスラリーSL1について説明する。スラリーSL1は、例えば、コバルト酸リチウムからなる正極活物質PASと導電助剤としてのカーボンを混合されている。そして、例えば、ポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に正極活物質PASおよび導電助剤が含まれている。 The slurry SL1 for producing the positive electrode will be described. In the slurry SL1, for example, a positive electrode active material PAS made of lithium cobalt oxide and carbon as a conductive additive are mixed. For example, a positive electrode active material PAS and a conductive additive are contained in a solution in which a binder (binder) made of polyvinylidene fluoride is dissolved in N-methylpyrrolidone (NMP).
 正極と負極を絶縁するセパレータを作製するためのスラリーSL2について説明する。スラリーSL2には、例えば、アルミナ(Al)やシリカ(SiO)などのセラミック粉体CRS(粒径は、例えば、4μm)と、例えば高密度ポリエチレン(融点:130~137℃)や直鎖状低密度ポリエチレン(融点:122~124℃)などの有機材料OM(粒径は、例えば、1μm)が混合されている。そして、本実施例では、スラリーSL2に例えば、亜硝酸塩や硝酸塩などの内部短絡防止剤ISM(粒径は、例えば、1μm)を混合されている。 The slurry SL2 for producing a separator that insulates the positive electrode and the negative electrode will be described. Examples of the slurry SL2 include ceramic powder CRS (particle size is 4 μm, for example) such as alumina (Al 2 O 3 ) and silica (SiO 2 ), high-density polyethylene (melting point: 130 to 137 ° C.), and the like. Organic material OM (particle size is, for example, 1 μm) such as linear low density polyethylene (melting point: 122 to 124 ° C.) is mixed. In this embodiment, the slurry SL2 is mixed with an internal short circuit preventing agent ISM (particle size is, for example, 1 μm) such as nitrite or nitrate.
 ここで、正極シートPESは、正極活物質PASと結着剤(バインダ)を含有するスラリーSL1を正極板(正極集電体)PEPに塗布し、乾燥させる。その後、加圧することで、正極板PEPの両面に塗着された正極活物質PASの高密度化を図ると共に、表面の平滑化がなされることにより、作製される。 Here, in the positive electrode sheet PES, the slurry SL1 containing the positive electrode active material PAS and the binder (binder) is applied to the positive electrode plate (positive electrode current collector) PEP and dried. Thereafter, pressurization is performed to increase the density of the positive electrode active material PAS applied to both surfaces of the positive electrode plate PEP and to smooth the surface.
 図1、2を用いて、正極の構造および作製方法について説明する。 The structure and manufacturing method of the positive electrode will be described with reference to FIGS.
 正極板PEPの両面には、正極活物質PASが塗布されている。正極活物質PAS上に、セラミック粉体CRSと有機材料OMと内部短絡防止剤ISMとバインダを含むセパレータSP1が形成されている。 The positive electrode active material PAS is applied to both surfaces of the positive electrode plate PEP. On the positive electrode active material PAS, a separator SP1 containing ceramic powder CRS, an organic material OM, an internal short circuit preventing agent ISM, and a binder is formed.
 セパレータSP1は、図1に示すように、ダイコータDCを使用して、正極シートPES作製後に正極板PEPに塗布した正極活物質PAS上にセラミック粉体CRSと有機材料OMと内部短絡防止剤ISMを混練させたスラリーSL2を塗布することにより、作製される。次に、正極板PAS上に塗布したセラミック粉体CRSと有機材料OMと内部短絡抑止剤ISMを乾燥させる。具体的には、例えば、120℃以下で正極板PEPを加熱することにより、正極板PEP上に塗布されている正極活物質PASおよびセラミック粉体CRSと有機材料OMと内部短絡防止剤ISMを乾燥させる。ここでの加熱処理は、セパレータSP1を構成する有機材料OMが溶融しない温度に設定する必要がある。 As shown in FIG. 1, the separator SP1 uses a die coater DC, and a ceramic powder CRS, an organic material OM, and an internal short circuit preventing agent ISM are applied on the positive electrode active material PAS applied to the positive electrode plate PEP after the positive electrode sheet PES is produced. It is produced by applying the kneaded slurry SL2. Next, the ceramic powder CRS, the organic material OM, and the internal short circuit inhibitor ISM applied on the positive electrode plate PAS are dried. Specifically, for example, by heating the positive electrode plate PEP at 120 ° C. or less, the positive electrode active material PAS, the ceramic powder CRS, the organic material OM, and the internal short circuit preventing agent ISM applied on the positive electrode plate PEP are dried. Let The heat treatment here needs to be set to a temperature at which the organic material OM constituting the separator SP1 does not melt.
 そして、正極板PEPの片面に塗布されたセパレータSP1を構成するセラミック粉体CRSと有機材料OMと内部短絡防止剤を乾燥させた後、図2に示すように、正極板PEPのもう一方の面にセラミック粉体CRSと有機材料OMと内部短絡防止剤ISMを混練させたスラリーSL2を塗布する。その後、例えば、120℃以下で正極板PEPを加熱することにより、正極板PEPのもう一方の面に塗布されているセラミック粉体CRSと有機材料OMと内部短絡防止剤ISMを乾燥し、正極板PEPの両面に正極活物質PASおよびセパレータSP1、セパレータSP2を形成する。 Then, after drying the ceramic powder CRS, the organic material OM, and the internal short circuit preventing agent constituting the separator SP1 applied to one surface of the positive electrode plate PEP, as shown in FIG. 2, the other surface of the positive electrode plate PEP. The slurry SL2 in which the ceramic powder CRS, the organic material OM, and the internal short circuit preventing agent ISM are kneaded is applied to the slurry. Then, for example, by heating the positive electrode plate PEP at 120 ° C. or less, the ceramic powder CRS, the organic material OM, and the internal short circuit preventing agent ISM applied to the other surface of the positive electrode plate PEP are dried, and the positive electrode plate The positive electrode active material PAS, the separator SP1, and the separator SP2 are formed on both sides of the PEP.
 負極を作製するためのスラリーSL3について説明する。スラリーSL3は、例えば、炭素材料(カーボン材料)からなる負極活物質NASとポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液が含まれている。 The slurry SL3 for producing the negative electrode will be described. The slurry SL3 includes, for example, a solution in which a negative electrode active material NAS made of a carbon material (carbon material) and a binder (binder) made of polyvinylidene fluoride are dissolved in N-methylpyrrolidone (NMP).
 スラリーSL3を作製した後、負極活物質NASと結着剤(バインダ)を含有するスラリーSL3を負極板(負極集電体)NEPに塗布し、乾燥させる。その後、加圧することで、負極板NEPの両面に塗着された負極活物質NASの高密度化を図ると共に、表面の平滑化がなされた負極シートNASを作製する。 After preparing the slurry SL3, the slurry SL3 containing the negative electrode active material NAS and a binder (binder) is applied to the negative electrode plate (negative electrode current collector) NEP and dried. Thereafter, pressurization is performed to increase the density of the negative electrode active material NAS applied to both surfaces of the negative electrode plate NEP, and the negative electrode sheet NAS having a smooth surface is produced.
 図3、4、5を用いて、正極と負極とセパレータを捲回した電極捲回体WRFの構造及び作製方法について説明する。 The structure and manufacturing method of the electrode winding body WRF in which the positive electrode, the negative electrode, and the separator are wound will be described with reference to FIGS.
 正極シートPES、負極シートNASを作製後、セパレータSP1(SP2)および正極活物質PASを塗着した正極板PEPを切断して加工する。これにより、正極板PEPの一辺(上辺)に矩形形状をした複数の正極集電タブPTABを形成することができる。このようにして、正極板PEPに正極活物質PASを塗着して加工された正極PELを形成することができる。 After producing the positive electrode sheet PES and the negative electrode sheet NAS, the positive electrode plate PEP coated with the separator SP1 (SP2) and the positive electrode active material PAS is cut and processed. Thereby, a plurality of positive electrode current collecting tabs PTAB having a rectangular shape on one side (upper side) of the positive electrode plate PEP can be formed. Thus, the positive electrode PEL processed by applying the positive electrode active material PAS to the positive electrode plate PEP can be formed.
 同様に、負極活物質NASを塗着した負極板NEPを切断して加工する。これにより、負極板NEPの一辺(下辺)に矩形形状をした複数の負極集電タブNTABを形成することができる。このようにして、負極板NEPに負極活物質NASを塗着して加工された負極NELを形成することができる。 Similarly, the negative electrode plate NEP coated with the negative electrode active material NAS is cut and processed. Accordingly, a plurality of negative electrode current collecting tabs NTAB having a rectangular shape on one side (lower side) of the negative electrode plate NEP can be formed. In this way, the negative electrode NEL processed by applying the negative electrode active material NAS to the negative electrode plate NEP can be formed.
 次に、図3に示すように、セパレータSP1(SP2(図示されず))と一体化して形成された正極PELと、負極NELとを重ね合わせる。このとき、正極PELに形成されている正極集電タブPTABと、負極NELに形成されている負極集電タブNTABとが反対方向に配置されるようにする。 Next, as shown in FIG. 3, the positive electrode PEL formed integrally with the separator SP1 (SP2 (not shown)) and the negative electrode NEL are overlapped. At this time, the positive electrode current collecting tab PTAB formed in the positive electrode PEL and the negative electrode current collecting tab NTAB formed in the negative electrode NEL are arranged in opposite directions.
 その後、図4に示すように、セパレータSP1(SP2)付き正極PELと、負極NELとを重ね合わせた状態で軸芯CRに捲回して電極捲回体WRFを形成する。このようにして、電極捲回体WRFを形成することができる。 Then, as shown in FIG. 4, the electrode wound body WRF is formed by winding the positive electrode PEL with the separator SP1 (SP2) and the negative electrode NEL around the shaft core CR. In this way, the electrode winding body WRF can be formed.
 続いて、図5に示すように、電極捲回体WRFの上端部から突出している正極集電タブPTABを正極集電リングPRに接続する。同様に、電極捲回体WRFの下端部から突出している負極集電タブNTABを負極集電リングNRに接続する。ここで、正極集電タブPTABの正極集電リングPRへの接続、および、負極集電タブNTABの負極集電リングNRへの接続は、例えば、超音波溶着によって行われる。 Subsequently, as shown in FIG. 5, the positive electrode current collecting tab PTAB protruding from the upper end of the electrode winding body WRF is connected to the positive electrode current collecting ring PR. Similarly, the negative electrode current collecting tab NTAB protruding from the lower end of the electrode winding body WRF is connected to the negative electrode current collecting ring NR. Here, the connection of the positive electrode current collector tab PTAB to the positive electrode current collector ring PR and the connection of the negative electrode current collector tab NTAB to the negative electrode current collector ring NR are performed by, for example, ultrasonic welding.
 図6を用いて本実施例のリチウムイオン電池の全体構造について説明する。 The overall structure of the lithium ion battery of this example will be described with reference to FIG.
 図6に示すように、電極捲回体WRFは外装缶CSの内部に挿入されている。外装缶CSには溝DTを形成されている。この溝DTは、外装缶CSの内部に挿入されている電極捲回体WRFが上下方向に移動しないように固定するために設けられるものである。 As shown in FIG. 6, the electrode winding body WRF is inserted into the outer can CS. A groove DT is formed in the outer can CS. The groove DT is provided to fix the electrode winding body WRF inserted in the outer can CS so as not to move in the vertical direction.
 そして、電極捲回体WRFを挿入した外装缶CSの内部には電解液ELを注入されている。外装缶CSの上部をキャップで封止されている。 The electrolyte EL is injected into the outer can CS into which the electrode winding body WRF is inserted. The upper part of the outer can CS is sealed with a cap.
 以上より、本実施例によれば、セパレータSP1(SP2)に亜硝酸塩、硝酸塩といった非水電解液に対して難溶解性かつ金属イオンを捕捉する効果を有する物質を含ませることができるため、非水電解液に接触し微量に溶出した内部短絡防止剤成分が金属イオンを効率的に捕捉し、内部短絡を防止することができる。そのため、信頼性の高いリチウムイオン電池を提供することができる。 As described above, according to the present embodiment, the separator SP1 (SP2) can contain a material that is hardly soluble in a non-aqueous electrolyte such as nitrite and nitrate and has an effect of capturing metal ions. The internal short-circuit preventing agent component that is in contact with the water electrolyte and eluted in a small amount efficiently captures metal ions and can prevent internal short-circuit. Therefore, a highly reliable lithium ion battery can be provided.
 本発明の実施例2について図7-9を用いて説明する。 Example 2 of the present invention will be described with reference to FIGS. 7-9.
 本実施例は、セラミック粉体CRSと有機材料OMと内部短絡防止剤ISMをポリオレフィン系フィルム上に塗布して形成される点に特徴がある。実施例1と同一の構成については同一の符号を付し、その説明を省略する。 This example is characterized in that it is formed by applying ceramic powder CRS, organic material OM, and internal short circuit preventing agent ISM on a polyolefin film. The same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 本実施例における、セパレータSP3aを形成するスラリーSL4は、例えば、ポリフッ化ビニリデンからなる結着剤(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に、例えば、亜硝酸塩や硝酸塩などの内部短絡防止剤ISM(粒径は、例えば、1μm)が含有されている。 In this embodiment, the slurry SL4 that forms the separator SP3a is, for example, in a solution in which a binder (binder) made of polyvinylidene fluoride is dissolved in N-methylpyrrolidone (NMP). A short-circuit preventing agent ISM (particle size is, for example, 1 μm) is contained.
 本実施例では、図7に示すように、ダイコータDCを使用して、ポリオレフィン系セパレータPSP上に内部短絡防止剤ISMを混練させたスラリーSL4を塗布することにより、ポリオレフィン系セパレータPSP上に、セラミック粉体CRSと内部短絡防止剤ISMを含むセパレータSP3aを形成する。 In this example, as shown in FIG. 7, by using a die coater DC, a slurry SL4 kneaded with the internal short-circuit preventing agent ISM is applied onto the polyolefin separator PSP, whereby a ceramic is applied onto the polyolefin separator PSP. Separator SP3a containing powder CRS and internal short circuit preventing agent ISM is formed.
 ポリオレフィン系セパレータPSP上に塗布した内部短絡防止剤ISMを乾燥させる。具体的には、例えば、120℃以下で加熱することにより、ポリオレフィン系セパレータPSP上に塗布されている内部短絡防止剤ISMを乾燥させる。ここでの加熱処理は、ポリオレフィン系セパレータPSPが溶融しない温度に設定する必要がある。これにより、ポリオレフィン系セパレータPSP上に、内部短絡防止剤ISMを含むSP3を形成することができる。 The internal short circuit preventing agent ISM applied on the polyolefin separator PSP is dried. Specifically, for example, by heating at 120 ° C. or lower, the internal short circuit preventing agent ISM applied on the polyolefin-based separator PSP is dried. The heat treatment here needs to be set to a temperature at which the polyolefin separator PSP does not melt. Thereby, SP3 containing the internal short circuit preventing agent ISM can be formed on the polyolefin-based separator PSP.
 なお、以降の工程は、実施例1で説明したものとほぼ同様であるため再度の説明は省略する。 Note that the subsequent steps are almost the same as those described in the first embodiment, and thus the description thereof will be omitted.
 以上より、本実施例によれば、実施例1と比較して、セパレータSP3表面に内部短絡防止剤を均一に存在させることが可能となり、非水電解液に接触し微量に内部短絡防止剤成分が溶出する際に、局所的な濃度の不均一化を効果的に抑制することができる。そのため、金属異物の混入箇所に依存せず、効率的に金属イオンを捕捉し、内部短絡を効果的にすることができ、さらに信頼性の高いリチウムイオン電池を製造可能である。 As described above, according to this example, compared with Example 1, it is possible to make the internal short-circuit preventing agent uniformly exist on the surface of the separator SP3, and the internal short-circuit preventing agent component comes into contact with the non-aqueous electrolyte in a minute amount. Can be effectively suppressed from becoming non-uniform in concentration. For this reason, it is possible to efficiently capture metal ions and effectively make an internal short circuit without depending on the location where the metal foreign matter is mixed, and to manufacture a highly reliable lithium ion battery.
 本発明の実施例3について図8を用いて説明する。 Example 3 of the present invention will be described with reference to FIG.
 本実施例は、乾式法にて有機材料OMと内部短絡防止剤ISMがポリオレフィン系フィルム内に含有される点に特徴がある。実施例1、2と同一の構成については同一の符号を付し、その説明を省略する。 This example is characterized in that the organic material OM and the internal short circuit preventing agent ISM are contained in a polyolefin film by a dry method. The same components as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図8に示すように、本実施例では、例えば高密度ポリエチレン(融点:130~137℃)や直鎖状低密度ポリエチレン(融点:122~124℃)の有機材料OMと、例えば、亜硝酸塩や硝酸塩などの内部短絡防止剤ISM(粒径は、例えば、1μm)をホッパーHPから投入し、押出機EXMにて有機材料OMが溶融され、内部短絡防止剤ISMと混合される。その後、押出機EXMからTダイTDに供給され、TダイTDから内部短絡防止剤を含む溶融された有機材料OMがシート状で、冷却ロールCOR上に押し出されることで冷却、固化される。その後、予熱ロール群PHRSにて熱処理が施され、延伸ロール群EXRSにて延伸されることで、多孔構造を形成する。その後、冷却ロール群CORSにて冷却されることで、有機材料OMと内部短絡防止剤ISMから構成されるSP4を形成することができる。 As shown in FIG. 8, in this example, for example, high-density polyethylene (melting point: 130-137 ° C.) or linear low-density polyethylene (melting point: 122-124 ° C.) organic material OM, for example, nitrite, An internal short circuit preventing agent ISM (particle size is 1 μm, for example) such as nitrate is introduced from the hopper HP, and the organic material OM is melted in the extruder EXM and mixed with the internal short circuit preventing agent ISM. Thereafter, the molten organic material OM containing the internal short-circuit preventing agent is supplied from the extruder EXM to the T die TD, and is cooled and solidified by being extruded in a sheet form onto the cooling roll COR. Then, heat processing is performed by the preheating roll group PHRS, and a porous structure is formed by extending | stretching by the extending | stretching roll group EXRS. Then, SP4 comprised from the organic material OM and the internal short circuit preventing agent ISM can be formed by being cooled by the cooling roll group CORS.
 なお、以降の工程は、実施例1、2で説明したものとほぼ同様であるため再度の説明は省略する。 Since the subsequent steps are substantially the same as those described in the first and second embodiments, the description thereof will be omitted.
 以上より、本実施例によれば、実施例1、2と比較して、セパレータSP4製造時に内部短絡防止剤を含ませるため、内部短絡防止剤を含むスラリーの混練・塗布工程が不要であり、工程数を削減可能である。 From the above, according to this example, compared with Examples 1 and 2, in order to include an internal short-circuit preventing agent during the manufacture of separator SP4, a slurry kneading and coating step containing an internal short-circuit preventing agent is unnecessary, The number of processes can be reduced.
 本発明の実施例4について図9を用いて説明する。 Example 4 of the present invention will be described with reference to FIG.
 本実施例は、湿式法にて有機材料OMと内部短絡防止剤ISMをポリオレフィン系フィルム内に含有する点に特徴がある。実施例1-3と同一の構成については同一の符号を付し、その説明を省略する。 This example is characterized in that an organic material OM and an internal short circuit preventing agent ISM are contained in a polyolefin film by a wet method. The same components as those in Example 1-3 are denoted by the same reference numerals, and description thereof is omitted.
 図9に示すように、本実施例では、例えば高密度ポリエチレン(融点:130~137℃)や直鎖状低密度ポリエチレン(融点:122~124℃)の有機材料OMと、例えば、亜硝酸塩や硝酸塩などの内部短絡防止剤ISM(粒径は、例えば、1μm)と有機溶剤OMを可溶な溶剤に混合して均一化した溶液をTダイTDから、冷却ロールCOR上に押し出すことで冷却し、ポリマー相と溶剤相に相分離する。その後、溶剤除去部SRPにて溶剤を揮発除去し、続く延伸ロール群EXRSにて延伸されることで、多孔構造を形成することで、有機材料OMと内部短絡防止剤ISMから構成されるSP5を形成することができる。 As shown in FIG. 9, in this example, the organic material OM such as high density polyethylene (melting point: 130 to 137 ° C.) or linear low density polyethylene (melting point: 122 to 124 ° C.), for example, nitrite, Cooled by extruding an internal short-circuit preventive agent ISM such as nitrate (particle size is 1 μm, for example) and an organic solvent OM into a soluble solvent and extruding it from the T-die TD onto the cooling roll COR. , Phase separation into polymer phase and solvent phase. Thereafter, the solvent is removed by volatilization at the solvent removal unit SRP, and the stretched roll group EXRS is stretched to form a porous structure. Thus, SP5 composed of the organic material OM and the internal short circuit preventing agent ISM is added. Can be formed.
 以上より、本実施例によれば、セパレータSP5に亜硝酸塩、硝酸塩といった非水電解液に対して難溶解性かつ金属イオンを捕捉する効果を有する物質を含ませることができるため、非水電解液に接触し微量に溶出した内部短絡防止剤成分が金属イオンを効率的に捕捉し、内部短絡を防止することができる。 As described above, according to the present embodiment, the separator SP5 can contain a material that is hardly soluble in the non-aqueous electrolyte, such as nitrite and nitrate, and has an effect of capturing metal ions. The internal short-circuit preventing agent component that contacts and is eluted in a small amount can efficiently capture metal ions and prevent internal short-circuit.
 なお、以降の工程は、上記実施の実施例1-3で説明したものとほぼ同様であるため再度の説明は省略する。 Note that the subsequent steps are almost the same as those described in Example 1-3 above, and thus the description thereof is omitted.
 以上より、本実施例によれば、実施例1、2、3と比較して、セパレータSP5製造時に内部短絡防止剤を含ませるため、内部短絡防止剤を含むスラリーの混練・塗布工程が不要であり、工程数を削減可能である。 As described above, according to this example, compared with Examples 1, 2, and 3, the internal short circuit preventing agent is included during the production of the separator SP5, so that a slurry kneading / coating step including the internal short circuit preventing agent is unnecessary. Yes, the number of processes can be reduced.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 前記実施の形態では、捲回型リチウムイオン電池を例に挙げて、本発明の技術的思想について説明したが、本発明の技術的思想は、捲回型リチウムイオン電池に限定されるものではなく、正極、負極、および、正極と負極とを電気的に分離するセパレータとを備える蓄電デバイス(例えば、電池やキャパシタなど)に幅広く適用することができる。 In the above embodiment, the technical idea of the present invention has been described by taking a wound type lithium ion battery as an example. However, the technical idea of the present invention is not limited to the wound type lithium ion battery. The present invention can be widely applied to an electricity storage device (for example, a battery or a capacitor) including a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode.
 本発明は、例えば、リチウムイオン電池に代表される電池を製造する製造業に幅広く利用することができる。

The present invention can be widely used in, for example, a manufacturing industry for manufacturing a battery represented by a lithium ion battery.

COR 冷却ローラ
CORS 冷却ロール群
CR 軸芯
CRS セラミック粉体
CS 外装缶
DC ダイコータ
DT 溝
EL 電解液
EXM 押出機
EXRS 延伸ロール群
HP ホッパー
ISM 内部短絡防止剤
NAS 負極活物質
NEL 負極
NEP 負極板
NR 負極リング
NTAB 負極集電タブ
OM 有機材料
PAS 正極活物質
PEL 正極
PEP 正極板
PHRS 予熱ロール群
PR 正極リング
PSP ポリオレフィン系セパレータ
PTAB 正極集電タブ
SL1 スラリー
SL2 スラリー
SL3 スラリー
SL4 スラリー
SP1 セパレータ
SP2 セパレータ
SP3 セパレータ
SP4 セパレータ
SP5 セパレータ
SRP 溶剤除去部
TD Tダイ
WRF 電極捲回体
COR Cooling roller CORS Cooling roll group CR Shaft core CRS Ceramic powder CS Outer can DC Die coater DT Groove EL Electrolyte EXM Extruder EXRS Stretching roll group HP Hopper ISM Internal short circuit preventing agent NAS Negative electrode active material NEL Negative electrode NEP Negative electrode plate NR Negative electrode ring NTAB negative electrode current collector tab OM organic material PAS positive electrode active material PEL positive electrode PEP positive electrode plate PHRS preheating roll group PR positive electrode ring PSP polyolefin separator PTAB positive electrode current collector tab SL1 slurry SL2 slurry SL3 slurry SL4 slurry SP1 separator SP2 separator SP3 separator SP4 separator SP5 Separator SRP Solvent removal part TD T-die WRF Electrode winding body

Claims (5)

  1.  正極および負極と、
     前記正極と前記負極とを絶縁するセパレータと
     前記正極と前記負極との間での充放電反応が行われる電解液とを備え、
     前記電解液中に前記セパレータ中に金属イオンを捕集し内部短絡を抑制する内部短絡防止剤を含有することを特徴とするリチウムイオン電池。
    A positive electrode and a negative electrode;
    A separator that insulates the positive electrode and the negative electrode, and an electrolyte solution that performs a charge / discharge reaction between the positive electrode and the negative electrode,
    A lithium ion battery comprising an internal short-circuit preventing agent that collects metal ions in the separator and suppresses an internal short circuit in the electrolyte.
  2.  前記内部短絡防止剤は、亜硝酸塩、硝酸塩、クロム酸塩であることを特徴とする請求項1に記載のリチウムイオン電池。 2. The lithium ion battery according to claim 1, wherein the internal short circuit preventing agent is nitrite, nitrate, or chromate.
  3.  前記セパレータは、バインダと、有機材料と、無機材料、の少なくとも一つを含むように構成されていることを特徴とするリチウムイオン電池。 The lithium-ion battery is characterized in that the separator includes at least one of a binder, an organic material, and an inorganic material.
  4.  前記有機材料はポリオレフィン系樹脂から構成されていることを特徴とする請求項3に記載のリチウムイオン電池。 4. The lithium ion battery according to claim 3, wherein the organic material is made of a polyolefin resin.
  5.  前記無機材料は、アルミナ、あるいは、シリカから構成されていることを特徴とする請求項3に記載のリチウムイオン電池。
     
    The lithium ion battery according to claim 3, wherein the inorganic material is made of alumina or silica.
PCT/JP2014/061116 2014-04-21 2014-04-21 Lithium ion cell and method for manufacturing same WO2015162654A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/061116 WO2015162654A1 (en) 2014-04-21 2014-04-21 Lithium ion cell and method for manufacturing same
TW104112602A TWI523296B (en) 2014-04-21 2015-04-20 Lithium ion battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061116 WO2015162654A1 (en) 2014-04-21 2014-04-21 Lithium ion cell and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2015162654A1 true WO2015162654A1 (en) 2015-10-29

Family

ID=54331852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061116 WO2015162654A1 (en) 2014-04-21 2014-04-21 Lithium ion cell and method for manufacturing same

Country Status (2)

Country Link
TW (1) TWI523296B (en)
WO (1) WO2015162654A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243978A (en) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2004063123A (en) * 2002-07-25 2004-02-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2009146611A (en) * 2007-12-11 2009-07-02 Samsung Sdi Co Ltd Separator for nonaqueous lithium secondary battery
JP2013137943A (en) * 2011-12-28 2013-07-11 Panasonic Corp Lithium ion secondary battery and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243978A (en) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2004063123A (en) * 2002-07-25 2004-02-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2009146611A (en) * 2007-12-11 2009-07-02 Samsung Sdi Co Ltd Separator for nonaqueous lithium secondary battery
JP2013137943A (en) * 2011-12-28 2013-07-11 Panasonic Corp Lithium ion secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
TWI523296B (en) 2016-02-21
TW201543735A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
US11108078B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
US9960411B2 (en) Method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP6380083B2 (en) Electrode body and method for producing positive electrode
EP2077594A1 (en) Composite separator films for lithium-ion batteries
KR101660189B1 (en) Method and device for manufacturing lithium-ion secondary battery
KR101378074B1 (en) Electrode for electrochemical device and electrochemical device comprising the same
JP6183348B2 (en) Electrode body and method for producing electrode body
JP4581547B2 (en) Non-aqueous electrolyte secondary battery
CN111149237B (en) Porous separator and electrochemical device comprising same
JP2008084742A (en) Lithium-ion secondary battery
JP4518850B2 (en) Secondary battery electrode plate, method for producing the same, and secondary battery using the electrode plate
WO2018016112A1 (en) Secondary battery and production method therefor
WO2015162654A1 (en) Lithium ion cell and method for manufacturing same
JP6307594B2 (en) Lithium ion secondary battery and method and apparatus for manufacturing the same
JP2005302634A (en) Nonaqueous electrolyte secondary battery
JP2010205429A (en) Nonaqueous electrolyte secondary battery and electrode for the same
JP5888079B2 (en) Separator and non-aqueous secondary battery using the same
JP2005267997A (en) Manufacturing method of electrode plate for nonaqueous electrolyte battery
JP6510304B2 (en) Method of manufacturing lithium ion secondary battery
JP2016149239A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP5655494B2 (en) Electrode manufacturing method and electrode repair agent
US20160365557A1 (en) High performance, temperature resistant, printable separator
JP7484011B2 (en) Lithium-ion secondary battery and its manufacturing method
JP2004241170A (en) Non-aqueous electrolytic solution secondary battery
JPH10275634A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP